
Publication membre du centre
Mersenne pour l’édition scientifique ouverte

http://www.centre-mersenne.org/

ANNALES
DE LA FACULTÉ

DES SCIENCES

Mathématiques
JULIEN BICHON AND MAEVA PARADIS
Some isomorphism results for graded twistings of function algebras on finite
groups

Tome XXXI, no 2 (2022), p. 501–544.

https://doi.org/10.5802/afst.1701

© Université Paul Sabatier, Toulouse, 2022.

L’accès aux articles de la revue « Annales de la faculté des sciences de Toulouse
Mathématiques » (http://afst.centre-mersenne.org/) implique l’accord avec les
conditions générales d’utilisation (http://afst.centre-mersenne.org/legal/). Les
articles sont publiés sous la license CC-BY 4.0.

http://www.centre-mersenne.org/
https://doi.org/10.5802/afst.1701
http://afst.centre-mersenne.org/
http://afst.centre-mersenne.org/legal/


Annales de la faculté des sciences de Toulouse Volume XXXI, no 2, 2022
pp. 501-544

Some isomorphism results for graded twistings of
function algebras on finite groups (∗)

Julien Bichon (1) and Maeva Paradis (2)

ABSTRACT. — We provide isomorphism results for Hopf algebras that are ob-
tained as graded twistings of function algebras on finite groups by cocentral ac-
tions of cyclic groups. More generally, we also consider the isomorphism problem for
finite-dimensional Hopf algebras fitting into abelian cocentral extensions. We apply
our classification results to a number of concrete examples involving special linear
groups over finite fields, alternating and symmetric groups, and dihedral groups.

RÉSUMÉ. — Nous obtenons des résultats de classification à isomorphisme près
pour les algèbres de Hopf obtenues comme twists gradués d’algèbres de fonctions
sur des groupes finis par des actions cocentrales de groupes cycliques Plus généra-
lement, nous considérons le problème d’isomor-phisme pour les algèbres de Hopf de
dimension finie s’insérant dans des extensions cocentrales abéliennes. Nous appli-
quons ensuite nos résultats de classification à divers exemples concrets impliquant
les groupes spéciaux linéaires sur des corps finis, les groupes symétriques et alternés,
et les groupes diédraux.

1. Introduction

Hopf algebras are useful and far-reaching generalizations of groups. In
the semisimple (hence finite-dimensional) setting, the framework that is the
closest from the one of finite groups, all the known examples arise from
groups via a number of sophisticated constructions, and a general funda-
mental question [2, Problem 3.9] is whether any semisimple Hopf algebra is
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“group-theoretical” in an appropriate sense. An answer to the above ques-
tion, positive or not, still would leave open the hard problem of the iso-
morphic classification of the “group-theoretical” Hopf algebras. This paper
proposes contributions to this classification problem, mainly for the class of
Hopf algebras that are obtained as graded twisting of function algebras of
finite groups.

The graded twisting of Hopf algebras, which differs in general from the
familiar Hopf 2-cocycle twisting construction [9], was introduced in [4], and
is the formalization of a construction in [26] that solved the quantum group
realization problem of the Kazhdan–Wenzl categories [18]. The initial data
is that of a graded Hopf algebra A, acted on by a group Γ. The resulting
twisted Hopf algebra then has a number of pleasant features related to those
of initial one. Among those features, the following one [4, 5] is of particular
interest: if A = O(G) is the coordinate algebra on a linear algebraic group
G and Γ has prime order, then all the noncommutative quotients of the
graded twisted Hopf algebra again are graded twist of O(H), for a well-
chosen “admissible” closed subgroup H ⊂ G. This applies in particular to
O−1(SL2(C)), whose noncommutative quotients have been discussed and
classified in [3, 27]. The results in [4, 5], however, leave open the question
of the isomorphic classification of the Hopf algebras that are obtained by
graded twisting, and this is precisely the problem that we discuss in this
paper.

We prove 3 isomorphism results for graded twisting of Hopf algebras of
functions on finite groups. These results all have in common strong cohomo-
logical assumptions on the underlying group, which we believe to be difficult
to overcome to obtain general results, but yet are broad enough to cover a
number of interesting cases. Namely, we obtain classification results for Hopf
algebras that are graded twists of

(1) O(SLn(Fq)) by Zm, where q is a power of a prime number, m =
gcd(n, q− 1) is prime and (n, q) 6∈ {(2, 9), (3, 4)} (see Theorem 5.2);

(2) O(Ãn) by Z2, where Ãn is the unique Schur cover of the alternating
group An, with n 6= 6 (see Theorem 5.4);

(3) O(S̃n) by Z2, where S̃n is any of the two Schur covers of the sym-
metric group Sn, with n 6= 6 (see Theorem 5.5).

While the first two isomorphism theorems (Theorem 3.1 and Theorem 3.3)
are obtained rather directly and early in the paper (in Section 3), the third
one (Theorem 4.27) is obtained by considering the more general problem
of the classification of the Hopf algebras fitting into an abelian cocentral
extension. This is a classical topic in the field, which has been quite stud-
ied and very successful to obtain several classification results [15, 20, 25].
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Most of our analysis in Section 4 is thus well-know to specialists, but we
feel that certain formulations and our focus on extensions that are universal
bring some novelty, and we get as applications some results in this frame-
work that seem to be new. Indeed we obtain classification results (i.e. pa-
rameterizations by concrete and explicitly known group-theoretical data) for
noncommutative Hopf algebras A fitting into an abelian cocentral extension
k → O(H)→ A→ kZm in the following cases:

(1) H = PSL2(Fp), with p odd prime and m = 2;
(2) H = An, with n = 5 or n > 8 and m = 2;
(3) H = A5, for any m > 1;
(4) H = Sn, with n 6= 6 and m = 2;
(5) H = Dn, the dihedral group of order 2n with n odd and m > 1;
(6) H = Dn with n even, with the above extension universal andm = 2;
(7) H = Zp × Zp with p an odd prime and m a power of a prime such

that m|(p− 1).

Among those examples, it is interesting to note that the one with Dn and n
even is certainly the most intricate one, and does not follow from a general
result, although the structure of this group is certainly not the richest one.

The paper is organized as follows. Section 2 consists of reminders and
preliminaries. In Section 3 we provide our first two isomorphism results for
graded twistings of function algebras on finite groups. Section 4 deals with
general abelian cocentral extensions and provides our third isomorphism
result for graded twistings. The final Section 5 discusses applications of the
previous results to the concrete examples mentioned above.

Notation and conventions

We work over a fixed base field k, that we assume to be algebraically
closed and of characteristic zero. We assume familiarity with the theory of
Hopf algebras, for which [24] is a convenient reference, and we adopt the
usual conventions: for example ∆, ε and S always respectively stand for the
comultiplication, counit and antipode of a Hopf algebra, and we will use
Sweedler’s notation in the standard manner. A slightly less usual convention
is that we will assume that Hopf algebras have bijective antipode. We also
assume some familiarity with basic homological algebra, for which [12, 14]
are convenient references, and in particular we will use [14] as a reference for
Schur multiplier computations. Other specific notations will be introduced
throughout the text.
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2. Preliminaries

This section consists of reminders about cocentral Hopf algebra maps,
cocentral gradings, and the graded twisting construction. It also provides a
number of simple but useful preliminary results.

2.1. Cocentral Hopf algebra maps, cocentral gradings

The concept of cocentral Hopf algebra map is dual to the familiar one
of central algebra map. The precise definition is as follows [1], see [6, 7] for
extensive discussions on these notions.

Definition 2.1. —

(1) A Hopf algebra map p : A → B is said to be cocentral if for any
a ∈ A, we have p(a(1))⊗ a(2) = p(a(2))⊗ a(1).

(2) A cocentral Hopf algebra map p : A → B is said to be universal if
for any cocentral Hopf algebra map q : A→ C, there exists a unique
Hopf algebra map f : B → C such that f ◦ p = q.

(3) A Hopf algebra is said to have a universal grading group if there
exists a universal cocentral Hopf algebra map p : A → kΓ for some
group Γ, the unique such group Γ being called the universal grading
group of A.

Remarks 2.2. —

(1) If p : A → B is a cocentral surjective Hopf algebra map, then B is
necessarily cocommutative.

(2) Given a Hopf algebra A, the existence of a universal cocentral Hopf
algebra map A → B is easily shown as follows. Consider X, the
linear subspace of A spanned by the elements

ϕ(a(1))a(2) − ϕ(a(2))a(1), ϕ ∈ A∗, a ∈ A.

It is easy to see that X is a co-ideal in A, and then the ideal I
generated by X is a Hopf ideal in A. The quotient Hopf algebra
map p : A → A/I is then universal cocentral. Uniqueness of the
universal cocentral Hopf algebra map is obvious from the definition.

(3) If G is a linear algebraic group, denote by O(G) the algebra of
coordinate functions on G. If H ⊂ G is a closed subgroup, the
restriction map O(G)→ O(H) is cocentral if and only ifH is central
in G: H ⊂ Z(G), and the restriction map O(G) → O(Z(G)) is
universal cocentral.
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(4) If a Hopf algebra A is cosemisimple, it is not difficult to see, using
the Peter–Weyl decomposition of A (decomposition of A into direct
sum of matrix subcoalgebras), that A has a universal grading group.

The following lemma will be used several times in the text.

Lemma 2.3. — Let A, B be Hopf algebras having the same universal
finite cyclic grading group Γ0 and suppose given two surjective cocentral Hopf
algebra maps p : A → kΓ and q : B → kΓ for some finite cyclic group Γ,
and a Hopf algebra isomorphism f : A → B. Then there exists u ∈ Aut(Γ)
such that u ◦ p = q ◦ f .

Proof. — Let p0 : A→ kΓ0 and q0 : B → kΓ0 be the universal cocentral
Hopf algebra maps. The Hopf algebra map q0 ◦f : A→ kΓ0 being cocentral,
there exists a unique group morphism v : Γ0 → Γ0 such that v ◦ p0 = q0 ◦ f .
Since q0 ◦ f is surjective, so is v and hence v is an automorphism since
Γ0 is finite. The Hopf algebra maps p : A → kΓ and q : B → kΓ being
cocentral and surjective, the universality of p0 and q0 yields surjective group
morphisms w,w′ : Γ0 → Γ such that w ◦ p0 = p and w′ ◦ q0 = q. Let N =
Ker(w) and N ′ = Ker(w′). We have |N | = |Γ0|

|Γ| = |N ′|, hence the uniqueness
of a subgroup of given order in a finite cyclic group yields N = N ′ = v(N),
and there exists a unique group morphism u : Γ→ Γ such that u◦w = w′◦v:

A
p0
//

f

��

p

((
kΓ0

v

��

w
// kΓ

u

��
B

q0 //

q

66kΓ0
w′ // kΓ

We getu ◦ p = u ◦ w ◦ p0 = w′ ◦ v ◦ p0 = w′ ◦ q0 ◦ f = q ◦ f , as required. �

Definition 2.4. — Let A be a Hopf algebra and let Γ be a group. A
cocentral grading of A by Γ consists of a direct sum decomposition A =
⊕g∈ΓAg such that for any g, h ∈ Γ we have

(1) AgAh ⊂ Agh and 1 ∈ Ae,
(2) ∆(Ag) ⊂ Ag ⊗Ag and S(Ag) ⊂ Ag−1 .

Notice that the conditions 1 ∈ Ae and S(Ag) ⊂ Ag−1 follow from the
other ones. Cocentral gradings by Γ correspond to cocentral Hopf algebra
maps p : A → kΓ. Indeed, given a cocentral Hopf algebra map p : A → kΓ,
the corresponding grading is defined by

Ag = {a ∈ A | a(1) ⊗ p(a(2)) = a⊗ g = a(2) ⊗ p(a(1))}.
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We occasionally denote the set Ag by Ag,p to specify the dependence on p, in
case there is a risk of confusion. Conversely, given a cocentral grading by Γ,
the cocentral Hopf algebra map p : A→ kΓ is defined by p|Ag = ε( · )g, and
is surjective if and only if Ag 6= {0} for any g ∈ Γ. We will freely circulate
from cocentral Hopf algebra maps to cocentral gradings.

An important property of the cocentral gradings, provided that the cor-
responding cocentral Hopf algebra map is surjective, is that they are strong:
for any g, h ∈ Γ, we have AgAh = Agh (see e.g. [5, Proposition 2.2] for
this well-known fact). Here is a useful application, used in the proof of the
forthcoming Lemma 2.13.

Lemma 2.5. — Let p : A → kΓ be a cocentral surjective Hopf algebra
map. Let g ∈ Γ and let y, z ∈ A be such that xy = xz for any x ∈ Ag. Then
y = z.

Proof. — Since Ae = Ag−1Ag, there are elements x1, . . . , xm ∈ Ag−1 and
y1, . . . , ym ∈ Ag such that 1 =

∑m
i=1 xiyi. Then, using our assumption, we

have y =
∑m
i=1 xiyiy =

∑m
i=1 xiyiz = z. �

2.2. Cocentral actions and graded twisting

The following notion is introduced in [4] under the name “invariant co-
central action”. In the present paper, to simplify terminology, we will simply
say “cocentral action”.

Definition 2.6. — A cocentral action of a group Γ on a Hopf algebra
A consists of a pair (p, α) where p : A → kΓ is a surjective cocentral Hopf
algebra map and α : Γ→ AutHopf(A) is a group morphism, together with the
compatibility condition p ◦ αg = p for any g ∈ Γ.

In the graded picture, the compatibility condition is αg(Ah) = Ah for
any g, h ∈ Γ.

Definition 2.7. — Given a cocentral action (p, α) of a group Γ on a
Hopf algebra A, the graded twisting Ap,α is the Hopf algebra having A as
underlying coalgebra, and whose product and antipode are defined by

∀ a ∈ Ag, b ∈ Ah, a · b = aαg(b), S(a) = αg−1(S(a)).

The present definition of a graded twisting differs from the original one
in [4], but is equivalent to it: see [5, Remark 2.4], the underlying algebra
structure is that of a twist in the sense of [29].
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Lemma 2.8. — Let q : A→ B be a universal cocentral Hopf algebra map
and let (p, α) be a cocentral action of a group Γ on A. Then q : Ap,α → B
still is a universal cocentral Hopf algebra map.

Proof. — Recall from Remark 2.2 that we can assume that q is the quo-
tient map A → A/I where I is the ideal of A generated by X, the linear
subspace of A spanned by the elements ϕ(a(1))a(2) − ϕ(a(2))a(1), ϕ ∈ A∗,
a ∈ A. The space X is as well the linear subspace of A spanned by the
elements

ϕ(a(1))a(2) − ϕ(a(2))a(1), ϕ ∈ A∗, a ∈ Ag, g ∈ Γ.
Let I ′ be the ideal of Ap,α generated by X. The computation, for a ∈ Ag, b ∈
Ah, c ∈ Ar,

a ·
(
ϕ(b(1))b(2) − ϕ(b(2))b(1)

)
· c

= ϕ(b(1))aαg(b(2))αgh(c)− ϕ(b(2))aαg(b(1))αgh(c)
= a

(
ϕαg−1(αg(b(1)))αg(b(2))− ϕαg−1(αg(b(2)))αg(b(1))

)
αgh(c)

shows that I ′ ⊂ I. In a symmetric manner, since ab = a · αg−1(b) for a ∈ Ag
and b ∈ A, we have I ⊂ I ′ and hence I = I ′. Therefore the quotient map
q′ : Ap,α → Ap,α/I ′, which is universal cocentral, equals q, and we have our
result. �

Since our main goal is to compare the different Hopf algebras obtained
via graded twisting, an obvious thing to do first is to compare the various
cocentral actions, and for this the following notion is quite natural.

Definition 2.9. — Two cocentral actions (p, α) and (q, β) of a group Γ
on a Hopf algebra A are said to be equivalent if there exist u ∈ Aut(Γ) and
f ∈ AutHopf(A) such that

u ◦ p = q ◦ f and ∀ g ∈ Γ, f ◦ αg ◦ f−1 = βu(g).

Lemma 2.10. — Let (p, α) and (q, β) be cocentral actions of a group Γ on
a Hopf algebra A. If (p, α) and (q, β) are equivalent, then the Hopf algebras
Ap,α and Aq,β are isomorphic.

Proof. — Let u ∈ Aut(Γ) and f ∈ AutHopf(A) as in the above definition.
The condition u ◦ p = q ◦ f ensures that f(Ag) = Au(g) for any g ∈ Γ. Hence
for a ∈ Ag and b ∈ A, we have

f(a · b) = f(aαg(b)) = f(a)f(αg(b)) = f(a)βu(g)(f(b)) = f(a) · f(b),
which shows that f is as well a Hopf algebra isomorphism from Ap,α to
Aq,β . �

There is also another weaker notion of equivalence for cocentral actions,
as follows.
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Definition 2.11. — Two cocentral actions (p, α) and (q, β) of a group Γ
on a Hopf algebra A are said to be weakly equivalent if there exist u ∈ Aut(Γ)
and a Hopf algebra isomorphism f : Ae,p → Ae,q such that

∀ g ∈ Γ, f ◦ (αg)|Ae,p ◦ f
−1 = (βu(g))|Ae,q .

Not surprisingly, equivalent cocentral actions are weakly equivalent.

Lemma 2.12. — Two equivalent cocentral actions (p, α) and (q, β) of a
group Γ on a Hopf algebra A are weakly equivalent.

Proof. — Let u ∈ Aut(Γ) and f ∈ AutHopf(A) be such that u ◦ p = q ◦ f
and ∀ g ∈ Γ, f ◦ αg ◦ f−1 = βu(g). Then f(Ag,p) = Au(g),q, ∀ g ∈ Γ, hence
f(Ae,p) = Ae,q, and the conclusion follows. �

It is unclear to us whether the existence of a Hopf algebra isomorphism
between Ap,α and Aq,β forces the cocentral actions (p, α) and (q, β) to be
weakly equivalent. However this holds true in the following special situation.

Lemma 2.13. — Let A be a commutative Hopf algebra having a finite
cyclic universal grading group, and let (p, α), (q, β) be cocentral actions of
a cyclic group Γ on A. If the Hopf algebras Ap,α and Aq,β are isomorphic,
then the cocentral actions (p, α) and (q, β) are weakly equivalent.

Proof. — Let f : Ap,α → Aq,β be a Hopf algebra isomorphism. By
Lemma 2.8, we can apply Lemma 2.3 to get u ∈ Aut(Γ) such that u◦p = q◦f ,
so that f(Ag,p) = Au(g),q for any g ∈ Γ, and in particular f(Ae,p) = Ae,q.
For a ∈ Ag and b ∈ Ae, we have

f(aαg(b)) = f(a · b) = f(a) · f(b) = f(a)βu(g)(f(b)).
By the commutativity of A, we have as well

f(aαg(b)) = f(αg(b)a) = f(αg(b) · a) = f(αg(b)) · f(a)
= f(αg(b))f(a) = f(a)f(αg(b)).

We conclude from Lemma 2.5 that βu(g)(f(b)) = f(αg(b)), so our cocentral
actions are indeed weakly equivalent. �

2.3. Graded twisting of function algebras

In this subsection we translate in group theoretical terms the notions
discussed in the previous subsections when A = O(G), the function alge-
bra on a finite group G (this of course runs as well if we assume that G
is a linear algebraic group, but for simplicity we restrict to the finite case).
The translations are rather obvious, convenient, and induce a few new no-
tations. As usual, if Γ is group, the dual group Hom(Γ, k×) is denoted Γ̂. If
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G is a group and T ⊂ G is a subgroup, we denote by AutT (G) the group
of automorphisms of G that preserve T , and by Aut◦T (G) the subgroup of
automorphisms that fix each element of T .

(1) A cocentral action (p, α) of the finite group Γ on O(G) corresponds
to a pair (i, α) where i : Γ̂ → Z(G) is an injective group morphism
and α : Γ → Aut◦

i(Γ̂)
(G) a group morphism. We then consider co-

central actions of Γ on O(G) as such pairs (i, α), call them cocentral
actions on G, and denote the corresponding graded twistingO(G)p,α
by O(G)i,α.

(2) Two cocentral actions (i, α) and (j, β) are equivalent if there exist
u ∈ Aut(Γ) and f ∈ Aut(G) such that

i ◦ û = f ◦ j and ∀ g ∈ Γ, f−1 ◦ αg ◦ f = βu(g),

where û = − ◦ u.
(3) Two cocentral actions (i, α) and (j, β) are weakly equivalent if there

exist u ∈ Aut(Γ) and an isomorphism f : G/j(Γ̂) → G/i(Γ̂) such
that ∀ g ∈ Γ, f−1 ◦ αg ◦ f = βu(g), where αg and βu(g) denote
the automorphisms of G/i(Γ̂) and G/j(Γ̂) induced by αg and βu(g)
respectively.

Assuming that the finite group G has a cyclic center, there is a convenient
way to describe the equivalence classes of cocentral actions of Zm on G, as
follows.

For m a divisor of |Z(G)|, let Tm be the unique subgroup of order m
of Z(G), and let Xm(G) be the set of elements α0 ∈ Aut◦Tm(G) such that
αm0 = idG modulo the equivalence relation

α0 ∼ β0 ⇐⇒ ∃ f ∈ AutTm(G) and l prime to m
such that f−1 ◦ α0 ◦ f = βl0 and f|Tm = ( · )l.

For α0 ∈ Aut◦Tm(G), we denote by α̈0 its equivalence class in Xm(G). We will
also denote by X•m(G) the set of equivalence classes α̈0 such that α0 does
not induce the identity on G/Tm.

Lemma 2.14. — If G is a finite group with cyclic center and m is a
divisor of |Z(G)|, we have a bijection

Xm(G) ' {equivalence classes of cocentral actions of Zm on G}.

Proof. — Fix a generator g of Zm and an injective group morphism i :
Ẑm → Z(G) with Tm = i(Ẑm), and associate to α0 ∈ Aut◦Tm(G) the cocentral
action (i, α) of Zm on G with αg = α0. It is clear that for α0, β0 ∈ Aut◦Tm(G),
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we have α̈0 = β̈0 if and only if the cocentral actions (i, α) and (j, β) are
equivalent, so we get the announced injective map.

Start now with a cocentral action (j, β) of Zm on G. Let u be the auto-
morphism of Zm defined by û = i−1 ◦ j: u = ( · )l for l prime to m. For l′
such that ll′ ≡ 1 [n], we then see that the cocentral actions (j, β) and (i, βl′)
are equivalent, and this proves that our map is surjective. �

2.4. Group-theoretical preliminaries

This last subsection consists of group theoretical preliminaries. As usual,
if G is a group and M is a G-module, the second cohomology group of G
with coefficients in M is denoted H2(G,M). We mainly consider trivial G-
modules (the only exception is in the proof of Lemma 4.3). If τ ∈ Z2(G,M)
is a (normalized) 2-cocycle, its cohomology class in H2(G,M) is denoted [τ ],
while if µ : G→ M is a map with µ(1) = 1, the associated 2-coboundary is
denoted ∂(µ).

Our first lemma is certainly well-known. We provide the details of the
proof for future use.

Lemma 2.15. — Let T be a central subgroup of a group G. There is an
exact sequence of groups

1 −→ Hom(G/T, T ) −→ AutT (G) −→ Aut(G/T )×Aut(T )
where the map on the right is surjective when |H2(G/T, T )| 6 2 (or more
generally when the natural actions of Aut(G/T ) and Aut(T ) on H2(G/T, T )
are trivial).

Proof. — Since any element in AutT (G) simultaneously restricts to an
automorphism of T and induces an automorphism of G/T , we get the group
morphism on the right. Given χ ∈ Hom(G/T, T ), define an automorphism
χ̃ of G by χ̃(x) = xχ(π(x)), where π : G→ G/T is the canonical surjection.
This defines the group morphism Hom(G/T, T ) → AutT (G) on the left,
which is clearly injective and whose image is easily seen to be the kernel of
the map on the right.

Put H = G/T . By the standard description of central extensions of
groups, we can freely assume that G = H ×τ T where τ ∈ Z2(H,T ) and the
product of G is definedby

∀ x, y ∈ H, ∀ r, s ∈ T, (x, r) · (y, s) = (xy, τ(x, y)rs).
It is straightforward to check that an element α ∈ AutT (G) is defined by
α(x, t) = (θ(x), µ(x)u(t)), where (θ, µ, u) is a triple with θ ∈ Aut(H), u ∈

– 510 –



Isomorphism results for graded twistings

Aut(T ) and µ : H → T satisfying
∀ x, y ∈ H, u(τ(x, y))µ(xy) = µ(x)µ(y)τ(θ(x), θ(y)). (?)

Under this identification, the composition law in AutT (G) is given by
(θ, µ, u)(θ′, µ′, u′) = (θ ◦ θ′, µ ◦ θ′ · u ◦ µ′, u ◦ u′).

The map AutT (G) → Aut(H) × Aut(T ) in the statement of the lemma is
then the projection on the first and third factor, and elements of the kernel
are exactly those of the form (idH , µ, idT ), where µ : H → T is a group
morphism.

Assume now the natural actions of Aut(H) and Aut(T ) on H2(H,T ) by
group automorphisms are trivial (which obviously holds when |H2(H,T )| 6
2). Let (θ, u) ∈ Aut(H)×Aut(T ). The cocycles u ◦ τ and τ ◦ (θ× θ) are then
cohomologous to τ , and hence there exists µ : H → T such that u ◦ τ =
∂(µ)τ ◦ (θ × θ), which is exactly the condition (?) that allows (θ, µ, u) to
define an element of AutT (G), and thus the map on the right in our exact
sequence is surjective. �

Our second lemma will be used at the end of Section 4.

Lemma 2.16. — Let H be a finite group, let T be a cyclic group of order
m, let τ ∈ Z2(H,T ) and consider the group G = H×τ T . Let α, β ∈ Aut◦T (G)
(i.e. α|T = idT = β|T ), and let α, β be the induced automorphisms of H.
Assume that Hom(H,T ) = {1} and that there exists θ ∈ Aut(H) and l prime
to m such that

θ ◦ α ◦ θ−1 = βl and [τ ]l = [τ ◦ θ × θ] ∈ H2(H,T ).
Then there exists f ∈ AutT (G) such that

f ◦ α ◦ f−1 = βl and f|T = ( · )l.

Proof. — Recall from the proof of the previous lemma that the elements
of AutT (G) are represented by triples (θ, µ, u) with θ ∈ Aut(H), u ∈ Aut(T )
and µ : H → T satisfying u ◦ τ = ∂(µ)τ ◦ θ × θ, with (θ, µ, u)(x, t) =
(θ(x), µ(x)u(t)), for (x, t) ∈ H × T . By assumption, with this convention,
we have α = (α, φ, idT ) and β = (β, γ, idT ). Let u be the automorphism of
T defined by u = ( · )l. The assumption [τ ]l = [τ ◦ θ × θ] thus amounts to
[u ◦ τ ] = [τ ◦ θ × θ], hence there exists µ : H → T such that θ extends to an
automorphism f = (θ, µ, u) of G. We have

f ◦ α ◦ f−1 = (θ, µ, u)(α, φ, idT )(θ, µ, u)−1

= (θ ◦ α, µ ◦ α · u ◦ φ, u)(θ−1, u−1 ◦ ((µ ◦ θ−1)−1), u−1)
= (θ ◦ α ◦ θ−1, χ, idT )
= (βl, χ, idT )
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for some χ : H → T . Hence f ◦ α ◦ f−1 and βl have the same image under
the group morphism on the right in the previous lemma, and the assumption
Hom(H,T ) = {1} thus implies that f ◦ α ◦ f−1 = βl. We have moreover
f|T = u = ( · )l, and this finishes the proof. �

To finish this section, we record a last lemma, again to be used in Sec-
tion 4. It is well known that inner automorphisms act trivially on the second
cohomology of a group. Our next lemma is an explicit writing of this fact.
The proof is a straightforward verification, but can also be obtained easily
from the considerations in the proof of Lemma 2.15.

Lemma 2.17. — Let H be a group, let x ∈ H and let τ ∈ Z2(H, k×).
Then we have τ = ∂(µx) · τ ◦ ad(x)× ad(x), where

µx(y) = τ(xy, x−1)τ(x, y)τ(x, x−1)−1.

3. First results

We are now ready to state and prove our first two isomorphism results
for graded twistings of function algebras on finite groups.

Theorem 3.1. — Let G be a finite group with cyclic center, let (i, α)
and (j, β) be cocentral actions of a cyclic group Γ on G, and put H =
G/i(Γ̂) = G/j(Γ̂). Assume that |H2(H, Γ̂)| 6 2 (or more generally that
the natural actions of Aut(H) and Aut(Γ̂) on H2(H, Γ̂) are trivial) and that
Hom(H, Γ̂) = {1}. Then the following assertions are equivalent.

(1) The Hopf algebras O(G)i,α and O(G)j,β are isomorphic.
(2) The cocentral actions (i, α) and (j, β) are equivalent.
(3) The cocentral actions (i, α) and (j, β) are weakly equivalent.
Proof. — First notice that, since Z(G) is cyclic, it has a unique subgroup

of a given order, and we have indeed i(Γ̂) = j(Γ̂). Since (1) ⇒ (3) follows
from Lemma 2.13 and (2) ⇒ (1) follows from Lemma 2.10, it remains to
show that (3)⇒ (2).

Denote by f 7→ f the group morphism Aut
i(Γ̂)(G) → Aut(H) of Lem-

ma 2.15. Fix a generator g ∈ Γ and assume the existence of f ∈ Aut(H) and
u ∈ Aut(Γ) such that f−1 ◦ αg ◦ f = βu(g). Our assumption on H2(H, Γ̂)
ensures, by Lemma 2.15, the existence of f0 ∈ Aut

i(Γ̂)(G) such that

f0 = f and f0|i(Γ̂) = i ◦ û ◦ j−1, i.e. f0 ◦ j = i ◦ û.

We then have f−1
0 ◦ αg ◦ f0 = βu(g) and (f−1

0 ◦αg◦f0)|i(Γ̂) = id = (βu(g))|i(Γ̂).
The condition Hom(H, Γ̂) = {1} and Lemma 2.15 then ensure that f−1

0 ◦
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αg ◦ f0 = βu(g), and we conclude that the cocentral actions (i, α) and (j, β)
are equivalent. �

Example 3.2. — Let p > 3 be a prime number. There are exactly two
non-isomorphic non-trivial graded twistings of O(SL2(Fp)). The details will
be given in Section 5.

The previous theorem has the following very convenient consequence
when Γ = Z2.

Theorem 3.3. — Let G be a finite group with cyclic center, let (i, α) and
(j, β) be cocentral actions of Z2 on G, and put H = G/i(Ẑ2) = G/j(Ẑ2).
Assume that H2(H, k×) is cyclic and that Hom(H,Z2) = {1}. Then the
following assertions are equivalent.

(1) The Hopf algebras O(G)i,α and O(G)j,β are isomorphic.
(2) The cocentral actions (i, α) and (j, β) are equivalent.
(3) The cocentral actions (i, α) and (j, β) are weakly equivalent.
Proof. — The universal coefficient theorem provides the following exact

sequence
0 −→ Ext1(H1(H),Z2) −→ H2(H,Z2) −→ Hom(H2(H),Z2) −→ 0.

The assumption Hom(H,Z2) = {1} implies that Ĥ ' H1(H) has odd order,
so the group on the left vanishes. Moreover H2(H) ' H2(H, k×) (again by
the universal coefficient theorem), so the cyclicity of H2(H, k×) yields that
|H2(H,Z2)| 6 2, and we can apply Theorem 3.1. �

Remark 3.4. — It is natural to wonder whether Theorem 3.1 pertinently
applies outside the case m = 2. There is, at least, the example G = H ×Zm
where H is a group with Ĥ = {1} and |H2(H,Zm)| 6 2, and if H2(H,Zm) '
Z2 (which, by the universal coefficient theorem, will hold if H2(H, k×) ' Z2
and m is even), the group G obtained as the non split central extension
1→ Zm → G→ H → 1 corresponding to the non trivial cohomology class.

4. Abelian cocentral extensions of Hopf algebras

To go beyond Theorem 3.1, it will be convenient to work in the more
general framework of abelian cocentral extensions. As already said in the
introduction, this is a very well studied and understood framework [1, 15,
19, 20, 22, 25] (even in more general situations, dropping the cocentrality
assumption), but we propose a detailed exposition of the structure of Hopf
algebras fitting into abelian cocentral extensions, both for the sake of self-
completeness and of introducing the appropriate notations, and also because
we think that some of our formulations have some interest.
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4.1. Generalities

We recall first the concept and the structure of the Hopf algebras arising
from abelian cocentral extensions. There is a general notion of exact sequence
of Hopf algebras [1], but in this paper we will only need the cocentral ones.

Definition 4.1. — A sequence of Hopf algebra maps

k −→ B
i−→ A

p−→ L −→ k

is said to be cocentral exact if i is injective, p is surjective and cocentral,
p ◦ i = ε( · )1 and i(B) = Aco p = {a ∈ A : (id ⊗ p) ◦∆(a) = a ⊗ 1.}. When
B is commutative, a cocentral exact sequence as above is called an abelian
cocentral extension.

Example 4.2. — Let (i, α) be a cocentral action of a group Γ on a linear
algebraic group G. Then

k −→ O(G/i(Γ̂)) −→ O(G) −→ kΓ −→ k

is cocentral abelian extension, as well as

k −→ O(G/i(Γ̂)) −→ O(G)i,α −→ kΓ −→ k.

Hence graded twists of function algebras fit into appropriate abelian cocen-
tral extensions.

We now restrict ourselves to finite dimensional Hopf algebras. In this case
the abelian cocentral extensions are of the form

k −→ O(H) −→ A −→ kΓ −→ k

for some finite groups H,Γ. There are some general descriptions of the Hopf
algebras A fitting into such abelian cocentral extensions using various actions
and cocycles (see [1, 22]). Since we only will consider the case when Γ is cyclic,
there is an even simpler description, inspired by [20], that we give now. We
start with a lemma.

Lemma 4.3. — Let H a finite group, let θ ∈ Aut(H) with θm = idH for
some m > 1, and let a : H → k×. Consider the algebra Am(H, θ, a) defined
by the quotient of the free product algebra O(H) ∗ k[g] by the relations :

gm = a, gex = eθ(x)g, ∀ x ∈ H.

Then the set {exgi, x ∈ H, 0 6 i 6 m− 1} linearly spans Am(H, θ, a), and
is a basis if and only if a ◦ θ = a.
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Proof. — It is clear from the defining relations that {exgi, x ∈ H, 0 6
i 6 m−1} linearly spans Am(H, θ, a). The defining relations give that for any
φ ∈ O(H), we have gφ = (φ ◦ θ−1)g, and since a = gm must be central, we
see from this that if the above set is linearly independent, we have a ◦ θ = a.

To prove the converse, we recall a general construction. Let R be a com-
mutative algebra endowed with an action of a group Γ, α : Γ→ Aut(R), and
let σ : Γ× Γ→ R× be a 2-cocycle according to this action:

αr(σ(s, t))σ(r, st) = σ(rs, t)σ(s, t), ∀ r, s, t ∈ Γ.
The crossed product algebra R#σkΓ is then defined to be the algebra having
R⊗ kΓ as underlying vector space, and product defined by

x#r · y#s = xαr(y)σ(r, s)#rs.
Assume furthermore that Γ = Zm = 〈g〉 is cyclic, consider an element a ∈
R× that is Zm-invariant, and define the algebra A to be the quotient of
the free product R ∗ k[X] by the relations Xb = αg(b)X and Xm = a.
Since a is invariant under the Zm-action, the classical description of the
second cohomology of a cyclic group shows that there exists a 2-cocycle
σ : Zm × Zm → R× such that σ(g, g) · · ·σ(g, gm−1) = a. From this we get
an algebra map

A −→ R#σkZm
b ∈ R, X 7−→ b#1, 1#g.

Applying this to R = O(H), the Zm-action on it induced by θ and the
assumption that a is invariant yields that {exgi, x ∈ H, 0 6 i 6 m − 1} is
a linearly independent set since its image is in the crossed product algebra
O(H)#σkZm. �

Definition 4.4. — Let m > 1. An m-datum is a quadruple (H, θ, a, τ)
consisting of a finite group H, an automorphism θ ∈ Aut(H) such that
θm = idH , a map a : H → k× such that a ◦ θ = a and a(1) = 1, and a
2-cocycle τ : H ×H → k× such that for any x, y ∈ H(

m−1∏
i=0

τ(θi(x), θi(y))
)
a(x)a(y) = a(xy).

We now check m-data as above produce Hopf algebras fitting into abelian
cocentral extensions, and that any such Hopf algebra arises in this way.

Proposition 4.5. — Let (H, θ, a, τ) be an m-datum, and consider the
algebra Am(H, θ, a) defined by the quotient of the free product algebra O(H)∗
k[g] by the relations:

gex = eθ(x)g,∀ x ∈ H, gm = a.
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(1) There exists a unique Hopf algebra structure on Am(H, θ, a) extend-
ing that of O(H) and such that

∆(g) =
∑
y,z∈H

τ(y, z)eyg ⊗ ezg, ε(g) = 1.

We denote by Am(H, θ, a, τ) the resulting Hopf algebra.
(2) The Hopf algebra Am(H, θ, a, τ) has dimension m|H| and fits into

an abelian cocentral extension
k −→ O(H) −→ Am(H, θ, a, τ) p−→ kZm −→ k

where p is the Hopf algebra map defined by p|O(H) = ε and p(g) = g
(here g denotes any fixed generator of Zm).

Proof. — It is a straightforward verification, using the axioms of m-
data, that there indeed exists a Hopf algebra structure on Am(H, θ, a) as
in the statement. That Am(H, θ, a, τ) has dimension m|H|, follows from
Lemma 4.3, while the last statement follows easily from the decomposition
Am(H, θ, a, τ) =

⊕m−1
k=0 O(H)gk. �

Proposition 4.6. — Let A be a finite-dimensional Hopf algebra fitting
into an abelian cocentral extension

k −→ O(H) −→ A −→ kZm −→ k.

Then there exists an m-datum (H, θ, a, τ) such that A ' Am(H, θ, a, τ) as
Hopf algebras.

Proof. — To simplify the notation, we will identify O(H) with its image
in A, so that Ae = O(H). The finite-dimensionality assumption ensures that
the extension is cleft (see e.g. [23, Theorem 3.5] or [28, Theorem 2.4]). Here
this simply means that for any h ∈ Zm, there exists an invertible element
uh in Ah, that we normalize so that ε(uh) = 1, and hence p(uh) = h, where
p : A → kZm is the given cocentral surjective Hopf algebra map. We have
Aeuh ⊂ Ah and for b ∈ Ah, we can write b = bu−1

h uh ∈ Aeuh, hence
Ah = Aeuh.

Fix now a generator g of Zm and ug as above. We have umg ∈ Agm =
Ae, and we put a = umg . Since ∆(Ag) ⊂ Ag ⊗ Ag we have ∆(ug) =∑
x,y∈H τ(x, y)exug ⊗ eyug for scalars τ(x, y) ∈ k, these scalars all being

non-zero since ∆(ug) is invertible. The coassociativity and counit conditions
give that the map τ : H × H → k× defined in this way is a 2-cocycle. We
have ugAeu−1

g ⊂ Ae and hence we get an automorphism α := ad(ug) of
the algebra Ae, satisfying αm = id since umg ∈ Ae and Ae is commutative.
It is a direct verification to check that α is as well a coalgebra automor-
phism, and hence a Hopf algebra automorphism of Ae = O(H), necessarily
arising from an automorphism θ of H, with α(φ) = φ ◦ θ−1 for φ ∈ O(H).
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Clearly α(a) = a, ε(a) = 1, and one checks that the last condition defining
an m-datum is fulfilled by comparing ∆(ug)m and ∆(a). We thus obtain an
m-datum (H, θ, a, τ) and it is straightforward to check that there exists a
Hopf algebra map Am(H, θ, a, τ) → A, φ ∈ O(H) 7→ φ, g 7→ ug. Combin-
ing Lemma 4.3 and the first paragraph in the proof, we see that this is an
isomorphism. �

4.2. Equivalence of m-data and the isomorphism problem

The main question then is to classify the Hopf algebras Am(H, θ, a, τ) up
to isomorphism. For this, the following equivalence relation on m-data will
arise naturally.

Definition 4.7. — Two m-data (H, θ, a, τ) and (H ′, θ′, a′, τ ′) are said
to be equivalent if there exists a group isomorphism f : H → H ′, a map
ϕ : H ′ → k× with ϕ(1) = 1 and l ∈ {1, . . . ,m− 1} prime to m such that the
following conditions hold, for any x, y ∈ H ′:

(1) θ′l = f ◦ θ ◦ f−1;
(2)

(∏m−1
k=0 ϕ(θ′k(y))

)
a′(y)l = a(f−1(y));

(3)
(∏l−1

k=0 τ
′(θ′−k(x), θ′−k(y))

)
ϕ(xy) = τ(f−1(x), f−1(y))ϕ(x)ϕ(y).

It is not completely obvious that the above relation is an equivalence
relation, but this follows from the following basic result, which is a partial
answer for the classification problem of the Hopf algebras Am(H, θ, a, τ).

Proposition 4.8. — Let (H, θ, a, τ) and (H ′, θ′, a′, τ ′) be m-data. The
following assertions are equivalent.

(1) There exists a Hopf algebra isomorphism F : Am(H, θ, a, τ) →
Am(H ′, θ′, a′, τ ′) and a group automorphism u ∈ Aut(Zm) making
the following diagram commute:

Am(H, θ, a, τ) p //

F

��

kZm

u

��
Am(H ′, θ′, a′, τ ′) p′ // kZm

(2) The m-data (H, θ, a, τ) and (H ′, θ′, a′, τ ′) are equivalent.

Proof. — Assume that F and u as above are given, and put A =
Am(H, θ, a, τ) and B = Am(H ′, θ′, a′, τ ′). The commutativity of the dia-
gram yields, at the level of gradings, that F (Ah) = Bu(h) for any h ∈ Zm.
Then F induces an isomorphism Ae = O(H)→ O(H ′) coming from a group
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isomorphism f : H → H ′ such that F (φ) = φ◦f−1 for any φ ∈ O(H). Pick a
generator g of Zm. We have F (Ag) = Bu(g) = Bgl for some l ∈ {1, . . . ,m−1}
prime tom. Since Bgl = Beg

l, there exists ϕ ∈ O(H)× such that F (g) = ϕgl.
The fact that F is a coalgebra map yields that ϕ(1) = 1 and relations (3)
from Definition 4.7. Relations (2) and (3) in Definition 4.7 follow from the
compatibility of the algebra map F with the relations gex = eθ(x)g and
gm = a.

Conversely, given f , l and ϕ as in Definition 4.7, it is a direct verification
to check that there exist Hopf algebra isomorphism F : Am(H, θ, a, τ) →
Am(H ′, θ′, a′, τ ′) defined by F (ex) = ef(x) and F (g) = ϕgl, and satisfying
u ◦ p = p′ ◦ F for u given by u(g) = gl. �

Corollary 4.9. — Let (H, θ, a, τ) be an m-datum.

(1) Let f ∈ Aut(H) and let l > 1 be prime to m. Then (H, f ◦θl◦f−1, a◦
f−1, τ ′), with τ ′ =

∏l−1
k=0 τ ◦θk×θk ◦f−1×f−1, is an m-datum and

Am(H, θ, a, τ) ' Am

(
H, f ◦ θl ◦ f−1, (a ◦ f−1)l,

l−1∏
k=0

τ ◦ θk × θk ◦ f−1× f−1

)
as Hopf algebras.

(2) Let τ ′ ∈ Z2(H, k×) be cohomologous to τ . There exists a′ : H → k×

such that (H, θ, a′, τ ′) is a datum and
Am(H, θ, a, τ) ' Am(H, θ, a′, τ ′)

as Hopf algebras.

In particular, if θ1, . . . , θr is a set of representatives of the conjugacy classes
of elements whose order divides m in Aut(H), and if τ1, . . . , τs is a set
of representatives of 2-cocycles in H2(H, k×), there exist i ∈ {1, . . . , r},
j ∈ {1, . . . , s} and a′ : H → k× such that (H, θi, a′, τj) is a datum and
Am(H, θ, a, τ) ' Am(H, θi, a′, τj).

Proof. — The first assertion is easily obtained via the previous propo-
sition. For the second one, let µ : H → k× be such that τ ′ = τ∂(µ).
The result is again a direct consequence of the previous proposition, tak-
ing a′ = a

(∏m−1
i=0 µ ◦ θi

)−1. The final assertion is then easily obtained by
combining (1) and (2). �

Remark 4.10. — Let (H, θ, a, τ) be an m-datum. Since a ◦ θ = a, there
exists a map µ : H → k× such that µ ◦ θ = µ and µm = a. The cocycle
τ ′ = τ∂(µ) then satisfies

m−1∏
k=0

τ ′ ◦ θk × θk = 1.
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Hence, by Corollary 4.9, the m-datum (H, θ, a, τ) is equivalent to an m-
datum (H, θ, a′, τ ′) with a′ ∈ Ĥ. Such a datum with a′ ∈ Ĥ will be said to
be normalized. It is therefore tempting to work only with normalized data,
but this forces to change the cocycle for each choice of automorphism θ,
and can be inconvenient in practice if we have “nice” representatives for
2-cocycles over H. We will therefore work with the general notion of an
m-datum, as given in Definition 4.4.

Remark 4.11. — Fix θ ∈ Aut(H) with θm = id. Kac’s group
Opextθ(kZm,O(H)) [13] can be described as the set of pairs (a, τ) ∈ Ĥ ×
Z2(H, k×) such that (H, θ, a, τ) is a normalized m-datum modulo the
equivalence relation defined by (a, τ) ∼ (a′, τ ′) ⇐⇒ ∃ ϕ : H → k× with
ϕ ·ϕ ◦ θ ∈ Ĥ,

(∏m−1
k=0 ϕ ◦ θk

)
a′ = a and τ ′ = τ∂(ϕ). The group law is by the

ordinary multiplication on the components. The group Opextθ(kZm,O(H))
is known to be possibly difficult to compute (see [21], and [11] for a recent
contribution), hence the problem of the description of m-data up to equiva-
lence is a fortiori a non-obvious one as well.

Proposition 4.8 is in general not sufficient to classify the Hopf algebras
Am(H, θ, a, τ) up to isomorphism. However, in the context of Lemma 2.3,
it can be sufficient. Thus we need to analyse furthermore the Hopf alge-
bras Am(H, θ, a, τ) to determine when Lemma 2.3 is applicable. For this we
introduce a number of groups associated to an m-datum.

Definition 4.12. — Let (H, θ, a, τ) be an m-datum.

(1) We put Zτ,θ(H) = {x ∈ Z(H) | τ(θi(x), y) = τ(y, θi(x)), ∀ y ∈ H,
∀ i, 0 6 i 6 m − 1}. This is a central subgroup of H, and we get,
by restriction, a new m-datum (Zτ,θ(H), θ, a, τ).

(2) Let Hθ be the subgroup of H formed by elements that are invariant
under θ. The group G(H, θ, a, τ) is the group whose elements are
pairs (x, λ) ∈ Hθ × k× satisfying λm = a(x), and whose group law
is defined by (x, λ) · (y, µ) = (xy, τ(x, y)λµ).

(3) We denote by G0(H, θ, a, τ) the group G(Zτ,θ(H), θ, a, τ), thus con-
sisting of pairs (x, λ) ∈ Z(H)θ × k× with x satisfying λm = a(x)
and τ(x, y) = τ(y, x), ∀ y ∈ H.

It is easy to check that G(H, θ, a, τ) is indeed a group, fitting into a
central exact sequence

1 −→ µm −→ G(H, θ, a, τ) −→ Hθ −→ 1.
Proposition 4.13. — Let (H, θ, a, τ) be an m-datum. We have a uni-

versal cocentral exact sequence
k −→ O(H/Zτ,θ(H)) −→ Am(H, θ, a, τ) −→ Am(Zτ,θ(H), θ, a, τ) −→ k.
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Proof. — It is easily seen that there is a surjective Hopf algebra map
p : A(H, θ, a, τ) −→ A(Zτ,θ(H), θ, a, τ)

with p(g) = g and such that for φ ∈ O(H), p(φ) is the restriction of φ
to Zτ,θ(H). The cocentrality of p follows from the centrality of the group
Zτ,θ(H) in H, and it is easy to see that p induces the announced cocen-
tral exact sequence. We thus have to prove the universality of p. For this
consider a cocentral Hopf algebra map q : A(H, θ, a, τ) → B. The co-
centrality of q yields that q(ex) = 0 if x 6∈ Z(H), and that for any x ∈
Z(H) and y ∈ H, τ(x, y)q(ex)q(g) = τ(y, x)q(ex)q(g). Hence τ(x, y)q(ex) =
τ(y, x)q(ex) and τ(x, y) = τ(y, x) if q(ex) 6= 0. Let T := {x ∈ H | q(ex) 6=
0}. Since q(g)q(ex)q(g)−1 = q(gexg−1) = q(eθ(x)) we thus see that T ⊂
Zτ,θ(H). We then easily check that there exists a Hopf algebra map f :
A(Zτ,θ(H), θ, a, τ)→ B with f(ex) = q(ex) and f(g) = q(g), as needed. �

We now proceed to analyse the structure of the Hopf algebras
Am(H, θ, a, τ), with first the following basic result.

Proposition 4.14. — Let (H, θ, a, τ) be an m-datum.

(1) The Hopf algebra Am(H, θ, a, τ) is commutative if and only if θ =
idH . More generally, the abelianisation of Am(H, θ, a, τ) is the Hopf
algebra O(G(H, θ, a, τ)).

(2) The Hopf algebra Am(H, θ, a, τ) is cocommutative if and only if H is
abelian and τ is symmetric, i.e. τ(x, y) = τ(y, x) for any x, y ∈ H.

Proof. — The assertions regarding the commutativity or cocommutativ-
ity of Am(H, θ, a, τ) are easily seen using Lemma 4.3. An algebra map χ :
Am(H, θ, a, τ)→ k corresponds to a pair (x, λ) ∈ H × k×, with χ(φ) = φ(x)
for any φ ∈ O(H) and φ(a) = λ. The compatibility of χ with the defining
relations of Am(H, θ, a, τ) is easily seen to be equivalent to the condition that
(x, λ) ∈ G(H, θ, a, τ), and an immediate calculation shows that the group
law in Alg(Am(H, θ, a, τ), k) corresponds to the group law in G(H, θ, a, τ).
Thus the abelianization of Am(H, θ, a, τ), which is the algebra of functions
on Alg(Am(H, θ, a, τ), k), is isomorphic to O(G(H, θ, a, τ)). �

We now discuss when the universal grading group of Am(H, θ, a, τ) is
cyclic.

Proposition 4.15. — Let (H, θ, a, τ) be an m-datum.

(1) The Hopf algebra Am(H, θ, a, τ) has a universal cyclic grading group
if and only if the group G0(H, θ, a, τ) is cyclic and the restriction of
θ to Zτ,θ(H) is trivial.

(2) The natural cocentral Hopf algebra map p : Am(H, θ, a, τ) → kZm
is universal if and only if the group Zτ,θ(H) is trivial.
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Proof. —

(1). — Assume that Am(H, θ, a, τ) has a universal cyclic grading group.
By Proposition 4.13, we have that Am(Zτ,θ(H), θ, a, τ) is the group algebra
of a cyclic group, and in particular is commutative. Then by (1) in Propo-
sition 4.14, the restriction of θ to Zτ,θ(H) is trivial and G0(H, θ, a, τ) =
G(Zτ,θ(H), θ, a, τ) is cyclic.

Conversely, if the restriction of θ to Zτ,θ(H) is trivial, then by
(1) in Proposition 4.14, the Hopf algebra Am(Zτ,θ(H), θ, a, τ) is commu-
tative and isomorphic to O(G(Zτ,θ(H), θ, a, τ)). Assuming moreover that
G0(H, θ, a, τ) = G(Zτ,θ(H), θ, a, τ) is cyclic, we obtain that Am(Zτ,θ(H),
θ, a, τ) is the group algebra of a cyclic group, and we conclude by Proposi-
tion 4.13.

(2). — The canonical surjectionAm(Zτ,θ(H), θ,a,τ)→kZm is an isomor-
phism if and only if Zτ,θ(H) is trivial, because dim(Am(Zτ,θ(H), θ, a, τ)) =
m|Zτ,θ(H)|. Hence Proposition 4.13 yields the result. �

The previous result leads us to introduce some more vocabulary.

Definition 4.16. — An m-datum (H, θ, a, τ) is said to be cyclic (resp.
reduced) if the group G0(H, θ, a, τ) is cyclic and the restriction of θ to
Zτ,θ(H) is trivial (resp. if the group Zτ,θ(H) is trivial).

We get our most useful result for the classification of Hopf algebras of
type Am(H, θ, a, τ).

Proposition 4.17. — Let (H, θ, a, τ) and (H ′, θ′, a′, τ ′) be cyclic m-
data. The following assertions are equivalent.

(1) The Hopf algebras Am(H, θ, a, τ) and Am(H ′, θ′, a′, τ ′) are isomor-
phic.

(2) The data (H, θ, a, τ) and (H ′, θ′, a′, τ ′) are equivalent.

Proof. — We have (2)⇒ (1) by Proposition 4.8. Assuming that (1) holds,
Proposition 4.15 ensures that we are in the situation of Lemma 2.3, which
in turn ensures that we are in the situation of (1) in Proposition 4.8, so that
(2) holds. �

Combining Propositions 4.6 and 4.17, we finally obtain the main result
of the section.

Theorem 4.18. — Let H be a finite group and let m > 1. The map
(H, θ, a, τ) 7→ Am(H, θ, a, τ) induces a bijection between the following sets:

(1) equivalence classes of cyclic (resp. reduced) m-data having H as
underlying group;
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(2) isomorphism classes of Hopf algebras A fitting into an abelian co-
central extension

k −→ O(H) −→ A −→ kZm −→ k

and having a cyclic universal grading group (resp. having Zm as
universal grading group).

Corollary 4.19. — Let H be a finite group with Z(H) = {1} and let
m > 2. The map (H, θ, a, τ) 7→ Am(H, θ, a, τ) induces a bijection between
the following sets:

(1) equivalence classes of m-data having H as underlying group;
(2) isomorphism classes of Hopf algebras A fitting into an abelian co-

central extension

k −→ O(H) −→ A −→ kZm −→ k.

Proof. — This follows from the previous theorem, since the assumption
Z(H) = {1} ensures that all the m-data (H, θ, a, τ) are reduced and that all
the corresponding abelian cocentral extensions k → O(H)→ A→ kZm → k
are universal. �

4.3. Classification results

We now apply Theorem 4.18 and Corollary 4.19 to obtain effective clas-
sification results for Hopf algebras fitting into abelian cocentral extensions,
under various assumptions.

The set of equivalence classes of m-data has a very simple description
under some strong assumptions on H, and then the previous result takes the
following simple form, where we use the following notation: if G is a group
and m > 1, the set CC•m(G) is the set of elements of G such that xm = 1
and x 6= 1, modulo the equivalence relation defined by x ∼ y ⇐⇒ there
exists l prime to m such that xl is conjugate to y. When m = 2, CC•2(G) is
just the set of conjugacy classes of elements of order 2 in G.

Theorem 4.20. — Let H be a finite group with Ĥ = {1} = Z(H) and
H2(H, k×) ' Z2. Then for any m > 2, there is a bijection between the set
of isomorphism classes of noncommutative Hopf algebras A fitting into an
abelian cocentral extension

k −→ O(H) −→ A −→ kZm −→ k

and
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(1) if m is odd, the set CC•m(Aut(H));
(2) if m is even, the set CC•m(Aut(H))×H2(H, k×).

Proof. — Since Z(H) = {1}, the previous corollary ensures that we have
a bijection between the set of isomorphism classes of noncommutative Hopf
algebras as above and the set of equivalence classes of m-data (H, θ, a, τ)
with θ 6= id.

The key point, to be used freely, is that, since H2(H, k×) ' Z2, for any
θ ∈ Aut(H) and τ ∈ Z2(H, k×), we have [τ ] = [τ ◦θ×θ] and [τ ][τ ◦θ×θ] = 1
in H2(H, k×).

First assume that m is odd. Let (H, θ, a, τ) be an m-data with θ 6= id.
Then [τ ]m = 1 and [τ ] = 1 since m is odd, so (H, θ, a, τ) is equivalent to
some m-datum (H, θ, a′, 1) with a′ = 1 since Ĥ = {1}. The result is then
clear.

Assume now that m is even, and start with a pair (θ, τ) where θ ∈
Aut(H) satisfies θm = id θ 6= id, and τ ∈ Z2(H, k×). The assumption
H2(H, k×) ' Z2 implies again that there exists a : H → k× such that∏m−1
k=0 τ ◦ θk × θk = ∂(a−1). The assumption Ĥ = {1} implies that such a

map a is unique and satisfies a ◦ θ = a, so to (θ, τ) we can unambiguously
associate an m-datum (H, θ, a, τ).

Consider now another such pair (θ′, τ ′) with a′ the corresponding map
making (H, θ′, a′, τ ′) anm-datum. If them-data (H, θ, a, τ) and (H, θ′, a′, τ ′)
are equivalent, then there is l prime to m (hence l is odd) such that θ′l is
conjugate to θ and [τ ] = [τ ′]l = [τ ′] (remark at the beginning of the proof).

Conversely if θ = f ◦ θl ◦ f−1, for f ∈ Aut(H) and l prime to m, then we
have, by Corollary 4.9

(H, θ, a, τ) ∼
(
H, f ◦ θl ◦ f−1, (a ◦ f−1)l,

l−1∏
k=0

τ ◦ θkf−1 × θkf−1

)

∼

(
H, θ′, (a ◦ f−1)l,

l−1∏
k=0

τ ◦ θkf−1 × θkf−1

)
.

The cocycle on the right is cohomologous to τ l, hence to τ , and if we assume
that τ ′ is cohomologous to τ , we have (again thanks to Corollary 4.9)

(H, θ, a, τ) ∼ (H, θ′, b, τ) ∼ (H, θ′, c, τ ′)
for some maps b, c, with necessarily c = a′ by the discussion at the beginning
of the proof. This concludes the proof. �

Another useful consequence of Theorem 4.18 is the following one, again
under strong assumptions.
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Theorem 4.21. — Let H be a finite group with |Ĥ| 6 2, and Z(H) =
{1} = H2(H, k×). Then for m > 1, there is a bijection between the set
of isomorphism classes of noncommutative Hopf algebras A fitting into an
abelian cocentral extension

k −→ O(H) −→ A −→ kZm −→ k

and

(1) if m is odd, the set CC•m(Aut(H));
(2) if m is even, the set CC•m(Aut(H))× Ĥ.

Proof. — Corollary 4.19 ensures that we have a bijection between the set
of isomorphism classes of noncommutative Hopf algebras as above and the
set of equivalence classes of m-data (H, θ, a, τ) with θm 6= id. Then, since
H2(H, k×) = {1}, Corollary 4.9 ensures that all such data are equivalent
to data of type (H, θ, a, 1) (hence with a ∈ Ĥ). Now using that |Ĥ| 6 2,
so that Aut(H) acts trivially on Ĥ, we see that two m-data (H, θ, a, 1) and
(H, θ′, a′, 1) are equivalent if and only if there exists f ∈ Aut(H), ϕ ∈ Ĥ
and l prime to m such that

θ′l = f ◦ θ ◦ f−1, ϕma′l = a.

If m is even, we have ϕm = 1 and the last condition amounts to a′ = a

(l being then necessarily odd), again since |Ĥ| 6 2. If m is odd, we have
ϕm = ϕ, and such a ϕ always exists if l does. This concludes the proof. �

To prove our next classification result, we will use the following lemma.

Lemma 4.22. — Let H be a finite group in which any automorphism is
inner and such that Z(H) = {1} and |Ĥ| 6 2. If (H, θ, a, τ) and (H, θ, a′, τ)
are equivalent 2-data, then a = a′.

Proof. — We first assume that our data are normalized: τ · τ ◦ θ × θ = 1
(and a, a′ ∈ Ĥ). Let f ∈ Aut(H) and ϕ : H → k× be such that

f ◦ θ = θ ◦ f, ϕ · ϕ ◦ θ · a′ = a ◦ f−1, τ = ∂(ϕ)τ ◦ f−1 × f−1.

Writing θ = ad(x) and f−1 = ad(y), we then have xy = yx since Z(H) = {1}
and

ϕ · ϕ ◦ θ · a′ = a ◦ f−1, τ = ∂(ϕ)τ ◦ f−1 × f−1 = ∂(ϕ)∂(µ−1
y )τ

where µy is as in Lemma 2.17. Hence ϕ = χµy for some χ ∈ Ĥ, and

ϕ · ϕ ◦ θ = χ · χ ◦ θ · µy · µy ◦ θ.
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Since |Ĥ| 6 2 and θ is inner, we obtain ϕ ·ϕ◦θ = µy ·µy ◦θ = µy ·µy ◦ad(x).
For z ∈ H, we have

µy ◦ ad(x)(z) = τ(yxzx−1, y−1)τ(y, xzx−1)τ(y, y−1)−1

= τ(xyzx−1, xy−1x−1)τ(xyx−1, xzx−1)τ(xyx−1, xy−1x−1)−1

= τ(yz, y−1)−1τ(y, z)−1τ(y, y−1)
= µy(z)−1

where we have used the fact that our datum is normalized and that xy = yx.
Hence ϕ · ϕ ◦ θ = 1, and a = a′.

In general, recall (See Remark 4.10) that (H, θ, a, τ) and (H, θ, a′, τ ′) are
respectively equivalent to normalized 2-data (H, θ, b, τ ′) and (H, θ, b′, τ ′),
hence b = b′ from the normalized case, and a = a′ by the construction of b
and b′ from a and a′ (see the proof of Corollary 4.9). �

Theorem 4.23. — Let H be a finite group in which any automorphism
is inner and with |Ĥ| 6 2, Z(H) = {1} and |H2(H, k×)| 6 2. Then there is
a bijection between the set of isomorphism classes of noncommutative Hopf
algebras A fitting into an abelian cocentral extension

k −→ O(H) −→ A −→ kZ2 −→ k

and the set CC•2(H)× Ĥ ×H2(H, k×).

Proof. — As before, in view of the assumption Z(H) = {1}, by Corol-
lary 4.19, we have to classify the 2-data (H, θ, a, τ) with θ 6= id up to
equivalence. We can assume that H2(H, k×) ' Z2, otherwise the result
follows from Theorem 4.20. Fix a set {θ1, . . . , θr} of representative of the
elements of CC•2(Aut(H)) ' CC•2(H), and for each i, fix a non-trivial 2-
cocycle τi ∈ H2(H, k×) such that τi · τi ◦ θi × θi = 1 (these cocycles exist
since H2(H, k×) ' Z2). Then Corollary 4.9 ensures that any 2-data with
non-trivial underlying isomorphism is equivalent to one in the list

{(H, θi, a, 1), i = 1, . . . , r, a ∈ Ĥ}, {(H, θi, a, τi), i = 1, . . . , r, a ∈ Ĥ}.

Any two different data inside one of the two sets are not equivalent by
Lemma 4.22, while two data taken from the two different sets are easily seen
not to be equivalent either. This concludes the proof. �

4.4. Back to graded twisting

To finish the section, we go back to graded twistings.
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Proposition 4.24. — Let (i, α) be a cocentral action of Zm on a finite
group G. Put H = G/i(Ẑm), fix a 2-cocycle τ0 : H × H → Ẑm such that
G ' H×τ0 Ẑm and a generator g of Zm. Define a 2-cocycle τ : H×H → µm
by τ(x, y) = τ0(x, y)(g), and let θ be the automorphism of H induced by
α = αg Then there exists a : H → µm such that (H, θ, a, τ) is an m-datum
and O(G)i,α ' Am(H, θ, a, τ).

Proof. — We can assume without loss of generality that G = H ×τ0 Ẑm
and that i is the canonical injection. Indeed, consider the isomorphism F :
G→ H ×τ0 Ẑm making the following diagram commutative

1 // Ẑm
i // G

π //

F
��

H // 1

1 // Ẑm
i0 // H ×τ0 Ẑm

π0 // H // 1

where π is the canonical surjection, and i0 and π0 denote the canonical
injection and surjection. Using the Hopf algebra isomorphism O(G) '
O(H ×τ0 Ẑm) induced by F , we obtain an isomorphism O(G)i,α ' O(H ×τ0

Ẑm)i0,FαF−1 .

Recall from Subsection 2.4 (particularly the proof of Lemma 2.15) that
α = αg has the form α = (θ, µ) with θ ∈ Aut(H) and µ : H → Ẑm satisfying

θm = id,
m−1∏
i=0

µ ◦ θi = 1, τ0 = ∂(µ) · (τ0 ◦ θ × θ).

Define now a map a0 : H → Ẑm:

a0 =
m−1∏
k=1

(µ ◦ θ−k)k.

We then have
m−1∏
i=0

τ0 ◦ θi × θi =
m−1∏
i=0

τ0 ◦ θ−i × θ−i = ∂(a−1
0 ) and a0 ◦ θ = a0.

Defining then a : H → µm by a(x) = a0(x)(g), we get anm-datum (H, θ, a, τ)
satisfying the announced conditions, and we have to show that Am(H, θ,
a, τ) ' O(H ×τ0 Ẑm)i,α.

For this, first note that the Zm-grading on O(H ×τ0 Ẑm)i,α is given by

O(H ×τ0 Ẑm)i,αh
=
{
φ ∈ O(H ×τ0 Ẑm)

∣∣∣φ(x, χ) = χ(h)φ(x, 1), ∀ (x, χ) ∈ H × Ẑm
}
.
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Put, for x ∈ H,

ug =
∑
x∈H

∑
χ∈Ẑm

χ(g)ex,χ ∈ O(H ×τ0 Ẑm)i,αg ,

e′x =
∑
χ∈Ẑm

ex,χ ∈ O(H ×τ0 Ẑm)i,αe .

Using the product in O(H ×τ0 Ẑm)i,α, we see that
uge
′
x = e′θ(x)ug, umg = a.

Hence there exists an algebra map Am(H, θ, a, τ)→ O(H×τ0 Ẑm)i,α sending
ex to e′x and g to ug, which is, exactly as in the proof of Proposition 4.6, a
Hopf algebra isomorphism. �

Remark 4.25. — Say that an m-datum (H, θ, a, τ) is of graded twist type
if τ has values into µm and if there exists µ : H → µm such that

m−1∏
i=0

µ ◦ θi = 1, τ = ∂(µ) · (τ ◦ θ × θ), a =
m−1∏
k=1

(µ ◦ θ−k)k.

The previous result (and its proof) says that if (i, α) is a cocentral action
of Zm on a finite group G, then letting H = G/i(Ẑm), we have O(G)i,α '
Am(H, θ, a, τ) for some m-datum (H, θ, a, τ) of graded twist type.

Conversely, it is not difficult to show that if (H, θ, a, τ) is an m-datum of
graded twist type, then Am(H, θ, a, τ) is a graded twist of O(H ×τ µm).

We now use the previous considerations to get another isomorphism result
for graded twists of function algebras on finite groups by Zp, where p is a
prime number. We start with a lemma.

Lemma 4.26. — Let (H, θ, a, τ) be a p-datum, with p a prime number.
Assume that H2(H, k×) ' Zp. Then we have [τ ] = [τ ◦ θ× θ] in H2(H, k×).

Proof. — We can assume that τ is nontrivial, hence that [τ ] is a generator
of H2(H, k×).The group Aut(H) acts on the cyclic group H2(H, k×) by
automorphisms, hence there exits l prime to p such that [τ ]l = [τ ◦ θ × θ].
The assumption that we have a p-datum now gives

[1] =
p−1∏
k=0

[τ ◦ θk × θk] =
p−1∏
k=0

[τ ]l
k

= [τ ]
∑p−1

k=0
lk .

Since p is prime and [τ ] has order p, we get l ≡ 1 [p], and hence [τ ] = [τ ◦θ×θ]
in H2(H, k×). �

We arrive at our expected isomorphism result.
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Theorem 4.27. — Let G be a finite group with cyclic center, let (i, α)
and (j, β) be cocentral actions of Zp on G, where p is a prime number, and
put H = G/i(Ẑp) = G/j(Ẑp). Assume that Hom(H,Zp) = {1} and that
H2(H, k×) is trivial or cyclic of order p. Then the following assertions are
equivalent.

(1) The Hopf algebras O(G)i,α and O(G)j,β are isomorphic.
(2) The cocentral actions (i, α) and (j, β) are equivalent.

Proof. — Just as in the proof of Theorem 3.1, we have i(Ẑp) = j(Ẑp),
and (2)⇒ (1) follows from Lemma 2.10. It remains to show that (1)⇒ (2).

Assume that (1) holds. To prove (2), we can safely assume that G =
H×τ0 Ẑp for a 2-cocycle τ0 : H×H → Ẑp and that i and j are the canonical
injections. Indeed, recall from the beginning of the proof of Proposition 4.24,
of which we retain the notation, that fixing an appropriate isomorphism
F : G→ H ×τ0 Ẑp, we get isomorphisms

O(G)i,α ' O(H ×τ0 Ẑm)i0,FαF
−1
, O(G)j,β ' O(H ×τ0 Ẑm)i0,FβF

−1
,

where i0 is the canonical injection. The cocentral actions (i, α) and (j, β)
then are equivalent if and only if the cocentral actions (i0, FαF−1) and
(i0, FβF−1) are.

By Proposition 4.24, we have O(G)i,α ' Ap(H, θ, a, τ) and O(G)j,β '
Ap(H, θ′, a′, τ), for θ = αg, θ′ = βg (denoting again by f 7→ f the group
morphism Aut

i(Γ̂)(G) → Aut(H) of Lemma 2.15) and a, a′ : H → µp such
that (H, θ, a, τ) and (H, θ′, a′, τ) are p-data.

Since Ap(H, θ, a, τ) ' Ap(H, θ′, a′, τ), Theorem 4.18, which is applicable
by Lemma 2.8, provides a group automorphism f ∈ Aut(H), ϕ : H → k×

and l prime to p such that

θ′l = f ◦ θ ◦ f−1,

l−1∏
k=0

τ ◦ θ′−k × θ′−k = τ ◦ (f−1 × f−1) · ∂(ϕ).

The previous lemma ensures that [τ ◦ θ′× θ′] = [τ ], hence we have [τ ]l = [τ ◦
f−1×f−1] inH2(H, k×). Our assumptions ensure, by the universal coefficient
theorem, that H2(H,Zp) ' Zp and that the natural map H2(H,µp) →
H2(H, k×) is an isomorphism, because of the exact sequence induced by the
p-power map k× → k×

1 −→ Hom(H,µp) −→ Hom(H, k×) −→ Hom(H, k×)
−→ H2(H,µp) −→ H2(H, k×) −→ H2(H, k×).
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Thus we have [τ ]l = [τ ◦f−1×f−1] in H2(H,µp), and [τ0]l = [τ0 ◦f−1×f−1]
in H2(H, Ẑp). Hence by Lemma 2.16 there exists F ∈ Aut(G) such that
βlg = F−1αgF and F|Ẑp = ( · )l, therefore means that our cocentral actions
are equivalent. �

Remark 4.28. — Let (i, α) be a cocentral action of Zm (of which we
fix a generator g) on a finite group G. Then the Hopf algebra O(G)i,α is
noncommutative if and only if θ, the automorphism ofH = G/i(Zm) induced
by αg, is non-trivial. This follows from the combination of Proposition 4.24
and of Proposition 4.14 (but can be proved quite directly as well by analyzing
the 1-dimensional representations of O(G)p,α). Hence, in the situation of
Theorem 3.1 (or of Theorem 3.3 for m = 2), there is a bijection between

(1) the set of isomorphism classes of Hopf algebras that are noncommu-
tative graded twisting of O(G) by Zm,

(2) the set of equivalence classes of cocentral actions of Zm on G that
do not induce the identity on H, with H the quotient of G by its
unique central subgroup of order m,

(3) the set of weak equivalence classes of cocentral actions of Zm on G
that are not weakly equivalent to the trivial one.

The second set is in bijection with X•m(G) (see the end of Subsection 2.3)
and for m = 2, is as well in bijection with CC•2(Aut(H)) (see Lemma 2.15).

Under the assumptions of Theorem 4.27, we obtain, for p prime, a bijec-
tion between

(1) the set of isomorphism classes of Hopf algebras that are noncommu-
tative graded twisting of O(G) by Zp,

(2) the set of equivalence classes of cocentral actions of Zp on G that
are not equivalent to the trivial one.

The latter set is, by Lemma 2.14, in bijection with X•p(G) (see the end of
Subsection 2.3).

5. Examples

In this section we apply the previous results to examine the examples
announced in the introduction.

5.1. Special linear groups over finite fields

We begin by examining graded twistings of linear groups over finite fields.
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Theorem 5.1. — Let q = pα, with p > 3 a prime number and α > 1, and
let n > 2 be even. There is a bijection between the set of isomorphism classes
of noncommutative Hopf algebras that are graded twistings of O(SLn(Fq)) by
Z2 and the set X•2(SLn(Fq)).

Proof. — The center of SLn(Fq) is cyclic and has even order, the charac-
ter group of SLn(Fp)/{±1} is trivial, and H2(PSLn(Fq), k×) is always cyclic
under our assumptions (see [14, Chapter 7], for example), hence Theorem 3.3
and Remark 4.28 provide the announced bijection. �

Theorem 5.2. — Let q = pα, with p a prime number and α > 1, let
n > 2, and assume that m = gcd(n, q − 1) is prime and that (n, q) 6∈
{(2, 9), (3, 4)}. Then there is a bijection between the set of isomorphism
classes of noncommutative Hopf algebras that are graded twistings of
O(SLn(Fq)) by Zm and the set X•m(SLn(Fq)).

Proof. — The center of SLn(Fq) is µn(Fq) and is cyclic of order m =
gcd(n, q−1), the group Hom(PSLn(Fp),Zm) is trivial, and we have moreover
H2(PSLn(Fq), k×) ' Zm under our assumptions (see [14, Chapter 7], for
example). Hence Theorem 4.27 and Remark 4.28 provide the announced
bijection. �

In the case n = 2, we have results for abelian cocentral extensions as well.

Theorem 5.3. — Let p > 3 be a prime number.

(1) There are exactly 2 isomorphism classes of noncommutative Hopf
algebras that are graded twistings of O(SL2(Fp)).

(2) If p > 5, there are exactly 4 isomorphism classes of noncommuta-
tive Hopf algebras fitting into an abelian cocentral extension k →
O(PSL2(Fp))→ A→ kZ2 → k.

Proof. — Theorem 5.1 ensures that there is a bijection between the set
isomorphism classes of noncommutative Hopf algebras that are graded twist-
ings of O(SL2(Fp)) and X•2(SL2(Fp)). All the automorphisms of SL2(Fp) are
obtained by conjugation of a matrix in GL2(Fp) (see e.g. [8]), and we see that
there are two equivalence classes of elements in X•2(SL2(Fp))), represented
by the automorphisms

ad
((

1 0
0 −1

))
, ad

((
0 λ
1 0

))
,

where λ is a chosen element such that λ 6∈ (F∗p)2. This proves the first
assertion.

We have, for p > 5, ̂PSL2(Fp) = {1}, and since Z(PSL2(Fp)) = {1}
and H2(PSL2(Fp), k×) ' Z2, the second assertion follows from the previous
discussion and Theorem 4.20. �
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5.2. Alternating and symmetric groups

We now discuss examples involving alternating and symmetric groups.
We begin with alternating groups and their Schur covers (see e.g. [14]).

Theorem 5.4. — Let n > 4 and let Ãn be the unique Schur cover of the
alternating group An.

(1) There is a bijection between the set of isomorphism classes of non-
commutative Hopf algebras that are graded twistings of O(Ãn) by
Z2 and CC•2(Aut(An)). For n 6= 6, there are precisely bn2 c such
isomorphism classes.

(2) For n = 5 or n > 8, there is a bijection between the set of iso-
morphism classes of noncommutative Hopf algebras fitting into an
abelian cocentral extension k → O(An) → A → kZ2 → k and the
set CC•2(Aut(An))×Z2. There are precisely 2bn2 c such isomorphism
classes.

Proof. — In all cases Z2 ⊂ Z(Ãn), the center Z(Ãn) is cyclic, the group
H2(An, k×) is cyclic (isomorphic to Z6 for n = 6, 7 and to Z2 otherwise) and
we have Hom(An,Z2) = {1}, so the first statement is a direct consequence
of Theorem 3.3. We have CC•2(Aut(An)) = CC•2(Aut(Sn)), and when n 6= 6
this coincides with CC•2(Sn), which has bn2 c elements.

For n = 5 or n > 8, we have moreover H2(An, k×) ' Z2, and Ân = {1},
and since Z(An) = {1}, the statement follows from Theorem 4.20. �

Theorem 5.5. — Assume that n 6= 6.

(1) There are exactly 4bn2 c isomorphism classes of noncommutative
Hopf algebras fitting into an abelian cocentral extension k →
O(Sn)→ A→ kZ2 → k.

(2) Let G be any group fitting into a central extension 1 → Z2 → G →
Sn → 1. There are exactly 2bn2 c isomorphism classes of noncommu-
tative Hopf algebras that are graded twistings of O(G) by Z2.

Proof. — Every automorphism of Sn is inner when n 6= 6, and we have
Ŝn ' Z2 ' H2(Sn, k×), so the first assertion follows from Theorem 4.23.

Let G be a group as in the statement. By Proposition 4.24, a graded
twisting of O(G) is isomorphic to A2(Sn, θ, a, τ) for a cocycle τ : Sn×Sn →
Z2 canonically build from the central extension 1 → Z2 → G → Sn → 1.
Hence Lemma 4.22 ensures that there are at most 2bn2 c isomorphism classes
of noncommutative graded twistings of O(G).
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Conversely, start with a 2-datum (Sn, θ, a, τ), with τ as before. We wish
to prove that A2(Sn, θ, a, τ) is isomorphic to a graded twist of O(G). By
Lemma 2.17, since any automorphism of Sn is inner, there exists µ : Sn → µ2
such that τ · τ ◦ θ × θ = ∂(µ). Then a−1 and µ differ by an element of Ŝn,
and hence a2 = 1. Our 2-datum (Sn, θ, a, τ) is then of graded twist type as
in Remark 4.25, and then we know that A2(Sn, θ, a, τ) is a graded twist of
O(Sn ×τ µ2) ' O(G). This concludes the proof. �

5.3. The alternating group A5

Examples with the alternating group A5 fall into the series studied in
the last two subsections, but there is a special interest in A5, because of the
following result from [3]: any finite-dimensional cosemisimple Hopf algebra
A having a faithful 2-dimensional comodule V with V ⊗ V ∗ ' V ∗ ⊗ V fits
into an abelian cocentral extension

k −→ O(H) −→ A −→ kZm −→ k

for some m > 2 and some polyhedral group H ∈ {A4, S4, A5, D2n}. Using
Theorem 4.20 and the easy description of the conjugacy classes in S5 '
Aut(A5), we have the following contribution to this situation.

Theorem 5.6. — Let m > 2 and let N be the number of isomorphism
classes of noncommutative Hopf algebras A fitting into an abelian cocentral
extension k → O(A5) → A → kZm → k. Then, according to the value of
gcd(m, 120), the value of N is as follows:

(1) N = 0 if gcd(m, 120) = 1.
(2) N = 4 if gcd(m, 120) = 2.
(3) N = 1 if gcd(m, 120) = 3, 5.
(4) N = 6 if gcd(m, 120) = 4, 8, 10.
(5) N = 8 if gcd(m, 120) = 6, 20, 40.
(6) N = 10 if gcd(m, 120) = 12, 24, 30.
(7) N = 2 if gcd(m, 120) = 15.
(8) N = 12 if gcd(m, 120) = 60, 120.

Of course, the above theorem does not give any information about the
realizability of one of the above Hopf algebras as Hopf algebras having a
faithful 2-dimensional comodule.
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5.4. Dihedral groups Dn

In this subsection we discuss Hopf algebras fitting into an abelian cocen-
tral extension

k −→ O(Dn) −→ A −→ kZ2 −→ k

with Dn the dihedral group of order 2n. While the group structure of Dn

is certainly less rich than the one of the groups of the previous sections,
the situation with Hopf algebra extensions as above is in fact much more
involved.

5.4.1. Notation

As usual, the group Dn is presented by generators r, s and relations
rn = 1 = s2, sr = rn−1s, and its automorphisms all are of the form Ψk,l,
(k, l) ∈ Z/nZ× U(Z/nZ), with

Ψk,l(r) = rl, Ψk,l(s) = srk.

Such an automorphism Ψk,l has order 2 precisely when (k, l) 6= (0, 1), l2 = 1
and k(l + 1) = 0 (in Z/nZ). The following facts are also well-known:

if n is odd, Z(Dn) = {1}, H2(Dn, k
×) = {1}, D̂n ' Z2,

if n is even, Z(Dn) = {1, rn/2}, H2(Dn, k
×) ' Z2, D̂n ' Z2 × Z2.

5.4.2. The case when n is odd

Here the situation is very simple, since we are in the situation of Corol-
lary 4.21: we have, for m > 1, a bijection between the set of isomorphism
classes of noncommutative Hopf algebras A fitting into an abelian cocentral
extension

k −→ O(Dn) −→ A −→ kZm −→ k

and

(1) if m is odd, the set CC•m(Aut(Dn));
(2) if m is even, the set CC•m(Aut(Dn))× D̂n.

An immediate application yields the following result.
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Theorem 5.7. — Let n > 3 be odd and let en be the number of iso-
morphism classes of noncommutative Hopf algebras A fitting into an abelian
cocentral extension k → O(Dn)→ A→ kZ2 → k.

(1) If n = pr with p odd prime and r > 1, then en = 2.
(2) If n = prqs, with p, q distinct odd primes and r, s > 1, then en = 6.
Proof. — The previous statement ensures that en is twice the number

of conjugacy classes of elements of order 2 in Aut(Dn), that we compute in
the above two cases. In the first case there is precisely one such conjugacy
class, represented by Ψ0,−1. In the second situation, fix integers a, b such that
pra+ qsb = 1, and such that a, b become invertible in Z/prqsZ. One checks
that there are 3 conjugacy classes of elements of order 2 in Aut(Dprqs),
represented by Ψ0,−1, Ψ0,2qsb−1 and Ψ0,2pra−1. �

Remark 5.8. — For n = 3, the two non-isomorphic Hopf algebras of the
previous theorem are the two non-isomorphic noncommutative and nonco-
commutative Hopf algebras of dimension 12, classified by Fukuda [10].

5.4.3. The case when n is even

We now assume, throughout the subsection, that n is even. None of our
previous classification results apply here and we have to perform a specific
analysis. We obtain a pretty satisfactory result in Table 5.1, which, on the
other hand, indicates that, in full generality, it is probably hopeless to get
compact classification results, such as in Theorems 4.20, 4.21, 4.23.

We begin with a useful test to determine whether a 2-cocycle on Dn is
trivial or not, and when it is trivial, to describe it as an explicit coboundary.

Lemma 5.9. — Let β ∈ Z2(Dn, k
×). The following assertions are equiv-

alent:

(1) [β] = 1 in H2(Dn, k
×);

(2) there exist x, y ∈ k× such that
xn = β(r, r)β(r, r2) · · ·β(r, rn−1), y2 = β(s, s),
x2 = β(r, rn−1)β(rn−1, s)−1β(s, r);

(3)
(
β(r, rn−1)β(rn−1, s)−1β(s, r)

)n/2 = β(r, r)β(r, r2) · · ·β(r, rn−1).

Moreover, when [β] = 1 in H2(Dn, k
×), picking x, y ∈ k× as above, the map

µ : Dn → k× defined by, for 0 6 i 6 n− 1, 0 6 j 6 1,
µ(risj) = β(ri, sj)−1β(r, r)−1β(r, r2)−1 · · ·β(r, ri−1)−1β(s, sj)−1xiyj ,

is such that β = ∂(µ).
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Proof. — This is a direct verification, using the well-known fact that β
is trivial if and only if there exists an algebra map kβDn → k, where kβDn

is the twisted group algebra. Such an algebra map then furnishes a map µ
with β = ∂(µ). �

We now exhibit a convenient explicit non-trivial 2-cocycle over Dn.

Lemma 5.10. — Let ω ∈ k× be such that ωn = 1. Then the map

τω : Dn ×Dn −→ k×

(risj , rksl) 7−→ ωjk (j, l ∈ {0, 1})

is a 2-cocycle, and [τω] = 1 ⇐⇒ ωn/2 = 1. When ωn/2 = −1, τω represents
the only non-trivial cohomology class in H2(Dn, k

×).

Proof. — It is a straightforward verification that τω is a 2-cocycle, and
the triviality condition follows from Lemma 5.9. The last assertion follows
from the previous one and the fact that H2(Dn, k

×) ' Z2. �

We now proceed to describe the possible 2-data over Dn. We begin with
a preliminary lemma.

Lemma 5.11. — Let θ ∈ Aut(Dn) and τ ∈ Z2(Dn, k
×) be such that

[τ ] = 1 and τ ◦ θ × θ = τ , and let a : Dn → k× be such that τ = ∂(a). If
a(θ(r)) = a(r) and a(θ(s)) = a(s), then a ◦ θ = a.

Proof. — We have for any g, h ∈ Dn,

a(g)a(h)a(gh)−1 = τ(g, h) = τ(θ(g), θ(h)) = a(θ(g))a(θ(h))a(θ(gh))−1,

hence if a(g) = a(θ(g)) and a(h) = a(θ(h)), we have a(θ(gh)) = a(gh), and
the result follows since Dn is generated by r and s. �

Lemma 5.12. — Let Ψu,v ∈ Aut(Dn). Let ω ∈ k× with ω = −1 if
n/2 is odd, and with ω a primitive nth root of unity if n/2 is even. Let
τω ∈ Z2(Dn, k

×) be the non trivial cocycle of Lemma 5.10. Let x, y ∈ k× be
such that xn = 1, y2 = ωu and x2 = ω−v−1 (x2 = 1 if n/2 is odd). The map
ax,y : Dn → k× defined by

ax,y(risj) = ω−ujxiyj , 0 6 i 6 n− 1, 0 6 j 6 1,

is such that τω(τω ◦ Ψu,v × Ψu,v) = ∂(a−1
x,y), and any map satisfying this

identity is of the form a±x,±y. Moreover we have ax,y ◦ Ψu,v = ax,y if and
only if xu = 1 = xv−1.

Assume furthermore that Ψu,v has order 2. Then ax,y ◦Ψu,v = ax,y if and
only if we are in one of the following situations.

(1) n/2 is odd, u is even, x = ±1 and y = ±1.
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(2) n/2 is odd, u is odd, x = 1 and y = ±ξ, with ξ a primitive fourth
root of unity.

(3) n/2 is even, u is even, v2 = 1 + kn, u(1 + v) = ln with k, l even,
and x = ±ω−v−1

2 , y = ±ωu0 , with ω2
0 = ω.

(4) n/2 is even, u is odd, v2 = 1 + kn, u(1 + v) = ln with k, l even, and
x = ω

−v−1
2 , y = ±ωu0 , with ω2

0 = ω.
(5) n/2 is even, u is odd, v2 = 1 + kn, u(1 + v) = ln with k even and l

odd, and x = −ω−v−1
2 , y = ±ωu0 , with ω2

0 = ω.

Proof. — The cocycle τω(τω ◦ Ψu,v × Ψu,v) is necessarily trivial since
H2(Dn, k

×) has order 2, and Lemma 5.9 yields the identity τω(τω ◦ Ψu,v ×
Ψu,v) = ∂(a−1

x,y). Any map Dn → k satisfying the previous identity differs
from ax,y by the multiplication of an element in D̂n, and hence is of the form
a±x,±y. The previous lemma ensures that ax,y ◦ Ψu,v = ax,y if and only if
ax,y(Ψu,v(r)) = ax,y(r) and ax,y(Ψu,v(s)) = ax,y(s). We have

ax,y(r) = x, ax,y(Ψu,v(r)) = xv, ax,y(s) = ω−uy, ax,y(Ψu,v(s)) = ω−ux−uy.

Hence we have ax,y ◦ Ψu,v = ax,y if and only if xv−1 = 1 and xu = 1.
The result is then obtained via a case by case discussion and the previous
lemma. �

Lemma 5.12 describes the automorphisms Ψu,v that fit into a 2-datum
(Dn,Ψu,v, a, τω) with the description of the possible maps a. We now have
to classify them up to equivalence: this is done in our next lemma.

Lemma 5.13. — Let Ψu,v ∈ Aut(Dn) be an element of order 2, and
retain the notation of Lemma 5.12.

(1) For n/2 odd, u even and x, y as in Lemma 5.12 (x = ±1 and y =
±1), the 2-data
• (Dn,Ψu,v, a1,1, τω) and (Dn,Ψu,v, a1,−1, τω) are equivalent,
• (Dn,Ψu,v, a1,1, τω), (Dn,Ψu,v, a−1,1, τω), (Dn,Ψu,v, a−1,−1, τω)
are pairwise non-equivalent.

Hence there are exactly three equivalence classes of 2-data over Dn

having Ψu,v as underlying automorphism.
(2) For n/2 odd and u odd, the 2-data

(Dn,Ψu,v, a1,ξ, τω) and (Dn,Ψu,v, a1,−ξ, τω) are equivalent.

Hence there is only one equivalence class of 2-data over Dn having
Ψu,v as underlying automorphism.

(3) For n/2 even and u odd satisfying the conditions of cases 4 or 5 in
Lemma 5.12, and for x, y as above, the 2-data

(Dn,Ψu,v, ax,y, τω) and (Dn,Ψu,v, ax,−y, τω) are equivalent.
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Hence there is only one equivalence class of 2-data over Dn having
Ψu,v as underlying automorphism.

(4) For n ≡ 0 [8] and u even satisfying the conditions of case 3 in
Lemma 5.12, and for x, y as in Lemma 5.12, the 2-data
• (Dn,Ψu,v, ax,y, τω) and (Dn,Ψu,v, ax,−y, τω) are equivalent,
• (Dn,Ψu,v, ax,y, τω) and (Dn,Ψu,v, a−x,y, τω) are not equivalent.

Hence there are exactly two equivalence classes of 2-data over Dn

having Ψu,v as underlying automorphism.
(5) For n ≡ 4 [8], u even and v ≡ 3 [4] satisfying the conditions of case

3 in Lemma 5.12, and for x, y in Lemma 5.12, the 2-data
• (Dn,Ψu,v, ax,y, τω) and (Dn,Ψu,v, ax,−y, τω) are equivalent,
• (Dn,Ψu,v, ax,y, τω) and (Dn,Ψu,v, a−x,y, τω) are not equivalent.

Hence there are exactly two equivalence classes of 2-data over Dn

having Ψu,v as underlying automorphism.
(6) For n ≡ 4 [8], u even and v ≡ 1 [4] satisfying the conditions of

case 3 in Lemma 5.12, and for x, y as in Lemma 5.12, there are
exactly three equivalence classes of 2-data over Dn having Ψu,v as
underlying automorphism.

Proof. — Recall that an equivalence between two 2-data (H, θ, a, τ) and
(H, θ, a′, τ) is provided by a pair (f, ϕ) with f ∈ Aut(H) and ϕ : H → k×

satisfying

(a) f ◦ θ = θ ◦ f ,
(b) ϕ · ϕ ◦ θ · a′ = a ◦ f−1,
(c) τ = ∂(ϕ) · τ ◦ f−1 × f−1.

For u odd (cases (2) and (3) in the lemma), taking ϕ ∈ Ĥ such that ϕ(r) =
−1, we see that the pair (id, ϕ) realizes an equivalence between the 2-data
(Dn,Ψu,v, ax,y, τω) and (Dn,Ψu,v, ax,−y, τω), and thus the statements (2)
and (3) are proved.

We assume now that u is even. Let f ∈ Aut(Dn), with f−1 = Ψα,β . Then,
similarly to Lemma 5.12, one shows that the maps ϕ : Dn → k× satisfying
(c) above are defined by

ϕz,t(risj) = ω−jαzitj ,

where z = ±ω
1−β

2 , t = ±(ω0)α, with ω2
0 = ω. We then have

ϕz,t(risj)ϕz,t(Ψu,v(risj)) = ω−2jαzi(1+v)−jut2j

and in particular

ϕz,t(r)ϕz,t(Ψu,v(r)) = z1+v = ω
(1−β)(1+v)

2 , ϕz,t(s)ϕz,t(Ψu,v(s)) = ω−αz−u.
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Equation (b), for ax,y and ax′,y′ = εax,y, where ε ∈ D̂n (with x′ = ε(r)x,
y′ = ε(s)y)), then becomes

z1+v = ε(r)xβ−1, z−u = ε(s)ωαx−α.
The first equation is then

ω
(1−β)(v+1)

2 = ε(r)ω
(−v−1)(β−1)

2

which gives ε(r) = 1. Hence if the 2-data
(Dn,Ψu,v, ax,y, τω) and (Dn,Ψu,v, ax′,y′ , τω)

are equivalent, then necessarily x = x′, as claimed.

Since u is even, the second equation now is

ω
(β−1)u

2 −α = ε(s)x−α. (5.1)

Assume that n/2 is odd, so that ω = −1. Since β is odd, the second
equation becomes (−1)α = ε(s)xα, with x = ±1. This is possible with
ε(s) = −1 only if x = 1. Hence we see that the 2-data (Dn,Ψu,v, a−1,1, τω)
and (Dn,Ψu,v, a−1,−1, τω) are not equivalent. Conversely, taking f = f−1 =
Ψn/2,1 (which commutes with Ψu,v) and ϕz,t as above, we see that the pair
(Ψn/2,1, ϕz,t) makes the 2-data (Dn,Ψu,v, a1,1, τω) and (Dn,Ψu,v, a1,−1, τω)
equivalent. This concludes the proof of Assertion (1).

Assume now that n/2 is even. Then, writing x = νω
−v−1

2 with ν = ±1,
Equation (5.1) becomes

ε(s) = ναω
(β−1)u−α(v+3)

2 = ναω
(β−1)u−α(v−1)

2 ω−2α. (5.2)

If v ≡ 3 [4], taking α = n/2 and β = 1, Equation (5.2) is realized with ε(s) =
−1. Hence taking f = Ψn/2,1 (which commutes with Ψu,v) and ϕz,t as above,
we obtain that the 2-data (Dn,Ψu,v, ax,y, τω) and (Dn,Ψu,v, ax,−y, τω) are
equivalent when v ≡ 3 [4]. This proves Assertion (5).

Assume that v ≡ 1 [4]. If n/4 is even, it is not difficult to check that
the condition v2 ≡ 1 [2n] implies that v ≡ 1 [8]. Then we see that condi-
tion (5.2) is realized with ε(s) = −1 by taking β = 1 and α = n/4, and
choosing f = Ψn/4,1 (which commutes with Ψu,v) we obtain that the 2-data
(Dn,Ψu,v, ax,y, τω) and (Dn,Ψu,v, ax,−y, τω) are equivalent. This finishes the
proof of Assertion (4).

We assume finally that n/4 is odd (still with v ≡ 1 [4]). Recall that
x = νω

−v−1
2 with ν = ±1. Taking α = n/4 and β = 1, Equation (5.2) with

ε(s) = −1 is realized in the following two cases:
ν = 1, v ≡ 1 [8] ; ν = −1, v ≡ 5 [8].

Taking f = Ψn/4,1, we obtain:
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• for v ≡ 1 [8], the 2-data

(Dn,Ψu,v, a
ω
−v−1

2 ,y
, τω) and (Dn,Ψu,v, a

ω
−v−1

2 ,−y
, τω)

are equivalent,
• for v ≡ 5 [8], the 2-data

(Dn,Ψu,v, a−ω
−v−1

2 ,y
, τω) and (Dn,Ψu,v, a−ω

−v−1
2 ,−y

, τω)

are equivalent.

To see that these are the only cases where there is an equivalence, assume
that Equation (5.2) holds with ε(s) = −1, and (β − 1)u ≡ α(v − 1) [n]:

−1 = ναω
(β−1)u−α(v−1)

2 ω−2α.

Squaring this identity, we see that α ∈ {0, n/4, n/2, 3n/4}. One checks easily
that the condition u(v+ 1) ≡ 0 [2n] implies that there does not exist β such
that (β − 1)u ≡ n [2n]. Hence, assuming that ν = 1 and v ≡ 5 [8] or
that ν = −1 and v ≡ 1 [8], and examining all the possibilities for α, we
always arrive at an identity −1 = 1: contradiction. This finishes the proof of
Assertion (6), hence the proof of the lemma. �

Lemma 5.13 enables one to classify the reduced 2-data over Dn, as soon
as the representative elements for the conjugacy classes of order 2 elements
in Aut(Dn) have been found. We record the result in Table 5.1, where Ψu,v is
an order 2 automorphism of Dn (hence with v2 ≡ 1 [n] and u(v+1) ≡ 0 [n]),
and N(u, v) denotes the number of equivalence classes of reduced 2-data over
Dn having Ψu,v as underlying automorphism.

Table 5.1. Number of reduced 2-data over Dn having Ψu,v as automorphism

Properties of n/2, u and v N(u, v)
n/2 odd, u odd 1
n/2 odd, u even 3
n/2 even, u odd, v2 ≡ 1 [2n] 1
n ≡ 0 [8], u even, v2 ≡ 1 [2n],
u(v + 1) ≡ 0 [2n]

2

n ≡ 4 [8], u even, v2 ≡ 1 [2n],
u(v + 1) ≡ 0 [2n], v ≡ 3 [4]

2

n ≡ 4 [8], u even, v2 ≡ 1 [2n],
u(v + 1) ≡ 0 [2n], v ≡ 1 [4]

3
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We now apply the results in Table 5.1 to enumerate the Hopf algebras
fitting into a universal cocentral extension k → O(Dn) → A → kZ2 → k in
a number of particular cases.

Theorem 5.14. — Let n > 4 be even and let en be the number of iso-
morphism classes of noncommutative Hopf algebras A fitting into a universal
cocentral extension k → O(Dn)→ A→ kZ2 → k.

(1) If n = 2r with r > 2, then en = 3.
(2) If n = 2pr, with r > 1 and p odd prime, then en = 5.
(3) If n = 4pr, with r > 1 and p odd prime, then en = 9.
(4) If n = 2spr, with s > 3, r > 1 and p odd prime, then en = 10.

Proof. — A 2-datum (Dn, θ, a, τ) is not reduced if τ is a trivial cocycle,
because Z(Dn) is non trivial, and is reduced if τ is the non-trivial 2-cocycle in
Lemma 5.10. Hence, by Corollary 4.9, Theorem 4.18 and Proposition 4.14, en
equals the number of equivalence classes of 2-data (Dn, θ, a, τω) with θ 6= id,
which now will be determined in each case using Table 5.1.

For n = 4, there are 3 conjugacy classes of order 2 elements in Aut(Dn),
represented by Ψ2,1, Ψ0,−1 and Ψ1,−1. The first automorphism does not
satisfy the condition u(v + 1) ≡ 0 [8] in Lemma 5.12, so cannot fit into a
2-datum. For the last two automorphisms, Table 5.1 gives e4 = 2 + 1 = 3.

For n = 2r with r > 3, there are 5 conjugacy classes of order 2 elements
in Aut(Dn), represented by:

Ψ2r−1,1, Ψ0,2r−1−1, Ψ0,2r−1+1, Ψ0,−1, Ψ1,−1.

Among these automorphism, only Ψ0,−1 and Ψ1,−1 satisfy the compatibility
conditions of Lemma 5.12 that make them part of a 2-data. Finally, Table 5.1
gives again en = 2 + 1 = 3.

For n = 2pr, with p odd prime, there are 3 conjugacy classes of order 2
elements in Aut(Dn), represented by Ψpr,1, Ψ0,−1 and Ψ1,−1. Table 5.1 gives
en = 1 + 3 + 1 = 5.

For n = 4pr, with p odd prime, fix integers a, b such that 4a + prb = 1,
and such that a, b become invertible in Z/4prZ. There are four elements in
Z/4prZ such that v2 = 1 and in fact v2 ≡ 1 [2n]: v = ±1, v = ±(4a− prb).
One then checks that the representatives of the conjugacy classes of the order
2 elements Ψu,v ∈ Aut(Dn) satisfying the conditions in Lemma 5.12 are

Ψ0,−1, Ψ1,−1, Ψ0,8a−1, Ψpr,8a−1, Ψ0,1−8a.

Table 5.1 now yields that en = 2 + 1 + 2 + 1 + 3 = 9.

For n = 2spr, with p odd prime and s > 3, fix integers a, b such that
2sa + prb = 1, and such that a, b become invertible in Z/2sprZ. There are
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8 elements in Z/2sprZ such that v2 = 1 but only 4 such that v2 ≡ 1 [2n]:
v = ±1, v = ±(2sa− prb) = ±(2s+1a− 1). One then checks that the repre-
sentatives of the conjugacy classes of the order 2 elements Ψu,v ∈ Aut(Dn)
satisfying the conditions in Lemma 5.12 are

Ψ0,−1, Ψ1,−1, Ψ0,2s+1a−1, Ψpr,2s+1a−1, Ψ0,1−2s+1a, Ψ2s,1−2s+1a.

Table 5.1 now yields that en = 2 + 1 + 2 + 1 + 2 + 2 = 10. �

Remark 5.15. — Part (1) of the above theorem contributes to the classi-
fication of semisimple Hopf algebra of dimension 2r, studied in [16, 17].

5.5. Hopf algebras of dimension p2qr

To conclude the paper, we look at an example where the group H is
abelian, one of the most studied situation in the literature [19, 22, 25]. We
wish to prove the following result, for which the case r = 1 was obtained
in [25].

Theorem 5.16. — Let p, q be odd prime numbers, let r > 1 and as-
sume that qr|p − 1. The number of isomorphism classes of noncommuta-
tive and noncocommutative Hopf algebras fitting into a cocentral extension
k → O(Z2

p)→ A→ kZqr → k is precisely 1
2
(∑r

i=1 q
i + qi−1) = (q+1)(qr−1)

2(q−1) .

The rest of the section is devoted to the proof of Theorem 5.16. We begin
with some generalities. Recall from Subsection 4.3 that if G is a group and
m > 1, the set CC•m(G) is the set of elements of G such that xm = 1 and
x 6= 1, modulo the equivalence relation defined by x ∼ y ⇐⇒ there exists l
prime to m such that xl is conjugate to y. For d > 1 a divisor of m, denote
by CC•m,d(G) the set of equivalence classes of elements having order d in
G (clearly the order of an element is well-defined in CC•m(G)). We get a
decomposition

CC•m(G) =
∐

d|m,d>1

CC•m,d(G).

For each such d, we have an obvious well-defined surjective map CC•m,d(G)→
CC•d,d(G) which is injective if m is a power of a prime. Thus identifying the
two sets when m = qr with q a prime number, we obtain a decomposition

CC•qr (G) =
r∐
s=1

CC•qs,qs(G).

The group we are interested in is Aut(Z2
p), that we identify with GL2(Z/pZ),

and for which we have the following result.
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Lemma 5.17. — Let p, q be odd prime numbers and let r > 1 be such
that qr|(p− 1). Let ξ be a root of unity of order qr in Z/pZ. The set{(

ξ 0
0 ξl

)
, l ∈ {1, 2, . . . , q

r − 1
2 , qr − 1}, gcd(q, l) = 1

}
∪
{(

ξ 0
0 ξqu

)
, 0 6 u < qr−1

}
is a set of representatives for the elements of CC•qr,qr (GL2(Z/pZ)).

The proof is a direct verification, using the fact that elements of order qr
in GL2(Z/pZ) are diagonalizable. We now discuss when the above automor-
phisms are part of reduced qr-data.

Lemma 5.18. — Let p, q be odd prime numbers and let r > 1 be such
that qr|(p− 1). Let θ be an automorphism of order qr of Z2

p, represented by
one of the matrices of the previous lemma.

(1) If θ =
(
ξ 0
0 ξ−1

)
, there does not exist any reduced qr-datum having θ

as underlying automorphism.
(2) Otherwise, there exists, up to equivalence, exactly one reduced qr-

datum having θ as underlying automorphism.

Proof. — Fix generators x1, x2 of Z2
p, and for ω ∈ µp, let τω : Z2

p×Z2
p →

k× be the unique bicharacter such that
τω(x1, x1) = 1 = τω(x2, x2) = τω(x2, x1), τω(x1, x2) = ω.

It is well-known that any 2-cocycle on Z2
p is cohomologous to τω for some

ω ∈ µp, and that such 2-cocycles τω and τω′ are cohomologous if and only
if ω = ω′. By Corollary 4.9, we can assume that any qr-datum has τω as
underlying cocycle, for some ω ∈ µp. Moreover a direct computation gives,
for ω 6= 1

qr−1∏
k=0

τω ◦ θk × θk = 1 ⇐⇒
qr−1∏
k=0

[τω ◦ θk × θk] = 1 ⇐⇒ θ 6=
(
ξ 0
0 ξ−1

)
and this shows the first assertion, since a datum is not reduced if the un-
derlying cocycle is trivial. Moreover, for any a ∈ Ẑ2

p such that a ◦ θ = a, we
obtain a reduced qr-datum (Z2

p, θ, a, τω), and any reduced qr-datum arises
in this way.

We can now prove the second assertion via a case by case discussion. If
θ =

(
ξ 0
0 ξi
)
with ξi 6= 1, the only compatible a is a = 1. We then see that,

for 1 6 k 6 p− 1, the qr-data
(Z2
p, θ, 1, τω) and (Z2

p, θ, 1, τωk)
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are equivalent, using, in the notation of Definition 4.7, f−1 = ( k 0
0 1 ) and

ϕ = 1.

If θ =
(
ξ 0
0 1
)
, the compatible a’s are given by a(x1) = 1 and a(x2) = ωk,

0 6 k 6 p − 1. Denote by ak such an element of Ẑ2
p. We then see that, for

0 6 k1 6 p− 1 and 1 6 k2 6 p− 1, the qr-data

(Z2
p, θ, 1, τω) and (Z2

p, θ, ak1 , τωk2 )

are equivalent, using, in the notation of Definition 4.7, f−1 =
(
k2 0
0 1
)
and ϕ ∈

Ẑ2
p such that ϕ(x1) = 1 and ϕ(x2)qr = ω−k1 . This concludes the proof. �

Proof of Theorem 5.16. — Let A be a Hopf algebra as in the state-
ment of Theorem 5.16: there exists a qr-datum (Z2

p, θ, a, τ) such that A '
Aqr (Z2

p, θ, a, τ), and with θ 6= id and [τ ] 6= 1 (Proposition 4.14), and the da-
tum is reduced, as we have seen in the proof of the previous lemma. Hence,
by Proposition 4.17 (and Theorem 4.18) we have a bijection between isomor-
phism classes of Hopf algebras A as above and equivalence classes of qr-data
(Z2
p, θ, a, τ), θ 6= id, [τ ] 6= 1. For 1 6 s 6 r, let Es be the set of equivalence

classes of qr-data as above and with θ of order qs. Clearly E =
∐r
s=1 Es.

Using Corollary 4.9, Lemma 5.17 and Lemma 5.18, we obtain |Es| = qs+qs−1

2
for each 1 6 s 6 r, and the announced result follows. �

The above reasoning works as well when q = 2, the only small difference
being in the counting process of Lemma 5.17. The result is as follows (again,
when r = 1, this was proved in [25]).

Theorem 5.19. — Let p be an odd prime, let r > 1 and assume that
2r|p−1. The number of isomorphism classes of noncommutative and nonco-
commutative Hopf algebras fitting into a cocentral extension k → O(Z2

p) →
A→ kZ2r → k is 1 if r = 1, and is 2(3.2r−2 − 1) if r > 2.
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