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A local description of 2-dimensional almost minimal
sets bounded by a curve *)

Guy Davip (D

ABSTRACT. — We study the local regularity of sliding almost minimal sets of
dimension 2 in R™, bounded by a smooth curve L. These are a good way to model
soap films bounded by a curve, and their definition is similar to Almgren’s, but the
results of this paper also hold for other, smaller classes of almost minimal sets. We
aim for a local description, in particular near L and modulo C'*¢ diffeomorphisms,
of such sets E, but in the present paper we only obtain a full description when F is
close enough to a half plane, a plane or a union of two half planes bounded by the
same line, or a transverse minimal cone of type Y or T. The main tools are adapted
near monotonicity formulae for the density, including for balls that are not centered
on L, and the same sort of construction of competitors as for the generalization of
J. Taylor’s regularity result far from the boundary.

RESUME. — On étudie la régularité locale des ensembles presque minimaux de
dimension 2 dans R™, bordés par une courbe lisse L, et avec une condition glissante
de bord semblable a celle d’Almgren. Ces ensembles semblent le meilleur modéle pour
les films de savon bordés par une courbe, mais les résultats de ce papier s’appliquent
aussi a d’autres classes, plus petites, d’ensembles presque minimaux. Le but est
d’obtenir une description locale de ces ensembles, en particulier pres de L et modulo
un difféomorphisme de classe C11¢. Dans ce papier on n’obtient une description
complete que lorsque E est assez proche d’un demi plan, un plan ou une union
de deux demi plans bordés par la méme droite, ou un céone minimal de type Y ou
T transverse & L. Les outils principaux sont des formules de presque monotonie
adaptées pour la densité, y compris pour des boules qui ne sont pas centrées sur
L, et la construction du méme genre de compétiteurs que pour la généralisation du
résultat de J. Taylor sur la régularité loin du bord.
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Introduction

This paper is in the general framework of the Plateau problem. We con-
sider soap films F of dimension 2 in R™, bounded by a smooth curve L, and
we study their local regularity near points of £ N L.
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Our soap films are “sliding almost minimal sets with boundary L”, intro-
duced officially in [11, 12] and studied in [14]; see Definition 1.1. They are
the analogue, with a boundary, of the almost minimal (or “restricted”) sets
of Almgren [2].

There are many other ways to model soap films, either by Homology
conditions, as in [1, 27, 45], or as supports of size minimizing currents with
a given boundary (here, the current of integration on L), or in some other
ways, as in [19, 21, 31, 32]. Minimizers for the corresponding first two types
of solutions to the Plateau problem (Reifenberg homology minimizers and
supports of size minimizing currents) are, by definition, sliding minimal sets,
and hence the result of the present paper apply to them; see the verification
n [12]. For the minimizers of [19, 21, 31, 32], this is probably true too, but
the author of these notes did not check the topological details; see a little
more near the end of Section 1.1. In other words, the results of this paper
probably most ways to model soap films, where one does not count multi-
plicity. Notice however that the usual minimal surfaces, or more precisely
the mass minimizing currents, are not of concern in this paper. See [18] for a
beautiful recent paper for the boundary behavior of mass minimizers though.

Our results are similar to the classical result of Jean Taylor [47] for in-
terior points. Recall that she proves that near every point of a (reduced)
2-dimensional almost minimal set £ in R?, F is equivalent, through a C1*¢
homeomorphism of R3, to a minimal cone. The restriction to reduced sets is
a standard precaution; otherwise we could add sets of vanishing measure to
E and make the description artificially more complicated; see the discussion
near Definition 1.3. She also gives the full list of minimal cones of dimen-
sion 2 in R3. They are the planes (we’ll say cones of type P), the cones of
type Y composed of three half planes that meet along a line with a 2?” angle,
and the cones of type T, obtained as cones over the union of the faces of a
regular tetrahedron centered at the origin; see Figure 1.1. Recall also that
Taylor’s notion of almost minimal sets, which comes from Almgren [2], is the
same as ours, because there is no need for boundary conditions in her case.

J. Taylor’s result extend partially to higher ambient dimensions, with
two limitations. The first one is that we have a reasonable combinatorial
description of the minimal cones of dimension 2 in R", n > 4, as unions of
faces of dimension 2 that make %’r angles with each other, but we do not
have a complete list of cones. In addition, we are only able to prove a C*
regularity result near the minimal cones that satisfy a stability condition,
called “full length” (and which is in some way connected to epiperimetric
inequalities), and near the other ones we can only prove that F is biH6lder

equivalent to the cone. See [9] and [10]. The standard cones (of type P, Y,
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and T) satisfy this full length condition, but we don’t know this for the sets
Y x Y, or the cones that we do not even know about.

In this paper we look for an analogue of J. Taylor’s result near a smooth,
one-dimensional boundary. We consider a reduced sliding almost minimal
set F in R", with boundary conditions given by a smooth curve L, assume
that the origin lies in £ N L, and study the regularity of E near 0. It was
proved in [14] that E has blow-up limits X at 0, maybe not unique, and
that these limits are sliding minimal cones associated to the tangent line to
L at 0. Thus our story should start with a description of the sliding minimal
cones X.

In R3, the known sliding minimal cones associated to a line Ly through
the origin are the previous cones of type P, Y, and T that were already
minimal without a boundary condition (and stay minimal), the half planes
bounded by Lo (we’ll call them sets of type H), and the unions of two half
planes bounded by L and that make angles at least %’T along L (sets of type
V). The author guesses that there are also cones of type Q (the cones over
the union of edges of a cube centered at 0), and no other ones, but can prove
neither fact. In R™, n > 4, there are probably lots of other ones.

In any event, it makes sense to take the possible minimal cones X one
by one, and prove a regularity result for each one. Let us assume that in a
small ball B(0,7), E is very close in Hausdorff distance to a minimal cone
X, as in (1.15) below.

If we are only interested in the approximation of E by cones in balls
centered at 0, we prove that a sufficient condition to get better and better
approximations at smaller scales, and in particular the uniqueness of the
tangent cone to E at 0, is that X satisfy a full length condition (see Sec-
tion 4); the sets of type P, Y, T, H and P satisfy the full length condition
(see Section 37), so we get the uniqueness of tangent cones in this case.

But for a C! control on F near the origin, more information is needed,
concerning balls that are centered on E \ L in particular. We get a full
analogue of J. Taylor’s theorem when X is of type P, Y, T, but only when
it does not contain half of Ly or Ly (we call that casual crossing). That is,
in all these cases, if ¢ is small enough and the Hausdorff distance in (1.15)
is small enough, we find that in B(0,7/2), E is the image of X by a C**¢
homeomorphism of R™, and the proof is not that different from the interior
regularity result of [10] and [47].

This is also the case when X is of type H, or V, but assuming that the
two half planes that compose X make an angle strictly larger than %” Here

the proof needs an extra tool, a different monotonicity formula found in [13].
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The case when X is of type V, but with the sharp angle %”, is more
interesting. This time the topology of E near 0 may be different from the
topology of X; yet we still get a nice enough C''*¢ description of E near 0,

as hinted in Figure 1.5 below. See Section 34.

When X is of type P or T, but contains at least half of Ly, the situation
is almost the same, except that F can have small creases near Ly N X, where
E has tangent cones of type V (but very flat). This situation is (mildly)
suggested by Figure 1.3, and explained in details in Sections 33 and 36.2.

There is a last important case, when X is a cone of type Y that contains
Lg. Unfortunately the techniques of this paper do not seem to yield a good
description of E near 0 when it lies very close to such a set X.

The regularity results of this paper could potentially be used to prove
the existence of solutions to the Sliding Plateau problem described in Sub-
section 1.1 or the existence of size minimizing currents. Recall that for these
two problems the existence of minimizers is not known in general, and ad-
ditional information on the sliding minimal sets near the boundary could
be of help. In [15] we explain a natural way to proceed, but for it to work
smoothly with a general curve L, we would need to control also the case of a
cone of type Y that contains Lg. In the present situation, the author intends
to use the known cases to establish a somewhat restrictive existence result,
in a forthcoming paper.

The author realizes that the present paper is long, with some technical
pieces, and he tried to ameliorate this by writing a very long and detailed
presentation of the results, Part I below, in the hope to provide a shorter
substitute for some of the most technical parts.

The author wishes to thank the Institut Universitaire de France for its
invaluable help during the early stages of the preparation of this paper,
the sponsors listed on the first page, and referees of the paper for helpful
suggestions. The pictures were done with Inkscape.
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Part I. Description of the results

1. The results

The goal of this paper is to start a study of the local behavior of two-
dimensional soap films near a smooth one-dimensional boundary. Our model
for soap films, which will be discussed soon, is given by the notion of “sliding
almost minimal sets”. This is not so far from Almgren’s notion of “restricted
set” from [2], and we would like to obtain along the boundary a description
which is similar to Jean Taylor’s regularity result [47] far from the boundary.

Let us say a few words about the result of J. Taylor that we would like to
imitate here. There are actually two main steps to it, and the first one is a
full description of the minimal cones (with the same definition of minimality
as in [2] and roughly here) of dimension 2 in R?. These are the planes, the
cones of type Y composed of three half planes bounded by a same line and
that make 2% angles along that line, and the cones of type T. A cone of
type T is the cone over the union of the 6 edges of a regular tetrahedron
centered at the origin; see Figure 1.1. This first part is important because
the blow-up limits of any almost minimal set F at a Lebesgue density point
of F is a minimal cone (blow-up limits will be defined and commented a little
more near (18.7)). The second part consists in proving that under suitable
assumptions, all the blow-up limits of F at such a point zg are equal, and
that there is a small neighborhood of xy where E is equivalent, through a
C'*P diffeomorphism of R?, to this minimal cone. Thus J. Taylor’s theorem
gives a local classification of class C'*# of the almost minimal sets.

A partial generalization of this result was given in [9] and [10], that gives
a local description of almost minimal sets of dimension 2 in R”, but with
two differences. First, the full list of minimal cones of dimension 2 in R",
n > 4, is not known; we just have a combinatoric description in terms of
faces. But also, if X is a blow-up limit of the almost minimal set F at z,
we only prove the C1T# equivalence of E to X near xo when X satisfies an
additional property, the full length property. Otherwise, we only get a local
biHolder equivalence. The full length property, which is a metric property of
the net of geodesics that compose X NOB(0, 1), is related to an epiperimetric
inequality; it is satisfied by the planes and the cones of type Y and T, but
we do not know whether it is true in general, or whether E is always C'+#
equivalent near xy to any of its blow-up limits at xg, or even whether the
blow-up limit is unique.
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Figure 1.1. A cone of type Y and a cone of type T

1.1. Sliding almost minimal sets

We would like to have similar theorems for almost minimal sets subject
to a boundary constraint along some boundary set L of dimension 1, where
we would describe E near any point o € FN L, but we shall only be able to
give such a description in some cases. Before we do this, let us explain some
of our definitions relative to almost minimal sets, the sliding condition, and
the sliding Plateau problem.

We give the definitions for arbitrary dimensions and boundaries, because
this will not hurt. In the discussion that follows, L (our boundary) is a given
closed subset of R™, and d € [1,n] is an integer, the dimension of our sets.
Our putative almost minimizers will be closed sets E C R"™, with locally
finite d-dimensional Hausdorff measure. That is, H¢(E N B(0, R)) < +oo for
R > 0. We start with the notion of competitors.

DEFINITION 1.1. — Let E C R™ be a closed set, and let B = B(z,r) be
a closed ball. A deformation of E in B (with sliding boundary L) is a one
parameter family {p:},0 < ¢t < 1, of continuous mappings ¢+ : E — R™,
such that

o(x,t) = pi(x) is a continuous function of (x,t) € E x [0,1], (1.1)
pi(x) =z fort=0 and forx € E\ B, (1.2)
e (ENB)CB for0<t<1, (1.3)
pi(x) € L whenz e ENL, (1.4)

and
w1 s Lipschitz on E. (1.5)

A sliding competitor for E in B is a set F'= ¢1(E), where the family {p:}
is a deformation of E in B.

— 8 —
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This is reasonably close to the initial definitions of Almgren in [2]; let us
comment on the differences.

Here we are really interested in what happens near the boundary L, but
otherwise we could always take L = (), forget about the condition (1.4), and
be in the same conditions as in [2] or [47].

We decided to keep the extra constraint (1.5), because it was put forward
by Almgren and does not hurt. It makes it a tiny bit harder for I’ to be a
sliding competitor, hence a little easier for E to be an almost minimal set (as
defined below), and our regularity theorems will then be a tiny bit stronger.

In the analogous definition without sliding boundary condition, we took
the habit of defining the ¢; on the whole R™, but this makes no difference
when there is no condition (1.4), as it would be easy to extend the ¢; from
FE to R™. The case when we work in a complicated domain €2, and we should
require the ¢; to take values in €2, will not arise in this paper.

For similar reasons, if we did not have (1.4), we would not need to mention
the whole homotopy {y:}, 0 < ¢t < 1, because given ¢; we could simply
complete the homotopy by taking ¢ () = ty1(z)+ (1 —t)z. Because of (1.4),
we need to be a little more careful. Yet, since most of the time in this paper
L will be a line, hence convex, it will often be enough to construct ¢; and
complete by convexity.

DEFINITION 1.2. — Let U C R™ be open, let L C R™ be closed, and
let h : (0,+00) — [0,+00] be a gauge function. This just means that h is
nondecreasing, and that

lim A(r) = 0. (1.6)

r—0
A sliding (U, L, h)-almost minimal set (of dimension d) is a set E C U,
which is closed in U, such that for every compact ball B = B(x,r) C U,

HYENB) < +0 (1.7)
and more importantly
HYENB) <HYF N B) + h(r)rd (1.8)

for every sliding competitor F of E in B. When h = 0, we say that E is
(U, L)-minimal, or that E is minimal in U, with sliding boundary L.

See for instance [41] for the definition of the Hausdorff measure H¢. Some
simple comments will be useful before we continue. The open set U may be
useful to localize the notion, but U = R” is already an interesting choice. If
U is not convex, an equally good definition would only require B in (1.8) to
be a compact subset of U that is contained in a ball of radius r; we shall not
see the difference here because all our results will be local.

-9 -
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The definition of almost minimal sets by Almgren [2] and [47] is essentially
the same as above, but with L = () and hence no constraint (1.4). There is a
slight difference, in the way we do the accounting in (1.8), with the definition
of restricted sets in [2], or the definition of quasiminimal sets in [17] and
further references, which is that here we compare the measures of F and F,
but we could have compared the measures of ENW and ¢1(E N W), where
W = {x eLE; pi(x) # x} We took what seems to be the simplest definition,
but our results also work with the slightly different way of accounting. We
refer to [9] for more detail about the alternate definitions in the plain case
without boundary, and why the basic properties that we use are also true
with the other definitions. This is then generalized to the sliding case in [14].

For the main results of this paper, we will take d = 2, L will be a smooth
curve, and even L will almost always be a line. Most of the time, U, L, and
h will be given, and we shall just say that E is a sliding almost minimal set,
or even an almost minimal set, without further reference to U, L, and h.

As far as the author knows, the notion of sliding almost minimal set was
only introduced (at least explicitly) in [11] and [12], even though similar
notions existed in the past. This notion seems to give the best model for
soap films attached to a set L. It comes with an associated Plateau problem:
suppose L is compact for simplicity, start with a closed set Ey such that
HY(Ey) < +oo, and minimize H(E), or a similar functional, among all
the sliding competitors E for Fy (say, in a very large ball). This seems like
a natural problem to consider, and it is nice that different initial sets FEj
will often yield different solutions (typically, with a different topology or
combinatorics), as it happens in real life. The fact that the infimum may be
0 if Ey is not properly attached, or has lower-dimensional competitors, does
not disturb us. Unfortunately, we do not know whether this Plateau problem
always has a solution, but if it does its minimizers E will be sliding minimal
sets, or almost minimal if we minimize a functional which is different, but
not too much, from H?.

We claim that our local regularity study applies not only to these mini-
mizers, but to most representations of soap films and bubbles. That is, those
for which one minimizes some form of Hausdorff measure, but not counted
with multiplicity. In other words, the more standard objects like mass mini-
mizing currents are not our concern here. We gladly refer to [18] for recent
impressive and general results on the boundary regularity of those.

The reason why it is hard to prove existence in the sliding context is
that it is not so easy to prove that a given set E is a sliding competitor for
some Fj (essentially, one needs to find a parameterization of E by Ejy). For
roughly the same reason, most reasonable definitions of minimal sets in the
context of soap films seem to give a less restrictive notion of competitors,

~10 —
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hence a more restrictive notion of minimal or almost minimal set. Hence the
results of this paper apply to these notions too.

Let us be a little specific. The solutions of the Reifenberg homological
Plateau problem, as in [1, 20, 26], or [45], are sliding almost minimal sets,
because sliding competitors are automatically homology competitors. This
would also be true with Cech homology replaced with singular homology
(only the deformation axioms count), except that with singular homotopy
the existence is not known in general; the rather easy verification is done
in [12], which we also refer to for a little more information on these problems
(leading to the interest of studying sliding almost minimal sets).

Similarly, the supports of the size minimizing currents are also sliding
minimal. Here, we mean the supports of integral currents 1" of dimension 2,
that would satisfy an equation 0T = S, where S is a given current of dimen-
sion 1 with 35 = 0, such as the current of integration on a smooth curve L.
And we minimize the Hausdorff measure of the set where the multiplicity
of the current T is nonzero. The fact that currents that (almost) minimize
size yield sliding (almost) minimal sets stays true in more general situations;
see [12] for the verification.

Then there are the minimal or almost minimal sets that arise from dif-
ferent topological formulations of the Plateau problem, and for which the
author claims that they are probably also sliding almost minimal, but did
not check the details. For instance, Harrison and Pugh introduce in [32]
and [31] a Plateau problem defined in terms of linking conditions. It is quite
probable that if Ey satisfies their various linking conditions and E is a slid-
ing competitor for Ey (said otherwise, if E is the endpoint of a continuous
deformation of Ej as in Definition 1.1), then F also satisfies the same linking
conditions too. This is what one would have to check in order to apply the
results of this paper to the sets of [31] and [32].

Similarly, one can find in [19, 21, 22, 23] solutions to some Plateau prob-
lems; here the competitors of Fj are for instance the limits of injective de-
formations of E, and in order to apply the results of this paper we would
just need to check that these limits of injective deformations are also sliding
competitors Ey. Or, in case of bad luck, that in the proofs below, we only
apply the almost minimality of F with deformations that come from such
limits. This looks much more boring than dangerous.

This was the main direct reason for studying the local regularity of slid-
ing almost minimal sets. There is also an indirect justification; the author
believes that the best way to try to prove existence results for the sliding
Plateau problem alluded to above, or its analogue with size minimizing cur-
rents, is by proving some regularity for almost minimal sets first. This is not

— 11 -
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shocking; for the sliding Plateau problem, for instance, we are often able to
produce a good candidate F, as a limit of some well chosen minimizing se-
quence, and limiting theorems allow us to prove that F is an almost minimal
set; it then remains to show that F is itself a competitor for Fy, and this will
be easier if we have a good control on E. For instance, proving that there is
a Lipschitz retraction defined on a neighborhood of E and which preserves
L would be very useful. See [15] for more information on this method. A
variant of this justification is what was done by Fang in [27]: we may use
the regularity of the Reifenberg homology minimizers, with the Cech homol-
ogy, to prove that they are also minimizers with singular homology. This is
good because existence is not known in general in the context of singular
homology, since we don’t know whether limits of sets satisfy the homology
constraint.

Let us also advertise for almost minimality, as opposed to minimality, as
being a nicely flexible notion to study. That is, we may want to minimize
a minor variant of the functional H%(E), such as = [ f(x)dH(z),
with a Hoélder function f such that C—' < f g C, or even J( ) =
fE x, Tg(z))dH%(x), with functions f that depend also on the approxi-
mate tangent d-plane Tg(z) to F at x (in a simple enough way). Or even
add terms of lower order (such as the weight of the soap, or the pressure)
to J(E). Minimizers of such functionals are still almost minimal sets, with
a gauge function that depends on the (mild) regularity of f or the other
terms, so we may apply the results of this paper to them. By contrast, it
is unlikely that the corresponding varifolds, for instance, have a locally fi-
nite first variation, which means that results on stationary varifolds, or even
varifolds with finite first variation, and (the author believes) variants of the
Allard theorem, will be very hard to apply. It is easy to believe that such
slightly different functionals could be used to model variants of the soap film
problem.

So we want to study the local regularity of sliding almost minimal sets.
The following notion of coral (or reduced) set will help simplify the state-
ments.

DEFINITION 1.3. — The core of the closed set E (in a given open set
U C R") is the closed support of HflE, i.e.,

core(E) = {z € E; HYE N B(x,7)) >0 for all 7 > 0}. (1.9)
We say that E is coral, or reduced, when core(E) = E.

It is not so hard to see that when F is almost minimal, its core is also
almost minimal, and that hence it is enough to reduce our attention to coral
almost minimal sets. See Proposition 3.3 of [14]. This makes the statements

- 12 —
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simpler, because we won’t have to worry about additional thin sets of van-
ishing measure that could have nearly dense tentacles, for instance. From
now on we shall always assume that all our (sliding) almost minimal sets are
coral, even though we do not always repeat this. Similarly, we exclude the
empty set (and hence sets of vanishing measure) from our discussions, even
though it is minimal.

Notice however that we do not say that sets E that minimize functionals,
like in the Plateau problems discussed above, are coral. We just say that
their d-dimensional part, or core, is still minimal, so with some luck we can
get a good description of those. For the rest of F, it is very hard to control
it, unless we ask for a more specific way to present E in a clean way, so that
for instance no proper subset of F is a competitor for F. This last way to see
things was the initial way to proceed, in the context of the Mumford—Shah
functional (hence the name “reduced”), but in some cases it is probably
not so easy to pick a competitor E/ C E which is minimal for inclusion,
especially if we don’t want to deform it first; the reduction to coral sets,
which we choose to do here, is simpler and does most of the job.

The author does not know of many regularity results concerning slid-
ing almost minimal sets near the boundary, especially for d larger than 2.
The issue was taken rather brutally in [14] (see also a more digestible ac-
count in [11]), where some basic properties were proved, such as the local
Ahlfors regularity, rectifiability, and in some dimensions uniform rectifiabil-
ity of these sets under fairly general assumptions. What we will use most
in the present paper is a nice collection of limiting theorems, that we will
take from [14]. For instance, if the sets Ej, k > 0, are coral (see above) and
almost minimal in U with a given gauge function h, and if they converge
(locally for the Hausdorff distance, as will be explained below) to a limit E,
then E is almost minimal with the same gauge function h. In addition,

HYENV) < liminf HY(E, N V) (1.10)
k—+o00

for every open set V' C U. This is very useful because it allows many proofs

by compactness. We will recall all these results more precisely when we use

them.

It seems difficult to go much further in a general situation, and in par-
ticular for d > 2, so we now turn to more precise regularity results in very
specific situations, by which we mean when d = 2 and L is a simple set.
When there is no boundary (or we work away from L), we are happy with
J. Taylor’s regularity result from [47] and (a little less) its extension [9, 10]
to higher ambient dimensions. So we shall concentrate on regularity results
near a point of L.
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In [48], J. Taylor gives a good description (similar to the regularity result
of [47]) for sets of finite perimeter in a bounded domain U (say, with a
smooth boundary), that minimize a functional that looks like the perimeter,
multiplied by a suitable constant o € (0,1] on OU. This is quite similar to
what we want to do here, but she works in a different category.

Much more recently X. Fang [27] started a similar study for sliding min-
imal sets (thus, with no more direct constraint on the domains bounded
by F) when n = 3, L is a smooth surface of dimension 2, and E is re-
quired to stay on one side of L. He proved that near any point xg € L, F is
Holder-equivalent to a minimal cone. The minimal cones that show up for
this problem are the tangent plane Py to L at x(, or the union of Py with
a half plane orthogonal to Py, or the union of P, with a half set of type Y
orthogonal to Py. More recently, with methods similar to those of [10], he
even proved the more precise C**e-equivalence [28]. Also some variants of
this problem, for instance with mixed conditions as in [48], are likely to be
interesting and feasible.

1.2. Towards a classification of singularities

In in the present paper we study on the case of 2-dimensional sets E in
(an open set of) R, when the boundary set L is a smooth (at least C17¢)
curve. In fact, we will first concentrate on the simpler case when L is a line,
and in Section 38 explain rapidly how to deal with the general case. We
would have liked a complete description of all the tangent objects (sliding
minimal cones associated to a boundary which is a line), and then a precise
local description, if possible, in the C''*¢ category, in terms of the tangent
cones. If we had all this, we would probably get a good existence result too,
but as we shall see soon, we still have an important missing case.

Again there does not seem to be too much available information on this
specific classification problem. G. Lawlor and F. Morgan give in [36] a list of
expected behaviors of minimal sets along a boundary which is a curve, which
the reader can also find in Figure 13.9.3 (Ten conjectured types...) of [43].
Compared to the presentation below, there are of course common points,
but also some small differences. Also, K. Brakke gives in [5] a description of
minimal surfaces bounded by a curve, which will be rapidly discussed below.

We start the presentation of our result with a list of sliding minimal
cones.

We start with the case when L = ). Recall that when n = 3, we have
the full description completed by [47] (but started by Plateau, Lamarle [34],
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A local description of 2-dimensional almost minimal sets bounded by a curve

and Heppes [33]), which says that the (coral) minimal cones of dimension 2
in R3 are the planes (also called cones of type PP), and the cones of type Y
or T defined above.

In ambient dimensions n > 4, the cones of type P, Y, or T are still
minimal, but there are other ones. The union P; U P of two planes through
the origin that are orthogonal to each other is minimal, and in [37], X. Liang
showed that this stays true when the two planes are nearly orthogonal. There
is a conjecture of F. Morgan [42] on the precise condition on the angle of
Py and P, under which P; U P is minimal; G. Lawlor [35] proved that this
condition is necessary, but we do not know whether it is sufficient. In [38]
X. Liang showed that the product Y x Y of two Y-sets of dimension 1
contained in orthogonal 2-planes is minimal. But there may be many other
ones that we did not guess. Nonetheless [9] gives a reasonable description of
these cones X, that says that X N 9B(0,1) is composed of a finite number
of arcs of great circles with constraints on their lengths and how they meet.
We shall be more specific about this in Section 2, because we need the
description.

Now let L be a line in R™, which we assume contains the origin. We
mentioned all the cones above, because they are still sliding minimal with
the boundary L (there are more constraints on the competitors, hence the
sliding minimality condition is weaker). And so are their translations (the
fact that they are not centered on L does not matter). But the set of planes
that contain L, which we shall denote by P(L), and the set Y(L) of cones
of type Y whose spine is equal to L (or equivalently, which are composed of
three half planes bounded by L), will play a special role, so we give them a
name.

In addition to all of these, we know of two more sliding minimal cones,
and a possible third one. We start with the sets of type H, which are just
the half planes bounded by L. That is, we take any 2-plane P that contains
L, keep one of the two connected components of P\ L, and take its closure
(i.e., add L back). We will denote by H(L) the collection of sets of type H
bounded by L.

The sets of type V (bounded by L) are the unions V = H; U Hs of two
half planes Hy, Hy € H(L) which make an angle o € [2F, ] with each other
along L. This last means that if e; is the unit vector in H; that is orthogonal
to L, then (eq,e3) < f%. When o = 7, we get a plane of P(L). We denote

by V(L) the collection of sets of type V bounded by L.

Even though this is not needed for the main results of this paper, we
decided to include in Section 39 a proof of the fact that the sets of type H
and V are sliding minimal, even with a possibly larger boundary set L and
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the variant of Definition 1.1 where we do not require (1.5), because this was
apparently not written before.

The following sets were suggested by X. Liang (in addition to those of [36]
and [43]) as possible sliding minimal cones. Let Q be a cube (in R?), and
assume that one of the great diagonals of @) is contained in L. Then let X
denote the (positive) cone over the union of the edges of Q; X will be called
a set of type Q. Some experiments (including, with soap) suggest that the
sets of type Q are sliding minimal, even though we know that they are not
plain minimal (i.e., with no boundary constraint) because of the Plateau—
Lamarle-Heppes—Taylor characterization above. But we do not have a proof
of sliding minimality.

Again there may be lots of other sliding minimal cones that we do not
know about, but at least we give in Section 2 a combinatorial description of
these cones, similar to the one we have for plain minimal cones.

We now turn to our tentative classification of singularities. By this we
mean a local description of hopefully every sliding minimal set E, near any
point g € E N L. Of course this description will depend on the type of
minimal cones X that approximate F on small balls centered at xp. This
may mean, on the blow-up limits of E at x(, but we prefer to go directly to
a quantitative statement with an approximation of F by a minimal cone in
a given ball B(xg,10ro) C R™ (we allow any ambient dimension n).

We shall assume, for the following discussion, that
E is a coral sliding (B(0,10rg), L, h)-almost minimal set, (1.11)
with a gauge function h such that
h(r) < Cpr? for 0 < r < 107, (1.12)

for some 8 € (0,1] and some constant Cj, > 0 such that C’hrg is small
enough. Let us say,

Curl < eo (1.13)
for some small g > 0 that we get to choose, depending in particular on n

and (.

We further assume that L is a line through the origin; we shall explain
in Section 38 that similar statements hold when L is a curve of class C1*¢
which is flat enough in B(0, 10r(), but let us try to keep things simple when
we can.

We assume that 0 € E, and that we have a sliding minimal cone X,
also associated to the sliding boundary L, which is close enough to E in
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B(0,10rp). We shall systematically measure such things with the local nor-
malized variants d , of the Hausdorff distance between sets, defined by

dyr(E,F) = 1 sup  dist(y, F) + 1 sup  dist(y, E) (1.14)
T ye ENB(z,r) T 2eFNB(z,r)
when E and F are (nonempty, and most of the time closed) sets, € R", and
7 > 0. By convention sup,c pn (s, dist(y, ') = 0 when ENB(z, ) is empty,
and similarly for sup,¢pnp(, ) dist(y, £). This distance does not exactly
satisfy the triangle inequality, but it localizes well and is very convenient to
use. So we assume that
do’lom(E,X) <Eo. (115)
We would love to prove that under these assumptions and if ¢g is small
enough, E is OC'*Pi_equivalent to X mnear B(0,7(), say. By this we mean
that there is a constant 8; > 0 (that depends only on n, 5, and maybe on
X) and a C**#1 diffeomorphism @ : R® — R™, such that ®(L) = L, and

ENB(0,r0) = ®(X) N B(0, rg). (1.16)

Usually we also require a uniform control on the C**#1 (uniform) norms of
® and ®~! and that for some 7 > 0 that can be chosen as small as we want
in advance (and then gy will depend on 7),

[®(x) —z[ <nro and (1 —n)lz —y| < [(z) — D(y)| < (1 —n)lz —y|
for x,y e R™, (1.17)

so that (1.16) is just a little weaker than requiring that ENB(0,79) C ®(X)
and ®(X N B(0,2rq)) C E, which we could get with the same proof anyway.

We shall see soon that the situation can be more complicated than this,
depending on the approximating minimal cone X.

We start our discussion with the simplest case when X is a half plane
bounded by L. In this case we have the following perfect analogue of J. Tay-
lor’s theorem in [47].

THEOREM 1.4. — Let E and X € H(L) satisfy the assumptions above,
and in particular (1.11), (1.12), (1.13), and (1.15). If in addition o is small
enough, depending onn, Cp,, B and 1, then E is C'TP1 -equivalent to X near
B(0,rp), for some B1 which depends only on n and .

Let us comment on this statement before we go to more complicated
cases. See Theorem 31.1 for a slightly more general statement and then the
proof (given the rest of the paper). Notice that the C'*F1-equivalence just
means that near B(0,7p), E is a C'*P1 surface bounded by L, and in fact
a Lipschitz graph over the half plane X, with a small Lipschitz constant. It
may appear in our statements that we use the Reifenberg parameterization
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theorem from [45], or one of its later variants, but here we play in the C''*51
category, where this theorem is much easier to prove than in its original, less
regular setting. That is, here it essentially amounts to checking that there
is a tangent plane P(z) to x at every point of F \ L, and that the direction
of P(z) is Holder continuous on E. In later statements, it would be Hélder
continuous on each face of F.

Theorem 1.4 is an extension of Corollary 1.7 on p. 344 of [13], which
essentially proves the same thing with a biHo6lder equivalence only. The big
difference is that we now prove an additional decay estimate on some quan-
tities that measure closeness to planes or half planes. We shall discuss the
proof ingredients in the next subsection.

Notice also that Theorem 1.4, and already Corollary 1.7 in [13], say some-
thing on the topology of E in B(0,rg): it has no holes or bubbles, and it
stays attached to L in the simple way that one would expect. Plus we have
some metric estimates on these properties.

Finally observe that Theorem 1.4 implies a weaker statement with blow-
up limits. That is, if F satisfies (1.11) and (1.12), L is a line through the
origin (but a smooth curve would work too), and if one of the blow-up limits
of E at 0 € E is a half plane X € H(L), then E is C'*Pi_equivalent to X
in some small ball centered at 0, and in particular E has a tangent cone (a
unique blow-up limit) at 0 equal to X. This is easy to check: just apply the
theorem in a small enough ball, where (1.15) holds.

Our next case is not really new, in the sense that it concerns the same
minimal cones that were known to work away from the boundary. Suppose
that X is a plain minimal cone that satisfies the full length property. By
plain, we mean with no boundary condition, or equivalently with L = 0,
and the full length property is the sufficient condition given in [10] for the
J. Taylor theorem to be satisfied for X; let us not give the definition for the
moment, but only recall that the cones of PUYUT (i.e., the cones of type
P, Y, and T as above) satisfy this. We say that a cone X is fully transverse
to L when X N L = {0}.

THEOREM 1.5. — Let X be a plain minimal cone that satisfies the full
length property of [10] and is fully transverse to L, and suppose that E and
X satisfy the assumptions above, and in particular (1.11), (1.12), (1.13),
and (1.15). If in addition ey is small enough, depending on n, Cp, B8, X,
and 1, then E is C'* P _equivalent to X near B(0,rq), for some 1 which
depends only onn, X, and B, but where we no longer require that ®(L) = L
in the definition of C'tP1_equivalent.
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The dependence on X is through some angles and the full length param-
eters, but we do not worry too much about it because in practice we can
discretize (i.e., use a finite number of cones X). See Section 36.1 for a slight
extension and the proof, which consists in reducing to the case when there
is no boundary. We cannot require that ®(L) = L here, because E could be
a set of type T, for instance, with a center very close to 0, but not on L.
Other cases of this type are treated in Section 36, but let us return to the
main simple cases.

The last case that works almost perfectly is when X is a generic cone of
type V, by which we mean that the two half planes H; and Hy that compose
X (as in the definition above) make an angle a € (3%, 7), thus excluding
planes and what we shall call sharp V-sets.

THEOREM 1.6. — Theorem 1.4 is still true when X is a generic cone of
type V, but now €y depends also on the angle of the two half planes H; € H
that compose X.

See Theorem 32.1. Forgetting about the complicated mapping &, the
conclusion just means that near B(0,r), E is composed of two faces F; and
F, bounded by L, and that each Fj is a C'™#1 and Lipschitz graph over the
corresponding half plane H; of X, with a Lipschitz norm which is as small as
we want, provided that we take g¢ accordingly small. In particular the two
faces F; meet “transversally”, with angles that are as close to o as we want.
However, we do not say that ® is conformal along L, or in simpler terms the
angle that the two F; make at x € L is allowed to depend on z, although in
a slow, Holder way. See Figure 1.2 for a hint of what E looks like in B(0, 7).

E N

.

Figure 1.2. E near a generic cone of type V

As in the case of H, Theorem 1.6 also contains topological information
on FE that was not obvious a priori. In fact, the theorem excludes some
behaviors that could have been considered possible, such as the behavior
that is described for sharp V-cones below. Here the methods of [13] are
no longer enough, because the slow variation of the approximating minimal
cones, which follows from the decay estimates in the present paper, seem to
be needed to exclude these behaviors.

As before, the theorem implies that if E satisfies (1.11) and (1.12) and
one of the blow-up limits of E at 0 € E is a generic cone X of type V, then
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E is C'*Pi_equivalent to X near 0, and in particular X is the tangent cone
to E at 0.

The first case where we get into some (moderate) trouble is when X is
a plane that contains L (and this is why we required X to be transverse in
Theorem 1.5). In the present case E may be attached to L along just about
any closed subset of L, and not meet the rest of L. Along EN L, E may have
a crease, i.e., have different tangent half planes, as depicted by Figure 1.3.

E lies above L here

N

0 ENL

This is also the section of E by a vertical plane

Figure 1.3. Behavior of E near a plane through L

That is, let X be a plane that contains L, and assume otherwise that F
satisfies the same assumptions as for Theorems 1.4-1.6. We claim that if ey is
small enough, depending on n, C}, 8 and 7, we have the following description
of E in B(0,ry). First, there is an 7-Lipschitz function ¢ : P — P~ such that
ENB(0,79) =T,NB(0,ry), where I'y, denotes the graph of . In addition,
is of class C'*A1 on (PN B(0,70)) \ (EN L), with a uniform Hélder estimate
for Vip on PN B(0,79) \ (E N L) (with the geodesic distance). Thus ¢ = 0
on LNENDB(0,ry) C P, and it has half derivatives from both accesses along
ENL, but that may be slightly different from each other at interior points of
E N L. And near interior points of E'N L where V4 had two different limits,
E can be described by Theorem 1.6. See Theorem 33.1 for more details.

Notice that here F is topologically the same as P, but not always in
the C! category. The description above is not shocking. Consider a nice
deformation ® of R™ that moves points downwards a little, sends the set E
depicted in Figure 1.3 to the plane ' = P, and L to a new boundary L’ that
coincides with L on EN L; we know that P is minimal, also with the sliding
boundary L', and we expect that E = ®~1(P) will stay almost minimal if
® sufficiently flat. See Figure 1.4.

We have the same sort of result when X is cone of type Y or T, and one of
the two half lines (say L) that compose L\ {0} is contained in the interior
of a face of X. In this case, we have the same description as in the previous
case on a small open cone around L. On the rest of R, we can proceed as
in the transverse case above. The argument also works when X is a sliding
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E' =P
Here E' still lies above L'

L \E'nL' 0o T ENL

Figure 1.4. The set E' = ®(P) is minimal because it is a plane

minimal cone that satisfies the full length property, where this time the full
length property is as in Definition 4.1 below. See Section 36.2.

Our next case is when X is a sharp V-cone, which means that X = H UH>

for some half planes Hq, Hy € H that make a %” angle. See Theorem 34.1.
The difference with the generic case is that now E can partially detach itself

from L, along a curve of Y-points of E'\ L, as suggested by Figure 1.5.

That is, assume now that X is a sharp V-cone and that the other as-
sumptions of Theorems 1.4-1.6 are satisfied. We claim that in B(0,r), we
have the following description of E.

First, there is a curve -, which is the graph of some function g : L —
L+ that is both n-Lipschitz and of class C'*P1, such that every point of
v N B(0,2rp) \ L lies in the set Ey of points of E \ L that are type Y. This
means, points © € E \ L where E is tangent to a Y set. And at points
x € yN B(0,2r¢) N L,  has a tangent cone V(z) € V(L), which may be
generic (at interior points of v N L), but always with an angle close to %’T
The curve vy will play the role of a spine for F that splits E N B(0,7g) into

three faces that we try to describe now.

i A

generic V here Sharp V-sets tangent here Thin triangular face

Figure 1.5. The set E near a sharp V set

Denote by e;, i = 1,2, the unit vector in H; that is orthogonal to L, set
es = —(e1+ea), and denote by Hj the half plane bounded by L and pointing
in the direction of e3. Thus Hy, Ho, and Hs would form a Y-set. Then denote
by P;, 1 < ¢ < 3, the plane that contains H;, and by m; the orthogonal
projection on P;. There are three sets A;, 1 < i < 3, with A; C H;, and three
functions U, : A; — P~ which are both n-Lipschitz and of class C1T#1, so

(2
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that if F; denotes the graph of ¥;, then ENB(0,7) = (F1UF>,UF3)NB(0,1).
The two faces Fy and Fy are C**51 surfaces bounded by v, which means in
particular that for ¢ = 1,2, A; is the closure of the component of H; \ m;(7)
that leaves furthest from L. In the simplest case when v just leaves L on one
side, the face F3 looks like a thin triangular wall that connects L to Ey, but
in general it may have infinitely many connected components. The face As
is bounded by 7w3(v \ L) on one side, and by L\ 7 on the other side, and Fj3
is bounded by 7\ L on one side, and L \ v on the other side.

Hopefully this description (together with Figure 1.5) gives a good idea of
what E looks like near 0. Another way to see it would be to say that E is C'!-
equivalent to a set of type Y, but truncated by the line L. This is also why
the description above looks logical: we could deform the set of Figure 1.5, a
little as we suggested in Figure 1.4, by a nice mapping ¢ that sends F to a
subset E’ of a cone of type Y, but truncated by the curve L' = ®(L). It is
not too hard to believe that ®(E) is minimal with the sliding boundary L’,
and that if ® is nice enough, F is still sliding almost minimal. See Figure 1.6.

v \
E! - B}

L L'

Figure 1.6. The image E' = ®(F) is probably minimal because it is a
truncated Y set

A priori there was a possibility that the sort of behavior described here
near sharp V sets could also happen near generic V sets, or even planes that
contain L. This was apparently suggested in [5], but we claim that this does
not happen.

This was the most interesting case that we can treat for the moment.
Notice that this time E does not even have the same topology as its model
X. All this will be discussed a little more and proved with Theorem 34.1.

Remark 1.7. — In the descriptions above, the fact that we consider gen-
eral sliding almost minimal sets helped us claim that we probably have the
right description, but this hides the fact that when F is sliding minimal,
there is probably some additional rigidity in the problem, that the author
does not understand at all, but that prevents the most complicated behav-
iors described above (near planes that contain L and sharp V sets) to occur.
That is, planes could become V sets and sharp V sets could generate a curve
~ of points of type Y that leaves L, but no complicated hesitating limit sets
would occur.
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Now we turn to the main case that we do not control, which is when
X € Y(L) is a cone of type Y with a spine equal to Y. Assume that one
of the blow-up limits of E at 0 is the cone X € Y(L), and try to study F
near 0.

The cone X has the full length property (as in Definition 4.1; see Theo-
rem 37.1), so we'll see in Theorem 22.2 that E has a tangent set of type Y
at the origin, but nonetheless we do not have enough control on balls that
are not centered on L, to give a good description of E near 0. In this case,
we expect that E looks like (and in particular has the topology of) a cone
of type Y, but with little creases (like in the case when X was a plane that
contains L) along parts of L, but at this point we cannot exclude other, less
beautiful options.

If the author had to guess the behavior of E near 0, he would start from
a set Yy of type Y, then draw a curve Ly tangent to E at 0, not necessarily
entirely drawn on Y; (but it is more fun to travel on the various faces of
Yp). See the strongly exaggerated Figure 1.7 (left). Then he would send Yj
and Lo to F = ®(Yp) and hope that if ® is gentle enough, E is still almost
minimal with the sliding boundary L = ®(Lg) depicted grossly by Figure 1.7
(right). The second hope is that nothing worse than that ever happens with
sliding almost minimal sets. Figure 1.8 shows four successive sections of our
candidate E, and (below) two sections that could a priori exist, coming from
a more complicated structure of E (but we hope not). We return to this in
Section 35.

L, leaves Yj here possible creases here  E leaves L here
" 4 A
/ ““ / EY / \\/
= P \‘ Y Ay L
» 5
0 Y E

Ly

Figure 1.7. Left: A minimal set Yy and a boundary curve. Right: The
sliding almost minimal set F = ®(Yp).

Let us also say why the author believes that this is the main bad case.
Of course there are other cones X for which we have the same problem. For
instance, X could be a set of type T, with a spine that contains a half of L.
But such cases should be similar, in the sense that if we understand the case
of X € Y(L), we can probably deal with these other cases by restricting to
cones around a half of L first.

Now there are possibly many other cones X that one should consider,
but fortunately the points € F'N L where x has an exotic blow-up limit X
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L E L
EY&Y w{ L y

Four vertical sections of E, seen from the right

L
EY&Y }YfE—;

Two vertical sections of E (unlikely)
Figure 1.8. Four sections of E and two less probable sections

like this are isolated, so even though we may not have a very good control
on F precisely at those points (especially if X does not satisfy the full length
property), we can probably still get some control, by restricting to concentric
annuli where there is no exotic point. That is, the author believes that X €
Y(L) is the most complicated case because it may happen on a large set. See
Section 36.3 for a slightly longer discussion.

1.3. Decay for the density excess and approximation by cones

Let us now describe elements of the proofs and estimates that lead to
the results above. In addition to the general regularity results of [14] that
were mentioned above, the key ingredient in the proofs will be related to the
monotonicity of density, or a variant that will be discussed soon. This is not
so different in spirit from what is was done far from the boundary, in [47]
and [10].

Let E be a coral sliding (U, L, h)-almost minimal set, and assume to
simplify the discussion that L is a line through the origin. Define, for z € E
and r > 0 such that B(xz,r) C U (we shall not need the other pairs) the
density

O(z,7) = r*H*(E N B(z,r)). (1.18)
The local Ahlfors regularity of E says that C~! < §(z,7) < Cr when z € E
and B(z,2r) C U, and it is proved in [14] that 6(x, - ) is nondecreasing when
x € L and F is sliding minimal. When x € L and F is merely sliding almost
minimal (but h satisfies a Dini condition), f(z, -) is still nearly nondecreas-
ing; see Theorem 28.7 in [14], quoted as (19.10) below, for a precise estimate.
The basic idea for the proof is the same as in the standard case, which is to
compare E N B(z,r) to the cone (centered at x) over E N OB(z,); the fact
that this cone is a limit of competitors for E is still true here, because the
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deformations that we generally use to prove this are radial and L is a cone.
This is the reason why we require x to lie in L for the near monotonicity
property; we shall return to this issue below.

Because of the near monotonicity, the limit

0(z) = l%@(x,r) (1.19)

exists. Our main ingredient for the control of E on balls that are centered
on L is a decay result for the density excess f that we define now. Suppose
that 0 € EN L, and set

f(r) =6(x,r) —0(x) for 0 <r < dist(0,R™\ U). (1.20)

Here we say that f decays like a power, as soon as h is small enough and F
is close enough to a good minimal cone.

THEOREM 1.8. — Let L be a line through the origin, U an open set in
R™, ry > 0 such that B(0,r1) C U, and E a coral sliding (U, L, h)-almost
minimal set, with a gauge function h such that h(r) < Cpr? for 0 < r < ry.
There exist constants g > 0 and a € (0,1), that depend only on n and j,
such that if in addition Chrf < gg and there is a minimal cone X (centered
at 0), of type P, Y, T, H(L), or V(L), such that

H?(X N B(0,1)) = 6(0) := lim 6(0, 7) (1.21)

and
do,r, (B, X) < €0, (1.22)

then
Fr) <1079 /r)® for 0 <r < /2. (1.23)

Of course 107! could be replaced with any small constant, but gy would
have to be made even smaller.

In fact, there is a notion of (sliding) full length property for sliding
minimal cones, that will be explained in Section 4 (see in particular Def-
inition 4.1), and Theorem 1.8 remains valid for any minimal cone X that
satisfies this full length property (and satisfies (1.21) and (1.22) as above).
Then gg, Co, and a depend also on X through its full length parameters. It
just turns out that the standard cones mentioned above all satisfy the full
length property (see Theorem 37.1), so that Theorem 1.8 follows from its
generalization, Theorem 22.2 below. See Section 37 for the final steps of the
verification of full length for the standard cones.

Here and below, we just found it easier to say that our constants depend
on n, rather than trying to check whether this is really true.
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We like the density excess f because it decays and at the same time
controls the geometry of E. We give the basic consequence here, comment
and explain some ideas about the proofs of both results, and refer to more
specific statements later.

THEOREM 1.9. — Let U, L, h, E, and ry satisfy the assumptions of the
previous statement. Then there is a cone X of type P, Y, T, H(L), or V(L),
centered at the origin, such that H?(Xo N B(0,1)) = 6(0) and

dor(E, Xo) < e(e0)(r/r1)¥* for 0 <r <. (1.24)

Here gy and a € (0, 1] depend only on n and B, and c(ey) depends also on &g,
but given n and B3, we can always choose ¢ so small that c(ey) s as small
as we want.

As before, there is a similar statement when X is a full length minimal
cone, and then B3 and c(gp) depend also on the full length parameters for
X; see Theorem 22.2. Both Theorem 22.2 and Theorems 1.8 and 1.9 will be
proved in Section 22 (using the earlier sections).

The presentation of Theorems 1.8 and 1.9 as coming one after the other
is slightly misleading; for technical reasons we will need to prove the two
of them together, event though there are two main pieces, Proposition 17.2
that brings decay for f and Theorem 19.1 that gives a geometric control.
We will return to this in detail in Section 22. Only a simpler piece of Theo-
rem 1.8, Corollary 18.2, will be proved directly from the decay estimate in
Proposition 17.2.

Thus F has a unique tangent cone (namely Xj) at 0, of density 6(0), and
we even have an estimate on how fast #~'E tends to Xy in the unit ball. Of
course X may be slightly different from X, but not so much because they
both approximate E well in B(0,7/2). In the specific case of Theorem 1.9,
it is even of the same type as X, because the types are determined by a finite
number of densities.

In both statements we required the density of X to match the density
0(0) of E; if instead H2(X N B(0,1)) > 6(0), and even in the plain case (with
no boundary), that fact that the density 6(0, p) may vary a lot between 0
and ry seems to prevent us from proving any good quantitative estimate.

The precise assumption that h(r) < Cp,r? is not vital; a slightly slower
decay, like h(r) < C[In(£2)] ~ for some large B, would be enough to get a

-
roughly similar decay for f(r) and do,(E, X (r)), but we shall skip the com-
putations and refer to a similar statement in [10], where the computations

were done that we may always copy. Also see Section 38 for a discussion of
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what happens when L is a smooth curve through the origin, rather than a
line.

We now say a few words about how we intend to prove Theorems 1.8
and 1.9. Let E and ro be as in the statements; the estimate (1.23) will follow
from a differential inequality like

rf'(r) 2 af(r) —q(r), (1.25)

where a > 0 is a small constant that depends on the geometry (including the
full length constants) and ¢(r) is a small error term that contains the con-
tribution of the gauge function h. This inequality will be proved for almost
every r < 19, say, and then integrated to get (1.23). See Proposition 17.2 for
the statement, and Section 17 for how to derive (1.23) from that statement.

Notice that the near monotonicity comes from a similar statement with
a = 0. This means that when f(r) > 0, we have to improve on our proof
of near monotonicity and save a quantity comparable to f(r). Recall that
for the near monotonicity we essentially compare E with a cone; we will
thus have to find a better competitor than the cone. And indeed the main
construction of the paper will be the construction, for almost every r < rg, of
a new competitor for F, which is at least as good as the cone over ENOB(0, r)
and even significantly better if £ N dB(0,r) is far from “optimal”.

There is one basic case where we can do better than the cone, which
is when E N 9JB(0,1) is composed of a simple net of Lipschitz curves with
small constants (understand, small Lipschitz perturbations of geodesics), but
which are not geodesics. Then the cone is composed of small conic pieces that
we can see as graphs of homogeneous functions defined on triangular sectors,
and in this case we can replace these homogeneous functions with harmonic
functions with the same boundary values, and save some surface measure
if the Lipschitz curves are far from geodesics. Here we use the fact that for
small Lipschitz graphs, graphs of harmonic functions are almost as good as
minimal surfaces.

The next basic case where we can save some area is when there is a net
of curves contained in £ N JF that has some good separation properties,
but is more complicated than a simple net of Lipschitz graphs with small
constants, like the net of curves suggested above. In this case, we prove that
we can replace E'N JE with a simpler net, so that we can still use graphs
to construct competitors, and moreover save some area when we compare
to the cone (because the net of Lipschitz curves, even though not entirely
contained in E, is also somewhat shorter).

We combine these two estimates with a third one, which is a little more
surprising, and corresponds to the case when E N dB(0,r) is essentially a
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simple net of geodesics, but not necessarily arranged with the same angles
and positions as K = X N 9B(0,1). In this case the only way we found we
could do better than the cone over E N JB(0,r) was to use competitors of
deformations of X and the definition of full length, which is the reason why
we put it in the assumptions on X. Fortunately this combinatoric property,
which is not unlike the existence of epiperimetric inequalities that can be
found in the work of Reifenberg, Taylor, and others, is satisfied by the most
familiar minimal cones.

The construction of a suitable net of curves, and then of competitors for
FE| is done in Sections 5—16, which are then followed by estimates that lead
to Theorems 1.8 and 1.9, done in Sections 17-22.

All this works well, in a way which is similar to what was done in [10]
in particular, and we get good decay estimates and then approximation by
minimal cones, but only for balls that are centered on L. But for the classi-
fication and regularity results, it seems that we also need a uniform control
on balls that are centered a little off L. However, for x € E \ L, the den-
sity function 6(0,r) defined by (1.18) is no longer nondecreasing in general,
even when F is minimal. For instance, E could be a half plane bounded
by L and that contains z, in which case 8(z,r) = 7 for r < dist(z, L) and
lim, 100 O(z,7) = /2.

Because of this, a variant of § was introduced in [13], which at least is
optimally monotone in some simple cases. Suppose that 0 € E \ L, and
denote by S the shade of L, given by

S={yeR"; \ye L forsome\ e [0,1]}. (1.26)
The substitute for 6(0,r) is the slightly larger function F' defined by

F(r) = =2 [H3(E 0 B(0,1) + H3(S 1 B(0,7))]. (1.27)

One of the main points of [13] is that when F is a sliding minimal set on
U D B(0,79), the function F is nondecreasing on [0,7); see Theorem 1.2
there. Similarly, F' is nearly monotone when E is a sliding almost minimal
with a small enough gauge function h.

Thus even though 6(0,r) itself is not always monotone where r >
dist(0, L), we add an increasing term r=2H2(S N B(0,r)) that improves the
situation. Of course this property is useful also because there are realistic
situations where F' is constant, so we may believe that we didn’t add too
much. Here are two instances of this. The first one is when F is a half plane
bounded by L (and that contains 0 because we assumed that 0 € E). The
second case is when E a truncated cone of type Y, i.e., when E = Y \ S,
where Y € Y(L) is a cone of type Y centered on 0 and that contains L. In
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both cases, F(r) is just the (constant) density of the completed set (a plane
or the cone Y € Y).

We shall not use the more general dimension d of E that was allowed
in [13], or the more general form of L, and this is rather good because this
makes the proof somewhat easier. But we shall use some of the variants
or consequences of Theorem 1.2 in [13], because we need to know that for
sliding almost minimal sets, F' is nearly monotone, and that F is close to
a half plane or a truncated cone of type Y through L whenever F' is nearly
constant. We shall be more specific later, during the proof.

We now state analogues of Theorems 1.8 and 1.9 for balls centered at
0 € E'\ L. We shall only worry here about two cases, when FE is close to a
half plane or to a V-set in B(0,r¢), and not more complicated sets for which
the near monotonicity of F' does not really help.

THEOREM 1.10. — Let L be a line that does not contain the origin,
U an open set in R™, ro > dist(0, L) such that B(0,10r9) C U, and E a
coral sliding (U, L, h)-almost minimal set, with a gauge function h such that
h(r) < CprP for 0 < r < 10rg. Also let H denote the half plane bounded
by L that contains the origin. There exist constants €9 > 0, Cy = 1, and
B4 € (0, ], that depend only on n and 3, such that if in addition Cp,r® < &g
and

F(3ro) <7 +eo (1.28)
or
do 3, (E, H) < €0, (1.29)
then
27"1 Ba 8—8
F(ri)—m < (r) [F(ro) — ] + CaCpri*ry ™" for0<ry <ra <o
2
(1.30)

and in addition

1/4

r Ba/4
dOJ«(E,H) < 0(60) <r0> + Cy (Ch’l"ﬁ) (131)

for dist(0,L) < r < ro, where c(eo) can be made as small as we want by
choosing g above small enough (depending on n and 3).

Here we do not try to control E in B(0,r) for r < dist(0, L), but this
would follow easily from the regularity far from the boundary, since (1.31)
for r = dist(0, L) shows that E lies close to a plane in B(0,dist(0, L)). See
Section 31 for this type of argument.

This is a combination of Theorem 24.1 for (1.30) and Theorem 30.1
for (1.31). In turn Theorem 24.1 comes from the differential inequality (24.13)
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in Proposition 24.3, which will be obtained as before by constructing an ap-
propriate competitor.

For the next result, recall that V(L) is the set of unions V = H; U Ho
2

of two half planes bounded by L and that make an angle at least = along
L. Also, when 0 ¢ L and r > dist(0, L), denote by Y(L,r) the set of cones
Y of type Y that are centered on 0 and contain L N B(0,r). Finally, for
Y € Y(L,r), denote by Y* the truncated cone Y \ S; the truncation is not
always perfect outside of B(0,r), because the spine of Y may be different
from L, but all we shall care about is the intersection with B(0,r), where
we neatly remove from Y N B(0,7) a sector bounded by L and contained in

a face of Y.

THEOREM 1.11. — Let L be a line that does not contain the origin,
U an open set in R™, ro > dist(0, L) such that B(0,10r¢) C U, and E a
coral sliding (U, L, h)-almost minimal set, with a gauge function h such that
h(r) < Cur? for 0 < r < 10ry. There exist constants ¢g > 0, Cs > 1, and
Bs € (0, 8], that depend only on n and (3, such that if in addition Cj,r? < &0,

3

F(0) :=0(0,0) := 1141_% 0(0,r) = > (1.32)
and
dO,QTO (E, V) < o (133)
for some set V € V(L), then
Bs
F(r) — I < <C5T1) [F(rg) — 271-} + C’5C’hr15r§_55
3 T2 3

forOo<r <ra <rg (1.34)

and in addition, for dist(0,L) < r < 1o there is a set Y =Y (r) € Y(Y,r),
such that

r\ P 1/4
do(E,Y") < c(e) <TO> + Cy(Cpr?) . (1.35)

As before, the constant c(g¢) can be made as small as we want by choosing
go small enough (depending on n and ).

This time (1.34) will come from Theorem 24.2 and (1.35) from Theo-
rem 30.3, and the differential inequality that leads to Theorem 24.2 will be
proved in Proposition 24.4.

The statement looks a little strange because (1.33) seems to authorize a
set V € V(L) with an angle (much) larger than 2. But in effect, the fact that
the density 6(0) of E at the origin is 2T forbids this, and indeed (1.35) with
r = ro implies that F looks like a truncated Y-set in B(0, 7). This last is not
incompatible with (1.33) (provided that V is almost sharp), and the reader
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should also keep in mind that the present situation is most interesting when
dist(0, L) is much smaller than &g, so that (1.33) only gives a rough idea of
what E looks like in B(0, 79), while (1.35), at least when dist(0, L) < r < ro,
is often much more precise.

It seems that we find out that V' should be nearly sharp only after the
proof, but we could also have guessed this earlier, by proving (as we will do
for the proof of Theorem 1.6, for instance) that when FE is close enough to
a generic V-set, or a plane, there is no point of type Y in E'\ L near L. See
Lemma 32.2.

The proof of Theorem 1.11 is in the same spirit as for balls centered
on L; some inequalities are harder to get because of the off-centered balls,
and also we were forced to restrict to two simpler situations (in terms of
combinatorics) because otherwise the near monotonicity of F is too far from
optimal. On the other hand the general construction is the same, and the
combinatorics of the net of curves is simpler. In particular there is a notion
of full length here too, which will be adressed in Sections 27 and 28.

We refer to the table of contents for more detail on the plan of the paper.

1.4. Notation that will be used extensively

As usual, C is a generic notation for a constant, often large, and whose
value may change from line to line. Similarly, ¢ is a small positive constant;

e B(z,r) is the open Euclidean ball centered at « with radius r > 0;

e B=DB(0,1) and S = 9B(0, 1) are the unit ball and sphere; B, = B(0,r)
and S, = 9B(0,7);

e [ is our sliding boundary. Except in Section 38, L is a line, not always
through the origin;

e FE is our sliding (U, L, h)-almost minimal set, with sliding boundary L
and gauge function h;

e #? denotes the Hausdorff measure of dimension 2;

o O(z,r) =r2H2(ENB(0,r)) see (1.18); then O(r) = 6(0,r) = r2H2(EN
B(0,7));

o F(r)=r"2[H*(ENDB(0,r)) + H*(SN B(0,7))] where S is the shade of
L; see (1.26) and (1.27) or later (23.6);

e X is a sliding minimal cone (centered at 0), often the one that approx-
imates F well, and K = X N9B(0,1);

e H = H(L), P, P(L), Y, Y(L), T are special sets of minimal cones, see
Subsection 1.2;

o d,.(E,F) is our normalized local Hausdorff distance between E and F;
see (1.14);
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e MC(L) is the set of minimal cones with sliding boundary L; see (2.1);

o V =VyUV; UV;is the set of vertices of K = X N9B(0,1) (includ-
ing artificial ones in V3) in the standard decomposition of Section 3
(see (3.5));

e the arcs &;, i € Z, are the geodesics that compose K in that standard

decomposition above;

distg is the geodesic distance on the sphere S,

p(a,b) denotes the geodesic from a to bin S (see (3.4));

v(a, b) is the unit vector that gives the direction of p(a,b) at a;

1(X) controls the size of the smallest arcs of X, or its distance to points

£, see (4.3);

Angle, (z,y) = Angle(v(a, z),v(a,y)) is an angle of geodesics at a; see

near (10.12).

7 and Dy (1) (small disks where we do surgery) appear in Section 6

T4, an extremely small number rather than a constant, appears in (14.2)

71 and A are rapidly discussed in Section 5, but appears in Section 8.

¢ appears in (5.3) to measure the distance to X, then is used all the

time. It is chosen extremely small, at the end of the proof.

2. Minimal cones bounded by a line

In this section we give a description of the sliding minimal cones of di-
mension 2 in R™, associated to a sliding boundary L which is a line through
the origin. Even when n = 3, we do not know the exact list of these min-
imal cones, but the combinatoric description that follows will allow us to
construct competitors in a fairly unified way. The description here is similar
to the description of plain minimal cones (that is, without a boundary con-
dition) that was given in Proposition 14.1 of [9], and of course we will use
its proof.

So let L C R™ be a line through the origin. We denote by MC(L) the
set of sliding minimal cones of dimension 2, with sliding boundary L. That
is, X € MC(L) if X is a (reduced) sliding minimal set in R", with sliding
boundary L, and in addition X is a cone.

Fix X € MC(L) and set
B=B(0,1), S=8B, and K = XNS§; (2.1)

we want a description of K. Let us give a statement now for future reference.
If the reader is only interested in the small collection of known minimal cones
of dimension 2 in R?3, he/she can just have a look at the statement, check
that it fits with the obvious decomposition of the minimal cones in question,
and go to the next section.
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PROPOSITION 2.1. — There is a constant ng > 0, which depends only
on the dimension n, such that for each sliding minimal cone X with sliding
boundary L (i.e., for X € MC(L)), K =SNX is a finite union

K=]Je¢, (2.2)
JjeT
where the €;, j € J, are either great circles or closed arcs of great circles.
The great circles are disjoint from the rest of K, and even

diSt(Q:j, K \ Qtj) = Mo (23)
when €; is a great circle. The arcs of great circles have disjoint interiors,
i.e., they can only meet at a common endpoint. No point of L lies in the

interior of one of our arcs of great circles (otherwise, we cut the arc in two).
We also have that

HYU(C) =m0 forje T,
except perhaps when one of the endpoints of €; lies in L. (2.4)

In addition, if ¢ € LN K and H'(&;) < no for some €; which admits ¢ as
one of its endpoints, then there is at most another €; which admits { as one
of its endpoints, this €; (if it exists) makes an angle larger than 9% with ¢;

10
at £, and H(€;) = no.
The arcs &; are also far from each other, i.e.,

fori,j € J such that €; NE&; =0, i.e., when they do not share an endpoint,
but again with the following possible exception: if there is one of the excep-
tional arcs € for (2.4) such that the two endpoints of € are also extrem-
ities of €; and €; respectively. Then instead we only get that dist(&;,¢;) =
diam(€) in general, and dist(&;, €;) = min(diam(€y), diam(€},)) if €; and
¢; are both almost half circles and happen to be also separated by an excep-
tional arc &), near the antipodes.

Finally, if i € J, €; is an arc of circle, and a is one of the endpoints of
&;, then one of the two following things happens:

a ¢ L, there are exactly two other arcs of great circle €; and €

that meet €; at a, and they make %“ angles with €; at a; (2:6)
a € L and all the other arcs of great circle that meet €; at a (2.7)

make angles at least 2{ with €; at a.

Proof. — We decided to require the arcs of geodesics not to contain a
point of L in their interior. That is, we force the points of K N L to be
vertices of our description (that is, when this is not the case, we just cut the
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arc at the point of K N L), unless they lie on a full great circle. But even in
this case, we shall later cut the great circles into pieces, and we will cut at
points of L if we can.

The decomposition of Proposition 2.1 will some times be called the natural
decomposition of K. In the next section we will again cut some of the arcs
into smaller parts to get what we’ll call the standard decomposition.

The rest of the section will be devoted to the proof of Proposition 2.1,
but we start with a few comments. By arcs of great circles, we mean geodesic
arcs, but a priori they may be longer than m, although this will probably
not happen. That is, the involved circles are centered at the origin. We write
H'(€;), but we could equally have written length(¢;). In (2.6), €; may be
the only arc that ends at a € L, or there may be two, or three, but no more.
And when there are three, their directions at a make %“ angles and lie in a
same 2-plane orthogonal to L.

We start the proof of the proposition with a first description of K away
from L. We claim that
Each z € K \ L has a small neighborhood where K coincides

with a great circleor a union of three arcs of great circles (2.8)

2w

that start at  and make = angles there,

by the proof of Proposition 14.1 on p. 83 of [9]. Admittedly that proposition
was announced when K comes from a plain minimal cone (with no sliding
boundary condition), but the first part where we prove the conclusion of (2.8)
only uses this information locally. Since the reader may not recall well how
this goes, let us sketch a rapid argument, which actually uses a little more
information but is easier to believe. First let Z be any blow-up limit of X
at x; we know that it is a minimal cone (with no sliding boundary), and
since X is a cone, a simple computation (that will be done soon in a slightly
different context) shows that Z is invariant by translations in the direction of
2. When we look at the description of ZN'S given in Proposition 14.1 of [9],
we see that all the great circles involved in this description are contained in
2-planes that contain z, and it is easy to see that Z € PUY (again, read the
arguments below if you have a doubt).

Suppose first that Z is a plane; the local regularity result (of [10] or [47])
says that near z, X is a C''*¢ surface, and its tangent plane at z contains
the radial direction. It follows from the implicit function theorem that K is
a C' curve near x, and then we can conclude, either as in Proposition 14.1
of [9] (by constructing competitors by hand), or by saying that in fact (by
the regularity theory for elliptic PDE) K is C? near z, then has vanishing
curvature in the direction of S (because the total mean curvature is zero,
and X has no curvature in the radial direction). Thus K is an arc of great
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circle in the neighborhood of z, when € K \ L and X has a blow-up limit
at x which is a plane. The case when Z € Y follows at once, because the
regularity theorem says that near , K is composed three C! curves, and we
just showed that they are arcs of great circles. They make 27” angles because
Z € Y. This completes our sketch of (2.8).

So we have a nice local description of K away from L, and now we need
to see what happens near a point of K N L; we start our study of K near L
with a description of sliding minimal sets of dimension 1.

LEMMA 2.2. — Let Z be a (reduced) sliding minimal set of dimension 1
in the whole R™, with sliding boundary {0}. One possibility is that Z is a
line or a set of type Y (i.e., the union of three half lines that meet at a point
with %’T angles). Otherwise, 0 € Z, and Z is either a half line with its end
at 0, or a set of type V (i.e., the union of two half lines with ends at 0 and
that make an angle at least 2?” at 0), or a truncated Y (i.e, a line segment
[0, a] with a # 0, plus two half lines leaving from a, so that [0,a] and the two
half lines make 2?” angles at a.

Proof. — Let Z be such a minimal set. Away from 0, and for instance by
Chapter 10 of [9], Z is composed of line segments, that can only meet by
sets of three, with angles of 2?”, and at vertices that are isolated in R™\ {0}.

The argument that follows is obviously too heavy, as some parts could be
replaced by constructions of competitors with line segments, but hopefully
it will convince the reader with less effort.

We may assume that the origin lies in Z, because otherwise Z is a plain
minimal set of dimension 1 (just check the definitions). Those were studied
before, and they are lines or sets of type Y. Then set 6(r) = r—*HY(Z N
B(0,7)); we know, for instance from Section 28 of [14] (but again it is much
easier in dimension 1 because we just need to replace with cones over finite
sets) that 6 is a nondecreasing function. In addition, because of this and a
theorem about limits (again [14] is a reference, but in fact Golab’s theorem
does the job), any blow-up limit Zy of Z at 0 is a sliding minimal cone of
constant density 6(0) = lim,_,o 6(r). Similarly, every blow-in limit Z,, of Z
is a sliding minimal cone of constant density #(co) = lim,_, o 0(r). That is,
Zy and Z, are finite unions of half lines emanating from 0. In fact they can
only be composed of 1, 2, or 3 half lines, because a simple argument shows
that the half lines make angles > 27/3 with each other (otherwise, pinch a
couple of them near the origin).

Set m = 6(00); then every blow-in limit Z, is composed of m half lines ¢;,
1 < ¢ < m, and there are large radii R such that ZNdB(0, R) is composed of
exactly m points that lie at distances larger than R from each other. Indeed,
notice that ZNOB(0, R) has at least m points for R large, one near each ¢;,
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because otherwise we could contract a big piece of Z near ¢;; in addition the
presence of an additional point too often would make the density of Z too
large. Select such an R, and call x; the point of Z NJB(0, R) that lies close
to fz

Set Zr = ZN B(0, R), and let C(0) denote the connected component of
0 in Zr. We want to show that

C(0) contains z; for 1 < i < m. (2.9)

Let us first assume that C(0) contains none of the xz;. For ¢ > 0 small,
denote by C.(0) the set of points z € Zg that can be connected to 0 by
an e-chain in Zg, i.e., a finite chain of points (; € Zg such that (, = 0,
I¢; — Cj—1]| < e for j > 1, and z is the last ¢;. Since Zg is a compact set of
finite length, it is easy to see that if for every ¢ > 0 the point z € Zp can be
connected to 0 by an e-chain in Z,., then there is a path of finite length in
Zg that goes from 0 to z. See for instance [25] or Chapter 30 of [8]. In other
words, C(0) is the intersection of the C¢(r). Since the C¢(0) are open in Zg
and C(0) is closed (for instance because the C.(0) are also closed), we get
that C'(0) = C(0) for some € > 0, and our assumption implies that C.(0)
does not contain any x;, and hence does not meet Z \ B(0, R) (recall that
C.(0) C Zgr = ZN B(0, R)). By compactness, dist(C.(0),Z \ B(0,R)) > 0.
We shall now check that this is impossible because it implies the existence
of a competitor Z' = ¢(Z) which is strictly better than Z.

First observe that if ¢ : Z — R™ is Lipschitz, p(z) = z for € Z\ B, and
©(0) = 0, then Z' = ¢(Z) is automatically a competitor for Z, because we
can interpolate linearly between the identity and ¢ to get a one parameter
family {¢:}, and all the mapings ¢ satisfy the sliding condition ¢:(0) = 0.
See Definition 1.1.

Now we define ¢ on Z by ¢(z) = 0 for x € C.(0) and ¢(x) = x on the
rest of Z. Notice that the rest of Z lies at positive distance from C,(0), so
 is Lipschitz. It is easy to see that Z’ = p(Z) does better than Z, because
we simply removed the measure of C,(0) which contains Z N B(0, ), whose
measure is positive because 0 € Z and Z is Ahlfors-regular. So C'(0) contains
at least one z;.

Now suppose that (for instance) the connected component C'(1) of 21 does
not contain 0 or any other x;. Let C.(1) denote the set of points z € Zg that
can be connected to x1 by an e-chain in Zg. As before, C.(1) is both open
and closed in Zg, C(1) is the intersection of the C(1), and for € small enough
C.(1) does not contain 0 or any other x; and stays at positive distance from
the rest of Zp.
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This time we define a competitor Z’ = p(Z) with a function ¢ such that
p(x) =z on Z\ B(0,R) and on Zg \ C.(1), and ¢(z) = x1 on C.(1). For
the verification, first observe that ¢(0) = 0 because 0 € Zr \ C.(1), and that
it is enough to check the Lipschitz property of ¢ near x; (because C:(1) is
far from the rest of Zg). This is easier if we observe that we could choose
R such that near each z;, Z is in fact a line segment that crosses 9B(0, R)
transversally. Indeed almost every R is like this, because the set of vertices
for Z is at most countable, and by Sard’s theorem (to exclude segments
that are tangent to 9B(0, R)). Now the Lipschitz property is easy, and it is
also clear that Z' = ¢(Z) is better than Z, because we contract at least a
segment to x;.

If (2.9) fails, we are in one of the following situations. Suppose for the
sake of definiteness that C'(0) does not contain x;. Recall that it contains
some z; ; without loss of generality we can assume that xo € C(0). But z;
must be connected to some point, and the only choice left is x3 (recall that
there are at most three ;). Let us now say why this is impossible. As before,
if £ is small enough, the set C.(0) defined above coincides with C(0), and
thus contains 0 and x2, and the set C.(1) coincides with C(1) and therefore
contains x; and x3, but lies at distance at least ¢ from C.(0).

We now define ¢ and the competitor Z/ = ¢(Z) as follows. As usual,
we take p(z) = x on Z \ B(0,R). On Zp \ C.(1), we let ¢ coincide with
a Lipschitz retraction from B(0, R) onto the line segment [0, z3]. Finally,
on the rest of Zg, that is, on C.(1), we let ¢ coincide with a Lipschitz
retraction from B(0, R) onto the line segment [z, z3]. Notice that ¢(0) =0
because 0 € Zr \ C:(1). Again the Lipschitz property of ¢ only needs to be
checked near the z;, where we just need to know that [0, x2] and [z, z3] are
transverse to dB(0, R). Finally, H'(Z' N B(0, R)) < H([0, 2] U [z1,x3]) <
R+ |z1 — z3] < 29R/10 if R is large enough, because the z; lie close to
the minimal cone ¥, and thus almost make angles of 27r/3. On the other
hand, H'(Z N B(0, R)) tends to #(c0)R = 3R when R tends to +o0, so
HY(Z' N B(0,R)) < HY(Z N B(0,R)), Z' is a better competitor, and this
contradiction proves (2.9).

Now the set Zr contains a connected set that connects 0 and the ;. This
implies (because H!(Zr) < +00; see again [25] or Chapter 30 of [8]) that
there is a simple arc &; in Zg that goes from 0 to x1. If m > 2, there is also
an arc in Zg that goes from x5 to 0; we call (5 the first point of this arc
(leaving from z9) that lies in &;. We call & the portion of this arc between
x9 and (. Thus & is essentially disjoint from &7, and their union connects
0, z1, and xo. If m = 3, we also find an arc from x3 to 0, stop it at the first
point (3 of & U &s, and thus get a third arc &3.

— 37 —



Guy David

Let us assume that m = 3 (the other cases are simpler). We see that
HY (Zr) =2 HU (G UEUE&) = H (&) +H (&) +H' (&) (2.10)

Notice that & U & U & is composed of (at most) five essentially disjoint
curves that connect 0 and the z; (in the worse case we cut &; in two at (o
and & or one of the two pieces of & at (3); if we replace each of these arcs
with a line segment with the same endpoints, we get a connected set F' such
that H1(F) < H1(ZR), with a strict inequality if Zr # F.

Denote by F the class of connected unions of at most five line segments
contained in B(0, R), and that contain 0 and the three x;. Thus F' € F. Let
Fy € F be such that

HY(Fy) = Ci}g&#(G) <HYF) < HY(ZR). (2.11)

Existence is not an issue, because there are finitely many combinations of
intervals, with endpoints that lie in the compact set B(0, R).

First suppose that Fy has no vertex in B(0, R)\ {0}, which means that Fj
is the intersection of B(0, R) with an array of 1, 2, or 3 half lines emanating
from 0. These segments make angles at least 27/3 at 0, because otherwise
we may pinch two of them near 0 and make Fj shorter. We consider this
good and go to the next case.

Suppose next that Fy has exactly one vertex in B(0, R) \ {0}. Call this
vertex v, and observe that the three segments of Fj that leave from v make
27r/3 angles with each other (otherwise, move v a little and this gives a
shorter Fy). They either end at points z; € B(0, R), or at the origin. Call
Vo the union of these three segments; this is a piece of Y-set.

Let us first assume that Vj ends at the three z;. One possibility is that
0 lies in Vj. Then Fy = Vy (no need to add anything), we shall consider
that 0 is a vertex Fj is in fact composed of four segments (three that make
a smaller piece of Y-set centered at v, and a segment [0, ;] opposite to it,
and this will be a good enough description. Otherwise, 0 is also connected
to one of the x; (there is no other inside vertex, and v already has three
segments leaving from it). Notice that v lies very close to the origin, because
the branches of V; make 2% angles, and the z; are seen from 0 with angles
that are arbitrarily close to 27 /3. This is impossible, because we could easily

make Fy shorter by replacing the long segment [0, ;] with [0, v], for instance.

Now assume that Vj ends at 0 and, say, x1 and . Again, v lies very close
to 0. If m = 2, then Fy = V) and we declare ourselves happy. Otherwise,
m = 3, there is another segment that goes from x3 to either 0 or x; or x5
(the other vertex v is already full), and no more, because Fy is minimal.
But z; (for instance) is impossible, because we would make Fy shorter by
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replacing [x3, 1] with the shorter [z3,0]. So Fy = Vo U [x3, 0], and we like
this case too. Notice that [0,v] and [0, z3] make an angle at least 27/3 at
the origin, because otherwise we could pinch.

We end our discussion with the case when Fj has (at least) two vertices
v; in B(0, R) \ {0}.

Let us count vertices and edges to reduce to one possibility. First observe
that Fy contains no cycle since it is minimal. That is, F is a tree. It has
some vertices of valence 3 (the v;, and maybe some other), maybe some
vertices of valence 2, and some vertices of valence 1 that we call extremities.
There are at most 4 extremities, the origin and the x;, because the other
vertices have valence 3. It is easy to see that such a tree has 2 extremities
if it has no vertex of valence 3, 3 extremities if it has one vertex of valence
3, 4 extremities if it has two vertices of valence 3, and more otherwise (you
may remove the vertices of valence 2 to do this computation). Here we have
at least two vertices v; and at most 4 extremities, so in fact we have exactly
2 vertices v; and 4 extremities, which are 0 and three points z;. That is, Fj
is a simple graph with 5 segments, and after renaming the x; and the v;
we may assume that Fy = [0,v1] U [z1,v1] U [v1, v2] U [vg, Z2] U [ve, 23], with

2

segments that do not meet except at the v;, and with =F angles as usual.

We are a little less happy with this last case, but keep it anyway.

In all our cases, we claim that set Fy gives a competitor for Z in B(0, R).
That is, due to the simple shape of Fy, we can find a Lipschitz mapping
¢ : B(0, R) — Fy, such that ¢(z) = z for z € Fy, and in particular ¢(0) = 0.
We extend ¢ to Z \ B(0, R) by setting ¢(z) = z there. Notice that because
near the points x;, Z is composed of a C' curve which is transverse to
0B(0, R), this makes ¢ Lipschitz on Z. We do not care about the Lipschitz
constant, and ¢ is the endpoint of the family {¢:}, 0 < ¢ < 1, obtained
by linear interpolation with the identity. Thus ¢(Z) is a sliding competitor
for Z in B(0,R) and, since Z is minimal, H'(Z N B(0,R)) < H(p(Z N
B(0,R)) < H(Fp). Recall that Z N B(0,R) = Zg, so (2.11) says that in
fact H1(Zr) = HY(Fy) = HY(F), and by its proof Zg is actually equal to
F (every curve in the decomposition is a line segment). In addition, F is
minimal, so the discussion above, with Fy = F = Zp, gives a description of
Fo=Zr=2nB(0,R).

Notice that all this happens for radii R that we can take as large as we
want. Suppose that we ever encounter the bad case when Fy has five pieces.
Then for all the radii R’ larger than R (and for which the argument works),
our description of Z N B(0, R’) coincides in B(0, R) with the description of
Z N B(0, R), which means that the two vertices v; are always the same, and
Fy = Fy(R’) is just obtained from Fy(R) by extending the three branches by
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straight lines, past the three x;. Since we can take R’ as large as we want, we
see that Z is the union of the two segments [0, v1] and [vy, v2], plus three half
lines, namely the half line L, that starts from v; and goes in the direction
of x1, and the two half lines Lo and L3 that leave from vo and go in the
directions of xo and x3 respectively.

Denote by e; the direction of L;. Since the blow-in limits of Z are Y-sets,
we see that the three e; make 27/3 angles with each other. In particular,
they lie in a same plane. Now [vs, v1] makes 27 /3 angles with Ly and L3 at
the point v, so it lies in the same plane P’ (parallel to P) that contains
Lo U Ls. This plane contains Ly too (because it contains v; and its direction
contains e; ), and since Ly, [v1,0], and [v1, v2] also make 27/3 angles at vy,
we see that 0 € P’ as well. It is good to know that the picture is done in P,
because now ey and ez are easily seen to make angles of %’T + %’T with eq, a
contradiction. So we may assume that our last bad case never happens for
R large.

Our next case is when for some R > 0, Fj is of the form VyU[0, 23], i.e., a
truncated Y-set, plus a segment that goes roughly in the opposite direction.
As before, for every R’ > R for which we can make the description above, the
set Fo(R') extends Fy(R). This implies that Z is a set of type Y, truncated
at the origin, plus a half line emanating from 0. The blow-in limits of Z
are unions of three half lines leaving from 0, and since these blow-in limits
are minimal, the three half lines make 27/3 angles. That is, Z is a cone of
type Y.

Now assume that this never happens, and that there is an R for which
Fy = Fy(R) is a truncated Y-set. Then as before we can extend, and Z itself
is a truncated Y-set. Similarly, if Fy(R) is composed of radii starting from
the origin, and the descriptions above never occur for any R, we see that Z
is a union of 1, 2, or 3 half lines emanating from 0 with the usual condition
that they make angles at least 27/3 at the origin.

Thus we have a description of Z which fits what was announced in the
statement; Lemma 2.2 follows. O

We deduce from this a description of translation invariant sliding minimal
sets of dimension 2.

LEMMA 2.3. — Let T be a (reduced) sliding minimal set of dimension 2
in the whole R™, with sliding boundary L, and suppose that T is invariant by
translations parallel to the line L. Then T is either a plane, a set of type V
(two half planes bounded by L and that make an angle at least 2?” along L),
or a set of type Y, parallel to L but not necessarily containing L, or else a

half plane bounded by L (i.e., T € H(L)) or a truncated set of type Y (i.e.,
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a set of the form (Y \ H)U L, where Y € Y has a spine parallel to L, and
H € H(L) is a half plane contained in'Y").

Proof. — To prove this, write T = L X Z, where Z is a subset of the
vector hyperplane P perpendicular to L. We want to show that Z is a one-
dimensional minimal set in P, with a sliding boundary reduced to the origin
0, and then we’ll use Lemma 2.2. This is fairly a standard argument, so we
just sketch the proof and refer to Lemma 2.1 of [40] for a more detailed
argument.

Let ¢ : Z — P be a Lipschitz mapping such that p(z) = z for |z
large, and ©(0) = 0 if 0 € Z. This last is enough to take care of the sliding
boundary condition. That is, in principle our competitors are of the form
v1(Z), where {¢;} is a one-parameter family of continuous functions that
satisfy the sliding condition that ¢.(z) € {0} when x € {0} (our sliding
boundary is {0}). But we’ll take ¢;(x) = to(x) + (1 — )z, and our condition
that ¢(0) = 0 is enough for the sliding condition.

Let B be a ball such that ¢(x) = x for x € Z\ B and ¢(ZN B) C B.
Suppose that, in contradiction with our claim, we can choose ¢ so that

A:=H(p(Z)NB)—HY(ZNB) =H (p(ZNB))-H (ZNB) < 0. (2.12)

Let I C L denote a very long interval and let ¢ : I — [0, 1] be a nice cut-
off function on I. For the sake of definiteness, we can identify L with R, take
I = [-N-1, N+1] for some large N and choose ¢ (y) = max (0, min(1, N+1—
ly|)) for y € R. Denote by (x,%) the generic point of R", with x € P ~ R"~!
and y € L ~ R. A good competitor for T is f(T), where f : T — R" is
defined by f(z,y) = (¥ (y)e(x) + (1 — (y))z,y). It is easy to see that f(T)
is a sliding competitor for T in the rectangular shaped set R = B x I, in
particular because f(z,y) = (z,y) when = 0 and because it is easy to
interpolate between the identity and f.

The minimality of 7' says that HY(T' N R) < HA(f(T) N R). Set R’ =
B x [-N, N], and observe that
H*(TNR')=H?*((ZNB) x [-N,N]) =2NH(Z N B) (2.13)

not completely trivially, but because Z is rectifiable. See for instance the
computations of p. 530-531 in [8], although in a slightly different context.
The rectifiability of Z itself comes from the rectifiability of T'= Z x L; we
leave the details. Similarly, the 2-rectifiability of f(T'N R’') = (¢(Z N B)) x
[—N, N] (recall that ¥(y) =1 on [-N, N]) yields

H*(f(TNR')) =H*((¢(ZN B)) x [-N,N]) =2NH'(p(ZN B)), (2.14)
so we win 2N A from the contribution of R’. We still need to estimate the

contribution of R\ R’. Since ¢ is Lipschitz, H2(f(T N (R\ R')) < C, where
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C depends on the Lipschitz constant for ¢. It is possibly huge, but it does
not depend on N. We take N large, add this to the estimates from inside of
R’, and get the desired contradiction with the minimality of T'.

So Z is a sliding minimal set, Lemma 2.2 gives a good description of Z,
and the description of T'= Z x L needed for Lemma 2.3 follows. O

When we restrict to cones, Lemma 2.3 yields that (with the notation of
Subsection 1.2, and still assuming that L is a line through the origin)

if T is a sliding minimal cone with sliding boundary L,
and T is invariant by translations parallel to L, (2.15)
then T e H(L) UV(L)UY(L).

We will often use Lemma 2.3 and (2.15) to control limits of minimal cones,
and then obtain information in the direction of Proposition 2.1. The standard
notation for this is the following. We have a sequence {X}} of sliding minimal
cones associated to the boundary L (a line through the origin). We select
points a € K = X NS and radii r, > 0, with limg_ 1 7x = 0, and
consider

Yy = (Xk — ay). (2.16)
Notice that 0 € Yj; this allows us to take a subsequence, which we shall still
denote the same way, so that {Yj} converges to a closed set Y, and {ay}
converges to a limit a € S. We will need to know that Y is invariant by
translations in the direction of a, i.e., that

E+taeY foréeY andt eR. (2.17)

Indeed, we can find & € Yy, so that & tends to £. Set ( = ax + r&k; then
(x € X}, and since X, is a cone, s(i € Xy, for s > 0. Then rk_l(sﬁkfak) cY;
for s > 0. But 7",:1(5 kK — Qk) = rk_l(sak + sy — ax) = s&k + (s — l)r,zlak.
We apply this with s = 1 4 rgt, get that (1 + rxt)&x + tax € Yy for k large,
take a limit, and get (2.17).

Let 2z € L minimize the distance to ax, and notice that Y is a sliding
minimal set, with respect to the boundary Lj = L—rlzlak = L—l—r,;l(zk—ak).
There will be two main cases. The first one is when
kgrfoo ;' dist(ay, L) = +o0,
or equivalently
lim dist(0, Lg) = +o0.

k——+oo
In this case, since Y} is a plain minimal set in B(0, dist(0, L)), then by The-
orem 4.1 (and Definition 2.4) in [7], Y is a minimal set in R™, with no sliding
boundary condition. Since by (2.17) it is also invariant by translations the
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direction of a, the simpler variant of Lemma 2.3 where there is no boundary
constraints implies that

Y is a plane or a set of type Y (possibly not centered at 0). (2.18)

The other possibility is that dist(0, Ly) = 7 ' dist(ax, L) stays bounded;
then, modulo a new sequence extraction, we may assume that { Ly} converges
to a line L., which is parallel to L (and the Lj). Theorems 10.8 or 21.3
in [14] says that Y is a sliding minimal set, with boundary L., and since
Y is still invariant by translations in the direction of @ (which happens to
be the direction of L, since a = limy_ 4o ax and dist(ag, L) tends to 0),
Lemma 2.3 says that

Y is a plane, a set of type V (bounded by L),
a set of type Y (with a spine parallel to L), (2.19)
or a half plane or a truncated set of type Y.

We return to the proof of Proposition 2.1. The following lemmas will help
with the relative position and length of the arcs €; that compose K = X NS.
We start with a description of K far from L, which is more precise than what
we did near (2.8) because we give a lower bound for the radius of the good
balls.

LEMMA 2.4. — If my is small enough, depending only on n, not on X,
then if a is a vertex of K in the description near (2.8), KNB(a,n; dist(a, L))
is the union of three geodesics that leave from a with equal angles of 2%

Proof. — We shall prove this with a contradiction and compactness ar-
gument. Suppose that the lemma fails, and let Xy, Lg, K = X5 NS, and
ar € Ky, \ Ly, provide a counterexample, with n;(k) = 27*. By rotation in-
variance, we may assume that Ly = L stays the same. By (2.8), there is a
neighborhood of a; where K}, is composed of three arcs of geodesic. That is,
for each k we can find r» > 0 such that

KN B(ag,r) = (711 Uy U~vs) N B(ag, ) (2.20)

for some choice of three geodesics v;, 1 < j < 3, that leave from ay, make %’r
angles at ag, and go at least to dB(ag,r). Let ri denotes the largest r > 0
such that the representation (2.20) holds. Since the description of the lemma
fails for r = 27" dist(ay, L), we see that r, < 27 % dist(az, L) < 27F.

Consider Yy = r,;l(Xk — ay) as above, and replace our sequence with
a subsequence for which Y}, tends to a limit Y. Since r; ' dist(ag, L) > 2F
tends to +oo, we see that Y is a plane or a set of type Y, as in (2.18).

Since by definition of 7 (2.20) holds for r = r/2, we see that X has
a beautiful description as a set of type Y in B(ag,r;/3), Yi has a similar
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description in B(0,1/3), and when we take a limit Y we get a cone of type
Y (this time centered at 0).

Return to Y3 and Xj. Since Yj tends to Y, we get that do10(Y%,Y)
tends to 0, or equivalently do 10r, (Xk,ar +Y) = do,10(Ys,Y) tends to 0
(see the definition (1.14)). Let us again be slightly brutal and apply the
regularity theorem from [10]; for k large enough, we get that in B(ay, 3rk),
X, is a smooth version of ay + Y, with small C' constants, to the point that
K N B(ag, 2rg) is, by the implicit function theorem, composed of exactly 3
smooth curves that meet at ax. These smooth curves are arcs of geodesics
(by (2.8)) and this contradicts the definition of 7. Lemma 2.4 follows. O

With almost the same proof, we can also get a uniform control of X near
e LNS, provided that ¢ ¢ K.

LEMMA 2.5. — If 1 is small enough, depending only on n but not on

X, and if ¢ € LNS\ K, then for each a € KN B(¢,1071) which is a vertex of
K, KN B(a,mn) is the union of three geodesics that leave from a with equal
%’“ angles.
Proof. — The difference is that the size of the ball no longer depends
on dist(a, L). We start the proof the same way. By rotation invariance, it
is enough to prove this for a fixed L and ¢. Then we proceed by contradic-
tion and suppose that for £k > 1, X and a; define a counterexample with
N1 = 27%. We define Y}, as before, i.e., let r; be the smallest radius r such
that (2.20) fails, and set Yj, = r, ' (Xx — ax). Notice that rj, < 2% because
X} is a counterexample.

Switching to a subsequence if needed, we can assume that Y}, converges
to a limit Y. Now we claim that Y is a minimal set in R", with no sliding
boundary condition, but for a different reason as before.

For our proof of (2.18), we used the fact that L was too far. Here X}, is
sliding minimal in B(ag,1/2), with a sliding boundary L that could be very
close to ai. But X} does not meet L in that ball (because we assumed that
K}, does not contain £), so we easily deduce from the definitions that X is
a (plain) minimal set in B(ay,1/2). This is because (1.4) is void here. Then
Y is a plain minimal set in B(0,7; '/2), and by Theorem 4.1 in [7], Y is a
minimal set in R™. Again we have (2.18), i.e., Y is a plane or a set of type Y.

The rest of the proof is as above: Y is actually a set of type Y with a spine
that contains a, then for k large X}, is so close to rY + aj, in B(ag, 10ry)
that it coincides with a C'! version of that set in B(ag,2rk). By (2.8), K is
composed of three geodesics inside B(ay, 2r), this contradicts the definition
of r, and Lemma 2.5 follows. |
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LEMMA 2.6. — There is a small no > 0, depending on n but not on
X, such that if K contains the point £ € LNS, a € K\ L is one of the
vertices of K \ L, and |a — | < na, then there is no other vertex of K in
B(¢,10la — £]) \ B(£,107|a — ¢]).

Proof. — Once more we prove this by contradiction and compactness.
Suppose the lemma fails, and let Xy, K, £ € LN K, and a;, € K}, provide
a counterexample with 7y = 2%, By rotation invariance we may assume that
Ly = L and ¢, = { are always the same. Set 1}, = |ay—¢| < 27%; thus r}, tends
to 0 and 7}, " dist(ax, L) tends to 1 (because aj tends to £). We are in the
situation of (2.19), where modulo a sequence extraction Yy = 7}, ' (X), — ay)
tends to a sliding minimal set Y, which is a plane, a set of type Y, a cone of
type V, a half plane, or a truncated Y-set, each time bounded by a half line
L, parallel to L.

Recall that ay is a vertex of Kj \ L; Lemma 2.4 says that in B(ag, n17%),
K} is composed of three geodesics g1, g2, g3 that meet at ap with 120°
angles. In the same ball, X} coincides with the cone Hy, over g; U g2 U gs.
Or equivalently, Y, coincides with r; ' (Hj — ay) in B(0,71). Thus Y has a
singularity of type Y at the origin, and is a Y-set, possibly truncated, with
a spine parallel to L (because it is invariant by translations in the direction
of ¢ = limk—>+oo ak).

But the contradiction assumption says that K has another vertex by €
B(£,10r;) \ B(£,10~'r), and Lemma 2.4 says that in B(by,n17%/10), Ky is
composed of three geodesics that meet at bg. In particular, ax lies outside
of this ball, hence |by, — ax| = m7/10. We may extract a new subsequence
so that gk = r,;l(bk — ay,) converges to a limit g, and the same argument as

above says that b also lies on the spine (the singular set) of Y, just like 0. But
b lies on Lt (the hyperplane orthogonal to L), because both a; and by, lie in
S and tend to ¢, and in addition [b—a| > 1, /10 (because |br. —ak| = mri/10).
This is impossible; Lemma 2.6 follows. |

The same argument says a little more. Let X, K, and a be as in Lem-
ma 2.6. We claim that not only K N B(a, 9";84') is composed of three
geodesics (with no other vertex of K), but also that (again if 7, is small
enough), one of these geodesics makes an angle less than 7/100 with the

geodesic p(a, ?) from a to £.

Indeed, otherwise we proceed as in the proof of Lemma 2.6, with a se-
quence {Xy} for which the three geodesics that compose Ky N B(ag, n17%)
make angles at least /100 with p(ag,?). As before, we can extract a sub-
sequence for which Y, = r,;l(Xk — ay) tends to a sliding minimal set Y,
which is either a Y-cone with a spine parallel to L, or such a Y-cone,
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truncated by a line L., parallel to L. Either way, { € Xj; by assump-
tion, so zx = 7’,;1(6 —ay) € Yy, and we can extract a subsequence so that
z = limg_ 400 21 € Y. Notice that |z| = 1 because |z| = 1 since 1, = |ax —£|.

It is easy to see that the direction of p(ay,f) at ay tends to z. But on
the other hand the directions at ap of the three geodesics that compose

K N B(a, 9|a1;€0—£| ), or equivalently the directions at 0 of the three geodesics

that compose Kj N B(0, %), with K = r];l(K;C — ay), tend to the unit
directions of the faces of Y (intersected by the orthogonal of L). Thus one
of these directions tends to z (because z € Y), a contradiction with our
assumption that they all make large angles with the direction of p(ag,¥)

(that also tends to z). This proves our claim.

Let us continue with our assumption that K N L contains a point £. We
now claim that

KN B(¢,n2/10) \ L contains at most one vertex. (2.21)

Indeed, suppose that K N B(¢,72/10) \ L has two vertices a and b. We may
assume that |b — €| < |a — £]. Notice that Lemma 2.6 says that the values of
|z —¢|, where x € KN B({,n2) \ L is a vertex of K, are lacunary, so we may
assume that b was chosen so that |b — ¢| is maximal once a is chosen. Also,
|b—¢| <107 a — ¢| by Lemma 2.6.

Set r = |a—¥|, B= B({2r), and A= B\ B({,|b— {|); we now give a
description of K N A. First we have two geodesics g; and g2 that leave from
b, making 120° angles with each other and also roughly with p(b, £). Because
of this, they go away from B(¢, |b—{|), i.e., they start in A. They stay in K
as long as they stay in B and they don’t meet a vertex of K; since there is
only one vertex in A (namely, a), we only have two options (see Figure 2.1).
Either g; and g2 both miss a, and then K contains AN (g; Ugs). Or else one
of them, say gs, contains a, and then we only know that K contains A N gy
and p(b, a).

We also know that B\ %B contains three arcs of geodesics ~;, that leave
from a with 120° angles and go all the way to the boundary of B\ %B
(because they don’t meet a vertex).

Altogether, we found a collection of reasonably long geodesics that are
contained in K N B, either 4 of them (three that make a Y centered at a,
plus one leg that leaves from b with a 120° angle), or 5 (three that make a Y’
centered at a, and two other ones that make a disjoint V). It is important for
the present argument that long means, of diameter at least |[{—al/10, say. We
claim that this is impossible. We proceed by contradiction and compactness
as in the previous lemma, and get a description of the limit Y of a convergent
subsequence of normalizations Y of counterexamples X;. As above, Y is a
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possibly truncated cone of type Y that is centered at 0 (a normalized limit
of the a) and contains a line L., parallel to L. But then X} looks a lot in
B like the image of Y by a translation and a dilation, and this does not fit
the fact that K = X, NS contains the four or five long geodesics above.
This proves (2.21).

Figure 2.1. These arcs of geodesics are contained in K (two cases).
On the left, v3 does not need to cross go because n > 4 is allowed

Let us now check that
la —b] > % when a, b are different vertices of K \ L. (2.22)
Indeed if dist(a, L) > 12/20, Lemma 2.4 says that |b — a| > ny dist(a, L) >
mn2/20. If ja—£] < n2/15 for some £ € KNL, (2.21) says that [b—¢| > 72/10
and hence |a — b| > 12/60. Finally if |a — ¢| < 12/15 for some £ € LNS\ K,
Lemma 2.5 says that [b —a| > ;.

Because of this, K has a finite number of vertices, hence it is composed
of a finite number of geodesic arcs, plus some full great circles. Recall that
when an arc € meets L, we consider the points of K N € as vertices, i.e., we
cut € at these points. This gives our decomposition of K into the €;, j € J.

Before we start the verification of the various properties stated in Propo-
sition 2.1, let us say two last words about the minimizing properties of K
itself. It will be good to know that

K is a weak almost minimal set in S, with sliding boundary KNL, (2.23)

even though we shall also try to provide proofs that do not use this fact. Let
us first say what (2.23) means. The vocabulary comes from Definition 9.1
of [9], where a similar notion (without sliding boundary) was used to record
some easy properties of K = X NS when X is a minimal cone, in order to
get the description in terms of geodesics that we used for (2.8). By (2.23)
we mean that if f: S — S is an M-Lipschitz mapping and B(x,r) is a ball
centered on S such that

fly)=y forye S\ B(z,r) and f(SNB(z,r)) CSNB(z,r), (2.24)
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and also f(£) = £ for every £ € K N L, then
HYK N B(z,r)) <HY(f(K)NB(x,r)) + C(1+ M)r?. (2.25)

The present definition is a little less demanding than Definition 9.1 of [9],
where we also required (2.25) when f is piecewise M-Lipschitz, but this will
be enough for our purposes. We also use a specific gauge function (namely,
Cr, with a C' that depends only on the dimension n) in (2.25), again be-
cause this is what we get from the proof. On the other hand, we added the
requirement that f(£) = £ for £ € KN L, to account for the sliding condition
for X.

Now the proof of Proposition 9.4 in [9] applies to the present situation
and shows that (2.23) holds for every sliding minimal cone X of dimension 2,
with boundary L. Our extra condition is of course used to ensure that the
competitors build in [9] come from one-parameter families {(;} such that
©0:(y) € L when y € X N L. The details of Proposition 9.4 in [9] are easy; we
just use any map f as above to construct a competitor for X; however we
find it easier to refer to [9] rather than doing the verification here. Of course
we'll use (2.23) a few times to derive a contradiction when needed.

Return to the properties of Proposition 2.1, and let us first check what
happens at the vertices. The fact (2.6) that near each vertex a € K \ L,
K consists of three geodesics that leave from a with 120° angles comes
from (2.8), and was already used many times. Similarly, let us check (2.7),
which says that when ¢ € KN L, there is a small neighborhood of ¢ where K
is composed of one, two, or three geodesic arcs that leave from ¢ and make
angles of at least 120°.

First, we may restrict to the geodesics that contain £, because there is a
finite number of geodesics, and the ones that don’t contain £ don’t meet some
small ball centered at £. The remaining geodesics all start from ¢ (because for
the other ones we added £ as a vertex), and is easy to check that they make
angles of at least 120° at ¢, because otherwise we may pinch two of them in
a small ball B(¢,r), make K sorter by at least r/C, and contradict (2.23).
Alternatively (if you don’t like weak almost minimality), we could say that
a blow-up limit of X at £ is composed of as many half planes bounded by L
as there are geodesics in K near ¢, and that make the same angles along L
as the geodesics at ¢; then Lemma 2.3 gives the desired result.

Next we show that each full great circle in the list of €; is far from the
rest of K, i.e., that there is n3 > 0, that depends only on n, such that

dist(€;, K \ €;) > n3 when €; is a full great circle of K. (2.26)

Of course (2.3) will follow from this (we’ll take 1 very small at the end).
As usual, we proceed by contradiction and compactness. So suppose that for
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each k > 0, (2.26) fails for n3 = 2%, and let K} provide a counterexample.
By rotation invariance, we may assume that L is the same for each K, and
our assumption is that we can find a great circle €; and a point ay € K\ €
such that dist(ag, ;) < 27F.

First observe that Ky \ € is closed. Indeed, otherwise we can find some
¢ € € which is the limit of a sequence in Ky \ €. Then £ € L (because
otherwise this contradicts (2.6)); even that way the two arcs of € near £
make a 180° angle at &, which by (2.7) excludes the possibility that other
geodesics of K end at £. Recall also that K has a finite number of vertices,
a contradiction that shows that Ky \ € is closed.

By compactness of K\, we may assume that aj; minimizes the distance
to € (in K\ €;). Set rj, = dist(ay, €x); thus 0 < rp, < 275,

We start with the more interesting case when {r; 'dist(ax, L)} is a
bounded sequence. We may assume that (out of the two possibilities) there
is a fixed £ € L such that 7}, ' dist(ax,¢) < C. Set Yy, = r, ' (Xi — ax) as
usual, take a converging subsequence, denote by Y the limit, and notice that
Y satisfies (2.19). But X}, contains the plane Py, that contains €, and which
lies at distance a little smaller than ry from ay (a little smaller because the
closest point of Py lies a little inside of S); This means that Yj contains
B, = rgl(Pk — ay), which almost lies at distance 1 from 0; at the limit, ¥
contains a plane P at distance 1 from the origin. By (2.19), Y = P; this is
impossible because aj € Kj and hence 0 € Y.

We are left with the case when, modulo a sequence extraction,
r;l dist(ag, L) tends to +oo. This time, modulo extraction, Y, =
r,zl(Xk — ag), and tends to a set Y which is a plane or set of type Y,
as in (2.18). As before, dist(P,0) = 1, which contradicts the fact that 0 € Y
because aj € Y. This last contradiction completes our proof of (2.26), and
again, (2.3) follows.

Next we want to check (2.4). The following will be useful.

LEMMA 2.7. — Ifny is chosen small enough, the following happens. Sup-
pose that £ € KN L and a € K\ L are such that |a — €| < ny. Then the
geodesic p(¢, a) is contained in K, there is at most one other arc vy of K that
leaves from £, and (if v ewists) H'(y) = n2/10 and v makes an angle at least

5 with p(¢,a) at L.

Proof. — Let £ € KN L and a € K\ L be as in the statement. We know
from (2.21) that there is no other vertex of K in B(¢,12/10), so, except
perhaps for the geodesic p(¢,a) if it lies in K, all the arcs of K that leave
from a or ¢ are at least 75/20 long.
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Let us first assume that K does not contain p(¢,a). Then K contains
three arcs v; = p(a, b;), 1 < i < 3, of length at least 75/20, that leave from
a with 120° angles, and also an arc v = p(¢,b), of length least 12/20 too,
and that leaves from ¢. All these arcs are disjoint, except perhaps for their
endpoints, by (2.8) and the definition of our decomposition of K.

Notice that |a — ¢| < 14, so for n4 small enough, it is not hard to imagine
that we could construct a competitor for K that contradicts the weak almost
minimality property (2.23). See Figure 2.2 for a hint, but don’t forget that
even though 7 does not meet the <y;, the point £ could be more or less
anywhere on the sphere S(a, |¢ — a|) (and not just in a triangular sector as
the picture suggests) because we allow subsets of R, n > 3. Also, we do
not exclude the case when other pieces of K pass by, but this is not a real
problem because they stay at positive distance from the rest of the picture,
so our Lipschitz deformation f can be chosen so that f(x) = z on them, and
as alluded to above, (2.23) is also valid for piecewise M-Lipschitz functions f.

Y ¢ vb

Figure 2.2. A replacement fro «y;. Scales are not respected

But we shall avoid using (2.23), and instead we will use compactness
again. So suppose that for £ > 0, we can find an example Xy, with ¢ €
KpyNL=X,NSNL, avertex ay of K, such that dj, = dist(¢,a;) < 2 %,
three geodesics arcs 7; x C K of length 15/20 that leave from ay, and a
fourth one, v, C Ky, of length 75 /20 too, that leaves from ¢ and is disjoint
from the others.

Consider Y, = d;,'(Xy — £), which contains the origin, and as usual
take a subsequence for which Y; converges to a limit Y. Then, by the proof
of (2.19), Y is a sliding minimal cone with boundary L, which is invariant
by translations in the direction of L, so it is a plane or a Y set (through the
origin, since £ € K}), or else a half plane, a V set, or a Y-set truncated by L.

The geodesics i x = d;. ' (i, — £) and Jx, = d;, ' (v — ¢) (in the spheres
d;'(S — ¢)) tend to four half lines (maybe at the price of extracting a new

subsequence, if you prefer), and these half lines are contained in Y N L*.
Because of this, there is only one possibility: Y is a Y-set, that contains L
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but is centered at the limit @ of the @, = d '(ax — £); @ lies at distance 1
from L, and the limit 7 of the 7j = d; (7 — £) is contained in the branch
of Y N Lt that contains 0.

Select z € 74, at distance 1 from 0 (and hence z = —a). Then set B =
B(z,1071), and notice that Y} converges to Y (or equivalently the plane P
that contains the face of Y that contains z) in 9B. Then for k large enough,
we may apply the standard regularity theorem to Xj in 8 B, and find that in
2B, X, is a C! surface, and at the same time a small Lipschitz graph over
P. Set S(k) = d;; ' (S—¢); this is a very large sphere, with tangent directions
that tend to L*; by the implicit function theorem, X; N S(k) = di ' (K} — £)
is a C! curve in 2B, and also a small Lipschitz graph over the line that
contains 7.

But at the same time d; '(K}, — ¢) contains the two geodesics ), and
ik (for some @), which are disjoint and both converge to 74 in 2B. This is
impossible; we are left with the other case when K contains p(¢, a).

In this case, in addition to p(¢,a), K contains two geodesics p; and ps

that leave from a with %’“ angles, and maybe one or two geodesics ,0;- that

leave from 0 (again with angles at least %’r) All these geodesics have lengths
at least 12/20 (because there is no vertex of K nearby where they could
stop). A priori there may also be other pieces of K that pass near ¢, but all
we have to do now is prove that there is at most one p;, and that it goes in
a direction almost opposite to p(¢,a) at £.

Again it is simpler to prove this by compactness. Suppose not, let Xj
provide an example, with dp = dist(¢,a;) < 27%n,. This means that in
addition to p(¢,ax) and the two geodesics ~; ; that leave from aj; with 2%
angles and are at least 72 /20-long, we have at least one more geodesic pp, C K
that leaves from 0, is at least 72/20-long, and makes an angle smaller than
9% with the direction of p(¢,ay) at £. Indeed, if we have two, they make 2%

angles with the direction of p(¢, aj), which is even worse.

As usual, set Yy = d,;l(Xk — /), and extract a subsequence for which
Y converges to a limit Y. The same argument as above shows that Y is
a sliding minimal set which is invariant by translations in the direction of
L, then is one of the examples allowed by (2.19), and because of p(¢, ax),
the v; 1, and <, is a set of type Y that contains L and is centered at a,
which lies at distance 1 from L. But the geodesics 7y, = d;, ' (% — £) converge
(modulo extraction if the reader wishes) to a half line that makes an angle

at most %r with the direction of the half line [0, @), and is contained in Y;
this contradiction completes the proof of Lemma 2.7. O
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It looks like we forgot some additional information that we could prove,
the fact that in the situation of Lemma 2.7, there in no other piece of K in
B(¢,12/40), but we shall return to this soon.

We easily deduce (2.4) from the lemma. Let €; be one of the arcs that

compose K, and suppose that #!(€;) < 212, By (2.22), at least one of its

endpoints lies in K N L (call it £), and by (2.21) the other one (call it a) is
the only point of K N B(¢,79/10)\ L. In addition, if H'(€;) < ny, Lemma 2.7

says that there is at most one other arc that leaves from ¢, and that it makes
an angle at least 9% with p(¢,a) at ¢. This proves (2.4) and the description

of the exceptions, and for this we can choose any constant 79 < 7y.

Let us now prove (2.5), first modulo its exception. Suppose that for some
no < na/4, we can find two arcs €; and €;, that do not share an endpoint
and furthermore are not connected by one of the exceptions of (2.4), but for
which

diSt((’:Z‘, Q:j) < No- (227)

We want to derive a contradiction. Let z; € €; and z; € €; be such that
|z; — x;] < no. First assume that we can find endpoints a; of ¢; and a; of
¢; such that |a; — z;| < ma/4 and |a; — ;| < na/4. Then |a; — a;| < 614/4,
(2.22) says that one of them (say, a; for definiteness) lies in L. By (2.21),
a; is the only point of K N B(a;,n2/10) \ L. By Lemma 2.7, p(a;,a;) C K.
This contradicts our assumption that €; and €; were not connected by one
of the exceptional arcs of length < ny.

So z;, for instance, lies at distance at least n4/4 from both endpoints
of Q:z

We are now going to follow the proof of (2.26), and in particular proceed
by contradiction. Suppose that, for all £k > 0, we can find a minimal cone X,
arcs €;  and €, 5, for which (2.27) holds with 1y = 27%, and also points z; ; €
¢ r and y;k € €, such that |z;, — y; x| = dist(&;, €;), and yet z; i lies at
distance at least 74/4 from both endpoints of €;. By rotation invariance, we
can work with a fixed L. Set 7, = |2; 5 — 21| = dist(€; 1, € 1) < 2-k,

We first assume that 7, ' dist(z;x, L) < C, and that there is a fixed
¢ € SN L such that |z;, — £ < 2Cry. Set Yy, = r;l(Xk —{), and extract a
subsequence for which Yj tends to some Y. Then as usual Y is a minimal
set with sliding boundary L, Y is invariant by translations parallel to L, and
Lemma 2.3 gives a description of Y.

Notice that K} contains an arc of geodesic py of length 74/2 centered
at x; ;. Let Py denote the plane that contains p, and the origin, and let
Dy, = P, N B(zk,14/4). We know that Dy C X}, and hence Y}, contains
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D, = r,zl(Dk — {), which is a planar disk parallel to Py, but centered at
Ty = . (i — £), and with a large radius r 'n4/4.

Notice that |z} ;| = o @i — €] < 2C, hence we may assume that 5 ),
has a limit 2/, and that the direction of Pj, admits a limit too. Then D}, has a
limit, which is a whole plane P’ centered at o’ (because of the large radius),
and in addition P’ C Y because D), C Yj. By the description of Lemma 2.3,
Yy ="r.

Now consider the point z;, € Kj. By definitions, dist(z; 5, Cix) = 7,
and (since €; 1, is orthogonal to x; y—2; k at x; 1 and by elementary geometry)

diSt(:L'jyk, Dk) > Tk-/2. (228)
Set a ) = . (25 — €); then
dist (a5, Dy) = rj; " dist(;, D) > 1/2. (2.29)

As before |27, ;| = ri b2k — 4] < 2C + 1, so we may assume that ' , tends
to a limit b. Then b € Y because z’; ;, € Y}, for all k, and yet dist(b, P’) > 1/2
by (2.29). This contradicts the fact that Y = P’, and we are left with the
case where 7}, dist(z; x, L) is unbounded.

In this case, we set Y, = 7“,;1 (Xk — i 1), extract a subsequence for which
Y. converges to a limit Y, and notice that Y is minimal, without a sliding
boundary condition. We may also assume that z;; has a limit z, and then
Y is invariant by translations in the direction of x. Thus Y is a plane or a
Y-set.

We proceed as before, find disks Dy C X, then big disks D) C Y,
and obtain that Y contains a plane P’ (the limit of the Dj ). But at the
same time, x; ; is far from €; j, which leads to (2.28) and (2.29). Again this
is impossible, because Y contains a limit of the x; > Which is at positive
distance from P’.

This completes our proof of (2.5) with its exception: whenever (2.27)
fails, €; and €; are merely separated by a short arc € of K. So far we said
that H!(€x) < n4, but we also want to compute dist(¢;, €;). Near €, the
situation is the following. We have the short arc €, with endpoints ¢ € L
and a € K\ L; then €; and €; are two geodesic arcs of length at least 72/20,
one leaving from a with a 120° angle with €, and the other one leaving
from ¢ with an angle of at least a 120° with € (we just applied (2.7), but
we could even get more by applying Lemma 2.7).

The standard case is when €; and €; are not too long, and merely get
away from each other when they leave €; then dist(¢;, ;) = diam(Cy),
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and in particular €; was also an exception of (2.5), even with the smaller
constant 7.

The second case is when they get together again, near the antipode, so as
to get within 79 from each other. Then they are merely separated by another
(in fact the only other) exceptional arc @), and of course dist(¢;,¢;) =
min(diam(€), diam(€})).

This completes our discussion of (2.5) with its exceptional case, and we
are also finished with Proposition 2.1. a

We end this section with a short remark. Although we proved all our
estimates by compactness, this was mostly out of laziness. It is quite probable
that we could get an explicit bound for 79, but we shall not try to do this
here and doubt that it would be interestingly large.

3. The standard decomposition of K

In this section we define the standard decomposition of a minimal set
of dimension 2 in R"™, with sliding boundary L. This decomposition will be
used to construct our main competitors for the almost minimal set £ (in the
next sections). The full length property defined in the next section will use
this decomposition as well.

Let L C R™ be a line, and X be a sliding minimal cone with boundary
L. Recall that in Proposition 2.1 we defined a natural decomposition of
K = X NS, into a finite and almost disjoint collection of sets €;, j € J,
which are either arcs of geodesics, or full great circles, drawn on S.

We modify this decomposition slightly, to get what we’ll call a standard
decomposition of K. In fact, we just take some pieces €; and cut them into
2, 3, 4, or 5 pieces, so as to get arcs of geodesics of length at most 7/2. For
the full great circles €;, we just cut them in 4 equal parts, by adding four
vertices. If dist(€;, L) < 1/4, say, let us choose the two points of €; that lie
closest to L as (two of the) cutting points.

When €; is just an arc of geodesic and its length is more than 7/2, we
cut it into sub-arcs of length between 7/4 and 7/2. We may use the latitude
that we have to choose the additional vertices as close to the points £ € LN.S
as possible (when K does not already contain ¢), but the author does not
recall ever using this possibility after all. For the moment, we do not care
much if €; is not cut into equal pieces.

Once we cut all the long arcs as we just explained, we get a standard
decomposition of K. It is usually not unique, but this does not matter. It
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is again a decomposition of K into arcs of geodesics €;, i € Z, and we now
review some of its properties. First, each €; is an arc of geodesic,

K=Je, (3.1)
€T
and

the interiors of the &;, i € Z, are disjoint and do not meet L. (3.2)

Denote by a; and b; the endpoints of €;. We do not pay attention to which
is which, i.e., we may exchange the names at any time for the convenience
of notation, but anyway

¢ = p(a, bi), (3.3)

where p(a, b) systematically denotes the closed (shortest) geodesic from a to
bin S (when b # —a). We will never take antipodal points, hence p(a,b)
will be uniquely determined. As a general rule, p will denote a geodesic or a
union of geodesics.

Let us use this opportunity to introduce the geodesic distance in S defined
by:
dists(a,b) = H'(p(a,b)) € [0, 7; (3.4)
when a = —b we set distg(a,b) = 7.

We denote by V' the set of vertices of the standard decomposition, i.e.,
the collection of endpoints a; and b;. We write

V=VoUW UVs, (3.5)

where Vy = KN L, V; is the set of vertices of the natural decomposition that
do not lie in Vy, and V5 is the set of vertices that we added to cut some of
the initial arcs to make them shorter, and (for the case of full great circles)
that are not points of V. Thus the three V; are disjoint.

We said that the arcs &€;, i € Z, only meet at their endpoints, and there
are rules about how they can meet. For £ € V|, there can only be one, two,
or three €; that start from ¢, and always with angles > %’T This comes
from (2.7). For a € Vi, there are exactly three €; that start from a, and they
make angles of %’T at a (see (2.6)). Finally, at a € Va, there are exactly two
¢, that start from a, and they make angles of 7 at a (their tangent half lines

lie in opposite directions); this is clear, we just cut a geodesic at a.

We also control the length of the €;. The general rule is that

% <HY(E) < g when at least one of the endpoints of €; lies in V5; (3.6)
m < H(€) < 5 (3.7)
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when both endpoints of €; lies in Vi; and for ¢ € Vj, (3.7) holds for all the
¢; that end at ¢, except perhaps one. When this exception happens, there is
at most one other arc €; that leaves from ¢, and it makes an angle at least
9% with €; at (. See below (2.4).

We also have the following consequence of (2.5) and the discussion that
follows it. When ¢,j € Z, are such that ¢; and ¢; don’t have a common
endpoint, the general rule is that

diSt((’:Z‘, Q:j) > No, (38)

and this may only fail when there is an arc €, such that diam(€) < 79, with
one common endpoint with €; and one common endpoint with €;. Since €;
and €; are now short (as in (3.7)), the strange special case when €; and €;
are close at both ends does not happen any more, and we get the simpler
formula dist(€;, €;) = diam(€y). It will also good to know that for i € Z,

dist(z, K \ €;) > min(no, |z — a;|, |z — b;]) for z € &, (3.9)

where a; and b; still denote the endpoints of €;. Indeed the distance to
the direct neighbors of €; is controlled by our angle conditions, and the
distance to the other arcs €; is controlled by (3.8), except when €; and €;
are separated by a short arc €. But even in this case, (3.9) follows from the
fact that €; and €; leave from € in directions that make an angle larger
than 2 — . See below (2.5).

4. The full length condition

Now we define the full length condition, which will be our replacement for
the epiperimetric inequality of Reifenberg. This will be a relatively simple
condition on the position of the geodesics that compose K = X NS, which
will be sufficient for our proof to give good density decay, and then some
regularity, at points of an almost minimal set where X is a blow-up limit.
See Definition 4.1.

Let X be a minimal cone, and choose a standard decomposition of K =
X NS, as in the previous section. We first discuss how to construct pertur-
bations of X by moving the vertices x € V. We do not want to move them
too much, because we want to modify the structure of K as little as possible,
and in order to measure how far we will be allowed to go we set

nL(X) = eeIanlél\K dist(¢, K) > 0, (4.1)
nv(X) = ,in dist(¢, V1 U Va) > 0, (4.2)
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and

n(X) = 107" min(no, nr(X), nv (X)), (4.3)

where the absolute constant 79 comes from Proposition 2.1. Notice that
when ny (X) < no, it is the diameter of the smallest of the exceptional arcs
¢; for (3.7).

The basic tool to generate perturbations of X is the set ®x(n) of map-
pings ¢ : V' — S such that
lo(x) —z| <n forz eV, (4.4)

and in fact we will restrict to n < n(X). We want to use the mappings
» € x(n) to modify the geodesics €;, i € Z, and this will be easier when
both endpoints of &; lie in Vi U V5. Denote by a; and b; the endpoints of &;,
and set

7y = {i € T; a; and b; lie in V; U Va}. (4.5)
When ¢ € &x(n) and i € Z;, we simply set

P«(€i) = plp(ai), v (bi))- (4.6)

Things are a little more complicated when i € Zo = Z\ Z;. When ¢ € Zy, we
use the convention that b; € Vj, and a; ¢ V. We want to leave more options,
so we will need to append to ¢ some additional information.

Let £ € V, be given, denote by Z(¢) C Iy the set of indices ¢ € Z such
that ¢ is an endpoint of €;. Also call m(¢) € {1, 2,3} the number of elements
of Z(¢). If m(¢) = 1, we don’t need more information, and in fact we can
even forget about ¢(¢), because we set

0« (€;) = p(p(a;),£) whenie Z(¢), m(£)=1, and €; = p(a;,¥). (4.7)
When m(¢) = 2, we add to ¢ a component ¢, € {—1,1}, and we set
P (&) = p(p(ai), p(0))
when i € Z(¢), m(£) =2, oo = =1, and €; = p(a;,£) (4.8)
(the free option), and
0« (&) = plp(as), p(0)) U p(e(£), €)
when ¢ € Z(¢), m(¢) =2, oo =1, and €; = p(a;, ) (4.9)

(the attached option). In this case, we added the same connecting arc
p(p(£),€) to the two ¢.(€;), i € Z(£), but this is just to avoid more compli-
cated notation, and we will never count this arc with multiplicity.
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When m(¢) = 3, we add a component ¢, € {—1} UZ(¢) (i.e., choose the
free option or the attached option, and in this last case choose one of the
three €; that end at ¢, and set

e+ (i) = ple(ai), (1))
when i € Z(¢), m(£) = 3, ¢y = —1, and €; = p(a;,¢) (4.10)

(as before, the free option where we just move the center and let the €;
follow). In the last case when m(f) = 3, and ¢y, = j € Z(¢), we set

@ (&) = ple(as),0) ifi=j (4.11)
and, for the two other indices ¢ € Z(¢) \ {j}
¢4 (&) = ple(ai), o(0)) U p(e(L), ). (4.12)

Again we put the same arc p(¢(f),£) twice when once would have been
enough, and this time we transformed the union of the three arcs €; that
looks like a Y into a truncated Y plus an arc, both leaving from ¢. Notice
that when ¢(¢) = ¢, some of the pictures above get simpler, and we don’t
even need the free option.

Since we may have added coordinates to ¢, let us denote by @}(n) the
set of enlarged mappings ¢. We do not give a different name to ¢ and its
extension, so as not to exaggerate with notation; when we really want to
know which one we consider, we will say that ¢ € ®x(n) or p € &% (), but
the truth is that we shall work with ®% ().

For p € ®% (1), we define a perturbation of K by

e (K) = | Jpa(e) C5, (4.13)
i€l
and then a modified cone

(X)) ={ta; v € p.(K) and t € [0, +00)}. (4.14)

With the present definition, it may happen that even after we remove
the arcs p(¢, p(£)) that we counted twice, some of our arcs ¢, (€;) still cross
(i.e., meet somewhere else than their common endpoints). Since we took
n < n(X), the arcs of (4.7) don’t do that, so all the crossing happens near
the points of V.

Let us decide to forbid this, and restrict to the subset ®%*(n) € ®% (1)
of mappings ¢ for which this does not happen, i.e., for which the arcs . (¢;)
are disjoint, except for common endpoints and for the double occurrence of
some p(£,p(£)). We will call the mappings ¢ € ®3"(n) injective.

The main reason for restricting to injective mappings ¢ is that later in the
proof, the only cones ¢, (X) for which we need to use the full length condition
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below are injective anyway, so we save ourselves a little bit of unpleasant
verification for the full length condition, at essentially no expense.

We are finally ready to say what we mean by full length.

DEFINITION 4.1. — We say that the minimal cone X (with sliding bound-
ary L) satisfies the full length condition when there is a standard decompo-
sition of K = X NS and small numbers n € (0,n(X)) and ¢ > 0 such that
for all injective mappings p € @}’i(n) such that

Alp) = H'(pu(K)) — H'(K) > 0, (4.15)

there is a sliding competitor X for . (X) in B(0,1) (see Definition 1.1) such
that

H2(X N B(0,1)) < H2 (0. (X) N B(0,1)) — cA(yp). (4.16)

This looks complicated (just as the initial definition of full length for plain
minimal cones, see [10]), and the only justification for it is that it makes the
machine work. At least we shall be able to check the full length condition
on the simple examples that we mostly care about, and we can always think
that the definition is simpler than some notions of epiperimetric inequalities.

One paradox that may be worth mentioning is that the full length condi-
tion only makes sense once we know that X is minimal. Otherwise, finding
X so that (4.16) is just too easy: use a better competitor of X and deform
it a little to fit w.(X).

Probably choosing a standard decomposition by force, instead of allowing
some flexibility as we did, would not change the notion of full length. But
having the choice will allow us to simplify some computations when we check
the full length.

When we choose the free option in the description of ¢, (K) near a point
¢ € K, we seem to save some area when we omit to add p(¢,p(£)), but
at the same time we allow more competitors for (4.16), because we don’t
necessarily need to check (1.4) near ¢ any more. Requiring the condition of
Definition 4.1 also for the deformations with the free option seems to be
more stable. Think about the case when X is a plane, which may contain L
or just pass very close to L.

We will have to return to the notion of full length later, and play a little
more with the definitions. First, there may be circumstances where we will
need to check the existence of X only for perturbation that are free (we
will also say detached) at one or two of the points ¢ € Vj, typically because
anyway the set E that we study is detached from L.
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Also, we will need a similar notion of full length when we prove decay
estimates, in some cases, for the functional F of (1.27) adapted to balls that
are not centered exactly on L. This will happen at the end of Section 26,
with proofs in Sections 27 and 28.

Finally, instead of requiring the existence of a sliding competitor X such
that (4.16) holds, we will some times be able to manage with a simpler
version of this. See the end of Section 26, and in particular Lemma 26.1.

The cones of type P, Y, T, H, and V, all satisfy the full length property;
a good part of this will be checked in Sections 27 and 28, when we need full
length estimates related to F' in the more general case of balls that are not
necessarily centered on L, and the remaining verifications will be done in
Section 37. See Theorem 37.1.
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Part II. Density decay for balls centered on L

5. The initial setup and two words about the constants

A very large portion of this paper consists in the construction of some
competitors for an almost minimal set E. In this section we give some nota-
tion and our basic assumptions for the sections that follow.

We work in R™, and with a reduced (or coral) sliding almost minimal set E
of dimension 2, in an open set U that contains B(0, 2r), and with a sliding
condition coming from the line L through the origin. See Definitions 1.2
and 1.3. We shall assume that the gauge function h is small enough, and
more precisely that

h(s) < Cps” for 0 < s < 2r, (5.1)
where 8 > 0 and C} > 0 are constants such that
Cnr? <, (5.2)

where € > 0 is a very small constant that will be chosen much later, to
make the argument work. This is a little more restrictive than what we
actually need. For instance taking h(s) = (In(2r/s)) ~ for some sufficiently
large b that depends on n would be enough, by looking at similar statements
in [10] and checking that they adapt. In what follows, we could decouple (5.1)
from (5.2); in effect, we shall use (5.1) because it implies some nice general
properties for E, like the fact that it has a C! description far from L, or
the existence of the density 6(z) of (1.19). Then the estimates of the next
sections will use (these general properties, plus) the size of h(2r).

We also assume that
dO’QT(E,X) < g, (53)
where dy o, is the local Hausdorff distance of (1.14) and X is a sliding min-
imal cone (centered at 0), also with a sliding boundary condition coming
from L.

Our main task will be to construct, under various assumptions on £ and
r, some good competitors for E in the closure of B = B(0,); then we will
use this to get differential inequalities on a density excess function f(r),
in principle associated to the standard monotonicity formula from [14], al-
though later on we also want to use a slightly different monotonicity formula
from [13], with balls that are not centered on L.

We assume some additional properties of E, which will be used in the
proof. First assume that

HY(ENOB) < +oo. (5.4)
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This is true for almost every r > 0 such that B(0,r) C U (for instance by
the co-area formula), so it costs virtually nothing, and will be useful in some
proofs. Next we require some maximal function to be small at r. Define a
measure g, on [0,2r) by

px(4) = HUE N7~ (A)) (5.5)
for Borel sets A C [0,2r), and where 7 is the radial projection defined by
m(z) = |z| for z € R™. (5.6)

We require that there is a number C' > 0, that may depend wildly on 7, such
that

HA(ENAg) <CE for0< €<,
where we set A¢ = B(0,7) \ B(0,r —§). (5.7)

That is, we just require the one-sided variant of the Hardy—Littlewood maxi-
mal function of i, to be finite at the point r. This is like (4.5) in [10], and we
shall see in the proof of Proposition 17.2 that (5.7) holds for almost every r.

We also require that for every continuous nonnegative function f on R",

lim ,0_1/ / f(z)cml(z)dt:/ f(z)dH (). (5.8)
p—0 te(r—p,r) J ENOB(0,t) EN8B(0,r)

This is the same thing as (4.3) in [10], and it turns out that this is also
satisfied for almost every r > 0. The proof is given in Lemma 4.12 of [10],
and works here as well. So assuming (5.8) for our standard r costs us nothing,.

Starting with the next section, we shall fix E, X, and r as above, and
even assume that » = 1 to simplify the notation. Our general goal is to
modify the set F inside of B = B(0, 1) to get a better competitor if we can.

The construction of the good competitor will keep us busy for Sections 6—
16. It will use a few different constants, and maybe it is the right time to
announce in which order they will be chosen.

We already have a constant (X ), which may be very small (depending
on X, and in particular on the distance between L and some faces or edges
of X), but we see it as a geometric constant.

In Section 6, we introduce a small constant 7, which gives the size of the
disks D near the points of S N L where most of the action will take place.

Then there is a small Lipschitz constant A, which we use to construct
Lipschitz graphs in Section 8. We will need A to be small enough (we often
use it as a small parameter to control some angles), and in particular so that
the estimates of Section 9 apply.
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For a long time, the only constraint on 7 will be to be small enough, in
particular compared to n(X) (see (6.3)), but for the estimates in Section 14
to give small enough errors compared to what we win with the construction
of Section 14, we will need 7 to be small enough, depending on A.

There will be a short occasion or two, in Section 11, where we briefly use
a smaller value of 7, but this will be explained then. See Lemma 11.1. At
the same time, we will use a small o > 0, which will be chosen in Section 11
and will depend on A and 7.

There is a small constant 7; in (8.3), which we may as well take very
small, compared to both A and 7. But it is not exactly of the same nature
as 7.

Our last real constant is ¢ in (5.3), which will be chosen at the end,
extremely small, and depending on all the constants above.

We mention 73 (in Proposition 13.1) and 74 (in Lemma 14.1) for com-
pleteness, but they are extremely small numbers, not constants, as they may
depend on the radius r above.

6. A local description of ENS far from L

From now on we fix the line L, the minimal cone X, the reduced almost
minimal set F, and the radius » = 1, as in Section 5.

In this section we first record simple properties of the €; concerning their
distances (see Lemma 6.1), and then use known local regularity results for
plain almost minimal sets (i.e., with no sliding boundary condition) to give,
at least far from L, a local description of ENS as a finite union of C'* curves
L; that follow the curves €; of the standard description of K. The reader
may want to check Proposition 6.5 below to convince herself that no real
surprise will come out of this section.

The description of ENS that we’ll give in this section relies on regularity
results for (plain) almost minimal sets. We shall quote [9] and [10] for con-
venience, but when n = 3 we could as well use [47]. Also, we proceed this
way because we prefer to insist right away on the places where new difficul-
ties appear (i.e., close to L); with a more complicated version of the present
paper, we would quite probably be able to prove the local regularity of E
far from L at the same time. But this would not really make things simpler:
the proof of the present paper essentially contains the proof in [10] anyway.

We start with more notation. Recall from Section 3 that the standard
decomposition of K is composed of arcs €;, i € Z, of geodesics, and that a;,
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b; denote the endpoints of €;, so that €; = p(a;,b;). Set
To={i€Z;¢ meets L} ={i€Z; a;€ Lorb; €L} (6.1)
Also denote by Z; = Z \ Zy the set of ¢ € Z such that a;,b; € V7 U Va.
In this section will stay at some distance from L. More precisely, denote
by ¢4 and ¢_ the two points of L N'S. Then set
Di(r)=SNB({y,7) and 9D4(r) =SNIB{+,T) (6.2)
for 7 < p(X). We will use various small numbers 7 > 0, to be chosen later,

but always such that
< 1073 (X). (6.3)

6.1. More about distances between vertices and curves ¢;

Before we come to ENS\ (D4+(7) U D_(7)), we need some additional
information on V and the &;.

LEMMA 6.1. — Let n(X) be as in (4.3). Then
HY(€;) = 10n(X) fori € T, (6.4)
dist(€;,€;) > In(X) fori,j €T such that & NE; =0, (6.5)
and

dist(x, €;) = 9n(X) when x € V and the arc €; does not contain z. (6.6)

Proof. — We start with a proof of (6.4). When both endpoints of €; lie
on V4 UVa, this follows from (3.7) and (4.3). Otherwise, diam(&;) > ny (X) >
10n(X) by (4.2) and (4.3); (6.4) follows.

Next we check (6.5). Suppose that €; N €; = (. In general, (6.5) follows
from (3.8) and (4.3), and the only exception, as explained below (3.8), is
when €; and €; are only separated by a short arc €. Even so, we said
below (3.8) that dist(¢;,¢;) = diam(€;). But (6.4) says that H!'(€;) >
107(X), and since we may safely assume that n(X) < 7o is very small, we
get that diam(€) > 9In(X), as needed.

Finally let x € V and €; be as in (6.6). First assume that there is an
arc v of K that goes from z to €;; then H!(y) > 10n(X) by (6.4), hence
diam(y) > 9n(X). In this case dist(z,€;) > diam(y) > 9n(X), because v
and €; make an angle of at least 120° at their common endpoint.

Assume now that x is not directly connected to ¢;, and let €; be any arc
that contains z; then €; N ¢; = 0, and dist(z, €;) > dist(&;,€;) > In(X)
by (6.5); (6.6) and Lemma 6.1 follow. O
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6.2. A description of F NS near a vertex x €

We start our description of £ NS with what happens near the vertices of
V1. We fix x € V1, and denote by 71, 72, 73 the three arcs €; that leave from
x. Recall that the ; meet with 120° angles, so there is a cone Y (z) € Y,
whose spine (understand, singularity set) contains the line through x, and
that contains v = 1 U2 U~y3. Let us check that

KnNnB(z, (X)) =vN Bz, (X)) =Y (x) NSN B(z,In(X)). (6.7)

Since v C K, for the first identity we just need to check that the only €;
that meet B(x,9n(X)) are the ;. This follows from (6.6), because the ~; are
the only arcs that contain z. For the second identity, observe that v C Y (z)
by definition of Y'(x); the other inclusion holds because H!(v;) > 10n(X)
by (6.4).

The next description will come from Corollary 12.25 in [10].

LEMMA 6.2. — Suppose that T <1073n(X). If ¢ is small enough, depend-
ing on n and T, there is a Ct diffeomorphism ® : B(x,207)— ®(B(x,207))
with the following properties. First

|®(y) —y| < 1071% fory € B(x,207); (6.8)

|D®(y) —1d| < 1072 for y € B(x,207); (6.9)

ENB(z,97) = ®(Y(z) N B(x,207)) N B(x,97). (6.10)

Proof. — Some preparation will be needed before we can apply Corol-

lary 12.25 in [10] to get this. First observe that because of (4.1)—(4.3),
dist(x,SN L) > 10n(X); thus
E is a plain almost minimal set in B(z, 9n(X)), 611
with gauge function h(s) = Cj,s° (6.11)
(see (5.1) too). Next we check that E is close to Y (z) near x. First observe
that
X N B(z,87(X)) =Y(z) N B(z, 8n(X)). (6.12)
Indeed B(x,8n(X)) is contained in the cone over SN B(x,9In(X)). By (6.7),
the two cones X and Y(z) coincide on S N B(x,9n(X)); then they also

coincides in B(xz,8n(X)), as needed. It now follows from (5.3) (and if ¢ is
small enough) that

2 €

dzsnx)(E,Y () = (%) do2(E,X) < %)

(6.13)
(recall that r = 1 here).
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Next we find a point of type Y near z: we claim that there exists zg € £
such that
0(zo) =37 and |xg —z| < Ce. (6.14)
Here the density 0(xg) = lim,_,0 0(xo, ) is defined by (1.18) and (1.19), and
the first condition is another way to say that all the blow-up limits of E at
To lie in Y.

To find zg we apply Proposition 16.24 in [9] to E and the small ball
B(z,r), where r will be chosen in a second. Let €5 denote the small constant
in that proposition; we choose r = 10e5 e: most assumptions are satisfied
readily (for instance, (5.2) takes care of the size of the gauge function); the
main one is that d, ,.(F,Y(x)) < &2, and it follows from the second part
of (6.13) and our choice of r. The conclusion of Proposition 16.24 in [9] is
that ENB(x,10~2r) contains a point x¢ of type Y. This point satisfies (6.14),
with C' = (10e5) 1.

We also claim that E is close to Y (z) in measure; actually we shall just
need to know that for each e; > 0,

H%(E N B(zo,11007))
< HYUY (z) N B(w0,1100(1 + €1)7)) + £1(11007)%.  (6.15)

if ¢ is small enough. To see this, apply Lemma 16.43 in [9] to the almost
minimal sets E and Y (z), in the ball B(x,11007), and with 6 = &;. Since
7 < 1073n(X), (6.11) gives ample room to do this. The main assumption,
that d, 11000r/0(F,Y (2)) be small, follows from (6.13) if ¢ is small enough
(depending on 7 and £1).

Notice that p~2H(Y (x) N B(xo,p)) < 37 for all p > 0, for instance
because the left-hand side is a nondecreasing function of p (recall that Y (z)
is a minimal set), and tends to 37 at co. Thus (6.15) yields

0(z0,11007) = (11007) *H?*(E N B(xo,11007)) < 37 4 Ce;. (6.16)

We are now ready to apply Corollary 12.25 in [10], to the set E —
(because the corollary applies to a ball centered on the set), and with the
radius rg = 107.

There are a few assumptions to check. First, (6.11) says that E — xq
is almost minimal (with no sliding condition) in B(0, 110r), because 7 <
1073n(X) and by (6.14). Next there are assumptions on the size of the gauge
function, in particular evaluated at ro; these are satisfied if € in (5.2) is small
enough. Then there is the assumption (12.27) on the distance from E —z to
a minimal cone. We now that E — g is 2e-close to Y (x) —zq (by (6.13)), but
since Corollary 12.25 in [10] requires a minimal cone centered at the origin
and Y(x) — x¢ is centered at x — xz(, we translate it by xg — = and get a
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minimal cone Y = Y'(x) — x centered at 0. Fortunately |zo — x| is as small
as we wish (use (6.14) and take e small), so Y is as close to E — xy as we
wish in B(QIJO, 1107’()).

Finally we need to check (12.27); half of it concerns the size of the gauge
function and follows from (5.1)—(5.2), and the other half requires that the
density excess f(1107g) be sufficiently small. With the definitions of [10] (see
(3.5) et (3.2) there),

f(1107g) = 6(x,11007) — O(x0)
= (11007) " 2H?*(E N B(x0, 11007)) — 3, (6.17)

by definitions and (6.14). This is as small as we want, by (6.16) (we choose
1 small, depending on the constants in Corollary 12.25, then take e small).
So we can apply the corollary.

The conclusion (just applied to » = 107 < 7¢) is that there is a C151
diffeomorphism ¥ : B(0,207) — ¥(B(0,207)) (for some small 8; > 0 that
depends on the 5 > 0 of (5.1) and (5.2)) such that

T(0) =0, |[U(y) —y| < 10727 for y € B(0,207), (6.18)
and
(E —x09) N B(0,107) = (Y N B(0,207)) N B(0,107). (6.19)
We take
O(z) =x9+ V(2 —z) for z € B(x,207) (6.20)
to translate things back; notice that this way
O(z) = x9 + ¥(0) = xp. (6.21)

Let us see what we get. We start with the good news: ® is well defined on
B(z,107), and is a C1*#1 diffeomorphism whose image is zo + ¥ (B(0, 207)),
which is almost the same as B(xg,207). Next (6.10) holds, because

ENB(z,97) = xo + [(F — x9) N B(x — ¢, 97)]
=z + [T(Y N B(0,207)) N B(x — ¢, 97)]
= [xo + (Y N B(0,207))] N B(z,97)
= ®(z +Y N B(0,207))] N B(z,97) (6.22)
by (6.19). But t+Y =Y (z), so z+Y NB(0,207) = Y (z) N B(x,207); (6.10)

follows.

Now (6.18) only yields |®(z) — z| < |[(zo + ¥(z — ) — 2| < |xo — 2| +
|U(z —x) — (2 — 2)] < 10727 + Ce for z € B(x,207), while we announced
|®(2) — 2| < 107197 in (6.8). We could try to reduce the difference and keep
same proof by taking ro = 10787, but it is more honest to say that the
constant 1072 in Corollary 12.25 can be replaced by any small number we
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wish, at the only expense of taking € much smaller. In the construction of a
Reifenberg parameterization, this amounts to starting to move points only
after a certain number of generations; the price to pay is precisely to force
the initial set Y to be close enough to E so that we still get a good enough
approximation at the scale where we really start things.

The second difference is that we announced |D® —1Id | < 1072, and Corol-
lary 12.25 only says that ¥ € C'*A1. But in fact it is a uniform C'*+%
estimate, which means that we even get a wuniform control on
(ly — z|/r) P |D®(y) — D®(2)| for y, z € B(x,207). With this, a very tight
uniform control on |®(y) — y| (take it even better than (6.14), since it costs
nothing), and some interpolation, we rather easily get (6.15). Another way
to put this is to notice that the proof of existence for the Reifenberg pa-
rameterization also gives a derivative which is as close to the identity as we
want, again if ¢ is taken small enough. Finally, what really matters to us
is the fact that if y, z lie in B(x,207) and on the same face of E, then the
distance between the directions of the tangent planes to E at y and z is at
most 1073, say. This is what we prove in [10], in estimates like Lemma 12.35
and 12.50 (where we can take ey as small as we want), which show that
approximate minimal cones vary slowly. Hopefully the reader will trust one
of these arguments; this completes our proof of Lemma 6.2. ]

Remark 6.3. — We can replace the constants 10719 in (6.8) and 1072
in (6.9) by any small number ao > 0 that we wish, but then € has to be taken
small enough, depending on n and 7 as above, but also on ag. The proof is
the same; as explained above, we just need to know that in Corollary 12.25
of [10], the mapping ¥ that we get can be required to be close enough to the
identity in C'' norm. Using this remark, we will be given the opportunity of
simplifying our construction slightly at the beginning of Section 13.

Let us now say why Lemma 6.2 also gives a good control on E NS N
B(x,87). Some more notation will be useful. Denote by Fj, Fs, and F3
denote the three faces of Y'(z), and choose the labels so that Fj is the half
plane that contains ; (and is bounded by the spine, which is the vector line
through x). Then (6.10) gives a decomposition of ENB(z, 97) into three faces
Fj = B(x,97) N ®(F; N B(z,207)), which are intersections with B(z,97) of
three pieces of C'! surfaces. Each of these surfaces F ]’ is also a small Lipschitz
graph (over a part of the plane that contain F}), by (6.9). Finally we know
that the three Fj meet along a C'' curve (a piece of the image by ® of the
spine of Y'(z)), which is also a small Lipschitz curve, and they meet with
120° angles. This is really the description of E near x that we shall use; the
fact that we have a parameterization by Y () is of lesser importance.
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We shall use the description above in a later section, but for the moment
we only care about its consequence on E NS. For this we apply the implicit
function theorem to each face F’ J’ , to get a description of F ]’ NS (the zero set
of f(z) = |z|*> — 1). The relevant derivative is the derivative of the distance
to the origin, which stays large because Fj’ is a small Lipschitz graph over a
plane that is orthogonal to S. Or equivalenty, we could use (6.9) to estimate
the partial derivative of f o @ in the direction of x. We get that

F/NSNB(x,97) isa C'7" curve. (6.23)
Call this curve £;. We have a little more information on the £;. First,
the three £; start from a same point z*, (6.24)

which is also the unique point of Fy N F5 N F{ NS (or the only point of
®(F; N Fy, N F3) that lies on S, apply the implicit function theorem to that
curve).

Next the £; are small Lipschitz graphs. Let us state this in terms of the
oscillation of their unit tangent direction. For z € L£;, denote by v;(z) a unit
tangent vector to £; at z. We define v so that it is continuous, and v(z*)
points in the direction of £;. Also denote by v; the direction of v; (or K) at
x, again going away from z; we claim that

lvj(2) —vj| < 307" for z € L;. (6.25)
Indeed v;(z) lies in the intersection of the hyperplane H, tangent to z at S,
and the tangent plane P, to E at z. If y € B(x,207) is the point of Y (z) such
that ®(y) = y, P; is the image by D®(y) of the plane P that contains F};. But
F; is orthogonal to H, at z, and contains the tangent vector v;, and (6.9)
says that |D®(y) — Id| < 1072. Thus P, is quite close to P, P, N H, is quite
close to PN H,, and (6.25) follows.

Notice that, by Remark 6.3 (and if 7 is small enough compared to aq),
we can also make sure that

|vj(2) —v;| <ar for z € L, (6.26)

where a; > 0 is any small number given in advance. That is, £; is a Lipschitz
graph, with a Lipschitz constant that is as small as we want.

Of course it follows from (6.25) that
the three £; make angles of at least 100° at z*, (6.27)
because the v; make 120° angles. We also want to show that for 1 < j < 3,
do,s7(Lj,7;) < 107107, (6.28)

First let z € 4,NB(x, 87) be given; by (6.10) we can find y € Y (x)NB(zx, 207)
such that ®(y) = 2. By (6.8), |y — 2| < 107197, Then dist(y,S) < 1071,
and y' = y/|y| lies close to y and z. Also, y lies on the face F; (because
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z € Fj), and y' € Fj too. But F; NSN B(z,97) C 7; (see (6.12) and the
definition of ~;), so dist(z,v;) < 2-107197.

Conversely let y € v;NB(x, 87) be given. Consider the radial line segment
I centered at y and with length 3-1071%7. By (6.8) its image by ® crosses S
(one extremity in B(0,1), the other one outside), so there is a point y’ € I
such that ®(y') € S. The point 2’ = ®(y’) lies in F; (because y' € F}), and
of course |2’ — z| < 3-1071%7. Hence 2/ € £L; =SN FiN B(z,97) and (6.28)
follows.

It follows directly from (6.8) and the fact that z* = ®(y) for some y €
F1 U FQ U F3 that

lo* — x| <2-107107, (6.29)
Finally let us record the fact that (6.28) also implies that
dm)ST(K, L1ULyU L‘g) = da:787(7; L1ULyU [:3) < 10_107', (630)

where the first part comes from (6.7) (recall that v = v U2 U 73). This
completes our rather precise description of ¥ and ENS near the real vertices
xz e V.

6.3. A description of ENS near a flat point x € ENS far from LUV,

Next we want to do something similar near the regular points of K, i.e.,
the points near which K is a geodesic of S. This includes the vertices of V5,
since we only cut K artificially there. We take a such a point x and also
assume that z lies far enough from L or V;. More precisely, we take x such
that

€ K and dist(x,LUV}) > 7. (6.31)

The constraint on the distance to V; will not cost us much, since we already
have a good description of E near V;. What will be missing is what happens
near L, but of course this is the main point of the paper.

We fix € K\ L such that (6.31) holds, and do exactly as in the previous
subsection. Near x, K coincides with an arc of geodesic v, which we may
as well choose maximal. It could be that + is composed of two or more
successive arcs €;, i € Z, because we cut some arcs artificially with vertices
of V5, one of which may even be close to z.

Denote by P(z) the plane that contains «y. Let us check that if we take
T < n(X),

KnB(x,7)=yNB(z,7) = P(x)NSN B(x, ) (6.32)
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(as in (6.7)). For the first part, we just need to check that every arc €; that
meet B(x, ) is contained in . Let €; be the arc of the standard decomposi-
tion that contains . If €;N€; = 0, (6.5) says that dist(&;, €;) > In(X) > 97;
this is impossible because dist(z, ;) < 7. So €; meets €;, and since there is
no true vertex of K near x, this means that &; is part of v too; the first part
of (6.32) follows. For the second part we just need to observe that none of
the two branches of v (when we leave from ) stops before we reach a point
of V1 U L. By (6.31), this does not happen as long as we stay in B(x, 7).

From (6.31) we also deduce that

E is a plain almost minimal set in B(x, 1), (6.33)

with gauge function h(s) = Cj,s”.
The radius is somewhat smaller than in (6.11), so this will force us to apply
the lemmas from [9] and [10] with slightly smaller radii, but otherwise things
will be as easy as before. The analogue of Lemma 6.2 for this case is the
following.

LEMMA 6.4. — Ife is small enough, depending on n and 7, then for x as
in (6.31) there is a C* diffeomorphism ® : B(z,2-10737) — ®(B(z,2-10737)
with the following properties:

|®(y) —y| < 107°7 fory € B(x,2-10737); (6.34)
|ID®(y) —1d| <1072 fory € B(x,2-10737); (6.35)
ENB(z,107%7) = ®(P(z) U B(z,2-107°7)) N B(z,107°7).  (6.36)

We skip the proof, which is just the same as for Lemma 6.2. Again notice
that there is nothing special about points © € V4, we do not have singularities
of K near these points, they were just added to simplify some estimates in
later sections.

As in Remark 6.3, we can even replace 10710 in (6.34) and 10~2 in (6.35)
with any small constant ag decided in advance, but then ¢ has to depend on
ag too.

By the same discussion as for z € V; (but simpler because we have no
branching), EN B(z,10737) is also a small Lipschitz graph over P(z). Then
the implicit function theorem allows us to say (as in (6.23)) that

ENSNB(z,9-10747) is a C1*A1 curve L,. (6.37)

Moreover L, is a small Lipschitz graph, in the sense that if v, denotes a unit
tangent vector to K at x, and if similarly v(z) denotes a continuous choice
of unit tangent vector to L, at z € L, then the proof of (6.25) also yields

lv(2) —v,| <3071 for z € £, or [v(z) +v,| <307! for z € L, (6.38)
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(if we choose the opposite orientations by mistake). And as before, by choos-
ing € even smaller, we can even arrange that

[v(z) —vg| < ay for z € Ly or|v(z) + vy <ay for z € L, (6.39)

for any given small constant a; > 0. The analogue of (6.28), namely the fact
that
dy g10-47 (Layy) = dp g.10-17 (Lo, K) <1076, (6.40)
is proved the same way (the easy first part comes from (6.32)).
In the special case when x € V5, we will need to define a vertex «* where

we cut £, in two. We simply choose z* € £, so that |z* — x| is minimal,
and by the proof of (6.28), we get that

|z* — 2| < 107107 (6.41)

6.4. The desired description of ENS\ [D4(7) U D_(7)]

We now have a nice description of ENS near all the points of K\ L which
lie far from L, which we put together to get a relatively simple statement.
Recall the definition of D4 (7) (two small spherical balls centered at the
points ¢4 of LNS).

PROPOSITION 6.5. — For each choice of 7 < 1073n(X), there exists
e > 0 such that if X and E satisfy the assumptions of Section 5 with r =1,
then we can find C* curves L; CS, i € I, such that

ENS\ (Dy(r)uD_(r) =] £i, (6.42)
i€L
the curves L;, i € I, are disjoint, except perhaps for their endpoints, and

they are related to the €; in the following way. For each vertex x € V13 U V3,
we can find a point x* € ENS, such that

lo* — x| <1077 (6.43)

and, fori € Iy, L; is a simple C curve in'S, with endpoints a} and b (the
two points x* associated to x = a; and x = b; respectively), such that

dist(z,€;) < 10787 for z € £; and dist(z,L£;) < 10787 for z € &;. (6.44)

For i € Ty, €; meets D, (1) UID_(1) at a single point ¢;, L; ends at a
point ¢ such that

lcf —ci| < 10787 (6.45)
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and, if a; denotes the endpoint of €; that does not lie on L, L; goes from a}
to ¢}, and

dist(z, p(a;, ;) < 10787 for z € L; and dist(z, £;) < 10757
for z € p(a;,c;). (6.46)

Proof. — We already have most of the needed information, but need to
make a few remarks to put things together. Also, the statement above misses
some information that we obtained in the last subsections; we will refer to
them concerning F itself and Lipschitz graph properties, for instance.

Before we put our local arcs together, let us say how we intend to end
our curves near the two points of SN L.

Let £ € L NS be given, and first suppose that ¢ ¢ K. Then dist(¢, K) >
7L (X) = 10n(X) by (4.1) and (4.3), and then

B(£,6n(X)) N (X UE) =0, (6.47)

by (5.3) (and if € is small enough). In this case we’ll not need to do anything
to cut the arcs of E NS near /.

Next assume that £ € K. Then the set Zy(¢) of indices i such that €;
(starts or) ends at £ is not empty. The arcs €; are not too short, because (4.2)
and (4.3) say that dist(¢,V; U V) > 10n(X). Hence each of them cuts each
sphere 0B({,t), t < 5n(X), at a point z;(t). Call m € {1,2,3} the number
of elements in Zy(¢).

We shall restrict to t € [r,27] for some 7 < 1073n(X). We claim that
if € > 0 is small enough (depending on 7 and n), then for each choice of
t e (7,3n(X)) and i € Z(¢),

0B(¢,t) intersects E NS exactly m times, transversally, and
at points x}(t), 1 < i < m, such that |z} (t) — z;(t)] < 10757

This is in fact easy. Lemma 6.4, applied to z = z;(t) € K N 9B(4,t), shows
that E NS N B(x,7) (or equivalently, £,) is a small Lipschitz curve with
(by (6.16)) a tangent direction which is almost the same as the direction of
K at 2. This curve crosses 0B(¢,t) transversally (in fact, almost perpendic-
ularly). Thus, near the z;(t), we get a unique point =} (t) € ENSNOB(¢,t),
and |z} (t) —x;(t)| < 10787. But there is no other point, because all points of
ENB(0,2)NIB(¢,1) lie close to X (by (5.3)), hence close to one of the z;(t).

(6.48)

We are now ready to say how we organize the local description of ENS\ B
to make curves £;, i € Z. Fix 7 € (0,1073n(X)]. Also set B = B({4,7)U
B(¢_,7); we have a nice local description, in balls centered on K, of I’ =
E NS\ B, and by (5.3) the balls with the same centers and half the radii
cover I'. We cut I' at the points z*, x € V3 U V5, and we get a collection of
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connected components £ which we can also describe: the two endpoints of
L are points x*, we can use (6.28) or (6.40) to follow K along £, and find
out that £ stays close to some €;, ¢ € Z. In addition, if €; = p(a;,b;), L
has the endpoints a; and b;. Or, when ¢ € Zj, one of the endpoint of L is
the point z;(7) associated to ¢t = 7 as in (6.48). This completes our proof of
Proposition 6.5. 0

Notice that by (6.48), the spheres dB(¢,t), t € [, 27], also cross the L,
i € Zp(¢) once and transversally, at least if £ € V; = K N L. Otherwise, they
don’t touch, by (6.47).

Notice also that the £; also satisfy a version of Lemma 6.1, since they
are very close in distance to the ;.

Finally observe that we may apply Remark 6.3 and the ensuing comments
and get that each £; is a Lipschitz graph over the geodesic €; (maybe made
a little longer or shorter to accommodate the endpoints), with a Lipchitz
constant that can be taken as small as we want. The only price to pay is
that we have to choose smaller constants 7 and €. We will have the option
to use this to simplify the construction of our competitors, at the beginning
of Section 13.

7. Connectedness configurations near £/ € L NS,
and a first net of curves

In this section and the next ones we fix a point £ € L NS and restrict our
attention to the small spherical disk

D=SnB(,1), (7.1)

where 7 is a small constant, to be chosen later. We shall assume that 7 <
1073n(X), so as to be able to apply the results of Section 6.

We shall distinguish between a few different cases, depending on the
number of points of EN 90D and the way E N D connects them to each other
and to ¢, and then we shall construct a first net of simple curves v C EN D,
with the same basic connecting properties. We will do this independently for
each of the two points of LN S.

The first number that we care about is the number m = m(¢) of arcs of K
that start from ¢. Thus m is the cardinality of the set Z(¢) of indices i such
that €; starts from (or ends at) ¢. When i € Zy(¢), we shall systematically
denote by a; the other endpoint of €;. As a general rule, we shall say that we
are in Configuration m when Zy(¢) has m elements. We know from (2.7) that
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0 < m < 3. But there will be numerous subcases, depending on connectivity
properties.

We start with the easy Configuration 0 when m = 0. In this case, ¢
is connected to no vertex of V; U Vs, (4.1) and (4.3) say that dist(¢, K) >
nr(X) = 10n(X) > 107, and then

XNB(,2r)=0 and ENB((,27) =0 (7.2)

(by (5.3)). In this case we shall do nothing in D in this section or the next
ones.

In the other cases, let us renumber the curves €; that touch 0 (or equiv-
alently, the set Zy(¢)), and just call them &;, 1 < i < m.

For 1 < i < m, Proposition 6.5 gives a curve £; C F, that leaves from a
point a; that lies very close to a; (the other endpoint of €;), and ends at a
point of 0D = SNOB(¢, ) that we called ¢f. Recall from (6.45) that ¢} lies
quite close to ¢;, the point of €; N dD. Also, by (6.48),

ENOD = {c;;1<i<m}. (7.3)

For each x € EN D, we denote by H(x) the connected component of = in
EnND. Also set H; = H(c}) for 1 <i<m and Hy = H({).

One case that we particularly like is the case of a hanging curve. We
define it as the case when for some ¢ < m, ¢} is not connected to any of the
other special points, i.e., when

c; ¢ Hou | H;. (7.4)
J#i
We refer to this as Configuration H. In this case we are happy, because we
will be able to contract a large piece of £ along the piece of E near L£;, and
this will give estimates that are quite favorable. Nonetheless we define a set
~ by (short) induction.

We define a first set v; = {c}}, remove the point ¢} (or equivalently the
whole H;) from the game, and get a new configuration with m — 1 points. If
m = 1, just set v = ~;. Otherwise, define the net v’ associated to this smaller
configuration (as will be explained in the next cases), and take v = ~; U~/'.
As we shall see, 7/ is contained in the union of the H;, j # i, so we get
a disjoint union. For instance, if we had three hanging curves, v would be
composed of the three c;.

The next simple case is Configuration 1, where m = 1 and Hy = Hy. In
this case we choose 7y so that

~ is a simple curve in E N D that goes from ¢j to . (7.5)
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The existence of such a curve follows rather easily from the fact that H; is
connected and contains ¢ and ¢, plus (5.4) which says that

HY(H)) < HYENS) < 4o0; (7.6)

see for instance [25] or Chapter 30 of [8]. Later on we shall replace this curve
with a small Lipschitz curve, and then we shall retract onto it, but for the
moment we continue with our list of cases. Notice that only Configurations
H and 1 are possible when m = 1.

Now assume that m = 2, and that we are not in Configuration H. A first
option is that Hy = Hy # Hy, i.e., ¢} and ¢} are connected to each other (in
E N D), but not to £. We shall call this Configuration 2—. By (7.6) and the
same argument as above, we can find v such that

« is a simple curve in E N D that goes from ¢ to ¢. (7.7)
Notice that ¢ ¢ -y, because v C Hj.

The next case, called Configuration 2+, is when Hy = Hs = Hy, i.e.,
our three special points are connected. First select (as above) a simple curve
v1,2 C EN D, that goes from ¢ to c3. Also choose a simple curve vy C 9D,
that goes from ¢ to c}. Finally denote by ~, the part of vy that lies between
£ and the first point of y; o that we hit when we start from ¢ and run in the
direction of ¢j. We include both endpoints. It could happen that ¢ already
lies on 74,2, and then v, is reduced to the point ¢; this is all right too. We set

Y=m2U". (7.8)
This was our last case when m = 2, since each ¢ is connected to another
special point when we are not in case H. Recall that in case H, either the
two curves £; are hanging, and then we set v = {c, ¢5} or Lo, say, is hanging
and Hy = Hy, and then we select v; C H; as in Configuration 1, and set
7 =mU{s)
Now suppose that m = 3 and we are not in Configuration H. A first
possibility, that we shall call Configuration 8 = 2+1, is that two of the ¢

are connected to each other, but not to ¢, and the third one is connected to
¢ (hence not to the others). Let us relabel the ¢}, if needed, so that in fact

H1 :HQ and HgZHg, but Hl #H@ (79)
In this case we take

Y=m2U, (7.10)

where 712 is a simple curve in £ N D that goes from cj to c5, and v, is a
simple curve in E'N D that goes from ¢ to c3. Notice that these two curves
are disjoint, since Hy # Hj.
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Next we turn to Configuration 3—, where Hy = Hy = H3 # Hy. In this
case we select a simple arc y;12 in & N D that goes from ¢} to ¢5 and a
simple arc 31 in £ N D that goes from c} to cj. Then we let y3 be, as in
Configuration 2+, the closed sub-arc of 3 ; between c; and the first time
we hit ;2. We set

Y =712 U"7s; (7.11)
thus v is a (possibly degenerate) three-legged spider that connects the ¢; it
does not contain ¢.

We are left with only one case, which we call Configuration 3+, where
all the points are connected, i.e., Hy = Hy = H3 = H;. We define v, 2 as
before, then ~y3 1 and 3 C 3,1, but now also pick a simple arc 7,1 in END
that goes from ¢ to ¢}, but only keep the arc 7, that goes from ¢ to the first
time we hit 1 o U v3. Finally we take

Y="1,.2Uv3 U5 (7.12)

(a three-legged spider with a short leash to ¢, which again can also be degen-
erate in different ways). This is our most complicated case; it will turn out
that, later in the proof, we shall replace v by a connected set with a slightly
simpler shape, but for the moment v is good enough.

At this stage, we constructed a net v C EN D, with the same connecting
properties (regarding our special points) as E N D. We will have to modify
this net, though, for a few concurrent reasons.

The first one is that we may find a significantly shorter net in D, still with
the same connecting properties, but which may not be entirely contained in
E. The interest is that the cone over this new net will have a smaller surface,
and then we should be able to use this new cone to define an interesting
competitor. This looks like a good idea, but we need to show some restraint,
and only do this transform when we win enough length (and then surface for
the cone) to compensate for the extra cost that we will need to pay when we
glue together pieces of different surfaces. The ideal thing would be to find a
shorter net in NS, but this is probably not going to be possible in general,
so we’ll have to add small connecting pieces.

The second reason is that our construction of competitors (in particular
related to the new curves) will use Lipschitz retractions from a neighborhood
of the net to the net. They will be easier to find if the net has some regularity:
we do not want to have to retract on a curve that almost makes a closed
loop. Thus we will like better nets that are composed of a small number of
small Lipschitz curves that meet with large angles and make no loops.

Fortunately, the two reasons go together: if v makes unnecessarily long
connections (think about a long arc that connects two close points), we may
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replace some parts of it with shortcuts, save a nontrivial amount of length,
and at the same time increase the chances for a nice retraction.

There is a third reason for which we like small Lipschitz graphs. One of
the main engines of our proof is the comparison between cones and graphs of
harmonic functions. Suppose for instance that C' is the unit circle in a plane
P, and that I is the graph over C of a Lipschitz function A : C — P*. Let
A; be the homogeneous extension of A (of degree 1), so that the graph of 4
(call it f) is also the cone over I'. Then let Aj;, denote the harmonic extension
of A to PN B(0,1), and denote by ¥ its graph. We expect that H?(X) <
H2(fﬂ§(0, 1)), especially if A is far from an affine function, but this is much
more pleasant to prove when A has a small Lipschitz constant, because then
we can use expansions of order 2 to estimate the surface measure. (If T' is
not even a graph, it is much harder to imagine an analogue of the harmonic
graph, and we are a little desperate.) This comparison argument will also
work with the circle replaced by small sectors that we glue to each other,
and this is the reason why we wish to replace our v with shorter nets of
small Lipschitz curves.

8. The standard replacement by a Lipschitz graph

As we just explained, we intend to modify the simple nets v of the previ-
ous section, and our main tool for this is a construction, which we will take
from [10] but which was not especially original anyway, that takes a simple
curve v (typically, one piece of the nets above) and creates a Lipschitz curve
I" with the same endpoints.

The constraints of the game are that we don’t want I" to be longer than
v, and we only want to introduce parts of ' \ 7 when we are sure that
this will make the curve significantly shorter, or that we will win something
proportional in the next section. We don’t need to be specific yet, let us just
remember that we do not want to change the curve for no reason.

We do the construction in this section, and apply it later. So let v be a
simple curve. To complicate matters (and in particular parameterizations),
v C S and we want I' C S too. But we will not be disturbed by antipodal
problems, because we will very fast be able to assume that H!(y) < 4?”.

Let a and b # a denote the endpoints of v. We assume that
3
dists(a, b) := H(p(a, b)) < f (8.1)
where distg denotes the geodesic distance in the sphere, and p = p(a,b) is
the geodesic with endpoints a and b.
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So we want to construct a new curve I' in S, which is a Lipschitz graph
over p (we shall explain what this means soon), has the same endpoints a
and b, and coincides with g on a set which is as large as possible.

The main parameter in this construction is a small constant A < 1, which
is essentially the Lipschitz constant for desired graph I'. It used to be called
7 (in [10]), but we want to avoid notation conflicts. It is required to be small,
depending on the dimension, and the main reason for this is that we want to
be able to apply the results of Section 9. Recall also that we want to choose
7 small, depending on A, so A should not depend on 7.

Before we start for real, let us eliminate a simple case. Let 7, > 0 be
small (to be chosen later, depending on \). We take

I' = p(a,b) when H'(y) > (1 + m)dists(a,b), (8.2)

and feel happy because although we added a big set, we also saved at least
71 dists(a, b) in length. This works even if H!(v) = +o0, but we do not need
the information.

From now on we assume that the condition in (8.2) fails, i.e., we assume
that

length(y) = H'(y) < (1 + 1) distg(a,b), (8.3)

where the first equality is just a change of notation because v is simple (see
for instance [25], but the truth is that we could use H! all along).

Set p = p(a,b) and let P denote the 2-plane that contains p (or equiva-
lently a, b, and 0). We shall often use the fact that because of (8.3),

dist(z, p) < 72 distg(a,b) for z € v, (8.4)
where 75 = 10,/71 > 71 (because 7 < 1).

It should be said now that (contrary to what we may have implied so
far) we do not always try to make H!(T) significantly shorter than «y, but
sometimes we want to control H(I"\ v) in terms of something else, the L>-
norm of the derivative of a function whose graph describes I". This is because
we shall see in the next section that a harmonic replacement of the cone over
I" will make us save a comparable amount of area.

The argument will be essentially imported from Section 7 of [10], and
we use similar notation (except that 7; is now called \). There is a small
difference with what was done in [10], where for convenience we assumed
(in (7.1) there) that length(y) > 9o for some small geometric constant 7.
Here we do not want to assume this, and this will force us to be some times
a little more careful with the normalization; for instance, in [10] which just
required that length(y) < dists(a, b) +71. Here we assume the stronger (8.3),
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with an error term of at most 71 distg(a,b). The necessary modifications, to
adapt the construction of [10], will all be of that type.

With this in mind, the main assumptions (7.1)—(7.3) in Section 7 of [10]
are satisfied, by (8.1), (8.3) and (8.4). An important quantity, that we want
to use to estimate various terms, is the length excess

AL = length(~y) — dists(a, b). (8.5)

We now describe the highlights of the construction of [10]. We let z : I —
S denote a parameterization of v by arclength, so that |I| = length(v), and
we write z(t) = (z1(t), z2(t), v(t)), where the first two coordinates are in P,
and v(t) € PL. A simple estimate with Fourier series shows that

/1 W/ (1)[2dE < 14AL; (8.6)

see Lemma 7.8 in [10]; the reader should not worry about normalization here,
as even in [10] the constant 14 does not depend on 7.

Next write (z1(t), 22(t)) = (w(t) cosO(t), w(t)sind(t), as in (7.5) of [10]
(notice that by (8.4), (z1(t), z2(t)) stays close to p); we also need to know
that (if a and b are chosen in trigonometric order) #'(¢) is rather large on
average. To measure this, we define f on I by

ft)=1+2/w@))? -0 t) (8.7)

(as in (7.20) there), observe that f(¢) > 0 almost everywhere (see the line
below (7.20) there, which uses the fact that |2/(t)] = 1 almost everywhere),
and use (8.6) and (8.5) to show that

| #oae < s0ar 58)

see (7.21) in [10]. We now use a maximal function argument, based on the
two estimates (8.6) and (8.8), to find an open set Z in I (in fact, Z is the
set where one of the two maximal functions f*(¢) or (v)* is large) with the
following two properties. First,

|Z| < CAT?2AL = CA?(length(y) — dists(a, b)) < CA™ 27 distg(a,b) (8.9)

as in (7.26) of [10] (and by (8.5) and (8.3)). Here C is an absolute constant
that comes from the Hardy-Littlewood maximal theorem on I. But also, z
has good Lipschitz properties away from Z, that we shall explain soon.

Write Z as a countable disjoint union of open intervals I; = (aj, b;), with
possibly two exceptions: if the initial endpoint of I lies in Z, the correspond-
ing interval is of the form [a;, b;), and if the final endpoint of I lies in Z, then
I; = (aj,b;]. Both things do not happen at the same time, for the following
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reason: we shall choose 7 small, depending on A, and in particular, we can
make sure that CA=27; < 1 in (8.9), so that |Z]| < distg(a,b) < |1].

We come to the good Lipschitz properties. The definition of Z in terms
of maximal functions yields (see (7.33) in [10])

A(b;

%“j) and 0(b;) — 0(ay) > D=4

|v(bj) — vla;)| < (8.10)

We now construct I'. We directly define a parameterization z : I — §

of I. On I'\ Z, we simply keep Z(t) = z(t), and on each interval I}, we let

Z be a parameterization with constant speed of the arc of geodesic p; =
p(z(a;), z(b;)). Then Z is continuous; it is even 1-Lipschitz, because

length(p;) = dists(z(a;), 2(b;)) < b; — a; (8.11)

because z is 1-Lipschitz. Notice also that (as in (7.30) of [10])

I' has the same endpoints a and b as y and p. (8.12)
Next we can use (8.10) to show that
I' is a Lipschitz graph with constant < A. (8.13)

See (7.32) in [10], and (7.42) or (7.44) there for definitions in terms of param-
eterizations, but for here the simplest is to notice (and take as a definition
of Lipschitz curve) that we have the simpler-to-state property that

7 (Z(t)) is a A-Lipschitz function of 7(Z(t)), (8.14)

where 7 and 71 denote the orthogonal projections on P and its orthogonal
complement; see (7.45) in [10]. Notice that

HY(T') = length(T") < length(y) = H(v) (8.15)
because both curves are simple, and by (8.11); hence
H'(T\7) <H'(y\T) <D (b —a;) < CA2AL, (8.16)

J

by (8.9), and as in (7.31) of [10].

9. Harmonic graphs usually do better than cones

Let T be a small Lipschitz graph over a reasonably short geodesic p(a, b)
(say, so that (8.1) holds), and denote by P the vector plane that contains
p(a,b). Our main example will be the curve that we constructed in the
previous section, starting from v, but we could use slightly different I'. In
this section we use Section 8 of [10] to construct a small Lipschitz graph
over a sector of P, whose area is often significantly smaller than the area of
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the cone over I'. The estimates below will work as soon as a bound A on the
Lipschitz constant is small enough (depending on n only).

When T is a geodesic, the cone over I' is a plane sector, and we shall not
modify anything in this section, but one could also follow the construction
below and find out at the end that we did nothing. This means that when I’
comes from a curve 7 as in the last section, we can assume that (8.3) holds
(because otherwise « is a geodesic). The amount of area that we are able to
save will be essentially proportional to the quantity

Arp = length(I") — dists(a, b) < 7y dists(a, b). (9.1)

First we define a homogeneous function F', defined on a sector Dy of P,
and whose graph coincides in B(0,1) with the cone over I'. We start with the
sector Dp. Choose coordinates on P so that a = (1,0) and b = (cos T, sinT),
where T' = dists(a, b) < 2F by (8.1). Then set

Dy = {(rcost,rsint); r € (0,1) and t € (0,7)}. (9.2)

We assume that we can parameterize I' in the following way: we can find
an A-Lipschitz function v : [0,7] — P+, with v(0) = v(T) = 0, such that if
we set

1/2 (9.3)

w(t) = (1 [o(t)]?)
and then
h(t) = (w(t) cost,w(t)sint,v(t)) € P x P+ (9.4)
for t € [0,T], then h is a parameterization of I". Thus ¢ € [0, 7] is the angle
with the direction of a of the orthogonal projection on P of the running
point.

In the special case when I' comes from v as in Section 8, the existence of
v is checked in Remark 8.3 of [10]. Let us also check that we can find v as
above, except maybe only 2A-Lipschitz, when I' is a A-Lipschitz graph over
the geodesic p(a,b). By definition, this last means that I" is a curve in S,
from a to b, and that

|7 (2) = 7 ()] < Alm(2) — m(2)] (9-5)

for 2,2’ € I'. Here we denote by 7 and 7+ the orthogonal projections on
P and P~ respectively. We also write m(z) = we® and 7(2') = w'e, with
w,w’ > 0. Notice that since 7+(a) = 0, we see that |7+ (2)| < 2\ is very
small, and (since z € S)

w= (1= |rt(2)])2 > (1 - 432 = py, (9.6)

with a pg € (0,1) that is as close to 1 as we want. We deduce from (9.5) and
the first part of (9.6) that

w —w'| < pg Alm(z) - 7()]. (9.7)
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Then since
7(2) = m(2) = we' — w'e™ = wle® — '] + [w — w']e’ (9.8)
' — | 2 wle' — | 2 |r(2) — ()] = |w —w|
> (1—pg ' Mln(z) —7(2")] (9.9)

and

e — | < pgt (Im(2) — m(2)] + |lw — w'))
= pp (1 + pg " N)|m(2) — m(2)|. (9.10)

By (9.1), (9.10), and since H'(p(a,b)) < 2F by (8.1), e’ stays in an arc
of circle of length at most 4?“. There is a unique continuous determination
of t that comes from inverting e’ on that arc (in a Z Lipschitz way), and
now (9.9) implies that w(z) is a 2-Lipschitz function of ¢. We write this
7(z) = o(t). Also 7+ (z) is a Lipschitz function of 7(z); we write this as
71 (z) = ¥(m(2)). Then set v = 1 o p; we see that v is 2\-Lipschitz. With
our notation, 7t(z) = ¥ o ¢(t) = v(t), (9.3) is the same as (9.6), and the
fact that (9.4) parameterizes I' comes from the fact that

z=m(z) + 11 (2) = we' + o p(t) = (wcost,wsint, v(t)). (9.11)

Return to the construction of I'. We define F : Dy — P+ by
ro(t)
w(t)
notice that w(t) # 0, and even w(t) — 1 stays small, because |v(t)| < AT is
small.

F(rcost,rsint) = for r > 0 and t € [0,T]; (9.12)

Denote by Y% the graph of F over Dr; it easily follows from the defini-
tions that I' C 37, because v(t) = F(w(t) cost,w(t)sint).

The function G that we construct has the following properties (see (8.6),
(8.7), (8.9) and (8.10) in [10]). It is defined on D7, and it coincides with F
on the outer ring, i.e.,

9
G(rcost,rsint) = F(rcost,rsint) for 0 <r<landtel0,T]. (9.13)
We also preserve a small region near the origin, where we may further modify

the resulting surface: there is a small absolute constant « > 0, for which we
take

G(rcost,rsint) =0 for 0 <r < 2x and ¢t € [0,7) (9.14)
(see (8.7) in [10]). Next,

G is C)\-Lipschitz on Dr, (9.15)
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and satisfies the Dirichlet condition
G(rcost,rsint) =0 when0<r <1landte{0,T}. (9.16)

Finally, the graph Xf, of G over D7 has a significantly smaller measure

T
H(Se) < M)~ 107 [ opar
0
< H2(Y%) — 10" length(T') — 7] = H*(X%) — 10~ *Ar.  (9.17)
For this one too, the fact that we no longer assume that T" > 19 does not
interfere (and indeed our bound in (8.10) of [10] does not depend on 7).
But this is the main place where we need A to be small enough, so that

the approximation of the area functional by the Dirichlet energy is precise
enough.

We are interested in the intersections with the unit ball B, which we
denote by

Yp=%NB and ¥ =X, NB, (9.18)
and (9.17) immediately yields
H*(Be) < H2(ZF) — 107*Ar
= H*(SF) — 10~ *[length(T) — dists(a,b)] (9.19)

because (9.13) says that X, = X% outside of B (recall that ||v]|e < AT is
small), and by (9.1).

In the special case when I' comes from v as in Section 8, we can also
compare with the cone

X(y)={tz;zevyand 0<t <1} (9.20)
over . Notice that
H(Dg) = %length(l") and H*(X (7)) = %length(v), (9.21)
for instance by the area (or co-area) formula. So
HA(X(7)) = H?(Ze)
= J llength () — length(I)] + #2(2) — H2(S6)
%[length( ) — length(T)] + 10~ *[length(T") — dists(a, b)]
10~ *[length(y) — distg(a, b)] = 107*AL

2
> C)THIT\ )+ H (Y \ D)), (9.22)
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where we used (8.15) and (8.16), and C()) is a constant that depends on .
As we will see later, this will often mean that it is worth replacing ~ with T,
because the cost of gluing is often much smaller than H(T'\ ) +H! (v \T).

10. Our Lipschitz net I': basic rules and easy cases

Recall that in Section 7 we fixed a point £ € LN K (when ¢ ¢ K, D stays
far from E and we decided to do nothing), and we constructed a first net -y
of curves in £ N D.

There are a few different configurations, but each time v is a union of
simple curves in E N D (between one and five of them), and « contains the
points ¢, 1 < ¢ < m, of EN&D. We extend v by adding to it the arcs
L;. Recall that £; is the arc of E NS that goes from ¢} to a;, where a is
associated to a; as in Proposition 6.5, and a; is the other endpoint of the arc

¢; of K that passes near ¢;. We denote by 7 the extended set, i.e., set
y=yu {J £ (10.1)

1<i<m

We intend to replace 7 with a possibly shorter net I' of Lipschitz graphs,
typically constructed with the help of Section 8, but before we start with the
long list of configurations and subcases, let us explain the main properties
that we want our Lipschitz net to have.

First, I should be composed of a small number (in fact, at most 4) of
Lipschitz curves I';, disjoint except perhaps for their endpoints, and such
that

no more than 3 curves I'; ever meet at a common endpoint z,

and when they do they always make angles larger than 5 at 2.

The statement about angles contains a small abuse of notation, but we shall
fix this and say more precisely what it means near (10.8), when we prove a
similar statement for the first time. This condition will be very useful because
later on we want to construct local Lipschitz retractions near I'. When there
are many curves I';, we’ll have additional properties that make this possible,
but which would be awkward to state here.

(10.2)

Also, we should say that later on, we shall consider the natural decompo-
sition of v and I' into connected components. That is, we shall consider the
component H; of ¢f in (the corresponding) D N E, and for each one we will
rename it as ¢ € CC (because more than one i could give the same compo-
nent ¢), consider the piece . of v which is attached to H; (it is connected by
construction), and there will naturally be one connected piece T'. of T" which
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corresponds. What we will really use in later sections is more the collection
of pieces I'. than the nets I' themselves.

We also want a good junction with the rest of £ N'S. Recall that we
started with m points ¢; € E N JD, corresponding to m curves £; that go
from ¢} to a}. We will make sure that for each 7, there is a unique index 5()
such that T';;) ends at aj, and moreover (with the same abuse of notation
as above)

I';;) makes at a; an angle larger than 7

Wlth all the Ei'7 i/ # 2'7 that end at a/;f. (103)

Our second demand concerns the size of the modification. We want a
good estimate on the symmetric difference

AR, T)=F\T)UuT'\7) (10.4)
in terms of the amount of surface measure that we can win. To measure this,
denote by p; the geodesic in S with the same endpoints as I';, and then set

p=Uprs (10.5)

We require that

H(D) < H'(7) (10.6)
and, for some constant C' that depends on A (but not on 7),
HY(AF.D) < CH'(F) = HI (D) + CH(T) — H (p)]- (10.7)

We write (10.7) in this strange way because the two terms on the right-
hand side are nonnegative (for the last one, because the I'; are essentially
disjoint), so majorising by any nonnegative combination of the two pieces
will be enough. As the reader may have guessed, we intend to win an area
comparable to H!(T') — H!(p) because we will apply the construction of
Section 9 to all the I'; and by (9.19).

As a last comment before we start, notice that for Configuration H and
Configuration 3 = 241, «y is composed of disjoint pieces. In this case we shall
construct I' piece by piece (i.e., independently), and take the union (it will
be disjoint t00).

Let us now do the construction of I' in the simplest cases; this will also
help us understand better as it goes. The most interesting case will be Con-
figuration 34, which will take some time and is kept for later.

In Configuration 0, we have no v and we do nothing.

In Configuration 1, (7.5) says that + is a simple curve from ¢ to the unique
point 7 of ENAD, ¥ is the simple curve obtained by concatenating v and
L1, and it goes from ¢ to a}. We apply the construction of Section 8 to 7,
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and get a curve I" with the same endpoints ¢ and a}. In this case (10.2) is
true but pointless (there is only one I';), (10.6) comes from (8.15), and (10.7)
from the end of (9.22).

So we are only left with (10.3) to check, and at the same time we should
say what this means. Indeed (10.3) seems to assume that I';;) has a tangent
at aj, but we only know that it is Lipschitz. This is easy to fix, but we need
additional definitions and notation.

When v; and wve are two unit vectors of R™, we define the angle
Angle(vy,v2) by

Angle(vy,v9) € [0,7] and cos(Angle(vy,v2)) = (v1,v9). (10.8)

If the simple curve I' ends at a, we call direction of I' at a any unit vector v

obtained as

v= lim —*—% (10.9)
k—+oo |z — al

where {z}} is a sequence in I'\ {a} that tends to a. Finally, if I’y and I'y are

two simple curves that share the endpoint a, we say that
I'; and I'; make an angle at least « at a (10.10)

when
Angle(vy,v2) = « for every tangent direction vy of 'y at a

and every tangent direction vy of I'; at a. (10.11)

We shall also use the following notation concerning geodesic directions
and angles. When a € S and = € S\ {—a}, we denote by v(a, z) the direction
at a of the geodesic p(a, z) from a to z. With this we can also compute angles
between points: we set

Angle, (x,y) = Angle(v(a, x),v(a,y)) € [0, 7]; (10.12)
this is the angle that the geodesics p(a,z) and p(a,y) make at a.

Now we return to (10.3). The proof below will actually work in many
other configurations, with a minor modification that will be explained at the
end of the proof.

We shall actually prove it with an angle larger than %T > 5. That is, we
shall check that if j € 7 is such that j # ¢ but a} is also an endpoint of £;,
and vy is the tangent direction of £; at a (we know that there is only one,
since that curve is C1), then

7
Angle(vy,v9) > % (10.13)
whenever v; is a tangent direction of I' at a}. We first check that
lvy —v(al, )] < 3. (10.14)
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Set a = a} to simplify. Recall from (8.13) that I" is a A-Lipschitz graph over
the geodesic p(a,f) with the same endpoints. Recall from (8.14) that this
means that if 7 and 7+ denote the orthogonal projections on the plane P
that contains p(a,f), and on P+ respectively, then 7+ (2) is a A-Lipschitz
function of 7(z) on I'. Then write our tangent direction of I' at a as v; =
limg s oo Wi, where wy, = (2 — a)/|2x — a|) for some z; € T that tends to
a. We know that |7+ (2;)| = |7t (21) — 71 (a)| < A|7(21) — 7(a)| and hence,
since |z — al > [7(21) — m(@)] — |7 (z) — 7 ()] > (1 - N|n(z) — 7(a)l,
that
. T —a) A
e = P < 2

if A is chosen small enough. Then |7 (v;)| < 2) too. Since v; lies on the
tangent hyperplane to S at a, we get that its projection 7(vy) lies in the
direction of p(a,f) at a and finally (10.14) follows. In many other configu-
rations, we will still know that I';(;) is a small Lipschitz graph, but some-
times over a slightly different geodesic p(a},b), where b is quite close to ¢.
Then (10.14) will follow as above, but maybe with CA instead of A (coming
from |v(af,b) —v(af, )], or a slightly larger Lipschitz constant). The rest of
the proof will work unchanged.

Notice that |af — a;| < 2-107197 by (6.29), and dists(a;, £) = H(E;) >
10n(X) > 10*7 by (6.4) and (6.3), so we also get that

lv(ag, 0) —v(a;, £)] < 10710, (10.16)

<27 (10.15)

Now we consider vs. First assume that a; is a true vertex, i.e., that a; € V3.
One of the arcs of K leaving from a; is €; = p(a;,¢), and €;, the arc of K

that lies close to £;, is another one. Write €; = p(a;, b); then
2 8
Angle(v(a;, b),v(a;, ) = g = %, (10.17)

because it is the angle of €; and €; at a;. Now we apply (6.25), to the vertex
x = a; and the point z = a € £;. With the notation below (6.24), v;(z) = vy
(the direction of £; at a) and v; = v(a,,b) (the direction at = a; of the
tangent to €; = p(a;,b)). Thus (6.25) says that

|vg —v(a;, b)] = |vj(2) —v;| < 1/30. (10.18)

In the present case, our goal (10.13) follows easily from (10.14)—(10.18), but
we still need to treat the case when a; € V5.

We still have (10.14) (for the same reasons) and (10.16) (see below (6.40)).
Now there is only one other €; leaving from a;, and

Angle(v(a;, b),v(a;, 0)) =, (10.19)
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ie., €; is a continuation of €;. We still have (10.18), but this time we ap-
ply (6.38), and then we conclude as above.

This completes our verification of (10.2)—(10.7) in the case of Configura-
tion 1.

Notice that in our proof of (10.3), if instead of ending at ¢ the curve I’
ends at some other point oy € D, then we just need to replace v(a}, ) with
v(al, zo) in (10.14), and add |v(a}, xo) —v(af, )| to the error term in (10.16);
but

2T 1

g -
8-10%7 ~ 4000
(see the estimate just above (10.16)); this still gives (10.13) and (10.3).

[v(az, o) — v(a, 0)] < 2l — Ella} — 07" < (10.20)

Our next case is Configuration 2—. In this case «y is a simple curve in END
that goes from ¢} to ¢35, and does not contain ¢. Select a point ¢ € v N D,
for instance a point that minimizes the distance to ¢, and cut « into two
essentially disjoint simple curves «; and 72, where v; goes from zy to c].
Then extend +;, by adding to it the corresponding arc L;; we assume that
our notation is such that £; is the curve in ENS that contains c}. This gives
a curve 7;, that goes from z( to a;.

We apply the construction of Section 8 to 7, and get a curve I'; with the
same endpoints z¢ and a;. Then we take I' =TI"; U T's.

Let us check that
the two T'; make an angle larger than 110° at xq; (10.21)

of course (10.2) will follow (the only interior vertex of I' is z(). We shall
merely use the fact that |xg — ¢] < 7, even though we could rather easily
deduce from (5.3) that v comes within 10e of £. We first control the direction
of the geodesic p(xo,a}) over which I'; is a small Lipschitz graph. Recall
from (6.43) that |a} —a;| < 10797, while (6.4) and (6.5) imply that |a; — €| >
9-1037. Thus |zg — a}| = 8- 1037 and

< |v(@o, ai) — (€, a)| + |v(4, af) — v({, a;)]
< 2lao — o — af[7F +2]a; — al]0 — a;| 7
<1072, (10.22)

We know from (2.7) that Angle(v(¢,a1),v(¢,a2)) = 2 so (10.22) gives a
good control on Angle(v(xg, af),v(zg,a3)), and (10.21) will follow as soon
as we check that for i =1, 2,

|v(o, a7) = v(¢, ai)]

Angle(v;, v(zo,a])) < 3A

when v; is any tangent direction to T'; at 2. (10.23)
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But this is true, and the proof is the same as for (10.14).

Next we are supposed to check (10.3), but the proof of (10.13) still works
in the present case, as explained near (10.20). Then (10.6) follows from (8.15)
(we apply it to each piece, and then sum), and (10.7) from the end of (9.22)
(again sum the two pieces). This completes our verifications for Configura-
tion 2—.

Now we switch to Configuration 3 = 24-1. This will just be a combination
of Configurations 1 and 2—. Here, possibly after relabelling, v is composed
of an arc 71 2 that goes from ¢} to c3, and an arc 3 from ¢ to c5. We select
an origin zp € 1,2 N D, and in fact the simplest is to take z¢y = ¢j. This way
we have three arcs, v1 = {c}}, 72 = 71,2, and 3, which we extend as before.
This gives three arcs, 7;, two that leave from zy = ¢j and one from ¢. Then
we apply the construction of Section 8 independently to the three 7, and get
small Lipschitz graphs I';. Finally we set ' =T UT'; UTs.

The curves I'1 and I's have a common endpoint xy, and by the proof
of (10.21) they make an angle larger than 110° at zo. We claim that

I's does not meet I'; U I's. (10.24)
Let us first check that for ¢ = 1,2,
dist(z, p(zo, a})) < 2A\|z — x| for z € T;. (10.25)

Let P be that plane that contains p; = p(xo, a]), and denote by 7 and ot
the orthogonal projections on P and its orthogonal complement; by (8.14),
7+ (2) is a A-Lipschitz function of 7(z) (hence also of z) on I';. This implies
that

T (2)] = |7t (2) — 7 (x0)| < M|z — 20| for z € T;. (10.26)
Next |7(2)| = (1—|7t(2)[*)'/? is a 2)\-Lipschitz function of 7(z) (differentiate
f(z) = (1 —22)"/2 near 1). Now set £(z) = 7(2)/|7(2)| (a projection on the
circle that contains p;); then

ey s T2 =)
)~ €= T

S Im(z) = =(z)]

NI
e |7r<z'>|’
7(2)] — ()] ‘

14+ Az — 20 |7 (2)]
|7(2) — 7(2')] '
> T 1ian BAIm(2) — 7(2)]
> (1= 5A)|m(z) — m(2")| (10.27)

by (10.26) and because |z — xg| < 2. This shows that w(z) is a Lipschitz
function of £(z), and (since 71 (z) and hence z are Lipschitz functions of
m(2)), we see that z is a Lipschitz function of £(z). In particular, £(z) # £(2/)
when z # 2/, and this implies that £(z) stays on the geodesic p; (instead of
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wandering somewhere else on the circle). Also (we don’t need this now), we
can use £(z) € p; to parameterize I'; in a Lipschitz way. But since £(z) € p;,

dist(z, pi) < [z = €(2)| < |z = 7(2)] + [7(2) — £(2)]
=|m(2)[ + (1= |n(2)]) < 2l (2)] < 2A|2 — 20| (10.28)
by (10.26). This proves (10.25); the same argument shows that
dist(z, p(£,a3)) < 2A\|z — €| for z € I's. (10.29)

This is where our choice of zy = ¢ makes our life more comfortable. Recall
from (2.7) that €; and €3 make an angle of at least 2 at ¢ (in the present
case, we have 3 curves €;, so the angle is in fact %’r) This implies that
Angle(v(¢,x0),v(¢,a})) > % — 1072, say, and then (10.24) follows rather
easily from (10.25) and (10.29) (but we skip the details and instead encourage
the reader to draw a picture).

So our set I' is composed of two connected pieces, I's and I'y UT'5, which
are disjoint (one could even check that their distance is at least 7/2). They
both satisty (10.2): for T's this is trivial, and for I’y UT's the proof is the same
as for Configuration 2—. They also satisfy (10.3), by the proof of (10.13) and
the remark near (10.20). Finally (10.6) and (10.7) are proved piece by piece,
and follow from (8.15) and the end of (9.22), as before.

This completes our verification for Configuration 3 = 2 4+ 1. Notice how-
ever that the net I' that we construct is far from optimal: in the present
situation, since ; and 2 make an angle of nearly 120° near ¢, we could
easily organize a much more brutal shortcut, and save a lot of length. But
we choose a way which is easier to handle with the same estimates as in the
other cases. The fact that our competitor is not so good will show up later,
when we will see that if our competitor looks like a cone over I' in a small
ball, we can easily improve on it.

We are almost ready for Configuration H. For each of the hanging curves
L; (those for which ¢} is not connected to ¢ or any other ¢}), we kept the
curve v; = L;, and the simplest is to take I'; = £; too. This is, if we are
ready to use the fact that if we took 7 and e small enough, depending on
A, the curve £; is automatically a A-Lipschitz graph. Otherwise, we apply
the construction of Section 8 to £;, as we did in the previous cases, to get a
Lipschitz graph T';.

Of course this does not look glorious: we should rather have cut off the
whole £; and saved a lot of length, but this is a way for us to make our
construction more uniform. Later on, we will notice with apparent surprise
that we can still cut off the geodesic p(c},a}) from a net of geodesics, and
save some length, and this will compensate the present laziness.
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There still may be one or two ¢} left, that are connected to something.
If they are connected as in Configuration 1, i.e., if there is only one ¢} left
and it is connected to £, let y; be the arc of £ N D that was selected above,
extend it to get an arc 7y; that goes from £ to a}, and let I'; be obtained by
applying the construction of Section 8 to 7,. Then let I' be the union of T';
with the hanging graphs T'; that we already selected. The proof of (10.24)

still works here and shows that I'; is disjoint from these curves.

When the remaining ¢} are connected as in Configuration 2—, we have
one index ¢ and two indices j, which we label so that ¢ = 3. We construct
I'y and I'y exactly as we did in Configuration 2—, and set I' =T'y UT's U T's.
Again I'; UT'5 does not meet I's = L3, by the proof of (10.24) (and you may
find it more convenient to choose zy = ¢} as the center of v where you cut
the curve).

We are left with the case when there is only one hanging ¢}, which we
call ¢}, and c] and c5 are connected as in Configuration 24. We did not
treat the case of Configuration 24 yet, but we shall do it later, and there
will be no loophole. The construction described below, performed with the
connected set that connects ¢}, ¢5, and ¢, will give a net of curves I'/; then
we take I' = T's UT", the local description (with (10.2) and (10.3)) can be
proved independently for the two pieces, and the fact that IV N T3 = @ will
be true, as in (10.24). See the remarks below (12.4) and above (12.14).

In all these subcases, we get a disjoint union of curves or nets that satisfy
the conditions (10.2) and (10.3), as in the single configurations and for the
same reasons.

Notice that for the first time we get curves that end at a point other than
¢ € L. This is not bad in itself; it means that our future competitor is rather
poor, but this is all right. In fact it means that Configuration H will not
happen.

Finally, (10.6) and (10.7) are checked piece by piece, with the same es-
timates as for the other configurations. This completes our discussion in
Configuration H.

The last simple case is Configuration 3—. In this case v = v Uy U 73,
three almost disjoint curves that start from the same origin zy. We add the
corresponding £; and get curves 7; from zg to the a;. Finally 7 = | J, 7;. We
apply the construction of Section 8 and get three curves I';, with the same
endpoints as the 7;. Finally we take I' = [ J, T';.

The fact that (10.2) holds, and in fact

the three I'; make angles larger than 110° at x, (10.30)
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is proved just like (10.21) above; we could also use the argument that will
be given for Configurations 3+, above (11.24).

As usual (10.3) holds for the same reason as in Configuration 1; see the
proof of (10.13) and the comment near (10.20).

Finally (10.6) follows from (8.15) and (10.7) from the end of (9.22); as
before we just have to add the three estimates for the three I';. This completes
our verification for Configuration 3—.

We are left with two more complicated cases, Configurations 2+ and 3+,
which we deal with in the next two sections.

11. Our net I' in Configuration 3+

In the two remaining cases, there is a small additional difficulty, due to
the fact that the construction of Section 8 was meant to cut curves and get
shorter Lipschitz curves, and we do not seem to have a corresponding simple
construction for 3-legged spiders. Instead we will distinguish between many
cases, and construct different acceptable nets of Lipschitz curves. Again we
want to be prudent, because we do not want to replace large portions of our
spiders if we do not save a comparable amount of surface later. As before,
this saving will also come from comparing cones with harmonic graphs, but
often we shall first try to make H!(¥) — H!(T') large.

Thus, rather than trying to make a nice general construction for spiders,
we shall use our construction for curves and try to fix by hand the obvious
problems near the center.

In this section we study the case of Configuration 34, which appears to
be the most complicated. Configuration 2+ will be slightly easier, and will
be treated in Section 12.

11.1. Preparation

We start with some notation. Recall that we constructed in Section 7 a
net ~, which is a possibly degenerate spider with three long legs and a short
tail 7,. The short tail ends at ¢, and the three legs end at points ¢}, 1 <7 < 3.
Denote by x( the center of the spider, i.e., the point where 3 meets ;2.
Also denote by 1 and 72, respectively, the arc of v1 2 between o and ] and
c5. Thus the three «; are essentially disjoint, and v = v, U (Uf’:1 %).
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As usual we extend the three legs 7; by adding the corresponding curves
L; C ENS that go from the ¢ to the a]; this gives three essentially disjoints
simple curves 7, C EN'S. We set

3
F="U <Um>- (11.1)

i=1

Let us apply the construction of Section 8 to each of the curves 7;; we
get a Lipschitz graph T'; with a small constant A\, with the same endpoints
2o and a. Then we set

= Or (11.2)

We like I'* because, as we shall see, it is a nice looking spiral. In Config-
uration 3—, we decided to take I' = I'*; here things will not be so simple,
because we have to take care of the special point £. In the mean time, let
us derive some simple properties of I'*. The next lemma is also valid in
Configuration 3—.

LEMMA 11.1. — For each small constant o < 1, we can find (c) > 0
such that if we take € < e(«) in (5.3) then

|x0—£|—|—Z|a —a;| < 2a°T. (11.3)

Proof. — We state this with quantlﬁers to avoid any suspicion of loop-
holes. In practice, we will apply this with a small constant o > 0, that will
be chosen later in this section, depending on various geometric constants
and our choice of A\. And we shall make sure that ¢ is so small that (11.3)
holds.

Let us apply Proposition 6.5, but with the smaller constant a?7; this
forces us to take £ even smaller than before, but this is all right. We get a
description of ENS\ (D4 (a?7) U D_(a?7)) as a union of simple curves £},
i € Z. Of course this description matches the description that we used for 7
(i.e., with the £;); in particular, the vertices z* that show up in (6.43) are
the same for o?7 as for 7, even when = € V5, because of the way we chose
them (below (6.40), so that |¢* — x| is minimal). Thus the part of (11.3) that
comes from the a; follows from (6.43) with a?r.

Now we concentrate on what happens in the spherical annulus A = SN
B(¢,27)\ B(¢, 7). Here the curves £/ lie at distances at least a>7/10 from
each other (by (6.44) and because the €; are far from each other in A); then
ENS has no triple point in A, i.e., points like g near which ENS is composed
of three short simple curves leaving from x(, that are disjoint except for zg.
This proves that 2o € B({,a?7), as needed. O
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We will do lots of little computations with small Lipschitz graphs over
geodesics, and the definition (8.14) that we gave in Section 8 is not so pleas-
ant. Next we observe that when we restrict to a small enough spherical disks,
(8.14) yields a definition of small Lipschitz graphs that looks a lot like the
usual one. Some notation will be useful. Set

B, :SQB(‘fo,)\) (114)

(X is the scale at which our approximation will start being less good) and,
for 1 <i<3,
e; = v(xo,a;). (11.5)
Also denote by P; the vector plane that contains p(zg,a}), by P;- its orthog-
onal complement, by 7; and 71'zl the orthogonal projections on P; and Pf,
and by p; and p;- the orthogonal projections on the vector lines through e;
and z( respectively. Notice that
I =m+mt =pi+pi + 7} (11.6)
Recall that
T'; is a A-Lipschitz graph over p(zo,a;). (11.7)
By (8.14), this means that (T'; is a curve with the given endpoints and that)
on Ty, m+(2) is a A-Lipschitz function of m;(z). Since 7; is 1-Lipschitz, we
immediately get that
is A-Lipschitz on T';. (11.8)

1
T

In addition, we claim that

10\
pi s 5 -Lipschitz on Bj. (11.9)

This is easy, but we prove it anyway. Let z1,20 € B; be given; for j = 1,2,
write z; = pi(z;) + w;, with w; L xg. Then |w;| < X (w; is a 1-Lipschitz
function of z;, null when z = zy), |p;i-(2;)|? = 1 — |w,|?, and hence (z, z;) =
(1 — |w;j|?)'/2 (it is obviously positive, since z; is close to z¢). Now

i (21) = P (22)| = [{@o, 21 — 22}
= (1~ Jwr[)2 = (1~ Jwa?) ']
10 10
NS j)\|w1 ’U}2| < 5 )\‘Zl — ZQl (11.10)
(just notice that the derivative of (1 —22)'/2 is x(1 — 2?)~!/? and estimate).

So (11.9) holds.
We deduce from (11.6)—(11.9) that for z,2" € I'; N By,
pi(2) = pi() = |2 = | = Ipi- (2) = pi ()] = |mi" (2) = it (21)]

<1—13)\>z— 7|, (11.11)
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and so (using (11.6)—(11.9) again)
I'; N By is a 3A-Lipschitz graph over p;(I'; N By) C Vect(e;);  (11.12)

the fact that
easily follows from (11.12), the fact that I'; starts from xo in the direction
of e;, and a continuity argument.

This description of I'y N By will be easier to use than the initial definition
with (8.14). There is also a converse that we want to record.

LEMMA 11.2. — Let IV be a curve that goes from o to af and coincides
with T'; on S\ B(xg, A/10). Suppose in addition that for some A € [1,100],

I, N By is a A\-Lipschitz graph over p;(T; N By). (11.14)
Then I is a 2AN-Lipschitz graph over p(xo,a}).

Proof. — We just need to check that on I, 7 (2) is a 2A\-Lipschitz
function of m;(z). This is true on I'N By, because the orthogonal projection on
the direction perpendicular to e; (call it p = I —p;) dominates the orthogonal
projection 73", so that

|73 (2) = mi ()] < |p(2) = p(2))|
< ANpi(2) — pi(2))] < AXN|m;(2) — m(2")| (11.15)

for z,2/ € TV N By. We also have this on IV \ B(zg,A/10), by definition, so
we just need to show that

mit(2) = m (7)) < 24 |mi(2) — mi(2))] (11.16)
when 2z’ € IV N B(zp,A/10) and z € I\ By =T; \ B;. By (11.8)
| (2) — i (w0)| < Alz — o (11.17)

S0
|mi(2) = mi(o)| > |z — wo| — |mi(2) — mi (wo)| = (1 = A)|z — wo|.  (11.18)
Similarly, (11.15) implies that
|7 (2) — 77 (z0)| < A2 — o] < AN?/10 (11.19)
and, since
|mi(2") — mi(z0)] < |2" — xo| < N/10, (11.20)
we get that
|mi(2) — m(2)| = |mi(2) — mi(xo)] — A/10 = (1 — X)|z — @] — A/10

1 8|z — wo|
>(1-XA—— — > —— (11.21
(1-2- 35l =l > 2L 1z
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because |z — zg| = A. In addition
|mit () — 7 (2)] < /\|z—x0| + AN?/10 < (A + AN/10)|z — x|, (11.22)

K3

and (11.16) follows, because & (A + A)\/10) 2AX when A > 1. O

Let us also record that for 1 < ¢ < 3, e; is quite close to the direc-
tion v(¢, a;) of €; at £:

lei = v(f, ai)| = [v(wo, a7) — v({, @)
vz, a7) = v(l,ai)| + |v(¢, ai) — v(L; as)]
2|zo — (/[ — a;| 7! + 2]a} — ail|€ — aj| 7
40270 — a7t
< 4a’r[5n(X)] 7 < 10732 (11.23)
by (11.3), then (4.2), (4.3), and (6.3).

It follows from (11.23) and the fact that I'; is a small Lipschitz graph
over p(zg,a;) (or more directly (11.12)) that

the three I'; make angles larger than 110° at xo. (11.24)

Notice that we only used (11.7) here, so (11.24) is also valid in the case of
Configuration 3—, therefore proving (10.30) and completing the discussion
for this case.

INCININ

11.2. Case A, where we force ['* to be centered at /

We return to Configuration 3+. Even though I'* = | J, T'; is nice, we shall
need to modify it because we want I' to contain £ too, and the success of the

construction will depend on various parameters such as the relative position
of ¢ and the I';.

In this subsection we try to modify I'* in the following simple way: we
shall select points z; € I';, rather far from the center, and replace the three
arcs of I'; between o and the z; with a spider Y centered at £ and composed
of geodesic arcs. This will turn out to work well when

3
)+ S — HAT)] > 32\ — €], (11.25)
i=1
We call this Case A. Incidentally, the constant 32 is computed backwards to
make the proof work; a mistake in the computations would probably force us
to make it larger, but this would not be bad. Let o > 0 be small (compared
to A), decide to choose € smaller than £(a) from Lemma 11.1, and set

r=a Yo —£],D =SSN B(xg,r), and 9D = SN IB(xg, 7). (11.26)
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The notation is the same as with the disks Dy centered at £+ above, but
this will be a different spherical disk and sphere. We promise no conflict of
notation. Notice that since |zo—¢| < 2a%7, we get that r = o~ zo—¢| < 2at
and

D C SN B(zg,2at) C B(xg,1073)), (11.27)

if « is small enough (we could also have relied on 7 being small), so we can
use the Lipschitz description (11.12) of T'; N D. In particular, each T'; meets
0D exactly once, at a point which we call z;. Set

3
I/=T;nD and I"=[JT}=T"ND. (11.28)
i=1
Thus I'/ is the arc of I'; that goes from zo to z;. Also set
3
I}=0;\D and I'=|JIj=T"\D (11.29)
i=1
(the exterior part); we want to replace I with the spider

3
Y =t ), (11.30)
i=1
which has the advantage of containing £. So we set

3
=1

We see I' as a three-legged spider centered at ¢, whose legs are the arcs I';.
We want to be able to apply the results of Section 9 to the I', so let us check
that they are small Lipschitz graphs.

LEMMA 11.3. — For1<i<3,T; isa 8A-Lipschitz graph over p(¢,al).

Proof. — Of course the difference between A and 8\ will not prevent us
from applying Section 9. This looks like Lemma 11.2, but we will need to
worry a little because we slightly change one endpoint and the orientation.
Fix 4; in addition to P; (the plane that contains p(zo,al)), 7, and 7~ (see
below (11.5)), we introduce the plane P; that contains p(¢, a}) and the cor-
responding projections 7; and 7;-. Notice that

|v(wg,al) —v(l,a})| <107 %a? (11.32)
by the proof of (11.23); then

T =T || = || - < 107 %ac. .
L7t <1022 11.33
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We first look outside of the disk Dy = S N B(xg, 10r). There fi =TI, and
the definition (8.14) says that

|7t (2) — 7 (2)| < Mm(z) — w(2)| < Nz = 2| (11.34)
for z,2' € T; \ Dy and, (if o is small enough compared to A), (11.33) yields
[T (2) —7TH(2)| < 2A\|7(2) — 7(2)]. (11.35)

Next we look inside Dy = S N B(xg, 500r). Recall from (11.27) and (11.26)
that

Dy C B(.’Iio,)\/2) - B(g,)\) (11.36)
On Do, we can use (11.12), which says that T'; N Dy is a 3\-Lipschitz graph
over (a part of) the line through v(xo, a}). By (11.32), it is also a 4\-Lipschitz
graph over the line through v(¢,a}). But we modified it, and replaced the
arc between xg and z; with the arc p(¢, z;). Let z be any point of p(¥, z;)

and v denote a tangent vector to p(¢, z;) at z, oriented in the direction of z;.
Then

|v —v(l, 2)| <210 — 2] < 2|0 — 20| +2r <2(1 4+ )|l — x0]
<4(1+aHa’r <1071N (11.37)
because z; € 0D, by (11.26) and (11.3), and if « is small enough. Next
[v(l, z;) — v(z0, 2;)| < 2|0 — xol|z0 — 25
=2/ —xolr ™t <20 < 107'A  (11.38)
because 7 = a~ !¢ — xo| (by (11.26)),
[v(xo, z;) — v(z0, a)| < 3A (11.39)
by the Lipschitz description (11.12), and
[v(@o, a7) — (¢, a})| < 2lwo — £|€ — af| ™!
<20z — £ (5n(X)) 7 <a? <1071A  (11.40)

because |z — | + |a; — af| < 2027 by (11.3), and |a; — £| > 10n(X) > 10*r
by (4.2), (4.3), and our choice of 7.

Altogether |v — v(€,af)| < 4\, p({,z;) is a 4 -Lipschitz graph over the
line Vect(v(¢,a})), and since we already know this about T'; N Dy, we also
get that fz N Dy is a 4)\-Lipschitz graph over that line. Now we can apply
Lemma 11.2, transposed for curves that start from ¢ (and, if we want to be
precise, with a radius a little smaller than A for the analogue of By), and we

get that I;isa 8A-Lipschitz graph over p(¢, a). a
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Next we check (10.2)—(10.7) for I (which we see as a union of three curves
T;). For (10.2), we just need to know that the three branches of Y make large
angles at £. But if v; denotes the tangent direction of p(¥¢, z;) at ¢, we know
from (11.37)—(11.40) that |v; — v({,a})| < 4A. Since the v(¢, a;) make 120°
angles, we see that

the three legs of Y make angles larger than 110° at £. (11.41)
Next we need to check (10.3), i.e. that each T'; makes a large angle with

the other curves £, that arrive at a}. The verification is the same as what
we did below (10.12).

Now we turn to the length estimates. First we want to compare H*(Y))
with H1(I'""), and to this effect we shall differentiate

3
f(z) = Zdistg(z, i) (11.42)

in the interior of D. First notice that for 1 < 7 < 3, distg(z, z;) is differentiable
on S\ {z;}, with

V. dists(z, z;) = —v(z, z;). (11.43)
Thus
3 3
1V £(wo)| = |3 w0, 20| = [>Jolor 26) — vt ) (11.44)
i=1 i=1

because ), v(¢,a;) = 0 (the three €; make 120° angles). But
(o, 2i) — v(¢, as)| < [v(@o, 2i) — v(wo, a7)| + [v(zo, a]) — v({, a;)]
<3A+107%a2 <4)  (11.45)
by (11.39) and (11.23), so
[V f(2o)| < 12A. (11.46)
Also, v(z, 2;) is differentiable, with |V, v(z, ;)| < |z — 2;| 1. For 2z € p(wo, ¢),
|z —ao] < € — x| = ar < r/2 (11.47)

by (11.26), so |V v(z,2;)| < 2r=! (because |z; — zo| = r). We sum over i,
integrate on a part of p(xg,f), and get that

|V f(z0) — Vf(2)| < 6r*distg (o, £). (11.48)
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Then we integrate again on p(zg, ¢) and get that
HI(Y) = f(0)
< f(xo) + dists (2o, £)|V f (wo)| + 6r~ " dists (2o, £)?
< f(zo) + [12) + 60~ ! dists (w0, £)] dists(zo, £)
< fmo) 4+ [12X + 9a] dists (20, £) < f(zo) + 13Mzo — ¢  (11.49)
by (11.46) (11.48)(11.47), and if « is small enough.

Notice that f(zg) < H(I"), because I'” is composed of three essentially
disjoint curves that go from x¢ to the z; (see near (11.28)). Hence

HUY) < f(wo) + 13Mxo — £] < HEHT) + 13\zo — ). (11.50)
We add the missing piece IV, and get

+
+

H'(T) = H'(T) + H(Y)
SHYT) +HU D) + 13N\ |zo — £ = HY(T*) + 13X\ |20 — €] (11.51)
by (11.31), (11.28), (11.29), and (11.50). So
H () - H'T) = H' (F) — HYT*) — 13X\ |zo — 4] (11.52)
Recall from (11.1) and (11.2) that
3
HI(7) = HUT) = H () + D IH (7:) = HI (L)) > 320w — ] (11.53)
i=1
because 7, and the 7, are disjoint, and the I'; are disjoint, and then by the
defining condition (11.25). We also have that
H(7;) —H (L) =0 (11.54)
by (8.16), so
H7) - 1) = H (), (11.55)
and now (11.52), (11.54), and (11.55) yield
H () = HH(T)
3

> JIHAE) — AT+ ST ) — HA ()]~ 1Mo — 4
> %[HIW)—’Hl(F*)]-i-%Hl(w)+2[H1(7)—H1(F*)]—13)\|mo—£|)
> L) — HHI)] + 1 () + T — £, (11:56)

The three terms are nonnegative, so (11.56) is stronger than (10.6).
We are left with (10.7) to check, i.e.,
WA, T) < CIH'(7) - HA (D)) + CIHI (D) — Hi ()], (1157)
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where 7 is the extended version of our initial net v (see (10.1)), which is an
extended spider with a short tail, and p will be discussed soon. We write

AR D) CAFY) VAR, TT) UATTT) (11.58)

(all symmetric differences), where ¥ = 7 \ 7, is the spider without its tail
(see (11.1)), T'* is our initial Lipschitz spider with the same ends, and T is
our final pick (centered at ).

We start with A(5,5) =7\ 7 = 7. Recall from (11.56) that H!(v,) <
8[H'(¥) — H(T')], which is dominated by the right-hand side of (11.57), so
this term is all right.

Next we consider A(T*,T). Since I'* and T" have the three exterior curves
I, in common, we are left with Y for ', and T for T'* (see (11.28)—(11.31));
e HYATHT)) <HNY) +HIT") < Tr + HH(T). (11.59)
The simplest case is when H!(T"') < 14r, say. Then
HYUAT*,T)) < 21r = 21a Yoo — £ < 3A Lo M (F) — HY(D)] (11.60)
by (11.26) and (11.56), which again is enough for (10.7).

If instead H!(T") > 14r, we can revise some of our earlier pessimistic
estimates, because

HY(Y) < Tr < %7—[1(1“”) (11.61)
and then, after adding the exterior part H!(I") to both sides,
HYD) < HY(F) — %”Hl(l‘”). (11.62)
This is better than what we had before (see (11.51)); it implies that
1
W)~ H(D) > W)~ H )+ H (). (1L63)
We forget the term H! ( ( *), which is nonnegative by (11.53), and
get that HI(I'"') < 2[H (¥ ) H(T)]; finally
HYAT*T)) < 7Tr+H(T") <220 Lo Y H 7)) — HY(D)) (11.64)

by (11.59) and the second part of (11.60).

We are left with the middle term A(¥,T*) from (11.58). Recall that T'*
was obtained by applying the construction of Section 8 to the three curves
7, that compose ¥ =7 \ 7¢. Thus by (8.16) and (8.5)

HI T\ SHI(F\LT) S CHHIT) —H (D)), (11.65)
where p is the union of the three geodesics p(xg, a}) that we used to construct
I'™*. Hence

HUAF,T) < COVHT™) - 1 (7)), (11.66)
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which we just need to bound by the right-hand side of (10.7) and (11.57).
We already did this for
HYUT*) — HYD) < HYAT*,T)) (11.67)

(by (11.64)), and since H*(I')—H!(p) is a part of the right-hand side of (10.7)
and (11.57) (and the other one is nonnegative by (11.52) and (11.53)), we
just need to control H'(p) —H!(p). Recall that p is the union of the geodesics
p(xo,al) with the same endpoints as the arcs of the spider I'*, while p is the
union of the geodesics p(¢, al) that correspond to the decomposition of the
spider I that we want to use. Since H'(p(¢, a})) < H(p(wo, a}))+dists (¢, o)
(a brutal estimate), we see that

H' (p) — H'(p) < 3dists (4, )
<Alzo — €] < dar < 227 HHIF) - HYD)] (11.68)

by (11.26) and (11.60) or (11.64). This completes our proof of (11.57) and
(10.7) and the verification of (10.2)—(10.7) in Case A; we may now turn to
the next case.

11.3. Case B: consequences of the definition on the geometry of ¥

Since we are happy in Case A, we shall now assume that its defining
condition (11.25) fails, i.e. that

3
H (ye) + > _[H'(7;) — HN(T3)] < 32\ |z — £]. (11.69)
=1

We shall call this Case B; see Figure 11.1 First notice that (11.69) implies
that

|1 — €] < H' () < 32X[ao — ], (11.70)
where z; is the point where «, is attached to . Recall that A is small, so
x1 lies relatively far from x( (compared to £). Without loss of generality, we
can assume that x1 € 1. The next lemma says that x; lies in the expected
direction (seen from ).

1)

v, S X0
Figure 11.1. The initial setting for Case B
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LEMMA 11.4. — The direction of p(xo,x1) at xo is such that
lu(zo, 21) — v(xo, at)| < 30V/A. (11.71)

Proof. — Here again, 30 is what we get from the proof, but a larger
number would still be fine. Suppose not. Since I'; is a A-Lipschitz graph
over p(zg,a}) (and by (11.12) to make things simpler), 1 € 1 \ I'1. Recall
how I'; was constructed. We started from a parameterization z : I — S of
71, selected a certain number of intervals I;, and replaced v; on I; by the
constant speed parameterization of the geodesic p; with the same endpoints.
See below (8.10). Here 1 € 71 \ I'1, so the parameter ¢ such that z1 = z(t)
lies in some I;. Write I; = I, and denote by a and b its endpoints. We
choose the names so that z(a) lies between zy and 21 on 77, and hence z(b)
lies between z; and a}. Also call y(a,b) the portion of 77 between z(a) and
z(b). See Figure 11.2 already.

Thus we replaced «y(a, b) with the geodesic p = p(z(a), z(b)) in the con-
struction of I';. There was a similar replacement of other arcs of 7; on other
intervals, and of course each time the length of the geodesic was no longer
than the length of the arc of « it replaced. See near (8.15). Because of this

H' (v(a, b)) —H'(p) < H'(m) —H'(T1)
<D [H () = HU (D)) < 32\ awo — €] (11.72)

because the three numbers H!(vy;) — H!(T';) are nonnegative (by (8.15)) and
by (11.69). We shall now complete this with a lower bound for H!(v(a, b)) —
H*(p) which yields the desired contradiction. The computations that follow
seem shockingly long to the author, who feels compelled to do them but
hopes the pictures will be convincing enough.

X0

0=0(z(a) (b))~

Figure 11.2. The point z; lies close to p because of (11.72)

Set d = |zg — x1|. Also let p denote the point of p that minimizes the
distance to x1; notice that since p € p C I';y and I'; is a small Lipschitz
graph,

[v(x0,p) — v(xo,a7)| < 2A. (11.73)
Then |v(xg, p) —v (0, 21)| = 30v/X—2X > 29v/X because we assumed (11.71)
to fail and if X is small enough; hence

lp — x1| > 29V \d. (11.74)
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We shall first assume that
p lies in the interior of p; (11.75)

this is supposed to be the main case, and pictures will be easier to draw. In
particular observe that the geodesic p(z1,p) is perpendicular to p at p.

We will feel better if we know that all the geometric arguments that
follow happen in a tiny ball, so let us check that

x1, z(a), and p all lie in B(zg,4d) C B(zq, 12a°7) (11.76)

(that is, a very small ball where we can expect curvature to play almost no
role).

First we claim that |z(a) — 2| < 2d. Suppose not, and recall that p C T'y,
I’y is a small Lipschitz graph over p(zg,a}), and p leaves from z(a) in the
direction opposite to xo. Then, as suggested by Figure 11.3 (and z(a) should
even lie further on the right), z(a) should be the point of p that lies closest
to z1, a contradiction with (11.75). So |z(a) — x| < 2d.

Then |p — xo| < 4d, because otherwise |p — z1| = |p — xo| — |xo — 21| >
3d > |z(a) — zo| + |xo — z1] = |2(a) — x1].

Figure 11.3. In this case already (and more if |z(a) — zo| = 2d), p = z(a).

Finally the second part of (11.76) holds because d < |rg — |+ |x1 — ] <
(14 32)\)|zo — ¢| < 3a27 by (11.70) and Lemma 11.1; so (11.76) holds.

We will need lower bounds for
0o = distg(z1, 2(a)) — dists(p, z(a))
and 0, = distg(x1, 2(b)) — dists(p, 2(b)).
Let us first consider d,. Recall that p(z1,p) is perpendicular to p at p; we

can choose orthonormal coordinates of R” where p, z(b), and x; lie in R3
(so that we won’t even need to write all the other coordinates), and

p=(1,0,0), z(b) = (cos sp,sin s,0), and z1 = (cost,0,sint), (11.78)

where in fact we can take s, = distg(z(b),p) and ¢ = distg(z1,p), maybe at
the price of changing the orientation. Then

(11.77)

|1 — 2(b)|? = | cos s — cost|? +sin® s, +sin?t = 2 — 2cos s, cost. (11.79)
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Here we shall not try to win much, because z(b) may be quite far and then
&p small. Let us just observe that

sp = distg(z(b), p) < distg(aj,p)
< HY(€) + distg(ar, a}) + dists (¢, o) + dists(zo, p)

< g + 25027 (11.80)
because a} is clearly the furthest point of I' from p, because H'(¢;) < %
(see the construction above (3.1); if we had forced the lengths of the €;
to be a little shorter, we would have a slightly better estimate now, but 7
looks natural), then by Lemma 11.1 and (11.76). Notice that setting ¢ = 0
in (11.79) corresponds to p = 21 and a computation of |[p—z(b)|%. If s, < 3,
then coss, > 0 and |z — 2(b)|? > |p — 2(b)|* by (11.79) (recall that t =
dists(z1,p) < 20a%7 by (11.76), so cost > 0). Then &, > 0. Otherwise, even

though cos s, < 0, —2cos s, < 5007 by (11.80) so
lp— 2(b)|? — |z1 — 2(b)|* = (—2cos sp)(1 — cost) € [0,50a>7t?]  (11.81)

by (11.80) (again recall that ¢ < 20a?7). In this region where the dis-

tances distg(p, z(b)) and dists(z1, 2(b)) are very close to /2, we can recover

them in a 3-Lipschitz way from |p — z(b)|? and |z; — 2(b)|?; we then deduce

from (11.81) that
5y = —150a27t? > —10*a’7d? (11.82)
because ¢ = distg(z1,p) < 9d by (11.76).

Next we estimate d,. The same computation as for (11.79) yields
|1 — 2(a)|* = | cos s, — cost|? +sin? s, +sin’t = 2 — 2cos s, cost, (11.83)

with s, = dists(p, z(a)). Now both s, and ¢ are small, by (11.76), so there
is no sign issue, and comparing with ¢ = 0 yields

2812
lz1 — 2(a)|? — |p — 2(a)|* = 2cos 54(1 — cost) > t* cos s, > =9 (11.84)

But (11.74) implies that ¢t = dists(x1, p) > 29v/\d, so (11.84) says that
lz1 — 2(a)|? — |p — z(a)|® = 28 - 29Nd? = 812)\d°. (11.85)

Set ap = 3 dists(z(a),p) and a; = 1 distg(z1,p); thus ag < ay by (11.84),

|p — 2(a)] = 2sinag and |1 — 2(a)] = 2sinay, and, by the fundamental
theorem of calculus,
|1 —2(a)|? —|p—2(a)|* = 2[sin? a; —sin® ayp] = 4(a; —ap) sinavcos o (11.86)
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for some a € [, 1] In addition ay < 5d because (11.76) says that |z —
z(a)] < 8d, so 2sin acos o = sin 2a < 2a; < 10d, and

8o =2(a1 — ap) = (2sinacosa) ™" (|z1 — z(a)]* = |p — 2(a)|?)
812)\d>
10d

> (10d) 7 (lz1 = 2(a)]” = Ip — 2(a)*) >
by (11.77) and (11.85). On the other hand,
dq + 0
= distg(z1, z(a)) + distg(x1, 2(b)) — dists(p, z(a)) — dists(p, z(b))
= distg(z1, z(a)) + dists(x1, 2(b)) — dists(z(a), z(b))
< H'((a, b)) — H(p) < 327z — £] < 32(1 — 320)"*Ad < 33Ad  (11.88)

>81Ad  (11.87)

because p lies between z(a) and z(b) on the geodesic p = p(z(a), z(b)), then
because y(a,b) goes from z(a) to x; to z(b), and finally by (11.72) and
because (11.70) says that d = |zg — 21| = (1 — 32)\)|zg — ¢|. We get the
desired contradiction by comparing this to (11.87) and (11.82).

We are not quite finished yet, because we still need to deal with the case
when (11.75) fails, i.e, when p = z(a) or z(b). Suppose first that p = z(a),
i.e., dist(z1, p) = |z1 — 2(a)| (as in Figure 11.3). We claim that

dist(z1,2(b)) > dist(z(a), 2(b)) — 10*a?7d>. (11.89)

Indeed, let H be the vector hyperplane through z(a) and perpendicular to
p. Since dist(z1, p) = |x1 — 2(a)|, =1 lies on H, or on the other side of H as
z(b). Call & the intersection of H with the geodesic p(z1, 2(b)). Also denote
by P the plane that contains p. It is easy to see that dist(§, P) < dist(z1, P)
(the geodesic p(x1,z(b)) goes through £ and ends on p); then dist(¢, P) <
|z1 — z(a)| (because z(a) € P). Then, since £ € H and the geodesic dis-
tance is a monotone function of the Euclidean distance, distg(&,z(a)) =
dists (¢, P) < distg(x1, 2(a)). The proof of (11.82) applies to £ too, because
of the orthogonality that comes from the fact that £ € H, and we get
that dist(¢, 2(b)) > dist(z(a), 2(b)) — 10*a?7d?, and (11.89) follows because
dist(z1, 2(b)) is at least as large. Then

H' (v(a, b)) > dists(z(a), z1) + distg(x1, 2(b))
> 29V/\d + distg (1, 2(b))
> 29V/\d + distg(2(a), 2(b)) — 10°a?7d?
=29V Ad + M (p) — 10°a’7d? (11.90)
because y(a, b) goes from z(a) to z1 to z(b), by (11.74) and because p = z(a)
and p = p(z(a), z(b)), then by (11.89) and because distg is a 10-Lipschitz
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function of dist in the current range. This is not compatible with (11.72)
(with the same sort of verification as above).

We are left with the case when p = z(b). We claim that
dist(z1, z(a)) > dist(z(a), (b)) — 10*a?1d>. (11.91)
We prove this as with (11.89), but with z(a) and z(b) exchanged. We arrive
to the information that dists(, z(b)) = distg(§, P) < distg(xq, 2(b)). We
may now follow the same argument above, with the proof of (11.82), and
get (11.91), but we may also observe that if p = z(b), then z(b) is not far
from z¢ and x1, hence the proof of (11.87) also allow us to get rid of the ugly

term —10%*a?7d?. Anyway, may conclude as in (11.90), and get the desired
contradiction. This completes our proof of Lemma 11.4. (|

11.4. Construction of I' in Case B

We stay in Case B (defined by (11.69)), and now we build the net T.
The general principle will be the same as in Case A, where we forced I'* to
make a small detour through ¢, but now everything will happen near x; and
(beause of (11.70)) relatively far from zq. Set

r = (100\) "2y — £],D = SN B(xy,7), and 9D = SN IB(xy,r). (11.92)
We choose this radius because this way,
100Ar = |1 — 4] < 32\ |xg — ¢| (11.93)
by (11.70), hence

|LEQ —1‘1| 2 |.’L‘0 —fl — |£—$1|
(1-32))
32X
and our construction will not involve I's or I's. Indeed, not only does |zg —
x1| > 2r, but Lemma 11.4, the fact that I'; is a small Lipschitz graph over
p(xo,al), and (11.24), imply that
dist(T'a UT'3, D) > 2r. (11.95)

So we leave I's and I'3 alone, but we change I';. Denote by 4 the arc of v,
between xg and x1, and by 75 the rest of 7, i.e., between z; and aj. See
Figure 11.4. Then set 7, = 4 and 75 = 5 U £1. Apply the construction of
Section 8 to 4 and 75; this gives two small Lipschitz graphs I'y and I's. Now
set y = U?:g 7, and the analogue of T'* is Uf:2 r;.

> (1 — 32|z — €] > |z — £ > 3r (11.94)

Since I'y and I's are small Lipschitz graphs starting from z1, they meet
0D exactly once, at points which we call z4 and z5 (see Figure 11.5). Denote
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Figure 11.5. The corresponding I';.

by Iy the arc of T'y between xy and z4, and set Ty= Iy U p(z4, £). Similarly,
denote by I the arc of I's between z5 and a}, and set I's = p(¢, z5) U T%.
We shall take L

I'=TyulsulyUTs, (11.96)
which is now composed of 6 pieces, but looks a lot like a 3-legged spider with
a small detour organized along one of its legs. See Figure 11.6.

I &I,

0z D& Ty 0Zs, )& I

Figure 11.6. Our choice of I" (this time, with £ below).
Our next task consists in checking that this description is right, and that
the angles are large enough.

LEMMA 11.5. — The curve L'y is a 103 \-Lipschitz graph over p(xo,£),
and Ts is a 103 \-Lipschitz graph over p(£,a}). In addition,

Ty and T's make an angle larger than = — 40V at £. (11.97)
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Proof. — Let us first consider I'y. A small advantage of the situation is
that by (11.3) and (11.70),

x1 and ¢ both lie in the very small ball B(zg, 3a7), (11.98)

so the Lipschitz geometry will be simpler. Set e = v(xg,x1); by the proof
of (11.12),
T’y is a 3\-Lipschitz graph over Vect(e). (11.99)
As for the geodesic piece, notice that
|v(24, 1) — v(24,0)| < 2|24 — 1|7 g — €] = 27|z — €] < 200\ (11.100)

by (11.92). Since z4 and z lie on T'y, (11.99) also says that |v(z4,21) — €] <
4\, and so |v(z4,£) —e| < 204\. In addition, the geodesic p(z4, £) is too short
to turn much: if v denotes a tangent direction to p(z4,¢) (oriented in the
direction of £), then |v —v(z4, )| < dists(z4,£) < 2|24 — €] < 2r +2|z1 — €| <
3r < 2|zg — ¢ < 4027 by (11.93), (11.94), and (11.3).

Altogether [v —e| < 208X, and Ty is a 208\-Lipschitz graph over Vect(e).
Now the easy part of the proof of Lemma 11.2 says that I'y is also a 103\-
Lipschitz graph over p(xg,¢).

Next consider f5. Here the proof is very similar to what we did for
Lemma 11.3, so we shall skip some details. We first control I's outside of
Dy = SN B(z1,10r), and for this we just copy the proof of Lemma 11.3,
with xo replaced with z1, up to (11.35) included. Then we look inside
Dy = SN B(x1,500r). We continue as before, but modify slightly the angle
estimates. We start with (11.37); instead we say that when v is a tangent
direction to p(¥, z5),

v —wv(l,25)| < 2|0 — 25| < 2/€ — 21| + 2r

< (AON) M — 2| < M lar <A (11.101)
again because the geodesic is too short to turn, and by (11.92) and (11.98).
Then, instead of (11.38) and as in (11.100),
[v(l, 25) — v(21,25)| < 2|0 — 21|21 — 25|71 = 2r |y — €] < 2000, (11.102)
and (as in (11.39))
[v(x1,25) —v(z1,a])| < 3A (11.103)
because z5 lies in the small Lipschitz graph T's over p(x1,a}) (and by the
analogue of (11.12)). Finally,

[v(@1,a7) — (6 a7)] < 2lar — £|€ — af| ™!
<2z — (X))t <a? <A (11.104)
as in (11.40), and because |z1 — £| < 6a%7 < 6a2 - 1073n(X) by (11.98)

and (6.3). Recall also that o can be chosen small, depending on A (see below
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Lemma 11.1). Altogether |[v — v(£, a})| < 205\, p(¢, z1) is a 205\-Lipschitz
graph over the line Vect(v(¢, a})). Since we already know something like this
about I'y N Dy, we also get that I'y N Dy is a 208\-Lipschitz graph over that
line. Then we apply the same version of Lemma 11.2, transposed for curves

that start from ¢, and conclude as in Lemma 11.3.

Now we prove (11.97). Because we already know that T'y and T'; are
103\-Lipschitz graphs starting from ¢, we just need to show that the two
corresponding geodesics leaving from ¢ are almost opposed. That is, it is
enough to prove that

lu(xg, ) — v(l,a’)| < 35V/A, (11.105)

say. But |v(xg, £) —v(xg, 11)| < 2|lw0—£| 21 —£| < 64X by (11.70), [v(¢, a})—
v(wg,af)| < X by (11.40), and |v(xg, 1) — v(wo,a})| < 30V/A by (11.71);

(11.105), (11.97), and Lemma 11.5 follow. O
We are ready to check (10.2). For the fact that
I's, I's and ', make angles larger than 100° at xg, (11.106)

we use (11.24) (for the angle of I's and T'3), and (for the two other angles)

the fact that f4 coincides with T'y near z, the proof of (11.24), and the fact
that by Lemma 11.4 the general direction v(xg, z1) of I'y is almost the same
as the general direction v(zg,aj) of T'y in (11.24).

Then the angle of [, and T's is controlled by (11.97), so (10.2) holds. The
verification of (10.3) is the same as usual; the fact that I's comes from
rather than zoy does not matter.

Now we prove the length estimates (10.6) and (10.7). First we want to
estimate the extra length for the detour through ¢, and use the function

f(z) = dists(z, z4) + distg(z, 25) (11.107)

defined on S. We can still use (11.43) to differentiate (away from 42z and
+25), and get that

—Vf(z) =v(z, 2z4) + v(z, 25). (11.108)
Then
IVf(z1)| = |v(@1, 24) + v(21, 25)|
< (@1, o) + v(@1, a7)| + |v(@1, 20) — v(@1, 24)]
+ |v(z1,a]) — v(x1, 25)|
(x1,20) + v(x1,0a])| + 6
(zo,21) — v(xo,a})| + |v(xo, a)) —v(x1,a])| + 6X

30V A+ 7A < 35VA (11.109)

< v
< v
<
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because z4 lies between xy and x; on a 3\-Lipschitz graph, for the same
reason for zs, and by (11.71) and (11.98) (as in (11.40), say). For i = 1,2,
v(z, 2;) is differentiable, with |V, v(z, 2;)| < |2z — 2;|~!. We shall use this for
z € p(£,x1). Then

|z — 21| < € —a1] <7/2 (11.110)

by (11.92), so |z—2z;| = /2 (recall that |z;—x1| = 7) and |V, v(z, 2;)| < 2r~!
We sum over ¢ and integrate on p(z,z1); this yields

IV f(z1) — Vf(2)] < 2r tdistg(z, 21) < 2r ' distg (¢, x1). (11.111)

We integrate on p(x1,¢) and get that
F(0) < f(xr) + distg(6, 21) |V f (21)] + 2~ distg (¢, 21)?
f(z1) 4 [35V A + 2~ dists (¢4, z1)] dists (£, 21)
(1) + [35V\ 4 300] distg (£, 1)
(1) + 36V — 21| (11.112)
by (11.109) and (11.92). But
HN (T4 UTs) = H' ( ) Hl(Fé)+H1(P(Z4af))+7il(ﬂ(& 25))
H!

<
<
<
<

f
f

by definition of the Fi, and
HY T, UTs) = HYT)) + HYTE) + f(21) (11.114)

because T'y is composed of Iy and an arc from z4 to x1, and similarly for T's,
SO

H (T4 UTs) <H (T4 UTs) + £(6) — f(a1)
HY T4 UTs) + 36VA[L — z4]. (11.115)

We add the contributions of I'y and I's and get that

5 5
HY D) < H! (U ri> +36VA[0—x1| < H (U 7,-) +36VA[0—x1| (11.116)

<
<

i=2 i=2
by (8.16). But ¥ = ~,U (Uz »7;) (an essentially disjoint union), and H#*(v,) >
|¢ — z1| (because 7, goes from £ to x1), so

HAT) < HA(F) — M (). (11.117)

This proves (10.6); we are left with (10.7) to check. Before we start, let us
record the fact that

= (100X\) " zy — £ < (1000) " 1H () (11.118)
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by (11.92). Next observe that for the symmetric difference A(%,T') of (10.4),

5
AF,T) Cy U (U A(fyi,Fi)> Up(z4,0) Up(zs, /) UT] UTE,  (11.119)

i=2
where I'} is the arc of I'y between z4 and z1, and similarly for I'Y. Since
H (ve) + H' (p(24,0) + H' (p(25,0)) + HN(TF) + H' (TF)
< H () + 107 < COVH () < 2C()HA(3) — HI(T)] (11.120)

by (11.118) and (11.117) and the right-hand side of (11.120) is controlled by
the right-hand side of (10.7), we are left with the four A(%,,I';). By (8.16)
and (8.5),

HUT\7,) < HY, \ ) < COOHTS) — H (p), (11.121)
where p; is the geodesic arc between the endpoints of I';, 2 < i < 5.

What we want for (10.7) is 2?22 H1(p;), where we may keep p; = p; for
i = 2,3, but for i = 4,5, p; is the geodesic with the same endpoints as the
corresponding arc I'.

We sum (11.121) over ¢ and get that

SO (AG L)

12000 (31 + %),  (11.122)

with
5 5
Si=> H) —H'(T) and Ty = [H'(p:) — H'(ps)].  (11.123)

=2 1=2

Notice that
5 ~

$1 =Y [HNTy) — HN (D)) < HNTY) + HH(TE)
i=4

<2C(N[H' (F) — HY(T)] (11.124)

because HY (') = H(T'y) + H'(T's) + H'(T'y) + H'(T'y) (since the union
in (11.96) is essentially disjoint), then because the other part of T';, namely
I';, is contained in T;, and finally by (11.120). This part is dominated by the
right-hand side of (10.7).
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As for X, first observe that p; = p; when ¢ € {2,3}. When i € {4,5},
the difference is that one endpoint is £ instead of x;. That is,

H (pa) — H' (pa) = H (p(w0, £) — H (p(w0, 21)) < distg(w1,£), (11.125)

we have a similar estimate for H!(ps) — H(ps) (just replace x¢ with a}),
and by (11.117)

Yo < 2dists(z1, £) < 3lzy — £ < 3H () < 6[H'(F) — HY(D)], (11.126)

which is also dominated by the right-hand side of (10.7). Since the main part
of the right-hand side of (11.122) shows up as H!(T') — H'(p) in (10.7), we
get the desired estimate for our last term Y, H'(A(%;,T;)). This completes
our proof of (10.7), and the verification of (10.2)—(10.7) in Case B, the last
case for Configuration 3+.

12. The net I" for Configuration 2+

As was observed at the end of Section 10, we still need to construct T’
in the case of Configuration 2+. As for Configuration 3+, we will have two
cases, one where we keep the same center xp, and one where we go directly
to L.

Recall that in the present case £ N 0D has only two points ¢} (or else
there is a hanging curve, to be discussed later, but which we ignore for the
moment), and +y is composed of a simple curve 77 2 that goes from ¢} to c3,
plus a simple curve -y, possibly reduced to the point ¢, that goes from ¢ to
a point of 1 2. We call this point z¢, and denote by ;, ¢ € {1, 2}, the arc of
71,2 that goes from z¢ to ¢;. We also denote by 7¥; the union of +; and the
arc L; C E that goes from c to a]. Finally set

¥ =7%U71 U7, (12.1)

We start as in Section 11, apply the construction of Section 8 to the three
curves 7y, 7o, and ., and this gives three Lipschitz curves I'1, I'e, and I's.
The simplest case, which we shall call Case A, is when

v(xo,al), v(zg,as) and v(zg, £) make angles

larger than 2% — 7 with each other. (12.2)
In this case, we set
I'=T,uUl'LUl}y, (123)

and we can check (10.2)—(10.7) right away. There is only one angle condition
to check for (10.2), at xp, and it is satisfied because we claim that

the three I'; make angles larger than g at zg. (12.4)
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The claim follows readily from (12.2) and the Lipschitz graph description of
the T';; see for instance the proof of (11.24).

If there was also a hanging curve in the configuration, then there are
three €; that leave from ¢, they make 120° angles there, and the hanging
curve is attached to the third point ¢i of 0D. As promised in the description
of Configuration H, we add the corresponding £; (just relabel if needed, and
call it £3) to I'. The graphs I'y and I's go essentially straight in the direction
of a7 and a}, and the same argument as for (10.24) shows that £3 does not
meet I'; Uy outside of D. It does not meet I'; or I's inside D either, because
it does not get inside D. So L3 does not meet I'1 UT';UT'3, and we feel better.

Next (10.3) holds for the same reason as before (see the proof below
(10.12)), and we are left with the length estimates. First of all, (10.6) holds,
simply by adding the three estimates (8.16) coming from the three curves.
The symmetric difference TA% of (10.6) is contained in the union of the
symmetric differences I'y A, T'o A%,, and T's Ay, so (10.7) follows by adding
the three estimates from the end of (9.22).

We may now switch to Case B, which is when (12.2) fails. We shall try
a set I' that goes more directly through ¢, without passing through zg; the
construction will look like what we did for Case B of Configuration 3+.

Let a > 0 be a small constant, which is allowed to depend on A and will
be chosen near the end of the section. We need an analogue of Lemma 11.1,
which says that if € is chosen small enough in (5.3) (depending on « and 7),

|z — £ + a1 — af| + |az — a3| < 20T (12.5)

The proof is the same as for Lemma 11.1, with only two branches coming
from the c¢. The reader may be worried about the special case when there
is a third point ¢§ € Dy (7), that leads to a hanging curve. But, as long
as we stay in the spherical annulus A = SN B(¢,27) \ B(¢,a?7), this third
curve L4 stays far from the other two and does not interfere with the proof
(which, as the reader recalls, consists in saying that we don’t meet a triple
point like zg).

We set (more or less as usual)
r=a Yag—£],D =SSN B(xg,r), and 9D = SN IB(xg,7) (12.6)

(compare with (11.26)); notice that r» < 2ar, by (12.5), so it is still very
small. Since I'y and I's are small Lipschitz graphs, they meet 0D exactly
once, at points that we call z; and z5. Set, for ¢ = 1,2,

I =0;\D, I =TI,ND, and I'; = p(£,2) UT% (12.7)
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Thus fi is a curve that goes from ¢ to a}, while I'; goes from z¢ to a}; both
curves go through z;. Finally we set

I =T,UT,, (12.8)

which we really see as a collection of two graphs. So we want to claim that
fori=1,2,

T; is a 8\-Lipschitz graph over p(¢, a}). (12.9)
Fortunately, the proof is the same as for Lemma 11.3, so we can skip it. The
point is that since z; and zy both lie on the small Lipschitz graph I';, the
geodesic p(z;, zo) is almost aligned with I", and then p(z;, £) makes a small
angle because (12.6) says that |xg — ¢| < r.

Next we claim that

I'; and T, make an angle larger than 5 at L. (12.10)
We start from the description of Proposition 2.1, which says that ¢; and €,
make an angle at least 2% at ¢ (see (2.7)). That is,
2
Angle(v(£,a1),v(¢,a2)) > ?ﬂ (12.11)
Let v; be a tangent direction to I'; at £. From (12.9) (and (11.12)) we deduce
that
lv; — v(l,a])| < 32A. (12.12)
In addition,
lo(l,a})—v(l, a;)| < 2|a;—al|[l—a;] ™' <4a?7(5n(X))"F <a? <\ (12.13)

by (12.5), (4.2), (4.3), and (6.3), and if « is small enough. Now (12.10) follows
from (12.11), (12.12), and (12.13).

Notice that the description of ' as a union of small Lipschitz graphs fol-
lows from (12.9), (10.2) (the control on the inside angles) follows from (12.10),
and (10.3) holds for the usual reason (see below (10.12)).

There may also be a hanging curve in the configuration. Then there are
three €; that leave from ¢, they make 120° angles, and the hanging curve is
attached to the third point of ENOD, i.e., c¢5. We add to I the corresponding
curve L3, and it is good to know that L3 does not meet I'. This is the case,
because the T'; are small Lipschitz graphs over the p(¢, af) (by (12.9)), which
go away from c§ and Ls; the proof goes as for (10.24).

So we just need to prove the two usual length estimates. For this we
introduce

f(z) = dists(z, z1) + distg(z, 22) (12.14)
and estimate its gradient
Vi(z)=—[v(z, 21) +v(z, 22)]. (12.15)
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We need to estimate some angles. Set
e1 = v(xg,ai), ea =v(xo,a3), and ez = v(xg, £). (12.16)
Observe that for ¢ = 1,2 and z € p(=xg, £)
[v(z, 2;) — v(x0, 2:)| < 2|2 — mo||wo — 2i| 7> <200 —wo|r™! =20 (12.17)
by (12.6), and
[v(xo, z;) — e;] = |v(xo,2;) — v(xo,al)| < 4N (12.18)

because z; € I';, which is a A-Lipschitz graph over p(x¢, a}) and by (11.12);
then

[V f(z) +e1 +ea] < 12X (12.19)
if a is small enough. Next we want to check that
(e1 + ez, —e3) <1—1072, (12.20)
First observe that for i = 1, 2,
lei = v(l, ai)| = [v(o, a7) — v (¢, ai)|
< (2o, a7) —w(f, a7)| + [v(£; a7) = v(¢, ai)]
<2 — x|/l —af| "t +a?
< 4a’r(5n(X)) ! + a? < 202 (12.21)
by (12.13), (12.5), (4.2), (4.3), and (6.3). Then by (12.11)

2
Angle(er, e2) > g — 5a2. (12.22)

Since (12.2) fails (by definition of Case B), the three vectors ey, ez, e3 do
not all make angles larger than %’T — 15 Since this is the case for e; and e,

we may assume, without loss of generality, that
2r 7
Angl <— - —. 12.23
ngle(e, e3) 3 10 ( )

If (12.20) fails, [e1 +e2| > 1—1072. Set 6 = 1 Angle(e1, e2); then |e; +eo| =
2 cos 6, hence

1 1072 T
< 5 <z +107% :
6 < arccos (2 5 ) 3 +10 (12.24)
Then

Angle(es, e1 + e3) < Angle(es, e1) + Angle(ey, e1 + e2)

2
< Angle(ez, 1) + 60 < 7 — % +107 <7 — o, (12.25)

- 117 —



Guy David
Angle(—es,e1 +e2) > 12—0, and cos(Angle(—e3,e; +e3)) <1—2-1072. Since
by (12.22)

2
ler + ea] = 2cosh < 2cos (g — 5;‘) <1+1074, (12.26)

(e1 + e2, —e3) = |e1 + ea| cos(Angle(—es, e1 + €2))
<(14+107H(1-2-107%)<1-1072 (12.27)

and (12.20) holds after all.

We may now return to the computation of V f(z). We integrate on p(zg, £)
and get that

£(0) = fzo) + / (V1(2), 0z 0)) dH ()

p(zo,¢)

< f(zo) +/( ) [(e1 + €2, —v(2,€)) + 10A] dH'(z)
P(Zo,

gf(x0)+/( , lfer s mes) #1002 (12.28)
p{To,

by (12.19) and because
A
[v(z,€) — e3| = [v(2,£) — v(x0,0)| < |z — 4] < 2% < 0 (12.29)
for z € p(xo, ), because geodesics do not turn too fast, by (12.5), and if «
is small enough. By (12.20) and the definition (12.14), this yields
dists (¢, z1) + dists (¢, z2)
= f(0) < flzo) + (1 — 1072 + 11)) distg (o, £)
< distg(ﬂio, Z1) + diStS(JJQ, Zg) + (1 — 1073) distg(.ﬁo,f)
SHYTY) + HH(TE) + (1 — 1073) dists (w0, £) (12.30)
because I'/ precisely goes from x to z; (see near (12.7)).
We are about ready for (10.6) and (10.7). Because of (12.1),
HLT) =M (ve) + H (T0) + H (32) > H () + 1 (T) + 1 (T2) (12.31)
by (8.16). Besides, by (12.8) and (12.7),

2 2

HUD) =Y HNT) =Y [HN(TY) + dists(xo, 2)] (12.32)

i=1 i=1
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and, since H(T;) = HY(T%) + HY(TY), we get that

2
H'(F) = HN D) = H () + Z [H!(T;) — H(T) — dists(zo, 2)]

v +Z H(IY) — dists (o, 2)]

> H (y,) — (1 — 1073) distg (o, £)
> 1073 H () = 1073z — ¢ (12.33)
by (12.8) and (12.7), and because H!(7,) > dists(wo, £) > |zo — £|.
This is better than (10.6). For (10.7), first observe that
r=a Yro -0 <103 HH(F) - HH D), (12.34)
which is therefore controlled by the right-hand side of (10.7). We write
FAT C ~, U (CJ %AFl) U (O FiAfZ) ) (12.35)
i=1 i=1

The first part is in order, since H*(v¢) < 103[H!(¥) —H ()] by (12.33). The
second one as well, because

HYUT,AT;) < HY DY) + HY (p(2,0)) < 5, (12.36)
and by (12.34). We are left with the
H(TAT) SHN (T \Ti) + HU T\
< CAT2[HYTy) — dists(zo,a])]  (12.37)
by (8.16) and (8.5) (recall that I'; goes from a; to 2¢). In turn HI(T;) <
HY(T;) + 2r and distg(4, a}) < dists(zo, a}) + 27, so
HU(T,) — dists(zo, al) < HY (L) — dists (4, a?) + 4r, (12.38)

which is also controlled by the right-hand side of (10.7). This completes
the verifications in Case B of Configuration 24. We finally constructed the
Lipschitz net T' in all cases.

13. Lipschitz projections near ENS

In Sections 10-12 we started from a net 7 of curves in ENS, in fact near
a point £ € KN L, and constructed a corresponding net I" of Lipschitz curves
on S.
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We did this for each ¢, and in some cases (Configurations H and 3 = 2+1)
independently for the two or three configurations present near £. For the
other curves £;, the ones for which both endpoints of €; lie in ViUV, = V\Vj,
the simplest is to set ' =7 = L;.

For this to work well, it will be better to know that the £; that do not get
close to L are A-Lipschitz graphs over the geodesics with the same endpoints.
This is why we made Remark 6.3 and the similar later ones. If we did not do
this, we still would be all right, but we would need to replace each of these
L; with the small Lipschitz curve I'; obtained from £; by the construction
of Section 8. We would also need to check that this replacement does not
alter much the angle conditions (10.3) with the other curves or nets T', but
nothing dramatic.

We now let v* denote the union of all the curves 7 that we have here, and
I'* the union of all the I" that we constructed. In the cases (as Configuration
3—) where some points of KN L do not lie in any constructed I', we just add
them to I'* as isolated points. Thus I'* can be decomposed into nets of one
to four small Lipschitz curves, plus maybe one or two points of K N L.

In this section we shall build a Lipschitz projection on I'*. In fact, the
term is a little inappropriate, because what we are interested in is a collection
of Lipschitz mappings, defined in small neighborhoods of the main connected
components of £ NS and with values in I'*. Let us explain what we want.

ProroSITION 13.1. — We can find a small number 73 > 0 and a Lips-
chitz mapping p, defined on
E. =E,(r3) = {z €S; dist(z, ENS) < 13}, (13.1)
with values in T'*, such that
lp(z) —z| <607 forx e E,, (13.2)
p is 30-Lipschitz on EL N B(z,273) (13.3)

for each x € E,, and
p(l) =¢ fort € KN L. (13.4)

Proof. — Here 7 in (13.2) is as above, but 73 and the Lipschitz constant
for p may depend very badly on the set E and the initial radius (here normal-
ized to 1) that we took in Section 5. So we will need to be careful when we
apply the proposition; what will save us is the local Lipschitz bound (13.3),
which will be used to control the measure of the image.

We cannot hope to get a continuous projection which is defined on the
sphere, because even if n = 3 and I'* is a great circle, there is a topological
issue (where do we send the two poles?). Also, I'* may have more than
one connected component, different domains of the sphere will be sent to
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different components, and so we count on small gaps in EF+, coming from
the fact that E2NS also is not connected, to patch the various local Lipschitz
mappings that we take.

The distance estimate (13.2) is rather poor (we can expect much better
in many cases), but it will be enough.

Anyway, we shall start our proof with the construction of local Lipschitz
projections defined on relatively large pieces of S, that we will then need to
patch together.

We shall use the description of £ NS near the curves &; that was given
in Proposition 6.5; in particular 7 in (13.2) and below is still coming from
this proposition, we assume that 7 < 1073n(X), and the £; are the curves
in ENS provided by the proposition.

Recall that we split Z into Zy (the indices for which €; has an endpoint
on KNL)and Z; =7\ Zy. When i € 7y, we shall denote by #(i) the point
of K N L where €; ends, and by D; the spherical disk D; = SN B(¢(3), T)
associated to £(7).

Recall also that when i € 7Zj, the curve L; given by Proposition 6.5
connects two vertices af and b} (that lie close to the vertices a; and b; of
¢;), while for i € 7y, L; start at a vertex a} but end at a point ¢ of 9D;.

For i € 7 we define a region of influence R; by
Ri=l.es: dist(z, £;) < 107 7 and dist(z, £;) < (.iist(z,[,].-)  (135)
for j € 7\ {i}
Then, when ¢ € 7;, we define a projection p; such that
pi : R; — L; is 3-Lipschitz, (13.6)
and
Ipi(x) — x| < 3dist(x, L;) < 7 for x € R;, (13.7)
where the second inequality follows from (13.5). For the moment, this is easy
to arrange because £; is such a nice curve.
Now it could be that £; shares an endpoint a* with one or two other £},
and to avoid conflicts, we require that when this happens we take
pi(z) =a* for z € RN R; = {x € R;; dist(z, £;) = dist(z, £;)}. (13.8)
This is easy to arrange: recall that at a*, the worse that can happen is that

two other £; end at a*, in a nice C! way and with large angles: see (6.27)
(for endpoints in V1) and (6.37) (for endpoints in V3).

Also, we claim that this is enough to guarantee that if j € Z;\{i} and if we
set p(z) = p;(z) for x € R;NB(a*,7) and p(z) = p;(z) for x € R;NB(a*, T),
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then

p is 10-Lipschitz on (R; U R;) N B(a*,T). (13.9)
The point is that if z € R; N B(a*,7) and y € R; N B(a*,7), then there is
a path from « to y in (R; U R;) N B(a*, T), of length at most 10|z — y|, and
that goes through some point z € R; N R;. Then p;(z) = p;(z) = a*, and
the fact that [p(z) — p(y)| < [pi(z) — pi(2)| + [p;(2) — p;(y)| gives the right
estimate.

Notice also that when 4,j € Z; are such that £; and £; do not share
an endpoint, then dist(R;, R;) > {5, by (6.44), (6.5), and (6.3). This means
that if we set p(z) = p;(2) for i € 7y and z € R;, not only the definitions are
compatible, but we get a Lipschitz mapping on Uiezl R;.

This will take care of most of the sphere, but the most interesting part
will be what we do near the two points of SN L. In fact, only the points
of KNL=SNXnNL matter, because if £ € SN L\ K, (4.1), (4.3), (6.3),
and (5.3) say that neither X nor E gets within 27 of /.

Let us review a little what we did in Section 7 and add some notation.
For each ¢ € K N L, we introduced a small disk D = Dy, then we wrote
the curves €; that end at £ as €q,...,&,,, introduced the components H; of
¢} (the endpoint of £;) in E N D, and then grouped the €; by components.
Let us denote by CC(¢) the set of connected components H; (we need a
different name, because some different indices ¢ may give the same compo-
nent). In Configuration 3 = 2 + 1, for instance, CC(¢) has two elements; in
Configuration 3+ or 3—, C'C(¢) has just one element.

For each ¢ € CC(¢), we have a connected set v = 7., which we eventually
completed into the larger ¥ = 7., and modified to get a net I' = I'.. We may
need to use the set Z(c) of indices ¢ € Zy such that af € ¢ (or equivalently
H, C C).

We also complete CC({): if £ lies in one the components ¢ € CC(¢) we
keep CC(¢) = CC({). Otherwise, we add the special component ¢, = Hy
(the component of £ in E N D, which is disjoint from the other ones), and
associate to it the degenerate curves 7., = {¢} and I'., = {¢}. We do the
same thing (i.e., add 7., = {¢} and T';, = {¢}) if £ does not even lie in E.
Then we set CC4(¢) = CC(€) U {ce}.

Also denote by C'C' the union of the CC(¢), £ € K N L, and CC the
union of the CCL(¢), £ € K N L. Finally, if ¢ € CC(¥¢), we set ¢(c) = £ and
D. =S n B(¢,7); this is unambiguous, because a single curve €; never has
both points of SN L as endpoints.

Our next step is the construction of mappings p., ¢ € CC,. When c is
one of the special components ¢, £ € K N L, we have set I'. = {¢} and now
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we take
De,(2) =€ for z € S. (13.10)
The more interesting case of ¢ € CC is treated in the next lemma.

LEMMA 13.2. — For c € CC({), set D(c) = DcUU,cz(.) Ri- There is a
mapping p. such that

pe: D(c) = T'c s 10-Lipschitz, (13.11)
|pe(x) — 2| < 10dist(x,T.) for x € D(c), (13.12)

and, for each i € I(c) and each index j € T such that af is also an endpoint

of L;, (13.8) holds with a* = a.

Proof. — Recall that a} is the endpoint of £; that lies far from D, (i.e.,
which is not ¢). Also, all the indices j € Z such that a} is also an endpoint
of £; lie in Z; and we already defined p on the corresponding R;.

The domain D(c) = DcUU; ez Ri is composed of a central disk, which
is so small that it is bilipschitz equivalent to a ball in R*~! with a constant
close to 1, plus a small number (between one and three) of appendices that
are thin tubes R; around C! curves £;, and leave from D in directions that
make large angles. The set T', itself is a net of at most four small Lipschitz
curves (that make large angles when they meet), and T'. reaches the same
af, i € I(c). In each case, the construction of p. is rather easy, but may be
painful to write explicitly. This is why we shall simply review the different
cases that we encounter, and hopefully the reader will agree that p. is not
hard to find.

In the case of Configuration 0 (when there is no curve near £), there is
no I' and we still do nothing.

When ¢ comes from a configuration of type 1, I" is a small Lipschitz curve
that goes from £ to a} (where i is the only index in Z(c)), and projecting on
T is easy. The additional condition (13.8) is not hard to get either, and we
could easily get a 3-Lipschitz function.

When c is of type H, and we consider one of the hanging curves, recall
that we started from 7, = £;, where ¢ € Zj is the index such that the hanging
curve contains ¢, and we kept I'. = 7%, = £;. In this case too p. is easy to
find.

When c is of type 2—, 7, is the union of two simple curves ~; that leave
from a same center xg, and ', is the union of two Lipschitz curves I'; with
the same endpoints z¢ and a}, and that make a large angle at zo. Here too
Pe IS easy to construct.

When ¢ comes from a configuration of type 3 = 241, we combine the types
1 and 2— above. We don’t even need to know that the two corresponding sets
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I, are disjoint, because we build two independent projections p. on different
sets I'.. The fact that the p. share a piece of their domains of definitions
will be compensated by the fact that we will later restrict the p. to disjoint
domains at positive distances from each other.

When c is of type 2+, I'. is either a truncated Y that connects ¢ to a}
and aj (where Z(c) = {4,j}), or composed of two small Lipschitz graphs
from ¢ to a] and a;j (and thus make a large angle at ¢. This case and the
next one are just a little harder to treat than the previous ones, but we shall
only comment on the last one because it looks uglier.

When c is of type 3—, I'. is a small Lipschitz spider that goes from a
center xg to the three relevant o, and is not hard to project on.

Finally, when ¢ comes from a configuration of type 3+, I'. is either a small
Lipschitz spider that goes from ¢ to the three relevant a; (as in Case A), or
a slightly more complicated union of 4 small Lipschitz graphs, coming from
Case B. As in the previous cases, all the angles between the curves are larger
than /2.

Let us only explain how we find p. in the apparently most complicated
Case B of type 3+. Here (see Figure 13.1) I'.. is composed of two long curves
I'y and T's, that connect a center zy to exterior points a3 and a3, a short
curve Iy (previously composed of a Lipschitz curve and a piece of geodesic,
but we put them together) that goes from z( to ¢, and a third long curve
(again originally composed of a geodesic and a piece of curve) I'y from £ to
aj. As in the previous cases, all these curves I'; are small Lipschitz graphs
over the geodesics p; with the same endpoints, and they make large angles
where they meet.

Figure 13.1. The curve I' =T,.

We will cut D(c) into a few simple regions D;(c), and then take a simple
definition for p. on each piece. Set p = U?:o pi, and then

Di(c) = {x € D(c); dist(x, p1) < %dist(m, P\ pl)} . (13.13)
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For i € {2,3}, choose

dist(z, p;) = dist(z, p)

Di(©) @€ D(e); and dist(z, p;) < %dist(x,po Up) [’ (13.14)
and finally set Dy(¢) = D(c) \ U?:1 D;(c). See Figure 13.2 for a sketch of
our four domains (sitting in the two-dimensional sphere S) when n = 3. The
case when n > 3 is not different; the common boundaries just have a larger
dimension, and the three domains D;(c), 0 < ¢ < 2, now have a (n — 3)-
dimensional common boundary that goes through xg (when n = 4, think
about a curve through zo that crosses the plane of the picture).

a

Figure 13.2. The domains D; = D;(c).

Notice that the D;(c) cover D(c), and also that for i € {1,2,3}, R;\ D C
D;(c). The strange choice of a constant 1/3 is to make sure (as in the picture,
and because the p; make large angles, as well as the directions of p;, p2, and
p3) that Dy (c) does not get close to Do (c)UD3(c). Because of this, we can find
5-Lipschitz projections p; : D;(c) — I'; such that |p;(z) — z| < 2dist(x,T;)
for x € D;(c),

pi(xz) = xy when i € {2,3,0}

and = € D;(c) N Dj(c) for some other j € {2,3,0}, (13.15)

and
pi(z) =€ when i € {0,1} and x € Dy(c) N Dy (c). (13.16)
Of course this would have been hard to arrange if D;(c) N Dy(c) had been
too close to Dg(c) N (D2(c)U Ds(c)), but otherwise it is easy. See Figure 13.3
for a hint of what the desired projections should do, and Figure 13.4 for
an equivalent model where the p; could be defined explicitly. We can also

make sure that for 1 <4 < 3, p;(x) = af on R; N R;, where j is any index
J € T\ {i} such that £; and L; share the endpoint a;.
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Figure 13.3. How the mappings p; (and hence p.) act.

a,
0, D(©)
aj
DZ(C) X0 QO Ql
Ds(c) ! Dy(c)
ay” 3

Figure 13.4. The same picture after a small change of variable.

The mapping p. defined by p.(z) = p;(z) for € D;(c) does the job.
In particular, (13.12) can be arranged on each piece D;(c) separately, and
(13.11) is true because when = € D;(c) and y € D;(c) for some j # 1,
the shortest path from x to y in D(c) passes through boundaries where the
definitions coincides. That is, if this path « goes for instance from D;(c) to
some Dy(c) to D;(c), it goes through points z € D;(c) N Dy(c) and then
z" € Dy(c) N D;(c), and

Ip(z) — p(y)| = lpi(z) — p;(y)]
< Ipi(@) = pi(2)| + lp(2) — pe()] + Ip; (2) — pi ()]
< Slength(y) < 10[z — y| (13.17)
because p;(z) = pr(2), pr(2’) = pj(z’), and because the geometry of D(c) is

not that complicated. As was announced earlier, the other cases are simpler;
Lemma 13.2 follows. O

At this point we have defined local projections p;, ¢ € Z; and p., c € CCy,
and now we should glue them to make the mapping p of Proposition 13.1.
The interesting part for the gluing will be near the points £ € K N L, where
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we want to attribute the points of EN Dy to the various ¢ € CC4(¢) (see
below (13.9)). For this we need a separation lemma.

LEMMA 13.3. — We can find a small number 13 > 0 and closed disjoint

sets Ty, c € CCL(€), such that
cCT.CEND force CCL(L), (13.18)
ENDC U T, . (13.19)

ceCC(£)
and

dist(T,, Twr) > 1073 for ¢, € CCy({),c # . (13.20)
Proof. — Again, we can make no claim on the size of 73. It may be

extremely small, and it depends on F and our earlier choice of radius for S
(now normalized to be 1).

This is mostly question of connectedness (say that each component c is
the intersection of the open and closed sets in N D that contain c¢), but we
shall cheat a little and use the fact that by (5.4),

HYEND)<HYENS) < +oo. (13.21)

We try an argument by hands, with strings of small balls. Set £y = EN D.
For each integer m > 0, we select a set X(m) C Eg which is maximal under
the constraint that |[x — y| > 27™ for x,y € X(m),  # y. Thus the balls

B(z,27™), x € X(m), cover Ey. Set

Xo(m) = {z € X(m); B(x,2~™"") meets some c € CC({)}, (13.22)
and X1(m) = X(m) \ Xo(m).

Declare a point € Xj(m) bad, or useless, if there is a radius r €
(2=™,27™*1) such that Ey N dB(x,r) = (). Denote by X,(m) C X;(m) the
set of bad points, and set X,(m) = X1 (m)\X,(m). Notice that if z € X (m),
the radial projection 7, defined by 7,(z) = |z — x| maps B(z,2~™"!) onto
a set that contains (27™,27™%1) (otherwise, x € X;,(m)); hence

27 < HY (7w (Eo N B(z,27™))) < HY(Eo N B(z,27™%Y)).  (13.23)
Because of this, the cardinality of X (m) is
B(Xg(m)) <2m Y HY (EonB(z,27mth) < C2"H(Ey)  (13.24)
2€X,(m)
because the B(x,27™T1), 2z € X(m), have bounded covering.

By “m-string”, we shall mean a finite sequence of points z; € Xo(m) U
Xy(m), 0 < k < kmag, such that, if we set B, = B(xy,27™%2) for 0 < k <
Kinaz, We have that

Bi N By41 N Ey #* 0 for0< k< kmaz- (1325)
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First suppose that for some choice of ¢ and m, there is no m-string as
above such that By meets some component ¢ € CC4(¢) and B,,, . meets
some other ¢/ € CC(¢). In this case, we can define the T, as follows. For
each z € X(m), choose r € (27™,27™F1) such that Ey N dB(z,r) =0 and
set B, = B(x,r); then set

E,=Eyn |J B (13.26)
z€Xyp(m)

This set is both open and closed in Ejy, because each B, is. In fact, for each
x € Xp(m) there is a minuscule 7(z) > 0 such that

dist(Eo N By, Eo \ By) > 7(x). (13.27)

Next, for ¢ € CC, (¢), we denote by T'(c) the set of points y € Ey \ Ej that
can be connected to ¢ by an m-string. This last means that we can find an
m-string as above, such that By meets ¢ and By, contains . The sets
T(c), c € CC4 (), are disjoint, because if T'(c) meets T'(¢), then there is an
m-string that connects some point of ¢ to some point of ¢’. They are also
closed, because each T'(c) is in fact a finite union of sets (Ey \ Ey) N By,
and we made sure to take closed balls By. Similarly, if we denote by T, the
set of points of Fy \ E} that cannot be connected to any ¢ € CC(¢) by an
m-string, this set is also the union of the B(z,2™%?), x € X,(m) that meets
it, and it is closed and disjoint of the others.

Finally, each T'(c) contains the corresponding c. Indeed, let y € ¢ be
given. We know that the balls B(x,2™), z € X (m), cover Ey, so we can find
xr € X(m) such that y € B(x,2™). Then x € Xo(m), by (13.22), so it not
bad. For the same reason, y ¢ Ej, because no ball B, meets c. We use the

single B(z,2™%2) to connect y to itself, and this shows that y € T'(c).

Now set T, = T'(c) for every component ¢ except one, and T, = T'(c) U
E, U Ty for the last one. It is a little nicer to choose the special component
¢ = Hy as the last one, if ¢, € CC({), because this way p. sends the whole
T, to £. But really it does not matter.

The T, are disjoint and closed by construction. They cover Ey by con-
struction too, and of course they lie at positive distances from each other,
s0 (13.20) holds for some 73 > 0. Thus the lemma holds in this case.

We are left with the case when for some ¢ and all choices of m, we can
find two different components ¢, ¢ € CC, (¢) that can be connected by an m-
string. Since CC (¢) has at most 4 points, we may assume that for a sequence
of m that goes to 400, the components ¢ and ¢’ are the same. Choose an
m-string that connects ¢ to ¢/, with a minimal number of elements. Then
the same ball By does not appear twice in the sequence (otherwise, drop all
the intermediate balls), and similarly By is the only ball that meets ¢ and
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By, is the only By, that meets ¢’. All the other By, are thus centered at
points i € X4(m), and 50 kpmer < C2™ + 1, by (13.24).

For 0 < k < ko — 1, connect zy, to ;41 by a line segment. This gives a
curve I',,, that goes from ¢ to ¢’. Since |rj1 — xx] < 27™F3 because By
meets By, we get that length(T,,) < 8(C + 27™). Also, every point of T';,
lies within 2=™13 of Ey, because B, meets Fj.

We can parameterize I, with a mapping 2, : [0,1] — [';,, in such a way
that z,, is 9C-Lipschitz; then we can extract a sequence for which the z,,
converge to a limit z, and z([0, 1]) is a connected set in Ey that goes from ¢
to ¢’. This contradiction with the fact that ¢ and ¢’ are different components
proves that our second case does not happen, and Lemma 13.3 follows. [

We may now return to the construction of a global projection p from the
various p;, @ € Z; and p., ¢ € CCy. We now give a zone of influence to each
¢ € CCy; for i € Ty, this was already done in (13.5).

Sofix € KNLand ce CCL({). Set

T) ={x € D,; dist(2,T,) <373} and R =TS U | |J Ri|. (13.28)
i€Z(c)

Here R; is still defined by (13.5), and D, is the disk D associated to the
¢ € KN L such that ¢ € CC4(¢). We should be able to avoid confusion
between R;, with i € Z and the larger R., ¢ € CC. The definition may look
a little strange, but away from D, we are happy to keep |J, €Z(c) R;, and not
more (to avoid complications with the gluing), and in D it is better to add
a small neighborhood of T,, because we want to cover a small neighborhood
of ENS. Our domain of definition will be

R, = (U Ri> ul U R = (U R¢> ul U 7 (13.29)

i€y ceCCsy ieT ceCcoy
and we want to set
p(x) = pi(z) for i € Z; and = € R;, (13.30)
and
p(x) = pe(x) for c € CC1 and z € R. C D(c), (13.31)

where the inclusion is easy (compare (13.28) with the first line of Lemma 13.2)
and implies that p.(x) is defined. We need to check that all this is compat-
ible, and produces a Lipschitz function. We will cut Ry into three regions
that overlap, and first check things on each one.
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We start with Ry (1) = |J;c7 Ri (where we also include Zp). Let us first

check that

if 4,j € T are such that dist(R;, R;) < {5, 13.3
then £; and £; have a common endpoint a*. (13.32)

Suppose i # j and dist(R;, Rj) < 107'7. Then dist(L;,£;) < 7 by (13.5),
dist(¢;, €;) < 27 by (6.44), and by (6.5) and (6.3) €; meets €;. This means
that they have a common endpoint, which we call a.

We can say a bit more. If ¢ or j lies in Z;, then dist(a, K N L) > 10n(X)
by (4.1) and (4.3), and Proposition 6.5 says that £; and £; have a common
endpoint a*, with |a* — a| < 10727 (see (6.43)). Notice that the case when
1,7 lie in Zy and end at the same ¢ does not arise, because in this case

dist(R;, R;) > dist(L;, £;) —2-107'7 > 8-107 7 (13.33)
because the £; do not get inside D, start from points ¢ and ¢} such that
ler — c]*| > 7, and go away in the direction opposite to £. For a proof,
use (6.46) and the fact that €; and €; make angles of at least 120°. The case

when 4,7 € Zp but come from different £ € K N L goes like when ¢ or j lies
in Zy; so (13.32) holds.

Because of (13.32) and our precautions (13.8) and below (13.12), not
only p;(z) = p;j(z) when z € R; N R;, but the proof of (13.9) shows that
the mapping p on R (1) that we construct in this way is locally Lipschitz,
in the sense that

p is 30-Lipschitz on R, (1) N B for every ball B of radius 10~ ?7. (13.34)
Next we pick £ € K N L and consider
R (2,0) = Ry N A, with Ay = B(¢,27)\ B({,27/3). (13.35)

Let us apply Proposition 6.5, but with the smaller constant 7/ = 7/3. We
get a nice description of ENS in the complement of B(¢,7")U B(—£,7'), but
we only care about what happens on the annulus A = B(¥,37) \ B({,7/3).
We get that

EnsnA= |J £ina, (13.36)

i€z (0)

where Z(¢) is the set of concerned indices i, i.e., those for which £ € €;, and
the £} are nice C! curves that go from dB(¢,37) to OB(¢,7/3).

On A\ B(¢, 7), we have two representations of the same set ENA\ B(¢, 1),
given by applications of Proposition 6.5 with different values of 7, but which
must coincide anyway. Thus the £ coincide with the £; on A\ B(¢, 7). We
may assume that we chose the labels correctly, so that in fact

L;NA\B(l,7)=L,NA\B((,7) forieI(l). (13.37)
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Set v; = L, N AN D. By Proposition 6.5, v; is a C* curve that starts at ¢}
(the only point of £, N 9B, 1) = L; N IB(¢,7)) and goes to IB(¢, 7/3).
Since each L] stays close to the corresponding €;, we also have that

dist(vi, ;) = 7/3 fori,j € Z({),i # j. (13.38)

For each i € Z(¢), ¢} lies in some component ¢ € CC(¢), which we call
¢(7). Then
¥ ND Cc(i) C Ty (13.39)
because £, N AN D is a connected subset of £ N D that contains ¢}, and
by (13.18). Since the T, are disjoint and contained in F, and the ~; already
cover ENAND (by (13.36)), we see that the only T, that meet AN D are
the T.(;), and in addition, for each ¢

T.yNAND = U s (13.40)
JEL();c(g)=c(i)
Recall from (13.28) that 7" is just a 373-neighborhood of T, in D. Then
the only 7:F that meet Ag N D are the T:Ei), and each T;Ei) is just the 373-
neighborhood in Ag N D of the U;cz(p).c(j)=c(i) V-

Now R (2,¢) is the union of at most three pieces Ry (2,¢,1), i € Z(¢),
where each R (2, ¢, 1) is composed of R;, plus the 373-neighborhood in AgND
of v;. Each R (2,¢,4) is contained in a single R, (and meets no other), hence
p is well defined on R (2,¢,i) by (13.31), and 10-Lipchitz by Lemma 13.2.
In addition

dist(R(2,0,1), Ry (2,0,5)) > 7/4 (13.41)
by (13.38), so p is also Lipschitz on their union R4 (2,¥¢).

We turn to our last sets

Ri(3,0)=R . nB4r/5)c |J TF (13.42)
ceCCy
by the second part of (13.29) and because the R;, i € Z, never go that far
inside D (since the £; don’t meet B(¢,7)). By (13.20) and (13.28),
dist(T.", T.7) > 473 when ¢ # ¢, (13.43)

and p is well defined and 10-Lipchitz on each T (by Lemma 13.2), so p is
well defined and Lipschitz on R, (3,¢), and 10-Lipschitz on each open ball
of radius 273.

At this point we have a coherent definition of p on R4, and proved Lips-
chitz bounds for p on the various pieces that compose R . These pieces have
sufficient overlap, so we get the local Lipschitz property (13.3) required for
Proposition 13.1. Then p is automatically Lipschitz on R, although perhaps
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only with the very bad norm 7'3_1: if x,y € Ry, either |z —y| < 271 and then
p(z) = p(y)] < 20z —yl, or else |p(x) = p(y)] <2 <71 'z —yl.

Next we check that the domain E promised in Proposition 13.1 is con-
tained in Ry . Let z € E be given, and pick € ENS such that |z—z| < 73. If
x lies in a disk Dy = SNB(¢, 7), then (13.19) says that it lies in some T, and
z € T:F by (13.28), unless by bad luck z falls outside of D,. But if this hap-
pens, dist(z,0B(¢, 7)) < 73, (13.36) and (13.37) say that dist(z, £;) < 273
for some i € Z({), and then z € R;. In both cases, z € Ry (see (13.29)). The
other case is when z lies in no Dy. Then it lies very close to some £; (by
Proposition 6.5), and then z € R; C Ry by (13.5) and (13.29). So E; C Ry.

Next we check (13.2). Let z € Ry be given. When z € R; for some i € 7y,
(13.2) follows from (13.30) and (13.7). Otherwise, z € R, for some ¢ € CC.,
and

Ip(2) — 2| = [pe(2) — 2| < 10dist(z,T'c) (13.44)

by (13.31) and (13.12). Let £ be such that ¢ € CCy(¢). If z € T.}, then
z € Dy (see (13.28)), and dist(z,I'.) < 27 because every I'. contains at least
a point in Dy. In this case (13.2) follows from (13.44).

By (13.28), we are left with the case when z € R; for some i € Z(c), and
we still want to evaluate dist(z,I';). Let £ be such that ¢ € CC4 (¢); notice
that in fact ¢ € CC(¢); the special components ¢, that were artificially added
don’t come with a set Z(c).

We shall now use the fact that for all the components ¢ such that ¢ € Z(c),
I'. contains a small Lipschitz graph I', over some geodesic p = p(a},z), and
where the other endpoint x lies in D. This is why we did not remove £; in
Configuration H, for instance.

We want to see where I' is localized. Recall that " was constructed by
applying Section 8 to a curve v with the same endpoints. There are a few
ways in which v was chosen, depending on the configuration, but in all the
cases vy was contained in £; U D. In the algorithm of Section 8, I" is obtained
from + by replacing some of its sub-arcs with the geodesics with the same
endpoints; because of this,

I' C Hull(v) C Hull(£; U D), (13.45)

where the convex hulls Hull(vy) and Hull(£; U D) are defined in terms of
geodesics in S. There is no ambiguity about geodesics, because we shall see
that £;UD stays quite close to €;, which is a geodesic of length at most 7 /2.
More precisely, (6.46) says that dist(z, €;) < 10787 for = € £;, and since /
is an endpoint of €;, we deduce from (13.45) that

dist(z,€;) <27 forz €T (13.46)
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Let us check that this implies that
dist(z,T) < 57 for z € €;. (13.47)

Since I' starts from a} (very close to the endpoint a; of €;, and ends in D,
we can assume that 7 < | — £| < |af — £|. Since T is connected, we can find
y € I such that |y — ¢| = |z — £, and by (13.46) a point z € €; such that
|z —y| < 27. Then ||z — | — |z — {|| = ||z — €| — |y — {|| < 27, and hence
|z — x| < 37 because = and z both lie on the geodesic €; that starts from ¢.
Finally |y — x| < |y — 2| + |z — | < 57, as needed for (13.47).

We may now return to z € R; and chase points. By (13.5), there is a point
21 € L; such that |21 — 2| < 10717. By (6.46), we can find 23 € €; such that
|22 — 21| < 10787, By (13.47), we can find z3 € I such that |23 — 22| < 57.
Since I' C T, we get that

dist(z,T'.) < dist(z,T') < |z — 23] < 67, (13.48)
and (13.2) follows from (13.44) in this last case as well.

Finally we need to check (13.4). When ¢ € ¢ for some ¢ € CC(¥), we
made sure to keep £ € T'.. Then p.(¢) = £ by (13.12), and (13.4) follows
from (13.31). Otherwise, we added a special component ¢, = H; to CC(¢),
and took p.,(z) = ¢ for all z, in particular z = ¢. This completes our proof
of Proposition 13.1. ]

14. Our first competitor and the contribution from the thin
gluing annulus

We now have a net v* of curves in £ NS, another net I'* of Lipschitz
graphs, and (by Proposition 13.1) a projection p from a neighborhood E of
E NS to the net I'*. We want to use these to construct a first competitor for
E. We use the following lemma to choose another very small number 74 > 0.

LEMMA 14.1. — Set

A(t) = B(0,1)\ B(0,1 —t) for0<t<107'. (14.1)
We can find 14 > 0 such that
% € E,(r3) forxze EN A(21). (14.2)

Proof. — Here E (73) is defined by (13.1), and 73 was chosen in Propo-
sition 13.1. Of course we don’t get any uniform control on 74; we did not
even get a uniform control on 73.

The proof is easy. If we could not find 74, we would be able to find a
sequence of points z; € E N A(27%), that tends to a limit 7., but so that
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‘i—i‘ stays at distance at least 73 from E N 'S. This is impossible because

T €E ENS. O

Let 74 satisfy the conclusion of the lemma, and take any o € (0,74); we
see o as a small parameter that we may chose later.

Extend p so that it is homogeneous of degree 0. That is, set

M@zp@ﬂﬂ)me%eE+ (14.3)
Then, by (14.2), p is well defined (and Lipschitz with a bad norm) on E N
A(2T4).
We are ready to define a new competitor for E, which we write as
FO = O(B), (14.4)

for some ¢ that will be defined soon. The main part of F will be a subset
of the cone over I'*. We will not be finished yet, F° will need to be further
improved. First we set

Q(x) =2 for x € E\ B(0,1). (14.5)

On the exterior part of B(0,1), we use p to contract reasonably slowly on
I'*. That is, we set

T -1 1-—
_lelto—1 L iolel
g g

¢’ (x) (z) for z € ENA(o). (14.6)

Notice that this makes sense because p(x) is well defined there, and also that

the two definitions yield ¢°(x) = 2 on S. On the other sphere,
(x)=p (x) €eT* CS forz e ENIB(0,1— o). (14.7)

Now we contract very brutally along the cone over I'*. Set

|+ 20 —1
)= 201

o
Again this is continuous across dB(0,1—0), and ¢"(z) = 0 on dB(0,1—20).
Thus we can safely take

@%(x) =0 forz € ENB(0,1 — 20). (14.9)

This gives a Lipschitz mapping ¢° defined on Ej; its Lipschitz constant de-
pends on o, 74, and 73 and may be really huge, so we will be careful not
to use this directly in the estimates. Since we like to define competitors in
terms of deformations, we are also led to set

p (z) forx € ENA(20)\ A(0). (14.8)

W(r) = (1 —t)x +t°(x) forx € E and t € [0,1], (14.10)
and check that
the ¢? define an acceptable deformation for E in B(0,1), (14.11)
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as in Definition 1.1. As often, (1.1) and (1.2) are trivial, (1.3) holds because
Ip(z)| < 1 and the unit ball is convex, (1.5) holds because ¢° is Lipschitz,
and the only interesting piece is the boundary condition (1.4).

Let x € EN L be given. If |z] > 1, ¢(z) = x by (14.5) and (14.10), and
©9(z) € L trivially. If |2| < 1—20, po(z) = 0 and hence ¢?(z) = (1—t)x € L.
So let us assume that |z| > 1 —20 > 1/2.

Set £ = x/|x| € L. We claim that ¢ € K too. Indeed, otherwise (4.1)
and (4.3) say that dist(¢, K) > n(X) > 10n(X), but yet dist(z, X) < 2¢
by (5.3), hence dist(¢, X) < 2|z|'e < 5e, a contradiction. So £ € K N L,
p(¢) = £ by (13.4), and the various formulae yield ©?(x) € L; (14.11) follows.

It is amusing that the very brutal part (14.8) works so well. We like it
because it allows us to concentrate on the set E N A(20), and essentially
disregard any bad behavior that £ may have in a smaller ball. Of course we
will still need to know that E is nice on the thin annulus A(c), and we shall
get part of this with a maximal function argument.

The main part of F° N B(0,1) is contained in
Sp(l*) = {tz;t€[0,1] and x € T*}, (14.12)
the (truncated) cone over I'*. Indeed,
©*(ENB(0,1—0))
={0}UY(ENB(0,1-0)\B(0,1—-20)) CEZp(T*) (14.13)

by (14.9), because p(E N A(20)) C p (E+) C I'* (by Proposition 13.1), and
then by (14.8).

In the rest of this section, we control the remaining piece of ©°(E N B),
which is the set

F(o) = ¢%(E N A(0)). (14.14)

Once this is done, we shall still want to improve on the cone Xy (I'™*), and

construct other competitors. But we shall be able to use the next estimates
on F(o) for those too.

We shall leave the dependence on ¢ explicit in estimates, because we shall
need to check that some of our estimates do not depend on o, but we set
A = A(o) to save some space. We want to estimate

M(o) = H*(F(0)). (14.15)

In next lemma we use some of the additional properties of our radius
r = 1 that we required in Section 5.
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LEMMA 14.2. — IfHY(ENS) < 400 and the assumption (5.8) holds for
r =1, then

limsup M (o) < C dist(z,p (z))dH (z). (14.16)
o—0 ENS
Proof. — This lemma is essentially measure-theoretic; then we shall esti-

mate the right-hand side of (14.16), and this will use the construction of p.

Before we prove this, let us explain roughly why it may be true. We shall
use the area formula to estimate M (o), but the point is that ©*(E N A) is
like a curtain, composed from all the segments [z, p(z)]; thus (14.16) looks
a little like Fubini’s theorem.

The proof is not very complicated, but since it is also done in [10] (see
(9.46) there and its proof), we only give the great lines. First, we use the
rectifiability of E and the area theorem (Corollary 3.2.20 of [29]) to write

M(o) < /EM Jo(z)dH?(2), (14.17)

where Jo(z) is the Jacobian of the approximate differential Do (x) of ¢°
along E, which is defined for #?-almost every € E. Then we estimate
the size of D,o(x) on an orthonormal basis of (v,w) of the approximate
tangent plane to E at x. We choose (v,w) so that v is orthogonal to the
radial direction [0, z]; then (14.6) and our local Lipschitz estimate (13.3) for
p yield |Dyo(z) - v| < C (we may assume that |x| > 1/2 so that (14.3) is
tame, and in the direction of v the differential of the radial cut-off function
in (14.6) vanishes). In the direction w, we get the estimate

|Dgo(x) - w| < C 40t cosb(z)|p(x) — x|, (14.18)

where 6(x) is the angle of w with the radial direction, or equivalently
cosf(z) = |(w, |3€7|>| Then
Joo(z) < [Dyo(z) - v| [Dyo(z) - w| < C + Co ' cosO(z)|p(x) — z|. (14.19)

Then we apply the coarea theorem (3.2.22 of [29]), to the mapping h defined
by h(z) = |z|, integrated against the continuous function z — |p(z) — z,
and get that

/E Ip(o) = al (@) o)

:/ / Ip(z) — z|dH (z)dt, (14.20)
te(1—o,1) JENOB(0,t)
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with the one-dimensional jacobian J;, = |Dp(x) - w| = cosf(x). Thus by
(14.17), (14.19) and (14.20),

M(o)

<C [1+ 0 " cosf(z)|p(x) — z|]dH?(x)
ENA

SCH) (ENA) +Co ! / / Ip(z) — z|dH (z)dt. (14.21)
te(1—o,1) JENOB(0,t)

Now we let o tend to 0. Notice that H2(ENS) = 0 because H!(ENS) < +o0.
Next H2(ENB(0,1)\ B(0,1—0)) tends to 0, because H2(ENB(0,1)) < +oo
and by the monotone convergence theorem (or the definition of a mea-
sure). Thus H?(E N A(o)) tends to 0. The other term in (14.21) tends to
fEﬂaB(O,l) |p(x) — z|dH(x), by our special assumption (5.8); (14.16) and
Lemma 14.2 follow. O

We now estimate the right-hand of (14.16), and proceed as in the end of
Section 9 in [10]. Notice that we are very happy that we have to estimate an
integral on E NS (as opposed to an annulus), because this is precisely the
place that we control. We know from (13.2) that

dist(z,p (x)) < 607 forx € ENS, (14.22)

but there are lots of points of E NS for which p(z) = z, and which we can
take out of the estimates. First we check that

p(r) =z for z € U L;. (14.23)
€Ty

Indeed, x € R; (see the definition (13.5)), and p(z) = p;(z) = = by (13.30)
and (13.7). Next we claim that

p(z) =x for z € U (F.NTe). (14.24)
ceCC

Recall that 7. = 7e U (Ujez() £i) (we add the curves £; that touch the
points of ¢ N dD). The arcs £; above are contained in R., by (13.28), so
p(z) = pc(x) = when € £L; N T, by (13.31) and (13.12).

We are left with € . N T.. Let us recall why . C ¢. In Sections 10—
12, when we constructed the nets I' = T';, we always started from a set
~ C EN D. This set was connected and contained at least one point of dD;
this is how we defined the different configurations. Then + is contained in the
component ¢ (often called H;) that contains any point of yN9dD. So 7. C c.
In addition, ¢ C T. C T} C R, by (13.18) and (13.28). Then p(z) = p.(x)
by (13.31), and since x € I', (13.44) says that p(x) = z. So (14.24) holds.
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Thus, in the set

V= <U £¢> U ( U %) : (14.25)
i€l ceCC

the only part that remains is (J .o [V, \ T'c]. For the rest of ENS, we don’t
try anything, and just keep the set ENS\ v*.

Finally, it follows from (14.16) and (14.22) that

limsup M (o) < CT Z H (F,\Te) + CTHE NS\ v%). (14.26)
o=0 cecc

We are reasonably happy about this. We consider M (o) as a loss in the
estimates, and we expect it to be compensated by larger wins. In this respect,
ENS\~*is apart of ENS that we just dropped to get v*, so we will save
much more than C7H!(ENS\~*) by removing it from the picture (when we
construct cones), and similarly #*(¥, \ ') is controlled by (10.7), and the
corresponding term of (14.26) will be compensated by a win of area when
we replace the cone X over I'* with a bunch of harmonic graphs.

15. A second competitor build with harmonic graphs

The competitor F° that we constructed in the previous section was just a
first attempt, which still looks a little like the cone over E'NS. It is better in
some sense, because we got rid of ENS\ v*, but the advantage of replacing
v* with I'* is not clear yet.

In this section we construct our first serious competitor, obtained from
FY by replacing parts of ¥ (I'*) by better surfaces constructed in Section 9.

Recall that I'* is the union of the Lipschitz nets I' that were constructed
in Sections 10-12. Since the construction was done by connected components
in configurations, our best description so far is that

= (U F,») U ( U r) (15.1)
i€y ceCCy

where the notation is the same as in Section 13 (see below (13.9)), and where,
if we use Remark 6.3, we managed to take I'; = £; for i € Z;. But we could
also have kept things the way they were at the beginning, but replaced L;
by a small Lipschitz I'; with the same endpoints, obtained as in Section 8.

To save some space, we condense (15.1) into

r= |J . (15.2)

c€T,UCC,
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Then the main part of F° N B is the cone

2= U e, (15.3)
ceTLUCC

where X is our standard notation for a cone. Thus, as in (14.12),
Sple) = {tx; te[0,1] and x € Fc}. (15.4)

Recall that the sets I'. are disjoint, except for common endpoints at ver-
tices a;.

Now we want a finer decomposition of I'* into single Lipschitz curves,
which we shall write as
r=Jr; (15.5)

jegx

for some new set of indices J*. Let us say how we do it, so as not to create
too much confusion. When ¢ € 77, we have a single curve I'; = £;; we keep
it as it is, just put the set of indices Z; in J* and keep the same curves with
the same names. We could also do this when ¢ € CC and T is composed of
a single curve, but let us not bother. Instead, for ¢ € CC, we observe that
I'c us composed of at most 4 small Lipschitz graphs I';, as in the description
of Section 10, and write this as

r.=J 1, (15.6)
JeJI(c)

We also include (the elements of) J(c) in the index set J*. Finally, there is
the case of the special components ¢, € CC\CC. If ¢, is such a component,
we took I, = {{}, it is a single degenerate curve, and we also put it in our
bag J* with the same name. Thus our new set of indices is

J* =T, U ( U J(c)> U(CCy\ CO). (15.7)

ceCC

But again, we just took all the nets we had, decomposed them into single
curves (some times, just points), and got a bunch of curves I';. With our
new notation, (15.3) becomes

2p0) = |J Se(Ty). (1538)
jeJ*

Now we want to replace each X (T';), j € Z1 UJ,coc J(c), by a better
surface X(T;), and this is the place where we shall use Section 9.

We start with the case when we change nothing. When j € CC. \ CC,
i.e., when j = ¢y comes from one of our special components, we just keep

S6(T)) = Sr(Ty) = 0.4, (15.9)
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where the second part comes from the fact that T'c, = {¢}.

But we do the modification for all the other I';, including the I';, j € Z;. In
this last case, I'; does not come from another curve through the construction
of Section 8, but (if € in (5.3) is small enough), the proof of Proposition 6.5
shows that it still satisfies the assumptions of Section 9; see Remark 6.3.

The same remark applies to I'; when it comes from Configuration H; in
this case we decided in Section 10 to keep I'; = £; (i.e., without applying
the construction of Section 8 to it), precisely because Proposition 6.5 tells
us that it is essentially useless.

So fix j € J*\ (CC4 \ CC); recall that I'; is a small Lipschitz graph over
some geodesic p;, and by changing coordinates in R we can assume that

p; = {(cosf,sin6,0); 0 € [0,7}]} C R* x {0}. (15.10)

We do not have a lower bound on T; = length(p;) as in [10], but the con-
struction yields T} < g + 27, since length(€;) < g for i € Z, and this will be
enough.

It may be that I'; is only 103A-Lipschitz (if it comes from Lemma 11.5),
but we shall assume that A is so small that the results of Section 9 apply to
I'; anyway. Then we get a new surface X (I';), with the same boundary as
Yp(T;), and a few additional properties. Let us say more and recall a little
bit of Section 9 at the same time.

We started from the (infinite positive) cone over I';, which is the graph
of some function F which is defined on a sector of R? and naturally homoge-
neous of degree 1. In fact, we restricted F' to the domain Dy of (9.2), and ob-
tained a set X', which is the graph of F' over Dy and contains X p = Xp(T';).

Then we constructed a new function G on the same domain Dr, which is
also null on the segments [0, a] and [0, b], where a and b denote the endpoints
of p;. In addition, G = F on Dy \ B(0,9/10) (see (9.13)), so that the graph
X{, coincides with X% in a small neighborhood of 9B. So, in some way, 3,
and ¥’ have the same boundary on B.

Then we set ¥ (T'j) = Xg = Xz NB. Just like X g, X¢ is bounded by T';
on 0B, and by the two segments [0, a] and [0, b]. Let us say why it is a little
better than Xp.

There is an additional condition (9.14), which implies that for some small
constant kK > 0,

S6(T;) N B(0, k) = Sp(p;) N B(0, k), (15.11)

where as usual X r(p;) is the cone over p;; we will use this later, but for this
section we do not care.
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Also, G is CA-Lipschitz (by (9.15)), so X¢ is not too wild, and the im-
portant new information is that ¢ has less area than X, since (9.19) says
that

H*(2q(T;)) < H*(Zr(T,)) — 10~ *length(T;) — length(p;)].  (15.12)

Now we glue the ¥¢(I';) together, and get the set

Sa(T) = | Sa()). (15.13)
JjeEJ*

Our next task is to construct a competitor F'' whose main piece is con-
tained in X (™) rather than X p(I") (compare to (14.13)). For this the
simplest is to continue the deformation that led to F©, i.e., deform X (T'*)
into X¢(T™*). We proceed piece by piece, and for each j € J* find a mapping
¥+ B (L) = Za(l).

Fix j € J*. If I'; comes from one of our special components c;, then
Ya(j) = Zp(Ty) = [0,4] by (15.9), and we just take 1;(z) = 2. So let us
assume that I'; is a real curve, either an £;, j € Z;, or coming from the
construction of Section 8.

Choose as above coordinates in R™ so that p; is, as in (15.10), an arc of
circle inside P = R2. Call 7 and 7+ the orthogonal projections on P and its
orthogonal complement P, and otherwise keep the same notation as above.
Recall that ¥/ is the graph of F': P — P+ over Dr, and similarly with X,
and G. We define v; : ¥, — ¥, by

¥i(z) = m(z) + G(7(2)); (15.14)

in other words, we project along the direction of P~. We are only interested
in the restriction of ¢; to Xp(T';) = X¥p = X% NB. Let us check that

Yi(z) =z for z € 0Xp(Ty), (15.15)

where the boundary 0¥ #(T';) is composed of the two line segments [0, a] and
[0,b] that go from O to the endpoints of p;, and X NIB. For [0, a] and [0, b],
this is just because F' = G = 0 on these two segments. For X% N B, we can
even see that

99
Yi(z) =z for z€ Xp(T;)\ B (0,100>, (15.16)
because F' = G outside of 2B (by (9.13)); of course we also use the fact
that || F|leo is small if X is small enough, to make sure that the two graphs

’ ’ e - 99
Y% and X coincide outside of ;55B.

So we have mappings ¢; : Ep(I';) = E¢(I';), and we put them together
to get a mapping ¢ : Xp(I™*) — B (™). Here we use the fact that the curves
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I'; only meet at their endpoints, and with large angles; the result is that the
Y p(T;) only meet along the segments that go from 0 to these endpoints, and
with the same angles. Since 9;(2) = z along these segments, we get that v
is well defined, and even Lipschitz (because each piece is Lipschitz). We do
not care if the Lipschitz constant is large (typically, if two of the T'; get close
to each other somewhere else than the common endpoints), so we shall not
try to check that this does not happen. Similarly, we shall not try to show
that the sets ¥(I';) are disjoint; they probably are, but our argument does
not need this. Finally let us observe that because of (15.16),

PY(z) =z for z€ Zp(T'*)\ B (0, 19(?0) (15.17)
Our second competitor is F! = p!(E), where ¢! is defined by
o' (z) = ¢%(x) for z € E\ B(0,1—0) (15.18)
and
ol (x) = o®(x) forz € ENB(0,1— o). (15.19)

This last part makes sense, because ¢°(z) € Sp(I'*) for z € ENB(0,1— o)
(by (14.13)).

Let us check that ¢! is Lipschitz on E. The only potential problem is
across B(0,1 — o). Recall from (14.7) that ©’(z) € T* C S for z € EN
dB(0,1 — o), so we can find 0/ > o such that |¢*(z)] > 2% for € EN
\B(0,1 —¢’). Then (15.19) actually yields

o' (x) = () forz € ENB(0,1—0)\ B(0,1—0"), (15.20)

so there is an annulus where the two definitions coincide, and ¢! is Lipschitz.
We can of course define a one parameter family {¢}}, 0 < ¢ < 1, by linear
interpolation, as we did in (14.10), and, as before, the fact that

the ¢}, 0<t <1, define an acceptable deformation for E in B(0,1) (15.21)
will follow as soon as we check the boundary constraint, i.e., that

oi(r) € L forx € ENL. (15.22)
When |z| > 1 — 0, i (r) = ¢?(z), and we already checked this. When |z| <
1—20, ¢°(x) = 0 by (14.9), and then ¢'(z) = 0 and ¢} (z) = (1 — t)z € L.
We are left with the case when = € A(20) \ A(c). We already checked

below (14.11) that ¢ = x/|z| lies in K N L. By (13.4), p(¢) = £. By (14.8),
% (z) = o for some a € [0, 1].

Now there are two cases. If £ lies in one of our special components ¢ = ¢y,
then Xp(I';) = Zg(T¢) = [0, 4], and we took 1;(z) = z on X p(T';) (where j is
the element of J* that comes from ¢,). Otherwise, ¢ lies in one of the regular
components ¢ € CC({). In this case, which comes from Configuration 1, 2+,
3 =2+ 1, or 3+, we made sure to include ¢ in the Lipschitz net T';, not
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only as a point, but as a vertex. This means that ¢ is actually an endpoint
of one of our curves I';, j € J*, and by (15.15) ¥(2) = z on [0,¢]. Thus
ot (z) = ¢Y(z) = af by (15.19), and ¢; (x) € L by the analogue of (14.10)
for the ¢}; (15.22) and (15.21) follow.

With the terminology of Definition 1.1, F' is a sliding competitor for E
in B (in fact our first interesting competitor), and since F is a sliding almost
minimal set, Definition 1.2 says that (1.8) holds for F''. That is,

H2(ENB) <HYF' NB) +h(1) < HYF'NB) +¢ (15.23)
by (5.1) and (5.2). Now we cut F'* N'B into pieces. First observe that
F'nB =y (ENB) (15.24)
because p!(z) = ¢°(z) = x for z € E\ B (by (15.18) and (14.5)). We start
with an exterior part which is the same as before; that is,
e (ENB\ B(0,1-0))=¢"(ENB\ B(0,1-0))
=" (ENA(o)) = F(o) (15.25)

by (15.18), (14.1) and (14.14). The size of this part will be estimated by
(14.15) and (14.26). We are left with

WHENDB(0,1-0)) CY(®(ENB0,1-0)))
CYP(Zp(T™) C (™), (15.26)

by (15.19), (14.13), and the definition of 1. We shall thus need to estimate
H2 (L (T'*)). We start with an easier estimate for the cone Xz (I'*). We claim
that

H(Sp(T) = Y H(Zk(Ty))
jeJ*
ISy = twiey = S wir.. (s2m)
2 / 2 2 o ’
jeJ* c€T,UCC

The first equality is true because the union is disjoint, except for segments
that come from the endpoints of the I';. For the second part, the simplest
is to use the area formula. Let z : I — I'; denote a parameterization of
I, by arclength. Then we have a parameterization of Xp(T';) by (¢,z) €
[0,1] x I — tz(z) € Xp(T';) (compare with the definition (15.2) if needed).
The area formula says that

HQ(EF(I‘j))_/[O ; IJ(t,a:)dxdt, (15.28)
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where J is the appropriate Jacobian. Since z takes values in the sphere, a
simple computation says that J(t,z) = ¢; then

1| length(T;
/ J(t,z)dzdt = / rdzar — L _ length(ly) (15.29)
(0,1]xT 0,1]x 2 2

as needed. The third identity comes from (15.5) (the I'; are essentially dis-
joint), and in the last one we used (15.7), regrouped indices j € J(c) for
¢ € CC, and simply dropped the exceptional sets I';, coming from CC;\CC,
because they are singletons {¢} with no H!'-measure.

With the present notation, (10.6) says that H!(T'.) < H!(¥,) for ¢ € CC;
since we do not want to forget too fast what we win, set

A=Y HNL) - H()+ Y HUE) - M) (15.30)

i€y ceCC

where we observe that all the terms are nonnegative. With the presentation
we chose (using Remark 6.3 and then taking T'; = £; for ¢ € Z;), the first
terms disappear; if we had chosen the other option where I'; is obtained
from £; by the method of Section 8, they would exist but would not harm
(by (8.16)). Then

Y HT) =) HT)+ Y HIT

ceZ,UCC i€y ceCC
<Y HU(L)+ D H'(F) - A =H'(y) - A (15.31)
1€Ty ceCC

because I'; = £; for i € Zy, by (14.25), and because the union in (14.25) is
essentially disjoint. Notice that v* C ENS by construction, so we will really
save HY(E NS\ 7*) here. In the mean time, we return to (15.27) and get
that

Ay

* 1 *
H2(Sp (D)) = Z HY( 57{ () -5 (15.32)
CEZlLJCC
Next we record what we win in (15.12). Set
Ay =) [length(I'; — length(p;)] > 0; (15.33)
jeJx
then by (15.12)
H?(S6(T) — HA (Zp(T))
<D HA(Sa()) = HA(ER(T)) < 10714y, (15.34)

jeJJ*
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and

H*(ENB) <H(F'NB) + (1) < HX(F(0)) + H (Za(T)) + h(1)
< M(o) + [H2(S6(1") ~ HA(Sp(0)] + LA (47) ~ 5L +h(1)
< M(o) + %Hl(w*) — % —107*Ay + R(1) (15.35)

by the first part of (15.23), (15.24), (15.25), and (15.26), then (14.15),
(15.32), and (15.34).

Next we estimate M (o). Let ¢/ be a very small number, to be chosen
later. We may now choose o very small, such that

M(o) < &' + limsup M (o)
o—0
< +Cr Y H'(F\Te)+CrH (ENS\v7), (15.36)
ceCC
where the second estimate comes from (14.26). For each ¢ € CC, 7, \ T',

is contained in the symmetric difference A(%,,T'.) that shows up in (10.4).
Then by (10.7)

> H'(N\T)

ceCC

< Y H(AGF,. L)
ceCC
<SCM) D H' () —H (T + [M'(Te) = H' ()] (15.37)
ceCC
where the notation has been adapted, and pc = ;e pj, by (10.5) and
the notation of (15.6); also see the definition of p; above (15.10). In the first
sum we recognize Ay from (15.30), and for the second sum we notice that

HI(Te) = H(pe) = D [H'(Ty) = H'(p))] (15.38)
jeJ(c)
because T, is the disjoint union of the T';, j € J(c) (see (15.6)), and the p,

also are disjoint (again by construction, by the same proof). We recognize a
partial sum of Ag; thus (15.36) and (15.37) yield

M(o) < C'(NT(A1 + Ag) + CTHYENS\v*) + €. (15.39)
For the second term, we just observe that since v* C ENS,
HYENS) =H' (v*) +HY(ENS\vY). (15.40)

Now comes the main relation between 7 and A: we require 7 to be so small,
depending on A, that C’'(A\)7 < 107, and Ct < 1/4 for the second term;
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this way both terms of (15.39) are eaten and (15.35) yields
H?(ENB)

1 A
< 57—[1(7*) + CTHYENS\ ) — 71 —107%Ay + h(1) + &

1 1 A
<GHUENS) - H(ENS\v") — 71 — 107 %A, + h(1) +¢".  (15.41)

We kept &’ obediently, but since it can be taken arbitrarily small, we may
now drop it from (15.41). We want a more concise version of this, so let us
reorganize some of the terms. We start with

H(y") = HI ()

=Y H L)+ D> H' T - D>, HA(T.)

€Ty ceCC ceZLuCC
)~ HT) Y PG - M) = A (15.42)
€Ty ceCC

by (14.25), the end of (15.27), and (15.30). Next we introduce the geodesic
net

= i (15.43)

jegx

these curves are essentially disjoint (by the same proof as for the I';); we
possibly included one or two degenerate curves {¢}. In terms of estimates,
these degenerate curves will not count, so we may also have dropped them
too. But for the moment we keep them. Anyway,

HUT) = H (p") = D [H'(T) = H ()] = Ao (15.44)
JjeJ*
by (15.5), because the I'; are also essentially disjoint, and by (15.33). By
(15.40) and this,
HUENS) = H! (p*) = HI(ENS\ ) +H' (v*) = H! (p")
=HYENS\ ") +A; + Ay (15.45)
and (15.41) implies that

HAENB) < %Hl(E NS) — 105 1Y ENS) — H (p")] + h(1).  (15.46)

We can be confident that this will lead to reasonable differential inequalities
in some cases, because it looks a lot like (9.69) in [10]. But we also expect,
because this is what happens in [10], that it will not be great in some other
cases, and this is the reason why we introduce a last competitor F?2 in the
next section, which uses the full length property. Modulo computations that
will be done below, the estimate above shows that the most delicate case is
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probably when HY(ENS) — H(p*) is very small, i.e., when E NS actually
looks a lot like a collection of geodesics p;. The point of the full length
property is somehow to take care of this situation, at least at the level of
definitions.

16. A third competitor that uses the full length

As was discussed near (9.70) in [10] (and we propose to trust this for the
moment), (15.46) will give good differential inequalities when

H (p*) < 2HA(X N B). (16.1)

Otherwise, we shall need to improve (15.46) a little bit, by a quantity which
is roughly proportional to

Ap = [H'(p*) = 2H*(X NB)] | = max(0,H' (p*) = 2H*(X NB)). (16.2)
In this section we assume that
X has the full length property, (16.3)

improve our second competitor in the small tip near the origin, and use this
show that under the assumptions of Section 5 and if € in (5.3) is chosen small
enough,

H?(ENB) < %HI(EmS)—10*5[H1(Em8)—Hl(p*)]—C*lAL+h(1). (16.4)

This will be our main comparison estimate, the one that leads to nice dif-
ferential inequalities. The constant C' in (16.4) depends on X, in particular
through 7(X) in (4.3) and the small constants 7 and ¢ in the full length
property. Also, € will need to be small, depending on our usual constants A
and 7, but also the small 5 in the full length property.

Notice that when (16.1) holds, (16.4) is just the same as (15.46); thus we
can assume that (16.1) fails.

We start from (15.11), which says that for j € J*, ¥¢(I';) coincides with
the cone Y r(p;) in a small ball B(0, ). We use (15.13) to take the union,
and get that

Ya(T*) N B(0,k) = Zr(p*) N B(0, k); (16.5)
we shall see later that (15.24)-(15.26) give the same description for F! N
B(0, k). Here & is the small absolute constant of (9.14).

We shall start our discussion by assuming that

p* = @.(K) for some ¢ € ®% (), (16.6)
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for some 7 > 0 which is small enough for us to apply the full length prop-
erty (16.3). This is not always the case, but we shall first assume (16.6),
prove our main estimate, and then return and take care of the differences.
Set X1 = ¢« (X) (the full cone over ¢, (K)). Notice that since (16.6) implies
that
Yr(p*) = 0 (X)NB = X; NB, (16.7)
we can try to use competitors for X; to improve Xp(p*), ¥ (I'*), and then
F1. Observe also that ¢ is “injective”, i.e., p € @;’Z(n), because the arcs p;
that compose it (as in (15.43)) only meet at their common endpoints. The
quantity A(p) of (4.15) is
Alp) = H (pu(K)) = HI (K) = H! (p") — HI(K)
=H' (p*) —2H (X NB) = A, >0 (16.8)
by the proof of the second part of (15.27), the definition (16.2), and be-
cause (16.1) fails. So we are in postion to apply our assumption (16.3).
Definition 4.1 says that there is a sliding competitor X for X; in B(0,1)
such that (4.16) holds. By Definition 1.1, there is a one parameter family of

functions g, : X1 — R™ (we change the name because ¢ is already used),
such that (1.1)—(1.5) hold with B = B(0, 1), and for which X = g;(X;).

We want to use the g; to construct a competitor F2 for F'!, and by the
same token for F. Initially, the mappings g; are only defined on X5, but we
can extend g; to X1 U (R™\ B(0,2)) by setting

gi(x) =2 for z € R™\ B(0,2). (16.9)
This gives mappings g; that are still continuous, by (1.2), and such that
g:+(xz) € L when z € L (by (1.4)). Also, ¢; is Lipschitz (by (1.5)). We set

©*(z) = ggl(anlgpl(z)) for z € E. (16.10)
Let us check that ¢? is well defined. Notice that we can use (16.9) as soon
as [p! ()] > k.

For z € E\B, ¢!(z) = ¢°(z) = z by (15.18) and (14.5), we can use (16.9),
and we get that p?(x) = .

For z € A(o) =B\ B(0,1 — o), o' (z) = ¢°(z) by (15.18), and ¢%(z) €
[z,p (z)] by (14.6). Since p(z) = p (x/|z|) by (14.3) and p(z/|z]) € SN
B(x/|z|,607) by (13.2), we see that |p'(x)| > 1/2 > k, and we can ap-
ply (16.9) again. In this case

¥*(2) = ¢°(2) € F(0), (16.11)

by (14.14). We are left with the case when x € ENB(0,1 — o). In this case,
(15.26) says that ¢'(z) € Xg(I*). If |p'(x)] > K, we use (16.9) and we get
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that
©*(x) = o (z) € Za(T*) \ B(0, k). (16.12)
Otherwise, if [p!(z)] < &,
o'(x) € Be(T*)N B(0,k) = Br(p*) N B(0,k) = X1 N B(0,x)  (16.13)
by (16.5) and (16.7),
21! (z) € X1 N B(0,2) (16.14)

because X, is a cone, and this allows us to use the initial definition of gy
in (16.10). We get that

P(x) = 5 9121 (@) € 5 91(X1 N B(0,2)). (16.15)

So ¢? is well defined.

The fact that ©? is Lipschitz comes directly from the definitions (in par-
ticular, the fact that the extended g7 is Lipschitz); it is easy to find a one-
parameter family {p?} that has ¢? as its endpoint, and as before the sim-
plest is to use a formula like (14.10) and the convexity of B, the boundary
property (1.4) holds because ¢;(L) C L (and L is convex), as usual, so
F? = ©?(E) is a sliding competitor for £ in B. Thus Definition 1.2 yields

HA(ENB) < HA(F?NB) + h(1) (16.16)
(as in (15.23)). Now
F2AB C F(o) U [Se(T™)\ B(0,x)] U {g g1(X1 N B(0, 2))} (16.17)

by the discussion above and (16.11)-(16.13). We cut the last set in two. If
z € X1 N B(0,2) \ B, then g1(2) = z by (1.2) for ¢; (i.e., the fact that X is
a competitor for X; in B); then

RZ
91(2) = o

€ X1 NB(0,k)\ B(0,k/2) = Za(I'") N B(0,x) \ B(0,x/2) (16.18)

il
2

by (16.13). If instead z € X1 NB, then

L) € Sa(XinB) =S XNB (16.19)

because g1(z) = z for z € X; \ B and ¢1(X; NB) C B by (1.2) and (1.3).
Thus (16.17) yields

F?NBC F(o)U[Sc(T™)\ B(0,x/2)] U= XNB (16.20)
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and
H*(F* N B)
< HA(F(0)) + HA(S (%) — H2(Sa(T*) N B(0, 1£/2)) + H2 (g XN IB%)

< HA(F(0)) + HA(S6 () — H2(X, N B(0, 1/2)) + H? (g XnB)
< HA(F(0)) +H (Za (™)) + %2[—%2()(1 NB) + H*(X NB)]
ck?A(p)

4

by (16.13) and (4.16). This is the same estimate as we had for F*!, at the
end of the first line of (15.35), except that we saved an extra cxA(p)/4.
Then we continue the computations exactly as in Section 15, and get that

crPAL

< H2(F(0)) +H* (S (T)) — (16.21)

H2(ENB) < %Hl(EﬂS)—10‘5[H1(EHS)—7-[1(p*)] +h(1) (16.22)

instead of (15.46), and where Ay, is given by (16.2). This proves the desired
estimate (16.4), with C~1 = ck?/4, but only in the case when (16.6) holds.

Let us now discuss the reasons why (16.6) may fail, and what to do then.
The problem is with some of the configurations of Section 7, which may not
always produce nets p; that follow the description of Section 3.

First assume that for some ¢ € K N L, Configuration H shows up in our
construction of I'* near ¢. We intend to show that we do not even need the
full length condition to find better competitors for X; and FE, because we
can contract a hanging curve in p*.

Recall that when £ NS contains a hanging curve that starts from cf,
we kept the corresponding curve £; both in v, and I';, where ¢ € CC' is
the component that contains ¢}. The geodesic p; = p(af, c}) with the same
endpoints as I'. is contained in p*. Let us identify ¢ with the only index
j € J(c), so that p; shows up with the same name in the union of (15.43).
Notice that its endpoint ¢} is still hanging in p*, which means that it does
not lie in any other p;, j € J*\ {i}. Set p; = p; \ {a:}; then p; does not meet
any other p;, and this means that the mapping f : p* — p* \ p} defined by
f(z) =z for z € p*\ p); and f(2) = af for z € p; is Lipschitz (recall that the
p; that meet p; at a make large angles with p; there).

Let us use f to define a nice competitor for the cone over p*. Set X5 =
{tz; z € p* and t > 0} and define g : X, U (R"\ B) — R" by

g(xz) =z for x € R"\ B, (16.23)

g(tz) =2(1 —t)tf(z)+ (2t — 1)tz for z € p* and - <t <1, (16.24)

| —
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where we choose the coefficients so that g(¢tz) = tz = 2z when ¢t = 1, and
g(tz) = tf(z) when ¢t = 1/2, and finally

1
g(tz) =1tf(z) for z € p* and ¢t < 3 (16.25)

Let X; be the (full positive) cone over p* (just as in (16.7)), and set
X = g(X7). Let us check that X is a sliding competitor for X; in B. Of
course we use g, and the one parameter family naturally associated with
it, defined by gs(z) = sg(x) + (1 — s)z; the usual simple estimates (1.1),
(1.2), and (1.6) hold because g is Lipschitz, (1.3) holds because B is convex,
and (1.4) holds because the only place where g(z) # x is the cone over

p;, which does not meet L because p; starts at ¢j € 9D, and goes in the

direction of a} which is away from ¢. Next X = g(X;) is contained in Xj,
but inside B(0,1/2) the cone over p} is missing. Thus

H(X NB) < HX(X1 NB) — H2(Sr(p)) N B(0,1/2))
=H*(X,NB) - %’Hl(p;-) <HAXINB)—n(X)  (16.26)

because dists(c},a}) > 8n(X) by (4.2), (4.3), (6.3), and (6.43). This is even
better than the information we obtained from (16.6) and (16.3): the proof
of (16.22) yields

H?(ENB) < %Hl(EﬂS)—10_5[H1(EOS)—H1(/)*)]—n(X)—i—h(l), (16.27)

without even having to assume that (16.1) fails. Notice that the constant
Ap in (16.2) is bounded by H!(p*) < 2H (K) (if n is small enough in the
definition of full length), so (16.27) is stronger than (16.4), and we are happy
in this case.

A second case when (16.6) fails is when we encounter Configuration 3 =
241 in the construction of Sections 10-12. Recall that in this case we chose a
center xg, in fact zo = ¢ because this was simpler, then the corresponding I"
was composed of three Lipschitz curves, one leaving from ¢ and two leaving
from xg = ¢j. At the end of the game, near ¢, p* is composed of three
geodesics p(ct, at), p(ct,al), and p(¢, a}). More precisely, we claim that

p* N B(L,9(X)) = [p(c1, a1) U p(eq, a3) U p(¢, a3)] N B(£,9n(X)). (16.28)
Indeed, all the other pj;, j € J* such that meet B(¢,9n(X)) have to come
from curves £;, j € Z; (the other option, that they would come from curves
that come from — D, is impossible because our curves are not too long). But
in this case (6.43) says that the two endpoints of £; lie quite close to €;, so
does the geodesic p; with the same endpoints, and (16.23) follows from the
fact that dist(€;,¢) > 10n(X). This last fact is true, by (2.5) and (4.3), or
the description of the counterexamples that follows (2.5), plus the fact that
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the diameter of any exceptional arc € for (2.4) (so, that €4 ends at ¢ or —¢)
is controlled by (4.2).

In this case, we can find a sliding competitor X for X 1 in B, a little bit like
the one given by g in (16.23)—(16.24), except that (instead of just removing
it progressively as above) we deform the union p(c},a}) U p(cf, ab) into a
shorter arc with the same endpoints, such as the union p(x1,a}) U p(z1,a3),
for some x; that is a little closer to aj and a3. The reason why we can easily
find z; is that, since the three €;, 1 < ¢ < 3, make 120° angles at ¢, the
geodesics p; and py make an angle smaller than 130° at ¢j. Notice also that
p(z1,a3) U p(z1,al) does not meet p(¢, a}) either, which is comforting even
though it is not needed.

Now we claim that because of this we can find a sliding competitor X for
X1 in B, such that

H2(X N B) < HA(X1 N B) — C'n(X), (16.29)

where C' is a geometric constant; the verification is rather easy (but a little
long), and we skip it. The interested reader may find more or less the same
argument in [10], and slightly more elaborate versions, with three branches
instead of two, in Section 27, starting below (27.5).

Now (16.29) is nearly as good as (16.26); so, when Configuration 3 = 2+1
shows up in the construction, we can still prove that

H?(ENB)
< %Hl(E AS) = 109 HYENS) = H (0")] = C~n(X) + h(1), (16.30)

still regardless of whether (16.1) holds or not. As before, this estimate is
better than (16.4) because Ay, < C.

Now let us assume that Configurations H and 3 = 2+ 1 do not occur. We
have a last case where (16.6) may fail. Recall that when some ¢ € V; does
not lie in the net of curves that we constructed, we added an element ¢, to
CC(L), to get the extended CCL(f), and we also added the point £ to p*.
Denote by V{ the set of (at most two) points £ that we added this way, by
L’ the (full) positive cone over Vjj, and also set p’ = p* \ L’. Finally denote
by X the (full) positive cone over p’.

First observe that p’ satisfies (16.6) (if ¢ is small enough, as before); this
is the reason why we added the free option in the definition of ®% (1) in
Section 3. So we can apply the full length condition, and we get a sliding
competitor X’ for X/ in the ball B. Let {g/} denote the associated one
parameter family of mappings. The g, are defined on X7, and we want an
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extension of g} to the full X; = X] U L’. (As was noticed before, we only
need g; here, we always compute the one parameter extensions at the end.)

Set a = g1(0), it is not clear that a = 0, but at least a € L N B, by (1.3)
and (1.4). Extend ¢y to L', so that it is Lipschitz on L', with ¢;(0) = a,
g1(z) = x for x € L' \ B, and g, (L' NB) € L' N B. This gives a mapping g1,
now defined on X7, and we want to check that it is Lipschitz.

Clearly it is enough to control |gj(x) — g1(y)| when = € X{ and y € L'.
Write @ = tz, with ¢ > 0 and z € p’; by construction dist(z, L') > « for some
(possibly very small) @ > 0 that depends on p* and L'; then |z — y| > ot.

If [y < 2¢, we say that [g1(z) — g1(y)| < 191(x) = g1(0)] +191(0) = g1 (y)[ <
Chlz|+ Caly| < (C1 +2C2)t < (C1 +2C3)a™ |z —y|, which may be very bad
but is enough. Otherwise, |z —y| > |y|/2 and we just need to change the end
of the estimate.

So ¢; is Lipschitz, g1(L N X;) C L by construction, and we can use the
same linear interpolation trick as in (14.10) to construct a one parameter

family of mappings that shows that X = g1 (Xp)isa sliding competitor for
X7 in B. Now H2(L') = 0, so H?(X1 NB) = H?(X] NB) and (when we take
the Lipschitz images by g1) H2(X NB) = H2(X’ N B). In other words, we

still have (4.16) for X; and X', and we may conclude as in the main case.
This completes our verification of (16.4).

We end this section with a small cosmetic modification of (16.4). Set
a=a(X)=min(107°,C71), (16.31)

where C is as in (16.4), and observe that in (16.4) the two main correction
terms are nonpositive. That is, Ay > 0 by (16.2), and HX(ENS) = H'(p*)
by (15.45) and earlier parts of the proof. Then (16.4) implies that

H2(ENB)
< %Hl(E AS) — a[H (ENS) — H!(p")] — aly + h(1)
< %”Hl(E NS) —a[HY(ENS) — H (p*)] — a[H (p*) — 2H*(X NB)] + h(1)

= %Hl(EOS) —ao[HYENS) — 2H?*(X NB)] + h(1) (16.32)

by (16.2).
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17. Density excess and a differential inequality

Our next goal is to transform our main estimate (16.4) into a differential
inequality, and then we will integrate it on intervals to get decay estimates
for a density excess f(r).

In this section we fix an open set U of R™ that contains the origin and a
line L through the origin, and we consider a reduced sliding almost minimal
set E of dimension 2 in U, with sliding boundary L. We shall restrict to radii
r € (0,r9), where rq is so small that

B(0,2ry) C U. (17.1)

As in Section 5, we shall assume that the gauge function h (in the definition
of sliding minimal sets) is such that

h(s) < Cps” for 0 < s < 2rg (17.2)
for some constants Cj, > 0 and 8 > 0.

We shall also give ourselves a fixed number 6y > 0 and consider the
density 6 and the density excess f defined on (0, 2rg) by
0(r) = r*H*(EN B(0,7)) and f(r) = 0(r) — . (17.3)
In practice, we will take for 6y the density of E at the origin, i.e.,

Oy = }1_% o(r) (17.4)

(which exists, as mentioned near (1.19)), but let us not require this for the
moment. We start with differentiability properties that don’t use much.

LEMMA 17.1. — Let E satisfy the assumptions above. Set
v(r) = H*(EN B(0,r)) for0<r < 2r. (17.5)

Then v is differentiable almost everywhere on (0,2rg). Also, if b is a C*
function on (0,2rg), the product bv is also differentiable almost everywhere
on (0,2rg), with (bv)" = b’ + b'v almost everywhere. In addition,

ro
(bv)(r2) = (bv)(r1) —|—/ (bv) (r)dr for 0 <ry <1y < 7o. (17.6)
r1

Proof. — The simplest is to refer to Lemma 5.1 in [10], but anyway this
is not hard: v is nondecreasing, so it is differentiable almost everywhere; it
also has a distribution derivative p, and v'dz < dp. This proves (17.6) for
b = 1. For general b, the differentiability of the product is easy to prove
by hand, and (17.6) is proved with a soft integration by parts (i.e., apply
Fubini’s theorem to the right integral). O
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Lemma 17.1 shows that # and f in (17.3) are differentiable almost-
everywhere on (0, 2rg); next we want to use the previous sections to derive
differential inequalities for f, and after this we’ll get some decay for f.

Before we state our main differential inequality, we introduce some nota-
tion concerning minimal cones and the full length condition. We work with
n and L fixed, as above. Denote by M C(L) the set of minimal cones in R”
with sliding boundary L (as above (2.1)). To each cone X € MC(L), we
associate a standard decomposition as in Section 3, and then a geometric
constant 7(X) as in (4.3). It is fairly easy to see that when n(X) is fairly
small, it does not depend on our choice of standard decomposition, but it
would not matter if it did.

Next denote by F'L(L) the set of cones X € MC(L) that also satisfy the
full length property. To X € F'L(L) we also associate as in Definition 4.1 two
small constants n > 0 and ¢ > 0, which we call the full length constants for X.
For each choice of positive constants cy, 14, and 7,, with ny < n, < 1072,
say, we shall denote by F'L(L, cf,151,7g) the set of cones X € FL(L), which
admit a geometric constant n(X) > 71, and full length constants ¢ > ¢y, and
n = ny. We also associate to this choice a small number e(cs;, 11, 7,), which
we choose so that the construction and results of Sections 5-16 are valid as
soon as (5.1)—(5.8) are satisfied with e < e(¢s,ns1,74), and the constant
a(cpr,mpi,ng) that we get in (16.32) when this happens.

The new assumptions for the next proposition are that for almost each
radius r € (0,79), we can find some constants cs;(r), ns(r), and ng(r),
and a minimal cone X (r) € FL(L, cpi(r),np(r),ng(r)), with the following
properties. First

do 2r(E, X (r)) < e(cpi(r), npu(r),ng(r)) (17.7)

(a local Hausdorff distance, as in (1.14)), where e(csi(r), nsi(r), ng(r)) is the
small constant that we get from the previous sections. We also require that

Cury < elep(r),mpu(r),ng(r)). (17.8)

As the reader may have noticed, we are just copying the assumptions of

Section 5. Our result will be better if we have a good control on the density

0(X(r)) = H*(X(r) N B(0,1)) (17.9)

of the minimal cone X (7); for the moment let us just assume that we have
a number ¢(r) > 0 such that

0(X(r)) <bp+q(r) for 0 <r <ro. (17.10)

In fact, for our simple applications, we will simply have (X (r)) = 6y and

q(r) = 0. We do not need to assume that ¢ is small, but Proposition 17.2
below will be hard to apply otherwise.
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It is important to let the minimal cone X (r) depend on r, even in the good
cases where we take 6y = lim,_,00(r) as in (17.4) and require 6(X (r)) = 6.
The point is that the X (r) could be various blow-up limits of E at 0; we
do not want to assume that they are all the same, we want to get this as a
conclusion.

Similarly, it would be tempting to require that all the X (r) lie in a same
FL(L,cs,mp1,mg), but we may have more trouble finding the cones X (r). We
find it more flexible to allow some cones X (r) to have different geometric
constants n(X(r)), for instance. We shall see in the next section how to
choose the X (r) in some simple cases.

PROPOSITION 17.2. — Let E satisfy the assumptions above (that is,
(17.1), (17.2), (17.7), (17.8), and (17.10). Then

4o

rf'(r) = 1-2a)

f(r) = 3(h(r) + 2aq(r))
for almost every r € (0,79), (17.11)

where o = a(cpi,Mp1,1M9) s the small constant that is associated to cpi(r),
n7(r), and ny(r) as in (16.31).

Proof. — It turns out that we already did the hard work; the proof will
be derived softly from the previous sections. The first thing we have to do is
check that the assumptions of Section 5 are satisfied (now, without the renor-
malization r = 1) for almost every r € ry. The three first assumptions (5.1)—
(5.3) were just copied above. Next, (5.4), the fact that H'(E N dB(0,r)) <
+00 is true almost-everywhere, holds because H2(E N B(0,s)) < +oo for
0 < s < rg. Since E is rectifiable, we can deduce this from the coarea for-
mula, but in fact the estimate that we need here is just is the easy part,
which can be obtained directly with a covering lemma.

We said earlier that (5.7) is just requiring that the one-sided Hardy—
Littlewood maximal function of the measure i, of (5.5) is finite at the point
r, and since u is a finite measure, the fact that this is true almost everywhere
(and even with weak integral estimates on (') is a direct consequence of the
weak L' Hardy-Littlewood estimate; see the first pages of [46].

We are left with (5.8), which requires maximal function estimates like
(5.7), but also some manipulation and a density argument; fortunately the
proof is done in Lemma 4.12 of [10], and applies here.

So we can use the estimates of the previous sections, and (16.32) holds
for almost every r € (0,ry). Written with the variable r, the correct ho-
mogeneity, the notation S, = 9B(0,r), and with o = a(cy1,151,14), it says
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that
rf(r) := r_l’HQ(E NB(0,r)) < 7“_17-12(E N B(0,r))
< %’Hl(E NS,) —a[HY(ENS,) — 2rH*(X (r) N B(0,1))] + rh(r)
_ %’Hl(E NS,) — aH{(ENS,) — 200(X ()] + rh(r)

= %’Hl(E NS,) — a[HYENS,) — 2rfy] + 2ar[0(X (1)) — o] + rh(r)

N

1

5Hl(E NSy) —a[HYENS,) — 2rfp] + r(2aq(r) + h(r)) (17.12)
by (17.9) and (17.10). Next write H1(E NS,) = 2rx(r) for the duration of
the computation. We claim that (with v as in (17.5))

V'(r) = HYENS,) = 2rz(r) (17.13)

almost everywhere on (0,7); for a rapid proof with heavy material, apply
the co-area formula to E and the function z — |z|; for a slow one, see (5.8)
in [10]. Recall that since f(r) = r~2v(r) — 6y by (17.3), Lemma 17.1 says
that f also is differentiable almost everywhere, with

rf'(r) = r~ W (r) = 2r2u(r) = 22(r) — 2r 2u(r) (17.14)
by (17.13). Recall that by (17.12),
rro(r) = r0(r) < ra(r) — a2rz(r) — 2r6y] +r(2aq(r) + h(r)). (17.15)
That is,
ra(r)(1 —2a) = 7~ to(r) — 2arfy — r(20q(r) + h(r)) (17.16)
or equivalently

() o(r)  2afy  2aq(r) +h(r)
T (1-20)r2  1-2a 1-2a

(17.17)

Then we return to (17.14), replace, and get that
rf(r) = 2z(r) — 2r2v(r)
20(r) 4oy  2(2aq(r) + h(r))

(1-2a)r2 1-2a 1—2a
4av(r) dably  2(2aq(r) + h(r))

“(1-20)r2 1-2a 1-2a
_ 4ab(r)  4daby 2(2aq(r) + h(r))

T (1-2a) 1-2a 1—2a

> (liiaga) f(r) = 3(2aq(r) + h(r)) (17.18)

> —27“_211(7") +
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by (17.3) and because « is small (see (16.31)) and ¢(r) > 0. This proves
(17.11); the proposition follows. a

We now make some additional comments on Proposition 17.2 and then
show how it may imply decay estimates; the true examples are in the next
sections.

We decided not to require that 6y is given by (17.4), or that the cones
X (r) have a density equal to 6y, but this will be our main example.

The proposition is also valid on an interval. That is, if F is a reduced slid-
ing almost minimal set (relative to L) in a domain U that contains B(0, 2r¢),
if (17.2) holds, and if the assumptions (17.7)-(17.10) hold on an interval
(roo, 7o), then (17.11) holds on (rgg, o) too. The proof is the same.

The differential inequality (17.11) is not hard to integrate. Let F and r
be as in Proposition 17.2, and suppose in addition that the constants cp;(r),
nsi(r), and ny(r) are such that

alepi(r),np(r),ng(r)) = a for almost every 0 < r < 1o (17.19)
for some « > 0 that does not depend on 7. Then set
4o
= 17.20
T 12 (17.20)

and consider the auxiliary function g(r) = r~f(r); (17.11) says that
g ()= —ar () 70 f (1) = =3r 7 (h(r) + 2aq(r)),  (17.21)
which we interpret as saying that ¢ is nearly nondecreasing. And indeed,
Lemma 17.1 says that for 0 < r; < 19 < 719,
"2 dr
g(r2) 2 g(r1) =3 [ (h(r) +2aq(r)) 7 (17.22)
Ty
or equivalently (since we are more often interested in letting 1 tend to 0),
u i\ u [ dr
flr) =riglr) < { flra) 4300 [ (h(r) +2aq(r)) 2. (17.23)
1

If the right-hand side cooperates, this says that f(r1) decays at some speed
when r; tends to 0. For instance, if

h(r) 4+ q(r) < Cr® for some b < a (17.24)
(to simplify the computation), we get that near 0,

F(r) < (:})af(rg) +ort (17.25)

2

with a constant C' that depends on a and b, but not on rs.
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This will be good when we get it, and we will see examples in the next
section. Then we will not be finished, because it will be much better to show
that some significant geometric quantities, rather than f alone, decay near
the origin. This will be the object of Part III (i.e., Sections 19-22).

18. Compactness, blow-up limits, and decay for f

In this section we fix the dimension n, the line L through the origin, a
sliding almost minimal set E that contains 0, and we use the compactness of
the set M C(L) of sliding minimal cones (with respect to L) to prove that if
in addition to the usual assumptions, all the blow-up limits of E at 0 satisfy
the full length property, then the assumptions of Section 17 are satisfied for
ro small. See Proposition 18.1 for the ensuing statement.

So we fix n, L, a radius r; > 0, and a closed set F in B(0, ), and assume
that
E is a reduced sliding almost minimal set in B(0,71),

with boundary condition coming from L, (18.1)
with a gauge function h such that
h(r) < Cpr? for 0 <r <y (18.2)
for some constants Cj, > 0, 8 > 0. Also we assume that
0e ENL. (18.3)

Let us say a few words about MC(L) before we discuss the blow-up
limits of F at 0, and then state the main result of this section. So far we
have a definition of local Hausdorff convergence on closed subsets of R",
which is defined with the local Hausdorff distances d, , of (1.14), and for
which {X}} converges to X if limy_,4 o0 dy (Xi, X) = 0 for every choice of
x € R™ and r > 0, or equivalently for x = 0 and every r > 0. But since
MC(L) is composed of cones, do1(X,X’) = do (X, X’) for X, X' € MC(L)
and r > 0, and it is enough to use the “distance function”

do,1(X, X") = sup{dist(z,X'); x € X N B(0,1)}
+ sup{dist(z’, X); 2’ € X' N B(0,1)}, (18.4)

for X, X' € MC(L). It is easy to see that do 1(X, X’) is also equivalent to
the usual Hausdorff distance between K = X NS and K’/ = X’'NS, defined by

d5,(X, X' = dp (K, K)
= sup{dist(z, K'); x € K} + sup{dist(z/, K'); 2’ € K'}. (18.5)

The small advantage of this is that it is well known that d, is a distance
(i.e., in particular the triangular inequality holds with the constant 1) on
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the set of closed cones, and that some simple facts are very well known in
this context. We shall use the fact that, with either of these distances,

MC(L) is a compact set. (18.6)

Given the fact that the set of closed subset of S, with the Hausdorff distance
dy, is compact, this simply amounts to checking that if X is the limit of the
sequence {Xj} in MC(L), then X € MC(L) too. This is not trivial, but
follows at once from Theorem 10.8 in [14].

Let us also recall some simple facts about blow-up limits. Let FE be as
above, and denote by X the set of blow-up limits of F at 0. Recall that X
is the collection of sets X such that

X= lim r'E (18.7)

k—+oco

for some sequence {7} of positive numbers that tends to 0. Recall also that
this means that limy_,+ do, r(X, r,?lE) = 0 for every R > 0, with do.r as
in (1.14). Let us say why

X is a closed subset of MC(L). (18.8)

The fact that if X € X', then X is a sliding minimal cone is Corollary 29.53
in [14]; we even get that the density of X is

HA (X N B(0,1)) = lim r 2 H*(E N B(0,7)) (18.9)
r—
(where the limit exist by near monotonicity of r=2>H2(E N B(0,r)), as in
Theorem 28.7 of [14]). So we just need to show that X is closed.

Suppose X is the limit in M C(L) of the sequence {X;} in X, and write
X, = limp 400 TJ_;E for some sequence {r;x}, k > 0, that tends to 0.
By standard manipulations of sequence extraction, we can find a sequence
{k(4)}, 7 = 0, such that 7; ;) tends to 0 and X = lim;_, r;’;(j)E. That
is, X € X; (18.8) follows.

We are ready to state the main result of this section.

PROPOSITION 18.1. — Let the sliding minimal set E satisfy the assump-
tions (18.1), (18.2), and (18.3). Suppose in addition that

every blow-up limit of E at 0 satisfies the full length condition. (18.10)
Then we can find a € (0,1) and a radius ro € (0,71] such that

rf'(r) = af(r) — 3h(r) for0<r<r, (18.11)
where f(r) is still defined by (17.3), but with
fo = lim r*H?*(E N B(0,7)) (18.12)
r—

as in (17.4).
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Proof. — Recall from Lemma 17.1 that we already knew that f is differ-
entiable almost everywhere on (0,79), and that we can partially recover the
variations of f from f’. We will see how to use this after the proof.

The proof will use Proposition 17.2 and a small compactness argument on
MC(L). For each X € X, the definition of full length gives a small constant
¢ = ¢(X) and asmall radius n = 1 (X) € (0,7(X)) such that (4.16) holds for
every injective deformation parameter o € @;’i(n) that satisfies (4.15) (see
Definition 4.1). Then the construction of Sections 5-16 also gives a small con-
stant £(X), such that if the assumptions of Section 5, and in particular (5.2)
and (5.3), are satisfied with € = (X), we get the main conclusion (16.32),
with some small constant o = «(X). With the notation of the previous sec-
tion, e(X) = e(cs1,mp1,m9) and o(X) = alep,ny1,mg), where ng = n(X),
N = n5(X), and ¢y; = ¢(X); this notation has the advantage of making it
plain that €(X) and «(X) depend only on the constants above. We define a
small ball Vx in MC(L) by

Vx ={Y € MC(L); d5,(X,Y) <107 '(X))}. (18.13)
Now X is a closed set in the compact M C(L), so there is a finite set Xy C X,
such that the Vx, X € &), cover X. In other words,
for Y € X we can find X € X} such that d5,(X,Y) < 107 ¢(X). (18.14)
We also need to know that

hm{)%ren; do’gr(E,X)} —0. (18.15)

r—0
Suppose not. Then there is an € > 0 and a sequence {ry}, that tends to 0,
such that do s, (E, X) > € for all k. We may replace {rj} with a subsequence,
for which the sets F, = r,;lE converge, locally for the Hausdorff distance,
but on the whole R™, to a closed set X . By definitions, X € X, and by (18.8),
X is a sliding minimal cone. But the local convergence says that do 3(Ej, X)
tends to 0, which contradicts the definition of ry.

Set g9 = infxcx, £(X), and let r¢ be such that

0<ry< %1 and Cpro < 107 &g, (18.16)

where C}, is the same constant as in (18.2), and

i <107t . .
)%rgv dosr(E,X) <10 gy for 0 <r <ry (18.17)

We want to show that r( satisfies all the assumptions of Proposition 17.2 with
U = B(0,r1). This is clear for (17.1) and (17.2). For the other assumptions,
we fix 7 € (0,79) and we want to find a cone X (r). But (18.17) gives a cone
X € X such that dg 2, (E, X) < 107 1gg, and then (18.14) yields an X (r) € Xy
such that d5,(X(r), X) < 107 (X (r)). We take ny(r) = n(X(r)), nu(r) =
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np(X(r)), and cp(r) = ¢(X(r)), and then e(cyX(r),nuX(r),nsX(r)) =
e(X(r)) and a(cp X (), npX (1), ngX (1)) = a(X (7)) by the definitions above.

Then we need to check (17.7), i.e., that door(E, X(r)) < e(X(r)), and
this easily follows from the definitions of X and X (r), plus the fact that g9 <
e(X(r)) since X(r) € Xy. Next (17.8) holds by (18.16), and (17.10) holds,
with ¢(r) = 0, because X (r) € X and by (18.9). We apply Proposition 17.2
and get (17.11), with ¢(r) = 0 and a = «(X). But the same proof would
also yield (17.11) with the constant

a= Xlgﬁ(g a(X) > 0. (18.18)

So we get (18.11) with a = 12&' We prefer to say things like this, because
formally we do not know that (17.11) with some « implies (17.11) with any
smaller «; even here with our special choice of 8y = lim,_,0(r), we do not
know for sure that f(r) > 0, because we only know that 6(r) is almost
monotone. On the other hand, if f(r) < 0, we should be happy anyway,
because the goal of all the story is to show that f(r) is small (but don’t worry,

we don’t need this remark). This completes the proof of Proposition 18.1. O

Let us comment on Proposition 18.1. We had to be slightly careful, be-
cause with the proof above the constants ¢ in (5.2) and (5.3) depend not
only on the full length constant ¢ for X, but also on the more geometric
constants 7(X) and 7(X); so we don’t want to use cones X (r) that come
extremely close to L NS without actually meeting it, for instance.

Our proof of Proposition 18.1 relies on compactness, but in concrete cases,
the covering of X’ by balls Vx can be obtained explicitly (and then we get a
better control on the constant C'). Suppose for instance that 6y = lim,_,o 6(r)
is equal to 37/2; then X is contained in the set of cones X € MC(L) such
that 6(X) = 37 /2. If in addition n = 3, say, we know that X is exclusively
composed of cones of type Y. Now some of them contain L in their spine,
others don’t but contain half of L in one of their faces, and some meet L
only at 0. Given r > 0 as above, and if X € X approximates E well in
B(0, 3r), we choose to take X (r) = X if X is of the first type, but otherwise
we will replace X with an X (r) of the first type if its spine is very close
to L, and an X(r) of the second type if half of L is very close to some
face of X, but the other one is reasonably far from X. In this case, the full
length property is proved in Section 37 below. Of course this concrete way
of proving Proposition 18.1 is harder to do when we don’t know well the list
of minimal cones of density 8y, not to mention the fact that we cannot be
sure that they satisfy the full length property.

Once we have (18.11), with a constant a > 0 that does not depend on
r, but only on X', we can use Lemma 17.1 to integrate it and get the decay
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estimate (17.22). Here ¢(r) = 0, so we get that for 0 < r < s < rg,

T f(r) <sTf(s) + 3/5 hgﬁlr < s7f(s) + 30y / rP=e=tdr. (18.19)

r

We may as well assume that a < § (in fact, a depends on 3, we expect it
to be very small, and anyway we can always make it smaller); then (18.19)
yields

3Ch
B —a
This is good: for s € (0,rg) fixed, this means that f decays like r* near 0.

r f(r) <s f(s) + sPedr for 0 <r < s <. (18.20)

We end this section with a corollary of the discussion above.

COROLLARY 18.2. — Let E satisfy (18.1)—(18.3), let 6y be as in (18.12),
and define f by (17.3). If

every blow-up limit of E at 0 satisfies the full length condition, (18.21)
there exist a constant a > 0 and numbers ro > 0 and C > 0 such that
f(r) < Cr® for0<r<rg. (18.22)

The constant a depends only on n and a full length constant coming from
the family of blow-up limits of E at 0. But ro and C depend on the specific
situation (and in particular E).

Proof. — Indeed, the assumptions of Proposition 18.1 are satisfied, so we
can find ro > 0 and a € (0,1) (that depends on the class X' of blow-up limits
of E at 0, in particular through the full length constants of a finite number
of cones used for a covering) such that (18.11) holds. The estimate (18.22)
now follows from (18.20) (we just dropped the more explicit computation of
constants) and the discussion that leads to it. |

We would like to say that the assumption (18.21) holds automatically
when 6y < 37”, but for this we would need to know that

it X €e MC(L) and (9(X)<%T,thenXG]HILJVUY7 (18.23)

where H, V, and Y are as below Subsection 1.2 and define the same cones
as in Theorem 1.8.

This looks reasonable, but the author did not find a simple proof. But
see Lemma 23.2 for the simpler special case when 8(X) < m + ¢,,. As soon
as we can prove (18.23), we observe that if 6y < 37”, (18.23) says that every
blow-up limit of E at 0 lies in HU V U Y, hence satisfies the full length
property by Theorem 37.1, and we can apply Corollary 18.2.
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Remark 18.3. — There will be a better statement, Corollary 22.1, where
we only assume that some blow-up limit of E at 0 satisfies the full length
condition, but it will be harder to prove, because we need to be able to find
good approximating cones Z(r) at all the scales r < 7, so that we can apply
Proposition 17.2. For this we will need the approximation results of the next
part.
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Part ITI. Approximation by cones for balls centered on L

19. The density excess controls the distance to a cone

In this part we still consider balls centered at 0 € E'N L, assume that the
density excess f(r) is small, and use this to obtain geometric information on
E, and in particular its Hausdorff distance to minimal cones, first on most
spheres, and then on thicker annuli. The rough idea is that if f(r) is small, it
cannot vary much between r/2 and r, hence f’(p) is often small on [r/2,r],
and the proof of the differential inequality (18.11) will allow us to control
various quantities when f’(p) is small.

We are given a reduced sliding almost minimal set E of dimension 2, in
an open set U C R™ which contains the origin, with a sliding condition that
comes from the line L through 0 and a small enough gauge function h. We
suppose that 0 € F, set

1 —2742
b0 = lim t*H>(E 1 B(0,1)) (19.1)

as in (17.4) (we shall soon remind the reader of why it exists when h is small
enough), and

f(r)=0(r) — 0y =r*H*(EN B(0,7)) — 6 (19.2)

for r < dist(0,R™\ U) (as in (17.3)). We want to show that f(r) controls the
local Hausdorff distance from E to small modifications of minimal cones. We
will roughly proceed as in Section 11 of [10], where we established this for
two-dimensional almost minimal sets with no sliding boundary condition.

We start with a discussion of the list of modifications of minimal cones
that we allow, and how we measure the distances.

Let us first consider a fixed minimal cone X, and use the (in fact, any)
standard decomposition of K = X N 9B(0,1) into arcs of circles €;, i € Z,
that was described in Section 3. We consider deformations of K, which we
construct as for the definition of the full length condition near Definition 4.1.
That is, we select a small constant n > 0 (for instance choose any number
smaller than 7n(X) in (4.3); the actual choice won’t matter), and we define
the extended class ®% (1) of enlarged mappings ¢, as near (4.12). Most of the
information of ¢ is a mapping defined on the set of endpoints of the &;, which
says where we send each one, but ¢ also contains some information relative
to the way we glue the pieces near vertices of LNS. For each ¢ € ®%(n) we
define a set o, (K), which is the deformation of K associated to ¢, and the
cone @, (X) over p,(K). Recall that modulo some small modifications of the
protocole near the points of L NS, ¢, (K) is obtained by replacing each arc
¢; = pla;, b;) of K by the arc p(p(a;), ¢(b;)).
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Let us denote by Z(X,n) the set of cones Z = ¢.(X), where ¢ € ®%(n).
These are not exactly minimal cones, because the angles between the €;, for
instance, may have changed a bit, but they are close to X if 7 is small enough
(which we can assume). For some estimates, it may be interesting to measure
how far they are from being minimal, so we introduce a number a(Z) which
records this. In Section 11 of [10], we have used a partial measurement of
minimality based on the angles made by the geodesics that compose Z; here
we find it more pleasant not to describe these angles (the distances of the
edges to L should also be taken into account), and measure the lack of
minimality more directly (but less geometrically). For Z € Z(X,n), set

= = Zisaslidi tit
a(Z) = inf { H2(Z N B) — HA(Z N B); 7 5 * HIAMS ComPEROTL g 3)
for Zin B
where B = B(0,1) and the notion of sliding competitor in B(0,1) is ex-

plained in Definition 1.1.

We also want to allow X to vary, so we let X denote a class of sliding
minimal cones centered at the origin; for instance, we shall use

X is a reduced sliding minimal cone,
. (19.4)

X(0) = {X; centered at 0 with H2(X N B) = 6

Then we fix a small number n > 0 and set
Bxn(E,r)=inf{do,(E, Z)+a(2)Y*; Ze Z(X,n) for some Xexy, (19.5)

where the local distance dy , is still as in (1.14), and we put a power 1/4 to
simplify the statement of the next theorem without losing too much infor-
mation (notice that with this definition, Sx ,(E,r) tends to be larger).

The next result summarize what we want to do in the next sections. We
state it in a normalized ball to simplify some expressions (such as the precise
form of (19.6)).

THEOREM 19.1. — Let E be a sliding almost minimal set in an open set
U C R™ which contains B(0,400), with sliding conditions coming from the
line L through the origin, and with a gauge function h such that

h(t) < CotPo for 0 < t < 400 (19.6)

for some constants By € (0,1] and Cy = 0. Suppose 0y is as in (19.1), let
n > 0 be given, and let X = X (0y) be as in (19.4). Assume that Co is small
enough, depending on n, n, and 0y. Then
1/4

: (19.7)

400 h(t)dt}

Bxn(E,1)<C {f(QOO) +/0 ;
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where f is as in (19.2), and the constant C depends only on By, Co, 0o, 1,
and n.

See Theorem 11.4 in [10] for the analogous statement away from the
boundary. The power 1/4 is certainly not optimal, and the same sort of
contortion as in [10] should probably lead to the power 1/3. See the end of
the proof of Lemma 21.2 for this. But 1/3 is probably not optimal either, and
1/2 would sound more right; we know that in the proof below (and without
the possible improvement on Lemma 21.2), we will probably lose something
significant when we go from isolated estimates on spheres to a global estimate
on the ball. Similarly, we noted a dependence on 6y, because this is the way
that we shall prove things, but probably a more clever argument would allow
us to get rid of this.

Here we decided to assume a geometric decay in (19.6), but a weaker
condition (probably a Dini condition) would be enough. We decided for a
complicated way to state (19.6), where C' has some dependence on the con-
stants Cy and Sy, but where we allow the possibility that f0400 h(tt)dt is smaller

than suggested by (19.5) and then we get a better estimate.

Notice that since we proved in the earlier sections that f(r) often decays
like a power of r, the theorem will imply a similar decay of Sx ,(E,r). For
the moment, we allow the reference minimal cone X in the computation
of Bxn(E,r) to vary with 7, but once we get a power decay, we will know
that we can take for X any blow-up limit of E at 0, and this will imply the
uniqueness of the blow-up limit in question. But in the mean time it is better
to allow X to vary. On the opposite side, we could have allowed X to be the
whole class of minimal cones, but then (19.7) would have been less precise.

Before we start the proof (which will take some time), let us record that
it is enough to prove (19.7) when

400
£(200) + /O h(tt)dt

where the very small constant e; > 0 will be chosen later (depending on n,
0o and 7). Indeed, if (19.8) fails, then (19.7) holds with C' = 27 (try for
X a bow-up limit of E at the origin, and observe that do,(E,X) < 2). So
let us assume that (19.8) holds.

< €1, (198)

The following lemma will allow us to use the same construction of com-
petitors as in the previous section.

LEMMA 19.2. — Let 11 > 0 be small. If (19.8) hold for a small enough
g1 > 0 (that depends also on 0y and n), we can find a minimal cone X €
X (6o) such that

do}lgo(E,X) < T1. (199)
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Proof. — So let E be as in the theorem, and assume (19.8). We want to
show that because of (19.8), the density 6(r) = r=2H2(ENB(0,r)) is nearly
constant near 0, and then use this to show that E looks a lot like a minimal
cone in B(0, 180).

We start with the near monotonicity of 6. Recall from Theorem 28.7
in [14] that there is a constant o, which here depends only on n (because
the geometry of L is simple), such that

" h(2
0(r) exp (an/ ul ;‘)dt) is nondecreasing on (0, 200). (19.10)
0

Then (19.1) and (19.8) imply that

" h(2t)dt
0(r) = 0y exp <an/ (2) > > 0pe "t for 0 <r <200 (19.11)
0

t
(where the endpoint r = 200 is obtained by taking a limit), so that
Ooe™ ¥t < 0(200) = O + f(200) < O + €1 (19.12)
by (19.2) and (19.8). We deduce from this and (19.10) again that
O(r) < e*10(200) < e**'[0y + 1] for 0 < r < 200. (19.13)

Let us now apply an almost constant density result from [14] to say that
FE looks like a minimal cone. Let 7 > 0 be small, to be chosen soon, and
let € > 0 be associated to 7 as in Proposition 30.19 in [14]. We want to
apply that proposition to F and the radii ro = ry = 200. The bilipschitz
assumption on the boundary L (up to (30.20) in [14]) is trivially satisfied,
(30.21) holds if € is small enough and because (19.8) controls h(300), and
the more important near constant density assumption (30.22) holds because
0(ra) = 6(200) < 0g + &1 while 6(r) > e 2160y for 0 < r < 107 3rg.

By Proposition 30.19 in [14], there is a sliding minimal cone T" such that
do.100(E,T) < 27, (19.14)

(see (30.24) and (30.24) there), and
|H?(E N B(0,7)) — HA(T N B(0,7))] < 200*7 for 0 <7 <190  (19.15)

(see (30.26)). We apply this to » = 190, then use (19.11) and (19.13) to
estimate 6(r), and get that

|H2(T N B(0,1)) — ] < |6(190) — by + (200/190)%7
< [ — 1]0y + 2e1 + (200/190)%*7 < 27 (16.16)
if 1 is small enough.

We cannot use X = T in the lemma, because the density H?(T'N B(0,1))
may be a little different from 6. So we shall use (19.16) and a compactness
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argument to find X € X (6p) that is very close to T, and then deduce (19.9)
from (19.14).

We claim that for all small 73 > 0, we can choose 7 > 0 such that if T is
a sliding minimal cone such that (19.16) holds, then there is a minimal cone
X € X(6p) such that

do1(X,T) < %. (19.17)

Indeed, otherwise there is a sequence {Tx} of sliding minimal cones such
that T}, satisfies (19.16) with 7 = 27%, and yet do1(X,T}) > I for X €
X (00). We can extract a subsequence (which we still denote the same way),
for which Ty converges to a limit X in local Hausdorff distance (say, for
dp1, and see the discussion above (18.6) if you are worried about which
notion of convergence). By the compactness property (18.6), or directly by
Theorem 10.8 in [14], X is a sliding minimal cone.

By Theorem 10.97 in [14] (the lower semicontinuity of H¢ along sequences
of quasiminimal sets) and Theorem 22.1 in [14] (the upper semicontinuity
along sequences of almost minimal sets), plus the fact that H2(X NS) = 0,
we get that

0o = lim H*(T, N B) =H*(XNB), (19.18)
k—+o00

so X € X(6p) and this contradicts the fact that the T} were chosen far from
X (0p). This proves our claim.

We choose T with this property, also such that 7 < 10!, apply this to
the cone T of (19.16), and find X € X(6y) that satisfies (19.17). It is easy
to see that X satisfies (19.9); the lemma follows. O

Now we want to apply the construction of Sections 5-16 to find cones
Z(r), 0 < r < 180, that approximate E well on the circles S, = 90B(0,r).
Since the dependance on X of the constants 7, and then ¢ in (5.3) seems
to be a little shady at first sight, let us spend some time discussing these
constants.

Remark 19.3. — We claim that we can apply the construction of Sec-
tions 5-16, with a value of the various constants € and 7 that depends only
on 603 007 90a m, and n.

To see this we shall use the same compactness argument as in Section 18,
below (18.12). To each X € X (6p) we can associate a standard decomposition
as in Section 3 and a small number n(X) > 0, that satisfies the requirements
of Section 3. Let us even choose n(X) somewhat smaller than the constant
7 of the statement of Theorem 19.1. This is a brutal way to make sure that
the deformations of X that we construct later will come from ¢ € ®%(n).
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Then there is a small number €(X), that depends on n(X), such that
if (5.2) and (5.3) are satisfied with e(X), then we can apply the construction
of Sections 5-16, except that we do not intend to assume, or use, the full
length property.

Recall from (18.6) that the class MC(L) of sliding minimal cones is
compact. The proof of existence for (19.17) shows that the extra condition
H2(X N B) = 6 that defines X (6y) is closed, so X (6y) C MC(L) is compact
too.

For X € X(0p) define the small ball Vx centered at X and with radius
107%¢(X), essentially as we did in (18.13), except that now we are only
interested in Vx N X' (6p). By compactness, we can find a finite family Xy C
X (0y) such that the sets Vx, X € Ay, cover X (6y).

Then set ¢g = 1073 infxex, £(X), and apply Lemma 19.2 with 7 = &.
This gives a small constant 1, and if (19.8) holds with this €1, we know that
we can find X € X(6) such that do150(E, X’) < €o. Then X' lies in a ball
Vx, X € X, and this implies that do 150(E, X) < 2g¢ (compare with (18.5),
but also note that we can modify the constant 107> above as we want). We
took gg so small because this way

door(E,X) < %dmgo(E,X) <e(X) for 1072 < r < 90, (19.19)
so0 (5.3) holds for these r. Because of our assumption that Cj is small enough,
depending on n, 7, and 6y, we also have (5.2), and so if we want to apply
the construction of Sections 5-16 (excluding the full length property) to r,
we shall just need to check the conditions (5.4)—(5.8). We shall see now that
they hold for almost every r € [1072,90].

Return to the proof of Theorem 19.1. Pick €1, and then a cone X € Xy =
Xo(0o), as in the remark above. Set
v(r) = H*(EN B(0,r)) = r20(r) (19.20)

for 0 < r < 200 and denote by R the set of radii r € (1072,90) such that 6
and v are differentiable at r,

0'(r) = r=20'(r) — 2r 3uv(r), (19.21)

v'(r) = HYENAB(0,r)) (19.22)

(which incidentally implies (5.4)), and in addition (5.7) and (5.8) hold. Then
H((1072,90) \ R) =0 (19.23)

by Lemma 17.1, (17.13), the Hardy—Littlewood maximal theorem (see be-
low (17.11)), and the proof of Lemma 4.12 in [10] (see below (5.8)). Now
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each r € R satisfies the constraints (5.3)—(5.8), and we can apply to it the
results of Sections 5-16, excluding those that use the full length property.

Observe that we shall use the same cone X for all the radii r € R; for
smaller values of r, we could still use the same proof, but we would need to
apply Lemma 19.2 to a different radius, get another cone X', and possibly
a different type of deformation Z(r) in the argument below. But we do not
need to do this for the moment.

We intend to use the results of the previous sections to get information
on ENS,, where we set S, = dB(0,r), for r € R. We shall be able to get
better estimates when j(r) is small, where
h(2t)dt

t
h(2t)dt

J) = rf () + () + (14 200a0)h(2r) + (14 Ooan) /0

=70'(r) + f(r) + (1 + 200, )h(2r) + (1 + Gpcvr,) /OT . (19.24)

We added the constant «;, (from (19.11)) because we want to make sure
that j(r) > 0. Indeed, it could be that ¢'(r) and f(r) are slightly negative.
Nonetheless, it follows from (19.11) that

F(r) = 0(r) — 60 > 0, (exp (—an /0 h(QZ)dt) _ 1)

> —foan / h(2tt)dt (19.25)
0

(because (19.8) says that [ h@t)dt Qt 4t < e is small). Similarly, it follows
from (19.10) (and in fact this is the way (19.10) is proved) that for r € R;

rf'(r) =10 (r) > —a,0(r)h(2r) = —26pa, h(2r) (19.26)
by (19.13) and if &1 is chosen small enough (recall that 6y > 7). Thus

) > (0(0)s + £0) ) + | " h2t)dt

with positive parts, which will be simpler to use than (19.24) for some esti-
mates.

for r e R, (19.27)

LEMMA 19.4. — For r € R, we can find a compact set v*(r) C ENS,
and a cone Z(r) € Z(X,n) such that

HYENS, \ v (r)) < Cj(r) (19.28)
and

sup  dist(z,7*(r)) + sup dist(z, Z(r)NS,) < Cr¥/2j(r)/2. (19.29)
z€Z(r)NS, z€y*(r)

- 171 —



Guy David

Proof. — We will see other properties of Z(r) along the way. The constant
C in (19.28) depends on 7 too, through the choice of n(X) in Remark 19.3.
We added /2 in (19.29) to show the homogeneity, but this was not needed
because 7 € R C (1072,90).

Let jo > 0 be small, to be chosen later. We shall keep in mind that it is
enough to prove the conclusion of the lemma when

re€R and j(r) < jo, (19.30)

where the small constant jo > 0 will be chosen later, depending also on
7. Indeed otherwise we just take Z(r) = X and v*(r) = ENS,, and the
conclusion holds because the Hausdorff distance between E NS, and X NS,
is bounded.

So let r € R be given. First notice that
HYENS,) <V'(r) =r20'(r) + 2r to(r) = r20'(r) + 2r0(r)
=7r2f'(r) + 2rf(r) + 2r0y < 2rj(r) +2r6y  (19.31)
by (19.22), (19.21), (19.20), because f(r) = 6(r) — 6, and finally by (19.24)
(or rather (19.27), because of the strange case when f'(r) < 0).

Recall that for » € R, we can apply Sections 6-16, where we constructed
a few competitors and used them to prove estimates on H2(E N B(z,r)). In
particular we have (15.46), which says that if we normalized everything so
that r =1,

H?(ENB(0,1)) < %Hl(E NS) =10 [HYENS) —H' (p*)] + h(1). (19.32)

Here p* = p*(r) is the net of geodesic that was chosen during the proof;
see (15.43).

Let us observe that this estimate was obtained without using the full
length property. It will be all right to use this if we do not want to include
estimates on «(Z) in (19.3); otherwise we will need to correct the estimate as
we did in Section 16. This will be done later, but for the moment we ignore
this and work with (19.32). Let us rewrite it without the normalization by
r = 1. We get that for r € R

H2(ENB(0,r))
< ng(E NS,) — 105 [HY(ENS,) — H (p*(r))] + r2h(r). (19.33)

The author feels a little better with the powers of r because they give the
homogeneity, but here »r € R C [1072,90] so we should not need to worry
much. Next we write

HUENS,) — H (" (1) = Ao(r) + AL (r) + Aa(r), (19.34)
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where the A;(r) are defined as follows. First
Ao(r) =H'(ENS,) —H' (v*(r)) = H(ENS, \7*(r)), (19.35)

where *(r) is the union of the curves v that were constructed in Section 7.
The identity in (19.35) holds because the curves « are contained in E; also,
it could be observed that the only contribution comes from the two small
disks D near the points of L N'S,., because outside of these disks, E NS, is
composed of nice curves. Next

A (r) = H (v (r)) = HNT*(r)) > 0, (19.36)

where I'*(r) is the union of the Lipschitz graphs I'; that we construct in
Sections 8-12; the fact that A;(r) > 0 comes by adding up its analogue for
each configuration; see the comment below (10.7). Notice also that Ay (r) is
like Ay in (15.42). Finally

Ao(r) = HYT*(r)) — H  (p*(r)) = 0, (19.37)

because p*(r) simply consists in replacing each arc I of I'* with the geodesic
p with the same endpoints; this is the same as Ay in (15.44) (and p* is defined
by (15.43)). Thus (19.34) is essentially the same as (15.45). Also (19.33) can
be rewritten as

Ao(r) + Ax(r) + As(r)
<10° %Hl(E NS,) —r '*HA(ENB(0,r))| + 10°rh(r) (19.38)

and since
HYENS,) <V (r) =720'(r) + 2r to(r) = r20'(r) + 2r0(r)
=720'(r) + 2rf(r) + 2y < 2rj(r) +2rfy  (19.39)
by (19.22), (19.21), and (19.27), (19.38) yields
Ao(r) + Ax(r) + Az(r)
<10°[rj(r) + 760 — r ' H*(E N B(0,r))] 4+ 10°rh(r). (19.40)
But

r'H2(EN B(0,7)) = r0(r) = 16y (1 —ap /Or h(2:)dt> (19.41)
by (19.25), so

AO (T‘) + Al(’l“) + AQ (’I")

< 10%r {j(rweoan/ h(2t)dt
0

+ h(r)} < 10%75(r)  (19.42)
by (19.24).
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This was our basic estimate, but we can try to improve this in the same
way as in Section 16, when we modified the tip of our second competitor
to get a third one. There is a special case when things will be easier, which
we want to mention first; this is when (after the normalization that makes
r=1)

p* = p.(K) for some ¢ € &% (). (19.43)
This is the same statement as in (16.6), but here 1 comes from the defini-
tion (19.5) and the statement of Theorem 19.1. Apart from this, we can still
discuss as in Section 16.

Assume first that (19.43) holds, and let Z(r) denote the cone over p*(r);
that is,

Z(r)={X¢; €€ p(r) and X € [0, +00) } = p.(X) (19.44)

by definition of ¢,(X), and Z(r) € Z(X,n) by definition of Z(X,n) (see
above (19.3)). In addition, we can modify our first competitor near its tip, ex-
actly as we did below (16.6), to construct an improved competitor and derive
a better estimate than (19.32) (or, if we renormalize back, (19.33)). Indeed
the competitor that we used so far coincides with Z in a small ball B(0, kr),
and we can further replace this tip with the intersection with B(0, kr) of a
competitor for Z in B(0, k7). In Section 16 we used the full length property
of X to find this competitor; here we just use the definition (19.3) of a(Z2),
which says that we can find a competitor Z for Z in B(0, kr), such that
a(Z)k*r?
—5
The construction of the new competitor for F, and in particular the gluing
argument, is the same as in Section 16 (all the way up to (16.22)). Thus we
can save an extra %’W in the estimate (19.33), and the proof of (19.42),
with this extra negative term, also yields

a(Z(r) < Cj(r), (19.46)

where the dependence of C' on x does not matter, because x is an absolute
constant.

H2(Z N B(0,kr)) < H2(Z N B(0, kr)) — (19.45)

We shall continue with the argument later, but let us now return to the
case when (19.43) fails. As was explained below (16.22), there may be a few
different reasons why this may happen. The first one is when Configuration H
shows up in our construction. In this case, we showed that, without using the
full length condition, we can construct a new competitor (essentially obtained
by contracting a hanging curve), and improve our estimate (15.46) (the one
that was used above to prove (19.32)) by an amount of n(X); see (16.27).
This means that we can subtract 7(X) from the right-hand side of (19.32),
or subtract 72n(X) from the right-hand side of (19.33). We claim that this is
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too much to win if j(r) is small enough. Indeed recall from (19.34) and the
discussion below that H'(ENS,) — H(p* (1)) = Ao(r) + A1 (r) + Aa(r) > 0,
hence the improved (19.33) says that
H%EmE@m»—gH%Em&J
< =107 [HY(ENS,) = H (p"(r))] = r*n(X) +r2h(r)
1
< (X)) 4+ 72h(r) < —r*n(X) + &1 < —51"277()() (19.47)

by (19.8) and if &7 is small enough. Here again we feel good because Re-
mark 19.3 allows us to use a constant 7(X) that depends only on n, 6
(through a covering of X'(6p)), and 7 (because we forced n(X) < n). At the
same time

— " h(2
’Hg(E NB(0,r)) > 20, (1 — ozn/ t :)dt> > 120, (1 — anal) (19.48)
0
by (19.41) and (19.8), and
gH%Em&)gﬂﬂm+ﬁ% (19.49)

by (19.31); so (19.47) implies that fo(1 — ape1) < 6o+ 5(r) — 31(X), which is
impossible when j(r) < jo, if jo and &1 are chosen small enough (depending
on a lower bound for n(X), which itself depends on 7). This proves that this
first case when (19.43) fails does not happen when (19.30) holds.

The second reason why (19.43) may fail is explained below (16.27); it
corresponds to the occurence of Configuration 3=2+1. In this case too, we
constructed (without the help of the full length) a modification of our second
competitor for E, that allows us to save C~1n(X) in the estimate; see (16.30).
This case does not happen either, for the same reasons as for the previous
case.

We are left with the case, described below (16.30), where for some ¢ €
KN L, we added an element ¢, to CC(¥), to get the extended CC4 (¢), and
we also added the point £ to p*. If £ was already present in some p;, j € J*,
we do not even need to worry; otherwise it is an isolated point of p* and
we remove it. That is, denote by Vj the set of (at most two) points ¢ that
we added this way, or equivalently the set of isolated points of p*, and set
p = p* \ V§ (with this notation, we still normalize so that r = 1). In this
case we change a little the definition of Z(r), and set

Z(r)={X; €€ p and X € [0, +00)}. (19.50)

Notice that when we have (19.43), this new definition is the same as (19.44),
because p* = . (K) does not have isolated points.
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We checked in Section 16 that p’ satisfies (16.6), or in other words that
p' = p.(K) for some ¢ € L (n). Thus Z(r) € Z(X,n) (see the definition
above (19.3)). Also, we can use any competitor for Z(r) in the unit ball to
modify the tip of our second candidate, essentially as in the case when (19.43)
holds. The point is to extend the deformation (originally defined on Z(r))
to the cone over p*, get a competitor for the cone over p*, and glue it to the
tip of our second competitor. The verifications are done below (16.30). This
way we also get the additional estimate (19.46) in this remaining case.

We will still need to check (19.28) and (19.29) with this choice of Z(r);
we will do this at the same time as we do it for the other case. In the
mean time, observe that there is yet another way to improve on our main
estimate (19.35), which is to notice that the first inequality in (19.31) may
be strict. That is, set

As(r)=v'(r) = HYENS,) > 0. (19.51)
Notice that (19.33) implies that
H2(E N B(0,7)) < ng(EﬂST) +72h(r) (19.52)
by (19.34) and because A;(r) > 0 for 0 < i < 2. Then
HYENS,) =0 (r) — As(r) < 2rj(r) + 2rfy — As(r) (19.53)
by (19.31), so
As(r) < 2rj(r) + 28y — HY(ENS,)
< 2rj(r) + 2r6y — %HQ(E N B(0,r)) + 2rh(r). (19.54)

Since by (19.41)

1 = " h(2t)dt
- H*(EN B(0,7)) = 76y (1 — an/ (t)) , (19.55)
0
we see that
As(r) <2rj(r) + 2ran/ @ + 2rh(r) < 4rj(r) (19.56)
0

by (19.27). This completes the list of our basic estimates on the A;(r).

We return to the proof of (19.28) and (19.29) for Z(r). Here we take for
~v*(r) the set ry*, where 7* is the set of (14.25), with the normalization by
r=1. Thus HY(ENS, \ v*(r)) = Ao(r) < 10575(r) by (19.35) and (19.42),
and (19.28) holds.

For (19.29) we first estimate
Ay(r) = H' (I (r) \ 7" (1) + H' (v (1) \ T*(r))), (19.57)
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where T*(r) = rI'* and I'* is the net of Lipschitz graphs that shows up
n (15.1), for instance. We claim that

Ay(r) < ClAL(r) + Ag(r)] < Crj(r). (19.58)
The last part comes from (19.42). For the first part recall the decompositions

v = (U Ei) U ( U 70>, (19.59)
i€l ceCC

I = (U n-) U ( U rc>, (19.60)

1€Ty ceCCy

from (14.25) and

from (15.1). The difference between CC and C'CY. is just that maybe for some
¢ € KN L we added the trivial component {c,} to CC(¢) to get CCL({); see
above (13.10). When ¢ € CC, \ CC, we took I'. = {¢}, and this does not
contribute to the measure of the symmetric difference. Thus, returning to
the normalization with » = 1 and using A to denote symmetric differences,

r AL(r) < D HNALLT)) + > HH(AF,TE)). (19.61)

€Ty ceCC

For i € 7;, we use the fact that I'; = £; when we dare to apply Re-
mark 6.3, so we get no contribution, but even if we did not dare, I'; would
be obtained from £; by the construction of Section 8, so (8.16) and (8.5)
would yield H*(A(L;,T;)) < C[HY(L;) — H'(pi)], where p; is the geodesic
with the same endpoints as £;. When we sum we would get a contribution
which is dominated by r~1Ay(r); see (15.44).

For ¢ € CC, we already observed in (15.37) that when we apply (10.7)
to each configuration ¢ € CC and then sum, we get that

> HY AR T.))

ceCC

<SCON) D ) — HU (T + (L) = Hi(pe)] - (19.62)

ceCC

which is then dominated by r~1A;(r) + r~1As(r); see the argument be-
low (15.37), and compare our definitions with (15.30) and (15.33). This
completes our proof of (19.58).

Next we use Ay4(r) to control some distances. Set

= (U r,»> U ( U rc>, (19.63)
1€ ceCC
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where the only difference with I'* is that we removed CCy \ CC from the
indices, which means that we may have removed one or two points £ € KN L
from I'*. Let us first check that

dist(z,T) < r~'A4(r) < Cj(r) for z € y*. (19.64)

First assume that z € %, for some ¢ € CC; notice that H!(¥,.) > n(X)
because 7, meets 0D = SNIB(¥, ) for some £ € K NL and it reaches out to
some other endpoint a; (see (7.1), (10.1), (4.1) and (4.2), and (6.43)). Then,
since (19.30) implies that j(r) < jo < n(X)/C (if jo is chosen small enough;
recall that by Remark 19.3 we have a lower bound on n(X) that depends
on 7 and the other usual constants, but not on X), (19.58) implies that 7,
meets [, and dist(z,[*) < dist(2,5,. N T*) < HY(F, \ ['*) < Ay(r) because
7. is connected. The case when z € £; for some i € Z; is treated the same
way, because H'(L;) = n(X) too; (19.64) follows. Conversely,

dist(z,7*) < r 'A4(r) < Cj(r) for z € T, (19.65)

by the same argument as above, but this time using the fact that I'. and T';
are connected too. So we control the Hausdorfl distance between v* and I".
We still need to compare I and p' = r=1(Z(r) N'S,) (see (19.50)).

For each of the Lipschitz curves I'; that compose I'* (this time, with
the condensed notation of (15.5), but avoiding the trivial curves {¢} that
come from CCy \ CC), p; is the geodesic with the same endpoints, and
by Pythagorus (and a tiny bit of spherical geometry, but recall that the
diameter of p; is less than 11/10, say),

sup dist(z,T';) + sup dist(z, p;)

2EpP; z€l;
< 10[length(T;) — length(pj)]l/2 length(pj)1/2
< Cj(r)? length(p;)/? < Cji(r) /2. (19.66)

We take a supremum and get that

sup dist(z,T") 4 sup dist(z, p*) < Cj(r)/2. (19.67)
zep* zel”
Now (19.29) follows from (19.67), (19.64), and (19.65). This completes our
proof of Lemma 19.4. ]

20. Where we control the variations of Z(r)

At this stage, we found for most r € R a nice cone Z(r), which approxi-
mates E well on S, = dB(0,7). The next stage is to show that Z(r) varies
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slowly with r, and for this we start with a study of some almost radial curves
drawn on FE, and that cross the annulus

A= B(0,90)\ B(0,107?). (20.1)

Let X € X(6p) be as in the last section, and recall from the discussion
over (19.19) that

doso(E, X) < 269 < 2-1073¢(X). (20.2)

We shall use again the standard decomposition of X into arcs €;, j € J,
that is given by Section 3. For each j € J, denote by 0¢; the boundary of
¢; (composed of its two endpoints), and let

¢ = {z € ¢;; dist(z,0¢;) > 10" "n(X)} (20.3)
denote a slightly smaller arc where we remove a bit of €; at each end.
Denote by P(j) the 2-plane that contains €;; we shall think of P(j) as
being horizontal. For each z € Qf;», denote by P, = P; , the vector hyperplane
that contains z and is orthogonal to €; at z; we think of P, as the vertical
hyperplane through z. Also denote by L(z) the half line through z, and set
T(2) = {€ € A; dist(&, L) < 10%} (20.4)
(a thin tube around L(z)),
= J 72 (20.5)
Z€Q;
and
G.=T(z)NP,NE. (20.6)

LeEmMMA 20.1. — For j € J and z € Qﬁ;, the set G, is a C' and %0—
Lipschitz graph over some segment of L(z), and it crosses A.

Proof. — We shall even prove that T'(z) N E is a C! and %—Lipschitz
graph, over a piece of P(j), and then the Lipschitz description of G, will
follow from the Implicit Function Theorem.

We shall use the interior C! regularity theorem, that we pick from [10].
Set 7 = 107°n(X), and let w € L(z) N A be given. By (20.2) E is 360e,-close
to X in B(w,107), and we can pick z¢ € E such that |xo — w| < 360e.

We want to apply Corollary 12.25 of [10] to E, in a small ball centered
at xg, but there will be a few assumptions to check. We first take care of the
distance to a plane. Observe that

3660

18
dy0- (B, X) < 7050,180(E,X) < (20.7)
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by (20.2), and because we may safely assume that g is much smaller than
n(X) and 7 (so that B(w,107) C B(0,180)).

Let us check that X coincides with P(j) near w. Recall from (3.9) that
dist(z, K \ €;) > min(no, dist(z,0¢;)) = 10~ n(X) (20.8)

by (20.3) and (4.3). Then dist(z, X \ P(j)) = 1071n(X)/2 (because X is a
cone and P(j) contains the cone over €;), and by homogeneity

dist(w, X \ P(j)) = 103n(X)/2 = 507. (20.9)

Conversely, dist(w, P(j) \ X) > 507 even more easily, because €; contains
a 10~ '7(X)-neighborhood of & in P(j) NS by (20.3). Thus (20.7) implies

that

du.tor (B. P(7)) < 22 (20.10)

Let P’ denotes the 2-plane parallel to P(j) and that contains xg; notice that
P’ lies within 360gq of P(j), so we get that

dyo 0 (E, P') < 1007 g, (20.11)

again with 771¢( as small as we want, and because B(zg,97) C B(w, 107),
with some extra space to take care of the difference between P(j) and P’.

This will take care of the distance assumption in Corollary 12.25 of [10].
But we also have a density requirement, which will be fulfilled because if F
is so close to P’ in B(zg,97), then its density in B(z,87) cannot be too
large.

More precisely, we want to apply Lemma 16.43 in [9] to the ball B(zg, p),
with p = 87, and with a small constant § that will be chosen soon. For
this there are only three things to check. First, that E is almost minimal in
B(zg,10p/9) (without a sliding condition). It is clear that B(zq,10p/9) C
B(zg,107) C B(0,180), so we just need to check that z is far from L. But

dist(z, L N'S) > min(dist(z, L N €;), dist(z, K \ €;),dist(z, LN S\ K))

min(dist(z, 0¢;), dist(z, K \ €;), dist(K,LNS\ K))
10~ (X) (20.12)

because the interior of €; does not meet L (by (3.2)), and by (4.1), (4.3),
and (20.8). Then dist(z, L) > &n(X), and

A\VARA\VARR\

dist(zq, L) > dist(w, L) — — > —-10"?n(X) — —

n(X)
> L >507, (20.13
2000 = 207 (20-13)

and F is (plain) almost minimal even in B(zg,507).
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Next h(20p/9) should be small enough (again as in (16.44) of [9]), but
this follows from (19.8) if £; is small enough, depending also on §. Finally,
dyy,10p/9(E, P') should be small enough (depending on ¢), and this follows
from (20.11) if &g is chosen small enough (depending on both 7 and ¢). So
we may apply Lemma 16.43 in [9], and we get that

H2(E N B(xo,p)) < H2(P' N B(xo, (146)p)) +5p* < (1+38)mp?. (20.14)

Because of the near monotonicity of the density t — t~2H2(EN B(xo,t)), we
easily deduce from this that the density of F at x¢ is 7 (because the density
is always > 7 at a point of F, and the next smallest density is 37/2, that
corresponds to points of type Y). So the analogue of the density excess for
FE at xp is

flp) = p>H*(E N B(xo, p)) — 7 < 367 (20.15)

by (20.14). This is the first part of the requirement (12.26) of Corollary 12.25
in [10], for the radius rq = p/110 = 87/110. We just need to be sure that ¢
is small enough, depending on the constant e; from [10].

The second requirement, about the size of h (i.e., in the present case, of
Cy), follows from the assumptions of Theorem 19.1. The final requirement
is that dy, 100r, (E, P") be small enough, and follows from (20.11) if g is
small enough. Then Corollary 12.25 in [10] says that E is C1T#-equivalent
to a plane in B(xg,ro), with some additional precisions on the way it is
equivalent, and an exponent 3 > 0 that could be computed in terms of our
various constants.

In addition to this, and as described at the beginning of Section 6, E N
B(xg,19) is also a Lipschitz graph with small constant (as small as we want,
if the constants Cy, €1, and g¢ are chosen small enough) over a subset of P’
that contains P’ N B(xg,r0/2). See the discussion below (6.22). Thus there
is a neighborhood of T' where E is a C', and small Lipschitz, graph over its
projection on P(j); recall that the width of T is smaller than the radius of
the balls where we get a C' and flat description above, so that we neither
get a hole in the projection, or two layers (we skip some of the details here).

Now we can apply the implicit function theorem and find that £ N P, N
B(zg,r0/4) is a Lipschitz graph over a segment of L(z) that contains L(z)N
B(w,r0/8). Recall also that ro = 87/110 is much larger than the width
10%eq of T'(z). Lemma 19.1 then follows from our local Lipschitz description
of EN P, near L(z) N A. O

We want to relate average flatness estimates for the graphs G, to the
variations of the density excess f(r) = 6(r) — 6y. The connection will be
through the coarea theorem, the computation of a Jacobian, and the follow-
ing angle a(x).
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For almost every x € E N A, E has a tangent plane Tg(z) at x (the
rectifiability gives an approximate tangent plane, which would be enough
here, but the local Ahlfors regularity, or more brutally the fact that E is C*
in a neighborhood of almost every point of E'\ L, give a true tangent plane).
For these x, we denote by a(z) € [0,7/2] the (smallest) angle between the
radial direction (0, ) and a unit vector in Tg(z).

We want to show that a(x) is small on average, and this will mean some-
thing about the average regularity of G,

LEMMA 20.2. — There is a constant C' > 0, that depends only on n,
such that

/ [1 — cosa(z)]dH?*(x) < CE, (20.16)
z€ENA ;cos a(x)>0

where we set £ = f(90) + folgo h(r)%.

Proof. — Let us apply the coarea formula (i.e., Theorem 3.2.22 in [29]) to
some nonnegative measurable function g, on the rectifiable set £ N B(0, 90),
and with the level sets of the function  — |x|; this yields

L o S @) = [ sl e

where J(r) is the appropriate Jacobian. In the present context, a simple
computation shows that J(z) = cos a(x). See (4.13) and (4.14) in [10] (but
this is not so hard to check anyway).

Let us take g(z) = (cosa(x))~! when cosa(x) > 0, and g(x) = 0 other-
wise, but first restrict to B(0, ")\ B(0,7), with 0 < r < ' < 90; notice that
g is integrable on E against J(z)dH?(x), and by (20.17)

v(r') —ov(r) = / dH?(x)
ENB(0,7)\B(0,r)

> /TT/ {/EOST g(;v)d’Hl(x)} dr  (20.18)

since g(z)J(z) = g(x)cosa(r) < 1 everywhere. The measurability of the
inside integral is part of the coarea formula. Also, when we divide by r’ — r
and let 7’ tend to r in the formula above, we get that

v (r) > /E @@ (20.19)

for almost every r € (0,90) (both sides exist almost everywhere, since both
sides of (20.18) are monotone functions of r and r’). Next, for almost every
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reR,
/EmS [g(z) — 1JdH (z) < V'(r) —HYENS,) = Az(r) < 4rj(r) (20.20)

by (20.19), (19.51), and (19.56). We apply the coarea formula in the other
direction and get that

/7“6(102,90) /EHST l9(x) — 1]dH " (z)dr

= /EOA[QQC) ~ 1) cosa(z)dH2(z), (20.21)

which is the left-hand side of (20.16) by definition of g (because the set where
cosa(xz) = 0 does not contribute). To complete the proof, we just need to
show that

180
/ ri(r) < CE, with £ = f(90) —l—/ h(r)
r€(10-2,90) 0

Recall from (19.24) that j(r) = r0'(r) + f(r) + (1 + 26pc,)h(2r) + (1 +
Bocrn) for @. Since here r < 90, the last two terms are clearly dominated
by the second half of £. For f(r), we observe that for 0 < r < 90,

F(r) = 6(r) — B0 < 0(90) exp (an /0 " h<2t)dt> 0y

= £(90) + 6(90) [exp (an /0 " h(zz)dt> — 1] (20.23)

by the almost monotonicity formula (19.10). We multiply by r < 90, inte-
grate, and get less than CE. We are left with 6'. But

90
/ 20 (r)dr < 902/ o' (r)dr
0 €(0,90);6" (1) 20

90
< 90? / 0 (r)dr — / o' (r)dr
0 r€(0,90);0’ (r)<0

dr

; (20.22)

d
<902 [0(90) — 6 + / anh(2r) <
r€(0,90);6’(r)<0 r

< 902 -f(90) +an /0 " h(zr)ﬂ (20.24)

T

by Lemma 17.1 and because we know from (19.10) that 6'(r) > —a,r~h(2r)
almost everywhere. This proves (20.22) and Lemma 20.2. O

We shall now use Lemma 20.2 to control the variations of the cone Z(r)
from the previous section. Let j € J and z € @; be given, and let G, be as
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in (20.6). Lemma 20.1 says that for r € (1072,90), there is a unique point
of G, NS,, which we denote by w,(r). Set &,(r) = w,(r)/|w,(r)|. Then set

di(z) = sup{|€z(7") — &M 1072 < < 90}; (20.25)
let us check that
/ 5,(2)dH! (2) < CEV2, (20.26)
zEC;

First we fix z € € and study the variations of . (r). By Lemma 20.1, &, is
C'. We want to show that

[€2(r)] < C'sina(w(r)), (20.27)

but let us try not to get confused by the various angles. Set = = w,(r),
a = a(w,(r)), e = &(r) = x/|z|, denote by T the direction of the tangent
plane to E at x, and let v € T be a unit vector that minimizes the angle
with e. Thus (v, e) = cos a.

Recall from the proof of Lemma 20.1 that near x, E is a Lipschitz graph
over P(j) (the plane that contains €;) with a constant as small as we want.
This means that T is as close to P(j) as we want. In particular 7' is not
contained in P,, and we can find a unit vector a € T, which is orthogonal to
P,. Notice that x € G, C P, so e € P, and dist(v, P,) < dist(v, Re) = sin a.
Since (20.27) is trivial when o > 107!, we may assume that o < 107!
(we could also have proved this too); then, denoting by 7, the orthogonal
projection on P,,

(v, a)| = (v — 7, (v),a)| < dist(v, P,) <sina <1071, (20.28)

the basis (v,a) is nearly orthogonal, and the norm (in 7") of the projection
on the direction of v parallel to a is less than 2.

Denote by w a unit tangent vector to G, at x; of course w € T, and we
can write w = Av 4 pa, with |A] < 2. Recall that we are interested in the
angle between w and the radial direction e. Denote by 7, the orthogonal
projection on the direction orthogonal to e; then

1 (w)| < M7 ()] + [pllr(a)] = [AlrL(v)] < 2[ro(v)] = 2sina (20.29)
because a is orthogonal to P., hence to e, and by definition of «.
Now we compute £,(r) brutally. Since the derivative of |w,(r)| is

(w (r), wl (r) w2 (r)| 7,

e(r) = - . (20.30)

That is,
lw, (1)[€ (1) = w, (1) — w., (r)(w, (r), w(r))|w, (r)] 2 (20.31)
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As could be expected, the total contribution of w’,(r) in the direction of w, (r)
(or equivalently, with the notation above, of e) vanishes. Also, |w,(r)| = r;
we are left with

[rEL(r)| = |mo(wl(r))] < 2sinajwl(r)| < 3sina (20.32)
by (20.29) and because G is a small Lipschitz graph; (20.27) follows.
We integrate (20.27) on a subinterval of (1072,90) and find that

90
3;(2) §/1 |€.(r)|dr < C/ sin a(w,(r))dr. (20.33)

0-2

Then we integrate on € and get

/Zey %(&IH () < C / ce; / sina(w.(r))drdi!(z).  (20.34)

Now the double integral looks like an integral on a piece of E N A. Indeed,
denote by Gr(j) the union of the graphs G, z € €/; that is,

Gr(j)=EnAn |J (T NP)=EnANTN ] P.. (20.35)
zEQ} zeq.

By the proof of Lemma 20.1, Gr(j) is a ——Llpschltz graph over (a subset
of) P(j). In addition, (20.10) says that it stays as close as we want to P(j),
and therefore cos a(w) > 0 on Gr(j). Now (20.34) yields

/ 5,(2)dH () < C / sin (w)dH2(w)
ze/ weGT(j)

1/2
<C{/GT(J)sm a(w)dH (w )}

1/2
<C {/ [1— cos a(w)]d’}-ﬂ(w)}
weENA; cos a(w)>0
< CEV? (20.36)

by Cauchy—Schwarz, because Gr(j) C {w € EN A; cosa(w) > 0}, then
sin? a(w) < 2(1 — cos a(w)), and by (20.16). This proves (20.26).

LEMMA 20.3. — Let Z(r), r € R, denote the cone of Section 19. Then
do(Z(r), Z(s)) < Cj(r)"/? + Cj(s)'/* + CEV? (20.37)

forr,s € R.
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Proof. — Here and below, C' is allowed to depend on constants like 7(X).
It will be enough to prove (20.37) when

j(r) and j(s) are small enough (20.38)

(depending on n(X) in particular), because otherwise it is trivial. This will
allow us to avoid some unpleasant cases.

First we construct some points. Fix r,s € R, with (20.38), and let an
index j € J be given. By Chebyshev, we can find 21 = z;(j) and 2o =
z2(j) € &, with the following properties:

dist(z1, 20) = C~ (X)), (20.39)
(we just use the fact that length(€;) > 10717 (X) here)
5j(21) + 5j (22) < 051/2 (2040)

(by (20.26), and if we choose C' in (20.40) large enough), and, for ¢ = 1,2
and with the notation of Lemma 19.4,

wy, (r) € v*(r) and wy,(s) € v*(s). (20.41)

Let us check that (19.28) allows us to arrange this last condition as well.
Recall that w,, (r) and w, (s) lie in ENANT, where T is the thin region near
the cone over & that was defined in (20.5). On this region, the projection
which to a point w associates the point z € Qf;» such that w € P, is C-
Lipschitz, and now the exceptional set of z € €} for which (20.41) fails is
contained in the projection of the union of the bad sets for (19.28); we assume
that j(r) is so small that we have a lot of choices left, and use Chebyshev to
get (20.39) and (20.40).

Now we want to use these points to control Z(r), so let us first remind
the reader of how we chose Z(r) and at the same time introduce more no-
tation. Recall from the discussion below (19.46) that since we may assume
that j(r) is small enough, as in (20.38), we may assume that (19.30) holds.
Then there are only two options. The first one is when (19.43) holds, i.e.,
when p*(r) = p«(K) is an acceptable small deformation of K = X NS, and
then we took Z(r) = ¢.(X) (the cone over p*(r), or equivalently the cor-
responding deformation of X), as in (19.44). The other option is described
below (19.49)), where p*(r) has one or two isolated additional points (ver-
tices of K N'S), which we remove from p* to get p’, and then we take for
Z(r) the cone over p/, as in (19.50). Let us set p’ = p*(r) in the first case
(when (19.43) holds), so that Z(r) is the cone over p’ = p/(r) in both cases.
Of course it will be enough to control p’.

By construction, p’ is composed of a collection of geodesics. Most of them
are obtained from an arc €;, j € J, by moving a tiny bit one or two of its
endpoints. Let us write p} the arc of geodesic that comes like this from
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¢;. When ¢ € K NS is one of the two endpoints of €;, it may be that the
corresponding endpoint of p;. is of the form ¢(¢), or just £ itself, depending on
the configurations. Also, it can happen that in addition to the p}, p’ contains
one or two very short additional arcs, that go from some £ € K NS to ¢(¢).
For each ¢, there is only (at most) one such arc, which we call py = p(¢, p(¢)).
Since we do this construction with both radii » and s, we shall often add
this in the notation. Thus Z(r) is the cone over

7= o) U pelr), (20.42)

jed ¢
where the last union may be empty and concerns at most two vertices ¢ €
K N L, and there is a similar description for p’(s).

We want to place each p(r) by finding two points in it; we will take
care of the py(r) later. We start from the two points w,, (1), ¢« = 1,2. Since
wy, (1) € v*(r), (19.29) tells us that we can find y;(r) = yi(r,j) € Z(r) NS,
such that dist(y;(r, j), w.,(r)) < Cj(r)*/2. We claim that

yi(r,7) € pi(r) for i = 1,2 and dist(y1(r,7), ya(r, 7)) = C~'n(X). (20.43)

Recall that w,,(r) € ENTNS,, so w,,(r) lies within 10%ey < 7(X) of the
cone over €7, and (since j(r) is small by (20.38)) y;(r, j) lies very close too.
Since &) lies at distance at least n(X)/10 from L NS and K \ €;, and at
the same time ¢ does not move points much, we see that y;(r,j) cannot
lie in any other pj(r), k € J\ {j}, nor any pj(r). That is, y;(r,j) € p(r).
In addition, the two z; are far from each other (by (20.39)), hence also the
wy, (r) and the y;(r, 7). This proves (20.43).

Let pj(r) denote the great circle in S, that contains the geodesic p’;. Then
r~1p;(r) is the great circle in S that contains the two points 7~ 'y;(r, j).
Similarly define the great circles p;(s) (starting from Z(s)), and points
vyi(s,j) € Z(s) N'Ss, and notice that s~!p;(s) is the great circle in S that
contains the two points s~1y;(s, ). In addition, for i = 1,2,

‘8_1myi(saj) - T_lyi(raj)‘
<57 yils,5) = wa (8)] + Is 7wz, () = 77w, ()] 4+ 7 Hews, () = i, )
Ci(r) 2 + |s 7wz, (s) — 1 hw, ()] + Ci(s) V2
< Cj(r)Y2 + CEV? 4 Cj(s)V2. (20.44)
We deduce from this and (20.43) that
dy(r=1p;(r), s p;(s)) < Ci(r)/2 + Cj(s)Y/? + CEY? = CE',  (20.45)

where the Hausdorff distance dy is defined as in (18.5), and we set & =
G(r)? 4 j(s)1/? 4 £1/2 to save some space. This is good, but we also want

1

N
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to control the position of the endpoints of the p}(r) and the p/(s), because
we want to show that

dy(r=1p'(r),s 1o/ (s)) < CE'. (20.46)

Indeed, (20.37) will follow from (20.46), since Z(r) is the cone over r—1p/(r),
and similarly for Z(s).

We intend to prove this locally, in balls of radius roughly equal to
C~n(X) and centered on K. We start away from K N L, and first con-
sider balls centered on the vertices of V3 U V5 of our standard decomposition
(see the definitions near (3.5)).

Let ap € V1 U V3 be given, call €;, €, and maybe &; (that is, if ag € V1)
the two or three arcs of K that end at ag. By the various definitions, p’(r),
pr.(r), and maybe pj(r) are arcs of geodesics that end at some point ra(r),
with a(r) € S, and a(r) lies very close to ag (because it is of the form ¢(ap)
for some ¢ € ®%(n), with 7 much smaller than 7(X)). We have a similar
description of p’(s), pj.(s), and maybe pj(s), with another point a(s) € S.

When a¢ € Vi, the three €;, €, and €; make 120° angles with each other,
and the position of a(r) is determined, within 10CE&’, as soon as we know
the position of the full circle r~1p;(r) and its analogues for k and I. The
same thing holds for the radius s, and now (20.45) implies that

la(r) — a(s)| < CE&'. (20.47)
Once we have this, and by (20.45) again, we easily deduce that
da0710—4n(x)(r_1p;-(r), s_lp;(s)) cee (20.48)

and similarly for k and [. Since we are far from the p, and by (20.42), we
immediately get that

dao’lof%(x)(r_lp’(r), s~/ (s)) < C€E. (20.49)

This is good enough for (20.46), so we may switch to the case when ag € V3,
and we started from two arcs €; and &, that go in opposite directions. In
this case, we will not control the geodesics separately, but we will be able
to control the union. That is, we may not know so precisely where a(r) and
a(s) lie (i.e., (20.47) may fail), but nonetheless we claim that (20.49) still
holds, although maybe with a larger constant. Indeed if the angle of p;(r)
and pr(r) at ra(r) is at most CE’, the angle of p;(s) and pi(s) at sa(s) is
less than CE&’ too, and in the ball B(ag, 10~4n(X)), r~1p'(r) is CE&'-close to
r=1p;(r) (or to r=1py(r), since the two are close to each other). If now the
angle of p;(r) and pg(r) at ra(r) is roughly AE’, with X large, then the proof
of (20.47) merely gives |a(r) —a(s)] < CA~!, but we still get (20.49) because
the distance between p;(r) and pi(r) (or similarly p;(s) and pg(s)) varies by
at most CAE’ times this distance. Said differently, we look for a Lipschitz
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graph (for instance s~!p’(s)) composed of two arcs of geodesics, knowing

these two geodesics with errors of CE’; then we can recover the graph within
CE&' (after deciding which way it branches), which we can if the geodesics
make angles \&’, with X large.

This takes care of small balls B(ag, 107%n(X)) centered on V; and Va. It
is even easier to show that

dag,10-09(x) (170 (1), 5710/ (5)) < CE' (20.50)

when ag € K is such that dist(ag, Vo U V4 U V2) > 107°n(X), because in the
ball B(ag,10757(X)), 7=1p/(r) coincides with a single r~!p;(r), the one for
which ag € &;. This comes from the fact that all the other p(r) (or pj(r))
are far away, by (3.9)—(4.3) and the fact that we have a good control on the
angles that two arcs p;(r) make when they have a common endpoint.

This takes care of the part of p'(r) and p/(s) that lives far from Vy = KNL,
and (20.46) (and hence also the lemma) will follow if we can prove that for
le VYOa

dé71o—4n(X)(7”71P/(7")a s~ (s) < C€. (20.51)

We will need to distinguish cases, depending on the configurations that we
encounter for r and s. A priori, these two configurations may be different.

We start with the case when K has only one branch near ¢. Since hanging
curves never occur when j(r) and j(s) are small (recall (20.38)), there is only
one curve p;- near ¢, and this curve ends at ¢. The same thing happens for
s, and in this case (20.51) is a simple consequence of (20.45), because we
know where the curves stop (and on which side they are).

Next assume that K has two branches at . Call the corresponding indices
j and k. Then (again because there is no hanging curve) we can only be in
Configuration 2— (treated below (10.20)) or Configuration 2+ (treated in
Section 12).

In the first case, p/(r) is composed, near ¢, of the two arcs of geodesic
pj(r) and py (r), and nothing else. They have a common endpoint ra(r), and
even though the position of p;(r) and py(r) does not necessarily determine
a(r) with great precision (because p’(r) and pj(r) may make an angle at
ra(r) that is close to 7), it still determines the union of p’(r) and pj(r)
with a good enough precision. That is, if both r and s are subject to Con-
figuration 2—, then we have (20.51), by the same proof as for (20.49) when
ag € V.

When we have Configuration 2+ for r, there are again two cases. We
start with the second one (Case B), because then I' is composed of just two
curves that start from ¢ (see near (12.8)), the geodesics p;(r) and pj(r) both
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start from ¢, and their position near ¢ is easy to deduce from the position
of p;(r) and pg(r). If this happens both for r and s, we get (20.51) right
away, and even if we have this configuration for » and Configuration 2— for
s, or the other way around, we still get (20.51) for the same reason as in
Configuration 2—.

We are left with the case when at least one of the radii, say, r, belongs to
Case A of Configuration 2+. In this case p/(r) is composed of three geodesics
near ¢, the usual p’(r) and pj(r), that end at a common point ra(r), plus
the short geodesic pj(r) that goes from ¢ to ra(r). In this case these three
geodesics make large angles at ra(r) (see (12.2)). In fact the proof of (12.4)
(even simplified) shows that then p(r), pj(r), and pj(r) make angles larger
than 2T — & = 3% at ra(r), and then p/(r) and pj (r) make an angle smaller
than 27 —2- %’r = %“ < m at ra(r). In this case, we can recover the position
of a(r), within the usual error of CE&’, from the approximate position of the
geodesics p;(r) and px(r) (known within CE’). In addition, in this case the
same proof also shows that €; and €, make an angle smaller than %’r at /£,
and we can recover the point of intersection sa(s) of p/i(s) and pj,(s) with the
same sort of precision. Thus, if s is also coming from case A, we get (20.51)
with the initial proof of (20.49).

We are left with the case when r is associated to Case A and s is associated
to Case B or Configuration 2—. Case B is not a problem, because a(s), which
is the intersection near ¢ of s~'p;(s) and s~!py(s), lies very close to a(r)
(which has a similar definition in terms of ), and at the same time is equal to
£, so that the additional geodesic pj(r) is very short and we still get (20.51).
We are left with the case when s belongs to Configuration 2—. But in the
present case €; and € make an angle smaller than %’r at £, and it is easy to
see that our union of curves I' = 'y U T’y is not efficient because we may as
well cut its edge near £. We claim that this case (i.e., Configuration 2— with
an angle smaller than 5T) does not occur for s when j(s) is small enough.
The proof is the same as for Configuration 3 = 2+1, treated below (19.49),
except that we don’t even need to worry about the extra arc leaving from /.
This completes our proof of (20.51) when there are only two arcs €; and €,

that leave from ¥¢.

Now may now assume that we have three arcs ¢;, €;, and €, that touch .
The three main geodesics p;(r), pj(r) and pj,(r) make angles nearly equal to
%’r near £, so the location of the intersections of the great circles that contain
them is known with good precision. In terms of Configurations, recall that
there is no hanging curve, and that Configuration 3 = 2+1 is also ruled out
by the discussion near (19.49). We are thus left with Configuration 3- (where

p'(r) is composed of the three geodesics p;(r), pj(r), pj,(r) that all leave from
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a same endpoint that we call ra(r) (see near (10.30)), and Configuration
3+, where again we have two subcases. In Case A, I' and then r~1p/(r) are
three-legged spider centered at £ (see (11.31), the comment that follows it,
and then the discussion above (13.13) that confirms how we cut I" and found

geodesics).

In Case B, I' and then and r~1p/(r) are authorized to have a fork. That
is, they are composed of one curve that leaves from ¢ (with the notation
of (11.96), the corresponding piece of T is called I's), a short arc =1 pp(r)
(corresponding to Iy in (11.96)), that goes from ¢ to some fork point a(r)
(corresponding to z( in Section 12), and then two other curves that leave
from a(r) (corresponding to I'; and I's in (11.96)).

If both r and s both correspond to Configuration 3— or Case A, then we
have (20.51) because the positions of a(r) and a(s) can be obtained with the
desired precision form the position of the great circles where they cut. The
proof is still the same as for (20.49).

So we may assume that for » we have Case B, and (again without loss
of generality) that a(r) is the common endpoint of r’lp} (r) and r~1pj ().
First assume that s corresponds to Configuration 3— or Case A. Then a(s),
which is the intersection near ¢ of s7'p;(s) and s~'py(s), lies within CE’ of
a(r), which is defined similarly, but with s replaced by r (apply (20.45) as
usual). Also, / lies close to s~!p;(s) because it lies in »~1p;(r). Moreover, if
we assume for the sake of the discussion that the tangent of €; is horizontal
at ¢ and leaves from ¢ in the direction of the right, a(r) is roughly aligned
with the opposite of r~1p}(r) (see Lemma 11.5), i.e., lies on the left of ¢,
and then a(s) also lies on the left (or at least, not far right) of ¢; hence ¢
also lies within CE&’ of s71p/(s) (and not just s~'p;(s) as we said above). So
r=(pi(r) U p(r)) is CE'-close to s~1pl(s) and we get (20.51) by adding the
two other geodesics.

We may thus assume that s also corresponds to Case B. If pl(s) is also
the geodesic of p'(s) that leaves from s¢, the intersection a(s) of s’lp;- (s)
and s~1p/ (s) lies close to a(r), as before, and (20.51) holds as usual. So we
may assume that p’(s), say, is the one that starts from sf, and a(s) is the
common endpoint of s71p/(s) and s~1p} (s). This is not impossible, but we
shall show that then a(r) and a(s) are both close to £.

By Lemma 11.5, a(r) — ¢ lies in the direction almost opposite to the
direction of €; at ¢; since ra(r) € p;(r) and p;(r) runs in a quite different
direction, this proves that dist(¢,7*p;(r)) = 75|a(r)—£|. On the other hand,
st € pli(s) C py(s), so £ lies CE'-close to 7~ p;(r) (by (20.43)) and altogether
a(r) lies C&’-close to £. The same argument (with 7 and s exchanged) shows
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that |a(s) — €] < C&’; then (20.51) follows as usual: we control the directions
of the geodesics and their origin.

So (20.51) holds in our last case. We have seen earlier that (20.46), and
then (20.37), follow. This completes the proof of Lemma 20.3. O

21. We finally get a good approximation by cones

In this section we complete the proof of Theorem 19.1. In the previous
sections, we took E as in that theorem, selected a sliding minimal cone X
(see Lemma 19.2), constructed deformations Z(r) € Z(X,n) of X, r € R
(in Lemma 19.4), and proved that they often lie close to each other (see
Lemma 20.3). Now we want to pick one of the cones Z(r) and show that it
is close to F, as needed for Theorem 19.1.

So let us choose a radius ry € R. We simply use Chebyshev to select
19 € R such that
2
ro € (1,2) and j(ro) < 2/ j(r)dr < C€, (21.1)
1

where the second inequality comes from (20.22).

Set Z = Z(rg); want to show that E is close to Z in, say, B(0,2), but it
will be simpler to first take care of the annulus Ay = B(0,2) \ B(0,1071);
we will worry later about B(0,1071), with an iteration argument. First we
check that points of Z N Ay are close to E.

LEMMA 21.1. — With Z and Ag = B(0,2) \ B(0,1071) as above,
dist(z, E) < CEY? for z € Z N Ay. (21.2)
Proof. — Let z € Z N Ap be given, set r = |z|, and pick s € R such that
j(s) < £%/3. By Chebyshev, we can find s so that
90
|s — 7| < 25—2/3/ j(rydr < CEV3, (21.3)
0

by (20.22) again. Set z; = sr~1z; thus 21 € ZNS; and |21 — 2| = [s — 7| <
CEY3. By Lemma 20.3 (applied to 7o and s), we can find zo € Z(s) NS
such that

|22 — 21| = dist(21, Z(s)) < 3do.1(Z, Z(5))
< C(j(ro) +j(s) + V2 < OEV3. (21.4)

Then we use Lemma 19.4 and find € 7*(s) such that |z — 2| < Cj(s)'/? <
CEY/3. Since = € v*(s) C F (see the first line of Lemma 19.4), we get that
dist(z, E) < |z — 2| < CEY/3, as needed. O
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LEMMA 21.2. — Keep Z and Ag as above; then
dist(z, Z) < CEY* for x € EN A,. (21.5)

Proof. — We first find some points of F for which (21.5) holds. Let z € E
be given, and first assume that r = |z| lies in R, with j(r) < £'/2, and that
in addition z € ~*(r). Then by (19.29), there is a point z € Z(r) such
that dist(z,2) < Cj(r)/? < CEY*. In addition, Lemma 20.3 gives us a
point w € Z = Z(ry) such that |w — z| < C[j(r) + j(ro) + E]/? < CEVA,
by (20.37) and the definition of 7o. That is, dist(x, Z) < CoE'/* for some
constant C that satisfies the usual requirements. Next we consider

Ey={z € ENB(0,3)\ B(0,1072); dist(z, Z) > Co&Y*}. (21.6)

We want to estimate the measure of Ey, and unfortunately we will have to
single out the ugly set

_,. I has no tangent plane at x
E, = {ermB(0,3)\B(o, 1072); or cos a(z) = 0}, (21.7)
which will be treated separately, after we look at
Ey={x € Ey\ Ey; x| ¢ R or j(|z]) > EY/?} (21.8)
and
Ey = {xGEO\(EbUEl);xEEﬁSM\y*(\xD}. (21.9)

By the discussion above, Fy = E, U E1 U Fs.

We shall now use the coarea formula and Lemma 20.2 to estimate
H2(E1 U Ey). We write

H?(Eo \ Ep) = /

o {[1 — cosa(z)] + cos a(x)} dH?(x)

<C€ +/ cos a(z)dH?(x)
Eo\Eb

205+/3 H ((Eo \ Ep) NS, )dr

=10-2
3 3
<0¢E +/ HY(E, NS,)dr +/ HY(EyNS,)dr (21.10)
r=10—2 r=10-2
by (20.16) and (20.17) with g = 1g,\ g, , and where we recall that J(z) =
cos a(z). Next

3 3
/ HL(By NS, )dr </ HUENS, \ 7 (r))dr

=10—2 r=10—2

3
</ jirydr < CE (21.11)

=10—2
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by (21.9), (19.28) and (20.22). Now we estimate f 10—z H'(E1 NS, )dr. We
can drop the radii r € (1072,3) \ R, because the corresponding set has
vanishing measure by (19.23). We also restrict to r such that j(r) > £/2
by (21.8), and notice that since r € R,

HYEL NS, )dr <O/ (r) = 720" (r) + 2r  o(r) = 720 (r) + 2r0(r)
=720/ (r) + 2r f(r) + 2rfy < 2rfy + Crij(r) (21.12)
by (19.22), (19.21), and then (19.27). Thus

3
/ HY(ELNS,)dr
r=10-2
3 3
< 90/ Liysgi/2rdr +C rj(r) < CEY? (21.13)

r=10-2 r=10—2
by (20.22) and Chebyshev. We compare with (21.11) and (21.10) and get
that

H2(Ey \ By) < CEV2, (21.14)
Unfortunately, we still have to take care of Ej, where the co-area formula
does not seem to work so well. In fact, if we apply (20.17) with g = 1g,, the

left-hand side vanishes (because J(x) = 0 almost everywhere on Ej), and
the right-hand side is

0= /090 {[Emgrg(x)d’/-tl(x)}dr _ 090H1(Eb AS)dr.  (21.15)

Thus Hl(Eb NS,) = 0 for almost every r, and the contribution of F} is not
seen when we evaluate the variations of v(r) using the integral of v" and the
estimate (19.22). That is, if we set E = E \ E,, d(r) = H2(E N B(0,r)),
and 6(r) = r~23(r), the proof of near monotonicity for # also yields the
near monotonicity of 0, as in (19.10). It is a little sad that the author is
forcing the reader to trust that the proof of near monotonicity uses nothing
else than (19.22); in [10] the author gave an other proof that avoids this
unpleasant point, but at the same time is more complicated. Anyway, the
near monotonicity for 6(r) yields

_ 90 (9 90 (9
6(90) > 6y exp (—an/ t t>dt> >0y — Ooan/ ut Z)dt (21.16)
0 0

t

by (19.1) (as in (19.11)), and because f(go h(mdt is small by (19.8). Then
6(90) = 6(90) + 90~ 2H2(E}) = 6o + 90~ 2H2(Eb) — foa, [y HEDY hence

£(90) > 907*H2(By) — boar, / h(2t)dt

(21.17
0 t )
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or equivalently

90
H2(E,) < 902£(90) + 9020aun / hEOdE e (21.18)

0 t

by the definition of € in Lemma 20.2. With (21.14), this shows that H?(Ep) <
cevz,

Now assume that we can find x € EN Ay such that dist(x, Z) > 20,4,
where the large constant C; > Cj will be chosen soon. Set p = C1EY4: the
set B3 = EN B(x, p) stays at distance at least C;E'/4 from Z, and it is also
contained in B(0,3)\ B(0,1072) (because x € Ay = B(0,2)\ B(0,1071) and
we may assume that £ is arbitrarily small), so F3 C Eg. On the other hand,
the local Ahlfors regularity of E yields H?(E3) > C~'p? = C~1C?£Y/2, with
a constant of the usual type, and that does not depend on C7; we choose
C1 large enough and get the desired contradiction with our upper bound for
H2(Ep). This completes the proof of Lemma 21.2. O

Remark 21.3. — In [10] we obtained a better power, namely 1/3 instead
of 1/4. We do not try to do this here, and send the reader to [10] instead in
the unlikely event where something like this would be needed. The general
idea was not hard: because of Lemma 21.1, we already know that all points
of ZN A lie CEY/3-close to E; we also know that F is reasonably close, in any
ball By centered on E N A and with radius 1072, say, to our initial minimal
cone X. The point is to use the fact that, in such a ball (and if we want,
due to the fact that near By, the cone Z is one step simpler than in the ball
centered at the origin), we have a good description of E in 107! By, which
we can use to say that it cannot look like Z, plus a tiny bit that goes away
from Z. In the case of [10], we showed that E is locally Holder-equivalent
to a cone of type Y or IP; here we would use the results of [13] (or even this
paper with a smaller density ) to get a good description of E near a point,
that prevents additional spikes that go away from Z. In both case we use
extra flatness instead of Ahlfors-regularity to get a better control of E at
the scale £1/3 rather than £'/4.

We are now ready to prove Theorem 19.1. Our first observation is that
if E is as in the theorem, and we choose a new scale p € (0,1/2), then the
new set I, = p~ L E satisfies almost the same assumptions as E itself. That
is, the new gauge function for E, is h,(r) = h(pr), and it satisfies (19.6)
(even with the slightly smaller constant Cop®) if h satisfies (19.6). As for
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the analogue f, of f, notice that
£,(200) = £(200p) = 6(200p) — b

200
< 0(200) exp (an/ h(QZ)dt>
0

< [£(200) 4+ o] (1 + 20, /0

400
< f(200)+0/ h(tt)dt
0

because the density at the origin of E, is still 6y, and by (19.10). This is
essentially as good as f(200), i.e., when we assume (19.8) for E with a slightly
smaller 1, we also get (19.8) for E, with ;.

200 h(2t)dt>

(21.19)

Let us just consider pp = 27%, with k& € N. For each k, we proceed as

above, i.e., select a minimal cone X = X, , then other cones Z(r) = Z,, (r),

r € R,,, then a radius 7, € R,, that plays the role of rg above, and finally
the cone Z(F) = Z,, () that we used for Lemmas 21.1 and 21.2.

Notice that ri11 lies in the set Ry that was used for the Eth step, that
J(rr41) is actually the same when we think that 7,11 € Ry or rg41 € Ret1,
and that we could have used the same cone Z*+1) = Z, . (r441) as the set
Zp,, (rk+1). Then by Lemma 20.3 (applied with choice of Z,, (rr11)),

o1 (ZM), 2%V = do 1 (Z,, (1), Zp (Th41))
<C>j(re) + j(ren) + C&) ' (21.20)
where
180py dt
& = f(90pr) +/ h(t) (21.21)
0

is the analogue of £ at stage k, (see Lemma 20.2). But r; and rgy; were

chosen so that j(ry) < C& and j(ris+1) < C&ki1 (see (21.1)), so
o1 (2%, 25Dy < C(E + Expr) "> (21.22)

Notice that
&, <CE for 0<j <k, (21.23)

by the near monotonicity of f (or 8), with the same proof as for (21.19). We
claim that then

do1 (29,20 < C(k — j)E}* for 0<j < k. (21.24)
For instance, if z; € Z() N B(0,1), (21.22) gives a point zj1; € ZU+Y such

that |z;41 —z;| < C(&; +8j+1)1/2 < CSJ-I/2, by (21.23); we may assume that
zj+1 € B(0,1) (because its projection on B(0,1) still lies in the cone ZU+1)
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and is not twice further. By induction, for every ¢ > j we can find z, €
ZWNB(0,1) such that |z, — ;| < C’(f—j)é’;/z; we stop at ¢ = k and get the
first half of (21.24). The converse is the same: any point z;, € Z*) N B(0,1)
is within C’(Ek + Ek_1)1/2 < C’E;/Q of Zt,k=1) n B(0,1), and so on until we
reach Z() N B(0, 1).

Now it is easy to see that

do1(E,7Z) < CEMY, (21.25)

Recall that we chose Z = Z(). Let 2 € E N B(0,1) be given, and choose k
so that 27*=1 < |z| < 27%. By Lemma 21.2 (applied to E,,), we can find
z € Z") such that |z — p; 'o| < 052/4 < CEYA (recall that pp = 27%). We
may as well take z € B(0, 1), because |p,;1:1c| < 1 and so the projection of
z on B(0,1) cannot be twice further. Then by (21.24) (with j = 0) we can
find w € Z such that |w — z| < CkEY?; thus |z — prw| = pilpy 'z — w| <
C(1+k)ppE/* < CEV* and we get the first half of (21.25). The second half
is done the same way, using (21.24) and then Lemma 21.1.

We already noticed in (19.46) that a(Z) = a(Z(rg)) < Cj(ro) < CE,
by (21.1). So we can use Z to establish (19.7); Theorem 19.1 follows. O

22. A partial conclusion and the tangent cone is unique

In this section we stop and think a little about what we have done so
far, and prove the existence of a tangent cone Xy at the origin (i.e., the
uniqueness of blow-up limit) in some circumstances, as well as a good ap-
proximation result by Xy in small balls B(0, 7).

We shall systematically assume that L is a line through the origin,

E is a reduced sliding almost minimal set in B(0,71) C R",

with a boundary condition coming from L, (22.1)
with a gauge function A such that
h(r) < CprP for 0 <r <y (22.2)

for some constants Cy, > 0, 8 > 0, and 1 > 0. We also assume that
0eENL. (22.3)
Our simplest result is the following.

COROLLARY 22.1. — Let E satisfy (22.1)—(22.3), and suppose in addi-
tion that

some blow-up limit of E at 0 satisfies the full length condition.  (22.4)
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Then E has a unique blow-up limit Xg at 0, and we can find a > 0, rg €
(0,71), and C1,Cq > 0 such that

f(r) < Cir® and do,(E, Xo) < Cor®* for 0 <r < ro, (22.5)
where as usual

F(r) =0(r) =60, with 6(r) = r*H*(ENB(0,7)) and fo = lim 6(t). (22.6)

Here a depends only on n and the full length constant for Xy (which turns
out to be the unique blow-up limit), while ro, C1, and Ca may depend wildly
on E.

The reader should not pay too much attention to the difference between
a and a/4; this is just how they come in the proof.

This corollary generalizes Corollary 18.2, and will apply automatically
when 6y = lim;_,060(t) < 2F if we ever prove (18.23), by the full length
result of Section 37.

As usual, we prefer to state a more precise result, with more quantifiers,
where we start from the good approximation of E by a full length cone X
in a given ball, and get the existence of a tangent cone Xy and more precise
approximation results for Xy in smaller balls.

THEOREM 22.2. — Let X be a sliding minimal cone of dimension 2 in
R™, with sliding boundary condition coming from L, and assume that X
satisfies the full length condition. For each choice of constant 5 > 0, we can
find eg > 0, such that if the sliding almost minimal set E satisfies (22.1)—
(22.3), has the same density at 0 as X, i.e.,

H*(X N B(0,1)) = lir%r_Q’HQ(EﬂB(O,r)), (22.7)
r—
and if in addition we can find € € (0,eq] such that
Chr’f <e anddy,, (B, X) <e¢, (22.8)
then E has a unique tangent cone Xy at 0,

a/4
do(E, Xo) < c1(e) (r> for0<r<ry, (22.9)

1
and, with f as in (22.6),
3r ¢

10« (2 s+ acwt (L) <a@in

1

foro<r<ry/3. (22.10)
Here a > 0, €g, and C3 depend only on n, 8, and X through the geometric
constants Oy, n(X), n, and ¢ associated to X and its full length condition.
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The constants c1() and co(e) depend also on €, and tend to 0 (with n, (3,
n(X), n, and c fized) when € tends to 0.

As we shall see at the end of this section, this result is stronger than
the combination of Theorems 1.8 and 1.9, but not as trivially as one could
think. We cannot apply Theorem 22.2 brutally because the cones of P, Y, and
T, for instance, do not really satisfy the full length property with uniform
constants, since the number 1(X) also measures the distance from ¢ € L\ K
to the closest vertex of K, which may be arbitrarily small. We will finesse
the issue by a small covering argument, as we did for Proposition 18.1.

Theorem 22.2 clearly implies Corollary 22.1 (apply it with a full length
blow-up limit X and a small enough radius r; such that (22.8) holds). In ad-
dition to the more precise estimates, it has an advantage over Corollary 22.1
that we don’t need to compute a blow-up limit of F; it is enough to approx-
imate E well enough by a full length minimal cone. However, we still need
to know the density of E at 0, because of (22.7). And the small constant
€p depends on our choice of X, so we may have to make tough arbitrages
between good approximation and large full length constants.

The sets X and X are not related a priori, but the proof will show that
X and Xy, in addition to having the same density, are based on the same
model. That is, X is a deformation of X as in Definition 4.1.

The general strategy for the proof will be to use Proposition 17.2 to get
some decay for f, and Theorem 19.1 to deduce from the size of f(r) that F
lies close to a nice cone. We will have to do the two things at the same time,
because we also need the good approximation result of Theorem 19.1 to find
a nice minimal cone for which (17.7) holds for smaller radii. That is, we will
need to show at the same time that (22.9) and (22.10) hold, for smaller and
smaller radii 7.

Before we turn to the proof, let us say that Theorem 22.2 is not enough
to give a good C' description of E near 0, even when the blow-up limits of
FE at 0 are simple. Sure enough, we get a good control on E in every small
ball centered at 0, but what about small balls contained in B(0,r;/10),
but centered at other points of E N L, and more importantly at points of
E\ L? If we want to apply something like Reifenberg’s topological disk
theorem to describe E near 0, it seems that we need a uniform control
on (the approximation of F by nice cones in) these ball to get biHolder
descriptions, and even a uniform decay to get a C!, or slightly better than
C*', description.

We managed in [13] to get enough uniform control on such balls to get a
biHolder description of E near 0 in some specific situations (when E looks a
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lot like a half plane or a V-set in B(0, 7)), and in the present paper we want
a better control (better than C'), and slightly more cases. Both here and
in [13], we rely on the near monotonicity of a close relative of 6, the function
F of (1.27), which is adapted to balls that are centered slightly off L.

This is why we will need to redo a large proportion of the arguments of
this part in the next one, and adapt them to the situation of balls centered
on E\ L, but unfortunately with a limited list of approximating minimal
cones (or truncated cones). In the mean time we prove Theorem 22.2, and
then the fact that it implies Theorems 1.8 and 1.9.

Proof of Theorem 22.2. — Let F and X be as in the statement, and
define 6 and f as in (22.6). We want to prove that f decays like a power,
and for this we want to use Proposition 17.2 and integrate the differential
inequality that it gives.

So we want to find a cone X (r) such that (17.7) holds, and since we don’t
want a mess with varying full length minimal cones (that we also would have
to find anyway), the simplest will be to keep the same cone X and hope that
it works for all radii. This means that we will have to prove that it stays
close to E at small scales, which will be done with the help of Theorem 19.1.

Anyway, we want to apply Proposition 17.2 with ro = r1/2. Let us first
check the easy assumptions: (17.1) holds because of (22.1), and (17.2) follows
from (22.2). For (17.8), we work with the fixed cone X, so (17.8) just requires
that C’hrg < g(X) for some small constant £(X), and this follows at once
from (22.8). Finally, (17.10) holds with ¢(r) = 0, by (22.7). We are left
with (17.7). Again we work with the fixed cone X, so (17.7) demands that

do2r(E,X) <e(X); (22.11)
maybe we will not be able to prove this directly for all » € (0,71/2), so we
define

roo = sup{r € (0,r1/2); (22.11) fails }, (22.12)
with the convention that roo = 0 if (22.11) holds for all r € (0,7r1/2).

Notice however that since dy ., (E,X) < o by (22.8), we immediately get
that (22.11) holds for r > (X ) tegry. That is,

roo < e(X)teor, (22.13)
which we can make as small as we wish (compared to r1) by taking ey small.

Eventually we shall prove that rog = 0; in the mean time, set I =
(roo,71/2). Our last condition (22.11) is only known to hold on I, but for-
tunately it was observed a few lines after the proof of Proposition 17.2 that
with our weaker assumptions (where (17.7) only holds for r € I), the con-
clusion of Proposition 17.2, i.e., the differential inequality (17.11), still holds

- 200 -



A local description of 2-dimensional almost minimal sets bounded by a curve

for all » € I. This means that

4o
!/

2 -
") > g
for a fixed constant & = a(X) (and because g(r) = 0). This differential
inequality can be integrated on I as we did in Section 17, and we get the
inequality (17.23), valid for radii in I. We change notation because r; is
already taken, and get that for r,s € I, r < s,

10 < (5)" £5) + 30 /Tsh(t)tifl <(5)' 1) +3Chr“/rs %
<(5) 1)+ %r“sﬂ‘“,

S

f(r) —3h(r) for almost every r € I, (22.14)

(22.15)
where the small positive constant a = lfcg‘a from (17.20) depends on n, 3
and X (as above) but not on Cj, and then by (18.2) and because we can

safely assume that a < 5/2.

Let us take s = r1 /3. We get that for r € (rgo,71/3),

10y < (2) 1tmm + 5557 (1)
3r

< () f(r1/3) + CCur¥ (r) : (22.16)
1 T1
Notice that this is compatible with the first half of (22.10), which therefore
will follow as soon as we prove that rog = 0.

Let prove the second inequality of (22.10) now. Observe that C’hr? < g
by (22.8), so we only need to show that

f(r1/3) < cle), (22.17)
with a constant c(e) such that lim._, 4 c(e) = 0.

We deduce this from the fact that do,, (E,X) < ¢ (by (22.8)), with a
simple compactness argument, similar to the proof of Lemma 16.43 in [9],
but based on the limiting arguments of [14] because of the sliding condition.
The point is that if this failed, we could construct a sequence of sliding
almost minimal sets E;, and a sequence of sliding minimal cones X, both
associated to the boundary L, so that (after a dilation that sends 7 to 1)
do1(E;, X;) tends to 0 but the densities §,(1/3) = 9H?(FE; N B(0,1/3) and
H?(X;NB(0,1)) stay far from each other. Then we would extract convergent
sequences, use Theorems 10.97 and 22.1 of [14] to control the densities, show
that f;(1/3) = 9H4(E; N B(0,1/3)) — H4(X,; N B(0,1)) tends to 0, and get
the desired contradiction.
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For the moment, we only know the first part for r € I, but we still get
that

f(r)<e (7«)“ for r € (roo,71/3), (22.18)

1

with ¢ as small as we want. We want to use this, and Proposition 19.1, to
control the geometry of E, in particular in balls that are too small for (22.8)
to give good results.

Set 7 = 107371, and apply Proposition 19.1 to the set £}, = r,;lE. The
assumption (19.6) (with 8y = ) follows at once from (22.2) and we can even
take Cp = C’hr,f < 1073%8¢q (by (22.8)). So Cy is small, and Proposition 19.1
says that (19.7) holds, i.e.,

1/4

w h’“(t)dt} , (22.19)

(B ) < o0y + [ 2
0
with f(200) = f(200r) and
400 400 8
/ w < / w < CCyry < Ceg1073k8 (22.20)
0 0

by (22.8) again. We shall restrict our attention to integers k > 2 such that
20077@ 2 700, (2221)

because this way we can apply (22.18) to r = r;, and get that
a/4 a/4
Bam(E, 1) < Cc(ri) + O (20107388 < cl(ri) . (22.22)
1 1

again with ¢; as small as we want, and because a < §/2 and ¢q is small.
By (19.5) this means that we can find a cone Z; € Z(X,n) such that in
particular

Tk

a/4
dor, (E, Zy) = do1(Ey, Zi) < &1 (*) = ¢, 107 3ka/4, (22.23)
]

We shall only apply this for k& > kg, where kg will be chosen soon. Notice
that for k > kg + 1,

do,1(Zx, Z-1)
=do,1/2(Zk, Zr—1) < 2do1(Zy, Ex) + 2do,1 (Ex, Z1-1)
= 2do,1(Zk, Ex) + 2 - 10%dg 10-2 (B, Zk—1)
= 2do1(Zi, Er) +2-103do 1 (By_1, Zi1) < c21073F¢/% 1 (22.24)
with co as small as we want and where for the first line (and similar compu-

tations later) we actually use the fact that our estimates for the normalized
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distances (that follow) are small, so that we can chase points inside B(0, 1).
For k < kg, we prefer to use the fact that

do.r (E,X) <10%*dy ., (E, X) < 10%%¢ < 10%*¢, (22.25)
by (22.8). Let us pick kg so large that
D (er 4 e2) 1074 < 1075¢(X), (22.26)
k>ko

where ¢; and ¢z come from (22.23) and (22.24) (and we do not care yet
whether they are small or not) and ¢(X) comes from (22.11). Also make
sure to pick g9 < 1073%=5¢(X), so that by (22.25)

do,r, (B, X) <10%dyr, (E, X) < 107%¢(X) (22.27)
and, by the same proof as for (22.24),
do1(Zyy, X) = do1/2(Zky, X) < 2do,1(Zy, Ery) + 2do,1 (Ery, X)
= 2do,1,, (Zio, E) + 2do 1, (E, X)
< 261107 3k0a/% L9 103k < 4.107%¢(X) (22.28)

by (22.23) and (22.25) (and because € < €g). We return to (22.23) and get
that

do v, j2(E, X) = 2do ., (E, Zy) + 2do r,, (Zk, X)

< 261107304 124y 1 (24, X)

< 2¢11073k/% 18.107%¢(X) < 107 4¢(X). (22.29)
Hence

do,400r 11 (B, X) = do ary 10(E, X) < 2dp 1, 2(E, X) < 1073¢(X). (22.30)
We are now ready to prove that rog = 0. Let ky be as above; because
of (22.13), we can choose g so small that kg still satisfies (23.24). Let k > ko
be such that (23.24) holds. Then (22.30) holds too, and says that 20071 >

roo (compare with (22.12) and (22.11)). That is, we can show by induction
that 2007 > rop for all k, as needed.

As was said earlier, (22.16), and hence (22.10) are now proved for all
r < r/3. Now we go for (22.9). Now every k > ko satisfies (22.21), and
by (22.24) the sequence {Z;} converges to a limit Xy. By (22.23), (22.24),
and the same computations as for (22.29)

do,ry 2(E, Xo) < 2do r, (E, Zi) + 2do 1, (21, Xo)

a/4
< cl0—3ka/t = ¢ <’"’“> . (22.31)
1
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with ¢ as small as we want. If 0 < r < r4,/2, we can apply (22.31) to the
smallest ry, such that B(0,r) C B(0,7x/2), and we get that

a/4
do.(E, Xo) < 10%dg., j2(E, Xo) < 10%¢ (:) . (22.32)
1

Since we can make c arbitrarily small by taking e small, this takes care of the
small radii in (22.9). As usual, for the large radii we will try to use (22.8).
First observe that
do1(Xo, X) < 2do1(Xo, Zry) + 2do,1(Zky, X)
ca1073R08/% 4 9, 1 (Zky, X)

<
<C
< Cegl03k0a/4 | op 10~ 3koa/d 4 4. 1(3kog

a/4
=3 (””) +4.-10%0¢ (22.33)
1

by (22.24) and (22.28), and where c¢3 is still as small as we want. Now we
deduce from (22.8) that for ry,/2 < r <11/2,

do.-(E, Xo) < dor(E, X) + 2do 1(Xo, X)
< Sy (B, X) + 2do,1 (X, X)

a/4
T—15+203 (Tko) + 8. 10%0¢
T T1

N

a/4
< 33 (T) 103k +1 g (22.34)
™

where for the first inequality we used again that X and X, are cones. The
first term is all right for (22.9), and for the second term, notice that

r —a/4 r —a/4 r —1—a/4
() 103k < 2 (k> 103+ e = 20 <k> e (22.35)
81 ™ ™

is still as small as we want, because ko was chosen in terms of €(X), and ¢
is as small as we want. This completes the proof of Theorem 22.2. O

Proof of Theorems 1.8 and 1.9. — In the general case, although Theo-
rems 1.8 and 1.9 correspond to two different estimates (decay for f and good
approximation by cones when f is small), we prove them at the same time.
Also, the quantifiers in the statement force us to get constants that do not
depend on how close the spine of an initial approximating cone to E can get
to L, without containing half of it, so we will use the compactness of the
following class of minimal cones.

Denote by A} the class of minimal cones of type P, Y, T, H(L), or V(L)
(the same as in the statement of Theorems 1.8 and 1.9). Then let n > 3 and
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B > 0 be given. For Theorem 1.8 we want to find a small constant g > 0
such that the good estimate (1.23) holds as soon as E and B(0, 1) satisfy
the assumptions. For Theorem 1.9, we would also give ourselves ¢ > 0 small,
and we would need to get (1.24) with ¢(g9) < c.

Let L C R™ be fixed (we can always do this by rotation invariance), and
for each X € X, observe that X satisfies the full length property (by Theo-
rem 37.1) and denote by £¢(X) the small constant € given by Theorem 22.2
(applied so that ci(e) < ¢ and ca(e) < 1071%). Then cover Xy, as we did
with (18.13), by the small balls

Vx ={Y € Xy; d5,(X,Y) <10 'eo(X))}. (22.36)

Since Xy is compact, we just need a finite family ) C X to cover, and we
take g9 = 15 min{eg(Y); Y € V}. Let us check that this work. Let E and
r1 > 0 satisfy the assumptions of Theorem 1.8 or 1.9; then in particular
there is a minimal cone X € X, with the same density as E (as in (1.21)),
and such that do ., (E, X) < €9. Then X € V3 for some Y € Y, and this
implies that do ., (F, X) < 3eg < 9(Y). For this, since we find it neater not
to modify the ball where we look, we use the triangle inequality and also the

fact that X and Y are cones.

The other assumptions of Theorem 22.2 are also satisfied (because Y has
the same density as X; we could also have fixed the density of E at 0 (out of
a set of four values), and restricted to cones that have this density); now the
conclusions of Theorem 22.2 implies the conclusion of Theorems 1.8 and 1.9,
and this completes the proof of these theorems. O
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Part IV. Decay and approximation for balls centered on E\ L

In this part we still consider a sliding almost minimal set F, with a sliding
boundary condition that comes from a line L, and we generalize some of the
results of the previous two parts to balls that are centered on E \ L.

Our starting point is the near monotonicity of the quantity F of (1.27),
which was proved in [13]. We show that when E is sufficiently close to a
half line, a plane, a set of type V, or a short truncated cone of type Y, this
quantity actually decays like a power. This analogue of Part II will be done,
with the same sort of method, in Sections 23-28. For this we will need to
prove analogues of the full length condition in specific situations, and these
computations, done in Sections 27 and 28, will also be used in Section 37,
when we complete the full length verification for balls centered on L.

In addition, we will show in Section 30 that in the same circumstances
as above, F' controls the geometry of E. This will allow us to get good
approximation properties of E in balls that are centered slightly off L, as
needed if we want to apply Reifenberg-type constructions.

Let us just describe a situation where we will obtain something. Suppose
that at the unit scale, E looks like a set of type Y truncated by L, with a
spine Fy that contains the origin, runs almost parallel to L, and lies very
close to L. At this large scale, E looks essentially like a V-set, with angle
%’r. In very small balls near 0, E looks like a full Y-set. We are interested
in what happens at intermediate scales, and in particular in proving some
decay for quantities that show how well F is approximated by truncated
Y-sets. This will be our way of proving that nothing wild happens between
the two extreme scales, and even that the approximation at the small scale
is better than expected.

We will see this sort of situation in the next part, where we use the decay
information from this part to start the desired classification of sliding almost
minimal sets near the boundary.

23. Balls centered on F \ L: preliminaries

In this section we set the stage for a study of decay properties of the
adapted density function F, for balls that are centered on E \ L. We will
proceed like in the previous sections, except that the functional F' has an
additional term and the obvious competitors for E are no longer cones over
ENS,, but slightly larger sets with an additional triangular piece that allows
retractions on the sets which preserve L.
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In this section and the next ones, we assume that L is a line, no longer
through the origin, and that

E is a reduced sliding almost minimal set (of dimension 2)

in B(0, R), with a boundary condition coming from L, (23.1)
with a gauge function h such that
h(r) < Cpr? for 0 <r < R, (23.2)

for some constants Cj, > 0, f > 0, and R > 0. Also we assume that
0e€ E\ L. (23.3)

The results that will be proved here would still hold when L contains 0, with
essentially the same proof, but there would be no point because in this case
the previous part gives us what we need, and also it will be convenient in
some places to discuss things in terms of

do = dist(0,L) > 0. (23.4)

Let us review some of the notation and results of [13]. We shall be interested
in balls B(0,7), 0 < r < R. The shade of L (seen from the origin) is

S ={z€R"; Az € L for some X € [0,1]}. (23.5)
We keep 0(r) = r2H2(E N B(0,r)) as it was, but now consider
F(r)=0(r)+r*H*(SN B(0,r))
=r?[H*(EN B(zo,r)) + H*(SN B(0,1))]. (23.6)
Notice that we take the sum, and not the measure of the union.
Let us review the properties of F' that we intend to use. First assume
more, i.e. that

E is a sliding reduced minimal set in B(0, R) of dimension 2,

with a boundary condition coming from L. (23.7)

In this case, F' is nondecreasing on the interval (0, R). See Theorem 1.2
in [13].

There are two special cases of sliding minimal sets for which F' is constant.
The first one is the half plane Hy bounded by L and that contains the origin;
it is easy to see that for Hy, F' is constant equal to 7 (the measure of the
shade exactly compensates for the missing half plane).

The second one is the truncated Y-set Yy, which is Yy = Y7 \ S, where

Y7 is the only cone of type Y that is centered at 0 and contains L (thus its

singular set is parallel to L and S C Y7). For this set Yy, F' is constant and
3

equal to <.
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We also have local slightly tilted variants of Y. If Y7 is a cone of type Y
such that LN B(0, R) is contained in one of the three faces of Y7 (and hence
SN B(0,R) is also contained in that same face, by elementary geometry),
Y =Y1NB(0,R)\ S is also a sliding minimal set in B(0, R) (at least, we
claim that this is very probable but we won’t need to check), and the function
F attached to it is constant and equal to 37” on (0, R).

Theorem 1.3 in [13] gives a nice description of F when (23.7) holds and F'
is constant on an interval, but we shall only need the following two specific
cases, which give a converse to the examples above.

LEMMA 23.1. — Suppose that (23.7) holds and R > do > 0. If F(r) ==
forr € (0,R), then E = Hy N B(0,R). If F(r) = 2% for r € (0,R), then
there is a cone Y1 of type Y, centered at 0, such that LNB(0, R) is contained
in one of the three faces of Y1, and for which E =Y, N B(0,R) \ S.

Proof. — Notice that we already know, from previous work on the sit-
uation with no sliding boundary (probably even before [47]), that since
F(r) = 0(r) is constant and equal to 7 or 37“ on (0,dy), E coincides with a
plane or a cone of type Y on B(0,dp). But let us apply Theorem 1.3 in [13],
with Ry very small and R; = R. Recall that “coral” is the same as “reduced”,
so the assumptions are satisfied. Set A = B(0, R;) \ B(0, Ry) as in [13]. Let
X be the positive cone over EN A (as in (1.13) there). We get that X is a
reduced minimal set in R™ (that is, with no boundary condition), and that
ANX\S CE (asin (1.14) there), and where S is still the shade of L (see
(1.9) there)). Thus in B(0,do) \ B(0, Ro), X coincides with F (by definition
of X, X D ENA), and since F(r) = 0(r) for r < dy, we get that the density
of X is w or 37”7 hence X is a plane or a cone of type Y.

It was also observed after the statement of Theorem 1.3 in [13] that in
A, E and X \ S coincide modulo a set of vanishing #2-measure. They also
coincide in B(0, Ry): either use the fact that F is a plane or a Y in B(0, dp),
or observe that X cannot depend on Ry and let Ry tend to 0). That is
EnNnB(0,R)=(X\S)NnB(0,R),
modulo a set of vanishing H2-measure. (23.8)
Then, for r € (dy, R),
H*(X N B(0,7)) = r*H*(X N B(0,1)) = r*F(r)
=H*(ENB(0,r) + H*(SNB(0,r))
=H*((X\ S)NB(0,r)) +H*(SN B(0,r)) (23.9)

because X is a cone, F' is constant, by (23.6), and by (23.8). This forces X
to contain almost all of S N B(0, 7).
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If X is a plane, this forces X to contain a bit of L, then the whole L;
thus X is the plane that contains Hy and the result follows from (23.8) (and
the fact that F is closed and reduced).

If X is a cone of type Y, LN B(0,7) C X as above, and since this is true
for all r € (do, R), X contains L N B(0, R). In fact, L N B(0, R) is contained
in a single face of X (if L N B(0, R) crossed the spine of X, one piece of it
would not lie in X), so we can take Y = X in the description above. Again
the fact that E =Y, N B(0,R) \ S follows from (23.8). O

We shall also need the simpler version of Lemma 23.1 where 0 € L. We
start with a description of sliding minimal cones with low density. Denote
by Py the set of planes through the origin.

LEMMA 23.2. — There is a small constant 7(n) > 0 such that if X is a
sliding minimal cone of dimension 2 in R™, with a sliding condition coming
from a line L that contains the origin, and if H*(X N B(0,1)) < 7 + 7(n),
then X € H(L) UPy UV(L), i.e., X is a half plane bounded by L, a plane
that contains the origin, but not necessarily L), or a set of type V associated
to L.

Proof. — See the beginning of Subsection 1.2 for the definitions. Notice
that this is a simpler special case of (18.23), wich at least we can prove. We
start with the apparently even weaker statement with 7(n) = 0. Let X be
as in the statement, with a density d(X) = H?(X N B(0,1)) < 7. Let us use
the description of K = X N 9B(0,1) that was given in Proposition 2.1. We
see that K is a union of great circles and arcs of great circles. If K contains
a great circle, this eats all the available density, K is a great circle, and X
is a plane. Otherwise, K is a union of arcs of geodesic.

Suppose two such arcs meet at some point y € K\ L. Then there are three
arcs of K meeting at y (with 120° angles, but we don’t care), and the density
of X at y is at least 37/2. This means that lim,_,¢ F},(r) = 37/2, where F), is
the functional defined as in (23.6), but with the set X and an origin at y. That
is, Fy(r) =r=2[H*(X N B(y,r)) + H*(S, N B(y,r))], where S, denotes the
shade of L seen from y. It is easy to see that lim, o, 7 2H2(X N B(y,r)) =
lim, 0o 7 2H2(X N B(0,7)) = d(X) < 7, hence lim,_, o0 F,(r) < 37/2.
But F), is nondecreasing, so Fy(r) = 3n/2 for 0 < r < +00. By Lemma 23.1,
X coincides in large balls B(0, R) with truncated cones of type Y, but cen-
tered at y. This contradicts the fact that X is a cone centered at 0.

Thus none of the arcs that compose K ends away from L, which means
that K is composed of half circles with endpoints in L. There is no more
than two arcs, because d(X) < m. If there is one arc, X € H. Otherwise, X
is composed of two half planes, and X € V because if these two half plane
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make an angle smaller than 27, it is easy to see (or well known) that X is

3 b
not minimal.

We still need to prove the result with a positive 7(n). Suppose the lemma
fails, so that for each large integer k£ we can find a sliding minimal cone
X}, such that d(X;) < 7 +27% and yet X; ¢ H(L) UPy U V(L). Take a
subsequence (and still call it {X}) such that X converges to a limit cone
X (or equivalently here, since we work with cones, K = X; N 9B(0,1)
converges to K., = X N 0B(0,1) for the Hausdorf distance on 0B(0,1)).

By the various convergence theorems in [14] (Theorems 21.3, 10.97, and
22.1 there) X is a minimal cone and d(X) = limy_, 10 d(X)) < 7. By the
case we already proved, X € H(L) U Py U V(L). Let yr be any endpoint
of an arc of K} that does not lie in L. Such a point exists, because X}, ¢
H(L) UPy UV(L) and by the argument above.

If we could find a subsequence for which y; converges to a limit y € K\ L,
then K would have a point of type Y at y, because {Kj} converges to K
and all the arcs of K} that do not end on L have lengths at least 7y for some
constant 1y = ng(n). Thus the endpoints y;, all tend to L. For each k large,
K}, has at most two short arcs that leave from the points ¢+ of LN9dB(0,1)
(see (2.4)), and all the other ones are long, because they go from a small
neighborhood of £_ to a small neighborhood of ¢,. Thus there are at most
two long ones (because H'(Kj) = 2d(X},) < 27 +27%+1). If there is a single
Yk, then K}, is composed of two long arcs (from £_, say, to yx) and a short
one (the geodesic from y; to £4). This is impossible, because the long arcs
are geodesics that both leave from ¢_; they can only meet back at £, .

We are left with the case when there are two points yy and yj, and Kj,
is composed of two geodesics from y;, to v}, plus two short geodesics from
these points to the closest 4. As before, the long geodesics can only meet
at the antipode, i.e., y;, = —ys. It is easy to see that the corresponding set is
not minimal. For instance, if the three arcs make the correct angles of 120°
at yg, then the three arcs at yj, make acute angles of 60°.

This completes our contradiction and compactness argument; Lem-
ma 23.2 follows. O

Let us continue our rapid description of the results of [13]. We return
to the more general situation where F is a sliding almost minimal set, as
in (23.1), that 0 € E'\ L, and that the associated gauge function h is such
that

A(r) = / h(t)% < +o00 for0<r <R, (23.10)
0
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and h(R) is small enough (depending on n). Then Theorem 1.5 in [13] says
that
F(r)e*(™ s a nondecreasing function on (0, R), (23.11)

with a constant a that depends only on n.

It will be psychologically useful to know the general idea of the proof,
which is essentially the same as for the (near) monotonicity of § when L is
a cone centered at the origin. We would like to compare FE with the cone

L(E,r)={)\z; 2 € ENJB(0,r) and X € [0,1]} (23.12)

over ENOB(0, 1), but since it may no longer be a limit of sliding competitors
(moving a point z € EN LN OB(0,r) in the direction of 0 may detach it
from L), we add to I'(E,r) the set

T(r)={Xz; z€ LN B(0,r) and X € [0,1]}, (23.13)

which is the convex hull of the triangle with vertices 0 and the two points of
LNoB(0,r). It turns out that I'(E,r) UT(r) can be used as a competitor
(maybe, after taking a limit), just as I'(E, r) before. Now T'(E,r) UT(r) is
not as small as I'(F, r), and when we do the computation, we find out that
we only get the (near) monotonicity of F(r), where we added the (sometimes
strictly) nondecreasing term r~2H2(S N B(xo,r)).

We will be more interested in the case when 0 lies very close to L. Then
T(r) is quite thin; nonetheless it has an effect on the functional F' and on
our estimates that we cannot neglect.

In the work that we did so far, with balls centered on L, the main point
was to try to construct a competitor for E that was significantly better than
the cone T'(E, r), and then we proved some decay for 6 (i.e., a good differential
inequality) rather than proving that it is nearly monotone. Here we want
to do the same thing, i.e., improve significantly over I'(E,r) U T'(r), and
then we’ll get a good differential inequality involving F'. As in the previous
sections, the main point is the construction of good competitors. This is
what we do in the next two sections, in the two special cases for which we
know that the function F' can be constant on some truncated minimal cones.

But before we come to this, let us also show how to use Lemmas 23.1
and 23.2, and a little bit of compactness, to get similar results for almost
minimal sets. We now assume that dy > 0 (as in (23.3)) and that h satis-
fies (23.2); this way there exists a density

0o = lim 6(r) = lim F(r) (23.14)
r—0 r—0

because dy > 0, and by (23.11) or more simply its version in the plain case.
We start with an application of Lemma 23.1, where we show that E is some
times close to a half plane.
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LEMMA 23.3. — For each choice of small constants 6 > 0 and 7 > 0, we
can find e = €(0,7) > 0, that depends only on §, T and n, with the following
property. Let E satisfy (23.1)—(23.3), and let r be such that

do 11dy
< — —— < . 23.1
r<g and TER R R (23.15)
Suppose in addition that
" dt
h(r) <e and / nn <, (23.16)
0
and
F(r)y<m+e. (23.17)
Let Hy denote the half plane bounded by L that contains the origin. Then
doy%(E,Ho) < 7, (23.18)
and also
H2(E 1 By, 1) — H2(Ho 1 B(y,£))] < 77 (23.19)

for ally € R™ and t > 0 such that B(y,t) C B(0,2¥).

Proof. — It is important here to have in mind that when r gets too large
compared with dp, we need to take 0 large (because of (23.15)), so we may
need to take € very small. This is not shocking, it is just a reminder of the
fact that limiting arguments (that will be used to prove the lemma) will only
lead you so far. The case when r > dy will be discussed later.

We shall deduce this lemma from Theorem 1.6 in [13], whose main point
is that when the function F is nearly constant on an interval, FE is quite
close to a minimal set for which F' is constant. We shall apply that theorem
with a fixed line Lo, which we choose so that dist(0, Lg) = 1 (otherwise,
the constants would depend on the line, and we want to avoid this). Let
f:R™ — R™ be a composition of a rotation and a dilation, which we choose
so that f(0) = 0 and f(L) = Lo. Thus the dilation factor is dj *. We want to
apply the theorem to E’ = f(E), so we check the assumptions, with 7/ = 7/2
and the radius r; = dalr.

But let us first talk about our constant 6. By (23.16), % <r; <671 On
the other hand, Theorem 1.6 in [13] is stated with a single 7, i.e., the small
constant € > 0 in that statement depends also r{, which does not make us
happy a priori. It is even noted after the statement that in the present case, €
depends on the ratio dist(Lg)~'r; (by dilation invariance). A later statement
Corollary 9.3 in [13], solves this issue, and gives a constant e that does not
depend on 71 as long as r; < C (or here, §71), but the statement is a little
more unpleasant because it also allows more complicated choices of Ly (that
is, we are only interested in a line L here, and the mapping ¢ is an isometry),
and also because the statement would rather concern another dilation j?(E)7
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with a dilation factor r—!, so that now r becomes 1 and dy = dist(0, L)
becomes r~tdy € [9, %] The reader should not pay attention to the fact
that the statement in [13] requires dist(0, L) < 5; the proof works the same
way. We decided to simplify our lives, and use Theorem 1.6 in [13] with the

knowledge that € does not depend on r; as long as r; stays bounded.

So we check the assumptions. First, E’ is sliding minimal in B(0, dg lR),
relative to Lo and with the gauge function h'(r) = h(dor). We need to know
that 71 < dy 'R, or equivalently r < R, and this is given by (23.15). Also,
K (r1) = h(dory) = h(r) < € and (1.22) in [13] holds. For (1.23) there, denote
by F’ the functional associated to Lg; then

F'(r)=F(r)<m+e< < O + e < A0 inf  F(p)+e
0<p<10_3r
<e® inf F — ¢ inf F 93.20
e, PO, B P e 0320)

by the dilation invariance of densities, (23.17), the fact that 8y = lim,_,o 6(p)
= lim,,o F(p) is at least m, the near monotonicity estimate (23.11), the
definition (23.10), and (23.16). This gives the desired bound, if € is small
enough. We can apply the theorem, and we get a sliding minimal set Ey,
with all sort of properties. We want to check that Fy coincides in B(0,r;)
with the half plane bounded by L that contains 0 (or equivalently that
f~1(Ey) = Hp in B(0,7)), and this way (23.18) and (23.19) will follow from
(1.25)~(1.27) in [13].

Now (1.24) in [13] says that the analogue of F” for E, takes a constant
value D on (0,71). Notice that r; = dy'r > X by (23.15). By (1.27) for
B(y,t) = B(0,1), we get that D is as close to 7 as we want. Now Theorem 1.3

in [13] (about constant density) gives the following extra information on Ej.

Set A = B(0,r1) \ {0}, denote by X the cone over AN Ep, and by S the
shade of Lg. We get that H2(AN EyNS) =0, that AN X\ S C Ey, that X
is a minimal cone (no boundary), and H(S N B(0,71) \ X) = 0.

Notice that B(0,1)\ {0} C A (because r1 > 1), and that inside B(0, 1)\
{0}, Ey C X by definition of X, and X = X \ S C Ey because B(0,1) does
not meet S. Then H*(X N B(0,1)) = H?*(Ey N B(0,1)) = D, which is as
close to m as we want. Since X is a minimal cone, X is a plane. In addition,
HY(SNB(0,r1)\ X) =0and r; > I5, so X contains a nontrivial bit of S,

hence also the whole L. That is, X is the plane that contains 0 and Lg.

Set H = f(Hp) = X\ S; we want to show that Ey coincides with H
in B(0,r1), or equivalently in A = B(0,r1) \ {0} (because Ey is closed).
We know that AN X\ S C Ey, hence AN H C Ey (again, Ejy is closed).
Then Ey N A C X (by definition of X), which means that Eg N A\ H C S.

- 214 —



A local description of 2-dimensional almost minimal sets bounded by a curve

Since H2(ANEqN S) =0, and Ej is coral (or more brutally, locally Ahlfors
regular), we get that Eg N A C H, as needed for Lemma 23.3. |

LEMMA 23.4. — Lemma 23.8 stays valid when instead of (23.17), we
require that the density of E at 0 is 0y = 37” and that F(r) < 37” +e¢, and we
get the same conclusion, except that Hy is replaced with the set Eg =Y \ S,
where Y is a minimal cone of type Y, centered at 0 and such that LN B(0,r)

is contained in a face of Y.

Proof. — Set B = B(0,r). We only care about EyNB, because the outside
part does not interfere with our description of F in (23.18) and (23.19), since
B(0,2) lies well inside B. Inside B, Ey = Y \ S is really a truncated set
of type Y, where we removed from Y the part that lies on the other side of

L, of the face of Y that contains L N B.

For the proof we proceed as for Lemma 23.3. We can still apply Theo-
rem 1.6 in [13], after applying the same composition f of a rotation and a
dilation by dy ! This theorem gives a sliding minimal set, which we now call
Ej C B(0,r1), where r = dalr > %, with the additional property that the
analogue of F' takes a constant value D on (0,1), and which is very close
to f(E) in B(0,r1). In addition, D is still as close as we want to the values
of F' (computed with F and for radii smaller than 7), which are as close to

Oy = 37” as we want.

Then we turn to Theorem 1.3 of [13] to get a good description of Ej, in
A = B(0,r1) \ {0}. We get the same basic properties as above, in terms of
some minimal cone X, but now the density of X is D, which is as close to

37T as we want. Proposition 14.1 of [9] gives a description of minimal cones of

2
dimension 2 that implies that this cannot happen unless D = 3Z, and hence

2
X is a cone of type Y.

Let us now denote by S’ the shade of Lg. We still have that H4(S’ N
B(0,r1) \ X) =0, so X contains S’ N B(0,71) because X is closed. Notice
also that S’ N B(0,r1) is a nontrivial piece of plane, because 71 > %.

Next we check that EjNA = X \ S’NA. We know that H2(ANE{NS’) = 0,
so each € ANEj is the limit of a sequence {z;} in Ey\ S (recall that Ej is
coral). Clearly x; € A for j large, hence z; € X\ S” (because EyNA C X by
definition of X); thus z € X \ SN A. Conversely, we know that ANX\ S’ C
E{, hence ANX \ S’ C EjN A, and our claim follows. Both sets contain the
origin, so E{, N B(0,71) = X \ "N B(0,r7).

Set Y = f~1(X) and Eg = f~1(E}). Then Y is also a cone of type Y, and
EonB(0,r) = f~YE{NB(0,71)) = f~H(X \ S'NB(0,r1)) =Y \ SNB(0, 7).
Thus, inside B(0,7), Ey has the form that was announced in the lemma. We
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do not care about what it is outside, because R™\ B(0, ) is far from B(0, 2)

where we want to approximate F, as in (23.18) and (23.19). Finally, the

good approximation of E in B(0, %) follows from the good approximation

of B/ = f(E) in B(0, (1 — 7)r1) that is given by (1.24)—(1.27) of [13]. O

For radii r that are much larger than dy, it is easier to use compactness in
another way, and get a good approximation by a plane or a cone of type H or
V centered on L. Here is a statement, whose proof will rely on Lemma 23.2.

LEMMA 23.5. — For each choice of small constant T > 0, we can find
constants € = (1) > 0 and § = §(7), that depend only on T and n, with the
following property. Let E satisfy (23.1) and (23.10), and let r be such that

§'dy <r <R (23.21)
Suppose in addition that 0 € E'\ L,

" dt
h(r) <e and / h(t)? <e, (23.22)
0
and that there is 6y € {m, 2%} such that
lin}J F(p)=160y and F(r) <6y +e. (23.23)
p—
Then there is a set Xog € H(L) UV(L) UPq such that
do, 200 (B, Xo) < 7 (23.24)
and
[H*(E N B(y,t) = H*(Xo N B(y, 1)| < 7r (23.25)

for ally € R™ and t > 0 such that B(y,t) C B(O,%). If 89 = 7, then
Xo € H(L); if 0o = 2%, then X, € V(L) UP.

Proof. — In this statement the planes through the origin (the elements
of Py) are some sort of a stowaway (or party crasher); the proof allows them,
but we expect to get rid of them later. That is, if we get (23.24) and (23.25)
for a plane X that does not nearly contain L (i.e., the two unit vectors of
L are far from Xj), then we shall be able to show that E is smooth near 0,
and 0y = 7 # 37“, a contradiction. See Theorem 30.3 and Remark 30.4 for
another instance of this reasoning, where we need to look at different scales
to exclude apparently acceptable behaviors.

The proof is a standard compactness argument, similar to what was done
for the proof of Theorem 1.6 in [13]. Suppose we can find 7 > 0 such that
taking ¢ = 6 = 2% never works. Let Ej, hy, Ly, 75, etc. provide a coun-
terexample. By scale and rotation invariance, we may assume that r; = 1
for all k£, and that we can find orthogonal unit vectors e; and ey such that
L, = {dkel +tes; t € R}, and with positive numbers dj, = dist(0, L) that
tend to 0 (by (23.21) and because d;, tends to 0).
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We replace {Ej} with a subsequence which has a limit F.. Let Lo
denote the limit of the Ly; this is a line through the origin. Also consider
E]’€ = FEj — dieq; this is a sliding minimal set, with sliding boundary Ly —
dre1 = Lo, and E,’c also tends to E.,. Notice that the gauge functions hy
satisfy (23.22) uniformly on (0, 1), and also tend to 0 uniformly on (0,1). By
Theorem 10.8 in [14], E is a sliding minimal set in B(0, 1), associated to
Lo (and the gauge function h = 0). Next we check that

H*(Es N B(0, p)) = 0pp? for 0 < p < 1. (23.26)

In fact, let B = B(y,t) be given, with |y| + ¢ < 1; we first apply the lower
semicontinuity result in [14] (namely, Theorem 10.97 there) to the same sets
E;, with the same assumptions, and get that

H?(Eo N B) < liminf H2(E}, N B) = liminf H?(Ey N B(y + diey,t))
k——+oo k——+o0
< liminf H?(Ey, N B(y, t + dy)). (23.27)

k—+oo

For the upper semicontinuity, we call Lemma 22.3 in [14], which we can apply
with M as close as we want to 1 and h as small as we want, and we get that
for the compact set B,

H?*(Eo N B) = limsup H2(E, N B) = limsup H2(Ex N B(y + dye1,t))

k—+o00 k—+4o00
> limsup H2(Ex N By, t — dy,)). (23.28)
k—+oco

Let us apply this with y = 0; notice that if Sy denotes the shade of Ly, then
. 2 wt?

k——+oco
because dj, tends to 0 and Ly tends to Lo,. Thus (23.27) implies that
H*(Eo N B(0,1)) < 1kim+inf7¢2(Ek N B(y,t +dy))
——+o00
2

t
= —% + lim inf [(t +di)* Fi(t + dk)]. (23.30)

k—+oo
For k large, t + dj < 1, hence by (23.11)
Fy(t+dy) < e WF (1) <e? "Fr(1) <e® "[fo+27%  (23.31)

because (23.22) holds with ¢ = 27% and then by (23.23). The right-hand
side tends to 6y, hence by (23.30)

H2(Eo N B(0,1)) < 2 [90 - g] . (23.32)
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Conversely, (23.28) yields

H?(Es N B(0,t)) = limsup H2(E, N B(0,t — dy))
k——+oo
2 . 9
= *7 + lim sup [(t + dk) Fk(t — dk)] (2333)

k—+oo

and, since by (23.11) and (23.23)

Fio(t — dy) = e D) lim Fi(p) > e 2 " lim Fi(p) = e 2 "6, (23.34)

p—0 p—0

which tends to 6y, we get that

H2(Eo N B(0,1)) > 12 [90 - g} . (23.35)

It follows that
t2H2 (B N B(0,1)) = 0 — g for 0 <t <1, (23.36)
i.e., Eo has constant density equal to 6y — 5 on (0,1). By the constant

density result (Theorem 29.1 in [14]), E coincides with a sliding minimal
cone in B(0,1). Call this cone Xy; by Lemma 23.2, X, € H(L) if §y = = and

Xp € V(L)UPO if g = 37

Let us now check that (23.24) and (23.25) hold for k large; this will give
the desired contradiction with the definition of E} and complete the proof
of Lemma 23.5. Now (23.24) holds because X is the same as E, in B(0,1),
we normalized things so that rx = 1, and F, is the limit of Ej locally in
B(0,1). For a given ball B = B(y, t), notice that for 0 < t; < ¢ < ta, with
B(y,ts) C B(0,1), (23.27) and (23.28) yield

H%:(Xo N B(y,t)) = H*(Esx N B(y,t)) < 1kim+inf}z2(Ek N B(y,t+dy))
—+00

< liminf H*(Ey N B(y, ta)) (23.37)

k—+oco

and similarly

H?(Xo N B(y,t)) = H*(Es N By, t)) > limsup H*(Ey N B(y,t — dy))

k—+o00
> limsup H2(E, N B(y, t1)). (23.38)
k—+o00
From this it is easy so deduce that for a fixed B(y, t), the estimates in (23.25)
hold for k large. But we do not want to let k£ depend on y and ¢, so a little
bit of uniformity is needed to conclude. This is rather easily done, because
we control Xy well; we refer to Lemma 9.2 in [13] for the proof. Thus we get
the desired contradiction, and Lemma 23.5 follows. O
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24. Statements of decay for F'; differential inequalities

Recall that we want to generalize the work of Sections 3-22, with balls
that are no longer centered on L, and we decided to replace the usual density
0(r) with the functional F(r) defined in (23.6). In this section we give the
main decay statement for F. Recall that F' is almost nondecreasing; we
intend to say that in some circumstances, it actually decays at some speed,
but we shall only be able to do this when E is close enough to some special
minimal sets.

The assumptions for this section and the next ones are the following.
We still work in R™, with a line L and a sliding almost minimal set E that
satisfies (23.1) and (23.2); we also assume that

2R
0 <dp:=dist(0,L) < = (24.1)

and in the statements additional conditions on the size of Cj, in (23.2) will
arise.

Denote by H = H(L) the set of half planes bounded by L, and by V =
V(L) the collection of sets of type V bounded by L, i.e., unions of two half
planes of H that make an angle at least 27” with each other along L. This
includes planes that contain L. Still let Py denote the collection of all planes
through the origin. We will often require E to be close to sets of HUV UPy,

and we measure this with the quantities

Pu(r) = nf do,(E,H) and Pyp(r) = (E,V), (24.2)

inf d
vevur, O
where we will naturally restrict to r € (0, R).

Let us give two parallel statements, which will be proved afterwards. We
start with the case when there is a good approximation by a half plane.

THEOREM 24.1. — There exist constants a € (0,107Y), ey > 0, and
Cy > 1, that depend only on n and 3, with the following properties. Let L,
E, and h satisfy (24.1), (23.1), and (23.2), with a constant Cy, such that

ChR® < ey (24.3)
Suppose also that 0 € E, and that
Bu(R)<emg or F(R)—w<ep. (24.4)
Then
27’1 @ a. B—a
F(ri)—m < . [F(r2) — 7] + CyChrirs (24.5)
2

for 0 <7 < re <I9R/20.
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See (23.6) for the definition of F. Within minor modifications, this is
the same statement as Theorem 1.10 in the introduction. Notice that be-
cause of (23.2), the limit density 8y = lim, ,or 2H2(E N B(z,r)) exists
(by (23.14)); we know that for 0 € E, this limit cannot be smaller than m,
and in the present situation, we will see during the proof that 6y = 7. Or
just notice that you get this when you let r1 tend to 0 in (24.5). We will also
check that the two possible assumptions in (24.4) imply each other, modulo
changing the small constant and replacing R with a slightly smaller radius.

It happens that the good decay provided by (24.5) implies a polynomial
control on By (r) for r small; see Section 30.

We have a similar statement for the case when E is well approximated

by a set of V; this time the relevant value of density is 6y = 37”

THEOREM 24.2. — There erist constants a € (0,1071), ey > 0, and

Cy > 1, that depend only on n and B, with the following properties. Let L,
E, and h satisfy (24.1), (23.1), and (23.2), with a constant Cy, such that

ChRP < ey (24.6)
Suppose also that 0 € Fy,
3
lim r=2H2(E N B(z,r)) = —, (24.7)
r—0 2
and that
Bvp(R) < ev. (24.8)
Then
3 C “ 3 _
F(r) -5 < ( :“) [F(m) = ﬂ + Cy Cprirs e (24.9)
2

for0<r <ro < R/2.

This time see Theorem 1.11 in the introduction. The same sort of remarks
as above apply to this case. Notice the additional constant C{ in (24.9),
which is due to a gap in the set of radii r for which the main differential
inequality described below holds. This could probably be improved, but the
additional constant does not disturb much.

We did not include the option that F(R) — 2F < ey instead of (24.8),
because it does not imply that F is close to a set of type V or a plane. The
difference will not be enormous in the end; we will see in Lemma 25.2 that
if F(R) — %“ < ey and dy is much smaller than 7, then Sy p(r) < €, and
we can apply Theorem 24.2. When instead dy is not so small compared to
r (and r < R/2, say), Lemma 25.3 will say that we can find a truncated
Y-set centered at 0 that approximates E well in B(x,r). As hinted above,

this set is not close to a V-set because it is centered at 0 (and dy is not
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so small). We could try to show that F(r) decays also in this intermediate
region, but instead we will just use the fact that F' is almost nondecreasing
there (by [13]), and this will be fine because the concerned set of radii r is
not so large anyway.

See Section 30 for the control of the geometry of E that follows from (24.9).

In both statements, the interesting part of the conclusion is when r; gets
much smaller than ro; otherwise a direct application of (23.11) gives at least
as much. In both cases the main ingredient in the proof is a differential
inequality which we state now.

PROPOSITION 24.3. — There exist constants a € (0,1071), e; > 0, and
C1 > 1, that depend only on n and 3, with the following properties. Let E
and h satisfy (24.1), (23.1), and (23.2), and suppose that 0 € E. For almost
every r such that

2dp <7 < g, (24.10)
Cnrf < gy (24.11)
and
Br(2r) < e, (24.12)
the function F of (23.6) is differentiable at r, and
2r
rF'(r) > a[F(r) — w4 — Cl/ h(tt)dt. (24.13)
0

This will be proved in Section 26. We do it on purpose to mention h
explicitly in (24.13), rather than the estimate that we could get from (23.2),
because we may sometimes get an estimate that is better than expected.
Even though &; needs to be quite small, we think of it as being roughly
constant, while we hope that F(r)—m, for instance, will become really small.

We took the positive part of F'(r) — 7w not to get confused by the case
when F(r) — m < 0, in which case (24.13) is actually better when a is
smaller. This way, at least, our estimate is better when we can take a larger.
However, we will pay a (moderate) price for this simplification, when we
prove (24.13). We could also have used the same sort of computations as
in [10] and Proposition 17.2. This way the reader gets to choose their prefered
method.

The next statement is similar, but concerns the approximation with sets
of type VU Py and the larger reference density 27/3. It is a little more
complicated for the same reasons as for Theorem 24.2; it will be proved in
Sections 26—28.
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PROPOSITION 24.4. — There exist constants a € (0,1071), N > 1, &5 >
0, and Cy = 1, that depend only on n and 3, with the following properties.
Let E satisfy (24.1), (23.1), and (23.2), and suppose that

3T
L2942 _ o7
gl_r%p H(ENDB(0,p)) = 5 (24.14)
For almost every r such that
R
Ndy <7 < 3 (24.15)
Chr? < e, (24.16)
and
,va(zr) < 2, (2417)
the function F of (23.6) is differentiable at r, and
3 " h(t)dt
rF'(r) > a {F(r) - ﬂ-} - Cg/ ®) . (24.18)

25. How to deduce decay from differential inequalities

In this section we see how to deduce the decay estimates, Theorems 24.1
and 24.2, from the corresponding differential inequalities, Propositions 24.3
and 24.4. Most of it will consist in checking that the main geometric assump-
tion (24.12) or (24.17) is valid.

Throughout this section, we assume that the main assumptions of Sec-
tion 24 are valid, i.e., that L, F, and h satisfy (24.1), (23.1), and (23.2).
By (23.2) and its consequence (23.14), the density

O = }1_1}1%) o(r) = ll_r% F(r) (25.1)
exists; we shall either assume or prove that 6y € {m, 3% }. We first check that

the conditions of (24.4) essentially imply each other, and that (24.8) implies
that F(r) — 2F is small.

LEMMA 25.1. — For each small € > 0, there exist egr > 0 and ey > 0,
that depend only on n and B, such that if the assumptions of Theorem 24.1
are satisfied, then

Bu(9R/10) < e (25.2)
and
F(ry<m+e for 0<r<9R/10 (25.3)
and if the assumptions of Theorem 24.2 are satisfied, then

3
F(r) < 7” +e for0<r<9IR/10. (25.4)

— 222 —



A local description of 2-dimensional almost minimal sets bounded by a curve

Proof. — First assume that E is as in Theorem 24.1, with 8y (R) < eg.
Then S (9R/10) < 10y /9, by the definition (24.2), so we just need to show
that (25.3) holds if ey is small enough. Let us first check that

F(9R/10) < 7 + /2. (25.5)

Let us proceed by compactness. If this fails, then for each large integer k, we
can find Ly, Ey, hy, Ry, as in Theorem 24.1 with ez = 27%, but for which
Fr(9R,/10) > m + /2, where

Fi(r) = 7 2[(H*(Ex N B(0,7)) + H%(S, N B(0,7))], (25.6)

and Sj is the shade of Li. We want to take a limit, but first we use the
dilation invariance of our problem to assume that Ry = 1 for all k. Also,
choose two unit vectors e; and e; L e1; we can use the rotation invariance to
ensure that the following two properties hold for each k. First let z; denote
the point of Lj that lies closest to 0. Notice that z; # 0 (because 0 ¢ Ly,
by (24.1)); we require that z/|zx| = e;. And also that ey is parallel to Ly.

Next set dy, = dist(0, Ey); recall from (24.1) that di, < Ry = 1, so we may
assume (at the price of replacing our sequence by a subsequence, to which
we automatically give the same name) that d has a limit d € [0, 1]. Then
Ly, converges to the limit Lo, = de1 + Res.

Since B (R) < 27F (for the set E}), there is a half plane Hy, bounded by
Ly, such that
do (Ex, Hy) <278 (25.7)

We extract a new subsequence, so that after extraction Hj converges
(say, for the Hausdorff distance in B(0,2)) to a half plane H., bounded by
Loo. We allow the case when d,, = 0, but notice that dist(0, Hy) < 27F,
by (25.7) and because 0 € E. Thus H,, contains the origin.

Extract again a subsequence, so that {Ey} converges, locally in B(0, 1),
to a closed set F. In fact, in the present situation this is not even needed,
because of (25.7), but for the next lemma it will feel better, and anyway this
is costless. We want to apply a theorem about limits to the sequence {E}},
where Ej, = Ey, + (deo — dg)e1. Since do, — dj, tends to 0, { £}, } also converges
to Es, but the point of the translation is that Fj, is sliding minimal, in a
domain By = B((de —dg)er1, 1) that tends to B(0, 1), with a same boundary
set Ly + (doo —di)e1 = Loo. This way we can apply theorems of convergence
with a fixed boundary set.

We put ourselves in B = B(0, %), which is contained in By, for k large.

Thus Ej, is almost minimal in B, relative to the boundary L., and with a
gauge function hj, such that hj(1) = hi(Ry) < 27F, by (23.2) and (24.3)
with e = 27,
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By (25.7), both Ej and Ej, converge to Hy, locally in B(0,1), i.e., for
any localized Hausdorff distance function dy ., 0 <7 < 1.

Let us fix r € (5, 1), and apply Theorem 22.1 in [14] to the sequence

{E}} and the compact set B(0,r). Notice in particular that the minimizing
sequence property (21.14) in [14] is satisfied, with 6 = 1, and where k¢ is
simply chosen so that hy(1) < e for k > ko. We find that

H*(Hoo N B(0,7)) = H*(Hoo N B(0,7)) = limsup H*(E;, N B(0,7)). (25.8)

k——+oo
But for £ large,
H?(E;, 0 B(0,7)) = H*(E, 0 B((dy, — duo)er, 7)) (25.9)
> H*(E, N B(0,r — |dso — dil)) (25.10)
> H> <Ek N B(O, 190>) (25.11)

because r > 1%. Hence
2
9 lim sup Fj 9
10 ks 100 10
. 2 9 2 9
=limsup |H“( ExNB|0, — +H| S, NB|0,—
k—+o0 10 10

< H?*(Ho N B(0,7)) + limsup H2 (Sk N B(O, 9)) (25.12)
k—400 10

If doo = 0, then H, is a half plane bounded by a line L., that contains the
origin, and the right-hand side of (25.12) is %2 + %10)2 < 7wr?. Otherwise,
we know that 0 € Hy \ Lo, thus Hy is the half plane bounded by L
and that contains the origin. At the same time, Sy converges nicely to the
closure of the complement of H., in the plane that contains it. Thus the
right-hand side of (25.12) is also smaller than < 772 in this case. We put
things together and get that

2

9 10r
limsupFrp | — | <[ — | . 25.13
kﬁJrof » (1()) ( 9 > ( )

We take r > % so close to % that the right-hand side is smaller than

7w + ¢/2, and get a contradiction with the fact that Ej was chosen so that
F(9Ry/10) > 7 + /2. This concludes our proof of (25.5).

We shall now easily deduce (25.3) from (25.5) and the near monotonicity
formula (23.11). Let us first recall that if A is as in (23.10), then

R R
A(R) :/0 h(t)% < Ch/o tP=1dt = p71CLRP < B lepy (25.14)
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by (23.2) and because (24.3) holds. Then for 0 < r < 9R/10, (23.11) yields
F(r) < e P(r) < e*AOR10 p(9R/10)
< e e POR/10) < e®f e (n +/2) <+ e (25.15)
by (25.14) and (25.5) and if ey is small enough. Thus (25.3) holds.

Next we assume that F is as in Theorem 24.1 and that F(R) < 7 + ep,
and we prove (25.2) and (25.3). We start with (25.3). Observe that for 0 <
r< R <R,

F(r) < e®MF(r) < AV R(R') < P o1 F(R)) (25.16)

by (23.11) and (25.14). We let R’ tend to R in (25.16) and get that for
0<r<R,

F(r) < e “nF(R) < e ' (n+ep) <mte (25.17)

if e is small enough. This proves (25.3), and we are left with (25.2) to prove.

Let us first try to apply Lemma 23.5, to the radius r = % %, with T =¢
and 0p = . If we can do this, (23.24) says that dy 20- (E, Xo) < € for some
Xo € H(L), and this yields (25.2). So we just check the assumptions. First,
(23.22) follows from (23.2) and (24.3) (if ey is small enough). The second
half of (23.23) (the upper bound for F') follows from (25.17), which also
implies (when you let the radius in (25.17) tend to 0) that 6y < m+e < 3F.
This implies that 8y = 7 (there is no other possible value, since 0 € E), and
s0 (23.23) holds. The second half of (23.21) is satisfied too, so we can apply
the lemma and get the desired conclusion (25.2) as soon as dy < dr, where

0 = () is the small constant attached by the lemma to our choice of 7 = e.

Thus we may assume that dy > ér, and now we want to apply Lemma 23.3

to the same radius r = % % as before, with the constant § that we just

found, and with 7 = e. As before, the assumptions (23.16) and (23.17) are
satisfied if ey is small enough, 0 € E, and the first part of the remaining

assumption (23.15) is satisfied. So we can apply the lemma if 1130

2L 9% This is the case, because we required in (24.1) that dy < 2R/3. So

we get (23.18) for some half plane Hy € H (in fact the one that contains the
origin), and this implies (25.2) as before.

ST =

This completes our verification in the two cases that belong to Theo-
rem 24.1. Now assume that F is as in Theorem 24.2. In particular, (24.8)

says that Sy p(R) < ey. If we prove that
3
F(9R/10) < 5 + g (25.18)

then (25.4) will follow at once, by the proof of (25.15).
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We prove (25.18) with the same compactness argument as for (25.5). This
time (24.8) yields the analogue of (25.7), but for a set Vi, € V(Lj) instead
of Hy. We may still take a subsequence so that Vi converges to a limit V,
and Vi, € V(Ls). As before, dist(0, V) < 27%, hence 0 € V,

We can keep the limiting argument (with the sequence {E} }) as it was,

and we get that for r € (35, 2%,

H? (Voo N B(0,7)) = limsup H?(E}, N B(0,7))

k—-+oco

> lim sup H2 (Ek NB (0, 190)> (25.19)

k— 400

as in (25.8) and (25.11), and
9\° 9
(55) e (55)
, ) 9 ) 9
= limsup |H*| Ex N B[ 0, — +H( S, NB(0, —
P 10 10

< H% (Voo N B(0,7)) + lim sup H? (S’k NB <O 19())) (25.20)

k——+oo
as in (25.12). We start with the Simpler case when L., goes through the ori-
gin. Then H2(VooNB(0,7)) = 712, limy_, 1+ oo H2(SkNB(0 ,1—0)) 2(9/10)* <
LTQ, and the right-hand side of (25.20) is less than %—r If we take r close

enough to 9/10, we get that limsup;,_, , o, Fi(75) < %’r , and for k large
this contradicts the fact that Ej was chosen to violate (25.18).

So we may assume that do, > 0. Write Vo, = H; U Hy, with H; € H(L).
Since 0 € V., we may assume that 0 € Hy. At the same time, Sy tends nicely
to the shade S, of L., which is just opposite to H;. Thus, if A denotes the
right-hand side of (25.20),

9
A =H*(Vye N B(0,r)) +H2<S ﬂB(O 10))
< H (Voo N B(0,7)) + H?(Soe N B(0, 7))
=H*(H; N B(0,7)) + H*(H> N B(0,7)) + H*(See N B(0,7))
=nr? + H?(Hy N B(0,7)). (25.21)
Now Hj makes an angle at least 27 /3 with H;. One way to compute H2(HaN
B(0,7)) consists in slicing it by planes. That is, write Lo, = docer + Reg,

where e; and es are orthogonal unit vectors, and let es be a third unit vector,
orthogonal to e; and es, such that Hs is contained in the 3-space generated
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by e1, ea, and e3. Set P, = {1:61 + tes + yes; (x,y) € RQ} for t € (=7, 7).
Then

H?*(H,N B(0,7)) = | H'(P,n Hyn B(0,r))dt, (25.22)
because ey is parallel to Hy. For each t, H'(P,NHaNB(0,7)) is less that what
it would be if H was the half plane bounded by L., and that contains d..e; +
es, and even less than what it would be (for Hs with the same direction and)
for do, = 0. See Figure 25.1. Thus, after integrating, H?(HaNB(0,7)) < ”T”z,
A< 3”2’"2, and (25.20), with r close enough to 9R/10, implies that (25.18)
holds for k large. This completes our proof of (25.18) by compactness and
contradiction. As was said earlier, (25.4) follows from (25.18), and this last
case ends our proof of Lemma 25.1. |

two longer sets -
) P,NH,NB(0,r)

PNIBO.) ™ LNP,

Figure 25.1. A picture in P,

In the case of Theorem 24.1, we were able to replace our assumption
that Sy (R) is small by a density assumption, but for Theorem 24.2; the
corresponding assumption that

0o = 3% and F(R) < 3% +ev, (25.23)
where 6y = lim, o7 2H2(E N B(z,7)) is still as in (25.1), is not enough
to give a good approximation by a set of type VU Py. We can only do
this when dy is small enough, as in the following lemma that we state for
general r € (0, R). The initial assumptions are as in Theorem 24.2, but we
replace (24.8) with (25.23).

LEMMA 25.2. — For each € > 0, there exist ey > 0 and §(¢) > 0, that
depend only on n, B, and e, with the following property. Let L, E, and h
satisfy (24.1), (23.1), and (23.2) with a constant Cy, such that (24.6) holds.
Suppose in addition that (25.23) holds. Then

BVP(’I“) <e¢ (25.24)

for every r such that
1 9R
o0(e)do <1< 1o (25.25)
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Proof. — We shall proceed as in the previous lemma. Let L, E, and h be
as in the statement. By (25.23) and the proof of (25.17),

2
for 0 <r < R. (25.26)

F(r) < e“ABF(R) < e e F(R) < 8 'en (3” N €V>

Let r satisfy (25.25). We want to apply Lemma 23.5, this time with the

density 6y = 37’7, 7 = ¢, and the radius r; = 22—1(;. The statement gives a
small constant § that depends on e, and we take §(c) = 22,

Let us check the assumptions. We start with (23.1), which is satisfied by
assumption, and (23.10), which follows from (23.2). Next (23.21) (the size
of r1) follows from (25.25), (23.22) follows from (23.2) and (24.6) (if ey is
small enough, now depending also on ¢), and (23.23) follows from (25.23)
and (25.26). We get a set Xo € V(L)UP, (because 6y = 37) such that (23.24)
holds. That is,

dQJ(E,Xo) = dO M(E, Xo) < g, (2527)

21
where the first part holds because 1 = %. Lemma 25.2 follows; we also
get an extra estimate (23.25) on the Hausdorff measure, which was not men-
tioned in the Lemma but holds anyway. O

The lemma is a little weird (and will be improved seriously later), because
we should be able to prove that the only sets Xy that can show up in the
proof above are sets of type V whose two faces make an angle close to %’T
For instance, we expect that otherwise, the good approximation of E by a
flat object (say, a plane) at the large scale r implies that 0 is a smooth point
of E. For the moment we have to wait for a more precise statement, because
we do not seem to have the tools yet to prove this, but in Theorem 30.3
(also see Remark 30.4), we will get a better result, that also applies to some
intermediate radii, of approximation by truncated Y-sets. This is of course
compatible, because in a ball of radius r > dp, a truncated Y-sets looks a

2w

lot like a V-set with an angle close to <.

In the situation of Lemma 25.2, but for radii » < §(¢)~'dy, we can still
get some geometric control on E, and show that it looks like a truncated
cone of type Y.

LEMMA 25.3. — For each choice of € > 0 and 6 € (0,1), there exist
ey > 0, that depends only on n, 3, €, and §, with the following property. Let
L, E, and h satisfy (23.1) and (23.2) with a constant Cy, such that (24.6)
holds. Suppose in addition that (25.23) holds. Then for each r such that

22dy . (20R __,
— K — .
21 \r<mm( 21 ,0 d0> (25.28)
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we can find a minimal cone Y of type Y, centered at 0, such that LNB(0, 22%)
is contained in a face of Y, and for which

d()’r(E, E()) < g, with Eo =Y \ S. (2529)

Proof. — Here S still denotes the shade of L, and we may observe that
in the ball B(0,2) (the only place that counts for (25.29)), Ey is a nice
truncation of Y by L. The proof will also show that Ey approximates F well

in measure, in the sense that
H2(E 0 Bly, 1) — H2(Fo 1 By, )] < 267 (25.30)
for all y € R™ and ¢ > 0 such that B(y,t) C B(0,r).

The proof is easy. We want to apply Lemma 23.4 to the radius r; = 22—10'”,
and with 7 = €. The assumptions (23.1), (23.10), and (23.16) follow, as in
Lemma 25.2, from (23.1), (23.2), and (24.6). The replacement for (23.17)
follows from (25.23) and (25.26). Finally the requirement (23.15) on the size
of 1 was computed to be the same as (25.28). Thus we get Y and Ey,
as in Lemma 23.4, and the properties announced in Lemma 25.3, as well

as (25.30), are the same as what we get from Lemma 23.4. O

Proof of Theorem 24.1 modulo Proposition 24.3. — Let E be as in
the statement. By Lemma 25.1, we get that if ey is small enough, (25.2)
and (25.3) hold with any small € > 0 that we may have chosen in advance.
Let us check that we can also get that

3d
Bu(r) <e for 70 <r < 9R/10. (25.31)

For R/2 < r < 9R/10, this follows directly from (25.2) (with €/2). For
r < R/2, let €1 be the value of ey needed to get € in Lemma 25.1, and
apply first Lemma 25.1 with ¢ = €; to define eg. Then by Lemma 25.1,
F(107r/9) — m < e1. Next apply Lemma 25.1 again, with €, and to the radius
R’ = 10r/9; the initial assumptions of Theorem 24.1 are still valid for R’
with the same constants, and (24.4) (with the constant ;) is true because
F(10r/9) — m < e1. We get (25.2) for R, which is just (25.31).

Next we apply Proposition 24.3. If € above is chosen smaller than the
g1 from the proposition, the main assumption (24.12) is satisfied as soon as
r < 9R/20. The assumptions (24.1), (23.1), (23.2), and (24.11) are satisfied
by assumption (if e < €1), and so we get the differential inequality (24.13),
ie.,

2r
h(t)dt
PF'(r) > a[F(r) — 1]y — Ci / (t) (25.32)
0
for almost every r such that
9R
2dp < 1r < 20" (25.33)
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Recall from (23.6) that F(r) = 6(r) + r=2H?(S N B(0,7)). The second term
is a smooth function of r > dy, so the differentiability properties of F' are the
same as those of #. Thus, even though we recalled that F' is differentiable
almost everywhere in the statement of Proposition 24.3, we already knew
this from Lemma 17.1. The same lemma, and in particular (17.6), also says
that we can integrate pointwise inequalities on 6, and hence on F’ too, to
get lower bounds on the increase of § and F'. Let us do this with (25.32).

We proceed as for (17.23), but change some things because we slightly
changed the error term in (24.13) and (25.32). Set g(r) = r~*[F(r) — =] for
r € I = (2dy,9R/20); then g is also differentiable almost everywhere (by
Lemma 17.1), with for r in the range of (25.33)

2r
g (r)=—ar Y F(r) —n] +r °F'(r) > 7017'7“71/ h(t)%
0
2r
> —ClChr_a_l/ 7t > —20, 87 CprP et
0
= —C3CrPe ! (25.34)

by (25.32) (and we don’t need the positive part), and then (23.2); the last
identity is a definition of Ci.

We may as well assume that a < §/2 (notice that our form of (24.13),
with the positive part inside, allows us to make a smaller), then § — a —
1 € (—1,0). Lemma 17.1 allows us to integrate this (recall that F — 6 is
continuously differentiable), and we get that for 2dy < 1 < ro < 9R/20,

g(r1) < g(rz) _/ g (r)dr < g(ra) + C3Ch/ rf=a=1qr

< g(ra) + C5Ch(B — a) e~ = g(rs) + CuChrs ™, (25.35)
with Cy = (8 — a)~1C3 < 2C5/, and now
F(r) —m=r{g(r) < <:;> [F(re) — 7] + C’4Chr%rg’“_ (25.36)

This holds for 2dy < r; < 79 < 9R/20, and in this region it is better
than (24.5) because we don’t use the extra 2.

Now we need to consider radii 1 < 2dy. Let us first check what happens
on the interval I = [dg,2dp]. In this range, we simply use the fact that
by (23.11),

F(ry) < F(ry)e®) < F(rg)e*A(r2) (25.37)
for dg < r1 < re < 2dp and, since
2 dt
Alrs) = [ h(t)7 < ChB~'ry < CuB~ min(2do, R)? < Chf~ ey (25.38)
0
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by (23.2) and (24.3), we see that e*4("2) < 1—|—3ozﬁ*10hd€. Also, F(rq) < 27
by (25.3), and (25.37) yields

F(r1) < F(ry) 4+ 2008~ Chdl = F(ry) + CsChds. (25.39)

This is better than (24.5) because % > 1. This is the place where we lost
the extra 2¢.

If dy < 71 < 2dp < 19 < 9R/10, we combine (25.38) with (25.36) and get
that

F(r) — 7 < [F(2do) — 7] + C5Chdg

2dy\ ° »
< (TO> [F(TQ) - 7T] + C4Ch(2d0)a7"§ + C5Chdg
2

< (2:1> [F(rg) — 7] + C(;Chr%rﬁ_a, (25.40)
2

which implies (24.5). When 0 < r; < r2 < do, there is no visible sliding

boundary condition, and we can use the decay estimates from [47], as one

may find them in [10], and which take the same form as in the previous

sections, or even just above with dy = 0. That is, we get that for some choice

ofa>0and C; > 1,

r

F(r) —m=0(r) =7 < (r;)a[ﬂ(rz) — 7] + CCpriry
a (25.41)
= (Tl) [F(r2) — 7] + C?Cm’(frﬁ_a.

T2

For the remaining case when r1 < dy < r2 < 9R/20, we glue this estimate
to (25.40) and get that

1

F(ri)—m < (d ) [F(dp) — ] + C7Chr‘fd§’“
0

“ 2d “ —a —a
< (”) {(0) [F(ra) — 7] + CoCrdrsy } + C7Cyridy

do T2
2 N _ B
< (:1) + CoCurers ™ 4 CrChridl ™, (25.42)
2

which is also as good as (24.5). Theorem 24.1 follows, modulo Proposi-
tion 24.3 which will be proved in the next section. O

Proof of Theorem 24.2 modulo Proposition 24.4. — This will work es-
sentially as for Theorem 24.1. Let F be as in the statement. Let € be small,
to be chosen soon. By Lemma 25.1, (25.4) holds (for 0 < r < 9R/10), while
by Lemma 25.2,

9R
Byp(r) <e for d(e)tdy <r < T (25.43)
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Next we apply Proposition 24.4. The assumptions (24.1) (if r > 2dy),
(23.1), (23.2), (24.4), (24.14), and (24.16) come directly from the assump-
tions of Theorem 24.2, (24.17) follows from (25.43) if € is chosen smaller
than 9, and we are left with (24.15), which requires that

Ndy <7< g (25.44)

Here N is a constant that depends only on n and 3, and since we may now
choose ¢, 6(¢) also becomes such a constant. Set N; = max(N,d(g)~1). We
get that for almost all r € (Nydo, &), F is differentiable at r and (24.18)
holds. The same argument as for (25.36) shows that
3 “ 3
F(ry) — 771- < (rl> |:F(7“2) - ;] ChCprird e (25.45)
T2

for Nidy < 71 < 12 < 9R/20. For 0 < r1 < ro < dp, the proof of (25.41)
yields

F(T‘l) - < <:;> [F(Tg) — 327T:| C;Chrlfrgia. (25.46)

In the intermediate regions where dy < r1 < ro < Nidp, we simply use the
near monotonicity of F, as in (25.39). Finally, we glue all these estimates as
above, and get that

P -7 < (

in the full range of 0, R/2. This proves (24.9) and Theorem 24.2, modulo
Proposition 24.4 which will be proved in Sections 26-28. |

Niry
2

a
) + CsCprird = (25.47)

26. Construction of competitors, with the triangle T'(r)

In this section we adapt the main part of the construction of competitors
that was done in Sections 5-16, to the case of balls centered away from L.
The goal is to get the differential inequalities of Section 24, so we will restrict
our attention to the case when E looks a lot like a set X € HUV U Py.

It would be logical to deal also with the case when E looks like a truncated
set of type Y, but this would only give a differential inequality that holds for
a relatively small range of radii, and we decided that in this range we will
just use the near monotonicity of F', and not lose so much.

We will concentrate our attention more on the case when E looks like a
set of type V U Py, because it is a little more complicated, and also seems
more useful. That is, we could probably manage without the case of a half
plane. But this case is easier anyway.
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We start the construction with assumptions relative to a fixed radius
r < R, where R is as in (23.1) or (23.2), and we assume that the assumptions
of Proposition 24.3 or 24.4 are satisfied. In particular, we assume that 0 € |

3
0o = lim p*H?*(E N B(0,p)) € {w,”} (26.1)
p—0 2
and that there is a set X € HU V U Py, such that
do’gr(E, X) < e. (262)

Here ¢ is a shortcut for ey or ey, X is a half plane if 0 = 7w and a set of

type V or Py if 6y = 2, and (26.2) comes from (24.12) or (24.17). But we

also have the extra information that

2dg < r < g ifg=m (26.3)
and
Ndy <7< g if 0y = 3777 (26.4)
where we can choose N as large as we want, and that
Fp)<bp+e forO<p<r (26.5)

by (25.3) or (25.4).

Our proof of differential inequalities will follow the same route as for
Proposition 17.2; fortunately, we do not need to repeat everything, and the
geometric situation will be simpler. We explain how it goes here, but the
truth is that no real difference with what was done before, except for some
occasional simplification, happens before the description of Section 14, where
we build a competitor, and where the triangle T'(r) will show up.

We start as in Section 5; our assumptions (23.2) and (24.3) replace (5.1)
and (5.2), and (26.2) replaces (5.3). We also assume that r satisfies the extra
properties (5.4), (5.7), and (5.8); this is all right, because we noticed in
Section 5 that they hold almost everywhere. These extra assumptions were
used to take some limits, for instance when we proved Lemma 14.2, and we
will apply the same arguments here.

So we fix r with all these properties. For the moment, let us not normal-
ize r away (i.e., take r = 1) as we did earlier. We want to construct nice
competitors for £ in B(0,r), that probably beat the natural one. Earlier,
the natural one was just the cone I'(E, r) over ENS, (where S, = 0B(0,r)),
but now it is

L(E,r) = T(E,r) UT(r), (26.6)
where T'(r) is the triangle with vertices 0 and the two points of LNS,., which
we denote by £y = ¢4 (r). This is the same set that was used to prove the
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near monotonicity formula (23.11), and hopefully if we do even better than

L(E,r), we will get the desired differential inequality. Set
K, =XNS, = XNaB(0,r). (26.7)

When X € H, K, is composed of one nice curve p;. It is the intersection
of S, with a half plane bounded by L, which by (26.3) passes rather near 0;
it is not a piece of geodesic unless 0 is exactly in front of X, but it is still
an arc of circle with a not too large curvature. And it has two endpoints in
LNS,.

When X € V, K, is composed of two nice curves p; and ps, both ending
at the two points of L N'S,.. They are not geodesics either in general, but
since (26.4) says that L passes very near 0 (as near as we want), they are
very close to being two arcs of great circle with length 7r.

Finally, when X € Py, K, is a full great circle, that may or may not
contain points of L. This case is slightly different from the others, but we
keep it along for some time. We cut K, in two roughly equal parts p; and
p2 of lengths nearly equal to 7r; we may be more specific later on where we
cut, to make some estimates easier to prove.

For ¢ = 1 and maybe 2, let w; denote the point of p; that lies at equal
distance from its two endpoints. We cut p; at w;, into two sub-arcs p; + that
go from w; to ¢4 in the first two cases; in the last case, p; + goes from w; to
an endpoint ¢/, of the two p;, which we choose close to ¢4 if K, gets close to
L. Since we want uniform notation, let us also set £/, = ¢4 in the first two
cases. At this point we have two or four nice arcs p; + from the w; to the ¢/, .

When X € VUPy, we have a constant N > 1, as in (26.4), which we
can make larger if we want, so that some geometric estimates are satisfied;
when X € H, let us also introduce a large constant N too, which this time is
not related to the constraint (26.3). We will pick N so large (in both cases),
that some geometric properties are satisfied, and then e will be allowed to
be small enough, depending on N. For instance, we claim that for N large,
pi+ is close to the geodesic p(w;, 1) with the same endpoints, and more
precisely

do,w(ﬂﬁ, p(wuﬂ’i)) g 10N_1. (268)

When X € Py, this is trivial because p;+ is actually an arc of geodesic;
in our remaining case, recall that ¢/, = (4.

When r > Ndy (which is automatically the case when X € V), this is
because S, is almost centered on L (and we put the large constant 10 to be
sure that neither author nor reader has to think about it). Otherwise, X is
a half plane bounded by L, dist(0, X) < 2re by (26.2), and we just assumed
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that dg > N~!r. Then X makes a very small angle with the half plane Hg
bounded by L and that contains 0, and K, lies very close to an arc of Hy
through the ¢4, which happens to be a geodesic. So (26.8) holds in this last
case too, if £ is small enough.

In the discussion below, we shall some times say things as if X were of
type V or Py and we had two curves p;, but the case of a half plane will be
included, and easier.

We give ourselves a small constant 7 > 0, that depends on the geometry;
probably we can take 7 = 1075. We set D+ = D1 (r) =S, N B(¢'., 7). The
discussion of Section 6, with the local regularity of E far from L, gives a
nice description of ENS, \ (D4 U D_), as a union of one or two nice C!
curves L;, that are also small Lipschitz graphs over p; \ (D4 U D_). We cut
the curve £; into two pieces £; 1, at a point which we call m; and which we
choose very close to w;. The curve £; + leaves from m;, and ends at a point
ci+ € ENOD4, where it actually reaches 0D+ transversally. In addition,
near each 0D+, the intersection £ NS, is just composed of two nice C*
curves, that are extensions of the £; 1, and which cross a thin annulus near
0D transversally.

The behavior of £ NS, in each D4 can be classified into what we shall
call configurations. Their description is essentially the same as in Section 17,
except with only one or two points in D4, but we use the opportunity to
change the vocabulary slightly.

We start with Configuration 1 (which we may also call Configuration 14
if we want to specify near which /1 we work), where both points ¢; 1 lie in
the same connected component of EN Dy as ¢4 (which therefore lies in E).
This is the most likely situation, hence the name.

We also have Configuration 2 (or 2+) where we have what we call a
hanging curve, i.e., when at least one of the ¢; + (and say that it is ¢; 1)
does not lie in the component of ¢z + in EN Dy (if X is a V-set), nor in the
component of ¢4 (if /1 happens to lie in E). We will like this case because
it is easy to construct a better competitor.

When X C H, these are the only two options, since there is only one c; .
Otherwise, we still have one possibility, Configuration 3 (or 3+), where ¢; 1
and c 4+ lie in the same component of £'N D4, but not £+. We call this a
free attachement; we expect this thing to happen, but only when X is very
close to a plane, and then E may leave L. Recall that every plane is a sliding
minimal set, independently of its position relative to L, and that X may
also be a plane that does not contain L. We treat this case like the other
ones for the moment, except that maybe ¢/, # (1, and in the case when
|¢/. —£1| > 7/10, say, and ¢ is small, we are sure to be in Configuration 3,
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and near ¢/, we may also have kept the curve £4 ULy, which is perfectly nice
(and does not get close to L).

Next we construct a net of curves, as in Section 7.

When X is a half plane and we are in Configuration 1, we find a simple
curve ’yii C EN Dy that goes from ¢; + to ¢4+, and we add it to £ + to get
a curve v+ C E that goes from my to f4. Also set v+ = 71 + for unified
notation.

When X is of type V or Py and we are in Configuration 1, we find a point
z+ € EN D4, and two simple curves ’y&i C E N Dy that go from ¢; 1+ to
zt,1=1,2, and a last one, vo, C N Dy that goes from z4 to £1. We add
to 7; . the corresponding £; 1 to get a curve v; + C E that goes all the way
to my, and call v+ = v1 4+ U2 + Uye, . We allow the degenerate case when
Z4+ = fr

In Configuration 2, when £ 4 is a hanging curve (say), we decide to
essentially remove £; + and the component of ¢; + in D4 from the game,
and we set v; + = {mq}. If X is a half plane, we are finished with Dy.
Otherwise, if Lo + is also a hanging curve, we set 2.+ = {mga}. If not, we
construct y2 + as in Configuration 1, when X is a half plane. We also set
Y+ =71+ Uz +.

We are left with Configuration 3. In this case we select a simple curve
v, C E N Dy that goes from ¢1 4+ to co 4, pick a point zx € 7/ close to
¢, (a point of v/ closest to 1 seems to be the simplest), cut v/ at the
point z4, into two pieces 71/’7i that go from ¢; + to z4, and add £; + to 'Vz/‘,i
to get a longer curve +; + that starts from m; and ends at z4. Finally set
Y+ = 71,4+ U2+ as usual.

This gives a collection of simple curves. We may call v* the union of these
curves, and we see it as a first net. The curves don’t intersect, because we
kept Dy and D_ essentially disjoint from the rest.

Next we proceed as in Section 8. Each of the simple curves (call it )
that was constructed above is replaced with a small Lipschitz graph I" with
the same endpoints. When we deal with a hanging curve, of course, we don’t
see the difference, because both curves v and I' are reduced to a point. In
Configuration 1 when X € VURPy, it could be that the three Lipschitz graphs
that we constructed do not make nice angles or, even worse, intersect; then
we will modify it later appropriately, but let us not worry for the moment
and continue as if this did not happen. We take the union of all these curves
I" and get a net that we call I'*.

Recall that in (8.1) we required the endpoints of the curve ~ that we
transform into I' not to be too far from each other. In the present case, if
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X is of type V, then dy/r is quite small, the curves £; stay quite close to
diameters of S,., the w; are at distance about 7r/2 from the ¢4, so do the
m;, and we get (8.1) because we can choose 7 small and hence the point
z4 (when it exists) lies quite close to ¢4. If X € Py and the ¢/, lie close to
the ¢4, we can argue as when X € V, while otherwise, when for instance ¢/,
lies at distance at least 7r from L, we may as well have taken it opposite
to ¢ and get what we want. Finally, assume that X is a half plane; if dg is
small compared to r, we can still say the same thing. And even when d is
large, X is quite close to the half plane Hy that is bounded by L and goes
through the origin, w; and m; are quite close to the middle point of the long
geodesic arc S, N Hy. But we required in (26.3) that 2dg < r, and it can be
checked that this forces the length of S, N Hy to be significantly smaller than
37 so that H'(p(my,0+)) < 25~ as needed for (8.1). The reader is invited
not to do the precise computation, since 3%7’ could have been any number
smaller than 7r, and 7r corresponds to dy = r. So we did not cheat with the
assumption (8.1) here.

We do not need to modify what we did in Section 9. That is, for each
of the curves T' that compose I'*, we construct a graph X¢(T"), which is
bounded by I' and the two line segments from 0 to the endpoints of ', and
which in general has a smaller area than the cone Xp(I') over I'. See for
instance (9.19).

The reader may be worried about the fact that in the present situation,
Eq(T™) = Up Ze() does not give a competitor for E (even after we do
the small modification needed to glue things near S,), because probably
Y (I*) detaches itself from L when it leaves the two points 1. We already
had this problem in [13], because in the proof of (23.11) we could not use
Er(*) = Up Br(T); this is why we added the triangle T'(r) to ¥ p(I'*), and
here again we will need to add T'(r) to X (I'*) when needed; we will take
care of this later.

But let us first continue with the flow of the previous sections and discuss
analogue of Sections 10-12. We said above how to construct curves I' by
taking the same endpoints as for our initial curves v and applying Section 8.
This is what we do in most cases, but there is one case when we apply the
construction of Section 8 to slightly different curves. This is when we are in
Configuration 1, with a set X € VUPy, and in addition the three endpoints
{4+, mq, and ms, seen from our vertex z4, make wrong angles. That is, if we
are so lucky that

Angle_ (¢,m;) > g +107! for i=1,2, (26.9)

we proceed exactly as we said above, and construct three curves I' with the
same endpoint z4, and glue them together. This is all right, because then
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the curves I' of our net I'* still make large angles at z4, and this will allow

us to produce nice retractions on I'*. Notice that we do not need to say that

Angle,, (m1,m2) > 5 + 107", because it is automatic, as either X € V and
27

the two faces of X make an angle at least = at the /1 (and zx lies in the

small disk D centered at £4), or X € Py and this is even more clear.

The worse picture we have when (26.9) holds is that I'* is composed of
six arcs (with two short ones) that make I'* looks like two long arcs of circle,
plus two little branches that connect the ends to the /1. But of course we
could also have a free attachment on one side, or simpler pictures.

In the bad case when (26.9) fails, it seems that we have no other choice
than proceed as in Configuration 2+ of the earlier discussion, which is treated
in Section 12. More precisely, as in Subcase B where (12.2) fails (just as (26.9)
fails here). In this case we decide that z4 is not a nice enough center, and
we use only two curves Iy and FQ, that go directly from /1 to m; and ms.
The two curves I'; are constructed as in (12.7), as unions of the geodesic
p(lx,z;) and the part of our old Lipschitz curve I'y ; (from zy to m;) that
lies between z; and m;, where z; is a point of I'y. ; that lies reasonably far
from zy4 (as defined below (12.6), but beware that r there has a different,
local, meaning).

Fortunately, the computations of Section 12 are still valid in this case,
and we do not repeat them. Their result is twofold. First, what we get
when we add f‘l and fg to the other curves that we construct is still a nice
net, composed of at most five Lipschitz curves (four long ones whose union
look likes the union of two half circles with common endpoints, and a short
one that connects the other ¢ to its z¢) that are disjoint except for their
endpoints, and make large angles with each other at these points. And we
have good estimates like (12.33)—(12.38) that say that the measure of the
symmetric difference between our initial v+ and ', UTs is controlled by what
we will win in the estimates, as in (10.6) and (10.7).

We return to the general case. At this point, we have a nice net I'*
composed of at most six Lipschitz graphs, which we now decide to call I';
(hence, 1 < j < 6, maybe less), which are glued together at their endpoints
and make reasonably large angles there. For each j there is a cone X(T';)
over I'; (and these cones are glued nicely along segments that go from 0 to
the endpoints of the I';), and a nicer graph ¥¢(T';) (and these graphs are
also nicely glued along the same line segments, with reasonably large angles).
We set Xp(T*) = Uj Yp(T;) and Xe((T™) = Uj Y (T).

Denote by a; and b; the endpoints of I';; recall that X(I';) is a small
Lipschitz graph over its projection on the plane P; that contains the geo-
desic p(aj,b;). Also, X (T';) is bounded by I'; (on the sphere) and the two

- 238 —



A local description of 2-dimensional almost minimal sets bounded by a curve

segments [0, a;] and 0, b;], where it is glued to the rest of £ (I'*). That is, if
I'; and I'y, share an endpoint, which we call ¢ = a; = ax, then £g(T';) and
Y(Tk) also share the segment [0, a], and they make an angle at of least 7/2
along that segment.

Indeed, by the small Lipschitz graph description of X¢(I';) and X (T'y),
we just need to control the angle of I'; and I'y. This is rather easy when a
is one of the m;, because then the other endpoints b; and b;, essentially lie
in opposite directions seen from a. This is also easy when ¢ = ¢/, and b;, by
are the two points m;, because either X € V and its two faces make a large
angle at {3 = ¢/, or X € Py and the w; lie in a geodesic X NS, in different
directions.

We are left with the case when a = z4.. When b; and by, are the two points
m;, we can apply the same reasoning as above, since z4 lies in a small disk
D centered at ¢/,. So we may assume that we are in Configuration 14, and
for instance b; = my and by = f+. But in this case we have (26.9) (because
otherwise we decided to start the curves from ¢4 ), which is exactly what we
need.

So ¥¢(T';) and X (I'x) make an angle at of least 7/2 along [0, a], and the
union X (T'*) is a nice object. Seen from far (and if X € V), it still looks like
a set of type V, but maybe pinched twice along two thin triangular surfaces.
Notice also that we do not say that X (I'™) lives in a 3-dimensional space,
but it stays quite close to the 3-space that contains X (but maybe not 0).
We shall also use later the fact that inside B(0, xr), it coincides with the
cone over a net of geodesics p*.

Our next task is to project on L (I'*) = L (I'*) UT(r) or maybe, in the
case of Configuration 2 or 3, on ig(F*) alone. This will be useful because
we want to find a deformation that starts as the identity outside of B(0,r),
and maps roughly on ig(F*) inside.

Because of the hanging and free cases, it may be that ¢, or /_ does not
lie in I'*, so we add them, which means that now I'* may also have one or two
isolated components (which we call I" again) composed of just a point ¢4 ;
in this case X (T") is just the line segment [0, ¢4 ]. This is the manipulation
described at the beginning of Section 13.

In the computations that follow, and in order to simplify the notation,
we shall return momentarily to the convention of Section 14, where we had
decided to normalize things so that » = 1. So let us suppose that r = 1,
and forget r from some of the notation. We will return to the correct scaling
afterwards.
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The next stage, as in Section 13, is to construct a Lipschitz projection p
that maps points from a neighborhood of E NS to the net of curves I'*. See
Proposition 13.1 Let us recall its main properties. Set E=ENSu {0_,04}
(again we add the ¢ if they are not there already, because of the free case).
Then there is a very small number 73, such that p is defined on a set Ry C S
that contains a 73-neighborhood of E. Ttis Lipschitz (but maybe with a huge
norm), and it is also locally 30-Lipschitz, in the sense that for each x € R,
the restriction of p to Ry N B(z,73) is 30-Lipschitz. Here 73 is allowed to
depend on r in a wild way; nonetheless, the local 30-Lipschitz property is
useful, because it is enough to give good bounds on the measure of images
of sets by p. The reason for this strange local Lipschitz property is that it is
rather easy to construct a Lipschitz mapping p. near each component of I'™*
(see Lemma 13.2 for a local version), but we need to split Ry into regions
where we use different maps p. (i.e., that belong to a given component),
but are far from each other (so that p is Lipschitz, but maybe with a bad
constant). The main property of p is that

p(Ry) CT* and p (x) =« for z € T™. (26.10)

Recall that ¢4 € I'* now, so in particular p(¢y) = ¢4. Also, the local con-
struction component by component is such that, as in (13.44)

|p(z) — 2| < 10dist(z,T*) for z € Ry. (26.11)

Let us now extend p to EN A, where A is a small annulus around S'; we do
not take a radial extension as before (see (14.3)), because we want to preserve
L, so we prefer “radial with respect to xy”, where xg is the projection of 0
on L. That is, for z € B(0,2) \ B(0,1/2), denote £(z) the point of S such
that £(z) — xo = t(z — o) for some t > 0; we take

p(z) = p(§(x)) when &(2) € Ry. (26.12)

We refer the reader to Section 13 for a more precise description of p, and
now turn to Section 14 where we start the description of a new competitor.
We shall use the set

£6(I) = Sa(I) UT(r), with as above (") = | JZa(Ty)  (26.13)

and where r = 1 here, a set which is a little larger than X (I'*), as the basis
for our first competitor. Recall that the triangle T'(r) is the convex hull of 0,
¢4, and £_; it is nicely glued to the sets ¥¢(T';) for which ¢4 is an endpoint
of I';. With the recent addition of {1 to I'*, these I' exist, but they may be
reduced to one point. But we do not say that T'(r) makes a large angle with
the faces X (T") in question; it could even be that I' is almost opposite to 0
and X¢(T") has a big intersection with 7'(r). We shall see later that this is
not a problem.
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We want to construct competitors for E, in B(0,1) (recall that we often
write estimates with » = 1 now), and for this we construct two deformations
©'. We start with a first one, ¢", and we define it in rings, starting with
the outside. We first set ¢%(z) = = for z € E \ B(0,1), then take a very
small number ¢ > 0, that will depend on r, and try to do the interesting
modifications on the very thin annulus A(20).

By the proof of Lemma 14.1, if we take o small enough, then

&(z) € Ry forz € ENA(20), (26.14)

which implies that p(x) is defined there. We first set
T +o—1 1— |z
900(1‘) — ‘ | = T+ ‘ |p

just as in (14.6).

(x) for z € EN A(o), (26.15)

Here A(o) is a gluing region; on the exterior boundary S;, we just took
¢©%(x) = x, and on the inside boundary, we now have

WOx)=p(x)el* forz e ENS;_,. (26.16)

The same proof as before yields that if we set F(o) = ¢°(E N A(o)) and
M(() = H*(F(0)), then M (o) is small, as in Lemma 14.2.

Next we want all the variation of ©° to occur on the next small ring

As = A(20)\ A(o) = B(0,1—0)\ B(0,1—20), and we shall make sure that
O (x) € Bg(I*) for z € EN As. (26.17)

We also want to make sure that ¢°(z) = 29 on dB(0,1 — 20), where x is
the orthogonal projection of 0 on L, because we will take

©%(x) =z for x € ENB(0,1 - 20). (26.18)
Then we will use ¢° to build our first competitor for E.

The construction of ¢y on As will take some time, because we prefer
to be explicit. Yet it will probably comfort the reader to know that the
specific construction that we adopt does not matter much. What counts is
the measure of the set ¢(A3) C Xg(I'*), and things like the respect of our
boundary conditions.

__ First we want to construct is a deformation of I'* to the point g, through
Y = X¢(I™). We will define this mapping independently for each I' =T,
but so that the different pieces will glue well.

So let T" be one of our Lipschitz curves, and first assume that it is a
nontrivial curve that starts at £ € L N 0B, and ends at a point that we
call a. For each z € T', we want to find a path t — w(z,t), t € [0,2], that
goes from z to the final target zo. We cut the path in two, and assign to z
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an intermediate target w(z, 1) that lies on the line [0,¢]. We choose w(z,1)
“linearly”, as follows. Parameterize I" by v = [0,1] — T" at constant speed,
in such a way that v(0) = ¢ and v(1) = a. Then set w(z,1) = (1 — s)¢ when
z=uv(s).

The second part of the trip (going from w(z,1) = (1 — s)¢ to xg) is easy
to organize, because T'(r) is just a triangle and [0,¢] one of its sides. We
simply set w(z,t) = (t — L)xg + (2 —tw(z,1) = (t — )azog + (2 —t)(1 — s)¢
forzeTand 1 <t<2.

For the first part of the trip, we recall that X(T') is a small Lipschitz
graph over some vaguely triangular sector, which we call Sp, in the plane
Pr that contains a, £, and 0. The two segments [0, a] and [0, ¢] that bound
the sector are contained in ¥¢(T'), and there is a third curvy part of the
boundary, such that I (the third part of the boundary of ¥(T")) is a small
Lipschitz graph over that curve. The triangular sector has a third boundary,
that goes from ¢ to a, and which is the projection of I' (and is a small
Lipschitz curve too). We want to make sure that w(a,t) = (1 — t)a for
t € 10,1] (we go linearly from a to its intermediate target 0), and on the
other hand w(¢,t) = ¢ for ¢t € [0,1]. For the intermediate points z, it turns
out that we can take

w(z,t) = G[(1 — t)w(z) + tw(z,1)] for t € [0,1] (26.19)
where 7 denotes the orthogonal projection on Pr, G : Sp — P{ is the func-
tion whose graph is £¢(T'), and G(u) = u + G(u) is the parameterization
of the graph by w € Sp. The point is that although St is not necessar-
ily convex, the small Lipschitz property of I' implies that all the segments
[7(2),w(z,1)] = [7(2), (1 — s)£] are contained in St (Figure 26.1 shows such
a segment). That is,

w(z,t) € Lg(T) for z €T and ¢ € [0,1]. (26.20)
a
(z)
0 W(z.t)
w(z,1)

Figure 26.1. The projection 7(w(z,t)) in Spr C Pr
This completes the definition of our path function w(z,t) on I, when T
ends at £ € L. In the other case when I' goes from a to b, with a,b ¢ L, we

first send points to 0, and then move them to xg. That is, write X (T') as
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above as the graph over the sector Sr of the small Lipschitz G : Sp — Pq,
and this time take the direct path to the origin defined by

w(z,t) = G[(1 —t)z] for t € [0,1]; (26.21)
as before, (26.20) holds (this time because the rays from the curved boundary
of Sr to the origin are contained in Sr), and we end with w(z,1) = 0. We
complete the path by taking w(z,t) = (¢t — 1)z for ¢t € [1,2], which just
moves from 0 to zg. Notice that when two curves I' end at the same vertex
a, the corresponding functions w(a,t), t € [0, 2], coincide. This is true both
when a € L and when a ¢ L.

There is a third, trivial case when I' = {¢} for some ¢ € SN L; then we
take the same definitions as before (when ¢ was an endpoint of T'): we set
w(l,t) =L for 0 <t <1, and w(t,t) = (t — o+ (2 —t)¢ for t € [1,2].

Now we are ready to define ¢ on EN Ay. Recall that ¢°(z) = p (z) € T*
for z € S1_,. For & € Ay, we still start from z = p () € I'* (which is defined,
as before, by (26.12) and (26.14)). We also set t(x) = 201 (1—|z|—0) € [0,2],
and finally take

©%(z) = w(z, t(z)) = w(p(x), t(x)) forz € EN As,. (26.22)

Thus on S1_s,, we have ¢°(z) = w(z,2) = 0, as needed.

This completes our definition of ¢°. Notice also that ¢%(z) € ig for
r € ENB(0,1—0), as promised, and it is easy to check that ¢ is Lipschitz
(although possibly with a huge norm). We should also mention that it is easy
to find a one-parameter family of Lipschitz mappings that preserve L and
go from the identity to ¢°; we just need to make sure that points of L stay
in L, and we don’t need to control where the intermediate images lie, so we
can interpolate linearly and the convexity of L does the rest. With all these
remarks in mind, we just need to check that ¢° € L for x € A(20)NENL. We
made sure to project radially from zq so that [z, p(x)] C L, and then p(z) =
£4, and we made sure when we retracted T'* to xo that w(p(z),t(z)) € L
too, as needed.

Now we need to control the measure of FO = ¢Y(E). We don’t need
to worry about E \ B(0,1), because we did not change anything there; see
above (26.14). Next consider the image of F(0) = ¢°(ENA(c)) (the exterior
annulus). Fortunately, we took for ¢°, and in particular in the annulus A(o),
the same sort of formula as in Section 14 and we can do the same estimates,
which lead to (14.26) for M (o) = H?(F(0)); recall that the idea is to choose
correctly arbitrarily small values of o, and define ©° with such values (and
later take a limit to get a sharp estimate). We are left with ©°(B(0,1—0) C
ig. We can keep the same estimates as before, on ¥g(I'*), and then we
just need to add H?(T (1)), the additional triangular piece that we decided
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to add to take care of the boundary constraint. We essentially copy (15.46),
and we get that

H?(E N B(0,1))
< %HI(E NS1) — 10 °[HY (ENS1) — H(p")] + HA(T(1)) + h(1), (26.23)

where p* is defined as in (15.43); it is the union of geodesics that we get when
we join the endpoints of each I' with a geodesic. Thus there is a maximum
of six geodesics pr (they were called p; in Section 15), four long ones and
two short ones. Finally observe that we systematically added H?(7'(1)) in
our estimate, as if it were disjoint from the other parts. That is, if by luck
T(1) intersects some other piece of F°, we could perhaps have obtained a
better estimate on the total #?-measure of F°, but we did not try to do this,
and this way, if we later modify F° by modifying X¢(I'*) (including a piece
that may have intersected T'(1)), when we do the further estimates, we will
be able to compare the measure of the replaced piece of X (I'*) with what
it becomes, without having 7'(1) interfere in the computation. That is, we
shall not actually compare the sets, but the estimates that we use for the
sets. Hopefully this comment will become clear when we do this.

This was our main estimate, modulo the full length story below. We now
forget our normalization r = 1, and rewrite (26.23) as

H2(E N B(0,7))
< g%l(E NS,) =105, [HY (ENS,) —H (p2)] + H2(T(r)) +72h(r), (26.24)

where we now write p} instead of p*, and which is valid almost everywhere
under the assumptions of this section.

In order to know whether we need the full length trick and the construc-
tion of an additional competitor, we introduce the following set X, which we
will see as the reference minimal set in the given situation. If 6y = m, X is
the half plane bounded by L that contains 0. If §, = 37”, Xy is the truncated
set of type Y, centered at 0, and with a spine parallel to L. That is, we take
the cone Y of type Y, centered at 0, and with a face that contains L, and
we take Xo =Y \ S, where S is still the shade of L. The reader should not
get confused (as the author has been a few times); our choice of Xj is just a
way to encode some numbers (such as H!(X, NS,) below), but we will not
compare X with E directly. It is just pleasant to compute things in terms of
Xy, because we know that for X, the functional F' is constant, so we know
in advance that some simplifications will occur. Also recall that we know
from [13], and with a simpler competitor, that F' is almost nondecreasing, so
whatever small improvement that we have should lead to a good differential
inequality. When X € Py, X does not look like X, but this is all right.
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The computations will be simpler when
H'(py) <H'(XoNSy), (26.25)

which will be our analogue of (16.1), because in this case we will not need
the full length trick.

So let us assume for the moment that (26.25) holds, and see how to
deduce from (26.24) the differential inequalities (24.13) and (24.18). In fact,
let us check that if we have an inequality like

H2(E N B(0,7))
< ng(E NSy) +HA(T(r)) — qr[HY(ENS,) — H' (pp)] + r?h(r), (26.26)

for some number ¢ € (0,1071), then we have

27
h(t)dt
rF/(r) > a[F(r) — 0]+ — Cs / Mo (26.27)
0
where 6 is as in (26.1), as long as such that
5
<3¢ and Cy > max(a ln(Z))’ (26.28)

where « is the almost monotonicity constant from (23.11). Of course (26.24)
is included; it corresponds to ¢ = 1072,

The proof will be similar to what we did in Proposition 17.2, but we need
to check the algebra. Otherwise, for the differentiability of F', for instance,
the justifications are the same as before.

Set v(r) = H2(ENB(0,7)) and z(r) = (2r) " *H(ENS,) as in Section 17;
then

V'(r) = HYENS,) = 2rz(r) (26.29)
as in (17.13). Next
r20(r) = v(r)
< SHUENS,) +HAT() - ar[H (B NS,) = H (p)] +r2h(r)
<rla(r) + HAT(r) — qgr[HYENS,) — HY (XoN'S,)] +r2h(r)  (26.30)
by (26.26), the definition of z(r), and (26.25).

We want to add H2(S N B(0,r)) to both terms. Let p denote the arc of
great circle that is contained in Py (the plane that contains 0 and L, goes from
£_ to £, and lies on the opposite side of 0. Thus p is the geodesic p(¢_, ;).
Notice that the positive cone over p, i.e., 2= {t;t € [0,1] and x € p} is
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the almost disjoint union of the triangle T'(r) and SN B(0,7) (a piece of the
shade); thus

HA(T(r)) + HA(S N B(0,7)) = H2(E) = g?—ll(ﬁ). (26.31)

Also, the union Xy U S is essentially disjoint, and is either the plane Py (if
6o = ) or a full cone of type Y (if 6y = 3F); hence

H?(Xo N B(0,7)) +H?(S N B(0,r)) = Opr?. (26.32)
Next, by (26.30) and (26.31)

TQF(T)
=H*(SN B(0,r)) 4+ r20(r)
<H2(S N B(0,7)) + r?a(r) + H*(T(r))
—qr[HY(ENS,) —H (XoNS,)] + r2h(r)
= fH (p) + r2x(r) — qr[HY(ENS,) — H (X0 N'S,)] + r2h(r). (26.33)

Set Ko = XgNS,; then KyU p is the intersection with S, of the full cone Py
or Y, and since the union is almost disjoint, we get that

H' (Ko) + H'(p) = 2rbo. (26.34)

Thus (26.33) becomes

r2P(r) <r%a(r) + |for® = SH!(Ko)
—qr[HY (ENS,) — H'(Ko)] + rh(r). (26.35)
We multiply this by 2r—2 and get that
2F (1) < 22(r) + 200 — r *H (Ko)
—2qr ' HYENS,) — H Y (Ko)] + 2h(r). (26.36)
Next we compute F’(r). The derivative of H2(S N B(0,r)) is H*(p), so

rF (r ) —2F(r) +r ' (r) + r ' H (D)
—2F(r) + 2x(r) + v~ *H' (p)
= 72F(7’) + 22(r) + 200 — r"H (Ko)
> 2qr Y HYENS,) — HY(Ko)] — 2h(r) (26.37)
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by (23.6), (26.29), (26.34) and (for the last line) (26.36). Next by (26.36)
and the definition of z(r),

F(T’) — 90
<ax(r) — %7"717-[1([{0) —qr 'Y HYENS,) — H Y (Ko)] + h(r)

= (; - q)rl[’Hl(E NS,) — H (Ko)] + h(r), (26.38)
hence
1 1
r [ HYENS,)—H (Ko)] > <;—q> [F(r)—@o]—(;—q) h(r). (26.39)
We plug this back in (26.37) and get that
rF'(r) = ao[F(r) — o] — boh(r), (26.40)

with ag = 2q(% — q)_1 > 3qand by =2+ 2q(% — q)_1 < 5.

First assume that F(r) — 6y > 0, so as not to get in trouble with
the positive part in (26.27). Since h(r) < 1n(2) IQT h(t )4t (26.40) is bet-
ter than (26.27) for all the values of a < ag and Cy > Wthh is a little
better than announced in (26.28).

Tn (2)

Now suppose that F(r) < 6. We may also assume that F’(r) exists, since
this is the case almost everywhere. Then, when we differentiate the mono-
tonicity formula (23.11), we get that F'(r) > —aA(r). Since the positive
part in (26.27) vanishes, this establishes (26.27) in this case, with any value
of a and as soon as Cy > a.

So we finally proved that the desired differential inequality (26.27) holds,
with @ and C5 as in (26.28), as soon as (26.25) holds. We are thus left with
the complementary case, when

H(p2) > HY (X N'S,). (26.41)

and we will need the help of a full length condition that we state soon. But
for the moment let us exclude a few cases to make our life simpler later.

We start with the case when 6y = 7, and in addition we have a hanging
curve. In this case what is left of p} is just a single geodesic p, from m; (a
point of ENS, near the middle of X NS,), to one of the two points of LNS,.,
say, the point ¢,. Plus a degenerate curve reduced to {¢_}, that counts for
nothing in the length computations. If we had taken m; = w, the midpoint
of the arc of X NS,, we would have exactly the length

1 1
H (p(Ly,wy)) = 57{1()( NS,) < §H1(X0 NS, (26.42)
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where the second part comes from the fact that X is the half plane bounded
by L for which H!'(Xo N'S,) is the largest. Now we replace w; by mq, this
hardly changes the lengths, and we still get a contradiction with (26.41). If
there are two hanging curves, p’ is reduced to three points, and (26.41) is
even more impossible.

Let us also exclude the case when 6y = 37” and we have a hanging curve.
This time (26.4) allows us to take dg/r as small as we want. Then H!(X,NS,.)
is as close as we want to 27r, while we are still missing at least one large
curve in p}, out of the four, and we get that H!(p?) is quite close to S”—T in

contradiction with (26.41).

Next we use a trick to exclude the remaining case when 6y = 7 and there
is no hanging curve, with only a small computation. In this case p; is just
composed of two geodesics p+ = p(my, £+ ), that connect the ¢4 to the point
my € ENS, that we chose below (26.8). Recall that m; is a point of the
curve L1, which is the part of E NS, that lies far from L, that we need to
choose near the point w; in the middle of (the unique arc of) X N'S,. In
that region, ENS, is a nice C'! curve that stays very near X N'S,, and by
the intermediate value theorem, we can choose m; at equal distance from
{4 and ¢_. We claim that for such an my,

M (pr) = H' (p(Cs 1)) + H (p(0—,ma)) < HN (X0 NSy); (26.43)

as soon as we prove this, we will get the desired contradiction with (26.41).
So we consider points m € S,., at equal distance from the f., and show
that f(m) = H'(p(¢4,m)) is maximal when m is the point mg of Py NS,
that lies just opposite to L (seen from 0). For this we may assume that
r = 1, and work in the 3 space that contains m and Fy. Equivalently, we
work in R?, and we study f on the great circle S; N P, where P is the
vector plane perpendicular to L. The derivative of f in the direction v is
the scalar product of v with the direction of the geodesic p(¢4,m) when it
arrives at m, and it is easy to see that this is nonnegative when v points in
the direction of mg. So f(m) is maximal when m = mg, and (26.43) follows
because f(mg) = H'(XoNS,)/2.

Return to the proof of the differential inequality (26.23). We are left with
only the case when 6y = 2 , and on each side we have Configuration 1 or 3
(also called free attachment). This is where we need a full length estimate.
We have constructed a network p* = p* (we shall often drop the index r
again), and it is of the following type. In all cases, we have selected two
points m; and mso (near the middle points w; and wsy of the two arcs of
X NS,), and two points z4, close to the ¢/, (themselves often equal to the
£4). By taking 7, and then &, very small, we can assume that these four
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distances are as small as we want compared to r. In addition, by taking NV
large we may also assume that dy/r is as small as we want, by (26.4).
When we have Configuration 1 on both sides, we take

*

p" = p(z—,m1) Up(z4,m1) U p(z—, m2) U p(z4, m2)
Up(l_,z_)Up(ly,zy). (26.44)

When we have Configuration 3 on both sides, we only take

p* = ple—ym1) U plzs,mi) U p(z—,ma) U plzs, ma), (26.45)

in fact plus the two additional single points /4 that we added half a page
above (26.10), and when we have Configurations 1_ and 3, say, we take

p* = plz—yma) U plzsmi) U plz—,ma) U pl(zs,mz) U p(f—, 2-),  (26.46)
plus the single point £, .
To each p* = p; as above, we associate the truncated cones
X'(p*)={t&; ¢ €p*and t €[0,1]} and X(p*) =T(r)UX'(p*). (26.47)

Notice that even if we had not added the single points ¢4 in the free case,
we would add the corresponding segment [0, 4] now, with 7'(r). There was
an additional constraint in the definition of the graphs X (T") associated to
our various Lipschitz curves I', which is that

Ya(T) N B(0,xr) = X'(p) N B(0, k), (26.48)

where X'(p) is the cone over the geodesic p with the same endpoints as T
See (9.14), which forces the graph of G to be contained in the plane of p
near the origin. When we take the union, we get that for ¥ = ¥g(I'™*) =

UF ZG(F)a

Yo NB(0,kr) = X'(p*) N B(0, kr) (26.49)
and then, adding T'(r),
e N B(0,kr) = X(p*) N B(0, kr). (26.50)

If we have a good competitor for X (p*), we can glue it at the tip of Yq, get
a better competitor than E° = ¢"(E), and improve our main estimate. We
can even try to do this for X’(p*) and X¢, but let us explain what we mean
by good competitors and how we operate the substitution.

We start with the simpler substitution of a sliding competitor for X (p*).
Suppose Z is a sliding competitor for X (p*) in B = B(0, kr/2). This means
that we have a deformation (x,t) — f:(x) = f(x,t), defined and continuous
on X (p*) x [0, 1], with the usual constrains and in particular f;(z) € L when
x € L and f;(z) = x when x € X (p*) \ B, and then we set Z = f1(X(p*)).
We talk about the whole one-parameter family {f;} because it comes with
the definition, but (as in the next case), giving f1 alone would be enough as
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a linear interpolation would complete well (since L is convex). Extend f; by
setting f1(x) = x for x € R™\ 2B. It is easy to see that f; is still Lipschitz.

We use this to construct a competitor E1 = f; 0 oY(E) = f1(E°). It
is easy to check that this is a sliding competitor for £, and the difference
between E° and E' comes from the replacement of ¢ N 2B = X (p*) N 2B
by Z N2B. We are only interested in the replacement if

AS =H*(X(p*)N2B) — H*(ZN2B)
=H*(X(p*)NB)-H*(ZNB) >0 (26.51)

(recall that X (p*) = Z outside of B anyway), but when this is the case, we
can replace ¢ with (! in the computations above, find out that we win AS
in the intermediate estimate (26.23), and proceed from there on.

Now let us try to see how we can try to modify a piece of X'(p*). We
try to leave T'(r) alone and modify X'(p*), but there will be a constraint,
because we do not want to move the contact region between the two. Set

={tl+;te(0,1]} and L'=L, UL". (26.52)

A good competitor for X'(p*) in the same ball B = B(0, k/2) as above is a
set Z' = f(X'(p*)), where f is a Lipschitz mapping defined on X'(p*) U L/,
such that

f(x) =2 when x € L’ and when x € X'(p*) \ B, (26.53)

and such that f(BNX'(p*)) C B. Notice that we are overkilling something
here: since we added the points /4 in the free boundary case above, we
already have that X’(p*) contains L’. But let us keep things like this, because
we sometimes tend to forget about the one or two extra points.

With this definition we give ourselves a little bit more freedom, because
even if X’ (p*) casually intersects T'(r) in an unexpected place, we can pretend
not to notice and proceed with our modification. But we need to be slightly
careful when we define our next competitor E' = ! (E).

So let us define ¢!. As before, extend f by setting f(z) = z on R™\ 2B.
We keep ¢!(z) = ¢%(z) unless all the following conditions are satisfied:

x € Ag,t(x) € [0,1],p (z) € T*\ {€4,£_}, and ¢°(x) € X'(p*)NB. (26.54)

If these conditions are satisfied, we take o' (z) = f(p (m)) Notice that when
x € Ay and t(z) € [0,1], the construction glves () = wip(x),t(z)) €
Y (T*), and if in addition ¢°(z) € 2B, then ¢°(z) € X’ p*)ﬁZB (by (26.49)).
Then f(¢°(z)) is well defined, and we still have that ¢!(z) = f(¢°(z)) even
if p(z) € {¢4,¢_} (because then ¢°(z) = w([i,t(x)) = {4 € L’ by the line
above (26.19).
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We first need to check that ¢! is Lipschitz. Since ¢° and f are Lipschitz,
we just need to check that

! () = ¢'(a")] < Cla — | (26.55)
when = € FE satisfies (26.54) and 2/ € E does not. Given the fact that
|0%(z) — o (2")| = |¢°(z) — ¥°(2')| < Cl|a’ — x| because ¢ is Lipschitz, it is
enough to show that

0! (2) = °(2)] = [ f(?°(2)) — " (2)] < Clz — 2| (26.56)
under the same conditions, and since f(z) =z on L', this will be proved as
soon as

dist(p°(x), L)) < Clz — /). (26.57)
We first check this when 2/ ¢ A,. Recall from the line above (26.22) that
t(x) = 20711 — |#| — 0); since t(x) < 1, x lies at distance at least o /2
from B(0,1 — 20). On the other hand, ¢(z) > C~! because w is Lipschitz,
p(z) € S, and yet ¢°(x) = w(p(x),t(r)) € B. Then x is also far from
0B(0,1); so (26.57) holds when 2’ ¢ A,.

If 2 € Ay and t(z') < 1, then either ¢%(z’) ¢ 2B, and (26.57) holds
because ¢V is Lipschitz and |¢°(2) —¢°(2')| = k/2, or else ! (') = f(°(2"))
by the remark below (26.54), and we can prove (26.55) directly without
(26.57).

We are left with the case when o’ € Ay and t(z’) > 1. Recall from the
discussion below (26.18) that w(p(z),1) = (1 — s)¢ € L’ (for some s), so

[f(¢°(@)) = " (@) < Cdist(¢"(2), L) < Cle°(x) — w(p(z), 1)]
= Clu(p(z),t(x)) — w(p(z),1)|
< Clt(z) — 1] < CJt(z) — t(2")] < Cla’ — x|  (26.58)
because f is Lipschitz, f(z) = z on L', and w is Lipschitz; then (26.56) holds
and ¢! is Lipschitz.

Let us check that ¢! preserves L. Let z € ENL be given; we want to show
that o!'(z) € L, and we already know this when ¢! (z) = ©°(x), so we may
assume that (26.54) holds. But the construction above yields p(x) = ¢4 when
x € ENAyN L, so (26.54) fails and we don’t need to prove anything new.

Finally, we should construct a one parameter family {¢}} that ends with
o', and this is easy; the linear interpolation o (x) = (1 —t)z + te'(z) does
the trick, because L is convex.

We may now use ¢! instead of ©° in the computations above. We compare
what we get for the intermediate estimate (26.23). Here we replaced a piece
of $¢, namely X'(p*)N B, with its image by f, namely Z’ = f(X'(p*))NB =
f(X'(p*)N B). These two pieces are disjoint from the rest of Y¢, maybe not
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from the triangular piece T'(1), but this does not matter, because on all our
estimates for H2(EY), where B! = ¢!(E) is our competitor for E, we sum
H?(X) and H2(T(1)). Thus in (26.23) we can save

AS = H*(X'(p*) N B) —H*(Z' N B). (26.59)
Of course we only use ¢! instead of ©° when AS > 0 (for the radius r under

consideration).

The next lemma says that in the present situation, when (26.41) holds,
we can always do one of the two replacements above, and save at least

AS > c[?—ll(pff) — H! (XoN S)]

LEMMA 26.1. — There is a small constant ¢ > 0 such that, for p* = p;
as above, and keeping the convention that r =1 to simplify the statement,
either there is a sliding competitor Z for X (p*) in B = B(0,k/2), such that

H*(ZNB) < H*(X(p*) N B) — c[H' (p*) — H' (X0 NS)], (26.60)
or there is a good competitor Z' for X'(p*) in B such that
H*(Z' N B) < H*(X'(p*) N B) — c[H'(p*) — H' (X0 NS)]. (26.61)

Proof. — We postpone the proof of this lemma to the next sections,
and in the mean time see why it is easy to deduce our differential in-
equality (24.18) from the lemma. We proceed as explained above, and save
AS > c¢Ap in the intermediate estimate (26.23), where

Ap=H'(p:) —H' (XoNS,) >0 (26.62)

(the inequality comes from (26.41), and otherwise we don’t do the last step
and don’t win anything). Thus instead of (26.24) we now have

H2(E N B(0,7))
< g’Hl(E NS,) — 10757 Ap — erAy + HA(T(r)) + r2h(r), (26.63)
where we decided to set
Ap = HU(ENS,) - H'(p7); (26.64)
notice that even in Configuration 1 when (26.9) failed and we tampered a
little with the curves, we always made sure to take I'*) and a fortiori p*,
shorter than ENS,, so Ag > 0; see in particular (8.16), and recall that
v C ENS,. We may assume that ¢ < 107°, so (26.63) (and the fact that
Ap and Ay, are nonnegative) yield
HAENB(0,1) < SH (ENS,) = er(Ap + Ap) + HA(T(r) +12h(r)
r

< 5Hl(E NS,) —er[HYENS,) — H' (XoNS,)]

+ H2(T(r)) 4 r2h(r). (26.65)
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This gives directly the second line of (26.30), with ¢ = ¢. Then the same
computations as below (26.30) lead to (26.40) (again with ¢ = ¢). We still
have the two cases, but as before we obtain (26.28), hence also (24.18) (we no
longer care about (24.13), because the case when 6y = 7 was settled before
the lemma).

This completes our proof of differential inequalities; hence now Proposi-
tion 24.3 is established, Theorem 24.1 follows because of the previous section,
and Proposition 24.4 and Theorem 24.2 will follow from Lemma 26.1. O

27. Basic gain estimates and full length for flat V sets

In this section we prove Lemma 26.1 in most cases. The author’s initial
plan was to use the estimates of this section also for the full length veri-
fications corresponding to Section 4 (with balls centered on L), but finally
decided that this may be confusing; instead we’ll do a special argument in
Section 37, and only import some estimates from this section and the next
one.

We are given a net p} as near (26.44)-(26.46), we assume that (26.41)
holds, and we want to find a competitor Z for the truncated cone X (p}), or
rather Z’ for the truncated cone X’ (p}), such that (26.60) (or rather (26.61))
holds. We shall fulfill this program in this section for most cases, and will be
left with a last, more complicated case, to study in the next one.

We shall try to systematically use the Z’ approach, and reserve the ap-
proach with the sliding competitor Z for a more subtle estimate that may
come up later. The Z’ approach required more work to start with, but is
more pleasant now because we can forget about T'(r) and its intersections
with the rest of the sets.

We may as well assume again that » = 1, and we set p* = p} again, and
X’ = X'(p*), the cone over p*, for simplicity. The idea of the proof, as for
the property of “full length because of angles” in [10], is to show that when
A = HY(p*) — HY(Xo N'S) is positive, then something in the geometry of
X', for instance an angle, allows us to find a better competitor.

We keep the same notation as before for Xy (a truncated cone of type
Y with a spine parallel to L) and Ky = X, N'S. Notice incidentally that
HY(XoNS) = HYKy) = 31 — H (SN S) would stay the same if X, were
replaced by another truncated cone X| of type Y, with a face that contains
LN B(0,1), but with a spine that is not parallel to L (but crosses it outside
of B(0,1). This means in particular that if p* = X NSy, we have Ay, =0
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and this is fortunate because we could not find a better competitor Z or 7/,
since in this case X (p}) is probably minimal in B(0,1).

Let us give a name to the maximal amount of area that we can save with
a competitor for X', i.e.,

H?(X' N B(0,1)) — H*(Z' N B(0,1)); 271)
o =su _ . (27.
P Z' is a good competitor for X’ in B(0,1)

Normally, if we want to relate to what we may win in Lemma 26.1, we should
consider a competitor in B(0,x/2), but here X’ is a cone, our boundary
condition (26.53) in the definition of a good competitor also concerns a
truncated line L’ through the origin, so it is easy to see that the number o
that would come from replacing B(0,1) with B(0,x/2) is simply (x/2)%0.
Thus Lemma 26.1 will follow if we can prove that

o> C AL =C 7 HH (p*) — HY(Xo NS)) (27.2)
when (26.41) holds, i.e., when Ay, > 0.

We shall try various sets Z’ and get some lower bounds for o; later on we
may proceed by contradiction, assume ¢ is small, and contradict something
in the geometry of X’.

We first study the angle of the two branches of p* that leave from some
m;, where ¢ = 1,2. Denote by e; + the unit vector tangent at m; to the
branch p(m;, z+) (or p(m;, £+ ), depending on the situation), pointing in the
direction of the other endpoint of the branch. Then set a; = |e; + +¢; —|. It
is a good measure of the complement to 7 of the angle of e; + and e; . We
claim that

o>C"ta? (27.3)

This is proved in Lemma 10.23 in [10], but let us say how it goes because
we shall use similar proofs soon. On the ball B = B(m;/2,1/10), the set
X' is just composed of two half planes, that make the same angle with each
other as e; + and e; _. Also, B is far from L', so we are not worried by the
boundary condition (26.53). We find a competitor in B that smoothes the
angle, where near the middle of B we essentially move the common boundary
of the two half planes by a small fixed vector; on the rest of B there is a
gluing piece, but altogether we save some area. Computations are done with
the help of the area formula.

When we have Configuration 3 near our point ¢/, we claim that we can
proceed the same way with the two branches of p* that leave from zy. The
point is that we do not need to worry about the boundary condition in this
case.
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If none of the two branches of p* that leave from zy contain ¢4, we can
simply use the statement: any Lipschitz mapping defined on X’ and that only
moves points in B(z4/2,1/4), say, will satisfy condition (26.53) because in
this ball X’ stays far from L’.

But even otherwise, the definition of Configuration 3 makes that we do
not need to worry about sliding conditions for X (p*) or X’ near ;. That
is, even though we may detach X’ from L’, this does not prevent the com-
petitor E' that we build with the present construction from being a sliding
competitor for E, because we had no sliding constraint near /4 by definition
of Configuration 3. That is, we should modify the definition of “good com-
petitor” to suit Configuration 3, but yet we don’t need to worry about the
estimate. Now the proof of (27.3) also yields that

c>C"lady, (27.4)

where we put the index 3 to remind the reader of Configuration 3, and where
a4 3 = |v4 1 +v4 2|, where vy ; is the unit vector that points in the direction
of p(z4,m;) at the point z.

Next we want some control when we have Configuration 1 near £4. Still
denote by vi ; the unit direction of p(z4+,m;) at z4, and also let vy o de-
note the unit direction of p(z4,f+) at z4. For some time we will forget the
subscript £ in our notation. Set

s=wvp+ vy +vg; (27.5)

typically, we want to build competitors for X’ by moving the point z4 in
the general direction of s, but at the same time we will need to be careful
because of the boundary constraint along L’.

Let us explain what is our basic competitor. We choose a small multiple v
of vy (positive or negative), and we push the points of X’ in the direction of v
(using a cut-off function). For this we repeat the construction of Lemma 10.23
in [10].

Let us choose coordinates so that z = (1,0) € R x R"~!, and decide to
work in the region Ay = [1/5,3/4] x B(0,2a), where a is a small geometric
constant, for instance a = 10~2. Nothing will happen outside of Aj.

Notice that in Ag, X’ is a truncated set of rough type Y, in the sense that
it is composed of three faces Fy, F; and F5, which are the positive cone over
the three geodesics from z to ¢ and to the m;. Only Fj is truncated in Ag
(the geodesics p(z,m;) go too far), and we shall consider the half plane F{
that contain Fp, and X7 = FjjU Fy U F,, which in Ay coincides with a cone.
This cone is not exactly of type Y because the angles may be wrong. Notice
however that these angles are not too small either, by the construction of
our nets of curves. What we will do is construct a competitor Z; for X] in
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Ap, and later on we will see that we can use the construction to restrict to
X’ and get a competitor Z’ for X’.

Our competitor for X will be Z] = f(X}), where

f(2) = 2+ ()0, (27.6)

for some appropriate bump function 1 and a small vector v collinear with
vo. There is an interest in taking the vector v parallel to vy, which is that
with this move, the restriction of f to the face F| is simpler: if v goes in
the direction of —wy, the face only gets larger (that is, we only add a piece
to F{ in the plane that contains it), and if v goes in the direction of vy, we
just remove a piece of F{. For the other faces F; and Fs, they are moved
sideways, as in [10].

Let us say a little more about ¢. We take ¢ supported in 41 = [1/4,1/2] x
B(0,a) C R x R*~! with the same coordinates as above, and as in Lem-
ma 10.23 of [10]. We shall mention the other (natural) properties of ¢ as we
need them. For the moment, let us not worry too much about the boundary
condition, and compute the area of Z] N Ag. If we choose v small enough
(depending on a and our choice of 1, that we may consider fixed), f is
a smooth diffeomorphism (see [10]), and we van use the area formula to
compute the area of the images f(F}), f(F1), and f(F3) that compose Z; in
the region Ayg.

We proceed as in [10], to which we shall refer for some computations. Let
a face, for instance Fy, be given. The plane P, that contains F5 is spanned
by e; = (1,0,0) = z (where now the third coordinate lies in R"~2), and, by
choice of a suitable basis of R", e2 = (0,1, 0). Also write v = (0, 3,v"), with
v' € R"~2 (or, with a slight twist of notation, v’ is orthogonal to e; and ez).

We need to compute the differential of f on P, which means Df(e;) =
e1+ 01y v and Df(es) = es + 0210 v. Here we did not yet write the variables
(z1,22) € P, and the notation 914 is rather clear. But in fact we take ¢
to be a function of the first variable x; € R and r = (23 + --- + 22)'/2
(i.e., radial in all the other variables), and this way 02t will be the same
function (of 21 and the other variable) for all the planes P that contain the
line through e;. Thus

Df(el) A\ Df(eg) = [61 + 81"(/} U} A [62 + 821/) ’U]
=e1 Ney + [82¢61 —611/162] A v
= [1 + 6(921” e1 Neg+ 0xvhe; A v — 01 es A v’ (277)

— 256 —



A local description of 2-dimensional almost minimal sets bounded by a curve

and the jacobian determinant of the restriction of f to Fy is

Jo(a) = [Df(ex) A D (e2)| = {[1+ B0l + (D20)? |0/ + (@10} /2
<14 8059 + Clof? (27.8)
because |v]? = % + |[v/|2. Notice also that 3 = (v,e3) is the size of the

projection of v on Ps; hence, when we apply the area formula to compare
H2(f(PyN Ag)) to H2(P> N Ap), we get that

H2(f(Fan Ag)) — H2(Fon Ag) = / [Jo(z) — 1] dH?(z)

F>NA,

</“ (8021 () + Clo]?] dH2(x)

F>NA,

< <v,ez>/ Do) + Clv|*H*(Fy N Ay)
F>NA;

< (v, e2>/ Do) + Cv|?. (27.9)
F>NA;

where we use the fact that f(Py) N Ay = f(P2NAp), and also that f(z) =z
on R™ \ Al.

What we computed for F5 is also valid for Fy and F{, except that we
need to replace the unit vector ey by a unit vector of P; or Py that is
perpendicular to e; = z. As was explained before, the derivative dz¢ in that
direction is the same, because we took 1) radial in the directions orthogonal to
e1. Notice also that by rotation invariance, we can use the same coordinates
(say, (z1,z2) € Fy) to write the three integral. We get that

H?(f(Z1 N Ag)) — H* (X1 N Ag)

= H(f(Fin Ag)) — H*(Fin Ag)
=0

2

< C‘U|2H2(F2 n Al) + <Z<U,€Z‘>> /FOA 821# (2710)

=0

The integral fFQOAl 091 = 1is a constant, which is even computed in (10.33)
of [10] to be equal to —1/5 (what matters is that it is strictly negative). Since
Z?:o e; = s by (27.5), we see that

H2(f(Z1 N Ag)) —HA (XN Ag) < —M+C|v|2’. (27.11)

We take
v = (10C) " (v, 8)vg (27.12)
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with the same constant C; then @ = (50C) Y (wo, s)2, while Clv|? =
1072C~Y(vo, 5)? is twice smaller. Thus

H2A(f(Z1 N Ag)) — HA(X] N Ag) < —1072CH{wy, 5)2. (27.13)

This was our version of Lemma 10.23 of [10]. Notice that the estimate is
not so good when s is almost orthogonal to vy, but let us keep the option
to use this open. Now we need to worry about the set X’ and the boundary
condition.

Let us review how the mapping f works; see Figure 27.1 already. On the
two faces F and F5, the mapping pushes points in the direction of v, and
the only case when the boundary condition (26.53) may be violated is if F}
or F5 touches L’. Due to the fact that pg makes a large angle with p; and
p2, this can only happen if pg is reduced to one point and p; and py start
from ¢4. Let us assume that this does not happen for the moment.

Then on Fy, the mapping f slides points in the direction of v, which is
parallel to the plane Py that contains Fy. Let us start the discussion with
the case when v is a negative multiple of vy. The effect of f is to extend
the faces Fy and Fjj, by adding to them a piece that lies further than the
boundary [0, z1] (where zy is the common point of the three p;). With the
way we wrote f, we probably moved points of F{ that lie on [0,¢4+] C L’ and
beyond, and (26.53) forbids us to do this. But this is easy to fix: we replace f
on F{ by a mapping that coincides with f on [0, z1] (so that we can still glue
with f(mum,), is the identity on Fy\ Fp (and in particular on [0, £+]), and just
moves the points faster in AgNFy if needed. This shows that Z' = F{UF,UF;
is a good competitor for X', and since Z;\ 2’ = X{\ X' = F}\ Fy, we deduce
from (27.13) that

o> HAX'NAy) —H*(f(Z' N Ay))
=HA(X] N Ag) —H2(f(Z] N Ap)) = 1072C Huy, s)?. (27.14)

This was our estimate when v is a negative multiple of vy, which by (27.12)
means that (vg,s) < 0.

'Fl\zi Ls

8 ANE,

0

Figure 27.1. A picture in P,
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When (vg,s) > 0, the mapping f tends to move points of F{ in the
direction of vy, i.e., make F{ smaller. We can still argue as before, but under
the condition that the points of the common boundary [0,zy] of Fy and
F{ do not go all the way to [0, ¢4]. This means that when we choose v, we
are safe if |v] < 1073|24 — £4| = 1073|z — £|, for instance. We may as well
assume that the constant C' in (27.11) is larger than 100, and this way, if
0 < (v, s) < |z — £, we can keep the same choice of v as in (27.12), and get
the same estimate as in (27.14). Altogether,

o> C vy, s)? when (vg,s) < |z —£]. (27.15)

When (vg, s) > |z — {|, we take the smaller v = (10C)~!|z — £|vg, and the
same computation as for (27.13) and (27.14) yields the less good result

o> Oz — £ (vy,s) when (vg,s) > |z— 4. (27.16)

These will be our main estimates, but there are some cases when (v, $)
is really too small for us, or (almost equivalently) the author did not manage
to prove easily that it is large, and we want to try a different competitor.
We shall try this when v; and v make a small angle, and more precisely
|v1+v2| > 1. We could of course try to control the scalar product above when
this happens, but the author did not manage to do this, and instead we shall
try a slightly different competitor, where we move the points of the faces Fy
and Fy above in the direction of v; + v (instead of —vy above). We need to
be more specific, because we want to use the same computations as above,
but not the same mapping. Suppose we keep F; and Fj as they are, but
complete them with a third face F3, starting from their common boundary
[0, 2], and going in the opposite direction v = —(v1 +v2)/|v1 + v2|. Then use
the same algorithm as before, where f is given by (27.6), with for v a positive
multiple of v +vo. We want to do the same computations as above, with vg
replaced by v(, and hence s replaced by s = v +v1+ve = —v{(|vy +v2|—1).
In particular, we take v = (10C) 1 (v}, s')vf = —(10C) " (Jvg + v2| — 1)v}) as
in (27.12).

This gives a competitor Z for F. 1UFy U F3, for which the estimate leading
to (27.13) are true. We remove the whole face F3, both from Fy U F> U Fj
and from Z, and we get a new set Z” such that

H*(2" N Ag)) = H((FLU Fy) N Ag) < —1072C ug, 8')?
=—10"2C" (jo1 + v2| — )%, (27.17)
where we added the positive part to remember that we do this only when
|vy 4+ vo| > 1. Now in Ap, Z" is composed of slightly distorted faces F| =
f(F1) and F} = f(F3), plus a vaguely triangular piece of f(F3), which is

bounded by a piece of the common boundary f([0, z]) of F{ and Fj on one
side, and the corresponding piece of [0, z] on the other side. We add to Z”
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(and in Ay only; since we did not change anything outside of Ag) the old
face Fy (bounded by [0, 2], [0, 4], and the arc pg) and get a set Z’, which is
a competitor for X’ (which in Ay coincides with the cone over pg U p1 U p2).
It follows from (27.17) that

H2(Z' N Ag)) — H* (X' N Ap) < —1072C™ (o1 + va| — 1)3. (27.18)

Now we claim that Z’ is a good competitor for X’. We do not want to use
the same mapping [ as for proving the estimates, but instead observe that
7' = f(X'), for some mapping f that pinches partially the two faces F; and
F, (in the direction orthogonal to the plane of F3), is Lipschitz, but will not
be written explicitly here. We need to make sure that f can be extended
by setting f(z) = x on L', because of our boundary constraint, and this
follows from the angle condition (10.2), which says that p; and p; make
large angles with py at the point 2, so that in the present situation where
po is a nontrivial arc, we only move points that are far from L’. Thus Z’ is
a good competitor and (27.18) can be used to prove that

o> C v + v —1)3. (27.19)

In fact, we claim that the present estimate also works when pg is reduced to
{¢}. In this case, the two vectors vy and vy (the direction of p; and py when
they leave z = ¢) are still well defined, we can define Z’ as above, and the
fact that it is a good competitor for X’ comes from the fact that the pinching
mapping f can be taken to be the identity on [0, ¢]. The claim follows.

There is a last estimate on ¢ that we may use, essentially when all the
other ones fail, which says that

o> C 7z —1]s|% (27.20)

This estimate seems less good, because the right-hand side is of order 3.
Its proof also relies on (the proof of) Lemma 10.23 of [10]. We use the fact
that we can find a tube of width roughly equal to |z — ¢|, centered on the
segment [2/3,22/3], that does not meet L, and where X’ coincides with a
cone which is roughly of type Y, except that at least one of its angles is
off by roughly |s|. We can apply the proof of Lemma 10.23 in [10] to get
an estimate. With the same value of s, and in the unit ball, we would save
C~1|s|%; in a ball of size roughly |z — ¢|, and by homogeneity, it would be
C~ 1z — ¢|%|s|%. But here we are in a thin tube of roughly unit length, and
the proof of [10] allows us to save C 1|z —¢||s|?. This gives the quite general,
but not so good estimate (27.20).

We shall now start distinguishing between cases. To make our life easier
(at least, in the cases that will be settled in this section), let us decide that
the two points m; (that were selected on the curves €;, near the w;) are
chosen at equal distance from ¢, and ¢_. This is easy to arrange, as in the
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case of a half plane, by the intermediate value theorem and because each €;
is nicely transverse to the plane equidistant from the /.

Case 1. — We start with the case when we have Configuration 1 near
each point of L NS (recall that S = dB(0, 1)), and in addition X is flat, by
which we mean that either X € Py or else X € V and for some § > 0,

the two half planes that compose X

make an angle larger than 2T + 4. (27.21)

Let us explain why this case is simpler. Assume first that X € V and
(27.21) holds; if € is small enough, then |z — ¢| also is as small as we want,
then the two directions v; and vy are very close to the directions of the two
half planes of (27.21) (understand, the unit vectors perpendicular to the
direction of L that are tangent to these planes and go away from L). Then
lvg + 2| < 1—46/3, say, by (27.21), and

<S,’Uo> = <’UO + v + UQ,U0> =1+ <Ul + Va2, 'Uo> 2 5/3 (2722)

When X € Py, the situation is even better: the two geodesics of X that start
from ¢/, go in opposite directions, and since z = z4 lies close to ¢/ and w;
lies close to m;, we get that |v; + ve| < 1/2 and (27.22) holds as well.

Most probably, |z — ¢| < (s,vp), and then (27.16) says that
o> 0z — (v, s) = C>0) Yz — 1. (27.23)

But even if |z — ¢| > (s,vg), we may apply (27.15) instead and get that
o > C~162, which is better than (27.23). This estimate holds near both
points /4 ; we use this to majorize

2
M (p*) = distg (24, £4) + dists (2, £-) + Y _(dists(zp,m;) + dists(z—,m;))

=1
2

< C(6)o + > (dists(Cy, m;) + dists(C—,m,)), (27.24)
=1

where the first part is just the definition of p* as a concatenation of geodesics.

LEMMA 27.1. — Denote by H the set of points that lies at equal distance
from £y and £_. For all choices of mi,ms € SN H,
2
D (dists (€4, my) + dists (£, m;)) < H'(XoNS). (27.25)
i=1

We shall prove the lemma soon, but let us see how it implies Lemma 26.1
in the present case. We deduce from (27.24) and (27.25) that H!(p*) <
C(0)o+H' (XoNS) and, if Ay, = H'(p*)—H'(XoNS) (the same as in (26.62))
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is positive, this just means that o > C(6)"1Ar. We use the definition (27.1)
of o and get the conclusion of Lemma 26.1.

So let us prove Lemma 27.1, and our Case 1 will follow. Set
Dy = dists(0+, my) + dists(£+, mo); (27.26)
then (27.25) will follow at once if we prove that for each sign,
D. < %Hl(XO ns). (27.27)
Let us prove this. Fix a sign +, and drop it from the notation. That is, we
set f =¢L and D = D_.

We need to compute a few things. We start with the relation between the
geodesic and Euclidean distances on the sphere. We claim that for z,y € S,

2 — 2 cos(dists(z,9)) = |z — y|? (27.28)

For this computation we may assume that y, 2 € R?, and even that z = (1,0)
and y = (cosf,sin@) for some 6 € [0,7]; in this case dists(z,y) = 6 and
|z —y|? = (1 — cos0)? +sin? § = 2(1 — cos f); the claim follows. Notice also
that dists(z,y) € [0,7] and |z — y|> € [0,4], so 1 — |z — y[* € [-1,1],
and (27.28) is the same as

1
distg(x, y) = arccos (1 - §|x - y|2) . (27.29)

Next we compute numbers like dists(¢, m), where £ € L NS and m lies in
the median hyperplane H. Without loss of generality, we may assume that
there are three orthogonal unit vectors ey, es, eg such that

L= {—doeg +te;te R}
and m =sinaesz — cos ey for some « € [0,7]. (27.30)

Thus « > 0 small corresponds to a point m just above the shade of L (or if
you prefer —es), @ = 7 corresponds to an m just opposite to the shade; we
decided that we did not need the case when « € (7,27) by symmetry. We

may also assume that
{ = —dges +1/1 — d(2)€1 (2731)

(the other choice £ = —dges — Mel would be equivalent), and then
lm —£)? = (1 —d2) + (do — cosa)? +sin® a = 2 — 2dy cos o (27.32)
thus by (27.28) or (27.29),
dists (¢, m) = arccos(dg cos ). (27.33)
Since dp is small, we see that distg(¢,m) is close to m/2. Notice that

dists(¢, m) is a nondecreasing function of « € [0, 7].
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Let us return to the two points m; € SN H, which we write m; =
sin ez ; — cos aieg as in (27.30), with possibly different vectors ez = es; if
we work in R™, n > 3. We want to estimate

D = distg(¢, mq) + dists (£, ma)

= arccos(do cos al) + arccos (do cos ag). (27.34)

This is again a nondecreasing function of a;; and as. We also need to evaluate
the angles a; and a3 in terms of the geometry of X. Start when X € V, and
denote by Angle(X) the angle that the two half planes that compose X make
along L; thus Angle(X) > 2% +§ by (27.8). Call Angle,, (m1, ms) the angle of
my and mag, seen from xg = —dpez (the midpoint of [¢4,£_]). Since both m;
lie within 2¢ from X (by (26.2)), we get that | Angle, (1m1,m2)—Angle(X)| <
5¢ hence (by (27.21) and if € is small enough, depending on ¢)

2 )
Angle,, (m1,my) > ?” +3- (27.35)
When X € Py, Angle, (mi,ms) is almost 7, because x¢ is not so far from
0, and the two points w; almost lie in opposite directions. In both cases,
(27.35) holds, and so

(my — xo, my — o)

b
T (27.36)

N =

= cos(Angle, (m1,ms)) < —
|m17x0|\m27x0| ( g a:o( ) ))

Notice that

(m1 — o, m2 — T0)
= <SiIl Q1€31 — COS(x1€2 + do@g, sin Q2€3 9 — COS (€2 + d062>
= sin aj sin as(es,1, €3,2) + cos ay cos ag — dp(cos ag + cos az) + d?
> —sinag sin ag + cos ay cos ag — 3dg = cos(ay + as) — 3dy  (27.37)
because sina; > 0. Let us take N > 100/§ in (26.4), so that dy < N~! <

6/100. Notice that ||m; — zo| — 1| < do < 6/100 for i = 1,2, so by (27.37)
and (27.36)

cos(o + o) < (m1 — g, ma — xo) + 3do

1 6 35 1 6
) = - - K —r -, (27
[ 2 4} i = @ollms = 2ol + 755 < =5 = 1g5-  (27:38)

hence (since 0 < a1 + ag < 27)

—+—<a1+a2<———. (2739)
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Return to D in (27.26) and (27.34). A Taylor expansion of order 2 near
0 yields arccos(dg cos ;) = & — dg cos a; + Oy, with |O;| < d/2, then

D =m —dp(cosay + cosas) + O1 + Oy < ™ — do(cosay + cosas) + dg
=7 — 2dg(cos((a + az)/2) cos((a; — ag)/2) + d2. (27.40)
If both cosines have the same sign, this yields D < 7 + d? and we’ll be
happier than in the next case. Otherwise, since both 0 < «a; < 7 and hence

cos((a1 —a2)/2) = 0, we get that cos((a1 +asg)/2) < 0, hence (a1 +az)/2 >
/2 and by (27.39)

7r<a1+a2 27 1

i = - —, 27.41
2 2 3 400 (27.41)
2m 0 1 0
> > ) s —, .
0 > cos((a1 + a2)/2) > cos( 3 4()0) 5 + 500 (27.42)

and

D < 7+ 2dg| cos((a + o) /2)| + d3

Crtdy— B0 L2 cnidy— D0 (9743

400

if N is large enough. We also get this in the other case when the cosines
have the same sign. We need to compare this with the right-hand side
of (27.27), so we compute H'(Xo NS). Recall that X, is composed of two
half great circles, that end at two antipodal points y4, plus the two short
arcs of geodesics p(f+,y+). The two half circles account for 27, and with
the same choice of basis as for (27.30), y+ = £e; (because the spine of X
is parallel to L). Recall from (27.31) that {1 = —dges £ /1 — d3eq, hence
distg (¢4, y+) = arcsindy > dy, and H'(Xo N'S) > 27 + 2dy. This completes
our proof of (27.27), Lemma 27.1 follows, and we get the desired estimate
for Lemma 26.1 in our Case 1. (|

Case 2. — Next we assume that we have Configuration 3 near the two
points of L N'S, regardless of whether (27.21) holds or not. In this case p*
is merely composed of four curves from the two m; to the two zy. The
complement to 7 of the angles at the w; are less than C/o, by (27.3), and
the angles at the z1 are also less than C'v/o, by (27.4). Notice that we may
assume that o is small, because otherwise the conclusion of Lemma 26.1 is
obvious. Then the four vertices of p* lie at distance at most C'/o from some
great circle (we can follow the curve p* from z_ back to z_, without turning
away from the geodesic more than C'\/o), and by standard computations
(that can be found in [10], for instance), H!(p*) < 27 + Co. This is better
than what we need for Lemma 26.1, because H!(Xo NS) > 2. O
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Case 3. — Suppose now that we have Configuration 1 near /_ and
Configuration 3 near ;. We still have that o3 , < C\/o, by (27.4), and
a; < Cy/o, by (27.3). With the same reasoning as above, all the vertices m;
and zy lie within C'\/o of a great circle, and then

2

> (dists (m;, ;) + distg(my, 2_)) < 27 + Co. (27.44)

i=1
But this time we also have to account for the additional small piece p(¢_, z_).
Since a%y + < Cy/o and we can assume that o is very small (because otherwise
the thesis is trivial), the two half planes that compose X when X € V make
an angle Angle(X) > 97/10; when X € Py, they are even in front of each
other. The sum s = vy + v; + vz of (27.5) (and for the point z_) is then
quite close to vy (because v1 + vy is small), so (vg, s) > 1/2, which is better
than (27.22). As for (27.23), we also get that ¢ > C~!|z_ — ¢_|, which
gives a good enough estimate for H!(p(¢_,2_)) = dists(¢_, 2_). We add this
to (27.44) and get that H'p*) < 27 + Co < HY(XoN'S) + Co, as needed.

Recall that we excluded the case of Configuration 2 earlier. At this stage,
we have only one case left, which is when we have Configuration 1 near both
{4, and in addition X ¢ Py and (27.21) fails, i.e., X € V(L) and

27

3 < Angle(X) < 2% + 9, (27.45)

where the first part comes from our assumption that X € V(L). Recall also
that for this remaining case we are allowed to take § > 0 as small as we
want. O

28. Full length for sharp V sets

In this section we study the last left case for Lemma 26.1, when we
have Configuration 1 near both ¢4, and in addition X satisfies (27.45). We
talk about sharp V sets because we could even argue that in this remaining
situation, since we have good approximation by a set X € V such that (27.45)
holds, and in addition we can take § small, we are left with the case where we
have a reasonably good approximation by a set X € V with dihedral angle
exactly 27 /3. We shall not try proceed like this, because it would not really
help simplify the proof, and also we would at least need to be quite careful
with the quantifiers. Our last case is somewhat more complicated than the
other ones, which is why we left it for the end.

We shall keep some of the notation of the previous cases, concerning the
two points z = z4 near the vertices £ = /4, and two intermediate points m;
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and meo, except that we may not choose the two m; exactly as we did in the
previous section (that is, at equal distance from ¢; and ¢_). We shall first
try to estimate the length
2
Ly =) dists(z1,m;) + distg(z_,m,), (28.1)
i=1
but for this some additional notation will be useful. We shall think of z = z_
as the lowest point of S, and will project various things along the unit vector

eo = (v1(2) + v2(2))/[v1(2) + v2(2)]; (28.2)

where for i = 1,2, v;(2) is the direction of p(z,m;) at the point z. Let us
also write

Angle, (v1(2),v2(2)) = Q?W + 2a, (28.3)

where we know that « is small because z = z_ lies close to ¢_, the m; lie
close to X, and we have (27.45), but it will be useful later to have a more
precise estimate.

When we continue the two geodesics p(z,m;) past the points m;, they
eventually meet back at the point —z, with the same angle 2{ +«. But at the
point m;, we turned a little and used the geodesic p(m;, z;) instead. Notice
however that we turned by at most a; < C+/o, by (27.3), and because of
this the new meeting point z; (we know it exists!) does not move by more
than C'/o. That is,

|24 + 2| < Cy/o. (28.4)
Set f;(w) = dists(w, m;); notice that f;(z) + fi(—z) = m because the union
of the two corresponding geodesics is a half great circle. We want to evaluate
f(z4) by estimating the derivative of f; near —z. It is easy to see that at a
given point z € S, x # w;, the derivative of f; at x in the direction e is

Dfi(z)(e) = Ocfi(x) = —(e,vi(x)), (28.5)
where again v;(x) is the direction of p(x, w;) at x. Moreover, if x is any point
of p(—z,z4), |vi(x)—v;(—2)| € 10|2142| < Cy/o. In addition, v;(—2) = v;(2)
because these are the endpoint directions of the half circle from z to —z
through w;, so |v;(x) — v;(2)] < Cy/o. Now write v(z, zy) the direction of
p(—z,z4) at x; then

fed i) = [ pp@eEa == [ o))

p(—z,24)

The length of the geodesic is at most C'v/o, by (28.4). When we replace
v;(z) by v;(z), we make an error of at most C'v/o. When we replace v(z, z4)
by (z4+ + 2)/|#+ + 2|, we also make an error of at most C'v/o (the geodesic
does not turn much). We integrate the error and get at most C'o. Replacing
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the length of p(—z, z4) with |z + 2| also generates an error of at most Co;
altogether

[fi(z) = fil=2) + (4 + 2,0:(2))]| < Cor (28.6)
We sum over i, observe that if z; were equal to —z we would have L1 = 27,
and get that

|Liz =21 + (24 + 2,01(2) + v2(2))|
= |filz1) + falz4) = fi(=2) = fa(=2) = 27 + (24 + 2,01 (2) + v2(2)) ]
< Co. (28.7)
Observe that by (28.2) and (28.3)
v1(2) + v2(2) — eg = eglv1(2) + v2(2)| — eo
= 2eg COS (g + a) —ep = —aeg, (28.8)
where a = 2(1 — cos(% + a)) is of the order of v/2a, but the precise value
will not be so important. Simply notice that by (28.7) and then (28.4),
Ly — 27+ {24 + 2, €e9)
= Lo — 27+ (24 + 2,v1(2) + v2(2)) 4+ (24 + 2z,e0 — v1(2) — v2(2))
< Co+alzy + z,e0) < Co+ Can/o. (28.9)

Call Ly = distg(f+, z+) the lengths of our two remaining short arcs py =
p(f+, z+); then the decomposition of p* yields

H'(p*) = Lia+ L + Ly. (28.10)
Observe also that
HY (XoNS) =31 —distg(¢_,£,) = 27 + distg (£, —£1), (28.11)

because when we add p(¢_,£,) = SNS to Xg NS, we get a union of three
half great circles. Recall that we want to show that Ap < Co, as in (27.2),
where by (28.9)

Ap=HY(p*) —H (XoNS)=Lip+L_+ L, — 21 —distg(¢_, —£,)
L_+Ly— (21 +2ze) —dists({_, 1)+ Co + alzy + z,ep)

<
< Lo+ Ly —{z4y +2ze) —dists({—,—ly) + Co+ Cary/o. (28.12)

The estimate that we want to do now looks like the following. Imagine
that there is no curvature in the sphere and that the three geodesics p_ =
p(l_,z_), p(z2—,—24) and p(—z4,—Ly) = —p4 are all contained in a line
parallel to eg. Then distg(/—,—¢;) = L_ — (z + z4,e9) + L4, where the
middle term may be positive or negative, but in all cases we get that Ay <
Co + Cay/o. We would still need a good estimate on «, but would get close
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to the desired goal. In the mean time we will try to deal with the curvature
of S and the alignment of our three geodesics.

Let po denote the geodesic that contains z and points in the direction
+ep at z; we want to project all sort of points on pg, and then try to follow
the sketchy argument above. Denote by ¢’ the point of pg that lie closest to
f_; we earlier used this notation for a point like /_ when X € Py, but there
is no relation. We want to locate £/ more precisely. Denote by 8 the angle
of vo(z) (the direction of p(z,¢_)) with —eq. Simple estimates (that we do
not do because we will do more precise computations below) show that since
L_ is quite small,

|0 —¢_| <2BL_ and |distg(¢',2)— L_| < CB*L_. (28.13)
In addition, 8 < C|s(z)|, where s(z) = vo(z) + v1(2) + va2(z), since the

projection of s(z) on the line orthogonal to e is the same as for vg(z), so its
length is |sin 8|. Hence by (27.20)

B2L_ <2z —0_|3? < C|s(2)*|z — ¢_| < Co. (28.14)

We should also mention that by (10.2), the angle of vy(z) with v1(z) or
va(z) is at least 7/2, and these two vectors make an angle roughly equal to
27 /3 with each other; this forces vy and ey to make an angle larger than
57/6 — 1072, say. At any rate, seen from z, both /_ and ¢’ lie in a direction
almost opposite to eg. Let us restate this and the second part of (28.13) in
terms of the coordinates h(¢_) and h(z) of the points ¢ and z, along po,
and which we orient in the direction of eg; we find that

h(z) =h(l")+L_+&, with |&]|<Co. (28.15)

Next consider the closest point projection 2z’ of —z4 on py; its position on

po is —{z+ z4,ep) from z in the direction of ey, modulo an error of at most
Co (because |z + 21| < Cy/o, so the geodesic does not have much time to

turn). In terms of coordinates h(z’) and h(z) along pg, still oriented in the
direction of eg, we find that

h(z') = h(z) — (z + 24, €0) + E2, with |&] < Co. (28.16)

Finally denote by 4 the angle of —vg(z4) with
e = (v1(z4) +v2(24))/|v1(24) +v2(24)l;
the proof of (28.14) also implies that
BILy < Cls(z4)|24 — €4+ < Co. (28.17)
Now [ui(z4) — v(=2wi)| = |o(z4,w5) — v(—2wi)| < Cles + 2| < O
by (28.4), and v(—z,w;) = v(z,w;) (we look at the other tip of the half
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circle), so |ey — eg] < Cy/o and
|’U()(Z+) + €0| < CﬁJr + C\/(; (2818)

Now wvg(z4) is the direction of —p when it leaves from —zy. Let us compute
some more. A parameterization of —py is given by

z(t) = —z4 cost + vg(z4 ) sint, te[0,L] (28.19)

(because a parameterization of a great circle can always be written as z(t) =
v1 cos t + vy sin t, for two orthogonal unit vectors v; and ve, and then we just
need to identify).

Let Py denote the 2-plane that contains pg and let m be the orthogonal
projection on Py. Define w = —z, — 2/, where 2’ is the projection of —z; on
po; we know that |w| < |—z4 —z| < C/o because z € pg and by (28.4). Also,
w is orthogonal to e}, the direction of py at z’, and its orthogonal projection
on the direction of 2’ is of norm at most Co. In fact, when a and b are two
unit vectors (such as —z4 and 2’), then the projection of w = b — a on the
line through a (or b, this is the same) has norm at most |w|?/2, because
1=b)?> = [la+wl|]® = 1 + 2{a, w) + ||w||?. Altogether |r(w)| < Co.

Similarly write vo(z4) = e + &; then || < CB4+ + C/o by (28.18) and
because |ej — eg] < distg(z,2’) < Cy/o. Next the projection of £ on the
direction of vo(z4) has a norm at most C3% + Co by the same argument as
above (take a = vg(z4) and b = e})). In addition,

(€, 24| = 1{et, 24| = (e, 2+ + /)| = {ep, w)| < Clw|* < Co

because vg(z4) is orthogonal to z; and 2’ is orthogonal to ef), and then, as
before, because 2’ is the “orthogonal” projection of z on pg. If ' denotes
the orthogonal projection on the plane that contains —z; and vg(z4.), we see
that |7'(£)| < CB2 + Co, but since |7 — || < Cy/o and |¢| < CB1 + C/o,
we get that

|7(€)] < CB2 + Co + CByvo < CB2 + Co. (28.20)

Set ¢ = 2/ cos Ly + efysin L ; this is the point of pg that lies at distance L4
from 2’ (in the direction of e); in terms of coordinates along pg, this means

h(f) = h(z') + L. (28.21)
Notice that since —¢; = z(L.) (the final point of —p, ), (28.19) yields
(+ 0y =2 cosLy +ehsinLy —2(Ly)
= (2'+24)cos Ly + (e — vo(z4))sin Ly
= —wcos Ly —&sin Ly (28.22)
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which implies that
[0+ 04| < Jw] + Ly |¢] < CVo + CLy By
and |7({+(,)| < Co + CL. B}
Let ¢/, denote the projection of —f4 on pg; then by (28.23)
16— 0] <2m((+04)] < Co + CLy 32

(28.23)

and
[l + 4] < CVo +CLL B,
The first estimate yields
|h(¢') — h(¢ )\ 210, fﬁ\ Co+ CL. B3 (28.24)
and when we combine with (28.15), (28.16), and (28.21), we get that

dists(¢"_, 0, ) = |h(¢,) —h({_)| = L_ + Ly — (z+ z4,e0) + €3, (28.25)
with |€3] < Co + CLy 2 < Co by (28.17).

We now add the orthogonal complement, which may remove some dis-
tance because ¢_ and —¢; may turn out to be on the same side of pg, and
thus be closer to each other than their projections are. But the estimates
above yield

=_ -l |+ |-ty -V |<CVo+CBL_ +CBLy (28.26)

and we claim that when a,b € S lie within d of a geodesic py, d is small
enough, and @ and B denote their respective projections on py, then
dists(a, b) > dists(a, B) — Cd?. Indeed, let 7 be the projection on the plane
that contains pg, observe that |7 (a) —a| < Cd? and similarly for b, and that
la —b] > |n(a) — 7(b)| = |a — B| — Cd?, from which we deduce the result
because distg(a,b) = 2arcsin(ja — b|/2).

From the claim, (28.26), (28.25), and the fact that d?> < Co we deduce
that

diStS(gf, —£+) 2 Lf + L+ — <Z —+ 24 €0> — CO'. (2827)
We combine this with (28.12) and get that
Ap < alzq + z,60) + Co < Co + Can/o. (28.28)

Recall that Lemma 26.1, our goal for this section, will follow as soon as we
prove that Ay, < Co; see near (27.2). So we may assume that |a] > C1/0,
with C quite large. Recall from (28.8) that

v1(z=) +v2(z-) = 2¢q cos(éi + a) =: (1 — a)eg. (28.29)

When o < 0, & is negative too, and || > C~!|al. In this case |vi(z_) +
vo(z_)| — 1 = |al, and (27.19) implies that o > C~1|a|?> > C~Yal?. We
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choose C; above large enough and exclude this case. So we assume that
a > 0, and now (28.29) implies that |v1(2_) + v2(2_)| <1 —a<1-Cla.
Recall that s(z_) = vo(z_) + v1(2-) + v2(z_); then
(s(2_),v0(22)) = 1+ (v1(2_) +va(2_),v0(2_)) = C L. (28.30)
If we could apply (27.15), we would get that o < C(s(z_),v0(2-))? < Co,
and we excluded this case. Then we can apply (27.16) and we get that
o> C el — 0 |(s(z),v0(z)) = C taL_. (28.31)

Let us also try the same estimate near ¢, . Define oy by
2T
Angle(vr(24), v2(24)) = - + 20y

Recall that |v;(z4) — vi(z-)] = |vi(z4) —vi(—2-)|] < Clz4 + 2| < Cy/o
by (28.4), so ar > a — Cy/o > «/2 if Cy is large enough, and the proof
of (28.31) also yields

oc>Cta L. (28.32)
We complete this with a lower bound on L_ + L. If H'(p*) < 27, then
Ar < 0 simply because H'(XoN'S) > 27, so we may assume that Lis +
L_+ Ly =HYp*) = 27 (by (28.10)). We combine with (28.9) and get that

L_+Ly>221—Lig > (zy + 2,e0) — Co — alz4 + 2, e0), (28.33)
hence, since || < 1/2, (24 +2,e0) < 2(L_ + Ly )+2Co. We may now return
to (28.28), which yields

Ap < alzy +2z,e0) + Co < 2a(L_ +Ly)+Co
<CalLo+Li)+Co<Co (28.34)
by (28.33), (28.31), and (28.32).

This finally completes our proof of (27.2) and Lemma 26.1 in our last
case. As was mentioned at the end of Section 26, this also completes our
proof of Proposition 24.3, Theorem 24.1 (which in fact were finished before),
Proposition 24.4 and Theorem 24.2.

29. More cases where the free attachment is allowed

We interrupt the study of E in balls centered on E \ L with some com-
ments on the free attachment. In the construction of competitors, both in
Sections 14-16 (with balls centered on L) and Sections 26-28 (with balls
centered on E'\ L), there are situations where we can use what we call the
“free attachment”, near one or two of the points £+ of S, N L. Recall that the
main part of the construction of curves in £ NS, happens in two small disks
D4 near the ¢4, and we used the free attachment in the following situations.
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An extreme case of free attachment is what we called a hanging curve,
when E'N D+ has a point that is not in the same connected component
E N Dy as any other point of {¢1} U ENJD,. We like this situation a lot,
because we can contract the hanging curve, use this to find a competitor
which is much better than the curve, and at the end of the estimate show
that r0'(r) > C~! or 7F'(r) > C~!. In the phase where we try to deduce
geometric properties from the small size of f, as in Section 19 and the up-
coming Section 30, we can forget about this case, because this never happens
for the good radii r that we select, by (19.30) and (19.27) in the centered
case, and similar upcoming estimates in the non centered case.

Next assume that N dD4 has exactly two points; then we talk about
free attachment when these two points lie in the same connected component
of EN D4 and in addition /4 does not lie in the same connected component
of EN Dy as these two points (or just {1 € L\ E). Except for hanging
curves, this is the only case of free attachment that we have in the context
of Sections 26-28 (and we called this Configuration 3).

Another case, that shows up in Sections 14-16, is when ENJD has three
points, that all lie in the same component of £ N D4, but this component
does not contain ¢ (either because ¢+ ¢ E or because it lies in some other
component); we called this Configuration 3—. And the last case is when two
of the three points of ENJD4 lie in a same component of ENJDy but this
component does not contain £ ; we call this Configuration 2 + 1 (when ¢4
is connected to the third point of EN9OD4).

When we have a free attachment near 1, we are happier because when
we construct competitors, we don’t need to worry about the sliding condition
near ¢y. Typically, we select a point zo. € E N Dy, the net v of curves of
E NS, that we construct consists near D4 in two curves 7; that start from
z4, plus maybe (in Configuration 2 4+ 1) a curve that leaves from ¢ and
does not get near the «;. The same thing happens with the Lipschitz curves
I'; that we construct starting from ;. It is often very convenient to have
a free attachment, because for instance if the two curves I'; that end at
z+ make an angle at zy that is far from 7, we can modify our first main
competitor (the set F'! built in Section 15 or the set F? = ¢°(E) that shows
up above (26.23)), using the same method as when we use the full length
property. That is, we use the fact that the tip of the current competitor
coincides with the cone over the union p* = p} of the geodesics with the
same endpoints as the y; and the I';, to save some area near the tip if the
angle o+ of the two geodesics p; that end at zy if far from flat. With this
manipulation, we save about C~'r?(m — a4 )? in area. If 7 — ax > 1072,
say, this leads to a very good estimate like the one that we get in (26.30)
or (26.33), which itself leads to a good lower bound on 6'(r) or F'(r) and
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later on, when we try to get a geometric control, excludes r of the list of
good radii, again by (19.27). This is typically what happens in the situation
of Theorem 24.2 and Proposition 24.4. In principe it means that when FE is
well approximated by a non-flat set of type V, the free attachment situation
will not occur.

In the non centered case of Sections 26-28, we also have to think about
the triangular face T'(r). For the moment, when we have a free attachment
near ¢, we are simply allowed to detach z; from L (or T'(r)), but we shall
see soon that we may also consider that there is a free attachment near ¢_,
and even we’ll be able to drop T'(r) because we can get away with the sliding
condition.

The goal of this short section is to observe that when E does not contain
LNB(0, p), then we can use the estimates that come with the free attachment
for all the radii r near p, even if for some of them, ¢L(r) lies in the same
component as the other points of EN9JD4(r). We first give a statement for
the case when 0 € E N L, prove the statement, and then discuss a variant
for the non centered case and how this could be applied.

LEMMA 29.1. — Suppose that 0 € EN L and for some p > 0, E does
not contain L N B(0,p). Then, for C™1p <1 < 2p, we can do the estimates
that lead to differential inequalities of Sections 17-22 as if we always had
free configurations in the description of Section 10. Yet we need to replace
r2h(r) with 9p?h(3p) in the estimates.

Proof. — The estimate that we have in mind are (15.46), (16.4), and
their variants that were used in Sections 19-21. These estimates in turn
imply some differential inequalities, which we don’t mention here.

As we will see in the proof, the reason for the replacement of r2h(r) is
that we have to use competitors of E where we modify F near B(0, p), hence
the error terms get that large. Here C' is any given positive constant given in
advance, and it should be noted that the only price that we pay for taking
C large is the fact that the error term 9p%h(3p) is not necessarily that small
compared to 2.

The main point of the proof will be that when L N B(0,p) \ E # 0,
we can prepare the work by finding a first (sliding) competitor Fy of E,
in the ball B(0,3p), which is almost as good as F itself, but for which
Fy N LN B(0,2p) = (. Then we replace E with Fy in all the proofs above,
and get almost the same results, except for the following details. First we
lose a small quantity 7 > 0 when we replace E with Fj, but this does not
matter because 1 will be as small as we want. But also, and this is the reason
for the replacement discussed above, the competitors that we construct now
are only competitors for F in the ball B(0, 3p), so the error terms get a little
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larger. Oh course when we use the fact that h(r) < Cpr?, this amounts to
multiplying C}, by 9C?*8, which is not too bad.

Let us now prove the main estimate for the lemma. Let p be as in the
statement, and also find coordinates of R™ so that R* ~ L x R*™1 ~ R x
R"~!. By assumption, one of the points of L N B(0, p) does not lie in E; let
us write this point y = (¢p,0), with ¢t € [-1,1]. Let n > 0 be given, as small
as we want, and let us construct our competitor Fy so that

H2(Fy \ E) <. (29.1)

We start with the choice of a very thin tube T, where most of the construction
will happen. For reasons that will be clear soon, we prefer T' to be composed
of cubes. Let 7 > 0 be small, to be chosen later (depending on 7), but
certainly so small that B(y,37) does not meet E. Identify L with R and
y with tp € R, and denote by K the set of integers k € Z such that I :=
[p+kT, p+(k+1)7] meets [—2p, 2p]. Then set I = |J,c i Ix; thus [-2p,2p] C
I C (=3p,3p). Also write I = [a,b], denote by @ the cube in R"~1 of side
length 7 and centered at 0, set Q; = I, x Q C L x R*~! ~ R", and finally

set T'=1xQ = Upcx Q-

We start with a Lipschitz mapping fo such that fo(x) = x on R*\ T,
that maps T to its boundary 9T, the interval [tp + 7,b] C L to the point
b € L, and similarly [a,tp — 7] to a € L. This is because we want to respect
the sliding boundary condition.

When n = 3, we can take Fy = f(E), notice that Fp is a (sliding) competi-
tor for E in B(0,3p) (because the linear interpolation between the identity
and fj gives a one parameter family of mappings with the desired properties,
and that (29.1) holds. More precisely, if we set Wy = {x € F; folx) # x},
then

H2(Fy \ B) < H*(fo(Wy)) < H?(OT) < Ctp <1 (29.2)

if 7 is small enough. When n > 3, we cannot estimate like this because
H?(OT) = +o0, and even though H?(f(E NT)) is finite because fy is Lips-
chitz, it may be much too large for our taste. So we shall compose fy with a
Federer-Fleming projection. Write each Qy, k € K, as a union of 2"~! cubes
@ of side length 7/2, and thus write T" as a union of smaller cubes @}, j € J.
We do this because we want 0 to be a vertex and L to be contained in the
I-skeleton of T' (seen as the union of the Q). We add to the Q' the cubes
of the same “dyadic net” (and the same side length 7/2) that touch the Q’;
we then get a new tube TV D T, twice thicker and a tiny bit longer, which is
a union of cubes Q}, j € J.

The Federer—-Fleming projection will occur in 7", which means that we
shall use the composition f; = ¢ o f, where ¢ is a new Lipschitz mapping
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such that ¢(z) = x for x € R \ T", (T") C T', and even ¢(Q}) C Q)
for j € J'. This mapping is constructed with the same standard scheme
as in Chapter 3 of [17], so we only recall how the construction goes and
the properties of ¢ that will be helpful. We start with the observation that
T' N f(T) has a finite (although possibly large) H? measure. Our mapping
 is itself a composition of elementary Federer—Fleming projections that act
on faces of various dimensions. Each elementary Federer—Fleming projection
consists in choosing “centers” zp inside the faces F' of cubes that compose
T’, so that they are not contained in the current image (we start with f(FE),
but as the construction goes, we consider the images of that set by the
previously constructed mappings), and we compose with a Lipschitz mapping
that coincides on the current image with the radial projection on F', centered
at xp, that maps F'\ {zr} to F and is the identity on 9F. We proceed
independently on all the faces of the same dimension, but thanks to the fact
that we always take the identity on OF, we get a global Lipschitz map. We
first do this on the faces of dimension n, then n — 1, and so on, and end with
a projection of the 3-faces on their 2-dimensional boundaries. Fach time,
we use the fact that the H? measure of the image of f(F) by the previous
mapping is finite to choose x outside of that image, and in fact sufficiently
far from that image in average, so that the projection will never multiply
the measure by more than C.

In fact, we only do this on some of the faces of the Q; On the n-faces
(i.e., the interiors) of the cubes that compose T, we don’t really need to do
this, because we have no piece of f(E) left there anyway, but it does not hurt
either. In the faces that are not contained in 97", we do the construction as
described above, so as to get a 2-dimensional set. But on the faces that are
contained in 9T", we do not do anything, i.e., we keep the identity. This is
important because we take p(z) =z on R™ \ T".

Notice that ¢ preserves the cubes, but also the faces. Because of this, it
preserves L and so does f1; thus f1(F) is a sliding competitor for E. We need
to estimate H2(f1(E)NT') = H?(f1(ENT’)). One piece is f1(ENT), and
for this piece we know that we followed the construction down to 2-faces.
That is, this set is contained in the 2-skeleton of 77, which has a H?-measure
smaller than C7%(K) < Ctp. For fi(ENT'\T) = o(ENT'\T), we observe
that if we choose the centers cp correctly, its measure is multiplied by at
most C', so that

H(p(ENT'\T)) <C Y H(ENQ)) < CEK)r* < Crp (29.3)
jeJ’

by the local Ahlfors regularity of E. We may now choose 7 so small that
H?(Fo \ E) < H*(f1(Wo)) < Ctp < 1, (29.4)
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where Wy = {z € E; fo(x) # x} as above. This proves (29.1). Notice also
that Wy C T”, and hence H?*(Wy) < Cr?(§K) < C1p by the same argument
as above, using the local Ahlfors regularity of E.

The reader may be worried, because the set Fj that we just constructed is
no longer almost minimal. So we don’t want to use estimates that would rely
on the almost minimality of Fjy. The natural solution would be to adapt the
construction to Fpy, but this is not what we will do. Instead, we just compute
brutally with our initial set E, construct “competitors” F* = ¢!(E) with the
free attachment if needed, and estimate H?(F*). Now the F'* are perhaps not
competitors, because using the free attachment may violate the boundary
condition that ¢*(E N L) C L, so we are not allowed to compare F? with F
directly. There is no such problem with Fy, because Fy N L = @) on B(0, 3p)
where ¢! moves points, and so ¢! (Fp) is really a competitor for E (but in the
larger ball B(0,3p)). Now we use the fact that ¢* is Lipschitz, and let 7 and
n tend to 0 in the estimate above. Observe that then H2(Fy N B(0,3p)) and
H2(p (FonB(0,3p))) tend to H2(ENB(0,3p)) and H2(¢ (ENB(0,3p))), so
that we get the desired estimates on F by applying the almost minimality of
E to the competitor ¢(Fp), and then taking a limit. Lemma 29.1 follows. [

Let us now state the variant of Lemma 29.1 for balls centered on F \ L.

LEMMA 29.2. — Suppose that 0 € E\ L and for some p > 0, E does not
contain LN B(0,p). Then, for C™1p < r < 2p, we can do the estimates that
lead to differential inequalities of Sections 26—28 as if we always had free
configurations in the description of Section 10. In particular, we don’t need
T(r) and we may drop H*(T(r)) from the estimates. Yet we need to replace
r2h(r) with 9p*>h(3p) in the estimates.

Proof. — This sounds a little bit like winning the jackpot, but of course
what this means is that in most situations, E contains L N B(0, p). The
proof is the same. First we construct a competitor Fyy for E in B(0, 3p), such
that (29.1) holds, and which no longer meets L N B(0,2p). The proof goes
as before (we never used the fact that L contains 0), and then we can end
the argument as above. As was suggested earlier, not only we can use the
free attachment for the estimates, but since we no longer have to enforce the
sliding condition for our competitors, we don’t need to add the triangular
piece T'(r) either. The lemma follows. O

Let us just give an example of how we may use the Lemmas. Suppose
that 0 € E, h(R) is small enough, and that in addition E is quite close
to a generic set X € V, such that the half planes that compose X make
an angle smaller than 7 — 1072, say. We may either assume that 0 € L as
in the early sections, or that 0 € F'\ L and R~!dist(0, L) is small enough.
Then LNB(0, R/2)\ B(0,1072R) is contained in E. Indeed otherwise we may
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apply Lemma 29.1 or Lemma 29.1, find that we can apply the free attachment
construction for all the nearby radii r, get a very good estimate for such r
that imples that ’'(r) > C~'r=1 or F'(r) > C~'r~1, and get a contradiction
with the fact that, when E lies close enough to a V set, 6 or F' is nearly
constant in the range under consideration. In fact, we can also iterate this
argument (apply it to R/2, R/4, and so on) and get that LN B(0, R/2) C E.
We will detail the argument during the proof of Lemma 32.4, mostly as an
example of how it may go and to give a flavor of why we get estimates like
o' (r)>C r L.

We may even apply the same argument to the case when F is very close to
a half plane in B(0, R), and get the same conclusion that LN B(0, R/2) C E.
This time, when we apply Lemma 29.1 or 29.2, instead of a standard free
attachment, we immediately get a hanging curve near {4, which also gives
a bound on ¢ (r) or F'(r) that is incompatible with the fact that 6 or F
is nearly constant. We shall also sketch a more direct argument, when we
discuss the proof of (31.9), and we will find the proofs of Lemmas 29.1
and 29.2 convenient in Section 37, when we check the full length property in
some special cases.

30. Geometric estimates follow from the decay of F

The decay of F that we got in Sections 27 and 28 is not so much good
in itself, but it will allow us to control the geometry of E. In this section
we prove two main statements to this effect, corresponding to the densities
0y = 7 and 0y = 37” of Theorems 24.1 and 24.2.

We start with a statement in the simpler case of Theorem 24.1, with an
approximation by half planes, where we will see that under the assumptions
of Theorem 24.1, we also have a good control (with decay) on the approxi-
mation numbers Sy (r), in the interesting region where r > dy. We give the
statement first, and then comment.

THEOREM 30.1. — There exist constants ez > 0 and Cg > 1, that depend
only on n and B € (0,1], such that the following holds. Let E be a reduced
sliding almost minimal set in B(0,400R), with a boundary condition coming
from the line L, and a gauge function h such that

h(r) < Cpr® for 0 < r < 400R, (30.1)

for some Cj, such that C,RP < e3. Suppose that 0 € E and 0 < dy =
dist(0, L) < R/2. Then

1/4
do.r(E, Ho) < Cg [[F(QOOR) o+ ChRﬂ (30.2)
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where F is defined by (23.6) and Hy denotes the half plane bounded by L
that contains the origin.

Proof. — Notice the analogy with Theorem 19.1, but here the center is
off L. Of course this is only useful when the right-hand side of (30.2) is small,
so that in particular the density excess F(200R) — 7 is small. Here 7 is the
smallest value that lim;_,o F'(t) could possibly take (because 0 € E'\ L); this
is also why we do not need to put in the assumption that 0 is a point of
density .

We required that dy < R/2, but we do not feel bad about this; for R < dj,
there is no sliding condition in B(0, R), so we may still show E is very
well approximated by planes in B(0, R), using the regularity theorems for
plain almost minimizers. This is just a different story. Notice however that if
200R < dgy, the other assumptions of the theorem allow E to coincide with
any plane in B(0, R), not just the ones that nearly contain L.

The point of this estimate is not to give some rough control on do r(E, Ho)
(we will see something like this as soon as (30.13)), but to use this rough
control to get much better estimates that depend only on the density excess
and h. Since we proved earlier that this excess tends to decay like a power,
this will give a good decay for geometric quantities as well.

Remark 30.2. — We can prove an even better control when the gauge
function is even smaller than Cj,7?. Set

2B p(t)dt k py1/2
J(R) = / —— and Ji(R) = > J(107FRYV2. (30.3)
0 k>0; 10—k R>do
‘We shall also prove that, under the assumptions of Theorem 30.1, we have
the estimate

do.r(E, Hy) < Cs[F(200R) —7]"/4+CJ(200R)Y*+C5.J 1 (200R)'/2. (30.4)

Notice that this is better than (30.2), because J(R) < CCLR” and

J+(R) < C’C’;/ZRW2 when (30.1) holds. The strange definition of Jy(R)
reflects some of the trouble we will have with the proof, where we will need
to fetch information at the scale dy (to get the relative position of Hy, L,
and 0) and return to the possibly much larger scale R.

We can use Theorem 30.1 to prove the regularity of E when it satisfies the
assumptions of Theorem 24.1. Indeed, that theorem gives us good estimates
on the density excess F(200R) — 7, even with some decay, and Theorem 30.1
then says that E is close to Hy in all the balls B(0, R), R > 2dy. We can even
get a good control in smaller balls B(0,R), R < dy, by first applying the
result to R = 2dy to show that E is close to a plane (the plane that contains
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Hyp) in B(0,d/2), and then applying the regularity results for plain almost
minimal sets (with no sliding boundary) in smaller balls; we get additional
decay there. The consequence is that we get a very good C! description of
FE near 0. See Section 31 for more details.

Yet Theorem 30.1 and the proof of regularity sketched above are not
really needed to control of E in balls that are not centered on E (first via the
decay the functional F', and then through the geometric control that follows),
because we may get the desired regularity result otherwise. When E satisfies
the assumptions of Theorem 24.1 in the large ball B(0, R), R > 103dy, say,
it turns out that every point of LN B(0,dy) lies in F (and has density 7/2).
This is proved in [13]. Then we may also apply the simpler decay results for
balls B(x,r) centered on E N L (see for instance Corollary 22.1), and get
the same geometric information in these balls B(z,7), r > 2dy, as given by
Theorem 30.1. This is fortunate, because this proof of regularity will help us
simplify our proof of Theorem 30.1 itself. We will return to this in due time.

Yet the fact that we can find enough points in £ N L with the right
density is quite lucky, it seems, and if we could not find these points in
EnLnB(0,2dy), we would not be able to apply Corollary 22.1 to them!

We will have a second statement (Theorem 30.3) similar to Theorem 30.1,
but with points of density 37” and where we approximate E by truncated Y-
sets. There the story will be different: it seems that we cannot easily get the
regularity results of Sections 32-34 without actually applying Theorem 30.3
to some points of type Y in E \ L.

The proof of Theorem 30.1 will be rather long and complicated, and to
save some energy we will group it with the proof of the upcoming Theo-
rem 30.3.

We shall use the following notation concerning truncated sets of type Y.
First denote by Y(L, r) the set of cones Y of type Y that are centered at the
origin, and for which LN B(0,r) is contained in a face of Y. For Y € Y(L, r),
we set Y = Y \ S, where S still denotes the shade of L seen from 0, but
in fact we are only interested in Y N B(0,r), where Y truly looks like a
truncated cone of type Y, but not necessarily with a straight truncation
parallel to the spine of Y. Notice that Y NS, is a net of geodesics like the
ones that we studied in Section 28, with two large arcs of great circles (in
fact, half circles) and two small tips that connect to the points of LNS, (and
may be reduced to one point ¢4 ).

THEOREM 30.3. — There exist constants ez > 0 and Cg > 1, that depend
only on n and B € (0,1], such that the following holds. Let E be a reduced
sliding almost minimal set in B(0,400R), with a boundary condition coming
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from L, and a gauge function h such that
h(r) < Cpr?  for 0 < r < 400R, (30.5)

for some Cj, such that C, R® < e3. Suppose that 0 € E, with F(0) = 37”, and
0 < dp :=dist(0,L) < R/2. Then we can find a cone Y € Y(L, R) such that

1/4
3
do.r(E,Y") < Cg HF(2OOR) - ﬂ + ChRB] , (30.6)
where F is defined by (23.6) and Y is as above the statement.

In fact, under the assumptions of the theorem, we also get that

37'(' 1/4
don(B,Y") < G [F00m) - 5

+ CsJ(200R)Y* 4 Cg.J4 (200R)Y/2,  (30.7)
with J and J; as in (30.3).

As before, we restrict to R > 2dy because for r < dy we would get a set
of type Y, but unless we can apply Theorem 30.3 to a radius R > 2dy, we
cannot really say how it is oriented. Notice however that the approximation
in (30.6) or (30.7) is valid on the whole ball B(0, R). The proof will even
give some uniform approximation in all the smaller balls, even leading to
the existence to a tangent Y-set that lies close to Y. See Remark 30.8 and
Sections 32-34.

Remark 30.4. — There is more in this statement that one may have ex-
pected. The most important assumption is that the modified density excess
F(200R) — 23X is very small, which implies that F’(r) is often small for
r < 200R. Yet, for instance, it could a priori happen that F’(r) is very small
for some r > dy, but E looks a lot like a plane, or a flat set of type V,
in B(0,r). So we will need to exclude these cases from the discussion, by
comparing all the different scales between dy and 7, and then using the fact
that the density at 0 is F/(0) = 2F.

We intend to prove Theorems 30.1 and 30.3 together, because there are
many common points. The proof will be quite long, even though we shall rely
on some of the computations and estimates that we did for Theorem 19.1,
so we’ll try to cut the proof into steps, often coming with their own tiny
introduction.

One of the features of the proof is that we’ll have to go up and down
between scales, and most of our estimates will be obtained by constructing a
competitor for F at some intermediate scale dg < r < R, typically as in the
proof of the decay estimate for F. This time the point of the computation
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is that if the geometry is not almost perfect, then we can find a better
competitor, which implies that the derivative of F' for the corresponding
radii is not too small, and in principle this does not happen much when F
almost has the minimal value.

Step 1: We make sure that we can apply the construction of Sec-
tions 2628

We start the proof with a small reduction, that will allow us to apply the
construction and estimates of Sections 26-28, to all radii roughly between
2dp and 180R. For this we apply the near monotonicity of F' and our implicit
assumption that F essentially keeps its minimal value, to get a rough control
of the geometry. Since we want to unify some estimates, it will be convenient
to set

m  when F and R are as in Theorem 30.1,
0o =4 3. ) (30.8)
% when they are as in Theorem 30.3,
and then
f(r)=F(r)—6y for 0 <r < 400R. (30.9)

Let €4 > 0 be very small, to be chosen later. We may assume that

400R
F(200R) + /O . @ = f(200R) + J(200R) < &4, (30.10)

because otherwise (30.4) or (30.7) holds trivially. This is the same justifica-
tion as for (19.8). Then by (23.11), we also get that for 0 < r < 200R,

F(r) < exp (oz /0400R h(t)dt> F(200R)

t
< e F(200R) < e*(0p +e4) <Oy + Cey  (30.11)
by (23.10) and (30.10). We claim that
0o = lim F(r) = lim 0(r). (30.12)
r—0

r—0

In the case of Theorem 30.3, this is our assumption that F'(0) = 37”, plus the
fact that F'(r) = 6(r) for r < do. In the case of Theorem 30.1, we know that
lim,_,0 6(r) exists because 6 is almost monotone, and is the density of any
blow-up limit of £ at 0. Recall also that F is reduced and contains 0, so these
blow-up limits are nontrivial minimal cones. But the only minimal cones of
density smaller than 37/2 are the planes; now (30.12) follows from (30.11)
if €4 is small enough.
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Next we show that F is as close as we want to a set of constant density.
Let 7 > 0 be small. We start with the case of Theorem 30.1, and show that

do(E, Ho) <7 for 2dy < r < 180R. (30.13)

For this we apply Lemma 23.3 to F, the radius r; = %, and the large
radius 200R > r; (to play the role of R in the lemma). The initial as-
sumptions (23.7) and (23.10) are satisfied (by (30.1) in particular), the con-
straint (23.15) too, because r > 2dy, we just checked that 8y = 7, and (23.17)
holds by (30.11), because r1 < 200R, and if €4 is small enough. Here we are

only interested in the first conclusion, which is that d, 20r, (E, Ho) < 7. This
v 21

is precisely (30.13). Let us set X (r) = Hy in the present case, so as to unify

the notation with the next one.

In the case of Theorem 30.3, we claim that there is a constant § > 0, that
depends on 7, such that if e4 is small enough, then for

6 tdy < r < 180R, (30.14)
we can find a cone X (r) € VUP, such that
do(E,X(r)) <. (30.15)

This is the same argument, but we replace Lemma 23.3 with Lemma 25.2.
This forces us to restrict to radii » such that (30.14) holds (as in (25.25)),
and we need to take § < §(7); the rest is the same.

These approximation properties will be useful (see below), but they are
not what we want eventually. First, they come from compactness arguments
and are far from being precise enough. That is, 7 is fixed and we are interested
in the cases when the right-hand sides of (30.2) and (30.6) (or their even
smaller variants) tend to 0. Also, in the case of (30.15), we want to prove
that X (r) is a nearly sharp set of type V, or a truncated cone of type Y,
which is more precise than our description of X (r). Of course, when r is
much larger than dy, a truncated cone of type Y (centered at 0) looks a lot
like a sharp set of type V at the scale r.

When r is not much larger than dy, we can deduce the existence of an
approximating truncated set from Lemma 25.3. That is, for any d; € (0, 1),
we claim that if £4 is small enough (depending in particular on é; and 7),
then for

d
2dy <1 < min<5°, 180R) (30.16)
1
we can find a minimal cone Y € Y(0, 2) such that
do,(E,Y") <1, (30.17)

where Y* = Y\ S is the corresponding truncated cone. Just apply Lem-
ma 25.3, with the same r, the large radius 180R, and € = 7.
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Again this will be useful. It is closer in spirit to our goal, but we’ll have
to extend it to larger radii, and also get much smaller bounds than 7.

Return to the cone X (r) of (30.13) or (30.15). We now claim that we can
perform all the construction of Sections 2628, which is good enough to prove
the two differential inequalities (24.13) and (24.18), and then Theorems 24.1
and 24.2. For all these estimates to hold for (almost every) given r, we
need to be able to find R’ such that (24.1), (23.1), (23.2) hold (as usual,
but for that R’, which we could for instance take equal to 240R), but also
2dg < 7 < R'/2 when 0y = m and Ndy < r < R'/2 otherwise, as in (24.10)
and (24.15) or (26.3) or (26.4). The main assumptions, though, are that
Cpr® and f(r) be small enough, which follow from our assumption that
CrRP < 3 and (30.11), and that E be close enough to a minimal cone of
type H,Pg, or V (see (24.4), (24.8), (24.12), (24.17), or (26.2)). This last
follows from (30.15), and the reader should not worry about the constants
depending on X (), as we can always choose it from a fixed finite family. So
we’ll remember that the construction of Sections 26-28 works well, provided
that

2dp < r < 180R when 6y =7, and Ndy < r < 180R otherwise. (30.18)

Also recall, if you are worried about d, that we can take N somewhat larger
than 0. This completes this first step of preparation. Next we follow for some
time the argument given in Sections 19-21.

Step 2. We approximate FE in spheres S,, by some nets of geodesics

We try to estimate E on the annulus
Ay = B(0,90R) \ B(0,107'R), (30.19)
and we first proceed independently on most spheres S,. We assume that
90R > Ndy; (30.20)

otherwise, some parts of the construction will be slightly different but sim-
pler, but we shall discuss this in Steps 8 and 9.

We use our first step and (30.20) to select, as in (19.21)—(19.23), a set
R of full measure in (1071 R,90R) such that we can apply the construction
of competitors of Sections 26-28 to any r € R, based on the approximation
by the set X(R) € HUV UPy that we got in (30.13) or (30.15). This
yields different nets of curves on the sphere, and in particular the initial net
¥ =~5 C ENS,, and a net of geodesics p* = p.
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We also introduce a function j, defined as in (19.24) by

J(ry = (r) + F(r) + (1+ 26000)h(2r) + (1 + focrn) /0 WTM

h(2t)dt

=7rF'(r)+ f(r) + (1 + 200, (2r) + (1 + Opcry,) /OT , (30.21)

where the density excess f is defined by (30.8) and (30.9). As before, the
cosmetic addition of the terms with «,, is done so that

) > (00 + £0) + ) + | " h@t)dt

as in (19.27). We will prefer to work with the radii » € R such that j(r) is
rather small, and j(r) will control various geometric quantities.

for r e R, (30.22)

We start with the estimate (19.28) in Lemma 19.4, which says that
H'(ENS, \ ;) < Cj(r), (30.23)

where v C ENS, is our first net of curves; see below (19.35). The proof
can be repeated here; it consists in checking that the various differences of
lengths A;(r) that show up in the estimates are dominated by j(r) (or else
we are in one of the exceptional cases and then j(r) > f/(r) was large in the
first place).

Next we check that p} approximates 7, well, in the sense that
do2r(pr ) < Cj(r). (30.24)

The proof is the same as for Lemma 19.4 in Section 19; we prefer not to
define a cone Z(r) yet, because the fact that 0 ¢ L complicates the geometry,
but Lemma 19.4 concerns only Z(r) NS, = p! anyway. In fact, there is a
small lie here: in the special case where we have a free attachment near ¢,
pr has an additional, isolated point ¢, which we remove from p; before
we check (30.24). That is, p* = p should be replaced in (30.24) with p’,
obtained from p* by removing the points {1 with a free attachment. See the
discussion that leads to (19.50). Also, it will turn out (later in the argument
below, and independently) that there is no free attachment when j(r) is
small, so the issue does not arise after all.

During the proof of Lemma 19.4, one also shows that j(r) controls various
geometric quantities that show up in the construction of competitors, such
as Ag(r), A1(r), Az(r) in (19.35)—(19.37). In particular, (19.42) (still valid
here with the same proof) says that

Ao (1) + Aq(r) + Ag(r) < 1075(r) for r € R. (30.25)

It is also proved that some configurations, such as hanging curves of free
attachments when FE is close to a half plane or a non-flat set of type V,
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are impossible when j(r) is small; we will return to this issue, but see the
discussion below (19.46).

Step 3. We control the variations of the main part of p;

Recall that our nets of curves, and in particular the p}, are initially
constructed with the model X (R). When 6y = n, X(R) € H(L) and p}
is composed of two main geodesics, which we shall call p; + and p; _, and
which go from a midpoint wy near X (R) to ¢4 and £_. We can exclude free
attachments here, at least if we restrict to » such that j(r) is small, because
they correspond to hanging curves.

When 6y = 2%, X(R) € VUP, and p = p} is composed of four main
geodesics, which we shall call p;+, plus maybe some additional short
geodesics pi, depending on which type of attachment. For the moment,
let us not discuss attachment, and concentrate on the large p; + = pj + ,.

We want to show that the p; 1 , vary slowly with r (both when §y = 7 and
when 6y = 37”) We proceed as in Section 20, isolate any of the two or four
pj.+,r, construct vertical curves on F, near the middle of the corresponding
interval I = I; 4 of X (R) (where E is actually a nice C* graph), and use the
co-area formula to control the variation of angles along these curves. This
starts with Lemmas 20.1 and 20.2, which we can keep as they are. In the
mean time, we prove the inequality (20.22), which says that (since we no
longer normalize R away any more)

180R dr
R™! j(r) < CE, with &= f(90R) + / h(r)—; (30.26)
r€(10-1R,90R) 0 r
this will be useful, because then there are lots of » € R such that j(r) is
small. We use the Lemmas to prove an easier version of Lemma 20.3, i.e.,
the fact that for r,s € R,

Aa(r™ a8 Pixs) < CH(r)V2 4 Ch(s)V/2 + CEV?, (30.27)

where dy; denotes the standard Hausdorff distance on the unit sphere (we
could also have used dg2), pj+ denotes the full great circle that contains
pj,+.r and similarly for p; + 5. That is, for the moment we do not want to
control the place where these geodesics stop, but just their position near
I; this way we can use (20.41), and skip the slightly unpleasant discussion
below (20.41), about guessing where the geodesics meet, and what happens
near /.

Let us also observe, as in (19.46), that j(r) also controls some geometric
information on pj relative to its near minimality. We claim that if v; 4 ,
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denotes the unit tangent vector at m; of p; + , (going in the direction of z4
or /1), then

0.4+ V)| < Chi(r) 2, (30.28)

In other words, the two main geodesics that leave from m; are almost aligned.
The reason is the same as for (19.46): if not, we can modify our construction
of competitors a little near its tip (where the competitor is a cone near
the direction of m;), to make the angle flatter and the measure a tiny bit
smaller. Because of this, (20.37) is really an information on the pairs of
geodesics ending at a same point m;, or the sets p; 4 » U pj _ . Anyway, we
shall some times find it more convenient to forget some information and just
remember that by (30.27)

dy(r=pr, s 1Ps) < Cj(r) 2 4+ Cli(s)'/2 + CEV2, (30.29)

where p, is the union of the (two or four) pieces pj + ,, and similarly for p;.

Step 4. We fetch information from the scale dj

In Section 20, we used a sharper version of (30.27) directly to control E
near the S,; let us not try to do this yet, and consider the variations of the
pj.+,r across smaller annuli

Ay, = B(0,90R;,) \ B(0,107'Ry,), with R, = 107*R. (30.30)

Recall from (30.11) that f(r) < Cey for 0 < 7 < 200R. So f(Ry) is as
small as we want, but we shall restrict to &k such that 90R; > Ndy (or just
to 90Ry, > 2dy when 6y = =), as in (30.20), because this way we can find
a nice approximating set X = X(Ry) as in (30.13) or (30.15) and do the
same construction as above for R = Ry. So let e denote the largest value of
k for which 90R; > Ndy (think, e like “end”, but the truth is that not so
many letters were left); thus

Ndy < 90R, < 10Ndy. (30.31)

When 90R < 10Ndy, let us still take e = 0 and not worry if some of our
statements below are slightly wrong. We shall return to this case in the last
steps and only small adaptations will be needed, because £ includes a control
on radii r € [10R, 100R] which is more than enough.

For 0 < k < e, we define a set Ry of full measure in (107 Ry, 90Ry)
with the same properties as before (namely, we can do the construction of
competitors as in Sections 26-28) and, for r € Ry, define the number j(r)
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as in (30.21). Then construct the nets «} and p:. We also get the same
estimates as above, but the small quantity £ needs to be replaced by

180R;, dr
Er = f(90Rg) +/ h(r)T' (30.32)
0
Then we select for each k a radius r, € Ry N [R, 2Rk, so that
) <1087 [ jryar < cg, (30.33)
R

where the second inequality comes from (20.22).

When we choose 7,41, the reference cone Xpi1 = X(Ri4+1) may be a
little different than X}; yet we claim that the proof of (30.29) also yields

A (ry Prs i Pries) < Ci(ri) Y2 + Cirpg) V2 + CEL?

< C(& + gk+1)1/27 (30.34)
where py, ., is defined in terms of X1, or else
37 "
6o = > and v, ,, has a free attachment (30.35)

(that is, for at least one of the points ¢4 and one of the choices of X or
Xk+1). Indeed, when our curves are attached to the points ¢4 in the usual
(non free) way, the algorithm for choosing our nets of curves is the same, i.e.,
does not depend on our choice of X}, or X1, and the variation of p,, ., is
just the same as when we pick a different net v* to start with; this matters
no more than it did above. And we have seen earlier that there is no free
attachment when 6y = 7 and j(r) is small enough, because this would mean
a hanging curve. Hence the claim.

Notice that when (30.35) happens, say, with a free attachment at the
point 2, the proof of (30.28) also shows that (6y = 2 and)

lv1 4 va| < Cj(rpsr)?, (30.36)

where v; is the direction at z; of the geodesic p(z4,m;). Since we also
have (30.28) at the two vertices m;, we see that

the whole ;! oy, ., is Cj(rps1)Y ?close to a great circle. (30.37)

Anyway, let us return to (30.34); observe that if 0 < k1 < ko < e, and
if (30.35) fails for k1 < k < ko, then we may sum (30.34) and get that

Ay (ri o, 1, r, ) SC Y &P < CF, (30.38)

k1<k<ka
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where we set
Fin= Y. & (30.39)
ki1<k<e
We will estimate the Fj, more precisely in the next step, but let us start with
some basic decay. Recall that we chose our constants (such as €4) so that
we can apply the differential inequality (24.13) and (24.18), and then even
Theorem 24.1 or 24.2 (depending on 6p). When 6, = 37”, we get that

2
F(90Ry,) = F(90Ry,) — g < (Cy107%)7 £(90R) + Cy C, 10~k RP

< C107 %, + CCKL107*RP < C107F%, + C107 %23,  (30.40)

by Theorem 24.2, (30.11), and our fortunate assumption in Theorems 30.1
and 30.3 that C, R? < e3. When 6y = 7, we get an even better result. Since

180 R dr
/ h(r)— < CCRL107PRP < C107*Pey (30.41)
0 T

by the same assumption, we see that & < C107%%(g4 + €3) and, summing
over | > k,

Fr < C107F 2 (g5 4 4)'/2. (30.42)
Thus, under the assumptions of (30.38),
Ayt (i, Priy o, Prv,) < CL07M2 (5 + )2, (30.43)

This is as small as we want, even for k; small.

We are finally ready to use the small scale and prove that, in the case

when 6y = 37“, our approximating cone X = X (r1) is never flat. For this,
we shall first use Lemma 25.3 to show that FE is also close to a truncated

cone of type Y in B(0, R,.).

Let 73 > 0 be small, and apply Lemma 25.3, with r = R., R = 2R,, and
e = 73. If 3 and &4 are small enough, the assumptions (23.1) and (23.2)
with (24.6) hold by (30.10), and (25.23) follows from (30.11) and our as-
sumption that O, R® < e3. Then we need to check (25.28), but since we
have (30.31), this is true as soon as we take N large enough, depending
on 4§, so that d(73)R. < 20dy/21. So Lemma 25.3 applies, and gives Ey, a
truncated cone of type Y centered at 0, such that

do,r. (E, Eo) < T3. (30.44)

Recall that the approximating cone X, = X(r.) was also such that
do.r,(E,R.) < 7, by (30.15). Since Ejy has its two big faces that make a
%’r angle, and 7+ 73 is as small as we want, we deduce from (30.44) that X,
is of type V (not Py), and that its two faces make an angle «(X.) which is

at most 2?” + 10732,
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By (30.31) and if N is large enough, R, is quite large compared to dy,
and then r;!p,.. is very close to the union of two great circles (we knew this
already, because of (30.28)), and that make an angle a € [2F —2-1073, 2% 4
2 -1073]. Now we prove by backwards induction that for k < e, r,;lﬁ,«,c is
very close to a union of two great circles (as usual), and that make an angle

2 2
ay € g ~ 1072, g +10" (30.45)

Indeed, as long as the free attachment event (30.35) does not happen for
k + 1, we have (30.43) with k; = k and ko = e, and then «y, is in the right
range. But (30.35) neve