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A local description of 2-dimensional almost minimal
sets bounded by a curve (∗)

Guy David (1)

ABSTRACT. — We study the local regularity of sliding almost minimal sets of
dimension 2 in Rn, bounded by a smooth curve L. These are a good way to model
soap films bounded by a curve, and their definition is similar to Almgren’s, but the
results of this paper also hold for other, smaller classes of almost minimal sets. We
aim for a local description, in particular near L and modulo C1+ε diffeomorphisms,
of such sets E, but in the present paper we only obtain a full description when E is
close enough to a half plane, a plane or a union of two half planes bounded by the
same line, or a transverse minimal cone of type Y or T. The main tools are adapted
near monotonicity formulae for the density, including for balls that are not centered
on L, and the same sort of construction of competitors as for the generalization of
J. Taylor’s regularity result far from the boundary.

RÉSUMÉ. — On étudie la régularité locale des ensembles presque minimaux de
dimension 2 dans Rn, bordés par une courbe lisse L, et avec une condition glissante
de bord semblable à celle d’Almgren. Ces ensembles semblent le meilleur modèle pour
les films de savon bordés par une courbe, mais les résultats de ce papier s’appliquent
aussi à d’autres classes, plus petites, d’ensembles presque minimaux. Le but est
d’obtenir une description locale de ces ensembles, en particulier près de L et modulo
un difféomorphisme de classe C1+ε. Dans ce papier on n’obtient une description
complète que lorsque E est assez proche d’un demi plan, un plan ou une union
de deux demi plans bordés par la même droite, ou un cône minimal de type Y ou
T transverse à L. Les outils principaux sont des formules de presque monotonie
adaptées pour la densité, y compris pour des boules qui ne sont pas centrées sur
L, et la construction du même genre de compétiteurs que pour la généralisation du
résultat de J. Taylor sur la régularité loin du bord.
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Introduction

This paper is in the general framework of the Plateau problem. We con-
sider soap films E of dimension 2 in Rn, bounded by a smooth curve L, and
we study their local regularity near points of E ∩ L.

– 3 –



Guy David

Our soap films are “sliding almost minimal sets with boundary L”, intro-
duced officially in [11, 12] and studied in [14]; see Definition 1.1. They are
the analogue, with a boundary, of the almost minimal (or “restricted”) sets
of Almgren [2].

There are many other ways to model soap films, either by Homology
conditions, as in [1, 27, 45], or as supports of size minimizing currents with
a given boundary (here, the current of integration on L), or in some other
ways, as in [19, 21, 31, 32]. Minimizers for the corresponding first two types
of solutions to the Plateau problem (Reifenberg homology minimizers and
supports of size minimizing currents) are, by definition, sliding minimal sets,
and hence the result of the present paper apply to them; see the verification
in [12]. For the minimizers of [19, 21, 31, 32], this is probably true too, but
the author of these notes did not check the topological details; see a little
more near the end of Section 1.1. In other words, the results of this paper
probably most ways to model soap films, where one does not count multi-
plicity. Notice however that the usual minimal surfaces, or more precisely
the mass minimizing currents, are not of concern in this paper. See [18] for a
beautiful recent paper for the boundary behavior of mass minimizers though.

Our results are similar to the classical result of Jean Taylor [47] for in-
terior points. Recall that she proves that near every point of a (reduced)
2-dimensional almost minimal set E in R3, E is equivalent, through a C1+ε

homeomorphism of R3, to a minimal cone. The restriction to reduced sets is
a standard precaution; otherwise we could add sets of vanishing measure to
E and make the description artificially more complicated; see the discussion
near Definition 1.3. She also gives the full list of minimal cones of dimen-
sion 2 in R3. They are the planes (we’ll say cones of type P), the cones of
type Y composed of three half planes that meet along a line with a 2π

3 angle,
and the cones of type T, obtained as cones over the union of the faces of a
regular tetrahedron centered at the origin; see Figure 1.1. Recall also that
Taylor’s notion of almost minimal sets, which comes from Almgren [2], is the
same as ours, because there is no need for boundary conditions in her case.

J. Taylor’s result extend partially to higher ambient dimensions, with
two limitations. The first one is that we have a reasonable combinatorial
description of the minimal cones of dimension 2 in Rn, n > 4, as unions of
faces of dimension 2 that make 2π

3 angles with each other, but we do not
have a complete list of cones. In addition, we are only able to prove a C1

regularity result near the minimal cones that satisfy a stability condition,
called “full length” (and which is in some way connected to epiperimetric
inequalities), and near the other ones we can only prove that E is biHölder
equivalent to the cone. See [9] and [10]. The standard cones (of type P, Y,

– 4 –



A local description of 2-dimensional almost minimal sets bounded by a curve

and T) satisfy this full length condition, but we don’t know this for the sets
Y × Y , or the cones that we do not even know about.

In this paper we look for an analogue of J. Taylor’s result near a smooth,
one-dimensional boundary. We consider a reduced sliding almost minimal
set E in Rn, with boundary conditions given by a smooth curve L, assume
that the origin lies in E ∩ L, and study the regularity of E near 0. It was
proved in [14] that E has blow-up limits X at 0, maybe not unique, and
that these limits are sliding minimal cones associated to the tangent line to
L at 0. Thus our story should start with a description of the sliding minimal
cones X.

In R3, the known sliding minimal cones associated to a line L0 through
the origin are the previous cones of type P, Y, and T that were already
minimal without a boundary condition (and stay minimal), the half planes
bounded by L0 (we’ll call them sets of type H), and the unions of two half
planes bounded by L0 and that make angles at least 2π

3 along L (sets of type
V). The author guesses that there are also cones of type Q (the cones over
the union of edges of a cube centered at 0), and no other ones, but can prove
neither fact. In Rn, n > 4, there are probably lots of other ones.

In any event, it makes sense to take the possible minimal cones X one
by one, and prove a regularity result for each one. Let us assume that in a
small ball B(0, r0), E is very close in Hausdorff distance to a minimal cone
X, as in (1.15) below.

If we are only interested in the approximation of E by cones in balls
centered at 0, we prove that a sufficient condition to get better and better
approximations at smaller scales, and in particular the uniqueness of the
tangent cone to E at 0, is that X satisfy a full length condition (see Sec-
tion 4); the sets of type P, Y, T, H and P satisfy the full length condition
(see Section 37), so we get the uniqueness of tangent cones in this case.

But for a C1 control on E near the origin, more information is needed,
concerning balls that are centered on E \ L in particular. We get a full
analogue of J. Taylor’s theorem when X is of type P, Y, T, but only when
it does not contain half of L0 or L0 (we call that casual crossing). That is,
in all these cases, if r0 is small enough and the Hausdorff distance in (1.15)
is small enough, we find that in B(0, r/2), E is the image of X by a C1+ε

homeomorphism of Rn, and the proof is not that different from the interior
regularity result of [10] and [47].

This is also the case when X is of type H, or V, but assuming that the
two half planes that compose X make an angle strictly larger than 2π

3 . Here
the proof needs an extra tool, a different monotonicity formula found in [13].
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The case when X is of type V, but with the sharp angle 2π
3 , is more

interesting. This time the topology of E near 0 may be different from the
topology of X; yet we still get a nice enough C1+ε description of E near 0,
as hinted in Figure 1.5 below. See Section 34.

When X is of type P or T, but contains at least half of L0, the situation
is almost the same, except that E can have small creases near L0∩X, where
E has tangent cones of type V (but very flat). This situation is (mildly)
suggested by Figure 1.3, and explained in details in Sections 33 and 36.2.

There is a last important case, when X is a cone of type Y that contains
L0. Unfortunately the techniques of this paper do not seem to yield a good
description of E near 0 when it lies very close to such a set X.

The regularity results of this paper could potentially be used to prove
the existence of solutions to the Sliding Plateau problem described in Sub-
section 1.1 or the existence of size minimizing currents. Recall that for these
two problems the existence of minimizers is not known in general, and ad-
ditional information on the sliding minimal sets near the boundary could
be of help. In [15] we explain a natural way to proceed, but for it to work
smoothly with a general curve L, we would need to control also the case of a
cone of type Y that contains L0. In the present situation, the author intends
to use the known cases to establish a somewhat restrictive existence result,
in a forthcoming paper.

The author realizes that the present paper is long, with some technical
pieces, and he tried to ameliorate this by writing a very long and detailed
presentation of the results, Part I below, in the hope to provide a shorter
substitute for some of the most technical parts.

The author wishes to thank the Institut Universitaire de France for its
invaluable help during the early stages of the preparation of this paper,
the sponsors listed on the first page, and referees of the paper for helpful
suggestions. The pictures were done with Inkscape.
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Part I. Description of the results

1. The results

The goal of this paper is to start a study of the local behavior of two-
dimensional soap films near a smooth one-dimensional boundary. Our model
for soap films, which will be discussed soon, is given by the notion of “sliding
almost minimal sets”. This is not so far from Almgren’s notion of “restricted
set” from [2], and we would like to obtain along the boundary a description
which is similar to Jean Taylor’s regularity result [47] far from the boundary.

Let us say a few words about the result of J. Taylor that we would like to
imitate here. There are actually two main steps to it, and the first one is a
full description of the minimal cones (with the same definition of minimality
as in [2] and roughly here) of dimension 2 in R3. These are the planes, the
cones of type Y composed of three half planes bounded by a same line and
that make 2π

3 angles along that line, and the cones of type T. A cone of
type T is the cone over the union of the 6 edges of a regular tetrahedron
centered at the origin; see Figure 1.1. This first part is important because
the blow-up limits of any almost minimal set E at a Lebesgue density point
of E is a minimal cone (blow-up limits will be defined and commented a little
more near (18.7)). The second part consists in proving that under suitable
assumptions, all the blow-up limits of E at such a point x0 are equal, and
that there is a small neighborhood of x0 where E is equivalent, through a
C1+β diffeomorphism of R3, to this minimal cone. Thus J. Taylor’s theorem
gives a local classification of class C1+β of the almost minimal sets.

A partial generalization of this result was given in [9] and [10], that gives
a local description of almost minimal sets of dimension 2 in Rn, but with
two differences. First, the full list of minimal cones of dimension 2 in Rn,
n > 4, is not known; we just have a combinatoric description in terms of
faces. But also, if X is a blow-up limit of the almost minimal set E at x0,
we only prove the C1+β equivalence of E to X near x0 when X satisfies an
additional property, the full length property. Otherwise, we only get a local
biHölder equivalence. The full length property, which is a metric property of
the net of geodesics that compose X∩∂B(0, 1), is related to an epiperimetric
inequality; it is satisfied by the planes and the cones of type Y and T, but
we do not know whether it is true in general, or whether E is always C1+β

equivalent near x0 to any of its blow-up limits at x0, or even whether the
blow-up limit is unique.
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Figure 1.1. A cone of type Y and a cone of type T

1.1. Sliding almost minimal sets

We would like to have similar theorems for almost minimal sets subject
to a boundary constraint along some boundary set L of dimension 1, where
we would describe E near any point x0 ∈ E∩L, but we shall only be able to
give such a description in some cases. Before we do this, let us explain some
of our definitions relative to almost minimal sets, the sliding condition, and
the sliding Plateau problem.

We give the definitions for arbitrary dimensions and boundaries, because
this will not hurt. In the discussion that follows, L (our boundary) is a given
closed subset of Rn, and d ∈ [1, n] is an integer, the dimension of our sets.
Our putative almost minimizers will be closed sets E ⊂ Rn, with locally
finite d-dimensional Hausdorff measure. That is, Hd(E ∩B(0, R)) < +∞ for
R > 0. We start with the notion of competitors.

Definition 1.1. — Let E ⊂ Rn be a closed set, and let B = B(x, r) be
a closed ball. A deformation of E in B (with sliding boundary L) is a one
parameter family {ϕt}, 0 6 t 6 1, of continuous mappings ϕt : E → Rn,
such that

ϕ(x, t) = ϕt(x) is a continuous function of (x, t) ∈ E × [0, 1], (1.1)
ϕt(x) = x for t = 0 and for x ∈ E \B, (1.2)

ϕt(E ∩B) ⊂ B for 0 6 t 6 1, (1.3)
ϕt(x) ∈ L when x ∈ E ∩ L, (1.4)

and
ϕ1 is Lipschitz on E. (1.5)

A sliding competitor for E in B is a set F = ϕ1(E), where the family {ϕt}
is a deformation of E in B.
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This is reasonably close to the initial definitions of Almgren in [2]; let us
comment on the differences.

Here we are really interested in what happens near the boundary L, but
otherwise we could always take L = ∅, forget about the condition (1.4), and
be in the same conditions as in [2] or [47].

We decided to keep the extra constraint (1.5), because it was put forward
by Almgren and does not hurt. It makes it a tiny bit harder for F to be a
sliding competitor, hence a little easier for E to be an almost minimal set (as
defined below), and our regularity theorems will then be a tiny bit stronger.

In the analogous definition without sliding boundary condition, we took
the habit of defining the ϕt on the whole Rn, but this makes no difference
when there is no condition (1.4), as it would be easy to extend the ϕt from
E to Rn. The case when we work in a complicated domain Ω, and we should
require the ϕt to take values in Ω, will not arise in this paper.

For similar reasons, if we did not have (1.4), we would not need to mention
the whole homotopy {ϕt}, 0 6 t 6 1, because given ϕ1 we could simply
complete the homotopy by taking ϕt(x) = tϕ1(x)+(1−t)x. Because of (1.4),
we need to be a little more careful. Yet, since most of the time in this paper
L will be a line, hence convex, it will often be enough to construct ϕ1 and
complete by convexity.

Definition 1.2. — Let U ⊂ Rn be open, let L ⊂ Rn be closed, and
let h : (0,+∞) → [0,+∞] be a gauge function. This just means that h is
nondecreasing, and that

lim
r→0

h(r) = 0. (1.6)

A sliding (U,L, h)-almost minimal set (of dimension d) is a set E ⊂ U ,
which is closed in U , such that for every compact ball B = B(x, r) ⊂ U ,

Hd(E ∩B) < +∞ (1.7)
and more importantly

Hd(E ∩B) 6 Hd(F ∩B) + h(r)rd (1.8)
for every sliding competitor F of E in B. When h = 0, we say that E is
(U,L)-minimal, or that E is minimal in U , with sliding boundary L.

See for instance [41] for the definition of the Hausdorff measure Hd. Some
simple comments will be useful before we continue. The open set U may be
useful to localize the notion, but U = Rn is already an interesting choice. If
U is not convex, an equally good definition would only require B in (1.8) to
be a compact subset of U that is contained in a ball of radius r; we shall not
see the difference here because all our results will be local.
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The definition of almost minimal sets by Almgren [2] and [47] is essentially
the same as above, but with L = ∅ and hence no constraint (1.4). There is a
slight difference, in the way we do the accounting in (1.8), with the definition
of restricted sets in [2], or the definition of quasiminimal sets in [17] and
further references, which is that here we compare the measures of E and F ,
but we could have compared the measures of E ∩W and ϕ1(E ∩W ), where
W =

{
x ∈ E ; ϕ1(x) 6= x

}
. We took what seems to be the simplest definition,

but our results also work with the slightly different way of accounting. We
refer to [9] for more detail about the alternate definitions in the plain case
without boundary, and why the basic properties that we use are also true
with the other definitions. This is then generalized to the sliding case in [14].

For the main results of this paper, we will take d = 2, L will be a smooth
curve, and even L will almost always be a line. Most of the time, U , L, and
h will be given, and we shall just say that E is a sliding almost minimal set,
or even an almost minimal set, without further reference to U , L, and h.

As far as the author knows, the notion of sliding almost minimal set was
only introduced (at least explicitly) in [11] and [12], even though similar
notions existed in the past. This notion seems to give the best model for
soap films attached to a set L. It comes with an associated Plateau problem:
suppose L is compact for simplicity, start with a closed set E0 such that
Hd(E0) < +∞, and minimize Hd(E), or a similar functional, among all
the sliding competitors E for E0 (say, in a very large ball). This seems like
a natural problem to consider, and it is nice that different initial sets E0
will often yield different solutions (typically, with a different topology or
combinatorics), as it happens in real life. The fact that the infimum may be
0 if E0 is not properly attached, or has lower-dimensional competitors, does
not disturb us. Unfortunately, we do not know whether this Plateau problem
always has a solution, but if it does its minimizers E will be sliding minimal
sets, or almost minimal if we minimize a functional which is different, but
not too much, from Hd.

We claim that our local regularity study applies not only to these mini-
mizers, but to most representations of soap films and bubbles. That is, those
for which one minimizes some form of Hausdorff measure, but not counted
with multiplicity. In other words, the more standard objects like mass mini-
mizing currents are not our concern here. We gladly refer to [18] for recent
impressive and general results on the boundary regularity of those.

The reason why it is hard to prove existence in the sliding context is
that it is not so easy to prove that a given set E is a sliding competitor for
some E0 (essentially, one needs to find a parameterization of E by E0). For
roughly the same reason, most reasonable definitions of minimal sets in the
context of soap films seem to give a less restrictive notion of competitors,
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hence a more restrictive notion of minimal or almost minimal set. Hence the
results of this paper apply to these notions too.

Let us be a little specific. The solutions of the Reifenberg homological
Plateau problem, as in [1, 20, 26], or [45], are sliding almost minimal sets,
because sliding competitors are automatically homology competitors. This
would also be true with Čech homology replaced with singular homology
(only the deformation axioms count), except that with singular homotopy
the existence is not known in general; the rather easy verification is done
in [12], which we also refer to for a little more information on these problems
(leading to the interest of studying sliding almost minimal sets).

Similarly, the supports of the size minimizing currents are also sliding
minimal. Here, we mean the supports of integral currents T of dimension 2,
that would satisfy an equation ∂T = S, where S is a given current of dimen-
sion 1 with ∂S = 0, such as the current of integration on a smooth curve L.
And we minimize the Hausdorff measure of the set where the multiplicity
of the current T is nonzero. The fact that currents that (almost) minimize
size yield sliding (almost) minimal sets stays true in more general situations;
see [12] for the verification.

Then there are the minimal or almost minimal sets that arise from dif-
ferent topological formulations of the Plateau problem, and for which the
author claims that they are probably also sliding almost minimal, but did
not check the details. For instance, Harrison and Pugh introduce in [32]
and [31] a Plateau problem defined in terms of linking conditions. It is quite
probable that if E0 satisfies their various linking conditions and E is a slid-
ing competitor for E0 (said otherwise, if E is the endpoint of a continuous
deformation of E0 as in Definition 1.1), then E also satisfies the same linking
conditions too. This is what one would have to check in order to apply the
results of this paper to the sets of [31] and [32].

Similarly, one can find in [19, 21, 22, 23] solutions to some Plateau prob-
lems; here the competitors of E0 are for instance the limits of injective de-
formations of E, and in order to apply the results of this paper we would
just need to check that these limits of injective deformations are also sliding
competitors E0. Or, in case of bad luck, that in the proofs below, we only
apply the almost minimality of E with deformations that come from such
limits. This looks much more boring than dangerous.

This was the main direct reason for studying the local regularity of slid-
ing almost minimal sets. There is also an indirect justification; the author
believes that the best way to try to prove existence results for the sliding
Plateau problem alluded to above, or its analogue with size minimizing cur-
rents, is by proving some regularity for almost minimal sets first. This is not
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shocking; for the sliding Plateau problem, for instance, we are often able to
produce a good candidate E, as a limit of some well chosen minimizing se-
quence, and limiting theorems allow us to prove that E is an almost minimal
set; it then remains to show that E is itself a competitor for E0, and this will
be easier if we have a good control on E. For instance, proving that there is
a Lipschitz retraction defined on a neighborhood of E and which preserves
L would be very useful. See [15] for more information on this method. A
variant of this justification is what was done by Fang in [27]: we may use
the regularity of the Reifenberg homology minimizers, with the Čech homol-
ogy, to prove that they are also minimizers with singular homology. This is
good because existence is not known in general in the context of singular
homology, since we don’t know whether limits of sets satisfy the homology
constraint.

Let us also advertise for almost minimality, as opposed to minimality, as
being a nicely flexible notion to study. That is, we may want to minimize
a minor variant of the functional Hd(E), such as J(E) =

∫
E
f(x)dHd(x),

with a Hölder function f such that C−1 6 f 6 C, or even J(E) =∫
E
f(x, TE(x))dHd(x), with functions f that depend also on the approxi-

mate tangent d-plane TE(x) to E at x (in a simple enough way). Or even
add terms of lower order (such as the weight of the soap, or the pressure)
to J(E). Minimizers of such functionals are still almost minimal sets, with
a gauge function that depends on the (mild) regularity of f or the other
terms, so we may apply the results of this paper to them. By contrast, it
is unlikely that the corresponding varifolds, for instance, have a locally fi-
nite first variation, which means that results on stationary varifolds, or even
varifolds with finite first variation, and (the author believes) variants of the
Allard theorem, will be very hard to apply. It is easy to believe that such
slightly different functionals could be used to model variants of the soap film
problem.

So we want to study the local regularity of sliding almost minimal sets.
The following notion of coral (or reduced) set will help simplify the state-
ments.

Definition 1.3. — The core of the closed set E (in a given open set
U ⊂ Rn) is the closed support of Hd|E, i.e.,

core(E) =
{
x ∈ E ; Hd(E ∩B(x, r)) > 0 for all r > 0

}
. (1.9)

We say that E is coral, or reduced, when core(E) = E.

It is not so hard to see that when E is almost minimal, its core is also
almost minimal, and that hence it is enough to reduce our attention to coral
almost minimal sets. See Proposition 3.3 of [14]. This makes the statements
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simpler, because we won’t have to worry about additional thin sets of van-
ishing measure that could have nearly dense tentacles, for instance. From
now on we shall always assume that all our (sliding) almost minimal sets are
coral, even though we do not always repeat this. Similarly, we exclude the
empty set (and hence sets of vanishing measure) from our discussions, even
though it is minimal.

Notice however that we do not say that sets E that minimize functionals,
like in the Plateau problems discussed above, are coral. We just say that
their d-dimensional part, or core, is still minimal, so with some luck we can
get a good description of those. For the rest of E, it is very hard to control
it, unless we ask for a more specific way to present E in a clean way, so that
for instance no proper subset of E is a competitor for E. This last way to see
things was the initial way to proceed, in the context of the Mumford–Shah
functional (hence the name “reduced”), but in some cases it is probably
not so easy to pick a competitor E′ ⊂ E which is minimal for inclusion,
especially if we don’t want to deform it first; the reduction to coral sets,
which we choose to do here, is simpler and does most of the job.

The author does not know of many regularity results concerning slid-
ing almost minimal sets near the boundary, especially for d larger than 2.
The issue was taken rather brutally in [14] (see also a more digestible ac-
count in [11]), where some basic properties were proved, such as the local
Ahlfors regularity, rectifiability, and in some dimensions uniform rectifiabil-
ity of these sets under fairly general assumptions. What we will use most
in the present paper is a nice collection of limiting theorems, that we will
take from [14]. For instance, if the sets Ek, k > 0, are coral (see above) and
almost minimal in U with a given gauge function h, and if they converge
(locally for the Hausdorff distance, as will be explained below) to a limit E,
then E is almost minimal with the same gauge function h. In addition,

Hd(E ∩ V ) 6 lim inf
k→+∞

Hd(Ek ∩ V ) (1.10)

for every open set V ⊂ U . This is very useful because it allows many proofs
by compactness. We will recall all these results more precisely when we use
them.

It seems difficult to go much further in a general situation, and in par-
ticular for d > 2, so we now turn to more precise regularity results in very
specific situations, by which we mean when d = 2 and L is a simple set.
When there is no boundary (or we work away from L), we are happy with
J. Taylor’s regularity result from [47] and (a little less) its extension [9, 10]
to higher ambient dimensions. So we shall concentrate on regularity results
near a point of L.
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In [48], J. Taylor gives a good description (similar to the regularity result
of [47]) for sets of finite perimeter in a bounded domain U (say, with a
smooth boundary), that minimize a functional that looks like the perimeter,
multiplied by a suitable constant α ∈ (0, 1] on ∂U . This is quite similar to
what we want to do here, but she works in a different category.

Much more recently X. Fang [27] started a similar study for sliding min-
imal sets (thus, with no more direct constraint on the domains bounded
by E) when n = 3, L is a smooth surface of dimension 2, and E is re-
quired to stay on one side of L. He proved that near any point x0 ∈ L, E is
Hölder-equivalent to a minimal cone. The minimal cones that show up for
this problem are the tangent plane P0 to L at x0, or the union of P0 with
a half plane orthogonal to P0, or the union of P0 with a half set of type Y
orthogonal to P0. More recently, with methods similar to those of [10], he
even proved the more precise C1+ε-equivalence [28]. Also some variants of
this problem, for instance with mixed conditions as in [48], are likely to be
interesting and feasible.

1.2. Towards a classification of singularities

In in the present paper we study on the case of 2-dimensional sets E in
(an open set of) Rn, when the boundary set L is a smooth (at least C1+ε)
curve. In fact, we will first concentrate on the simpler case when L is a line,
and in Section 38 explain rapidly how to deal with the general case. We
would have liked a complete description of all the tangent objects (sliding
minimal cones associated to a boundary which is a line), and then a precise
local description, if possible, in the C1+ε category, in terms of the tangent
cones. If we had all this, we would probably get a good existence result too,
but as we shall see soon, we still have an important missing case.

Again there does not seem to be too much available information on this
specific classification problem. G. Lawlor and F. Morgan give in [36] a list of
expected behaviors of minimal sets along a boundary which is a curve, which
the reader can also find in Figure 13.9.3 (Ten conjectured types. . . ) of [43].
Compared to the presentation below, there are of course common points,
but also some small differences. Also, K. Brakke gives in [5] a description of
minimal surfaces bounded by a curve, which will be rapidly discussed below.

We start the presentation of our result with a list of sliding minimal
cones.

We start with the case when L = ∅. Recall that when n = 3, we have
the full description completed by [47] (but started by Plateau, Lamarle [34],
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and Heppes [33]), which says that the (coral) minimal cones of dimension 2
in R3 are the planes (also called cones of type P), and the cones of type Y
or T defined above.

In ambient dimensions n > 4, the cones of type P, Y, or T are still
minimal, but there are other ones. The union P1 ∪P2 of two planes through
the origin that are orthogonal to each other is minimal, and in [37], X. Liang
showed that this stays true when the two planes are nearly orthogonal. There
is a conjecture of F. Morgan [42] on the precise condition on the angle of
P1 and P2 under which P1 ∪ P2 is minimal; G. Lawlor [35] proved that this
condition is necessary, but we do not know whether it is sufficient. In [38]
X. Liang showed that the product Y × Y of two Y -sets of dimension 1
contained in orthogonal 2-planes is minimal. But there may be many other
ones that we did not guess. Nonetheless [9] gives a reasonable description of
these cones X, that says that X ∩ ∂B(0, 1) is composed of a finite number
of arcs of great circles with constraints on their lengths and how they meet.
We shall be more specific about this in Section 2, because we need the
description.

Now let L be a line in Rn, which we assume contains the origin. We
mentioned all the cones above, because they are still sliding minimal with
the boundary L (there are more constraints on the competitors, hence the
sliding minimality condition is weaker). And so are their translations (the
fact that they are not centered on L does not matter). But the set of planes
that contain L, which we shall denote by P(L), and the set Y(L) of cones
of type Y whose spine is equal to L (or equivalently, which are composed of
three half planes bounded by L), will play a special role, so we give them a
name.

In addition to all of these, we know of two more sliding minimal cones,
and a possible third one. We start with the sets of type H, which are just
the half planes bounded by L. That is, we take any 2-plane P that contains
L, keep one of the two connected components of P \ L, and take its closure
(i.e., add L back). We will denote by H(L) the collection of sets of type H
bounded by L.

The sets of type V (bounded by L) are the unions V = H1 ∪H2 of two
half planes H1, H2 ∈ H(L) which make an angle α ∈ [ 2π

3 , π] with each other
along L. This last means that if ei is the unit vector in Hi that is orthogonal
to L, then 〈e1, e2〉 6 − 1

2 . When α = π, we get a plane of P(L). We denote
by V(L) the collection of sets of type V bounded by L.

Even though this is not needed for the main results of this paper, we
decided to include in Section 39 a proof of the fact that the sets of type H
and V are sliding minimal, even with a possibly larger boundary set L and
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the variant of Definition 1.1 where we do not require (1.5), because this was
apparently not written before.

The following sets were suggested by X. Liang (in addition to those of [36]
and [43]) as possible sliding minimal cones. Let Q be a cube (in R3), and
assume that one of the great diagonals of Q is contained in L. Then let X
denote the (positive) cone over the union of the edges of Q; X will be called
a set of type Q. Some experiments (including, with soap) suggest that the
sets of type Q are sliding minimal, even though we know that they are not
plain minimal (i.e., with no boundary constraint) because of the Plateau–
Lamarle–Heppes–Taylor characterization above. But we do not have a proof
of sliding minimality.

Again there may be lots of other sliding minimal cones that we do not
know about, but at least we give in Section 2 a combinatorial description of
these cones, similar to the one we have for plain minimal cones.

We now turn to our tentative classification of singularities. By this we
mean a local description of hopefully every sliding minimal set E, near any
point x0 ∈ E ∩ L. Of course this description will depend on the type of
minimal cones X that approximate E on small balls centered at x0. This
may mean, on the blow-up limits of E at x0, but we prefer to go directly to
a quantitative statement with an approximation of E by a minimal cone in
a given ball B(x0, 10r0) ⊂ Rn (we allow any ambient dimension n).

We shall assume, for the following discussion, that

E is a coral sliding (B(0, 10r0), L, h)-almost minimal set, (1.11)

with a gauge function h such that

h(r) 6 Chrβ for 0 < r 6 10r0, (1.12)

for some β ∈ (0, 1] and some constant Ch > 0 such that Chrβ0 is small
enough. Let us say,

Chr
β
0 6 ε0 (1.13)

for some small ε0 > 0 that we get to choose, depending in particular on n
and β.

We further assume that L is a line through the origin; we shall explain
in Section 38 that similar statements hold when L is a curve of class C1+ε

which is flat enough in B(0, 10r0), but let us try to keep things simple when
we can.

We assume that 0 ∈ E, and that we have a sliding minimal cone X,
also associated to the sliding boundary L, which is close enough to E in
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B(0, 10r0). We shall systematically measure such things with the local nor-
malized variants dx,r of the Hausdorff distance between sets, defined by

dx,r(E,F ) = 1
r

sup
y∈E∩B(x,r)

dist(y, F ) + 1
r

sup
z∈F∩B(x,r)

dist(y,E) (1.14)

when E and F are (nonempty, and most of the time closed) sets, x ∈ Rn, and
r > 0. By convention supy∈E∩B(x,r) dist(y, F ) = 0 when E∩B(x, r) is empty,
and similarly for supz∈F∩B(x,r) dist(y,E). This distance does not exactly
satisfy the triangle inequality, but it localizes well and is very convenient to
use. So we assume that

d0,10r0(E,X) 6 ε0. (1.15)
We would love to prove that under these assumptions and if ε0 is small
enough, E is C1+β1-equivalent to X near B(0, r0), say. By this we mean
that there is a constant β1 > 0 (that depends only on n, β, and maybe on
X) and a C1+β1 diffeomorphism Φ : Rn → Rn, such that Φ(L) = L, and

E ∩B(0, r0) = Φ(X) ∩B(0, r0). (1.16)
Usually we also require a uniform control on the C1+β1 (uniform) norms of
Φ and Φ−1 and that for some η > 0 that can be chosen as small as we want
in advance (and then ε0 will depend on η),

|Φ(x)− x| 6 ηr0 and (1− η)|x− y| 6 |Φ(x)− Φ(y)| 6 (1− η)|x− y|
for x, y ∈ Rn, (1.17)

so that (1.16) is just a little weaker than requiring that E∩B(0, r0) ⊂ Φ(X)
and Φ(X ∩B(0, 2r0)) ⊂ E, which we could get with the same proof anyway.

We shall see soon that the situation can be more complicated than this,
depending on the approximating minimal cone X.

We start our discussion with the simplest case when X is a half plane
bounded by L. In this case we have the following perfect analogue of J. Tay-
lor’s theorem in [47].

Theorem 1.4. — Let E and X ∈ H(L) satisfy the assumptions above,
and in particular (1.11), (1.12), (1.13), and (1.15). If in addition ε0 is small
enough, depending on n, Ch, β and η, then E is C1+β1-equivalent to X near
B(0, r0), for some β1 which depends only on n and β.

Let us comment on this statement before we go to more complicated
cases. See Theorem 31.1 for a slightly more general statement and then the
proof (given the rest of the paper). Notice that the C1+β1 -equivalence just
means that near B(0, r0), E is a C1+β1 surface bounded by L, and in fact
a Lipschitz graph over the half plane X, with a small Lipschitz constant. It
may appear in our statements that we use the Reifenberg parameterization
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theorem from [45], or one of its later variants, but here we play in the C1+β1

category, where this theorem is much easier to prove than in its original, less
regular setting. That is, here it essentially amounts to checking that there
is a tangent plane P (x) to x at every point of E \ L, and that the direction
of P (x) is Hölder continuous on E. In later statements, it would be Hölder
continuous on each face of E.

Theorem 1.4 is an extension of Corollary 1.7 on p. 344 of [13], which
essentially proves the same thing with a biHölder equivalence only. The big
difference is that we now prove an additional decay estimate on some quan-
tities that measure closeness to planes or half planes. We shall discuss the
proof ingredients in the next subsection.

Notice also that Theorem 1.4, and already Corollary 1.7 in [13], say some-
thing on the topology of E in B(0, r0): it has no holes or bubbles, and it
stays attached to L in the simple way that one would expect. Plus we have
some metric estimates on these properties.

Finally observe that Theorem 1.4 implies a weaker statement with blow-
up limits. That is, if E satisfies (1.11) and (1.12), L is a line through the
origin (but a smooth curve would work too), and if one of the blow-up limits
of E at 0 ∈ E is a half plane X ∈ H(L), then E is C1+β1 -equivalent to X
in some small ball centered at 0, and in particular E has a tangent cone (a
unique blow-up limit) at 0 equal to X. This is easy to check: just apply the
theorem in a small enough ball, where (1.15) holds.

Our next case is not really new, in the sense that it concerns the same
minimal cones that were known to work away from the boundary. Suppose
that X is a plain minimal cone that satisfies the full length property. By
plain, we mean with no boundary condition, or equivalently with L = ∅,
and the full length property is the sufficient condition given in [10] for the
J. Taylor theorem to be satisfied for X; let us not give the definition for the
moment, but only recall that the cones of P ∪ Y ∪ T (i.e., the cones of type
P, Y, and T as above) satisfy this. We say that a cone X is fully transverse
to L when X ∩ L = {0}.

Theorem 1.5. — Let X be a plain minimal cone that satisfies the full
length property of [10] and is fully transverse to L, and suppose that E and
X satisfy the assumptions above, and in particular (1.11), (1.12), (1.13),
and (1.15). If in addition ε0 is small enough, depending on n, Ch, β, X,
and η, then E is C1+β1-equivalent to X near B(0, r0), for some β1 which
depends only on n, X, and β, but where we no longer require that Φ(L) = L
in the definition of C1+β1-equivalent.
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The dependence on X is through some angles and the full length param-
eters, but we do not worry too much about it because in practice we can
discretize (i.e., use a finite number of cones X). See Section 36.1 for a slight
extension and the proof, which consists in reducing to the case when there
is no boundary. We cannot require that Φ(L) = L here, because E could be
a set of type T, for instance, with a center very close to 0, but not on L.
Other cases of this type are treated in Section 36, but let us return to the
main simple cases.

The last case that works almost perfectly is when X is a generic cone of
type V, by which we mean that the two half planes H1 and H2 that compose
X (as in the definition above) make an angle α ∈ ( 2π

3 , π), thus excluding
planes and what we shall call sharp V-sets.

Theorem 1.6. — Theorem 1.4 is still true when X is a generic cone of
type V, but now ε0 depends also on the angle of the two half planes Hi ∈ H
that compose X.

See Theorem 32.1. Forgetting about the complicated mapping Φ, the
conclusion just means that near B(0, r0), E is composed of two faces F1 and
F2 bounded by L, and that each Fi is a C1+β1 and Lipschitz graph over the
corresponding half plane Hi of X, with a Lipschitz norm which is as small as
we want, provided that we take ε0 accordingly small. In particular the two
faces Fi meet “transversally”, with angles that are as close to α as we want.
However, we do not say that Φ is conformal along L, or in simpler terms the
angle that the two Fi make at x ∈ L is allowed to depend on x, although in
a slow, Hölder way. See Figure 1.2 for a hint of what E looks like in B(0, r0).

E

L
0

Figure 1.2. E near a generic cone of type V

As in the case of H, Theorem 1.6 also contains topological information
on E that was not obvious a priori. In fact, the theorem excludes some
behaviors that could have been considered possible, such as the behavior
that is described for sharp V-cones below. Here the methods of [13] are
no longer enough, because the slow variation of the approximating minimal
cones, which follows from the decay estimates in the present paper, seem to
be needed to exclude these behaviors.

As before, the theorem implies that if E satisfies (1.11) and (1.12) and
one of the blow-up limits of E at 0 ∈ E is a generic cone X of type V, then
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E is C1+β1-equivalent to X near 0, and in particular X is the tangent cone
to E at 0.

The first case where we get into some (moderate) trouble is when X is
a plane that contains L (and this is why we required X to be transverse in
Theorem 1.5). In the present case E may be attached to L along just about
any closed subset of L, and not meet the rest of L. Along E∩L, E may have
a crease, i.e., have different tangent half planes, as depicted by Figure 1.3.

 

0

E L

U

L
E L

U

E lies above L here

This is also the section of E by a vertical plane

Figure 1.3. Behavior of E near a plane through L

That is, let X be a plane that contains L, and assume otherwise that E
satisfies the same assumptions as for Theorems 1.4–1.6. We claim that if ε0 is
small enough, depending on n, Ch, β and η, we have the following description
of E in B(0, r0). First, there is an η-Lipschitz function ψ : P → P⊥ such that
E∩B(0, r0) = Γψ∩B(0, r0), where Γψ denotes the graph of ψ. In addition, ψ
is of class C1+β1 on (P ∩B(0, r0)) \ (E ∩L), with a uniform Hölder estimate
for ∇ψ on P ∩ B(0, r0) \ (E ∩ L) (with the geodesic distance). Thus ψ = 0
on L∩E∩B(0, r0) ⊂ P , and it has half derivatives from both accesses along
E∩L, but that may be slightly different from each other at interior points of
E ∩L. And near interior points of E ∩L where ∇ψ had two different limits,
E can be described by Theorem 1.6. See Theorem 33.1 for more details.

Notice that here E is topologically the same as P , but not always in
the C1 category. The description above is not shocking. Consider a nice
deformation Φ of Rn that moves points downwards a little, sends the set E
depicted in Figure 1.3 to the plane E′ = P , and L to a new boundary L′ that
coincides with L on E ∩L; we know that P is minimal, also with the sliding
boundary L′, and we expect that E = Φ−1(P ) will stay almost minimal if
Φ sufficiently flat. See Figure 1.4.

We have the same sort of result when X is cone of type Y or T, and one of
the two half lines (say L+) that compose L \ {0} is contained in the interior
of a face of X. In this case, we have the same description as in the previous
case on a small open cone around L+. On the rest of Rn, we can proceed as
in the transverse case above. The argument also works when X is a sliding
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0E' L'

UL'
E' L'

U

Here E' still lies above L'

E' = P

Figure 1.4. The set E′ = Φ(P ) is minimal because it is a plane

minimal cone that satisfies the full length property, where this time the full
length property is as in Definition 4.1 below. See Section 36.2.

Our next case is whenX is a sharp V-cone, which means thatX = H1∪H2
for some half planes H1, H2 ∈ H that make a 2π

3 angle. See Theorem 34.1.
The difference with the generic case is that now E can partially detach itself
from L, along a curve of Y-points of E \ L, as suggested by Figure 1.5.

That is, assume now that X is a sharp V-cone and that the other as-
sumptions of Theorems 1.4–1.6 are satisfied. We claim that in B(0, r0), we
have the following description of E.

First, there is a curve γ, which is the graph of some function g : L →
L⊥ that is both η-Lipschitz and of class C1+β1 , such that every point of
γ ∩B(0, 2r0) \ L lies in the set EY of points of E \ L that are type Y. This
means, points x ∈ E \ L where E is tangent to a Y set. And at points
x ∈ γ ∩ B(0, 2r0) ∩ L, x has a tangent cone V (x) ∈ V(L), which may be
generic (at interior points of γ ∩ L), but always with an angle close to 2π

3 .
The curve γ will play the role of a spine for E that splits E ∩ B(0, r0) into
three faces that we try to describe now.

E

L 0
EY

generic V here Sharp V-sets tangent here Thin triangular face

Figure 1.5. The set E near a sharp V set

Denote by ei, i = 1, 2, the unit vector in Hj that is orthogonal to L, set
e3 = −(e1 +e2), and denote by H3 the half plane bounded by L and pointing
in the direction of e3. Thus H1, H2, and H3 would form a Y-set. Then denote
by Pi, 1 6 i 6 3, the plane that contains Hi, and by πi the orthogonal
projection on Pi. There are three sets Ai, 1 6 i 6 3, with Ai ⊂ Hi, and three
functions Ψi : Ai → P⊥i which are both η-Lipschitz and of class C1+β1 , so
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that if Fi denotes the graph of ψi, then E∩B(0, r0) = (F1∪F2∪F3)∩B(0, r0).
The two faces F1 and F2 are C1+β1 surfaces bounded by γ, which means in
particular that for i = 1, 2, Ai is the closure of the component of Hi \ πi(γ)
that leaves furthest from L. In the simplest case when γ just leaves L on one
side, the face F3 looks like a thin triangular wall that connects L to EY , but
in general it may have infinitely many connected components. The face A3
is bounded by π3(γ \L) on one side, and by L \ γ on the other side, and F3
is bounded by γ \ L on one side, and L \ γ on the other side.

Hopefully this description (together with Figure 1.5) gives a good idea of
what E looks like near 0. Another way to see it would be to say that E is C1-
equivalent to a set of type Y, but truncated by the line L. This is also why
the description above looks logical: we could deform the set of Figure 1.5, a
little as we suggested in Figure 1.4, by a nice mapping Φ that sends E to a
subset E′ of a cone of type Y, but truncated by the curve L′ = Φ(L). It is
not too hard to believe that Φ(E) is minimal with the sliding boundary L′,
and that if Φ is nice enough, E is still sliding almost minimal. See Figure 1.6.

0
E'Y

L' L'

E'Y

E'

Figure 1.6. The image E′ = Φ(E) is probably minimal because it is a
truncated Y set

A priori there was a possibility that the sort of behavior described here
near sharp V sets could also happen near generic V sets, or even planes that
contain L. This was apparently suggested in [5], but we claim that this does
not happen.

This was the most interesting case that we can treat for the moment.
Notice that this time E does not even have the same topology as its model
X. All this will be discussed a little more and proved with Theorem 34.1.

Remark 1.7. — In the descriptions above, the fact that we consider gen-
eral sliding almost minimal sets helped us claim that we probably have the
right description, but this hides the fact that when E is sliding minimal,
there is probably some additional rigidity in the problem, that the author
does not understand at all, but that prevents the most complicated behav-
iors described above (near planes that contain L and sharp V sets) to occur.
That is, planes could become V sets and sharp V sets could generate a curve
γ of points of type Y that leaves L, but no complicated hesitating limit sets
would occur.
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Now we turn to the main case that we do not control, which is when
X ∈ Y(L) is a cone of type Y with a spine equal to Y . Assume that one
of the blow-up limits of E at 0 is the cone X ∈ Y(L), and try to study E
near 0.

The cone X has the full length property (as in Definition 4.1; see Theo-
rem 37.1), so we’ll see in Theorem 22.2 that E has a tangent set of type Y
at the origin, but nonetheless we do not have enough control on balls that
are not centered on L, to give a good description of E near 0. In this case,
we expect that E looks like (and in particular has the topology of) a cone
of type Y, but with little creases (like in the case when X was a plane that
contains L) along parts of L, but at this point we cannot exclude other, less
beautiful options.

If the author had to guess the behavior of E near 0, he would start from
a set Y0 of type Y, then draw a curve L0 tangent to E at 0, not necessarily
entirely drawn on Y0 (but it is more fun to travel on the various faces of
Y0). See the strongly exaggerated Figure 1.7 (left). Then he would send Y0
and L0 to E = Φ(Y0) and hope that if Φ is gentle enough, E is still almost
minimal with the sliding boundary L = Φ(L0) depicted grossly by Figure 1.7
(right). The second hope is that nothing worse than that ever happens with
sliding almost minimal sets. Figure 1.8 shows four successive sections of our
candidate E, and (below) two sections that could a priori exist, coming from
a more complicated structure of E (but we hope not). We return to this in
Section 35.

L   leaves Y  here0 0

0L
0Y

E leaves L herepossible creases here

L

E

YE

YE
YE

Figure 1.7. Left: A minimal set Y0 and a boundary curve. Right: The
sliding almost minimal set E = Φ(Y0).

Let us also say why the author believes that this is the main bad case.
Of course there are other cones X for which we have the same problem. For
instance, X could be a set of type T, with a spine that contains a half of L.
But such cases should be similar, in the sense that if we understand the case
of X ∈ Y(L), we can probably deal with these other cases by restricting to
cones around a half of L first.

Now there are possibly many other cones X that one should consider,
but fortunately the points x ∈ E ∩L where x has an exotic blow-up limit X
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LEY& EY

L EY

L EY

L

Four vertical sections of E, seen from the right

LEY& EY

L

EY

Two vertical sections of E (unlikely)

LEY& EY

L EY

L EY

L

Four vertical sections of E, seen from the right

LEY& EY

L

EY

Two vertical sections of E (unlikely)

Figure 1.8. Four sections of E and two less probable sections

like this are isolated, so even though we may not have a very good control
on E precisely at those points (especially if X does not satisfy the full length
property), we can probably still get some control, by restricting to concentric
annuli where there is no exotic point. That is, the author believes that X ∈
Y(L) is the most complicated case because it may happen on a large set. See
Section 36.3 for a slightly longer discussion.

1.3. Decay for the density excess and approximation by cones

Let us now describe elements of the proofs and estimates that lead to
the results above. In addition to the general regularity results of [14] that
were mentioned above, the key ingredient in the proofs will be related to the
monotonicity of density, or a variant that will be discussed soon. This is not
so different in spirit from what is was done far from the boundary, in [47]
and [10].

Let E be a coral sliding (U,L, h)-almost minimal set, and assume to
simplify the discussion that L is a line through the origin. Define, for x ∈ E
and r > 0 such that B(x, r) ⊂ U (we shall not need the other pairs) the
density

θ(x, r) = r−2H2(E ∩B(x, r)). (1.18)
The local Ahlfors regularity of E says that C−1 6 θ(x, r) 6 Cr when x ∈ E
and B(x, 2r) ⊂ U , and it is proved in [14] that θ(x, · ) is nondecreasing when
x ∈ L and E is sliding minimal. When x ∈ L and E is merely sliding almost
minimal (but h satisfies a Dini condition), θ(x, · ) is still nearly nondecreas-
ing; see Theorem 28.7 in [14], quoted as (19.10) below, for a precise estimate.
The basic idea for the proof is the same as in the standard case, which is to
compare E ∩B(x, r) to the cone (centered at x) over E ∩ ∂B(x, r); the fact
that this cone is a limit of competitors for E is still true here, because the
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deformations that we generally use to prove this are radial and L is a cone.
This is the reason why we require x to lie in L for the near monotonicity
property; we shall return to this issue below.

Because of the near monotonicity, the limit

θ(x) = lim
r→0

θ(x, r) (1.19)

exists. Our main ingredient for the control of E on balls that are centered
on L is a decay result for the density excess f that we define now. Suppose
that 0 ∈ E ∩ L, and set

f(r) = θ(x, r)− θ(x) for 0 < r 6 dist(0,Rn \ U). (1.20)

Here we say that f decays like a power, as soon as h is small enough and E
is close enough to a good minimal cone.

Theorem 1.8. — Let L be a line through the origin, U an open set in
Rn, r1 > 0 such that B(0, r1) ⊂ U , and E a coral sliding (U,L, h)-almost
minimal set, with a gauge function h such that h(r) 6 Chrβ for 0 < r 6 r1.
There exist constants ε0 > 0 and a ∈ (0, 1), that depend only on n and β,
such that if in addition Chrβ1 6 ε0 and there is a minimal cone X (centered
at 0), of type P, Y, T, H(L), or V(L), such that

H2(X ∩B(0, 1)) = θ(0) := lim
r→0

θ(0, r) (1.21)

and
d0,r1(E,X) 6 ε0, (1.22)

then
f(r) 6 10−10(r/r1)a for 0 6 r 6 r1/2. (1.23)

Of course 10−10 could be replaced with any small constant, but ε0 would
have to be made even smaller.

In fact, there is a notion of (sliding) full length property for sliding
minimal cones, that will be explained in Section 4 (see in particular Def-
inition 4.1), and Theorem 1.8 remains valid for any minimal cone X that
satisfies this full length property (and satisfies (1.21) and (1.22) as above).
Then ε0, C2, and a depend also on X through its full length parameters. It
just turns out that the standard cones mentioned above all satisfy the full
length property (see Theorem 37.1), so that Theorem 1.8 follows from its
generalization, Theorem 22.2 below. See Section 37 for the final steps of the
verification of full length for the standard cones.

Here and below, we just found it easier to say that our constants depend
on n, rather than trying to check whether this is really true.
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We like the density excess f because it decays and at the same time
controls the geometry of E. We give the basic consequence here, comment
and explain some ideas about the proofs of both results, and refer to more
specific statements later.

Theorem 1.9. — Let U , L, h, E, and r0 satisfy the assumptions of the
previous statement. Then there is a cone X0 of type P, Y, T, H(L), or V(L),
centered at the origin, such that H2(X0 ∩B(0, 1)) = θ(0) and

d0,r(E,X0) 6 c(ε0)(r/r1)a/4 for 0 < r 6 r1. (1.24)

Here ε0 and a ∈ (0, 1] depend only on n and β, and c(ε0) depends also on ε0,
but given n and β, we can always choose ε0 so small that c(ε0) is as small
as we want.

As before, there is a similar statement when X is a full length minimal
cone, and then β3 and c(ε0) depend also on the full length parameters for
X; see Theorem 22.2. Both Theorem 22.2 and Theorems 1.8 and 1.9 will be
proved in Section 22 (using the earlier sections).

The presentation of Theorems 1.8 and 1.9 as coming one after the other
is slightly misleading; for technical reasons we will need to prove the two
of them together, event though there are two main pieces, Proposition 17.2
that brings decay for f and Theorem 19.1 that gives a geometric control.
We will return to this in detail in Section 22. Only a simpler piece of Theo-
rem 1.8, Corollary 18.2, will be proved directly from the decay estimate in
Proposition 17.2.

Thus E has a unique tangent cone (namely X0) at 0, of density θ(0), and
we even have an estimate on how fast r−1E tends to X0 in the unit ball. Of
course X0 may be slightly different from X, but not so much because they
both approximate E well in B(0, r0/2). In the specific case of Theorem 1.9,
it is even of the same type as X, because the types are determined by a finite
number of densities.

In both statements we required the density of X to match the density
θ(0) of E; if instead H2(X∩B(0, 1)) > θ(0), and even in the plain case (with
no boundary), that fact that the density θ(0, ρ) may vary a lot between 0
and r0 seems to prevent us from proving any good quantitative estimate.

The precise assumption that h(r) 6 Chr
β0 is not vital; a slightly slower

decay, like h(r) 6 C
[

ln
( 1+r

r

)]−B for some large B, would be enough to get a
roughly similar decay for f(r) and d0,r(E,X(r)), but we shall skip the com-
putations and refer to a similar statement in [10], where the computations
were done that we may always copy. Also see Section 38 for a discussion of
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what happens when L is a smooth curve through the origin, rather than a
line.

We now say a few words about how we intend to prove Theorems 1.8
and 1.9. Let E and r0 be as in the statements; the estimate (1.23) will follow
from a differential inequality like

rf ′(r) > af(r)− q(r), (1.25)

where a > 0 is a small constant that depends on the geometry (including the
full length constants) and q(r) is a small error term that contains the con-
tribution of the gauge function h. This inequality will be proved for almost
every r 6 r0, say, and then integrated to get (1.23). See Proposition 17.2 for
the statement, and Section 17 for how to derive (1.23) from that statement.

Notice that the near monotonicity comes from a similar statement with
a = 0. This means that when f(r) > 0, we have to improve on our proof
of near monotonicity and save a quantity comparable to f(r). Recall that
for the near monotonicity we essentially compare E with a cone; we will
thus have to find a better competitor than the cone. And indeed the main
construction of the paper will be the construction, for almost every r 6 r0, of
a new competitor for E, which is at least as good as the cone over E∩∂B(0, r)
and even significantly better if E ∩ ∂B(0, r) is far from “optimal”.

There is one basic case where we can do better than the cone, which
is when E ∩ ∂B(0, 1) is composed of a simple net of Lipschitz curves with
small constants (understand, small Lipschitz perturbations of geodesics), but
which are not geodesics. Then the cone is composed of small conic pieces that
we can see as graphs of homogeneous functions defined on triangular sectors,
and in this case we can replace these homogeneous functions with harmonic
functions with the same boundary values, and save some surface measure
if the Lipschitz curves are far from geodesics. Here we use the fact that for
small Lipschitz graphs, graphs of harmonic functions are almost as good as
minimal surfaces.

The next basic case where we can save some area is when there is a net
of curves contained in E ∩ ∂E that has some good separation properties,
but is more complicated than a simple net of Lipschitz graphs with small
constants, like the net of curves suggested above. In this case, we prove that
we can replace E ∩ ∂E with a simpler net, so that we can still use graphs
to construct competitors, and moreover save some area when we compare
to the cone (because the net of Lipschitz curves, even though not entirely
contained in E, is also somewhat shorter).

We combine these two estimates with a third one, which is a little more
surprising, and corresponds to the case when E ∩ ∂B(0, r) is essentially a
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simple net of geodesics, but not necessarily arranged with the same angles
and positions as K = X ∩ ∂B(0, 1). In this case the only way we found we
could do better than the cone over E ∩ ∂B(0, r) was to use competitors of
deformations of X and the definition of full length, which is the reason why
we put it in the assumptions on X. Fortunately this combinatoric property,
which is not unlike the existence of epiperimetric inequalities that can be
found in the work of Reifenberg, Taylor, and others, is satisfied by the most
familiar minimal cones.

The construction of a suitable net of curves, and then of competitors for
E, is done in Sections 5–16, which are then followed by estimates that lead
to Theorems 1.8 and 1.9, done in Sections 17–22.

All this works well, in a way which is similar to what was done in [10]
in particular, and we get good decay estimates and then approximation by
minimal cones, but only for balls that are centered on L. But for the classi-
fication and regularity results, it seems that we also need a uniform control
on balls that are centered a little off L. However, for x ∈ E \ L, the den-
sity function θ(0, r) defined by (1.18) is no longer nondecreasing in general,
even when E is minimal. For instance, E could be a half plane bounded
by L and that contains x, in which case θ(x, r) = π for r 6 dist(x, L) and
limr→+∞ θ(x, r) = π/2.

Because of this, a variant of θ was introduced in [13], which at least is
optimally monotone in some simple cases. Suppose that 0 ∈ E \ L, and
denote by S the shade of L, given by

S =
{
y ∈ Rn ; λy ∈ L for some λ ∈ [0, 1]

}
. (1.26)

The substitute for θ(0, r) is the slightly larger function F defined by

F (r) = r−2
[
H2(E ∩B(0, r)) +H2(S ∩B(0, r))

]
. (1.27)

One of the main points of [13] is that when E is a sliding minimal set on
U ⊃ B(0, r0), the function F is nondecreasing on [0, r0); see Theorem 1.2
there. Similarly, F is nearly monotone when E is a sliding almost minimal
with a small enough gauge function h.

Thus even though θ(0, r) itself is not always monotone where r >
dist(0, L), we add an increasing term r−2H2(S ∩B(0, r)) that improves the
situation. Of course this property is useful also because there are realistic
situations where F is constant, so we may believe that we didn’t add too
much. Here are two instances of this. The first one is when E is a half plane
bounded by L (and that contains 0 because we assumed that 0 ∈ E). The
second case is when E a truncated cone of type Y, i.e., when E = Y \ S,
where Y ∈ Y(L) is a cone of type Y centered on 0 and that contains L. In
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both cases, F (r) is just the (constant) density of the completed set (a plane
or the cone Y ∈ Y).

We shall not use the more general dimension d of E that was allowed
in [13], or the more general form of L, and this is rather good because this
makes the proof somewhat easier. But we shall use some of the variants
or consequences of Theorem 1.2 in [13], because we need to know that for
sliding almost minimal sets, F is nearly monotone, and that E is close to
a half plane or a truncated cone of type Y through L whenever F is nearly
constant. We shall be more specific later, during the proof.

We now state analogues of Theorems 1.8 and 1.9 for balls centered at
0 ∈ E \ L. We shall only worry here about two cases, when E is close to a
half plane or to a V-set in B(0, r0), and not more complicated sets for which
the near monotonicity of F does not really help.

Theorem 1.10. — Let L be a line that does not contain the origin,
U an open set in Rn, r0 > dist(0, L) such that B(0, 10r0) ⊂ U , and E a
coral sliding (U,L, h)-almost minimal set, with a gauge function h such that
h(r) 6 Chr

β for 0 < r 6 10r0. Also let H denote the half plane bounded
by L that contains the origin. There exist constants ε0 > 0, C4 > 1, and
β4 ∈ (0, β], that depend only on n and β, such that if in addition Chrβ 6 ε0
and

F (3r0) 6 π + ε0 (1.28)
or

d0,3r0(E,H) 6 ε0, (1.29)
then

F (r1)− π 6
(

2r1

r2

)β4

[F (r2)− π] + C4Chr
β4
1 rβ−β4

2 for 0 6 r1 6 r2 6 r0

(1.30)
and in addition

d0,r(E,H) 6 c(ε0)
(
r

r0

)β4/4
+ C4

(
Chr

β
)1/4 (1.31)

for dist(0, L) 6 r 6 r0, where c(ε0) can be made as small as we want by
choosing ε0 above small enough (depending on n and β).

Here we do not try to control E in B(0, r) for r < dist(0, L), but this
would follow easily from the regularity far from the boundary, since (1.31)
for r = dist(0, L) shows that E lies close to a plane in B(0,dist(0, L)). See
Section 31 for this type of argument.

This is a combination of Theorem 24.1 for (1.30) and Theorem 30.1
for (1.31). In turn Theorem 24.1 comes from the differential inequality (24.13)
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in Proposition 24.3, which will be obtained as before by constructing an ap-
propriate competitor.

For the next result, recall that V(L) is the set of unions V = H1 ∪ H2
of two half planes bounded by L and that make an angle at least 2π

3 along
L. Also, when 0 /∈ L and r > dist(0, L), denote by Y(L, r) the set of cones
Y of type Y that are centered on 0 and contain L ∩ B(0, r). Finally, for
Y ∈ Y(L, r), denote by Y t the truncated cone Y \ S; the truncation is not
always perfect outside of B(0, r), because the spine of Y may be different
from L, but all we shall care about is the intersection with B(0, r), where
we neatly remove from Y ∩B(0, r) a sector bounded by L and contained in
a face of Y .

Theorem 1.11. — Let L be a line that does not contain the origin,
U an open set in Rn, r0 > dist(0, L) such that B(0, 10r0) ⊂ U , and E a
coral sliding (U,L, h)-almost minimal set, with a gauge function h such that
h(r) 6 Chr

β for 0 < r 6 10r0. There exist constants ε0 > 0, C5 > 1, and
β5 ∈ (0, β], that depend only on n and β, such that if in addition Chrβ 6 ε0,

F (0) := θ(0, 0) := lim
r→0

θ(0, r) = 3π
2 (1.32)

and
d0,2r0(E, V ) 6 ε0 (1.33)

for some set V ∈ V(L), then

F (r1)− 2π
3 6

(
C5r1

r2

)β5 [
F (r2)− 2π

3

]
+ C5Chr

β5
1 rβ−β5

2

for 0 6 r1 6 r2 6 r0 (1.34)
and in addition, for dist(0, L) 6 r 6 r0 there is a set Y = Y (r) ∈ Y(Y, r),
such that

d0,r(E, Y t) 6 c(ε0)
(
r

r0

)β4/4
+ C4

(
Chr

β
)1/4

. (1.35)

As before, the constant c(ε0) can be made as small as we want by choosing
ε0 small enough (depending on n and β).

This time (1.34) will come from Theorem 24.2 and (1.35) from Theo-
rem 30.3, and the differential inequality that leads to Theorem 24.2 will be
proved in Proposition 24.4.

The statement looks a little strange because (1.33) seems to authorize a
set V ∈ V(L) with an angle (much) larger than 2π

3 . But in effect, the fact that
the density θ(0) of E at the origin is 3π

2 forbids this, and indeed (1.35) with
r = r0 implies that E looks like a truncated Y-set in B(0, r0). This last is not
incompatible with (1.33) (provided that V is almost sharp), and the reader
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should also keep in mind that the present situation is most interesting when
dist(0, L) is much smaller than ε0, so that (1.33) only gives a rough idea of
what E looks like in B(0, r0), while (1.35), at least when dist(0, L) 6 r � r0,
is often much more precise.

It seems that we find out that V should be nearly sharp only after the
proof, but we could also have guessed this earlier, by proving (as we will do
for the proof of Theorem 1.6, for instance) that when E is close enough to
a generic V-set, or a plane, there is no point of type Y in E \ L near L. See
Lemma 32.2.

The proof of Theorem 1.11 is in the same spirit as for balls centered
on L; some inequalities are harder to get because of the off-centered balls,
and also we were forced to restrict to two simpler situations (in terms of
combinatorics) because otherwise the near monotonicity of F is too far from
optimal. On the other hand the general construction is the same, and the
combinatorics of the net of curves is simpler. In particular there is a notion
of full length here too, which will be adressed in Sections 27 and 28.

We refer to the table of contents for more detail on the plan of the paper.

1.4. Notation that will be used extensively

As usual, C is a generic notation for a constant, often large, and whose
value may change from line to line. Similarly, c is a small positive constant;

• B(x, r) is the open Euclidean ball centered at x with radius r > 0;
• B = B(0, 1) and S = ∂B(0, 1) are the unit ball and sphere; Br = B(0, r)
and Sr = ∂B(0, r);

• L is our sliding boundary. Except in Section 38, L is a line, not always
through the origin;

• E is our sliding (U,L, h)-almost minimal set, with sliding boundary L
and gauge function h;

• H2 denotes the Hausdorff measure of dimension 2;
• θ(x, r) = r−2H2(E∩B(0, r)) see (1.18); then θ(r) = θ(0, r) = r−2H2(E∩
B(0, r));

• F (r) = r−2[H2(E ∩B(0, r)) +H2(S ∩B(0, r))
]
where S is the shade of

L; see (1.26) and (1.27) or later (23.6);
• X is a sliding minimal cone (centered at 0), often the one that approx-
imates E well, and K = X ∩ ∂B(0, 1);

• H = H(L), P, P(L), Y, Y(L), T are special sets of minimal cones, see
Subsection 1.2;

• dx,r(E,F ) is our normalized local Hausdorff distance between E and F ;
see (1.14);
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• MC(L) is the set of minimal cones with sliding boundary L; see (2.1);
• V = V0 ∪ V1 ∪ V2 is the set of vertices of K = X ∩ ∂B(0, 1) (includ-
ing artificial ones in V2) in the standard decomposition of Section 3
(see (3.5));

• the arcs Ci, i ∈ I, are the geodesics that compose K in that standard
decomposition above;

• distS is the geodesic distance on the sphere S,
• ρ(a, b) denotes the geodesic from a to b in S (see (3.4));
• v(a, b) is the unit vector that gives the direction of ρ(a, b) at a;
• η(X) controls the size of the smallest arcs of X, or its distance to points
`, see (4.3);

• Anglea(x, y) = Angle(v(a, x), v(a, y)) is an angle of geodesics at a; see
near (10.12).

• τ and D±(τ) (small disks where we do surgery) appear in Section 6
• τ4, an extremely small number rather than a constant, appears in (14.2)
• τ1 and λ are rapidly discussed in Section 5, but appears in Section 8.
• ε appears in (5.3) to measure the distance to X, then is used all the
time. It is chosen extremely small, at the end of the proof.

2. Minimal cones bounded by a line

In this section we give a description of the sliding minimal cones of di-
mension 2 in Rn, associated to a sliding boundary L which is a line through
the origin. Even when n = 3, we do not know the exact list of these min-
imal cones, but the combinatoric description that follows will allow us to
construct competitors in a fairly unified way. The description here is similar
to the description of plain minimal cones (that is, without a boundary con-
dition) that was given in Proposition 14.1 of [9], and of course we will use
its proof.

So let L ⊂ Rn be a line through the origin. We denote by MC(L) the
set of sliding minimal cones of dimension 2, with sliding boundary L. That
is, X ∈ MC(L) if X is a (reduced) sliding minimal set in Rn, with sliding
boundary L, and in addition X is a cone.

Fix X ∈MC(L) and set
B = B(0, 1), S = ∂B, and K = X ∩ S; (2.1)

we want a description of K. Let us give a statement now for future reference.
If the reader is only interested in the small collection of known minimal cones
of dimension 2 in R3, he/she can just have a look at the statement, check
that it fits with the obvious decomposition of the minimal cones in question,
and go to the next section.

– 32 –



A local description of 2-dimensional almost minimal sets bounded by a curve

Proposition 2.1. — There is a constant η0 > 0, which depends only
on the dimension n, such that for each sliding minimal cone X with sliding
boundary L (i.e., for X ∈MC(L)), K = S ∩X is a finite union

K =
⋃
j∈J

Cj , (2.2)

where the Cj, j ∈ J , are either great circles or closed arcs of great circles.
The great circles are disjoint from the rest of K, and even

dist(Cj ,K \ Cj) > η0 (2.3)
when Cj is a great circle. The arcs of great circles have disjoint interiors,
i.e., they can only meet at a common endpoint. No point of L lies in the
interior of one of our arcs of great circles (otherwise, we cut the arc in two).
We also have that

H1(Cj) > η0 for j ∈ J ,
except perhaps when one of the endpoints of Cj lies in L. (2.4)

In addition, if ` ∈ L ∩K and H1(Cj) < η0 for some Cj which admits ` as
one of its endpoints, then there is at most another Ci which admits ` as one
of its endpoints, this Ci (if it exists) makes an angle larger than 9π

10 with Cj
at `, and H1(Ci) > η0.

The arcs Cj are also far from each other, i.e.,
dist(Ci,Cj) > η0 (2.5)

for i, j ∈ J such that Ci ∩ Cj = ∅, i.e., when they do not share an endpoint,
but again with the following possible exception: if there is one of the excep-
tional arcs Ck for (2.4) such that the two endpoints of Ck are also extrem-
ities of Ci and Cj respectively. Then instead we only get that dist(Ci,Cj) =
diam(Ck) in general, and dist(Ci,Cj) = min(diam(Ck),diam(C′k)) if Ci and
Cj are both almost half circles and happen to be also separated by an excep-
tional arc C′k near the antipodes.

Finally, if i ∈ J , Ci is an arc of circle, and a is one of the endpoints of
Ci, then one of the two following things happens:

a /∈ L, there are exactly two other arcs of great circle Cj and Ck

that meet Ci at a, and they make 2π
3 angles with Ci at a;

(2.6)

a ∈ L and all the other arcs of great circle that meet Ci at a
make angles at least 2π

3 with Ci at a.
(2.7)

Proof. — We decided to require the arcs of geodesics not to contain a
point of L in their interior. That is, we force the points of K ∩ L to be
vertices of our description (that is, when this is not the case, we just cut the
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arc at the point of K ∩ L), unless they lie on a full great circle. But even in
this case, we shall later cut the great circles into pieces, and we will cut at
points of L if we can.

The decomposition of Proposition 2.1 will some times be called the natural
decomposition of K. In the next section we will again cut some of the arcs
into smaller parts to get what we’ll call the standard decomposition.

The rest of the section will be devoted to the proof of Proposition 2.1,
but we start with a few comments. By arcs of great circles, we mean geodesic
arcs, but a priori they may be longer than π, although this will probably
not happen. That is, the involved circles are centered at the origin. We write
H1(Cj), but we could equally have written length(Cj). In (2.6), Ci may be
the only arc that ends at a ∈ L, or there may be two, or three, but no more.
And when there are three, their directions at a make 2π

3 angles and lie in a
same 2-plane orthogonal to L.

We start the proof of the proposition with a first description of K away
from L. We claim that

Each x ∈ K \ L has a small neighborhood where K coincides
with a great circleor a union of three arcs of great circles

that start at x and make 2π
3 angles there,

(2.8)

by the proof of Proposition 14.1 on p. 88 of [9]. Admittedly that proposition
was announced when K comes from a plain minimal cone (with no sliding
boundary condition), but the first part where we prove the conclusion of (2.8)
only uses this information locally. Since the reader may not recall well how
this goes, let us sketch a rapid argument, which actually uses a little more
information but is easier to believe. First let Z be any blow-up limit of X
at x; we know that it is a minimal cone (with no sliding boundary), and
since X is a cone, a simple computation (that will be done soon in a slightly
different context) shows that Z is invariant by translations in the direction of
x. When we look at the description of Z ∩ S given in Proposition 14.1 of [9],
we see that all the great circles involved in this description are contained in
2-planes that contain x, and it is easy to see that Z ∈ P∪Y (again, read the
arguments below if you have a doubt).

Suppose first that Z is a plane; the local regularity result (of [10] or [47])
says that near x, X is a C1+ε surface, and its tangent plane at x contains
the radial direction. It follows from the implicit function theorem that K is
a C1 curve near x, and then we can conclude, either as in Proposition 14.1
of [9] (by constructing competitors by hand), or by saying that in fact (by
the regularity theory for elliptic PDE) K is C2 near x, then has vanishing
curvature in the direction of S (because the total mean curvature is zero,
and X has no curvature in the radial direction). Thus K is an arc of great

– 34 –



A local description of 2-dimensional almost minimal sets bounded by a curve

circle in the neighborhood of x, when x ∈ K \ L and X has a blow-up limit
at x which is a plane. The case when Z ∈ Y follows at once, because the
regularity theorem says that near x, K is composed three C1 curves, and we
just showed that they are arcs of great circles. They make 2π

3 angles because
Z ∈ Y. This completes our sketch of (2.8).

So we have a nice local description of K away from L, and now we need
to see what happens near a point of K ∩ L; we start our study of K near L
with a description of sliding minimal sets of dimension 1.

Lemma 2.2. — Let Z be a (reduced) sliding minimal set of dimension 1
in the whole Rn, with sliding boundary {0}. One possibility is that Z is a
line or a set of type Y (i.e., the union of three half lines that meet at a point
with 2π

3 angles). Otherwise, 0 ∈ Z, and Z is either a half line with its end
at 0, or a set of type V (i.e., the union of two half lines with ends at 0 and
that make an angle at least 2π

3 at 0), or a truncated Y (i.e, a line segment
[0, a] with a 6= 0, plus two half lines leaving from a, so that [0, a] and the two
half lines make 2π

3 angles at a.

Proof. — Let Z be such a minimal set. Away from 0, and for instance by
Chapter 10 of [9], Z is composed of line segments, that can only meet by
sets of three, with angles of 2π

3 , and at vertices that are isolated in Rn \ {0}.

The argument that follows is obviously too heavy, as some parts could be
replaced by constructions of competitors with line segments, but hopefully
it will convince the reader with less effort.

We may assume that the origin lies in Z, because otherwise Z is a plain
minimal set of dimension 1 (just check the definitions). Those were studied
before, and they are lines or sets of type Y . Then set θ(r) = r−1H1(Z ∩
B(0, r)); we know, for instance from Section 28 of [14] (but again it is much
easier in dimension 1 because we just need to replace with cones over finite
sets) that θ is a nondecreasing function. In addition, because of this and a
theorem about limits (again [14] is a reference, but in fact Golab’s theorem
does the job), any blow-up limit Z0 of Z at 0 is a sliding minimal cone of
constant density θ(0) = limr→0 θ(r). Similarly, every blow-in limit Z∞ of Z
is a sliding minimal cone of constant density θ(∞) = limr→∞ θ(r). That is,
Z0 and Z∞ are finite unions of half lines emanating from 0. In fact they can
only be composed of 1, 2, or 3 half lines, because a simple argument shows
that the half lines make angles > 2π/3 with each other (otherwise, pinch a
couple of them near the origin).

Setm = θ(∞); then every blow-in limit Z∞ is composed ofm half lines `i,
1 6 i 6 m, and there are large radii R such that Z∩∂B(0, R) is composed of
exactly m points that lie at distances larger than R from each other. Indeed,
notice that Z ∩ ∂B(0, R) has at least m points for R large, one near each `i,
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because otherwise we could contract a big piece of Z near `i; in addition the
presence of an additional point too often would make the density of Z too
large. Select such an R, and call xi the point of Z ∩ ∂B(0, R) that lies close
to `i.

Set ZR = Z ∩ B(0, R), and let C(0) denote the connected component of
0 in ZR. We want to show that

C(0) contains xi for 1 6 i 6 m. (2.9)

Let us first assume that C(0) contains none of the xi. For ε > 0 small,
denote by Cε(0) the set of points z ∈ ZR that can be connected to 0 by
an ε-chain in ZR, i.e., a finite chain of points ζj ∈ ZR such that ζ0 = 0,
|ζj − ζj−1| 6 ε for j > 1, and z is the last ζj . Since ZR is a compact set of
finite length, it is easy to see that if for every ε > 0 the point z ∈ ZR can be
connected to 0 by an ε-chain in Zr, then there is a path of finite length in
ZR that goes from 0 to z. See for instance [25] or Chapter 30 of [8]. In other
words, C(0) is the intersection of the Cε(r). Since the Cε(0) are open in ZR
and C(0) is closed (for instance because the Cε(0) are also closed), we get
that C(0) = Cε(0) for some ε > 0, and our assumption implies that Cε(0)
does not contain any xi, and hence does not meet Z \ B(0, R) (recall that
Cε(0) ⊂ ZR = Z ∩ B(0, R)). By compactness, dist(Cε(0), Z \ B(0, R)) > 0.
We shall now check that this is impossible because it implies the existence
of a competitor Z ′ = ϕ(Z) which is strictly better than Z.

First observe that if ϕ : Z → Rn is Lipschitz, ϕ(x) = x for x ∈ Z \B, and
ϕ(0) = 0, then Z ′ = ϕ(Z) is automatically a competitor for Z, because we
can interpolate linearly between the identity and ϕ to get a one parameter
family {ϕt}, and all the mapings ϕt satisfy the sliding condition ϕt(0) = 0.
See Definition 1.1.

Now we define ϕ on Z by ϕ(x) = 0 for x ∈ Cε(0) and ϕt(x) = x on the
rest of Z. Notice that the rest of Z lies at positive distance from Cε(0), so
ϕ is Lipschitz. It is easy to see that Z ′ = ϕ(Z) does better than Z, because
we simply removed the measure of Cε(0) which contains Z ∩B(0, ε), whose
measure is positive because 0 ∈ Z and Z is Ahlfors-regular. So C(0) contains
at least one xi.

Now suppose that (for instance) the connected component C(1) of x1 does
not contain 0 or any other xi. Let Cε(1) denote the set of points z ∈ ZR that
can be connected to x1 by an ε-chain in ZR. As before, Cε(1) is both open
and closed in ZR, C(1) is the intersection of the Cε(1), and for ε small enough
Cε(1) does not contain 0 or any other xi and stays at positive distance from
the rest of ZR.
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This time we define a competitor Z ′ = ϕ(Z) with a function ϕ such that
ϕ(x) = x on Z \ B(0, R) and on ZR \ Cε(1), and ϕ(x) = x1 on Cε(1). For
the verification, first observe that ϕ(0) = 0 because 0 ∈ ZR \Cε(1), and that
it is enough to check the Lipschitz property of ϕ near x1 (because Cε(1) is
far from the rest of ZR). This is easier if we observe that we could choose
R such that near each xi, Z is in fact a line segment that crosses ∂B(0, R)
transversally. Indeed almost every R is like this, because the set of vertices
for Z is at most countable, and by Sard’s theorem (to exclude segments
that are tangent to ∂B(0, R)). Now the Lipschitz property is easy, and it is
also clear that Z ′ = ϕ(Z) is better than Z, because we contract at least a
segment to x1.

If (2.9) fails, we are in one of the following situations. Suppose for the
sake of definiteness that C(0) does not contain x1. Recall that it contains
some xi ; without loss of generality we can assume that x2 ∈ C(0). But x1
must be connected to some point, and the only choice left is x3 (recall that
there are at most three xi). Let us now say why this is impossible. As before,
if ε is small enough, the set Cε(0) defined above coincides with C(0), and
thus contains 0 and x2, and the set Cε(1) coincides with C(1) and therefore
contains x1 and x3, but lies at distance at least ε from Cε(0).

We now define ϕ and the competitor Z ′ = ϕ(Z) as follows. As usual,
we take ϕ(x) = x on Z \ B(0, R). On ZR \ Cε(1), we let ϕ coincide with
a Lipschitz retraction from B(0, R) onto the line segment [0, x2]. Finally,
on the rest of ZR, that is, on Cε(1), we let ϕ coincide with a Lipschitz
retraction from B(0, R) onto the line segment [x1, x3]. Notice that ϕ(0) = 0
because 0 ∈ ZR \ Cε(1). Again the Lipschitz property of ϕ only needs to be
checked near the xi, where we just need to know that [0, x2] and [x1, x3] are
transverse to ∂B(0, R). Finally, H1(Z ′ ∩ B(0, R)) 6 H1([0, x2] ∪ [x1, x3]) 6
R + |x1 − x3| < 29R/10 if R is large enough, because the xi lie close to
the minimal cone Σ∞ and thus almost make angles of 2π/3. On the other
hand, H1(Z ∩ B(0, R)) tends to θ(∞)R = 3R when R tends to +∞, so
H1(Z ′ ∩ B(0, R)) < H1(Z ∩ B(0, R)), Z ′ is a better competitor, and this
contradiction proves (2.9).

Now the set ZR contains a connected set that connects 0 and the xi. This
implies (because H1(ZR) < +∞; see again [25] or Chapter 30 of [8]) that
there is a simple arc ξ1 in ZR that goes from 0 to x1. If m > 2, there is also
an arc in ZR that goes from x2 to 0; we call ζ2 the first point of this arc
(leaving from x2) that lies in ξ1. We call ξ2 the portion of this arc between
x2 and ζ2. Thus ξ2 is essentially disjoint from ξ1, and their union connects
0, x1, and x2. If m = 3, we also find an arc from x3 to 0, stop it at the first
point ζ3 of ξ1 ∪ ξ2, and thus get a third arc ξ3.
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Let us assume that m = 3 (the other cases are simpler). We see that

H1(ZR) > H1(ξ1 ∪ ξ2 ∪ ξ3) = H1(ξ1) +H1(ξ2) +H1(ξ3). (2.10)

Notice that ξ1 ∪ ξ2 ∪ ξ3 is composed of (at most) five essentially disjoint
curves that connect 0 and the xi (in the worse case we cut ξ1 in two at ζ2
and ξ2 or one of the two pieces of ξ1 at ζ3); if we replace each of these arcs
with a line segment with the same endpoints, we get a connected set F such
that H1(F ) 6 H1(ZR), with a strict inequality if ZR 6= F .

Denote by F the class of connected unions of at most five line segments
contained in B(0, R), and that contain 0 and the three xi. Thus F ∈ F . Let
F0 ∈ F be such that

H1(F0) = inf
G∈F
H1(G) 6 H1(F ) 6 H1(ZR). (2.11)

Existence is not an issue, because there are finitely many combinations of
intervals, with endpoints that lie in the compact set B(0, R).

First suppose that F0 has no vertex in B(0, R)\{0}, which means that F0
is the intersection of B(0, R) with an array of 1, 2, or 3 half lines emanating
from 0. These segments make angles at least 2π/3 at 0, because otherwise
we may pinch two of them near 0 and make F0 shorter. We consider this
good and go to the next case.

Suppose next that F0 has exactly one vertex in B(0, R) \ {0}. Call this
vertex v, and observe that the three segments of F0 that leave from v make
2π/3 angles with each other (otherwise, move v a little and this gives a
shorter F0). They either end at points xi ∈ ∂B(0, R), or at the origin. Call
V0 the union of these three segments; this is a piece of Y -set.

Let us first assume that V0 ends at the three xi. One possibility is that
0 lies in V0. Then F0 = V0 (no need to add anything), we shall consider
that 0 is a vertex F0 is in fact composed of four segments (three that make
a smaller piece of Y -set centered at v, and a segment [0, xi] opposite to it,
and this will be a good enough description. Otherwise, 0 is also connected
to one of the xi (there is no other inside vertex, and v already has three
segments leaving from it). Notice that v lies very close to the origin, because
the branches of V0 make 2π

3 angles, and the xi are seen from 0 with angles
that are arbitrarily close to 2π/3. This is impossible, because we could easily
make F0 shorter by replacing the long segment [0, xi] with [0, v], for instance.

Now assume that V0 ends at 0 and, say, x1 and x2. Again, v lies very close
to 0. If m = 2, then F0 = V0 and we declare ourselves happy. Otherwise,
m = 3, there is another segment that goes from x3 to either 0 or x1 or x2
(the other vertex v is already full), and no more, because F0 is minimal.
But x1 (for instance) is impossible, because we would make F0 shorter by
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replacing [x3, x1] with the shorter [x3, 0]. So F0 = V0 ∪ [x3, 0], and we like
this case too. Notice that [0, v] and [0, x3] make an angle at least 2π/3 at
the origin, because otherwise we could pinch.

We end our discussion with the case when F0 has (at least) two vertices
vj in B(0, R) \ {0}.

Let us count vertices and edges to reduce to one possibility. First observe
that F0 contains no cycle since it is minimal. That is, F0 is a tree. It has
some vertices of valence 3 (the vj , and maybe some other), maybe some
vertices of valence 2, and some vertices of valence 1 that we call extremities.
There are at most 4 extremities, the origin and the xi, because the other
vertices have valence 3. It is easy to see that such a tree has 2 extremities
if it has no vertex of valence 3, 3 extremities if it has one vertex of valence
3, 4 extremities if it has two vertices of valence 3, and more otherwise (you
may remove the vertices of valence 2 to do this computation). Here we have
at least two vertices vi and at most 4 extremities, so in fact we have exactly
2 vertices vi and 4 extremities, which are 0 and three points xi. That is, F0
is a simple graph with 5 segments, and after renaming the xi and the vj
we may assume that F0 = [0, v1] ∪ [x1, v1] ∪ [v1, v2] ∪ [v2, x2] ∪ [v2, x3], with
segments that do not meet except at the vj , and with 2π

3 angles as usual.
We are a little less happy with this last case, but keep it anyway.

In all our cases, we claim that set F0 gives a competitor for Z in B(0, R).
That is, due to the simple shape of F0, we can find a Lipschitz mapping
ϕ : B(0, R)→ F0, such that ϕ(z) = z for z ∈ F0, and in particular ϕ(0) = 0.
We extend ϕ to Z \ B(0, R) by setting ϕ(z) = z there. Notice that because
near the points xi, Z is composed of a C1 curve which is transverse to
∂B(0, R), this makes ϕ Lipschitz on Z. We do not care about the Lipschitz
constant, and ϕ is the endpoint of the family {ϕt}, 0 6 t 6 1, obtained
by linear interpolation with the identity. Thus ϕ(Z) is a sliding competitor
for Z in B(0, R) and, since Z is minimal, H1(Z ∩ B(0, R)) 6 H1(ϕ(Z ∩
B(0, R)) 6 H1(F0). Recall that Z ∩ B(0, R) = ZR, so (2.11) says that in
fact H1(ZR) = H1(F0) = H1(F ), and by its proof ZR is actually equal to
F (every curve in the decomposition is a line segment). In addition, F is
minimal, so the discussion above, with F0 = F = ZR, gives a description of
F0 = ZR = Z ∩B(0, R).

Notice that all this happens for radii R that we can take as large as we
want. Suppose that we ever encounter the bad case when F0 has five pieces.
Then for all the radii R′ larger than R (and for which the argument works),
our description of Z ∩ B(0, R′) coincides in B(0, R) with the description of
Z ∩B(0, R), which means that the two vertices vj are always the same, and
F0 = F0(R′) is just obtained from F0(R) by extending the three branches by
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straight lines, past the three xi. Since we can take R′ as large as we want, we
see that Z is the union of the two segments [0, v1] and [v1, v2], plus three half
lines, namely the half line L1 that starts from v1 and goes in the direction
of x1, and the two half lines L2 and L3 that leave from v2 and go in the
directions of x2 and x3 respectively.

Denote by ei the direction of Li. Since the blow-in limits of Z are Y -sets,
we see that the three ei make 2π/3 angles with each other. In particular,
they lie in a same plane. Now [v2, v1] makes 2π/3 angles with L2 and L3 at
the point v2, so it lies in the same plane P ′ (parallel to P ) that contains
L2 ∪L3. This plane contains L1 too (because it contains v1 and its direction
contains e1), and since L1, [v1, 0], and [v1, v2] also make 2π/3 angles at v1,
we see that 0 ∈ P ′ as well. It is good to know that the picture is done in P ′,
because now e2 and e3 are easily seen to make angles of 2π

3 ±
2π
6 with e1, a

contradiction. So we may assume that our last bad case never happens for
R large.

Our next case is when for some R > 0, F0 is of the form V0∪ [0, x3], i.e., a
truncated Y -set, plus a segment that goes roughly in the opposite direction.
As before, for every R′ > R for which we can make the description above, the
set F0(R′) extends F0(R). This implies that Z is a set of type Y , truncated
at the origin, plus a half line emanating from 0. The blow-in limits of Z
are unions of three half lines leaving from 0, and since these blow-in limits
are minimal, the three half lines make 2π/3 angles. That is, Z is a cone of
type Y .

Now assume that this never happens, and that there is an R for which
F0 = F0(R) is a truncated Y -set. Then as before we can extend, and Z itself
is a truncated Y -set. Similarly, if F0(R) is composed of radii starting from
the origin, and the descriptions above never occur for any R, we see that Z
is a union of 1, 2, or 3 half lines emanating from 0 with the usual condition
that they make angles at least 2π/3 at the origin.

Thus we have a description of Z which fits what was announced in the
statement; Lemma 2.2 follows. �

We deduce from this a description of translation invariant sliding minimal
sets of dimension 2.

Lemma 2.3. — Let T be a (reduced) sliding minimal set of dimension 2
in the whole Rn, with sliding boundary L, and suppose that T is invariant by
translations parallel to the line L. Then T is either a plane, a set of type V
(two half planes bounded by L and that make an angle at least 2π

3 along L),
or a set of type Y, parallel to L but not necessarily containing L, or else a
half plane bounded by L (i.e., T ∈ H(L)) or a truncated set of type Y (i.e.,
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a set of the form (Y \H) ∪ L, where Y ∈ Y has a spine parallel to L, and
H ∈ H(L) is a half plane contained in Y ).

Proof. — To prove this, write T = L × Z, where Z is a subset of the
vector hyperplane P perpendicular to L. We want to show that Z is a one-
dimensional minimal set in P , with a sliding boundary reduced to the origin
0, and then we’ll use Lemma 2.2. This is fairly a standard argument, so we
just sketch the proof and refer to Lemma 2.1 of [40] for a more detailed
argument.

Let ϕ : Z → P be a Lipschitz mapping such that ϕ(x) = x for |x|
large, and ϕ(0) = 0 if 0 ∈ Z. This last is enough to take care of the sliding
boundary condition. That is, in principle our competitors are of the form
ϕ1(Z), where {ϕt} is a one-parameter family of continuous functions that
satisfy the sliding condition that ϕt(x) ∈ {0} when x ∈ {0} (our sliding
boundary is {0}). But we’ll take ϕt(x) = tϕ(x) + (1− t)x, and our condition
that ϕ(0) = 0 is enough for the sliding condition.

Let B be a ball such that ϕ(x) = x for x ∈ Z \ B and ϕ(Z ∩ B) ⊂ B.
Suppose that, in contradiction with our claim, we can choose ϕ so that
∆ := H1(ϕ(Z)∩B)−H1(Z ∩B) = H1(ϕ(Z ∩B))−H1(Z ∩B) < 0. (2.12)

Let I ⊂ L denote a very long interval and let ψ : I → [0, 1] be a nice cut-
off function on I. For the sake of definiteness, we can identify L with R, take
I = [−N−1, N+1] for some largeN and choose ψ(y) = max(0,min(1, N+1−
|y|)) for y ∈ R. Denote by (x, y) the generic point of Rn, with x ∈ P ' Rn−1

and y ∈ L ' R. A good competitor for T is f(T ), where f : T → Rn is
defined by f(x, y) = (ψ(y)ϕ(x) + (1− ψ(y))x, y). It is easy to see that f(T )
is a sliding competitor for T in the rectangular shaped set R = B × I, in
particular because f(x, y) = (x, y) when x = 0 and because it is easy to
interpolate between the identity and f .

The minimality of T says that Hd(T ∩ R) 6 Hd(f(T ) ∩ R). Set R′ =
B × [−N,N ], and observe that

H2(T ∩R′) = H2((Z ∩B)× [−N,N ]) = 2NH1(Z ∩B) (2.13)
not completely trivially, but because Z is rectifiable. See for instance the
computations of p. 530–531 in [8], although in a slightly different context.
The rectifiability of Z itself comes from the rectifiability of T = Z × L; we
leave the details. Similarly, the 2-rectifiability of f(T ∩ R′) = (ϕ(Z ∩ B))×
[−N,N ] (recall that ψ(y) = 1 on [−N,N ]) yields
H2(f(T ∩R′)) = H2((ϕ(Z ∩B))× [−N,N ]) = 2NH1(ϕ(Z ∩B)), (2.14)

so we win 2N∆ from the contribution of R′. We still need to estimate the
contribution of R \R′. Since ϕ is Lipschitz, H2(f(T ∩ (R \R′)) 6 C, where
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C depends on the Lipschitz constant for ϕ. It is possibly huge, but it does
not depend on N . We take N large, add this to the estimates from inside of
R′, and get the desired contradiction with the minimality of T .

So Z is a sliding minimal set, Lemma 2.2 gives a good description of Z,
and the description of T = Z × L needed for Lemma 2.3 follows. �

When we restrict to cones, Lemma 2.3 yields that (with the notation of
Subsection 1.2, and still assuming that L is a line through the origin)

if T is a sliding minimal cone with sliding boundary L,
and T is invariant by translations parallel to L,

then T ∈ H(L) ∪ V(L) ∪ Y(L).
(2.15)

We will often use Lemma 2.3 and (2.15) to control limits of minimal cones,
and then obtain information in the direction of Proposition 2.1. The standard
notation for this is the following. We have a sequence {Xk} of sliding minimal
cones associated to the boundary L (a line through the origin). We select
points ak ∈ Kk = Xk ∩ S and radii rk > 0, with limk→+∞ rk = 0, and
consider

Yk = r−1
k (Xk − ak). (2.16)

Notice that 0 ∈ Yk; this allows us to take a subsequence, which we shall still
denote the same way, so that {Yk} converges to a closed set Y , and {ak}
converges to a limit a ∈ S. We will need to know that Y is invariant by
translations in the direction of a, i.e., that

ξ + ta ∈ Y for ξ ∈ Y and t ∈ R. (2.17)

Indeed, we can find ξk ∈ Yk, so that ξk tends to ξ. Set ζk = ak + rkξk; then
ζk ∈ Xk, and since Xk is a cone, sζk ∈ Xk for s > 0. Then r−1

k (sζk−ak) ∈ Yk
for s > 0. But r−1

k (sζk − ak) = r−1
k (sak + srkξk − ak) = sξk + (s− 1)r−1

k ak.
We apply this with s = 1 + rkt, get that (1 + rkt)ξk + tak ∈ Yk for k large,
take a limit, and get (2.17).

Let zk ∈ L minimize the distance to ak, and notice that Yk is a sliding
minimal set, with respect to the boundary Lk = L−r−1

k ak = L+r−1
k (zk−ak).

There will be two main cases. The first one is when

lim
k→+∞

r−1
k dist(ak, L) = +∞,

or equivalently
lim

k→+∞
dist(0, Lk) = +∞.

In this case, since Yk is a plain minimal set in B(0,dist(0, Lk)), then by The-
orem 4.1 (and Definition 2.4) in [7], Y is a minimal set in Rn, with no sliding
boundary condition. Since by (2.17) it is also invariant by translations the
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direction of a, the simpler variant of Lemma 2.3 where there is no boundary
constraints implies that

Y is a plane or a set of type Y (possibly not centered at 0). (2.18)

The other possibility is that dist(0, Lk) = r−1
k dist(ak, L) stays bounded;

then, modulo a new sequence extraction, we may assume that {Lk} converges
to a line L∞, which is parallel to L (and the Lk). Theorems 10.8 or 21.3
in [14] says that Y is a sliding minimal set, with boundary L∞, and since
Y is still invariant by translations in the direction of a (which happens to
be the direction of L, since a = limk→+∞ ak and dist(ak, L) tends to 0),
Lemma 2.3 says that

Y is a plane, a set of type V (bounded by L),
a set of type Y (with a spine parallel to L),
or a half plane or a truncated set of type Y.

(2.19)

We return to the proof of Proposition 2.1. The following lemmas will help
with the relative position and length of the arcs Cj that compose K = X∩S.
We start with a description of K far from L, which is more precise than what
we did near (2.8) because we give a lower bound for the radius of the good
balls.

Lemma 2.4. — If η1 is small enough, depending only on n, not on X,
then if a is a vertex of K in the description near (2.8), K∩B(a, η1 dist(a, L))
is the union of three geodesics that leave from a with equal angles of 2π

3 .

Proof. — We shall prove this with a contradiction and compactness ar-
gument. Suppose that the lemma fails, and let Xk, Lk, Kk = Xk ∩ S, and
ak ∈ Kk \ Lk provide a counterexample, with η1(k) = 2−k. By rotation in-
variance, we may assume that Lk = L stays the same. By (2.8), there is a
neighborhood of ak where Kk is composed of three arcs of geodesic. That is,
for each k we can find r > 0 such that

Kk ∩B(ak, r) = (γ1 ∪ γ2 ∪ γ3) ∩B(ak, r) (2.20)

for some choice of three geodesics γj , 1 6 j 6 3, that leave from ak, make 2π
3

angles at ak, and go at least to ∂B(ak, r). Let rk denotes the largest r > 0
such that the representation (2.20) holds. Since the description of the lemma
fails for r = 2−k dist(ak, L), we see that rk 6 2−k dist(ak, L) 6 2−k.

Consider Yk = r−1
k (Xk − ak) as above, and replace our sequence with

a subsequence for which Yk tends to a limit Y . Since r−1
k dist(ak, L) > 2k

tends to +∞, we see that Y is a plane or a set of type Y, as in (2.18).

Since by definition of rk (2.20) holds for r = rk/2, we see that Xk has
a beautiful description as a set of type Y in B(ak, rk/3), Yk has a similar
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description in B(0, 1/3), and when we take a limit Y we get a cone of type
Y (this time centered at 0).

Return to Yk and Xk. Since Yk tends to Y , we get that d0,10(Yk, Y )
tends to 0, or equivalently d0,10rk

(Xk, ak + Y ) = d0,10(Yk, Y ) tends to 0
(see the definition (1.14)). Let us again be slightly brutal and apply the
regularity theorem from [10]; for k large enough, we get that in B(ak, 3rk),
Xk is a smooth version of ak +Y , with small C1 constants, to the point that
K ∩ B(ak, 2rk) is, by the implicit function theorem, composed of exactly 3
smooth curves that meet at ak. These smooth curves are arcs of geodesics
(by (2.8)) and this contradicts the definition of rk. Lemma 2.4 follows. �

With almost the same proof, we can also get a uniform control of X near
` ∈ L ∩ S, provided that ` /∈ K.

Lemma 2.5. — If η1 is small enough, depending only on n but not on
X, and if ` ∈ L∩S\K, then for each a ∈ K∩B(`, 10−1) which is a vertex of
K, K ∩B(a, η1) is the union of three geodesics that leave from a with equal
2π
3 angles.

Proof. — The difference is that the size of the ball no longer depends
on dist(a, L). We start the proof the same way. By rotation invariance, it
is enough to prove this for a fixed L and `. Then we proceed by contradic-
tion and suppose that for k > 1, Xk and ak define a counterexample with
η1 = 2−k. We define Yk as before, i.e., let rk be the smallest radius r such
that (2.20) fails, and set Yk = r−1

k (Xk − ak). Notice that rk 6 2−k because
Xk is a counterexample.

Switching to a subsequence if needed, we can assume that Yk converges
to a limit Y . Now we claim that Y is a minimal set in Rn, with no sliding
boundary condition, but for a different reason as before.

For our proof of (2.18), we used the fact that L was too far. Here Xk is
sliding minimal in B(ak, 1/2), with a sliding boundary L that could be very
close to ak. But Xk does not meet L in that ball (because we assumed that
Kk does not contain `), so we easily deduce from the definitions that Xk is
a (plain) minimal set in B(ak, 1/2). This is because (1.4) is void here. Then
Yk is a plain minimal set in B(0, r−1

k /2), and by Theorem 4.1 in [7], Y is a
minimal set in Rn. Again we have (2.18), i.e., Y is a plane or a set of type Y.

The rest of the proof is as above: Y is actually a set of type Y with a spine
that contains a, then for k large Xk is so close to rkY + ak in B(ak, 10rk)
that it coincides with a C1 version of that set in B(ak, 2rk). By (2.8), K is
composed of three geodesics inside B(ak, 2rk), this contradicts the definition
of rk, and Lemma 2.5 follows. �
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Lemma 2.6. — There is a small η2 > 0, depending on n but not on
X, such that if K contains the point ` ∈ L ∩ S, a ∈ K \ L is one of the
vertices of K \ L, and |a − `| 6 η2, then there is no other vertex of K in
B(`, 10|a− `|) \B(`, 10−1|a− `|).

Proof. — Once more we prove this by contradiction and compactness.
Suppose the lemma fails, and let Xk, Kk, `k ∈ Lk∩Kk, and ak ∈ Kk provide
a counterexample with η2 = 2−k. By rotation invariance we may assume that
Lk = L and `k = ` are always the same. Set rk = |ak−`| 6 2−k; thus rk tends
to 0 and r−1

k dist(ak, L) tends to 1 (because ak tends to `). We are in the
situation of (2.19), where modulo a sequence extraction Yk = r−1

k (Xk − ak)
tends to a sliding minimal set Y , which is a plane, a set of type Y, a cone of
type V, a half plane, or a truncated Y-set, each time bounded by a half line
L∞ parallel to L.

Recall that ak is a vertex of Kk \L; Lemma 2.4 says that in B(ak, η1rk),
Kk is composed of three geodesics g1, g2, g3 that meet at ak with 120◦
angles. In the same ball, Xk coincides with the cone Hk over g1 ∪ g2 ∪ g3.
Or equivalently, Yk coincides with r−1

k (Hk − ak) in B(0, η1). Thus Y has a
singularity of type Y at the origin, and is a Y-set, possibly truncated, with
a spine parallel to L (because it is invariant by translations in the direction
of ` = limk→+∞ ak).

But the contradiction assumption says that Kk has another vertex bk ∈
B(`, 10rk) \B(`, 10−1rk), and Lemma 2.4 says that in B(bk, η1rk/10), Kk is
composed of three geodesics that meet at bk. In particular, ak lies outside
of this ball, hence |bk − ak| > η1rk/10. We may extract a new subsequence
so that b̃k = r−1

k (bk − ak) converges to a limit b̃, and the same argument as
above says that b̃ also lies on the spine (the singular set) of Y , just like 0. But
b̃ lies on L⊥ (the hyperplane orthogonal to L), because both ak and bk lie in
S and tend to `, and in addition |̃b−ã| > η1/10 (because |bk−ak| > η1rk/10).
This is impossible; Lemma 2.6 follows. �

The same argument says a little more. Let X, K, and a be as in Lem-
ma 2.6. We claim that not only K ∩ B(a, 9|a−`|

10 ) is composed of three
geodesics (with no other vertex of K), but also that (again if η2 is small
enough), one of these geodesics makes an angle less than π/100 with the
geodesic ρ(a, `) from a to `.

Indeed, otherwise we proceed as in the proof of Lemma 2.6, with a se-
quence {Xk} for which the three geodesics that compose Kk ∩ B(ak, η1rk)
make angles at least π/100 with ρ(ak, `). As before, we can extract a sub-
sequence for which Yk = r−1

k (Xk − ak) tends to a sliding minimal set Y ,
which is either a Y-cone with a spine parallel to L, or such a Y-cone,
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truncated by a line L∞ parallel to L. Either way, ` ∈ Xk by assump-
tion, so zk = r−1

k (` − ak) ∈ Yk, and we can extract a subsequence so that
z = limk→+∞ zk ∈ Y . Notice that |z| = 1 because |zk| = 1 since rk = |ak−`|.

It is easy to see that the direction of ρ(ak, `) at ak tends to z. But on
the other hand the directions at ak of the three geodesics that compose
Kk ∩B(a, 9|ak−`|

10 ), or equivalently the directions at 0 of the three geodesics
that compose K̃k ∩ B(0, 9

10 ), with K̃k = r−1
k (Kk − ak), tend to the unit

directions of the faces of Y (intersected by the orthogonal of L). Thus one
of these directions tends to z (because z ∈ Y ), a contradiction with our
assumption that they all make large angles with the direction of ρ(ak, `)
(that also tends to z). This proves our claim.

Let us continue with our assumption that K ∩ L contains a point `. We
now claim that

K ∩B(`, η2/10) \ L contains at most one vertex. (2.21)

Indeed, suppose that K ∩B(`, η2/10) \ L has two vertices a and b. We may
assume that |b− `| 6 |a− `|. Notice that Lemma 2.6 says that the values of
|x− `|, where x ∈ K ∩B(`, η2) \L is a vertex of K, are lacunary, so we may
assume that b was chosen so that |b− `| is maximal once a is chosen. Also,
|b− `| 6 10−1|a− `| by Lemma 2.6.

Set r = |a − `|, B = B(`, 2r), and A = B \ B(`, |b − `|); we now give a
description of K ∩A. First we have two geodesics g1 and g2 that leave from
b, making 120◦ angles with each other and also roughly with ρ(b, `). Because
of this, they go away from B(`, |b− `|), i.e., they start in A. They stay in K
as long as they stay in B and they don’t meet a vertex of K; since there is
only one vertex in A (namely, a), we only have two options (see Figure 2.1).
Either g1 and g2 both miss a, and then K contains A∩ (g1 ∪ g2). Or else one
of them, say g2, contains a, and then we only know that K contains A ∩ g1
and ρ(b, a).

We also know that B \ 1
5B contains three arcs of geodesics γi, that leave

from a with 120◦ angles and go all the way to the boundary of B \ 1
5B

(because they don’t meet a vertex).

Altogether, we found a collection of reasonably long geodesics that are
contained in K ∩ B, either 4 of them (three that make a Y centered at a,
plus one leg that leaves from b with a 120◦ angle), or 5 (three that make a Y
centered at a, and two other ones that make a disjoint V ). It is important for
the present argument that long means, of diameter at least |`−a|/10, say. We
claim that this is impossible. We proceed by contradiction and compactness
as in the previous lemma, and get a description of the limit Y of a convergent
subsequence of normalizations Yk of counterexamples Xk. As above, Y is a
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possibly truncated cone of type Y that is centered at 0 (a normalized limit
of the ak) and contains a line L∞ parallel to L. But then Xk looks a lot in
B like the image of Y by a translation and a dilation, and this does not fit
the fact that Kk = Xk ∩ S contains the four or five long geodesics above.
This proves (2.21).
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Figure 2.1. These arcs of geodesics are contained in K (two cases).
On the left, γ3 does not need to cross g2 because n > 4 is allowed

Let us now check that
|a− b| > η1η2

20 when a, b are different vertices of K \ L. (2.22)

Indeed if dist(a, L) > η2/20, Lemma 2.4 says that |b − a| > η1 dist(a, L) >
η1η2/20. If |a−`| 6 η2/15 for some ` ∈ K∩L, (2.21) says that |b−`| > η2/10
and hence |a− b| > η2/60. Finally if |a− `| 6 η2/15 for some ` ∈ L ∩ S \K,
Lemma 2.5 says that |b− a| > η1.

Because of this, K has a finite number of vertices, hence it is composed
of a finite number of geodesic arcs, plus some full great circles. Recall that
when an arc C meets L, we consider the points of K ∩ C as vertices, i.e., we
cut C at these points. This gives our decomposition of K into the Cj , j ∈ J .

Before we start the verification of the various properties stated in Propo-
sition 2.1, let us say two last words about the minimizing properties of K
itself. It will be good to know that
K is a weak almost minimal set in S, with sliding boundary K∩L, (2.23)
even though we shall also try to provide proofs that do not use this fact. Let
us first say what (2.23) means. The vocabulary comes from Definition 9.1
of [9], where a similar notion (without sliding boundary) was used to record
some easy properties of K = X ∩ S when X is a minimal cone, in order to
get the description in terms of geodesics that we used for (2.8). By (2.23)
we mean that if f : S → S is an M -Lipschitz mapping and B(x, r) is a ball
centered on S such that

f(y) = y for y ∈ S \B(x, r) and f(S ∩B(x, r)) ⊂ S ∩B(x, r), (2.24)
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and also f(`) = ` for every ` ∈ K ∩ L, then
H1(K ∩B(x, r)) 6 H1(f(K) ∩B(x, r)) + C(1 +M)r2. (2.25)

The present definition is a little less demanding than Definition 9.1 of [9],
where we also required (2.25) when f is piecewise M -Lipschitz, but this will
be enough for our purposes. We also use a specific gauge function (namely,
Cr, with a C that depends only on the dimension n) in (2.25), again be-
cause this is what we get from the proof. On the other hand, we added the
requirement that f(`) = ` for ` ∈ K ∩L, to account for the sliding condition
for X.

Now the proof of Proposition 9.4 in [9] applies to the present situation
and shows that (2.23) holds for every sliding minimal cone X of dimension 2,
with boundary L. Our extra condition is of course used to ensure that the
competitors build in [9] come from one-parameter families {ϕt} such that
ϕt(y) ∈ L when y ∈ X ∩L. The details of Proposition 9.4 in [9] are easy; we
just use any map f as above to construct a competitor for X; however we
find it easier to refer to [9] rather than doing the verification here. Of course
we’ll use (2.23) a few times to derive a contradiction when needed.

Return to the properties of Proposition 2.1, and let us first check what
happens at the vertices. The fact (2.6) that near each vertex a ∈ K \ L,
K consists of three geodesics that leave from a with 120◦ angles comes
from (2.8), and was already used many times. Similarly, let us check (2.7),
which says that when ` ∈ K ∩L, there is a small neighborhood of ` where K
is composed of one, two, or three geodesic arcs that leave from ` and make
angles of at least 120◦.

First, we may restrict to the geodesics that contain `, because there is a
finite number of geodesics, and the ones that don’t contain ` don’t meet some
small ball centered at `. The remaining geodesics all start from ` (because for
the other ones we added ` as a vertex), and is easy to check that they make
angles of at least 120◦ at `, because otherwise we may pinch two of them in
a small ball B(`, r), make K sorter by at least r/C, and contradict (2.23).
Alternatively (if you don’t like weak almost minimality), we could say that
a blow-up limit of X at ` is composed of as many half planes bounded by L
as there are geodesics in K near `, and that make the same angles along L
as the geodesics at `; then Lemma 2.3 gives the desired result.

Next we show that each full great circle in the list of Cj is far from the
rest of K, i.e., that there is η3 > 0, that depends only on n, such that

dist(Cj ,K \ Cj) > η3 when Cj is a full great circle of K. (2.26)

Of course (2.3) will follow from this (we’ll take η0 very small at the end).
As usual, we proceed by contradiction and compactness. So suppose that for

– 48 –



A local description of 2-dimensional almost minimal sets bounded by a curve

each k > 0, (2.26) fails for η3 = 2−k, and let Kk provide a counterexample.
By rotation invariance, we may assume that L is the same for each K, and
our assumption is that we can find a great circle Ck and a point ak ∈ Kk \Ck
such that dist(ak,Ck) 6 2−k.

First observe that Kk \ Ck is closed. Indeed, otherwise we can find some
ξ ∈ Ck which is the limit of a sequence in Kk \ Ck. Then ξ ∈ L (because
otherwise this contradicts (2.6)); even that way the two arcs of Ck near ξ
make a 180◦ angle at ξ, which by (2.7) excludes the possibility that other
geodesics of K end at ξ. Recall also that K has a finite number of vertices,
a contradiction that shows that Kk \ Ck is closed.

By compactness ofKk\Ck, we may assume that ak minimizes the distance
to Ck (in K \ Ck). Set rk = dist(ak,Ck); thus 0 < rk 6 2−k.

We start with the more interesting case when {r−1
k dist(ak, L)} is a

bounded sequence. We may assume that (out of the two possibilities) there
is a fixed ` ∈ L such that r−1

k dist(ak, `) 6 C. Set Yk = r−1
k (Xk − ak) as

usual, take a converging subsequence, denote by Y the limit, and notice that
Y satisfies (2.19). But Xk contains the plane Pk that contains Ck, and which
lies at distance a little smaller than rk from ak (a little smaller because the
closest point of Pk lies a little inside of S); This means that Yk contains
P̃k = r−1

k (Pk − ak), which almost lies at distance 1 from 0; at the limit, Y
contains a plane P at distance 1 from the origin. By (2.19), Y = P ; this is
impossible because ak ∈ Kk and hence 0 ∈ Y .

We are left with the case when, modulo a sequence extraction,
r−1
k dist(ak, L) tends to +∞. This time, modulo extraction, Yk =
r−1
k (Xk − ak), and tends to a set Y which is a plane or set of type Y,
as in (2.18). As before, dist(P, 0) = 1, which contradicts the fact that 0 ∈ Y
because ak ∈ Yk. This last contradiction completes our proof of (2.26), and
again, (2.3) follows.

Next we want to check (2.4). The following will be useful.

Lemma 2.7. — If η4 is chosen small enough, the following happens. Sup-
pose that ` ∈ K ∩ L and a ∈ K \ L are such that |a − `| 6 η4. Then the
geodesic ρ(`, a) is contained in K, there is at most one other arc γ of K that
leaves from `, and (if γ exists) H1(γ) > η2/10 and γ makes an angle at least
9π
10 with ρ(`, a) at `.

Proof. — Let ` ∈ K ∩L and a ∈ K \L be as in the statement. We know
from (2.21) that there is no other vertex of K in B(`, η2/10), so, except
perhaps for the geodesic ρ(`, a) if it lies in K, all the arcs of K that leave
from a or ` are at least η2/20 long.
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Let us first assume that K does not contain ρ(`, a). Then K contains
three arcs γi = ρ(a, bi), 1 6 i 6 3, of length at least η2/20, that leave from
a with 120◦ angles, and also an arc γ = ρ(`, b), of length least η2/20 too,
and that leaves from `. All these arcs are disjoint, except perhaps for their
endpoints, by (2.8) and the definition of our decomposition of K.

Notice that |a− `| 6 η4, so for η4 small enough, it is not hard to imagine
that we could construct a competitor for K that contradicts the weak almost
minimality property (2.23). See Figure 2.2 for a hint, but don’t forget that
even though γ does not meet the γj , the point ` could be more or less
anywhere on the sphere S(a, |` − a|) (and not just in a triangular sector as
the picture suggests) because we allow subsets of Rn, n > 3. Also, we do
not exclude the case when other pieces of K pass by, but this is not a real
problem because they stay at positive distance from the rest of the picture,
so our Lipschitz deformation f can be chosen so that f(x) = x on them, and
as alluded to above, (2.23) is also valid for piecewiseM -Lipschitz functions f .

l
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Figure 2.2. A replacement fro γi. Scales are not respected

But we shall avoid using (2.23), and instead we will use compactness
again. So suppose that for k > 0, we can find an example Xk, with ` ∈
Kk ∩ L = Xk ∩ S ∩ L, a vertex ak of Kk such that dk = dist(`, ak) 6 2−kη2,
three geodesics arcs γi,k ⊂ Kk of length η2/20 that leave from ak, and a
fourth one, γk ⊂ Kk, of length η2/20 too, that leaves from ` and is disjoint
from the others.

Consider Yk = d−1
k (Xk − `), which contains the origin, and as usual

take a subsequence for which Yk converges to a limit Y . Then, by the proof
of (2.19), Y is a sliding minimal cone with boundary L, which is invariant
by translations in the direction of L, so it is a plane or a Y set (through the
origin, since ` ∈ Kk), or else a half plane, a V set, or a Y-set truncated by L.

The geodesics γ̃i,k = d−1
k (γi,k − `) and γ̃k = d−1

k (γk − `) (in the spheres
d−1
k (S − `)) tend to four half lines (maybe at the price of extracting a new

subsequence, if you prefer), and these half lines are contained in Y ∩ L⊥.
Because of this, there is only one possibility: Y is a Y-set, that contains L
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but is centered at the limit ã of the ãk = d−1
k (ak − `); ã lies at distance 1

from L, and the limit γ̃ of the γ̃k = d−1
k (γk − `) is contained in the branch

of Y ∩ L⊥ that contains 0.

Select z ∈ γ̃, at distance 1 from 0 (and hence z = −ã). Then set B =
B(z, 10−1), and notice that Yk converges to Y (or equivalently the plane P
that contains the face of Y that contains z) in 9B. Then for k large enough,
we may apply the standard regularity theorem to Xk in 8B, and find that in
2B, Xk is a C1 surface, and at the same time a small Lipschitz graph over
P . Set S(k) = d−1

k (S− `); this is a very large sphere, with tangent directions
that tend to L⊥; by the implicit function theorem, Xk ∩S(k) = d−1

k (Kk− `)
is a C1 curve in 2B, and also a small Lipschitz graph over the line that
contains γ̃.

But at the same time d−1
k (Kk − `) contains the two geodesics γ̃k and

γ̃i,k (for some i), which are disjoint and both converge to γ̃ in 2B. This is
impossible; we are left with the other case when K contains ρ(`, a).

In this case, in addition to ρ(`, a), K contains two geodesics ρ1 and ρ2
that leave from a with 2π

3 angles, and maybe one or two geodesics ρ′j that
leave from 0 (again with angles at least 2π

3 ). All these geodesics have lengths
at least η2/20 (because there is no vertex of K nearby where they could
stop). A priori there may also be other pieces of K that pass near `, but all
we have to do now is prove that there is at most one ρ′j , and that it goes in
a direction almost opposite to ρ(`, a) at `.

Again it is simpler to prove this by compactness. Suppose not, let Xk

provide an example, with dk = dist(`, ak) 6 2−kη2. This means that in
addition to ρ(`, ak) and the two geodesics γi,k that leave from ak with 2π

3
angles and are at least η2/20-long, we have at least one more geodesic ρk ⊂ K
that leaves from 0, is at least η2/20-long, and makes an angle smaller than
9π
10 with the direction of ρ(`, ak) at `. Indeed, if we have two, they make 2π

3
angles with the direction of ρ(`, ak), which is even worse.

As usual, set Yk = d−1
k (Xk − `), and extract a subsequence for which

Yk converges to a limit Y . The same argument as above shows that Y is
a sliding minimal set which is invariant by translations in the direction of
L, then is one of the examples allowed by (2.19), and because of ρ(`, ak),
the γi,k, and γk, is a set of type Y that contains L and is centered at ã,
which lies at distance 1 from L. But the geodesics γ̃k = d−1

k (γk− `) converge
(modulo extraction if the reader wishes) to a half line that makes an angle
at most 9π

10 with the direction of the half line [0, ã), and is contained in Y ;
this contradiction completes the proof of Lemma 2.7. �
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It looks like we forgot some additional information that we could prove,
the fact that in the situation of Lemma 2.7, there in no other piece of K in
B(`, η2/40), but we shall return to this soon.

We easily deduce (2.4) from the lemma. Let Cj be one of the arcs that
compose K, and suppose that H1(Cj) 6 η1η2

20 . By (2.22), at least one of its
endpoints lies in K ∩ L (call it `), and by (2.21) the other one (call it a) is
the only point of K∩B(`, η2/10)\L. In addition, if H1(Cj) 6 η4, Lemma 2.7
says that there is at most one other arc that leaves from `, and that it makes
an angle at least 9π

10 with ρ(`, a) at `. This proves (2.4) and the description
of the exceptions, and for this we can choose any constant η0 6 η4.

Let us now prove (2.5), first modulo its exception. Suppose that for some
η0 < η4/4, we can find two arcs Ci and Cj , that do not share an endpoint
and furthermore are not connected by one of the exceptions of (2.4), but for
which

dist(Ci,Cj) 6 η0. (2.27)

We want to derive a contradiction. Let xi ∈ Ci and xj ∈ Cj be such that
|xi − xj | 6 η0. First assume that we can find endpoints ai of Ci and aj of
Cj such that |ai − xi| 6 η4/4 and |aj − xj | 6 η4/4. Then |ai − aj | 6 6η4/4,
(2.22) says that one of them (say, ai for definiteness) lies in L. By (2.21),
aj is the only point of K ∩ B(ai, η2/10) \ L. By Lemma 2.7, ρ(ai, aj) ⊂ K.
This contradicts our assumption that Ci and Cj were not connected by one
of the exceptional arcs of length 6 η4.

So xi, for instance, lies at distance at least η4/4 from both endpoints
of Ci.

We are now going to follow the proof of (2.26), and in particular proceed
by contradiction. Suppose that, for all k > 0, we can find a minimal cone Xk,
arcs Ci,k and Cj,k for which (2.27) holds with η0 = 2−k, and also points xi,k ∈
Ci,k and yj,k ∈ Cj,k such that |xi,k − yj,k| = dist(Ci,Cj), and yet xi,k lies at
distance at least η4/4 from both endpoints of Ci. By rotation invariance, we
can work with a fixed L. Set rk = |xi,k − xj,k| = dist(Ci,k,Cj,k) 6 2−k.

We first assume that r−1
k dist(xi,k, L) 6 C, and that there is a fixed

` ∈ S ∩ L such that |xi,k − `| 6 2Crk. Set Yk = r−1
k (Xk − `), and extract a

subsequence for which Yk tends to some Y . Then as usual Y is a minimal
set with sliding boundary L, Y is invariant by translations parallel to L, and
Lemma 2.3 gives a description of Y .

Notice that Kk contains an arc of geodesic ρk of length η4/2 centered
at xi,k. Let Pk denote the plane that contains ρk and the origin, and let
Dk = Pk ∩ B(xi,k, η4/4). We know that Dk ⊂ Xk, and hence Yk contains
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D′k = r−1
k (Dk − `), which is a planar disk parallel to Pk, but centered at

x′i,k = r−1
k (xi,k − `), and with a large radius r−1

k η4/4.

Notice that |x′i,k| = r−1
k |xi,k − `| 6 2C, hence we may assume that x′i,k

has a limit x′, and that the direction of Pk admits a limit too. Then D′k has a
limit, which is a whole plane P ′ centered at a′ (because of the large radius),
and in addition P ′ ⊂ Y because D′k ⊂ Yk. By the description of Lemma 2.3,
Y = P ′.

Now consider the point xj,k ∈ Kk. By definitions, dist(xj,k,Ci,k) = rk,
and (since Ci,k is orthogonal to xi,k−xj,k at xi,k and by elementary geometry)

dist(xj,k, Dk) > rk/2. (2.28)

Set x′j,k = r−1
k (xj,k − `); then

dist(x′j,k, D′k) = r−1
k dist(xj,k, Dk) > 1/2. (2.29)

As before |x′j,k| = r−1
k |xj,k − `| 6 2C + 1, so we may assume that x′j,k tends

to a limit b. Then b ∈ Y because x′j,k ∈ Yk for all k, and yet dist(b, P ′) > 1/2
by (2.29). This contradicts the fact that Y = P ′, and we are left with the
case where r−1

k dist(xi,k, L) is unbounded.

In this case, we set Yk = r−1
k (Xk−xi,k), extract a subsequence for which

Yk converges to a limit Y , and notice that Y is minimal, without a sliding
boundary condition. We may also assume that xi,k has a limit x, and then
Y is invariant by translations in the direction of x. Thus Y is a plane or a
Y-set.

We proceed as before, find disks Dk ⊂ Xk, then big disks D′k ⊂ Yk,
and obtain that Y contains a plane P ′ (the limit of the D′k). But at the
same time, xj,k is far from Ci,k, which leads to (2.28) and (2.29). Again this
is impossible, because Y contains a limit of the x′j,k, which is at positive
distance from P ′.

This completes our proof of (2.5) with its exception: whenever (2.27)
fails, Ci and Cj are merely separated by a short arc Ck of K. So far we said
that H1(Ck) 6 η4, but we also want to compute dist(Ci,Cj). Near Ck, the
situation is the following. We have the short arc Ck, with endpoints ` ∈ L
and a ∈ K \L; then Ci and Cj are two geodesic arcs of length at least η2/20,
one leaving from a with a 120◦ angle with Ck, and the other one leaving
from ` with an angle of at least a 120◦ with Ck (we just applied (2.7), but
we could even get more by applying Lemma 2.7).

The standard case is when Ci and Cj are not too long, and merely get
away from each other when they leave Ck; then dist(Ci,Cj) = diam(Ck),
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and in particular Ck was also an exception of (2.5), even with the smaller
constant η0.

The second case is when they get together again, near the antipode, so as
to get within η0 from each other. Then they are merely separated by another
(in fact the only other) exceptional arc C′k, and of course dist(Ci,Cj) =
min(diam(Ck),diam(C′k)).

This completes our discussion of (2.5) with its exceptional case, and we
are also finished with Proposition 2.1. �

We end this section with a short remark. Although we proved all our
estimates by compactness, this was mostly out of laziness. It is quite probable
that we could get an explicit bound for η0, but we shall not try to do this
here and doubt that it would be interestingly large.

3. The standard decomposition of K

In this section we define the standard decomposition of a minimal set
of dimension 2 in Rn, with sliding boundary L. This decomposition will be
used to construct our main competitors for the almost minimal set E (in the
next sections). The full length property defined in the next section will use
this decomposition as well.

Let L ⊂ Rn be a line, and X be a sliding minimal cone with boundary
L. Recall that in Proposition 2.1 we defined a natural decomposition of
K = X ∩ S, into a finite and almost disjoint collection of sets Cj , j ∈ J ,
which are either arcs of geodesics, or full great circles, drawn on S.

We modify this decomposition slightly, to get what we’ll call a standard
decomposition of K. In fact, we just take some pieces Cj and cut them into
2, 3, 4, or 5 pieces, so as to get arcs of geodesics of length at most π/2. For
the full great circles Cj , we just cut them in 4 equal parts, by adding four
vertices. If dist(Cj , L) < 1/4, say, let us choose the two points of Cj that lie
closest to L as (two of the) cutting points.

When Cj is just an arc of geodesic and its length is more than π/2, we
cut it into sub-arcs of length between π/4 and π/2. We may use the latitude
that we have to choose the additional vertices as close to the points ` ∈ L∩S
as possible (when K does not already contain `), but the author does not
recall ever using this possibility after all. For the moment, we do not care
much if Cj is not cut into equal pieces.

Once we cut all the long arcs as we just explained, we get a standard
decomposition of K. It is usually not unique, but this does not matter. It
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is again a decomposition of K into arcs of geodesics Ci, i ∈ I, and we now
review some of its properties. First, each Ci is an arc of geodesic,

K =
⋃
i∈I

Ci , (3.1)

and

the interiors of the Ci, i ∈ I, are disjoint and do not meet L. (3.2)

Denote by ai and bi the endpoints of Ci. We do not pay attention to which
is which, i.e., we may exchange the names at any time for the convenience
of notation, but anyway

Ci = ρ(ai, bi), (3.3)
where ρ(a, b) systematically denotes the closed (shortest) geodesic from a to
b in S (when b 6= −a). We will never take antipodal points, hence ρ(a, b)
will be uniquely determined. As a general rule, ρ will denote a geodesic or a
union of geodesics.

Let us use this opportunity to introduce the geodesic distance in S defined
by:

distS(a, b) = H1(ρ(a, b)) ∈ [0, π]; (3.4)
when a = −b we set distS(a, b) = π.

We denote by V the set of vertices of the standard decomposition, i.e.,
the collection of endpoints ai and bi. We write

V = V0 ∪ V1 ∪ V2, (3.5)

where V0 = K∩L, V1 is the set of vertices of the natural decomposition that
do not lie in V0, and V2 is the set of vertices that we added to cut some of
the initial arcs to make them shorter, and (for the case of full great circles)
that are not points of V0. Thus the three Vi are disjoint.

We said that the arcs Ci, i ∈ I, only meet at their endpoints, and there
are rules about how they can meet. For ` ∈ V0, there can only be one, two,
or three Ci that start from `, and always with angles > 2π

3 . This comes
from (2.7). For a ∈ V1, there are exactly three Ci that start from a, and they
make angles of 2π

3 at a (see (2.6)). Finally, at a ∈ V2, there are exactly two
Ci that start from a, and they make angles of π at a (their tangent half lines
lie in opposite directions); this is clear, we just cut a geodesic at a.

We also control the length of the Ci. The general rule is that
π

4 6H
1(Ci)6

π

2 when at least one of the endpoints of Ci lies in V2; (3.6)

η0 6 H1(Ci) 6
π

2 (3.7)
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when both endpoints of Ci lies in V1; and for ` ∈ V0, (3.7) holds for all the
Ci that end at `, except perhaps one. When this exception happens, there is
at most one other arc Ci that leaves from `, and it makes an angle at least
9π
10 with Ci at `. See below (2.4).

We also have the following consequence of (2.5) and the discussion that
follows it. When i, j ∈ I, are such that Ci and Cj don’t have a common
endpoint, the general rule is that

dist(Ci,Cj) > η0, (3.8)

and this may only fail when there is an arc Ck such that diam(Ck) 6 η0, with
one common endpoint with Ci and one common endpoint with Cj . Since Ci
and Cj are now short (as in (3.7)), the strange special case when Ci and Cj
are close at both ends does not happen any more, and we get the simpler
formula dist(Ci,Cj) = diam(Ck). It will also good to know that for i ∈ I,

dist(x,K \ Ci) > min(η0, |x− ai|, |x− bi|) for x ∈ Ci, (3.9)

where ai and bi still denote the endpoints of Ci. Indeed the distance to
the direct neighbors of Ci is controlled by our angle conditions, and the
distance to the other arcs Cj is controlled by (3.8), except when Ci and Cj
are separated by a short arc Ck. But even in this case, (3.9) follows from the
fact that Ci and Cj leave from Ck in directions that make an angle larger
than 2π

3 −
π
5 . See below (2.5).

4. The full length condition

Now we define the full length condition, which will be our replacement for
the epiperimetric inequality of Reifenberg. This will be a relatively simple
condition on the position of the geodesics that compose K = X ∩ S, which
will be sufficient for our proof to give good density decay, and then some
regularity, at points of an almost minimal set where X is a blow-up limit.
See Definition 4.1.

Let X be a minimal cone, and choose a standard decomposition of K =
X ∩ S, as in the previous section. We first discuss how to construct pertur-
bations of X by moving the vertices x ∈ V . We do not want to move them
too much, because we want to modify the structure of K as little as possible,
and in order to measure how far we will be allowed to go we set

ηL(X) = min
`∈L∩S\K

dist(`,K) > 0, (4.1)

ηV (X) = min
`∈K∩L

dist(`, V1 ∪ V2) > 0, (4.2)
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and

η(X) = 10−1 min(η0, ηL(X), ηV (X)), (4.3)

where the absolute constant η0 comes from Proposition 2.1. Notice that
when ηV (X) < η0, it is the diameter of the smallest of the exceptional arcs
Ci for (3.7).

The basic tool to generate perturbations of X is the set ΦX(η) of map-
pings ϕ : V → S such that

|ϕ(x)− x| < η for x ∈ V, (4.4)

and in fact we will restrict to η < η(X). We want to use the mappings
ϕ ∈ ΦX(η) to modify the geodesics Ci, i ∈ I, and this will be easier when
both endpoints of Ci lie in V1 ∪ V2. Denote by ai and bi the endpoints of Ci,
and set

I1 =
{
i ∈ I ; ai and bi lie in V1 ∪ V2

}
. (4.5)

When ϕ ∈ ΦX(η) and i ∈ I1, we simply set

ϕ∗(Ci) = ρ(ϕ(ai), ϕ(bi)). (4.6)

Things are a little more complicated when i ∈ I0 = I \ I1. When i ∈ I0, we
use the convention that bi ∈ V0, and ai /∈ V0. We want to leave more options,
so we will need to append to ϕ some additional information.

Let ` ∈ V0 be given, denote by I(`) ⊂ I0 the set of indices i ∈ I such
that ` is an endpoint of Ci. Also call m(`) ∈ {1, 2, 3} the number of elements
of I(`). If m(`) = 1, we don’t need more information, and in fact we can
even forget about ϕ(`), because we set

ϕ∗(Ci) = ρ(ϕ(ai), `) when i ∈ I(`), m(`) = 1, and Ci = ρ(ai, `). (4.7)

When m(`) = 2, we add to ϕ a component ϕ` ∈ {−1, 1}, and we set

ϕ∗(Ci) = ρ(ϕ(ai), ϕ(`))
when i ∈ I(`), m(`) = 2, ϕ` = −1, and Ci = ρ(ai, `) (4.8)

(the free option), and

ϕ∗(Ci) = ρ(ϕ(ai), ϕ(`)) ∪ ρ(ϕ(`), `)
when i ∈ I(`), m(`) = 2, ϕ` = 1, and Ci = ρ(ai, `) (4.9)

(the attached option). In this case, we added the same connecting arc
ρ(ϕ(`), `) to the two ϕ∗(Ci), i ∈ I(`), but this is just to avoid more compli-
cated notation, and we will never count this arc with multiplicity.
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When m(`) = 3, we add a component ϕ` ∈ {−1} ∪ I(`) (i.e., choose the
free option or the attached option, and in this last case choose one of the
three Ci that end at `, and set

ϕ∗(Ci) = ρ(ϕ(ai), ϕ(`))
when i ∈ I(`), m(`) = 3, ϕ` = −1, and Ci = ρ(ai, `) (4.10)

(as before, the free option where we just move the center and let the Ci
follow). In the last case when m(`) = 3, and ϕ` = j ∈ I(`), we set

ϕ∗(Ci) = ρ(ϕ(ai), `) if i = j (4.11)
and, for the two other indices i ∈ I(`) \ {j}

ϕ∗(Ci) = ρ(ϕ(ai), ϕ(`)) ∪ ρ(ϕ(`), `). (4.12)
Again we put the same arc ρ(ϕ(`), `) twice when once would have been
enough, and this time we transformed the union of the three arcs Ci that
looks like a Y into a truncated Y plus an arc, both leaving from `. Notice
that when ϕ(`) = `, some of the pictures above get simpler, and we don’t
even need the free option.

Since we may have added coordinates to ϕ, let us denote by Φ+
X(η) the

set of enlarged mappings ϕ. We do not give a different name to ϕ and its
extension, so as not to exaggerate with notation; when we really want to
know which one we consider, we will say that ϕ ∈ ΦX(η) or ϕ ∈ Φ+

X(η), but
the truth is that we shall work with Φ+

X(η).

For ϕ ∈ Φ+
X(η), we define a perturbation of K by

ϕ∗(K) =
⋃
i∈I

ϕ∗(Ci) ⊂ S, (4.13)

and then a modified cone
ϕ∗(X) =

{
tx ; x ∈ ϕ∗(K) and t ∈ [0,+∞)

}
. (4.14)

With the present definition, it may happen that even after we remove
the arcs ρ(`, ϕ(`)) that we counted twice, some of our arcs ϕ∗(Ci) still cross
(i.e., meet somewhere else than their common endpoints). Since we took
η < η(X), the arcs of (4.7) don’t do that, so all the crossing happens near
the points of V0.

Let us decide to forbid this, and restrict to the subset Φ+,i
X (η) ⊂ Φ+

X(η)
of mappings ϕ for which this does not happen, i.e., for which the arcs ϕ∗(Ci)
are disjoint, except for common endpoints and for the double occurrence of
some ρ(`, ϕ(`)). We will call the mappings ϕ ∈ Φ+,i

X (η) injective.

The main reason for restricting to injective mappings ϕ is that later in the
proof, the only cones ϕ∗(X) for which we need to use the full length condition
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below are injective anyway, so we save ourselves a little bit of unpleasant
verification for the full length condition, at essentially no expense.

We are finally ready to say what we mean by full length.

Definition 4.1. — We say that the minimal cone X (with sliding bound-
ary L) satisfies the full length condition when there is a standard decompo-
sition of K = X ∩ S and small numbers η ∈ (0, η(X)) and c > 0 such that
for all injective mappings ϕ ∈ Φ+,i

X (η) such that

∆(ϕ) := H1(ϕ∗(K))−H1(K) > 0, (4.15)

there is a sliding competitor X̃ for ϕ∗(X) in B(0, 1) (see Definition 1.1) such
that

H2(X̃ ∩B(0, 1)) 6 H2(ϕ∗(X) ∩B(0, 1))− c∆(ϕ). (4.16)

This looks complicated (just as the initial definition of full length for plain
minimal cones, see [10]), and the only justification for it is that it makes the
machine work. At least we shall be able to check the full length condition
on the simple examples that we mostly care about, and we can always think
that the definition is simpler than some notions of epiperimetric inequalities.

One paradox that may be worth mentioning is that the full length condi-
tion only makes sense once we know that X is minimal. Otherwise, finding
X̃ so that (4.16) is just too easy: use a better competitor of X and deform
it a little to fit ϕ∗(X).

Probably choosing a standard decomposition by force, instead of allowing
some flexibility as we did, would not change the notion of full length. But
having the choice will allow us to simplify some computations when we check
the full length.

When we choose the free option in the description of ϕ∗(K) near a point
` ∈ K, we seem to save some area when we omit to add ρ(`, ϕ(`)), but
at the same time we allow more competitors for (4.16), because we don’t
necessarily need to check (1.4) near ` any more. Requiring the condition of
Definition 4.1 also for the deformations with the free option seems to be
more stable. Think about the case when X is a plane, which may contain L
or just pass very close to L.

We will have to return to the notion of full length later, and play a little
more with the definitions. First, there may be circumstances where we will
need to check the existence of X̃ only for perturbation that are free (we
will also say detached) at one or two of the points ` ∈ V0, typically because
anyway the set E that we study is detached from L.
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Also, we will need a similar notion of full length when we prove decay
estimates, in some cases, for the functional F of (1.27) adapted to balls that
are not centered exactly on L. This will happen at the end of Section 26,
with proofs in Sections 27 and 28.

Finally, instead of requiring the existence of a sliding competitor X̃ such
that (4.16) holds, we will some times be able to manage with a simpler
version of this. See the end of Section 26, and in particular Lemma 26.1.

The cones of type P, Y, T, H, and V, all satisfy the full length property;
a good part of this will be checked in Sections 27 and 28, when we need full
length estimates related to F in the more general case of balls that are not
necessarily centered on L, and the remaining verifications will be done in
Section 37. See Theorem 37.1.
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Part II. Density decay for balls centered on L

5. The initial setup and two words about the constants

A very large portion of this paper consists in the construction of some
competitors for an almost minimal set E. In this section we give some nota-
tion and our basic assumptions for the sections that follow.

We work in Rn, and with a reduced (or coral) sliding almost minimal set E
of dimension 2, in an open set U that contains B(0, 2r), and with a sliding
condition coming from the line L through the origin. See Definitions 1.2
and 1.3. We shall assume that the gauge function h is small enough, and
more precisely that

h(s) 6 Chsβ for 0 < s 6 2r, (5.1)
where β > 0 and Ch > 0 are constants such that

Chr
β 6 ε, (5.2)

where ε > 0 is a very small constant that will be chosen much later, to
make the argument work. This is a little more restrictive than what we
actually need. For instance taking h(s) = ε

(
ln(2r/s)

)−b for some sufficiently
large b that depends on n would be enough, by looking at similar statements
in [10] and checking that they adapt. In what follows, we could decouple (5.1)
from (5.2); in effect, we shall use (5.1) because it implies some nice general
properties for E, like the fact that it has a C1 description far from L, or
the existence of the density θ(x) of (1.19). Then the estimates of the next
sections will use (these general properties, plus) the size of h(2r).

We also assume that
d0,2r(E,X) 6 ε, (5.3)

where d0,2r is the local Hausdorff distance of (1.14) and X is a sliding min-
imal cone (centered at 0), also with a sliding boundary condition coming
from L.

Our main task will be to construct, under various assumptions on E and
r, some good competitors for E in the closure of B = B(0, r); then we will
use this to get differential inequalities on a density excess function f(r),
in principle associated to the standard monotonicity formula from [14], al-
though later on we also want to use a slightly different monotonicity formula
from [13], with balls that are not centered on L.

We assume some additional properties of E, which will be used in the
proof. First assume that

H1(E ∩ ∂B) < +∞. (5.4)
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This is true for almost every r > 0 such that B(0, r) ⊂ U (for instance by
the co-area formula), so it costs virtually nothing, and will be useful in some
proofs. Next we require some maximal function to be small at r. Define a
measure µπ on [0, 2r) by

µπ(A) = Hd(E ∩ π−1(A)) (5.5)

for Borel sets A ⊂ [0, 2r), and where π is the radial projection defined by

π(z) = |z| for z ∈ Rn. (5.6)

We require that there is a number C > 0, that may depend wildly on r, such
that

H2(E ∩Aξ) 6 Cξ for 0 < ξ < r,

where we set Aξ = B(0, r) \B(0, r − ξ). (5.7)

That is, we just require the one-sided variant of the Hardy–Littlewood maxi-
mal function of µπ to be finite at the point r. This is like (4.5) in [10], and we
shall see in the proof of Proposition 17.2 that (5.7) holds for almost every r.

We also require that for every continuous nonnegative function f on Rn,

lim
ρ→0

ρ−1
∫
t∈(r−ρ,r)

∫
E∩∂B(0,t)

f(z)dH1(z)dt =
∫
E∩∂B(0,r)

f(z)dH1(z). (5.8)

This is the same thing as (4.3) in [10], and it turns out that this is also
satisfied for almost every r > 0. The proof is given in Lemma 4.12 of [10],
and works here as well. So assuming (5.8) for our standard r costs us nothing.

Starting with the next section, we shall fix E, X, and r as above, and
even assume that r = 1 to simplify the notation. Our general goal is to
modify the set E inside of B = B(0, 1) to get a better competitor if we can.

The construction of the good competitor will keep us busy for Sections 6–
16. It will use a few different constants, and maybe it is the right time to
announce in which order they will be chosen.

We already have a constant η(X), which may be very small (depending
on X, and in particular on the distance between L and some faces or edges
of X), but we see it as a geometric constant.

In Section 6, we introduce a small constant τ , which gives the size of the
disks D near the points of S ∩ L where most of the action will take place.

Then there is a small Lipschitz constant λ, which we use to construct
Lipschitz graphs in Section 8. We will need λ to be small enough (we often
use it as a small parameter to control some angles), and in particular so that
the estimates of Section 9 apply.
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For a long time, the only constraint on τ will be to be small enough, in
particular compared to η(X) (see (6.3)), but for the estimates in Section 14
to give small enough errors compared to what we win with the construction
of Section 14, we will need τ to be small enough, depending on λ.

There will be a short occasion or two, in Section 11, where we briefly use
a smaller value of τ , but this will be explained then. See Lemma 11.1. At
the same time, we will use a small α > 0, which will be chosen in Section 11
and will depend on λ and τ .

There is a small constant τ1 in (8.3), which we may as well take very
small, compared to both λ and τ . But it is not exactly of the same nature
as τ .

Our last real constant is ε in (5.3), which will be chosen at the end,
extremely small, and depending on all the constants above.

We mention τ3 (in Proposition 13.1) and τ4 (in Lemma 14.1) for com-
pleteness, but they are extremely small numbers, not constants, as they may
depend on the radius r above.

6. A local description of E ∩ S far from L

From now on we fix the line L, the minimal cone X, the reduced almost
minimal set E, and the radius r = 1, as in Section 5.

In this section we first record simple properties of the Ci concerning their
distances (see Lemma 6.1), and then use known local regularity results for
plain almost minimal sets (i.e., with no sliding boundary condition) to give,
at least far from L, a local description of E∩S as a finite union of C1 curves
Li that follow the curves Ci of the standard description of K. The reader
may want to check Proposition 6.5 below to convince herself that no real
surprise will come out of this section.

The description of E∩S that we’ll give in this section relies on regularity
results for (plain) almost minimal sets. We shall quote [9] and [10] for con-
venience, but when n = 3 we could as well use [47]. Also, we proceed this
way because we prefer to insist right away on the places where new difficul-
ties appear (i.e., close to L); with a more complicated version of the present
paper, we would quite probably be able to prove the local regularity of E
far from L at the same time. But this would not really make things simpler:
the proof of the present paper essentially contains the proof in [10] anyway.

We start with more notation. Recall from Section 3 that the standard
decomposition of K is composed of arcs Ci, i ∈ I, of geodesics, and that ai,
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bi denote the endpoints of Ci, so that Ci = ρ(ai, bi). Set
I0 =

{
i ∈ I ; Ci meets L

}
=
{
i ∈ I ; ai ∈ L or bi ∈ L

}
. (6.1)

Also denote by I1 = I \ I0 the set of i ∈ I such that ai, bi ∈ V1 ∪ V2.

In this section will stay at some distance from L. More precisely, denote
by `+ and `− the two points of L ∩ S. Then set

D±(τ) = S ∩B(`±, τ) and ∂D±(τ) = S ∩ ∂B(`±, τ) (6.2)
for τ 6 η(X). We will use various small numbers τ > 0, to be chosen later,
but always such that

τ 6 10−3η(X). (6.3)

6.1. More about distances between vertices and curves Ci

Before we come to E ∩ S \ (D+(τ) ∪ D−(τ)), we need some additional
information on V and the Ci.

Lemma 6.1. — Let η(X) be as in (4.3). Then
H1(Ci) > 10η(X) for i ∈ I, (6.4)

dist(Ci,Cj) > 9η(X) for i, j ∈ I such that Ci ∩ Cj = ∅, (6.5)
and

dist(x,Ci) > 9η(X) when x ∈ V and the arc Ci does not contain x. (6.6)

Proof. — We start with a proof of (6.4). When both endpoints of Ci lie
on V1∪V2, this follows from (3.7) and (4.3). Otherwise, diam(Ci) > ηV (X) >
10η(X) by (4.2) and (4.3); (6.4) follows.

Next we check (6.5). Suppose that Ci ∩ Cj = ∅. In general, (6.5) follows
from (3.8) and (4.3), and the only exception, as explained below (3.8), is
when Ci and Cj are only separated by a short arc Ck. Even so, we said
below (3.8) that dist(Ci,Cj) = diam(Ck). But (6.4) says that H1(Ck) >
10η(X), and since we may safely assume that η(X) 6 η0 is very small, we
get that diam(Ck) > 9η(X), as needed.

Finally let x ∈ V and Ci be as in (6.6). First assume that there is an
arc γ of K that goes from x to Ci; then H1(γ) > 10η(X) by (6.4), hence
diam(γ) > 9η(X). In this case dist(x,Cj) > diam(γ) > 9η(X), because γ
and Cj make an angle of at least 120◦ at their common endpoint.

Assume now that x is not directly connected to Ci, and let Cj be any arc
that contains x; then Ci ∩ Cj = ∅, and dist(x,Cj) > dist(Ci,Cj) > 9η(X)
by (6.5); (6.6) and Lemma 6.1 follow. �

– 64 –



A local description of 2-dimensional almost minimal sets bounded by a curve

6.2. A description of E ∩ S near a vertex x ∈ V1

We start our description of E ∩ S with what happens near the vertices of
V1. We fix x ∈ V1, and denote by γ1, γ2, γ3 the three arcs Ci that leave from
x. Recall that the γi meet with 120◦ angles, so there is a cone Y (x) ∈ Y,
whose spine (understand, singularity set) contains the line through x, and
that contains γ = γ1 ∪ γ2 ∪ γ3. Let us check that

K ∩B(x, 9η(X)) = γ ∩B(x, 9η(X)) = Y (x) ∩ S ∩B(x, 9η(X)). (6.7)

Since γ ⊂ K, for the first identity we just need to check that the only Ci
that meet B(x, 9η(X)) are the γi. This follows from (6.6), because the γi are
the only arcs that contain x. For the second identity, observe that γ ⊂ Y (x)
by definition of Y (x); the other inclusion holds because H1(γi) > 10η(X)
by (6.4).

The next description will come from Corollary 12.25 in [10].

Lemma 6.2. — Suppose that τ610−3η(X). If ε is small enough, depend-
ing on n and τ , there is a C1 diffeomorphism Φ : B(x, 20τ)→Φ(B(x, 20τ))
with the following properties. First

|Φ(y)− y| 6 10−10τ for y ∈ B(x, 20τ); (6.8)
|DΦ(y)− Id | 6 10−2 for y ∈ B(x, 20τ); (6.9)

E ∩B(x, 9τ) = Φ(Y (x) ∩B(x, 20τ)) ∩B(x, 9τ). (6.10)

Proof. — Some preparation will be needed before we can apply Corol-
lary 12.25 in [10] to get this. First observe that because of (4.1)–(4.3),
dist(x,S ∩ L) > 10η(X); thus

E is a plain almost minimal set in B(x, 9η(X)),
with gauge function h(s) = Chs

β (6.11)

(see (5.1) too). Next we check that E is close to Y (x) near x. First observe
that

X ∩B(x, 8η(X)) = Y (x) ∩B(x, 8η(X)). (6.12)
Indeed B(x, 8η(X)) is contained in the cone over S∩B(x, 9η(X)). By (6.7),
the two cones X and Y (x) coincide on S ∩ B(x, 9η(X)); then they also
coincides in B(x, 8η(X)), as needed. It now follows from (5.3) (and if ε is
small enough) that

dx,8η(X)(E, Y (x)) = 2
8η(X) d0,2(E,X) 6 ε

4η(X) (6.13)

(recall that r = 1 here).

– 65 –



Guy David

Next we find a point of type Y near x: we claim that there exists x0 ∈ E
such that

θ(x0) = 3π and |x0 − x| 6 Cε. (6.14)
Here the density θ(x0) = limr→0 θ(x0, r) is defined by (1.18) and (1.19), and
the first condition is another way to say that all the blow-up limits of E at
x0 lie in Y.

To find x0 we apply Proposition 16.24 in [9] to E and the small ball
B(x, r), where r will be chosen in a second. Let ε2 denote the small constant
in that proposition; we choose r = 10ε−1

2 ε; most assumptions are satisfied
readily (for instance, (5.2) takes care of the size of the gauge function); the
main one is that dx,r(E, Y (x)) 6 ε2, and it follows from the second part
of (6.13) and our choice of r. The conclusion of Proposition 16.24 in [9] is
that E∩B(x, 10−2r) contains a point x0 of type Y . This point satisfies (6.14),
with C = (10ε2)−1.

We also claim that E is close to Y (x) in measure; actually we shall just
need to know that for each ε1 > 0,

H2(E ∩B(x0, 1100τ))
6 Hd(Y (x) ∩B(x0, 1100(1 + ε1)τ)) + ε1(1100τ)2. (6.15)

if ε is small enough. To see this, apply Lemma 16.43 in [9] to the almost
minimal sets E and Y (x), in the ball B(x0, 1100τ), and with δ = ε1. Since
τ 6 10−3η(X), (6.11) gives ample room to do this. The main assumption,
that dx0,11000τ/9(E, Y (x)) be small, follows from (6.13) if ε is small enough
(depending on τ and ε1).

Notice that ρ−2Hd(Y (x) ∩ B(x0, ρ)) 6 3π for all ρ > 0, for instance
because the left-hand side is a nondecreasing function of ρ (recall that Y (x)
is a minimal set), and tends to 3π at ∞. Thus (6.15) yields

θ(x0, 1100τ) = (1100τ)−2H2(E ∩B(x0, 1100τ)) 6 3π + Cε1. (6.16)

We are now ready to apply Corollary 12.25 in [10], to the set E − x0
(because the corollary applies to a ball centered on the set), and with the
radius r0 = 10τ .

There are a few assumptions to check. First, (6.11) says that E − x0
is almost minimal (with no sliding condition) in B(0, 110r0), because τ 6
10−3η(X) and by (6.14). Next there are assumptions on the size of the gauge
function, in particular evaluated at r0; these are satisfied if ε in (5.2) is small
enough. Then there is the assumption (12.27) on the distance from E−x0 to
a minimal cone. We now that E−x0 is 2ε-close to Y (x)−x0 (by (6.13)), but
since Corollary 12.25 in [10] requires a minimal cone centered at the origin
and Y (x) − x0 is centered at x − x0, we translate it by x0 − x and get a

– 66 –



A local description of 2-dimensional almost minimal sets bounded by a curve

minimal cone Y = Y (x) − x centered at 0. Fortunately |x0 − x| is as small
as we wish (use (6.14) and take ε small), so Y is as close to E − x0 as we
wish in B(x0, 110r0).

Finally we need to check (12.27); half of it concerns the size of the gauge
function and follows from (5.1)–(5.2), and the other half requires that the
density excess f(110r0) be sufficiently small. With the definitions of [10] (see
(3.5) et (3.2) there),

f(110r0) = θ(x, 1100τ)− θ(x0)
= (1100τ)−2H2(E ∩B(x0, 1100τ))− 3π, (6.17)

by definitions and (6.14). This is as small as we want, by (6.16) (we choose
ε1 small, depending on the constants in Corollary 12.25, then take ε small).
So we can apply the corollary.

The conclusion (just applied to r = 10τ 6 r0) is that there is a C1+β1

diffeomorphism Ψ : B(0, 20τ) → Ψ(B(0, 20τ)) (for some small β1 > 0 that
depends on the β > 0 of (5.1) and (5.2)) such that

Ψ(0) = 0, |Ψ(y)− y| 6 10−2τ for y ∈ B(0, 20τ), (6.18)
and

(E − x0) ∩B(0, 10τ) = Ψ(Y ∩B(0, 20τ)) ∩B(0, 10τ). (6.19)
We take

Φ(z) = x0 + Ψ(z − x) for z ∈ B(x, 20τ) (6.20)
to translate things back; notice that this way

Φ(x) = x0 + Ψ(0) = x0. (6.21)
Let us see what we get. We start with the good news: Φ is well defined on
B(x, 10τ), and is a C1+β1 diffeomorphism whose image is x0 +Ψ(B(0, 20τ)),
which is almost the same as B(x0, 20τ). Next (6.10) holds, because

E ∩B(x, 9τ) = x0 + [(E − x0) ∩B(x− x0, 9τ)]
= x0 + [Ψ(Y ∩B(0, 20τ)) ∩B(x− x0, 9τ)]
= [x0 + Ψ(Y ∩B(0, 20τ))] ∩B(x, 9τ)
= Φ(x+ Y ∩B(0, 20τ))] ∩B(x, 9τ) (6.22)

by (6.19). But x+Y = Y (x), so x+Y ∩B(0, 20τ) = Y (x)∩B(x, 20τ); (6.10)
follows.

Now (6.18) only yields |Φ(z) − z| 6 |(x0 + Ψ(z − x) − z| 6 |x0 − x| +
|Ψ(z − x) − (z − x)| 6 10−2τ + Cε for z ∈ B(x, 20τ), while we announced
|Φ(z)− z| 6 10−10τ in (6.8). We could try to reduce the difference and keep
same proof by taking r0 = 10−8τ , but it is more honest to say that the
constant 10−2 in Corollary 12.25 can be replaced by any small number we
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wish, at the only expense of taking ε much smaller. In the construction of a
Reifenberg parameterization, this amounts to starting to move points only
after a certain number of generations; the price to pay is precisely to force
the initial set Y to be close enough to E so that we still get a good enough
approximation at the scale where we really start things.

The second difference is that we announced |DΦ−Id | 6 10−2, and Corol-
lary 12.25 only says that Ψ ∈ C1+β1 . But in fact it is a uniform C1+β1

estimate, which means that we even get a uniform control on
(|y − z|/r)−β1 |DΦ(y)−DΦ(z)| for y, z ∈ B(x, 20τ). With this, a very tight
uniform control on |Φ(y)− y| (take it even better than (6.14), since it costs
nothing), and some interpolation, we rather easily get (6.15). Another way
to put this is to notice that the proof of existence for the Reifenberg pa-
rameterization also gives a derivative which is as close to the identity as we
want, again if ε is taken small enough. Finally, what really matters to us
is the fact that if y, z lie in B(x, 20τ) and on the same face of E, then the
distance between the directions of the tangent planes to E at y and z is at
most 10−3, say. This is what we prove in [10], in estimates like Lemma 12.35
and 12.50 (where we can take ε0 as small as we want), which show that
approximate minimal cones vary slowly. Hopefully the reader will trust one
of these arguments; this completes our proof of Lemma 6.2. �

Remark 6.3. — We can replace the constants 10−10 in (6.8) and 10−2

in (6.9) by any small number a0 > 0 that we wish, but then ε has to be taken
small enough, depending on n and τ as above, but also on a0. The proof is
the same; as explained above, we just need to know that in Corollary 12.25
of [10], the mapping Ψ that we get can be required to be close enough to the
identity in C1 norm. Using this remark, we will be given the opportunity of
simplifying our construction slightly at the beginning of Section 13.

Let us now say why Lemma 6.2 also gives a good control on E ∩ S ∩
B(x, 8τ). Some more notation will be useful. Denote by F1, F2, and F3
denote the three faces of Y (x), and choose the labels so that Fj is the half
plane that contains γj (and is bounded by the spine, which is the vector line
through x). Then (6.10) gives a decomposition of E∩B(x, 9τ) into three faces
F ′j = B(x, 9τ) ∩ Φ(Fj ∩B(x, 20τ)), which are intersections with B(x, 9τ) of
three pieces of C1 surfaces. Each of these surfaces F ′j is also a small Lipschitz
graph (over a part of the plane that contain Fj), by (6.9). Finally we know
that the three F ′j meet along a C1 curve (a piece of the image by Φ of the
spine of Y (x)), which is also a small Lipschitz curve, and they meet with
120◦ angles. This is really the description of E near x that we shall use; the
fact that we have a parameterization by Y (x) is of lesser importance.
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We shall use the description above in a later section, but for the moment
we only care about its consequence on E ∩ S. For this we apply the implicit
function theorem to each face F ′j , to get a description of F ′j ∩ S (the zero set
of f(z) = |z|2 − 1). The relevant derivative is the derivative of the distance
to the origin, which stays large because F ′j is a small Lipschitz graph over a
plane that is orthogonal to S. Or equivalenty, we could use (6.9) to estimate
the partial derivative of f ◦ Φ in the direction of x. We get that

F ′j ∩ S ∩B(x, 9τ) is a C1+β1 curve. (6.23)
Call this curve Lj . We have a little more information on the Lj . First,

the three Lj start from a same point x∗, (6.24)
which is also the unique point of F ′1 ∩ F ′2 ∩ F ′3 ∩ S (or the only point of
Φ(F1 ∩ F2 ∩ F3) that lies on S, apply the implicit function theorem to that
curve).

Next the Lj are small Lipschitz graphs. Let us state this in terms of the
oscillation of their unit tangent direction. For z ∈ Lj , denote by vj(z) a unit
tangent vector to Lj at z. We define v so that it is continuous, and v(x∗)
points in the direction of Lj . Also denote by vj the direction of γj (or K) at
x, again going away from x; we claim that

|vj(z)− vj | 6 30−1 for z ∈ Lj . (6.25)
Indeed vj(z) lies in the intersection of the hyperplane Hz tangent to z at S,
and the tangent plane Pz to E at z. If y ∈ B(x, 20τ) is the point of Y (x) such
that Φ(y) = y, Pz is the image byDΦ(y) of the plane P that contains Fj . But
Fj is orthogonal to Hx at x, and contains the tangent vector vj , and (6.9)
says that |DΦ(y)− Id| 6 10−2. Thus Pz is quite close to P , Pz ∩Hz is quite
close to P ∩Hx, and (6.25) follows.

Notice that, by Remark 6.3 (and if τ is small enough compared to a1),
we can also make sure that

|vj(z)− vj | 6 a1 for z ∈ Lj , (6.26)
where a1 > 0 is any small number given in advance. That is, Lj is a Lipschitz
graph, with a Lipschitz constant that is as small as we want.

Of course it follows from (6.25) that
the three Lj make angles of at least 100◦ at x∗, (6.27)

because the vj make 120◦ angles. We also want to show that for 1 6 j 6 3,
dx,8τ (Lj , γj) 6 10−10τ. (6.28)

First let z ∈ γj∩B(x, 8τ) be given; by (6.10) we can find y ∈ Y (x)∩B(x, 20τ)
such that Φ(y) = z. By (6.8), |y − z| 6 10−10τ . Then dist(y,S) 6 10−10τ ,
and y′ = y/|y| lies close to y and z. Also, y lies on the face Fj (because
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z ∈ F ′j), and y′ ∈ Fj too. But Fj ∩ S ∩ B(x, 9τ) ⊂ γj (see (6.12) and the
definition of γj), so dist(x, γj) 6 2 · 10−10τ .

Conversely let y ∈ γj∩B(x, 8τ) be given. Consider the radial line segment
I centered at y and with length 3 · 10−10τ . By (6.8) its image by Φ crosses S
(one extremity in B(0, 1), the other one outside), so there is a point y′ ∈ I
such that Φ(y′) ∈ S. The point z′ = Φ(y′) lies in F ′j (because y′ ∈ Fj), and
of course |z′ − z| 6 3 · 10−10τ . Hence z′ ∈ Li = S ∩ F ′j ∩B(x, 9τ) and (6.28)
follows.

It follows directly from (6.8) and the fact that x∗ = Φ(y) for some y ∈
F1 ∪ F2 ∪ F3 that

|x∗ − x| 6 2 · 10−10τ. (6.29)
Finally let us record the fact that (6.28) also implies that

dx,8τ (K,L1 ∪ L2 ∪ L3) = dx,8τ (γ,L1 ∪ L2 ∪ L3) 6 10−10τ, (6.30)

where the first part comes from (6.7) (recall that γ = γ1 ∪ γ2 ∪ γ3). This
completes our rather precise description of E and E∩S near the real vertices
x ∈ V1.

6.3. A description of E∩S near a flat point x ∈ E∩S far from L∪V1

Next we want to do something similar near the regular points of K, i.e.,
the points near which K is a geodesic of S. This includes the vertices of V2,
since we only cut K artificially there. We take a such a point x and also
assume that x lies far enough from L or V1. More precisely, we take x such
that

x ∈ K and dist(x, L ∪ V1) > τ. (6.31)
The constraint on the distance to V1 will not cost us much, since we already
have a good description of E near V1. What will be missing is what happens
near L, but of course this is the main point of the paper.

We fix x ∈ K \L such that (6.31) holds, and do exactly as in the previous
subsection. Near x, K coincides with an arc of geodesic γ, which we may
as well choose maximal. It could be that γ is composed of two or more
successive arcs Ci, i ∈ I, because we cut some arcs artificially with vertices
of V2, one of which may even be close to x.

Denote by P (x) the plane that contains γ. Let us check that if we take
τ 6 η(X),

K ∩B(x, τ) = γ ∩B(x, τ) = P (x) ∩ S ∩B(x, τ) (6.32)
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(as in (6.7)). For the first part, we just need to check that every arc Ci that
meet B(x, τ) is contained in γ. Let Cj be the arc of the standard decomposi-
tion that contains x. If Ci∩Cj = ∅, (6.5) says that dist(Ci,Cj) > 9η(X) > 9τ ;
this is impossible because dist(x,Ci) 6 τ . So Cj meets Ci, and since there is
no true vertex of K near x, this means that Ci is part of γ too; the first part
of (6.32) follows. For the second part we just need to observe that none of
the two branches of γ (when we leave from x) stops before we reach a point
of V1 ∪ L. By (6.31), this does not happen as long as we stay in B(x, τ).

From (6.31) we also deduce that
E is a plain almost minimal set in B(x, τ),

with gauge function h(s) = Chs
β . (6.33)

The radius is somewhat smaller than in (6.11), so this will force us to apply
the lemmas from [9] and [10] with slightly smaller radii, but otherwise things
will be as easy as before. The analogue of Lemma 6.2 for this case is the
following.

Lemma 6.4. — If ε is small enough, depending on n and τ , then for x as
in (6.31) there is a C1 diffeomorphism Φ : B(x, 2·10−3τ)→ Φ(B(x, 2·10−3τ)
with the following properties:

|Φ(y)− y| 6 10−10τ for y ∈ B(x, 2 · 10−3τ); (6.34)
|DΦ(y)− Id | 6 10−2 for y ∈ B(x, 2 · 10−3τ); (6.35)

E ∩B(x, 10−3τ) = Φ(P (x) ∪B(x, 2 · 10−3τ)) ∩B(x, 10−3τ). (6.36)

We skip the proof, which is just the same as for Lemma 6.2. Again notice
that there is nothing special about points x ∈ V2, we do not have singularities
of K near these points, they were just added to simplify some estimates in
later sections.

As in Remark 6.3, we can even replace 10−10 in (6.34) and 10−2 in (6.35)
with any small constant a0 decided in advance, but then ε has to depend on
a0 too.

By the same discussion as for x ∈ V1 (but simpler because we have no
branching), E ∩B(x, 10−3τ) is also a small Lipschitz graph over P (x). Then
the implicit function theorem allows us to say (as in (6.23)) that

E ∩ S ∩B(x, 9 · 10−4τ) is a C1+β1 curve Lx. (6.37)

Moreover Lx is a small Lipschitz graph, in the sense that if vx denotes a unit
tangent vector to K at x, and if similarly v(z) denotes a continuous choice
of unit tangent vector to Lx at z ∈ Lx, then the proof of (6.25) also yields

|v(z)− vx| 6 30−1 for z ∈ Lx or |v(z) + vx| 6 30−1 for z ∈ Lx (6.38)
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(if we choose the opposite orientations by mistake). And as before, by choos-
ing ε even smaller, we can even arrange that

|v(z)− vx| 6 a1 for z ∈ Lx or |v(z) + vx| 6 a1 for z ∈ Lx (6.39)

for any given small constant a1 > 0. The analogue of (6.28), namely the fact
that

dx,8·10−4τ (Lx, γ) = dx,8·10−4τ (Lx,K) 6 10−6, (6.40)
is proved the same way (the easy first part comes from (6.32)).

In the special case when x ∈ V2, we will need to define a vertex x∗ where
we cut Lx in two. We simply choose x∗ ∈ Lx so that |x∗ − x| is minimal,
and by the proof of (6.28), we get that

|x∗ − x| 6 10−10τ. (6.41)

6.4. The desired description of E ∩ S \ [D+(τ) ∪D−(τ)]

We now have a nice description of E∩S near all the points of K \L which
lie far from L, which we put together to get a relatively simple statement.
Recall the definition of D±(τ) (two small spherical balls centered at the
points `± of L ∩ S).

Proposition 6.5. — For each choice of τ 6 10−3η(X), there exists
ε > 0 such that if X and E satisfy the assumptions of Section 5 with r = 1,
then we can find C1 curves Li ⊂ S, i ∈ I, such that

E ∩ S \ (D+(τ) ∪D−(τ)) =
⋃
i∈I
Li , (6.42)

the curves Li, i ∈ I, are disjoint, except perhaps for their endpoints, and
they are related to the Ci in the following way. For each vertex x ∈ V1 ∪ V2,
we can find a point x∗ ∈ E ∩ S, such that

|x∗ − x| 6 10−9τ (6.43)

and, for i ∈ I1, Li is a simple C1 curve in S, with endpoints a∗i and b∗i (the
two points x∗ associated to x = ai and x = bi respectively), such that

dist(z,Ci) 6 10−8τ for z ∈ Li and dist(z,Li) 6 10−8τ for z ∈ Ci. (6.44)

For i ∈ I0, Ci meets ∂D+(τ) ∪ ∂D−(τ) at a single point ci, Li ends at a
point c∗i such that

|c∗i − ci| 6 10−8τ (6.45)
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and, if ai denotes the endpoint of Ci that does not lie on L, Li goes from a∗i
to c∗i , and

dist(z, ρ(ai, ci)) 6 10−8τ for z ∈ Li and dist(z,Li) 6 10−8τ

for z ∈ ρ(ai, ci). (6.46)

Proof. — We already have most of the needed information, but need to
make a few remarks to put things together. Also, the statement above misses
some information that we obtained in the last subsections; we will refer to
them concerning E itself and Lipschitz graph properties, for instance.

Before we put our local arcs together, let us say how we intend to end
our curves near the two points of S ∩ L.

Let ` ∈ L ∩ S be given, and first suppose that ` /∈ K. Then dist(`,K) >
ηL(X) > 10η(X) by (4.1) and (4.3), and then

B(`, 6η(X)) ∩ (X ∪ E) = ∅, (6.47)
by (5.3) (and if ε is small enough). In this case we’ll not need to do anything
to cut the arcs of E ∩ S near `.

Next assume that ` ∈ K. Then the set I0(`) of indices i such that Ci
(starts or) ends at ` is not empty. The arcs Ci are not too short, because (4.2)
and (4.3) say that dist(`, V1 ∪ V2) > 10η(X). Hence each of them cuts each
sphere ∂B(`, t), t 6 5η(X), at a point xi(t). Call m ∈ {1, 2, 3} the number
of elements in I0(`).

We shall restrict to t ∈ [τ, 2τ ] for some τ < 10−3η(X). We claim that
if ε > 0 is small enough (depending on τ and n), then for each choice of
t ∈ (τ, 3η(X)) and i ∈ I(`),

∂B(`, t) intersects E ∩ S exactly m times, transversally, and
at points x∗i (t), 1 6 i 6 m, such that |x∗i (t)− xi(t)| 6 10−8τ.

(6.48)

This is in fact easy. Lemma 6.4, applied to x = xi(t) ∈ K ∩ ∂B(`, t), shows
that E ∩ S ∩ B(x, τ) (or equivalently, Lx) is a small Lipschitz curve with
(by (6.16)) a tangent direction which is almost the same as the direction of
K at x. This curve crosses ∂B(`, t) transversally (in fact, almost perpendic-
ularly). Thus, near the xi(t), we get a unique point x∗i (t) ∈ E ∩ S∩ ∂B(`, t),
and |x∗i (t)−xi(t)| 6 10−8τ . But there is no other point, because all points of
E∩B(0, 2)∩∂B(`, t) lie close to X (by (5.3)), hence close to one of the xi(t).

We are now ready to say how we organize the local description of E∩S\B
to make curves Li, i ∈ I. Fix τ ∈ (0, 10−3η(X)]. Also set B = B(`+, τ) ∪
B(`−, τ); we have a nice local description, in balls centered on K, of Γ =
E ∩ S \ B, and by (5.3) the balls with the same centers and half the radii
cover Γ. We cut Γ at the points x∗, x ∈ V1 ∪ V2, and we get a collection of
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connected components L which we can also describe: the two endpoints of
L are points x∗, we can use (6.28) or (6.40) to follow K along L, and find
out that L stays close to some Ci, i ∈ I. In addition, if Ci = ρ(ai, bi), L
has the endpoints a∗i and b∗i . Or, when i ∈ I0, one of the endpoint of L is
the point x∗i (τ) associated to t = τ as in (6.48). This completes our proof of
Proposition 6.5. �

Notice that by (6.48), the spheres ∂B(`, t), t ∈ [τ, 2τ ], also cross the Li,
i ∈ I0(`) once and transversally, at least if ` ∈ V0 = K ∩ L. Otherwise, they
don’t touch, by (6.47).

Notice also that the Li also satisfy a version of Lemma 6.1, since they
are very close in distance to the Ci.

Finally observe that we may apply Remark 6.3 and the ensuing comments
and get that each Li is a Lipschitz graph over the geodesic Ci (maybe made
a little longer or shorter to accommodate the endpoints), with a Lipchitz
constant that can be taken as small as we want. The only price to pay is
that we have to choose smaller constants τ and ε. We will have the option
to use this to simplify the construction of our competitors, at the beginning
of Section 13.

7. Connectedness configurations near ` ∈ L ∩ S,
and a first net of curves

In this section and the next ones we fix a point ` ∈ L∩S and restrict our
attention to the small spherical disk

D = S ∩B(`, τ), (7.1)
where τ is a small constant, to be chosen later. We shall assume that τ 6
10−3η(X), so as to be able to apply the results of Section 6.

We shall distinguish between a few different cases, depending on the
number of points of E ∩∂D and the way E ∩D connects them to each other
and to `, and then we shall construct a first net of simple curves γ ⊂ E ∩D,
with the same basic connecting properties. We will do this independently for
each of the two points of L ∩ S.

The first number that we care about is the numberm = m(`) of arcs of K
that start from `. Thus m is the cardinality of the set I0(`) of indices i such
that Ci starts from (or ends at) `. When i ∈ I0(`), we shall systematically
denote by ai the other endpoint of Ci. As a general rule, we shall say that we
are in Configuration m when I0(`) has m elements. We know from (2.7) that
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0 6 m 6 3. But there will be numerous subcases, depending on connectivity
properties.

We start with the easy Configuration 0 when m = 0. In this case, `
is connected to no vertex of V1 ∪ V2, (4.1) and (4.3) say that dist(`,K) >
ηL(X) > 10η(X) > 104τ , and then

X ∩B(`, 2τ) = ∅ and E ∩B(`, 2τ) = ∅ (7.2)

(by (5.3)). In this case we shall do nothing in D in this section or the next
ones.

In the other cases, let us renumber the curves Ci that touch 0 (or equiv-
alently, the set I0(`)), and just call them Ci, 1 6 i 6 m.

For 1 6 i 6 m, Proposition 6.5 gives a curve Li ⊂ E, that leaves from a
point a∗i that lies very close to ai (the other endpoint of Ci), and ends at a
point of ∂D = S ∩ ∂B(`, τ) that we called c∗i . Recall from (6.45) that c∗i lies
quite close to ci, the point of Ci ∩ ∂D. Also, by (6.48),

E ∩ ∂D =
{
c∗i ; 1 6 i 6 m

}
. (7.3)

For each x ∈ E ∩ D, we denote by H(x) the connected component of x in
E ∩D. Also set Hi = H(c∗i ) for 1 6 i 6 m and H` = H(`).

One case that we particularly like is the case of a hanging curve. We
define it as the case when for some i 6 m, c∗i is not connected to any of the
other special points, i.e., when

c∗i /∈ H` ∪
⋃
j 6=i

Hj . (7.4)

We refer to this as Configuration H. In this case we are happy, because we
will be able to contract a large piece of E along the piece of E near Li, and
this will give estimates that are quite favorable. Nonetheless we define a set
γ by (short) induction.

We define a first set γi = {c∗i }, remove the point c∗i (or equivalently the
whole Hi) from the game, and get a new configuration with m− 1 points. If
m = 1, just set γ = γi. Otherwise, define the net γ′ associated to this smaller
configuration (as will be explained in the next cases), and take γ = γi ∪ γ′.
As we shall see, γ′ is contained in the union of the Hj , j 6= i, so we get
a disjoint union. For instance, if we had three hanging curves, γ would be
composed of the three c∗i .

The next simple case is Configuration 1, where m = 1 and H1 = H`. In
this case we choose γ so that

γ is a simple curve in E ∩D that goes from c∗1 to `. (7.5)
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The existence of such a curve follows rather easily from the fact that H1 is
connected and contains c∗1 and `, plus (5.4) which says that

H1(H1) 6 H1(E ∩ S) < +∞; (7.6)

see for instance [25] or Chapter 30 of [8]. Later on we shall replace this curve
with a small Lipschitz curve, and then we shall retract onto it, but for the
moment we continue with our list of cases. Notice that only Configurations
H and 1 are possible when m = 1.

Now assume that m = 2, and that we are not in Configuration H. A first
option is that H1 = H2 6= H`, i.e., c∗1 and c∗2 are connected to each other (in
E ∩D), but not to `. We shall call this Configuration 2−. By (7.6) and the
same argument as above, we can find γ such that

γ is a simple curve in E ∩D that goes from c∗1 to c∗2. (7.7)

Notice that ` /∈ γ, because γ ⊂ H1.

The next case, called Configuration 2+, is when H1 = H2 = H`, i.e.,
our three special points are connected. First select (as above) a simple curve
γ1,2 ⊂ E ∩D, that goes from c∗1 to c∗2. Also choose a simple curve γ0 ⊂ ∂D,
that goes from ` to c∗1. Finally denote by γ` the part of γ0 that lies between
` and the first point of γ1,2 that we hit when we start from ` and run in the
direction of c∗1. We include both endpoints. It could happen that ` already
lies on γ1,2, and then γ` is reduced to the point `; this is all right too. We set

γ = γ1,2 ∪ γ`. (7.8)

This was our last case when m = 2, since each c∗i is connected to another
special point when we are not in case H. Recall that in case H, either the
two curves Li are hanging, and then we set γ = {c∗1, c∗2} or L2, say, is hanging
and H1 = H`, and then we select γ1 ⊂ H1 as in Configuration 1, and set
γ = γ1 ∪ {c∗2}.

Now suppose that m = 3 and we are not in Configuration H. A first
possibility, that we shall call Configuration 3 = 2+1, is that two of the c∗i
are connected to each other, but not to `, and the third one is connected to
` (hence not to the others). Let us relabel the c∗i , if needed, so that in fact

H1 = H2 and H3 = H`, but H1 6= H`. (7.9)

In this case we take
γ = γ1,2 ∪ γ`, (7.10)

where γ1,2 is a simple curve in E ∩ D that goes from c∗1 to c∗2, and γ` is a
simple curve in E ∩D that goes from ` to c∗3. Notice that these two curves
are disjoint, since H1 6= H3.

– 76 –



A local description of 2-dimensional almost minimal sets bounded by a curve

Next we turn to Configuration 3−, where H1 = H2 = H3 6= H`. In this
case we select a simple arc γ1,2 in E ∩ D that goes from c∗1 to c∗2 and a
simple arc γ3,1 in E ∩ D that goes from c∗3 to c∗1. Then we let γ3 be, as in
Configuration 2+, the closed sub-arc of γ3,1 between c∗3 and the first time
we hit γ1,2. We set

γ = γ1,2 ∪ γ3; (7.11)
thus γ is a (possibly degenerate) three-legged spider that connects the c∗i ; it
does not contain `.

We are left with only one case, which we call Configuration 3+, where
all the points are connected, i.e., H1 = H2 = H3 = H`. We define γ1,2 as
before, then γ3,1 and γ3 ⊂ γ3,1, but now also pick a simple arc γ`,1 in E ∩D
that goes from ` to c∗1, but only keep the arc γ` that goes from ` to the first
time we hit γ1,2 ∪ γ3. Finally we take

γ = γ1,2 ∪ γ3 ∪ γ` (7.12)

(a three-legged spider with a short leash to `, which again can also be degen-
erate in different ways). This is our most complicated case; it will turn out
that, later in the proof, we shall replace γ by a connected set with a slightly
simpler shape, but for the moment γ is good enough.

At this stage, we constructed a net γ ⊂ E ∩D, with the same connecting
properties (regarding our special points) as E ∩D. We will have to modify
this net, though, for a few concurrent reasons.

The first one is that we may find a significantly shorter net in D, still with
the same connecting properties, but which may not be entirely contained in
E. The interest is that the cone over this new net will have a smaller surface,
and then we should be able to use this new cone to define an interesting
competitor. This looks like a good idea, but we need to show some restraint,
and only do this transform when we win enough length (and then surface for
the cone) to compensate for the extra cost that we will need to pay when we
glue together pieces of different surfaces. The ideal thing would be to find a
shorter net in E ∩S, but this is probably not going to be possible in general,
so we’ll have to add small connecting pieces.

The second reason is that our construction of competitors (in particular
related to the new curves) will use Lipschitz retractions from a neighborhood
of the net to the net. They will be easier to find if the net has some regularity:
we do not want to have to retract on a curve that almost makes a closed
loop. Thus we will like better nets that are composed of a small number of
small Lipschitz curves that meet with large angles and make no loops.

Fortunately, the two reasons go together: if γ makes unnecessarily long
connections (think about a long arc that connects two close points), we may
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replace some parts of it with shortcuts, save a nontrivial amount of length,
and at the same time increase the chances for a nice retraction.

There is a third reason for which we like small Lipschitz graphs. One of
the main engines of our proof is the comparison between cones and graphs of
harmonic functions. Suppose for instance that C is the unit circle in a plane
P , and that Γ is the graph over C of a Lipschitz function A : C → P⊥. Let
A1 be the homogeneous extension of A (of degree 1), so that the graph of A1
(call it Γ̂) is also the cone over Γ. Then let Ah denote the harmonic extension
of A to P ∩ B(0, 1), and denote by Σ its graph. We expect that H2(Σ) <
H2(Γ̂∩B(0, 1)), especially if A is far from an affine function, but this is much
more pleasant to prove when A has a small Lipschitz constant, because then
we can use expansions of order 2 to estimate the surface measure. (If Γ is
not even a graph, it is much harder to imagine an analogue of the harmonic
graph, and we are a little desperate.) This comparison argument will also
work with the circle replaced by small sectors that we glue to each other,
and this is the reason why we wish to replace our γ with shorter nets of
small Lipschitz curves.

8. The standard replacement by a Lipschitz graph

As we just explained, we intend to modify the simple nets γ of the previ-
ous section, and our main tool for this is a construction, which we will take
from [10] but which was not especially original anyway, that takes a simple
curve γ (typically, one piece of the nets above) and creates a Lipschitz curve
Γ with the same endpoints.

The constraints of the game are that we don’t want Γ to be longer than
γ, and we only want to introduce parts of Γ \ γ when we are sure that
this will make the curve significantly shorter, or that we will win something
proportional in the next section. We don’t need to be specific yet, let us just
remember that we do not want to change the curve for no reason.

We do the construction in this section, and apply it later. So let γ be a
simple curve. To complicate matters (and in particular parameterizations),
γ ⊂ S and we want Γ ⊂ S too. But we will not be disturbed by antipodal
problems, because we will very fast be able to assume that H1(γ) 6 4π

5 .

Let a and b 6= a denote the endpoints of γ. We assume that

distS(a, b) := H1(ρ(a, b)) < 3π
4 , (8.1)

where distS denotes the geodesic distance in the sphere, and ρ = ρ(a, b) is
the geodesic with endpoints a and b.
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So we want to construct a new curve Γ in S, which is a Lipschitz graph
over ρ (we shall explain what this means soon), has the same endpoints a
and b, and coincides with g on a set which is as large as possible.

The main parameter in this construction is a small constant λ < 1, which
is essentially the Lipschitz constant for desired graph Γ. It used to be called
η (in [10]), but we want to avoid notation conflicts. It is required to be small,
depending on the dimension, and the main reason for this is that we want to
be able to apply the results of Section 9. Recall also that we want to choose
τ small, depending on λ, so λ should not depend on τ .

Before we start for real, let us eliminate a simple case. Let τ1 > 0 be
small (to be chosen later, depending on λ). We take

Γ = ρ(a, b) when H1(γ) > (1 + τ1) distS(a, b), (8.2)

and feel happy because although we added a big set, we also saved at least
τ1 distS(a, b) in length. This works even if H1(γ) = +∞, but we do not need
the information.

From now on we assume that the condition in (8.2) fails, i.e., we assume
that

length(γ) = H1(γ) < (1 + τ1) distS(a, b), (8.3)
where the first equality is just a change of notation because γ is simple (see
for instance [25], but the truth is that we could use H1 all along).

Set ρ = ρ(a, b) and let P denote the 2-plane that contains ρ (or equiva-
lently a, b, and 0). We shall often use the fact that because of (8.3),

dist(z, ρ) 6 τ2 distS(a, b) for z ∈ γ, (8.4)

where τ2 = 10√τ1 > τ1 (because τ1 < 1).

It should be said now that (contrary to what we may have implied so
far) we do not always try to make H1(Γ) significantly shorter than γ, but
sometimes we want to control H1(Γ \ γ) in terms of something else, the L2-
norm of the derivative of a function whose graph describes Γ. This is because
we shall see in the next section that a harmonic replacement of the cone over
Γ will make us save a comparable amount of area.

The argument will be essentially imported from Section 7 of [10], and
we use similar notation (except that η1 is now called λ). There is a small
difference with what was done in [10], where for convenience we assumed
(in (7.1) there) that length(γ) > 9η0 for some small geometric constant η0.
Here we do not want to assume this, and this will force us to be some times
a little more careful with the normalization; for instance, in [10] which just
required that length(γ) 6 distS(a, b)+τ1. Here we assume the stronger (8.3),
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with an error term of at most τ1 distS(a, b). The necessary modifications, to
adapt the construction of [10], will all be of that type.

With this in mind, the main assumptions (7.1)–(7.3) in Section 7 of [10]
are satisfied, by (8.1), (8.3) and (8.4). An important quantity, that we want
to use to estimate various terms, is the length excess

∆L = length(γ)− distS(a, b). (8.5)

We now describe the highlights of the construction of [10]. We let z : I →
S denote a parameterization of γ by arclength, so that |I| = length(γ), and
we write z(t) = (z1(t), z2(t), v(t)), where the first two coordinates are in P ,
and v(t) ∈ P⊥. A simple estimate with Fourier series shows that∫

I

|v′(t)|2dt 6 14∆L; (8.6)

see Lemma 7.8 in [10]; the reader should not worry about normalization here,
as even in [10] the constant 14 does not depend on η0.

Next write (z1(t), z2(t)) = (w(t) cos θ(t), w(t) sin θ(t), as in (7.5) of [10]
(notice that by (8.4), (z1(t), z2(t)) stays close to ρ); we also need to know
that (if a and b are chosen in trigonometric order) θ′(t) is rather large on
average. To measure this, we define f on I by

f(t) = 1 + 2|v(t)|2 − θ′(t) (8.7)

(as in (7.20) there), observe that f(t) > 0 almost everywhere (see the line
below (7.20) there, which uses the fact that |z′(t)| = 1 almost everywhere),
and use (8.6) and (8.5) to show that∫

I

f(t)dt 6 30∆L; (8.8)

see (7.21) in [10]. We now use a maximal function argument, based on the
two estimates (8.6) and (8.8), to find an open set Z in I (in fact, Z is the
set where one of the two maximal functions f∗(t) or (v′)∗ is large) with the
following two properties. First,

|Z| 6 Cλ−2∆L = Cλ−2(length(γ)− distS(a, b)) 6 Cλ−2τ1 distS(a, b) (8.9)

as in (7.26) of [10] (and by (8.5) and (8.3)). Here C is an absolute constant
that comes from the Hardy–Littlewood maximal theorem on I. But also, z
has good Lipschitz properties away from Z, that we shall explain soon.

Write Z as a countable disjoint union of open intervals Ij = (aj , bj), with
possibly two exceptions: if the initial endpoint of I lies in Z, the correspond-
ing interval is of the form [aj , bj), and if the final endpoint of I lies in Z, then
Ij = (aj , bj ]. Both things do not happen at the same time, for the following
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reason: we shall choose τ1 small, depending on λ, and in particular, we can
make sure that Cλ−2τ1 < 1 in (8.9), so that |Z| < distS(a, b) 6 |I|.

We come to the good Lipschitz properties. The definition of Z in terms
of maximal functions yields (see (7.33) in [10])

|v(bj)− v(aj)| 6
λ(bj − aj)

4 and θ(bj)− θ(aj) >
bj − aj

2 . (8.10)

We now construct Γ. We directly define a parameterization z̃ : I → S
of Γ. On I \ Z, we simply keep z̃(t) = z(t), and on each interval Ij , we let
z̃ be a parameterization with constant speed of the arc of geodesic ρj =
ρ(z(aj), z(bj)). Then z̃ is continuous; it is even 1-Lipschitz, because

length(ρj) = distS(z(aj), z(bj)) 6 bj − aj (8.11)
because z is 1-Lipschitz. Notice also that (as in (7.30) of [10])

Γ has the same endpoints a and b as γ and ρ. (8.12)
Next we can use (8.10) to show that

Γ is a Lipschitz graph with constant 6 λ. (8.13)
See (7.32) in [10], and (7.42) or (7.44) there for definitions in terms of param-
eterizations, but for here the simplest is to notice (and take as a definition
of Lipschitz curve) that we have the simpler-to-state property that

π⊥(z̃(t)) is a λ-Lipschitz function of π(z̃(t)), (8.14)
where π and π⊥ denote the orthogonal projections on P and its orthogonal
complement; see (7.45) in [10]. Notice that

H1(Γ) = length(Γ) 6 length(γ) = H1(γ) (8.15)
because both curves are simple, and by (8.11); hence

H1(Γ \ γ) 6 H1(γ \ Γ) 6
∑
j

(bj − aj) 6 Cλ−2∆L, (8.16)

by (8.9), and as in (7.31) of [10].

9. Harmonic graphs usually do better than cones

Let Γ be a small Lipschitz graph over a reasonably short geodesic ρ(a, b)
(say, so that (8.1) holds), and denote by P the vector plane that contains
ρ(a, b). Our main example will be the curve that we constructed in the
previous section, starting from γ, but we could use slightly different Γ. In
this section we use Section 8 of [10] to construct a small Lipschitz graph
over a sector of P , whose area is often significantly smaller than the area of
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the cone over Γ. The estimates below will work as soon as a bound λ on the
Lipschitz constant is small enough (depending on n only).

When Γ is a geodesic, the cone over Γ is a plane sector, and we shall not
modify anything in this section, but one could also follow the construction
below and find out at the end that we did nothing. This means that when Γ
comes from a curve γ as in the last section, we can assume that (8.3) holds
(because otherwise γ is a geodesic). The amount of area that we are able to
save will be essentially proportional to the quantity

∆Γ = length(Γ)− distS(a, b) 6 τ1 distS(a, b). (9.1)

First we define a homogeneous function F , defined on a sector DT of P ,
and whose graph coincides in B(0, 1) with the cone over Γ. We start with the
sector DT . Choose coordinates on P so that a = (1, 0) and b = (cosT, sinT ),
where T = distS(a, b) < 3π

4 by (8.1). Then set

DT =
{

(r cos t, r sin t) ; r ∈ (0, 1) and t ∈ (0, T )
}
. (9.2)

We assume that we can parameterize Γ in the following way: we can find
an λ-Lipschitz function v : [0, T ] → P⊥, with v(0) = v(T ) = 0, such that if
we set

w(t) =
(
1− |v(t)|2

)1/2 (9.3)
and then

h(t) = (w(t) cos t, w(t) sin t, v(t)) ∈ P × P⊥ (9.4)
for t ∈ [0, T ], then h is a parameterization of Γ. Thus t ∈ [0, T ] is the angle
with the direction of a of the orthogonal projection on P of the running
point.

In the special case when Γ comes from γ as in Section 8, the existence of
v is checked in Remark 8.3 of [10]. Let us also check that we can find v as
above, except maybe only 2λ-Lipschitz, when Γ is a λ-Lipschitz graph over
the geodesic ρ(a, b). By definition, this last means that Γ is a curve in S,
from a to b, and that

|π⊥(z)− π⊥(z′)| 6 λ|π(z)− π(z′)| (9.5)
for z, z′ ∈ Γ. Here we denote by π and π⊥ the orthogonal projections on
P and P⊥ respectively. We also write π(z) = weit and π(z′) = w′eit

′ , with
w,w′ > 0. Notice that since π⊥(a) = 0, we see that |π⊥(z)| 6 2λ is very
small, and (since z ∈ S)

w = (1− |π⊥(z)|2)1/2 > (1− 4λ2)1/2 =: ρ0, (9.6)
with a ρ0 ∈ (0, 1) that is as close to 1 as we want. We deduce from (9.5) and
the first part of (9.6) that

|w − w′| 6 ρ−1
0 λ|π(z)− π(z′)|. (9.7)
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Then since

π(z)− π(z′) = weit − w′eit
′

= w[eit − eit
′
] + [w − w′]eit

′
, (9.8)

|eit − eit
′
| > w|eit − eit

′
| > |π(z)− π(z′)| − |w − w′|

> (1− ρ−1
0 λ)|π(z)− π(z′)| (9.9)

and

|eit − eit
′
| 6 ρ−1

0
(
|π(z)− π(z′)|+ |w − w′|

)
= ρ−1

0 (1 + ρ−1
0 λ)|π(z)− π(z′)|. (9.10)

By (9.1), (9.10), and since H1(ρ(a, b)) < 3π
4 by (8.1), eit stays in an arc

of circle of length at most 4π
5 . There is a unique continuous determination

of t that comes from inverting eit on that arc (in a π
2 Lipschitz way), and

now (9.9) implies that π(z) is a 2-Lipschitz function of t. We write this
π(z) = ϕ(t). Also π⊥(z) is a Lipschitz function of π(z); we write this as
π⊥(z) = ψ(π(z)). Then set v = ψ ◦ ϕ; we see that v is 2λ-Lipschitz. With
our notation, π⊥(z) = ψ ◦ ϕ(t) = v(t), (9.3) is the same as (9.6), and the
fact that (9.4) parameterizes Γ comes from the fact that

z = π(z) + π⊥(z) = weit + ψ ◦ ϕ(t) = (w cos t, w sin t, v(t)). (9.11)

Return to the construction of Γ. We define F : DT → P⊥ by

F (r cos t, r sin t) = rv(t)
w(t) for r > 0 and t ∈ [0, T ]; (9.12)

notice that w(t) 6= 0, and even w(t) − 1 stays small, because |v(t)| 6 λT is
small.

Denote by Σ′F the graph of F over DT ; it easily follows from the defini-
tions that Γ ⊂ Σ′F , because v(t) = F (w(t) cos t, w(t) sin t).

The function G that we construct has the following properties (see (8.6),
(8.7), (8.9) and (8.10) in [10]). It is defined on DT , and it coincides with F
on the outer ring, i.e.,

G(r cos t, r sin t) = F (r cos t, r sin t) for 9
10 6 r 6 1 and t ∈ [0, T ]. (9.13)

We also preserve a small region near the origin, where we may further modify
the resulting surface: there is a small absolute constant κ > 0, for which we
take

G(r cos t, r sin t) = 0 for 0 6 r 6 2κ and t ∈ [0, T ] (9.14)
(see (8.7) in [10]). Next,

G is Cλ-Lipschitz on DT , (9.15)
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and satisfies the Dirichlet condition

G(r cos t, r sin t) = 0 when 0 6 r 6 1 and t ∈ {0, T}. (9.16)

Finally, the graph Σ′G of G over DT has a significantly smaller measure

H2(Σ′G) 6 H2(Σ′F )− 10−4
∫ T

0
|v′(t)|2dt

6 H2(Σ′F )− 10−4[length(Γ)− T ] = H2(Σ′F )− 10−4∆Γ. (9.17)

For this one too, the fact that we no longer assume that T > η0 does not
interfere (and indeed our bound in (8.10) of [10] does not depend on η0).
But this is the main place where we need λ to be small enough, so that
the approximation of the area functional by the Dirichlet energy is precise
enough.

We are interested in the intersections with the unit ball B, which we
denote by

ΣF = Σ′F ∩ B and ΣG = Σ′G ∩ B, (9.18)
and (9.17) immediately yields

H2(ΣG) 6 H2(ΣF )− 10−4∆Γ

= H2(ΣF )− 10−4[length(Γ)− distS(a, b)] (9.19)

because (9.13) says that Σ′G = Σ′F outside of B (recall that ‖v‖∞ 6 λT is
small), and by (9.1).

In the special case when Γ comes from γ as in Section 8, we can also
compare with the cone

X(γ) =
{
tx ; x ∈ γ and 0 6 t 6 1

}
(9.20)

over γ. Notice that

H2(ΣG) = 1
2 length(Γ) and H2(X(γ)) = 1

2 length(γ), (9.21)

for instance by the area (or co-area) formula. So

H2(X(γ))−H2(ΣG)

= 1
2 [length(γ)− length(Γ)] +H2(ΣF )−H2(ΣG)

>
1
2 [length(γ)− length(Γ)] + 10−4[length(Γ)− distS(a, b)]

> 10−4[length(γ)− distS(a, b)] = 10−4∆L
> C(λ)−1[H1(Γ \ γ) +H1(γ \ Γ)], (9.22)
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where we used (8.15) and (8.16), and C(λ) is a constant that depends on λ.
As we will see later, this will often mean that it is worth replacing γ with Γ,
because the cost of gluing is often much smaller than H1(Γ \ γ) +H1(γ \Γ).

10. Our Lipschitz net Γ: basic rules and easy cases

Recall that in Section 7 we fixed a point ` ∈ L∩K (when ` /∈ K, D stays
far from E and we decided to do nothing), and we constructed a first net γ
of curves in E ∩D.

There are a few different configurations, but each time γ is a union of
simple curves in E ∩D (between one and five of them), and γ contains the
points c∗i , 1 6 i 6 m, of E ∩ ∂D. We extend γ by adding to it the arcs
Li. Recall that Li is the arc of E ∩ S that goes from c∗i to a∗i , where a∗i is
associated to ai as in Proposition 6.5, and ai is the other endpoint of the arc
Ci of K that passes near c∗i . We denote by γ the extended set, i.e., set

γ = γ ∪
⋃

16i6m
Li. (10.1)

We intend to replace γ with a possibly shorter net Γ of Lipschitz graphs,
typically constructed with the help of Section 8, but before we start with the
long list of configurations and subcases, let us explain the main properties
that we want our Lipschitz net to have.

First, Γ should be composed of a small number (in fact, at most 4) of
Lipschitz curves Γj , disjoint except perhaps for their endpoints, and such
that

no more than 3 curves Γj ever meet at a common endpoint z,
and when they do they always make angles larger than π

2 at z. (10.2)

The statement about angles contains a small abuse of notation, but we shall
fix this and say more precisely what it means near (10.8), when we prove a
similar statement for the first time. This condition will be very useful because
later on we want to construct local Lipschitz retractions near Γ. When there
are many curves Γj , we’ll have additional properties that make this possible,
but which would be awkward to state here.

Also, we should say that later on, we shall consider the natural decompo-
sition of γ and Γ into connected components. That is, we shall consider the
component Hi of c∗i in (the corresponding) D ∩E, and for each one we will
rename it as c ∈ CC (because more than one i could give the same compo-
nent c), consider the piece γc of γ which is attached to Hi (it is connected by
construction), and there will naturally be one connected piece Γc of Γ which
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corresponds. What we will really use in later sections is more the collection
of pieces Γc than the nets Γ themselves.

We also want a good junction with the rest of E ∩ S. Recall that we
started with m points c∗i ∈ E ∩ ∂D, corresponding to m curves Li that go
from c∗i to a∗i . We will make sure that for each i, there is a unique index j(i)
such that Γj(i) ends at a∗i , and moreover (with the same abuse of notation
as above)

Γj(i) makes at a∗i an angle larger than π
2

with all the Li′ , i′ 6= i, that end at a∗i .
(10.3)

Our second demand concerns the size of the modification. We want a
good estimate on the symmetric difference

∆(γ,Γ) = (γ \ Γ) ∪ (Γ \ γ) (10.4)
in terms of the amount of surface measure that we can win. To measure this,
denote by ρj the geodesic in S with the same endpoints as Γj , and then set

ρ =
⋃
j

ρj . (10.5)

We require that
H1(Γ) 6 H1(γ) (10.6)

and, for some constant C that depends on λ (but not on τ),
H1(∆(γ,Γ)) 6 C[H1(γ)−H1(Γ)] + C[H1(Γ)−H1(ρ)]. (10.7)

We write (10.7) in this strange way because the two terms on the right-
hand side are nonnegative (for the last one, because the Γj are essentially
disjoint), so majorising by any nonnegative combination of the two pieces
will be enough. As the reader may have guessed, we intend to win an area
comparable to H1(Γ) − H1(ρ) because we will apply the construction of
Section 9 to all the Γj and by (9.19).

As a last comment before we start, notice that for Configuration H and
Configuration 3 = 2+1, γ is composed of disjoint pieces. In this case we shall
construct Γ piece by piece (i.e., independently), and take the union (it will
be disjoint too).

Let us now do the construction of Γ in the simplest cases; this will also
help us understand better as it goes. The most interesting case will be Con-
figuration 3+, which will take some time and is kept for later.

In Configuration 0, we have no γ and we do nothing.

In Configuration 1, (7.5) says that γ is a simple curve from ` to the unique
point x∗1 of E ∩ ∂D, γ is the simple curve obtained by concatenating γ and
L1, and it goes from ` to a∗1. We apply the construction of Section 8 to γ,
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and get a curve Γ with the same endpoints ` and a∗1. In this case (10.2) is
true but pointless (there is only one Γj), (10.6) comes from (8.15), and (10.7)
from the end of (9.22).

So we are only left with (10.3) to check, and at the same time we should
say what this means. Indeed (10.3) seems to assume that Γj(i) has a tangent
at a∗1, but we only know that it is Lipschitz. This is easy to fix, but we need
additional definitions and notation.

When v1 and v2 are two unit vectors of Rn, we define the angle
Angle(v1, v2) by

Angle(v1, v2) ∈ [0, π] and cos(Angle(v1, v2)) = 〈v1, v2〉. (10.8)
If the simple curve Γ ends at a, we call direction of Γ at a any unit vector v
obtained as

v = lim
k→+∞

xk − a
|xk − a|

, (10.9)

where {xk} is a sequence in Γ \ {a} that tends to a. Finally, if Γ1 and Γ2 are
two simple curves that share the endpoint a, we say that

Γ1 and Γ2 make an angle at least α at a (10.10)
when

Angle(v1, v2) > α for every tangent direction v1 of Γ1 at a
and every tangent direction v2 of Γ2 at a. (10.11)

We shall also use the following notation concerning geodesic directions
and angles. When a ∈ S and x ∈ S\{−a}, we denote by v(a, x) the direction
at a of the geodesic ρ(a, x) from a to x. With this we can also compute angles
between points: we set

Anglea(x, y) = Angle(v(a, x), v(a, y)) ∈ [0, π]; (10.12)
this is the angle that the geodesics ρ(a, x) and ρ(a, y) make at a.

Now we return to (10.3). The proof below will actually work in many
other configurations, with a minor modification that will be explained at the
end of the proof.

We shall actually prove it with an angle larger than 7π
12 >

π
2 . That is, we

shall check that if j ∈ I is such that j 6= i but a∗i is also an endpoint of Lj ,
and v2 is the tangent direction of Lj at a∗i (we know that there is only one,
since that curve is C1), then

Angle(v1, v2) > 7π
12 (10.13)

whenever v1 is a tangent direction of Γ at a∗i . We first check that
|v1 − v(a∗i , `)| 6 3λ. (10.14)
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Set a = a∗i to simplify. Recall from (8.13) that Γ is a λ-Lipschitz graph over
the geodesic ρ(a, `) with the same endpoints. Recall from (8.14) that this
means that if π and π⊥ denote the orthogonal projections on the plane P
that contains ρ(a, `), and on P⊥ respectively, then π⊥(z) is a λ-Lipschitz
function of π(z) on Γ. Then write our tangent direction of Γ at a as v1 =
limk→+∞ wk, where wk = (zk − a)/|zk − a|) for some zk ∈ Γ that tends to
a. We know that |π⊥(zk)| = |π⊥(zk)− π⊥(a)| 6 λ|π(zk)− π(a)| and hence,
since |zk − a| > |π(zk) − π(a)| − |π⊥(zk) − π⊥(a)| > (1 − λ)|π(zk) − π(a)|,
that

|π⊥(wk)| = |π
⊥(zk − a)|
|zk − a|

6
λ

1− λ 6 2λ (10.15)

if λ is chosen small enough. Then |π⊥(v1)| 6 2λ too. Since v1 lies on the
tangent hyperplane to S at a, we get that its projection π(v1) lies in the
direction of ρ(a, `) at a and finally (10.14) follows. In many other configu-
rations, we will still know that Γj(i) is a small Lipschitz graph, but some-
times over a slightly different geodesic ρ(a∗i , b), where b is quite close to `.
Then (10.14) will follow as above, but maybe with Cλ instead of λ (coming
from |v(a∗i , b)− v(a∗i , `)|, or a slightly larger Lipschitz constant). The rest of
the proof will work unchanged.

Notice that |a∗i − ai| 6 2 · 10−10τ by (6.29), and distS(ai, `) = H1(Ci) >
10η(X) > 104τ by (6.4) and (6.3), so we also get that

|v(a∗i , `)− v(ai, `)| 6 10−10. (10.16)

Now we consider v2. First assume that ai is a true vertex, i.e., that ai ∈ V1.
One of the arcs of K leaving from ai is Ci = ρ(ai, `), and Cj , the arc of K
that lies close to Lj , is another one. Write Cj = ρ(ai, b); then

Angle(v(ai, b), v(ai, `)) = 2π
3 = 8π

12 , (10.17)

because it is the angle of Ci and Cj at ai. Now we apply (6.25), to the vertex
x = ai and the point z = a ∈ Lj . With the notation below (6.24), vj(z) = v2
(the direction of Lj at a) and vj = v(ai, b) (the direction at x = ai of the
tangent to Cj = ρ(ai, b)). Thus (6.25) says that

|v2 − v(ai, b)| = |vj(z)− vj | 6 1/30. (10.18)

In the present case, our goal (10.13) follows easily from (10.14)–(10.18), but
we still need to treat the case when ai ∈ V2.

We still have (10.14) (for the same reasons) and (10.16) (see below (6.40)).
Now there is only one other Cj leaving from aj , and

Angle(v(ai, b), v(ai, `)) = π, (10.19)
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i.e., Cj is a continuation of Ci. We still have (10.18), but this time we ap-
ply (6.38), and then we conclude as above.

This completes our verification of (10.2)–(10.7) in the case of Configura-
tion 1.

Notice that in our proof of (10.3), if instead of ending at ` the curve Γ
ends at some other point x0 ∈ D, then we just need to replace v(a∗i , `) with
v(a∗i , x0) in (10.14), and add |v(a∗i , x0)−v(a∗i , `)| to the error term in (10.16);
but

|v(a∗i , x0)− v(a∗i , `)| 6 2|x0 − `||a∗i − `|−1 6
2τ

8 · 103τ
6

1
4000 (10.20)

(see the estimate just above (10.16)); this still gives (10.13) and (10.3).

Our next case is Configuration 2−. In this case γ is a simple curve in E∩D
that goes from c∗1 to c∗2, and does not contain `. Select a point x0 ∈ γ ∩D,
for instance a point that minimizes the distance to `, and cut γ into two
essentially disjoint simple curves γ1 and γ2, where γi goes from x0 to c∗i .
Then extend γi, by adding to it the corresponding arc Li; we assume that
our notation is such that Li is the curve in E∩S that contains c∗i . This gives
a curve γi, that goes from x0 to a∗i .

We apply the construction of Section 8 to γi and get a curve Γi with the
same endpoints x0 and a∗i . Then we take Γ = Γ1 ∪ Γ2.

Let us check that
the two Γi make an angle larger than 110◦ at x0; (10.21)

of course (10.2) will follow (the only interior vertex of Γ is x0). We shall
merely use the fact that |x0 − `| 6 τ , even though we could rather easily
deduce from (5.3) that γ comes within 10ε of `. We first control the direction
of the geodesic ρ(x0, a

∗
i ) over which Γi is a small Lipschitz graph. Recall

from (6.43) that |a∗i −ai| 6 10−9τ , while (6.4) and (6.5) imply that |ai−`| >
9 · 103τ . Thus |x0 − a∗i | > 8 · 103τ and

|v(x0, a
∗
i )− v(`, ai)| 6 |v(x0, a

∗
i )− v(`, a∗i )|+ |v(`, a∗i )− v(`, ai)|

6 2|x0 − `||x0 − a∗i |−1 + 2|a∗i − ai||`− ai|−1

6 10−3. (10.22)

We know from (2.7) that Angle(v(`, a1), v(`, a2)) > 2π
3 so (10.22) gives a

good control on Angle(v(x0, a
∗
1), v(x0, a

∗
2)), and (10.21) will follow as soon

as we check that for i = 1, 2,

Angle(vi, v(x0, a
∗
i )) 6 3λ

when vi is any tangent direction to Γi at x0. (10.23)
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But this is true, and the proof is the same as for (10.14).

Next we are supposed to check (10.3), but the proof of (10.13) still works
in the present case, as explained near (10.20). Then (10.6) follows from (8.15)
(we apply it to each piece, and then sum), and (10.7) from the end of (9.22)
(again sum the two pieces). This completes our verifications for Configura-
tion 2−.

Now we switch to Configuration 3 = 2+1. This will just be a combination
of Configurations 1 and 2−. Here, possibly after relabelling, γ is composed
of an arc γ1,2 that goes from c∗1 to c∗2, and an arc γ3 from ` to c∗3. We select
an origin x0 ∈ γ1,2 ∩D, and in fact the simplest is to take x0 = c∗1. This way
we have three arcs, γ1 = {c∗1}, γ2 = γ1,2, and γ3, which we extend as before.
This gives three arcs, γi, two that leave from x0 = c∗1 and one from `. Then
we apply the construction of Section 8 independently to the three γi and get
small Lipschitz graphs Γi. Finally we set Γ = Γ1 ∪ Γ2 ∪ Γ3.

The curves Γ1 and Γ2 have a common endpoint x0, and by the proof
of (10.21) they make an angle larger than 110◦ at x0. We claim that

Γ3 does not meet Γ1 ∪ Γ2. (10.24)
Let us first check that for i = 1, 2,

dist(z, ρ(x0, a
∗
i )) 6 2λ|z − x0| for z ∈ Γi. (10.25)

Let P be that plane that contains ρi = ρ(x0, a
∗
i ), and denote by π and π⊥

the orthogonal projections on P and its orthogonal complement; by (8.14),
π⊥(z) is a λ-Lipschitz function of π(z) (hence also of z) on Γi. This implies
that

|π⊥(z)| = |π⊥(z)− π⊥(x0)| 6 λ|z − x0| for z ∈ Γi. (10.26)
Next |π(z)| = (1−|π⊥(z)|2)1/2 is a 2λ-Lipschitz function of π(z) (differentiate
f(x) = (1− x2)1/2 near 1). Now set ξ(z) = π(z)/|π(z)| (a projection on the
circle that contains ρi); then

|ξ(z)− ξ(z′)| > |π(z)− π(z′)|
|π(z)| − |π(z′)|

∣∣∣∣ 1
|π(z)| −

1
|π(z′)|

∣∣∣∣
>
|π(z)− π(z′)|
1 + λ|z − x0|

−
∣∣∣∣ |π(z)| − |π(z′)|

|π(z)|

∣∣∣∣
>
|π(z)− π(z′)|

1 + 2λ − 3λ|π(z)− π(z′)|

> (1− 5λ)|π(z)− π(z′)| (10.27)
by (10.26) and because |z − x0| 6 2. This shows that π(z) is a Lipschitz
function of ξ(z), and (since π⊥(z) and hence z are Lipschitz functions of
π(z)), we see that z is a Lipschitz function of ξ(z). In particular, ξ(z) 6= ξ(z′)
when z 6= z′, and this implies that ξ(z) stays on the geodesic ρi (instead of
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wandering somewhere else on the circle). Also (we don’t need this now), we
can use ξ(z) ∈ ρi to parameterize Γi in a Lipschitz way. But since ξ(z) ∈ ρi,

dist(z, ρi) 6 |z − ξ(z)| 6 |z − π(z)|+ |π(z)− ξ(z)|
= |π⊥(z)|+ (1− |π(z)|) 6 2|π⊥(z)| 6 2λ|z − x0| (10.28)

by (10.26). This proves (10.25); the same argument shows that

dist(z, ρ(`, a∗3)) 6 2λ|z − `| for z ∈ Γ3. (10.29)

This is where our choice of x0 = c∗1 makes our life more comfortable. Recall
from (2.7) that C1 and C3 make an angle of at least 2π

3 at ` (in the present
case, we have 3 curves Ci, so the angle is in fact 2π

3 ). This implies that
Angle(v(`, x0), v(`, a∗i )) > 2π

3 − 10−2, say, and then (10.24) follows rather
easily from (10.25) and (10.29) (but we skip the details and instead encourage
the reader to draw a picture).

So our set Γ is composed of two connected pieces, Γ3 and Γ1 ∪ Γ2, which
are disjoint (one could even check that their distance is at least τ/2). They
both satisfy (10.2): for Γ3 this is trivial, and for Γ1∪Γ2 the proof is the same
as for Configuration 2−. They also satisfy (10.3), by the proof of (10.13) and
the remark near (10.20). Finally (10.6) and (10.7) are proved piece by piece,
and follow from (8.15) and the end of (9.22), as before.

This completes our verification for Configuration 3 = 2 + 1. Notice how-
ever that the net Γ that we construct is far from optimal: in the present
situation, since γ1 and γ2 make an angle of nearly 120◦ near `, we could
easily organize a much more brutal shortcut, and save a lot of length. But
we choose a way which is easier to handle with the same estimates as in the
other cases. The fact that our competitor is not so good will show up later,
when we will see that if our competitor looks like a cone over Γ in a small
ball, we can easily improve on it.

We are almost ready for Configuration H. For each of the hanging curves
Li (those for which c∗i is not connected to ` or any other c∗i ), we kept the
curve γi = Li, and the simplest is to take Γi = Li too. This is, if we are
ready to use the fact that if we took τ and ε small enough, depending on
λ, the curve Li is automatically a λ-Lipschitz graph. Otherwise, we apply
the construction of Section 8 to Li, as we did in the previous cases, to get a
Lipschitz graph Γi.

Of course this does not look glorious: we should rather have cut off the
whole Li and saved a lot of length, but this is a way for us to make our
construction more uniform. Later on, we will notice with apparent surprise
that we can still cut off the geodesic ρ(c∗i , a∗i ) from a net of geodesics, and
save some length, and this will compensate the present laziness.
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There still may be one or two c∗j left, that are connected to something.
If they are connected as in Configuration 1, i.e., if there is only one c∗j left
and it is connected to `, let γj be the arc of E ∩D that was selected above,
extend it to get an arc γj that goes from ` to a∗j , and let Γj be obtained by
applying the construction of Section 8 to γj . Then let Γ be the union of Γj
with the hanging graphs Γi that we already selected. The proof of (10.24)
still works here and shows that Γj is disjoint from these curves.

When the remaining c∗j are connected as in Configuration 2−, we have
one index i and two indices j, which we label so that i = 3. We construct
Γ1 and Γ2 exactly as we did in Configuration 2−, and set Γ = Γ1 ∪ Γ2 ∪ Γ3.
Again Γ1 ∪Γ2 does not meet Γ3 = L3, by the proof of (10.24) (and you may
find it more convenient to choose x0 = c∗1 as the center of γ where you cut
the curve).

We are left with the case when there is only one hanging c∗i , which we
call c∗3, and c∗1 and c∗2 are connected as in Configuration 2+. We did not
treat the case of Configuration 2+ yet, but we shall do it later, and there
will be no loophole. The construction described below, performed with the
connected set that connects c∗1, c∗2, and `, will give a net of curves Γ′; then
we take Γ = Γ3 ∪ Γ′, the local description (with (10.2) and (10.3)) can be
proved independently for the two pieces, and the fact that Γ′ ∩ Γ3 = ∅ will
be true, as in (10.24). See the remarks below (12.4) and above (12.14).

In all these subcases, we get a disjoint union of curves or nets that satisfy
the conditions (10.2) and (10.3), as in the single configurations and for the
same reasons.

Notice that for the first time we get curves that end at a point other than
` ∈ L. This is not bad in itself; it means that our future competitor is rather
poor, but this is all right. In fact it means that Configuration H will not
happen.

Finally, (10.6) and (10.7) are checked piece by piece, with the same es-
timates as for the other configurations. This completes our discussion in
Configuration H.

The last simple case is Configuration 3−. In this case γ = γ1 ∪ γ2 ∪ γ3,
three almost disjoint curves that start from the same origin x0. We add the
corresponding Li and get curves γi from x0 to the a∗i . Finally γ =

⋃
i γi. We

apply the construction of Section 8 and get three curves Γi, with the same
endpoints as the γi. Finally we take Γ =

⋃
i Γi.

The fact that (10.2) holds, and in fact

the three Γi make angles larger than 110◦ at x0, (10.30)
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is proved just like (10.21) above; we could also use the argument that will
be given for Configurations 3+, above (11.24).

As usual (10.3) holds for the same reason as in Configuration 1; see the
proof of (10.13) and the comment near (10.20).

Finally (10.6) follows from (8.15) and (10.7) from the end of (9.22); as
before we just have to add the three estimates for the three Γi. This completes
our verification for Configuration 3−.

We are left with two more complicated cases, Configurations 2+ and 3+,
which we deal with in the next two sections.

11. Our net Γ in Configuration 3+

In the two remaining cases, there is a small additional difficulty, due to
the fact that the construction of Section 8 was meant to cut curves and get
shorter Lipschitz curves, and we do not seem to have a corresponding simple
construction for 3-legged spiders. Instead we will distinguish between many
cases, and construct different acceptable nets of Lipschitz curves. Again we
want to be prudent, because we do not want to replace large portions of our
spiders if we do not save a comparable amount of surface later. As before,
this saving will also come from comparing cones with harmonic graphs, but
often we shall first try to make H1(γ)−H1(Γ) large.

Thus, rather than trying to make a nice general construction for spiders,
we shall use our construction for curves and try to fix by hand the obvious
problems near the center.

In this section we study the case of Configuration 3+, which appears to
be the most complicated. Configuration 2+ will be slightly easier, and will
be treated in Section 12.

11.1. Preparation

We start with some notation. Recall that we constructed in Section 7 a
net γ, which is a possibly degenerate spider with three long legs and a short
tail γ`. The short tail ends at `, and the three legs end at points c∗i , 1 6 i 6 3.
Denote by x0 the center of the spider, i.e., the point where γ3 meets γ1,2.
Also denote by γ1 and γ2, respectively, the arc of γ1,2 between x0 and c∗1 and
c∗2. Thus the three γi are essentially disjoint, and γ = γ` ∪

(⋃3
i=1 γi

)
.
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As usual we extend the three legs γi by adding the corresponding curves
Li ⊂ E∩S that go from the c∗i to the a∗i ; this gives three essentially disjoints
simple curves γi ⊂ E ∩ S. We set

γ = γ` ∪

( 3⋃
i=1

γi

)
. (11.1)

Let us apply the construction of Section 8 to each of the curves γi; we
get a Lipschitz graph Γi with a small constant λ, with the same endpoints
x0 and a∗i . Then we set

Γ∗ =
3⋃
i=1

Γi . (11.2)

We like Γ∗ because, as we shall see, it is a nice looking spiral. In Config-
uration 3−, we decided to take Γ = Γ∗; here things will not be so simple,
because we have to take care of the special point `. In the mean time, let
us derive some simple properties of Γ∗. The next lemma is also valid in
Configuration 3−.

Lemma 11.1. — For each small constant α < 1, we can find ε(α) > 0
such that if we take ε < ε(α) in (5.3), then

|x0 − `|+
3∑
i=1
|a∗i − ai| 6 2α2τ. (11.3)

Proof. — We state this with quantifiers to avoid any suspicion of loop-
holes. In practice, we will apply this with a small constant α > 0, that will
be chosen later in this section, depending on various geometric constants
and our choice of λ. And we shall make sure that ε is so small that (11.3)
holds.

Let us apply Proposition 6.5, but with the smaller constant α2τ ; this
forces us to take ε even smaller than before, but this is all right. We get a
description of E ∩ S \ (D+(α2τ) ∪D−(α2τ)) as a union of simple curves L′i,
i ∈ I. Of course this description matches the description that we used for τ
(i.e., with the Li); in particular, the vertices x∗ that show up in (6.43) are
the same for α2τ as for τ , even when x ∈ V2, because of the way we chose
them (below (6.40), so that |x∗−x| is minimal). Thus the part of (11.3) that
comes from the ai follows from (6.43) with α2τ .

Now we concentrate on what happens in the spherical annulus A = S ∩
B(`, 2τ)\B(`, α2τ). Here the curves L′i lie at distances at least α2τ/10 from
each other (by (6.44) and because the Ci are far from each other in A); then
E∩S has no triple point in A, i.e., points like x0 near which E∩S is composed
of three short simple curves leaving from x0, that are disjoint except for x0.
This proves that x0 ∈ B(`, α2τ), as needed. �
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We will do lots of little computations with small Lipschitz graphs over
geodesics, and the definition (8.14) that we gave in Section 8 is not so pleas-
ant. Next we observe that when we restrict to a small enough spherical disks,
(8.14) yields a definition of small Lipschitz graphs that looks a lot like the
usual one. Some notation will be useful. Set

B1 = S ∩B(x0, λ) (11.4)
(λ is the scale at which our approximation will start being less good) and,
for 1 6 i 6 3,

ei = v(x0, a
∗
i ). (11.5)

Also denote by Pi the vector plane that contains ρ(x0, a
∗
i ), by P⊥i its orthog-

onal complement, by πi and π⊥i the orthogonal projections on Pi and P⊥i ,
and by pi and p⊥i the orthogonal projections on the vector lines through ei
and x0 respectively. Notice that

I = πi + π⊥i = pi + p⊥i + π⊥i . (11.6)
Recall that

Γi is a λ-Lipschitz graph over ρ(x0, a
∗
i ). (11.7)

By (8.14), this means that (Γi is a curve with the given endpoints and that)
on Γi, π⊥i (z) is a λ-Lipschitz function of πi(z). Since πi is 1-Lipschitz, we
immediately get that

π⊥i is λ-Lipschitz on Γi. (11.8)
In addition, we claim that

p⊥i is 10λ
9 -Lipschitz on B1. (11.9)

This is easy, but we prove it anyway. Let z1, z2 ∈ B1 be given; for j = 1, 2,
write zj = p⊥i (zj) + wj , with wj ⊥ x0. Then |wj | 6 λ (wj is a 1-Lipschitz
function of zj , null when z = x0), |p⊥i (zj)|2 = 1−|wj |2, and hence 〈x0, zj〉 =
(1− |wj |2)1/2 (it is obviously positive, since zj is close to x0). Now

|p⊥i (z1)− p⊥i (z2)| = |〈x0, z1 − z2〉|

=
∣∣(1− |w1|2)1/2 − (1− |w2|2)1/2∣∣

6
10
9 λ|w1 − w2| 6

10
9 λ|z1 − z2| (11.10)

(just notice that the derivative of (1−x2)1/2 is x(1−x2)−1/2 and estimate).
So (11.9) holds.

We deduce from (11.6)–(11.9) that for z, z′ ∈ Γi ∩B1,
|pi(z)− pi(z′)| > |z − z′| − |p⊥i (z)− p⊥i (z′)| − |π⊥i (z)− π⊥i (z′)|

>

(
1− 19λ

9

)
|z − z′|, (11.11)
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and so (using (11.6)–(11.9) again)
Γi ∩B1 is a 3λ-Lipschitz graph over pi(Γi ∩B1) ⊂ Vect(ei); (11.12)

the fact that
pi(Γi ∩B1) ⊃ [0, 1− 4λ]ei (11.13)

easily follows from (11.12), the fact that Γi starts from x0 in the direction
of ei, and a continuity argument.

This description of Γ1∩B1 will be easier to use than the initial definition
with (8.14). There is also a converse that we want to record.

Lemma 11.2. — Let Γ′ be a curve that goes from x0 to a∗i and coincides
with Γi on S \B(x0, λ/10). Suppose in addition that for some A ∈ [1, 100],

Γ′i ∩B1 is a Aλ-Lipschitz graph over pi(Γi ∩B1). (11.14)
Then Γ′ is a 2Aλ-Lipschitz graph over ρ(x0, a

∗
i ).

Proof. — We just need to check that on Γ′, π⊥i (z) is a 2Aλ-Lipschitz
function of πi(z). This is true on Γ′∩B1, because the orthogonal projection on
the direction perpendicular to ei (call it p = I−pi) dominates the orthogonal
projection π⊥i , so that

|π⊥i (z)− π⊥i (z′)| 6 |p(z)− p(z′)|
6 Aλ|pi(z)− pi(z′)| 6 Aλ|πi(z)− πi(z′)| (11.15)

for z, z′ ∈ Γ′ ∩ B1. We also have this on Γ′ \ B(x0, λ/10), by definition, so
we just need to show that

|π⊥i (z)− π⊥i (z′)| 6 2Aλ|πi(z)− πi(z′)| (11.16)
when z′ ∈ Γ′ ∩B(x0, λ/10) and z ∈ Γ′ \B1 = Γi \B1. By (11.8)

|π⊥i (z)− π⊥i (x0)| 6 λ|z − x0| (11.17)
so
|πi(z)− πi(x0)| > |z − x0| − |π⊥i (z)− π⊥i (x0)| > (1− λ)|z − x0|. (11.18)

Similarly, (11.15) implies that

|π⊥i (z′)− π⊥i (x0)| 6 Aλ|z′ − x0| 6 Aλ2/10 (11.19)
and, since

|πi(z′)− πi(x0)| 6 |z′ − x0| 6 λ/10, (11.20)
we get that

|πi(z)− πi(z′)| > |πi(z)− πi(x0)| − λ/10 > (1− λ)|z − x0| − λ/10

>

(
1− λ− 1

10

)
|z − x0| >

8|z − x0|
10 (11.21)
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because |z − x0| > λ. In addition
|π⊥i (z′)− π⊥i (z)| 6 λ|z − x0|+Aλ2/10 6 (λ+Aλ/10)|z − x0|, (11.22)

and (11.16) follows, because 10
8 (λ+Aλ/10) 6 2Aλ when A > 1. �

Let us also record that for 1 6 i 6 3, ei is quite close to the direc-
tion v(`, ai) of Ci at `:

|ei − v(`, ai)| = |v(x0, a
∗
i )− v(`, ai)|

6 |v(x0, a
∗
i )− v(`, a∗i )|+ |v(`, a∗i )− v(`, ai)|

6 2|x0 − `||`− a∗i |−1 + 2|a∗i − ai||`− a∗i |−1

6 4α2τ |`− a∗i |−1

6 4α2τ [5η(X)]−1 6 10−3α2 (11.23)
by (11.3), then (4.2), (4.3), and (6.3).

It follows from (11.23) and the fact that Γi is a small Lipschitz graph
over ρ(x0, a

∗
i ) (or more directly (11.12)) that

the three Γi make angles larger than 110◦ at x0. (11.24)
Notice that we only used (11.7) here, so (11.24) is also valid in the case of
Configuration 3−, therefore proving (10.30) and completing the discussion
for this case.

11.2. Case A, where we force Γ∗ to be centered at `

We return to Configuration 3+. Even though Γ∗ =
⋃
i Γi is nice, we shall

need to modify it because we want Γ to contain ` too, and the success of the
construction will depend on various parameters such as the relative position
of ` and the Γi.

In this subsection we try to modify Γ∗ in the following simple way: we
shall select points zi ∈ Γi, rather far from the center, and replace the three
arcs of Γi between x0 and the zi with a spider Y centered at ` and composed
of geodesic arcs. This will turn out to work well when

H1(γ`) +
3∑
i=1

[H1(γi)−H1(Γi)] > 32λ|x0 − `|. (11.25)

We call this Case A. Incidentally, the constant 32 is computed backwards to
make the proof work; a mistake in the computations would probably force us
to make it larger, but this would not be bad. Let α > 0 be small (compared
to λ), decide to choose ε smaller than ε(α) from Lemma 11.1, and set

r = α−1|x0 − `|, D = S ∩B(x0, r), and ∂D = S ∩ ∂B(x0, r). (11.26)
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The notation is the same as with the disks D± centered at `± above, but
this will be a different spherical disk and sphere. We promise no conflict of
notation. Notice that since |x0−`| 6 2α2τ , we get that r = α−1|x0−`| 6 2ατ
and

D ⊂ S ∩B(x0, 2ατ) ⊂ B(x0, 10−3λ), (11.27)
if α is small enough (we could also have relied on τ being small), so we can
use the Lipschitz description (11.12) of Γi ∩D. In particular, each Γi meets
∂D exactly once, at a point which we call zi. Set

Γ′′i = Γi ∩D and Γ′′ =
3⋃
i=1

Γ′′i = Γ∗ ∩D. (11.28)

Thus Γ′′i is the arc of Γi that goes from x0 to zi. Also set

Γ′i = Γi \D and Γ′ =
3⋃
i=1

Γ′i = Γ∗ \D (11.29)

(the exterior part); we want to replace Γ′′ with the spider

Y =
3⋃
i=1

ρ(`, zi), (11.30)

which has the advantage of containing `. So we set

Γ̃i = ρ(`, zi) ∪ Γ′i and Γ = Y ∪ Γ′ =
3⋃
i=1

Γ̃i. (11.31)

We see Γ as a three-legged spider centered at `, whose legs are the arcs Γ̃i.
We want to be able to apply the results of Section 9 to the Γ̃, so let us check
that they are small Lipschitz graphs.

Lemma 11.3. — For 1 6 i 6 3, Γ̃i is a 8λ-Lipschitz graph over ρ(`, a∗i ).

Proof. — Of course the difference between λ and 8λ will not prevent us
from applying Section 9. This looks like Lemma 11.2, but we will need to
worry a little because we slightly change one endpoint and the orientation.
Fix i; in addition to Pi (the plane that contains ρ(x0, a

∗
i )), πi, and π⊥i (see

below (11.5)), we introduce the plane P i that contains ρ(`, a∗i ) and the cor-
responding projections πi and π⊥i . Notice that

|v(x0, a
∗
i )− v(`, a∗i )| 6 10−3α2 (11.32)

by the proof of (11.23); then

‖π⊥i − π⊥i ‖ = ‖πi − πi‖ 6 10−2α2. (11.33)
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We first look outside of the disk D1 = S ∩ B(x0, 10r). There Γ̃i = Γi, and
the definition (8.14) says that

|π⊥(z)− π⊥(z′)| 6 λ|π(z)− π(z′)| 6 λ|z − z′| (11.34)

for z, z′ ∈ Γ̃i \D1 and, (if α is small enough compared to λ), (11.33) yields

|π⊥(z)− π⊥(z′)| 6 2λ|π(z)− π(z′)|. (11.35)

Next we look inside D2 = S ∩ B(x0, 500r). Recall from (11.27) and (11.26)
that

D1 ⊂ B(x0, λ/2) ⊂ B(`, λ). (11.36)
On D2, we can use (11.12), which says that Γi ∩D2 is a 3λ-Lipschitz graph
over (a part of) the line through v(x0, a

∗
i ). By (11.32), it is also a 4λ-Lipschitz

graph over the line through v(`, a∗i ). But we modified it, and replaced the
arc between x0 and zi with the arc ρ(`, zi). Let z be any point of ρ(`, zi)
and v denote a tangent vector to ρ(`, zi) at z, oriented in the direction of zi.
Then

|v − v(`, zi)| 6 2|`− zi| 6 2|`− x0|+ 2r 6 2(1 + α−1)|`− x0|
6 4(1 + α−1)α2τ < 10−1λ (11.37)

because zi ∈ ∂D, by (11.26) and (11.3), and if α is small enough. Next

|v(`, zi)− v(x0, zi)| 6 2|`− x0||x0 − zi|−1

= 2|`− x0|r−1 6 2α < 10−1λ (11.38)

because r = α−1|`− x0| (by (11.26)),

|v(x0, zi)− v(x0, a
∗
i )| 6 3λ (11.39)

by the Lipschitz description (11.12), and

|v(x0, a
∗
i )− v(`, a∗i )| 6 2|x0 − `||`− a∗i |−1

6 2|x0 − `|(5η(X))−1 6 α2 6 10−1λ (11.40)

because |x0 − `|+ |ai − a∗i | 6 2α2τ by (11.3), and |ai − `| > 10η(X) > 104τ
by (4.2), (4.3), and our choice of τ .

Altogether |v − v(`, a∗i )| 6 4λ, ρ(`, zi) is a 4λ-Lipschitz graph over the
line Vect(v(`, a∗i )), and since we already know this about Γi ∩ D2, we also
get that Γ̃i ∩ D2 is a 4λ-Lipschitz graph over that line. Now we can apply
Lemma 11.2, transposed for curves that start from ` (and, if we want to be
precise, with a radius a little smaller than λ for the analogue of B1), and we
get that Γ̃i is a 8λ-Lipschitz graph over ρ(`, a∗i ). �
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Next we check (10.2)–(10.7) for Γ (which we see as a union of three curves
Γ̃i). For (10.2), we just need to know that the three branches of Y make large
angles at `. But if vi denotes the tangent direction of ρ(`, zi) at `, we know
from (11.37)–(11.40) that |vi − v(`, a∗i )| 6 4λ. Since the v(`, ai) make 120◦
angles, we see that

the three legs of Y make angles larger than 110◦ at `. (11.41)

Next we need to check (10.3), i.e. that each Γi makes a large angle with
the other curves Lk that arrive at a∗i . The verification is the same as what
we did below (10.12).

Now we turn to the length estimates. First we want to compare H1(Y )
with H1(Γ′′), and to this effect we shall differentiate

f(z) =
3∑
i=1

distS(z, zi) (11.42)

in the interior ofD. First notice that for 1 6 i 6 3, distS(z, zi) is differentiable
on S \ {zi}, with

∇z distS(z, zi) = −v(z, zi). (11.43)

Thus

|∇f(x0)| =

∣∣∣∣∣
3∑
i=1

v(x0, zi)

∣∣∣∣∣ =

∣∣∣∣∣
3∑
i=1

[v(x0, zi)− v(`, ai)]

∣∣∣∣∣ (11.44)

because
∑
i v(`, ai) = 0 (the three Ci make 120◦ angles). But

|v(x0, zi)− v(`, ai)| 6 |v(x0, zi)− v(x0, a
∗
i )|+ |v(x0, a

∗
i )− v(`, ai)|

6 3λ+ 10−3α2 6 4λ (11.45)

by (11.39) and (11.23), so

|∇f(x0)| 6 12λ. (11.46)

Also, v(z, zi) is differentiable, with |∇zv(z, zi)| 6 |z−zi|−1. For z ∈ ρ(x0, `),

|z − x0| 6 |`− x0| = αr 6 r/2 (11.47)

by (11.26), so |∇zv(z, zi)| 6 2r−1 (because |zi − x0| = r). We sum over i,
integrate on a part of ρ(x0, `), and get that

|∇f(x0)−∇f(z)| 6 6r−1 distS(x0, `). (11.48)
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Then we integrate again on ρ(x0, `) and get that
H1(Y ) = f(`)

6 f(x0) + distS(x0, `)|∇f(x0)|+ 6r−1 distS(x0, `)2

6 f(x0) + [12λ+ 6r−1 distS(x0, `)] distS(x0, `)
6 f(x0) + [12λ+ 9α] distS(x0, `) 6 f(x0) + 13λ|x0 − `| (11.49)

by (11.46) (11.48)(11.47), and if α is small enough.

Notice that f(x0) 6 H1(Γ′′), because Γ′′ is composed of three essentially
disjoint curves that go from x0 to the zj (see near (11.28)). Hence

H1(Y ) 6 f(x0) + 13λ|x0 − `| 6 H1(Γ′′) + 13λ|x0 − `|. (11.50)
We add the missing piece Γ′, and get

H1(Γ) = H1(Γ′) +H1(Y )
6 H1(Γ′) +H1(Γ′′) + 13λ|x0 − `| = H1(Γ∗) + 13λ|x0 − `| (11.51)

by (11.31), (11.28), (11.29), and (11.50). So
H1(γ)−H1(Γ) > H1(γ)−H1(Γ∗)− 13λ|x0 − `|. (11.52)

Recall from (11.1) and (11.2) that

H1(γ)−H1(Γ∗) = H1(γ`) +
3∑
i=1

[H1(γi)−H1(Γi)] > 32λ|x0 − `| (11.53)

because γ` and the γi are disjoint, and the Γj are disjoint, and then by the
defining condition (11.25). We also have that

H1(γi)−H1(Γi) > 0 (11.54)
by (8.16), so

H1(γ)−H1(Γ∗) > H1(γ`), (11.55)
and now (11.52), (11.54), and (11.55) yield
H1(γ)−H1(Γ)

>
1
4 [H1(γ)−H1(Γ∗)] + 3

4 [H1(γ)−H1(Γ∗)]− 13λ|x0 − `|

>
1
4 [H1(γ)−H1(Γ∗)]+ 1

8H
1(γ`)+ 5

8 [H1(γ)−H1(Γ∗)]−13λ|x0−`|
)

>
1
4 [H1(γ)−H1(Γ∗)] + 1

8H
1(γ`) + 7λ|x0 − `|. (11.56)

The three terms are nonnegative, so (11.56) is stronger than (10.6).

We are left with (10.7) to check, i.e.,
H1(∆(γ,Γ)) 6 C[H1(γ)−H1(Γ)] + C[H1(Γ)−H1(ρ)], (11.57)
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where γ is the extended version of our initial net γ (see (10.1)), which is an
extended spider with a short tail, and ρ will be discussed soon. We write

∆(γ,Γ) ⊂ ∆(γ, γ̃) ∪∆(γ̃,Γ∗) ∪∆(Γ∗,Γ) (11.58)
(all symmetric differences), where γ̃ = γ \ γ` is the spider without its tail
(see (11.1)), Γ∗ is our initial Lipschitz spider with the same ends, and Γ is
our final pick (centered at `).

We start with ∆(γ, γ̃) = γ \ γ̃ = γ`. Recall from (11.56) that H1(γ`) 6
8[H1(γ)−H1(Γ)], which is dominated by the right-hand side of (11.57), so
this term is all right.

Next we consider ∆(Γ∗,Γ). Since Γ∗ and Γ have the three exterior curves
Γ′i in common, we are left with Y for Γ, and Γ′′ for Γ∗ (see (11.28)–(11.31));
thus

H1(∆(Γ∗,Γ)) 6 H1(Y ) +H1(Γ′′) 6 7r +H1(Γ′′). (11.59)
The simplest case is when H1(Γ′′) 6 14r, say. Then
H1(∆(Γ∗,Γ)) 6 21r = 21α−1|x0 − `| 6 3λ−1α−1[H1(γ)−H1(Γ)] (11.60)

by (11.26) and (11.56), which again is enough for (10.7).

If instead H1(Γ′′) > 14r, we can revise some of our earlier pessimistic
estimates, because

H1(Y ) 6 7r 6 1
2H

1(Γ′′) (11.61)

and then, after adding the exterior part H1(Γ′) to both sides,

H1(Γ) 6 H1(Γ∗)− 1
2H

1(Γ′′). (11.62)

This is better than what we had before (see (11.51)); it implies that

H1(γ)−H1(Γ) > H1(γ)−H1(Γ∗) + 1
2H

1(Γ′′). (11.63)

We forget the term H1(γ) − H1(Γ∗), which is nonnegative by (11.53), and
get that H1(Γ′′) 6 2[H1(γ)−H1(Γ)]; finally

H1(∆(Γ∗,Γ)) 6 7r +H1(Γ′′) 6 2λ−1α−1[H1(γ)−H1(Γ)] (11.64)
by (11.59) and the second part of (11.60).

We are left with the middle term ∆(γ̃,Γ∗) from (11.58). Recall that Γ∗
was obtained by applying the construction of Section 8 to the three curves
γi that compose γ̃ = γ \ γ`. Thus by (8.16) and (8.5)

H1(Γ∗ \ γ̃) 6 H1(γ̃ \ Γ∗) 6 C(λ)[H1(Γ∗)−H1(ρ̃)], (11.65)
where ρ̃ is the union of the three geodesics ρ(x0, a

∗
i ) that we used to construct

Γ∗. Hence
H1(∆(γ̃,Γ∗)) 6 C(λ)[H1(Γ∗)−H1(ρ̃)], (11.66)
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which we just need to bound by the right-hand side of (10.7) and (11.57).
We already did this for

H1(Γ∗)−H1(Γ) 6 H1(∆(Γ∗,Γ)) (11.67)
(by (11.64)), and sinceH1(Γ)−H1(ρ) is a part of the right-hand side of (10.7)
and (11.57) (and the other one is nonnegative by (11.52) and (11.53)), we
just need to control H1(ρ)−H1(ρ̃). Recall that ρ̃ is the union of the geodesics
ρ(x0, a

∗
i ) with the same endpoints as the arcs of the spider Γ∗, while ρ is the

union of the geodesics ρ(`, a∗i ) that correspond to the decomposition of the
spider Γ that we want to use. SinceH1(ρ(`, a∗i )) 6 H1(ρ(x0, a

∗
i ))+distS(`, x0)

(a brutal estimate), we see that

H1(ρ)−H1(ρ̃) 6 3 distS(`, x0)
6 4|x0 − `| 6 4αr 6 12λ−1[H1(γ)−H1(Γ)] (11.68)

by (11.26) and (11.60) or (11.64). This completes our proof of (11.57) and
(10.7) and the verification of (10.2)–(10.7) in Case A; we may now turn to
the next case.

11.3. Case B: consequences of the definition on the geometry of γ

Since we are happy in Case A, we shall now assume that its defining
condition (11.25) fails, i.e. that

H1(γ`) +
3∑
i=1

[H1(γi)−H1(Γi)] < 32λ|x0 − `|. (11.69)

We shall call this Case B; see Figure 11.1 First notice that (11.69) implies
that

|x1 − `| 6 H1(γ`) 6 32λ|x0 − `|, (11.70)
where x1 is the point where γ` is attached to γ. Recall that λ is small, so
x1 lies relatively far from x0 (compared to `). Without loss of generality, we
can assume that x1 ∈ γ1. The next lemma says that x1 lies in the expected
direction (seen from x0).

x0
x1

2
�

1
�

3
�

�

l
l

1
�

Figure 11.1. The initial setting for Case B
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Lemma 11.4. — The direction of ρ(x0, x1) at x0 is such that

|v(x0, x1)− v(x0, a
∗
1)| 6 30

√
λ. (11.71)

Proof. — Here again, 30 is what we get from the proof, but a larger
number would still be fine. Suppose not. Since Γ1 is a λ-Lipschitz graph
over ρ(x0, a

∗
1) (and by (11.12) to make things simpler), x1 ∈ γ1 \ Γ1. Recall

how Γ1 was constructed. We started from a parameterization z : I → S of
γ1, selected a certain number of intervals Ij , and replaced γ1 on Ij by the
constant speed parameterization of the geodesic ρj with the same endpoints.
See below (8.10). Here x1 ∈ γ1 \ Γ1, so the parameter t such that x1 = z(t)
lies in some Ij . Write Ij = I, and denote by a and b its endpoints. We
choose the names so that z(a) lies between x0 and x1 on γ1, and hence z(b)
lies between x1 and a∗i . Also call γ(a, b) the portion of γ1 between z(a) and
z(b). See Figure 11.2 already.

Thus we replaced γ(a, b) with the geodesic ρ = ρ(z(a), z(b)) in the con-
struction of Γ1. There was a similar replacement of other arcs of γ1 on other
intervals, and of course each time the length of the geodesic was no longer
than the length of the arc of γ it replaced. See near (8.15). Because of this

H1(γ(a, b))−H1(ρ) 6 H1(γ1)−H1(Γ1)

6
∑
i

[H1(γi)−H1(Γi)] 6 32λ|x0 − `| (11.72)

because the three numbers H1(γi)−H1(Γi) are nonnegative (by (8.15)) and
by (11.69). We shall now complete this with a lower bound for H1(γ(a, b))−
H1(ρ) which yields the desired contradiction. The computations that follow
seem shockingly long to the author, who feels compelled to do them but
hopes the pictures will be convincing enough.

x0 x1

�=�(z(a),z(b)) �1

�(a,b)   �
1

U

Figure 11.2. The point x1 lies close to ρ because of (11.72)

Set d = |x0 − x1|. Also let p denote the point of ρ that minimizes the
distance to x1; notice that since p ∈ ρ ⊂ Γ1 and Γ1 is a small Lipschitz
graph,

|v(x0, p)− v(x0, a
∗
1)| 6 2λ. (11.73)

Then |v(x0, p)−v(x0, x1)| > 30
√
λ−2λ > 29

√
λ because we assumed (11.71)

to fail and if λ is small enough; hence
|p− x1| > 29

√
λd. (11.74)
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We shall first assume that
p lies in the interior of ρ; (11.75)

this is supposed to be the main case, and pictures will be easier to draw. In
particular observe that the geodesic ρ(x1, p) is perpendicular to ρ at p.

We will feel better if we know that all the geometric arguments that
follow happen in a tiny ball, so let us check that

x1, z(a), and p all lie in B(x0, 4d) ⊂ B(x0, 12α2τ) (11.76)
(that is, a very small ball where we can expect curvature to play almost no
role).

First we claim that |z(a)−x0| 6 2d. Suppose not, and recall that ρ ⊂ Γ1,
Γ1 is a small Lipschitz graph over ρ(x0, a

∗
1), and ρ leaves from z(a) in the

direction opposite to x0. Then, as suggested by Figure 11.3 (and z(a) should
even lie further on the right), z(a) should be the point of ρ that lies closest
to x1, a contradiction with (11.75). So |z(a)− x0| 6 2d.

Then |p − x0| 6 4d, because otherwise |p − x1| > |p − x0| − |x0 − x1| >
3d > |z(a)− x0|+ |x0 − x1| > |z(a)− x1|.

x0

z(a)
z(b)

1x

�(a,b)

�

B(x 
0
,d)

Figure 11.3. In this case already (and more if |z(a)− x0| > 2d), p = z(a).

Finally the second part of (11.76) holds because d 6 |x0− `|+ |x1− `| 6
(1 + 32λ)|x0 − `| < 3α2τ by (11.70) and Lemma 11.1; so (11.76) holds.

We will need lower bounds for
δa = distS(x1, z(a))− distS(p, z(a))

and δb = distS(x1, z(b))− distS(p, z(b)).
(11.77)

Let us first consider δb. Recall that ρ(x1, p) is perpendicular to ρ at p; we
can choose orthonormal coordinates of Rn where p, z(b), and x1 lie in R3

(so that we won’t even need to write all the other coordinates), and
p = (1, 0, 0), z(b) = (cos sb, sin sb, 0), and x1 = (cos t, 0, sin t), (11.78)

where in fact we can take sb = distS(z(b), p) and t = distS(x1, p), maybe at
the price of changing the orientation. Then
|x1 − z(b)|2 = | cos sb − cos t|2 + sin2 sb + sin2 t = 2− 2 cos sb cos t. (11.79)

– 105 –



Guy David

Here we shall not try to win much, because z(b) may be quite far and then
δb small. Let us just observe that

sb = distS(z(b), p) 6 distS(a∗1, p)
6 H1(Ci) + distS(a1, a

∗
1) + distS(`, x0) + distS(x0, p)

6
π

2 + 25α2τ (11.80)

because a∗1 is clearly the furthest point of Γ from p, because H1(Ci) 6 π
2

(see the construction above (3.1); if we had forced the lengths of the Ci
to be a little shorter, we would have a slightly better estimate now, but π

2
looks natural), then by Lemma 11.1 and (11.76). Notice that setting t = 0
in (11.79) corresponds to p = x1 and a computation of |p− z(b)|2. If sb 6 π

2 ,
then cos sb > 0 and |x1 − z(b)|2 > |p − z(b)|2 by (11.79) (recall that t =
distS(x1, p) 6 20α2τ by (11.76), so cos t > 0). Then δb > 0. Otherwise, even
though cos sb < 0, −2 cos sb 6 50α2τ by (11.80) so

|p− z(b)|2 − |x1 − z(b)|2 = (−2 cos sb)(1− cos t) ∈ [0, 50α2τt2] (11.81)

by (11.80) (again recall that t 6 20α2τ). In this region where the dis-
tances distS(p, z(b)) and distS(x1, z(b)) are very close to π/2, we can recover
them in a 3-Lipschitz way from |p− z(b)|2 and |x1 − z(b)|2; we then deduce
from (11.81) that

δb > −150α2τt2 > −104α2τd2 (11.82)

because t = distS(x1, p) 6 9d by (11.76).

Next we estimate δa. The same computation as for (11.79) yields

|x1 − z(a)|2 = | cos sa − cos t|2 + sin2 sa + sin2 t = 2− 2 cos sa cos t, (11.83)

with sa = distS(p, z(a)). Now both sa and t are small, by (11.76), so there
is no sign issue, and comparing with t = 0 yields

|x1 − z(a)|2 − |p− z(a)|2 = 2 cos sa(1− cos t) > t2 cos sa >
28t2

29 . (11.84)

But (11.74) implies that t = distS(x1, p) > 29
√
λd, so (11.84) says that

|x1 − z(a)|2 − |p− z(a)|2 > 28 · 29λd2 = 812λd2. (11.85)

Set α0 = 1
2 distS(z(a), p) and α1 = 1

2 distS(x1, p); thus α0 6 α1 by (11.84),
|p − z(a)| = 2 sinα0 and |x1 − z(a)| = 2 sinα1, and, by the fundamental
theorem of calculus,

|x1−z(a)|2−|p−z(a)|2 = 2[sin2 α1−sin2 α0] = 4(α1−α0) sinα cosα (11.86)
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for some α ∈ [α0, α1]. In addition α1 6 5d because (11.76) says that |x1 −
z(a)| 6 8d, so 2 sinα cosα = sin 2α 6 2α1 6 10d, and

δa = 2(α1 − α0) = (2 sinα cosα)−1 (|x1 − z(a)|2 − |p− z(a)|2
)

> (10d)−1(|x1 − z(a)|2 − |p− z(a)|2
)
>

812λd2

10d > 81λd (11.87)

by (11.77) and (11.85). On the other hand,

δa + δb

= distS(x1, z(a)) + distS(x1, z(b))− distS(p, z(a))− distS(p, z(b))
= distS(x1, z(a)) + distS(x1, z(b))− distS(z(a), z(b))
6 H1(γ(a, b))−H1(ρ) 6 32λ|x0 − `| 6 32(1− 32λ)−1λd 6 33λd (11.88)

because p lies between z(a) and z(b) on the geodesic ρ = ρ(z(a), z(b)), then
because γ(a, b) goes from z(a) to x1 to z(b), and finally by (11.72) and
because (11.70) says that d = |x0 − x1| > (1 − 32λ)|x0 − `|. We get the
desired contradiction by comparing this to (11.87) and (11.82).

We are not quite finished yet, because we still need to deal with the case
when (11.75) fails, i.e, when p = z(a) or z(b). Suppose first that p = z(a),
i.e., dist(x1, ρ) = |x1 − z(a)| (as in Figure 11.3). We claim that

dist(x1, z(b)) > dist(z(a), z(b))− 104α2τd2. (11.89)

Indeed, let H be the vector hyperplane through z(a) and perpendicular to
ρ. Since dist(x1, ρ) = |x1 − z(a)|, x1 lies on H, or on the other side of H as
z(b). Call ξ the intersection of H with the geodesic ρ(x1, z(b)). Also denote
by P the plane that contains ρ. It is easy to see that dist(ξ, P ) 6 dist(x1, P )
(the geodesic ρ(x1, z(b)) goes through ξ and ends on ρ); then dist(ξ, P ) 6
|x1 − z(a)| (because z(a) ∈ P ). Then, since ξ ∈ H and the geodesic dis-
tance is a monotone function of the Euclidean distance, distS(ξ, z(a)) =
distS(ξ, P ) 6 distS(x1, z(a)). The proof of (11.82) applies to ξ too, because
of the orthogonality that comes from the fact that ξ ∈ H, and we get
that dist(ξ, z(b)) > dist(z(a), z(b)) − 104α2τd2, and (11.89) follows because
dist(x1, z(b)) is at least as large. Then

H1(γ(a, b)) > distS(z(a), x1) + distS(x1, z(b))

> 29
√
λd+ distS(x1, z(b))

> 29
√
λd+ distS(z(a), z(b))− 105α2τd2

= 29
√
λd+H1(ρ)− 105α2τd2 (11.90)

because γ(a, b) goes from z(a) to x1 to z(b), by (11.74) and because p = z(a)
and ρ = ρ(z(a), z(b)), then by (11.89) and because distS is a 10-Lipschitz
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function of dist in the current range. This is not compatible with (11.72)
(with the same sort of verification as above).

We are left with the case when p = z(b). We claim that
dist(x1, z(a)) > dist(z(a), z(b))− 104α2τd2. (11.91)

We prove this as with (11.89), but with z(a) and z(b) exchanged. We arrive
to the information that distS(ξ, z(b)) = distS(ξ, P ) 6 distS(x1, z(b)). We
may now follow the same argument above, with the proof of (11.82), and
get (11.91), but we may also observe that if p = z(b), then z(b) is not far
from x0 and x1, hence the proof of (11.87) also allow us to get rid of the ugly
term −104α2τd2. Anyway, may conclude as in (11.90), and get the desired
contradiction. This completes our proof of Lemma 11.4. �

11.4. Construction of Γ in Case B

We stay in Case B (defined by (11.69)), and now we build the net Γ.
The general principle will be the same as in Case A, where we forced Γ∗ to
make a small detour through `, but now everything will happen near x1 and
(beause of (11.70)) relatively far from x0. Set
r = (100λ)−1|x1 − `|, D = S ∩B(x1, r), and ∂D = S ∩ ∂B(x1, r). (11.92)

We choose this radius because this way,
100λr = |x1 − `| 6 32λ|x0 − `| (11.93)

by (11.70), hence

|x0 − x1| > |x0 − `| − |`− x1|

> (1− 32λ)|x0 − `| >
(1− 32λ)

32λ |x1 − `| > 3r (11.94)

and our construction will not involve Γ2 or Γ3. Indeed, not only does |x0 −
x1| > 2r, but Lemma 11.4, the fact that Γi is a small Lipschitz graph over
ρ(x0, a

∗
i ), and (11.24), imply that

dist(Γ2 ∪ Γ3, D) > 2r. (11.95)
So we leave Γ2 and Γ3 alone, but we change Γ1. Denote by γ4 the arc of γ1
between x0 and x1, and by γ5 the rest of γ1, i.e., between x1 and a∗1. See
Figure 11.4. Then set γ4 = γ4 and γ5 = γ5 ∪ L1. Apply the construction of
Section 8 to γ4 and γ5; this gives two small Lipschitz graphs Γ4 and Γ5. Now
set γ =

⋃5
i=2 γi and the analogue of Γ∗ is

⋃5
i=2 Γi.

Since Γ4 and Γ5 are small Lipschitz graphs starting from x1, they meet
∂D exactly once, at points which we call z4 and z5 (see Figure 11.5). Denote
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Figure 11.4. The γj near D.
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Figure 11.5. The corresponding Γj .

by Γ′4 the arc of Γ4 between x0 and z4, and set Γ̃4 = Γ′4 ∪ ρ(z4, `). Similarly,
denote by Γ′5 the arc of Γ5 between z5 and a∗1, and set Γ̃5 = ρ(`, z5) ∪ Γ′5.
We shall take

Γ = Γ2 ∪ Γ3 ∪ Γ̃4 ∪ Γ̃5, (11.96)
which is now composed of 6 pieces, but looks a lot like a 3-legged spider with
a small detour organized along one of its legs. See Figure 11.6.

∂D

x0

x1

z4
z53Γ

2Γ

5Γ 5Γ
~

&

l
4Γ & 4Γ

~
4Γ 4Γ

~

lρ z4(   ,  )& 4Γ
~ 5 5lρ z(   ,  )& Γ

~

Figure 11.6. Our choice of Γ (this time, with ` below).

Our next task consists in checking that this description is right, and that
the angles are large enough.

Lemma 11.5. — The curve Γ̃4 is a 103λ-Lipschitz graph over ρ(x0, `),
and Γ̃5 is a 103λ-Lipschitz graph over ρ(`, a∗1). In addition,

Γ̃4 and Γ̃5 make an angle larger than π − 40
√
λ at `. (11.97)
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Proof. — Let us first consider Γ4. A small advantage of the situation is
that by (11.3) and (11.70),

x1 and ` both lie in the very small ball B(x0, 3α2τ), (11.98)
so the Lipschitz geometry will be simpler. Set e = v(x0, x1); by the proof
of (11.12),

Γ4 is a 3λ-Lipschitz graph over Vect(e). (11.99)
As for the geodesic piece, notice that
|v(z4, x1)− v(z4, `)| 6 2|z4 − x1|−1|x1 − `| = 2r−1|x1 − `| 6 200λ (11.100)

by (11.92). Since z4 and x1 lie on Γ4, (11.99) also says that |v(z4, x1)− e| 6
4λ, and so |v(z4, `)−e| 6 204λ. In addition, the geodesic ρ(z4, `) is too short
to turn much: if v denotes a tangent direction to ρ(z4, `) (oriented in the
direction of `), then |v− v(z4, `)| 6 distS(z4, `) 6 2|z4− `| 6 2r+ 2|x1− `| 6
3r 6 2|x0 − `| 6 4α2τ by (11.93), (11.94), and (11.3).

Altogether |v− e| 6 208λ, and Γ̃4 is a 208λ-Lipschitz graph over Vect(e).
Now the easy part of the proof of Lemma 11.2 says that Γ̃4 is also a 103λ-
Lipschitz graph over ρ(x0, `).

Next consider Γ̃5. Here the proof is very similar to what we did for
Lemma 11.3, so we shall skip some details. We first control Γ̃5 outside of
D1 = S ∩ B(x1, 10r), and for this we just copy the proof of Lemma 11.3,
with x0 replaced with x1, up to (11.35) included. Then we look inside
D2 = S ∩ B(x1, 500r). We continue as before, but modify slightly the angle
estimates. We start with (11.37); instead we say that when v is a tangent
direction to ρ(`, z5),

|v − v(`, z5)| 6 2|`− z5| 6 2|`− x1|+ 2r
6 (40λ)−1|`− x1| 6 λ−1α2τ 6 λ (11.101)

again because the geodesic is too short to turn, and by (11.92) and (11.98).
Then, instead of (11.38) and as in (11.100),
|v(`, z5)− v(x1, z5)| 6 2|`− x1||x1 − z5|−1 = 2r−1|x1 − `| 6 200λ, (11.102)
and (as in (11.39))

|v(x1, z5)− v(x1, a
∗
1)| 6 3λ (11.103)

because z5 lies in the small Lipschitz graph Γ5 over ρ(x1, a
∗
1) (and by the

analogue of (11.12)). Finally,

|v(x1, a
∗
1)− v(`, a∗1)| 6 2|x1 − `||`− a∗1|−1

6 2|x1 − `|(5η(X))−1 6 α2 6 λ (11.104)

as in (11.40), and because |x1 − `| 6 6α2τ < 6α2 · 10−3η(X) by (11.98)
and (6.3). Recall also that α can be chosen small, depending on λ (see below
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Lemma 11.1). Altogether |v − v(`, a∗1)| 6 205λ, ρ(`, z1) is a 205λ-Lipschitz
graph over the line Vect(v(`, a∗1)). Since we already know something like this
about Γ1 ∩D2, we also get that Γ̃1 ∩D2 is a 208λ-Lipschitz graph over that
line. Then we apply the same version of Lemma 11.2, transposed for curves
that start from `, and conclude as in Lemma 11.3.

Now we prove (11.97). Because we already know that Γ4 and Γ5 are
103λ-Lipschitz graphs starting from `, we just need to show that the two
corresponding geodesics leaving from ` are almost opposed. That is, it is
enough to prove that

|v(x0, `)− v(`, a∗1)| 6 35
√
λ, (11.105)

say. But |v(x0, `)−v(x0, x1)| 6 2|x0−`|−1|x1−`| 6 64λ by (11.70), |v(`, a∗1)−
v(x0, a

∗
1)| 6 λ by (11.40), and |v(x0, x1) − v(x0, a

∗
1)| 6 30

√
λ by (11.71);

(11.105), (11.97), and Lemma 11.5 follow. �

We are ready to check (10.2). For the fact that

Γ2, Γ3 and Γ̃4 make angles larger than 100◦ at x0, (11.106)
we use (11.24) (for the angle of Γ2 and Γ3), and (for the two other angles)
the fact that Γ̃4 coincides with Γ4 near x0, the proof of (11.24), and the fact
that by Lemma 11.4 the general direction v(x0, x1) of Γ4 is almost the same
as the general direction v(x0, a

∗
1) of Γ1 in (11.24).

Then the angle of Γ̃4 and Γ̃5 is controlled by (11.97), so (10.2) holds. The
verification of (10.3) is the same as usual; the fact that Γ5 comes from x1
rather than x0 does not matter.

Now we prove the length estimates (10.6) and (10.7). First we want to
estimate the extra length for the detour through `, and use the function

f(z) = distS(z, z4) + distS(z, z5) (11.107)
defined on S. We can still use (11.43) to differentiate (away from ±z4 and
±z5), and get that

−∇f(z) = v(z, z4) + v(z, z5). (11.108)
Then

|∇f(x1)| = |v(x1, z4) + v(x1, z5)|
6 |v(x1, x0) + v(x1, a

∗
1)|+ |v(x1, x0)− v(x1, z4)|

+ |v(x1, a
∗
1)− v(x1, z5)|

6 |v(x1, x0) + v(x1, a
∗
1)|+ 6λ

6 |v(x0, x1)− v(x0, a
∗
1)|+ |v(x0, a

∗
1)− v(x1, a

∗
1)|+ 6λ

6 30
√
λ+ 7λ 6 35

√
λ (11.109)
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because z4 lies between x0 and x1 on a 3λ-Lipschitz graph, for the same
reason for z5, and by (11.71) and (11.98) (as in (11.40), say). For i = 1, 2,
v(z, zi) is differentiable, with |∇zv(z, zi)| 6 |z − zi|−1. We shall use this for
z ∈ ρ(`, x1). Then

|z − x1| 6 |`− x1| < r/2 (11.110)
by (11.92), so |z−zi| > r/2 (recall that |zi−x1| = r) and |∇zv(z, zi)| 6 2r−1.
We sum over i and integrate on ρ(z, x1); this yields

|∇f(x1)−∇f(z)| 6 2r−1 distS(z, x1) 6 2r−1 distS(`, x1). (11.111)

We integrate on ρ(x1, `) and get that

f(`) 6 f(x1) + distS(`, x1)|∇f(x1)|+ 2r−1 distS(`, x1)2

6 f(x1) + [35
√
λ+ 2r−1 distS(`, x1)] distS(`, x1)

6 f(x1) + [35
√
λ+ 300λ] distS(`, x1)

6 f(x1) + 36
√
λ|`− x1| (11.112)

by (11.109) and (11.92). But

H1(Γ̃4 ∪ Γ̃5) = H1(Γ′4) +H1(Γ′5) +H1(ρ(z4, `)) +H1(ρ(`, z5))
= H1(Γ′4) +H1(Γ′5) + f(`) (11.113)

by definition of the Γ̃i, and

H1(Γ4 ∪ Γ5) > H1(Γ′4) +H1(Γ′5) + f(x1) (11.114)

because Γ4 is composed of Γ′4 and an arc from z4 to x1, and similarly for Γ5,
so

H1(Γ̃4 ∪ Γ̃5) 6 H1(Γ4 ∪ Γ5) + f(`)− f(x1)

6 H1(Γ4 ∪ Γ5) + 36
√
λ|`− x1|. (11.115)

We add the contributions of Γ2 and Γ3 and get that

H1(Γ) 6 H1

( 5⋃
i=2

Γi

)
+36
√
λ|`−x1| 6 H1

( 5⋃
i=2

γi

)
+36
√
λ|`−x1| (11.116)

by (8.16). But γ = γ`∪
(⋃5

i=2 γi
)
(an essentially disjoint union), andH1(γ`)>

|`− x1| (because γ` goes from ` to x1), so

H1(Γ) 6 H1(γ)− 1
2H

1(γ`). (11.117)

This proves (10.6); we are left with (10.7) to check. Before we start, let us
record the fact that

r = (100λ)−1|x1 − `| 6 (100λ)−1H1(γ`) (11.118)
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by (11.92). Next observe that for the symmetric difference ∆(γ,Γ) of (10.4),

∆(γ,Γ) ⊂ γ` ∪
( 5⋃
i=2

∆(γi,Γi)
)
∪ ρ(z4, `) ∪ ρ(z5, `) ∪ Γ′′4 ∪ Γ′′5 , (11.119)

where Γ′′4 is the arc of Γ4 between z4 and x1, and similarly for Γ′′5 . Since

H1(γ`) +H1(ρ(z4, `)) +H1(ρ(z5, `)) +H1(Γ′′4) +H1(Γ′′5)
6 H1(γ`) + 10r 6 C(λ)H1(γ`) 6 2C(λ)[H1(γ)−H1(Γ)] (11.120)

by (11.118) and (11.117) and the right-hand side of (11.120) is controlled by
the right-hand side of (10.7), we are left with the four ∆(γi,Γi). By (8.16)
and (8.5),

H1(Γi \ γi) 6 H1(γi \ Γi) 6 C(λ)[H1(Γi)−H1(ρi)], (11.121)

where ρi is the geodesic arc between the endpoints of Γi, 2 6 i 6 5.

What we want for (10.7) is
∑5
i=2H1(ρ̃i), where we may keep ρ̃i = ρi for

i = 2, 3, but for i = 4, 5, ρ̃i is the geodesic with the same endpoints as the
corresponding arc Γ̃.

We sum (11.121) over i and get that∑
i

H1(∆(γi,Γi))

6 2C(λ)
∑
i

[H1(Γi)−H1(ρi)]

6 2C(λ)
[
H1(Γ)−

∑
i

H1(ρ̃i)
]

+ 2C(λ)(Σ1 + Σ2), (11.122)

with

Σ1 =
5∑
i=2
H1(Γi)−H1(Γ) and Σ2 =

5∑
i=2

[H1(ρ̃i)−H1(ρi)]. (11.123)

Notice that

Σ1 =
5∑
i=4

[H1(Γi)−H1(Γ̃i)] 6 H1(Γ′′4) +H1(Γ′′5)

6 2C(λ)[H1(γ)−H1(Γ)] (11.124)

because H1(Γ) = H1(Γ2) + H1(Γ3) + H1(Γ̃4) + H1(Γ̃4) (since the union
in (11.96) is essentially disjoint), then because the other part of Γi, namely
Γ′i, is contained in Γ̃i, and finally by (11.120). This part is dominated by the
right-hand side of (10.7).
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As for Σ2, first observe that ρi = ρ̃i when i ∈ {2, 3}. When i ∈ {4, 5},
the difference is that one endpoint is ` instead of x1. That is,
H1(ρ̃4)−H1(ρ4) = H1(ρ(x0, `)−H1(ρ(x0, x1)) 6 distS(x1, `), (11.125)

we have a similar estimate for H1(ρ̃5) − H1(ρ5) (just replace x0 with a∗1),
and by (11.117)

Σ2 6 2 distS(x1, `) 6 3|x1 − `| 6 3H1(γ`) 6 6[H1(γ)−H1(Γ)], (11.126)
which is also dominated by the right-hand side of (10.7). Since the main part
of the right-hand side of (11.122) shows up as H1(Γ) −H1(ρ) in (10.7), we
get the desired estimate for our last term

∑
iH1(∆(γi,Γi)). This completes

our proof of (10.7), and the verification of (10.2)–(10.7) in Case B, the last
case for Configuration 3+.

12. The net Γ for Configuration 2+

As was observed at the end of Section 10, we still need to construct Γ
in the case of Configuration 2+. As for Configuration 3+, we will have two
cases, one where we keep the same center x0, and one where we go directly
to `.

Recall that in the present case E ∩ ∂D has only two points c∗i (or else
there is a hanging curve, to be discussed later, but which we ignore for the
moment), and γ is composed of a simple curve γ1,2 that goes from c∗1 to c∗2,
plus a simple curve γ`, possibly reduced to the point `, that goes from ` to
a point of γ1,2. We call this point x0, and denote by γi, i ∈ {1, 2}, the arc of
γ1,2 that goes from x0 to c∗i . We also denote by γi the union of γi and the
arc Li ⊂ E that goes from c∗i to a∗i . Finally set

γ = γ` ∪ γ1 ∪ γ2. (12.1)

We start as in Section 11, apply the construction of Section 8 to the three
curves γ1, γ2, and γ`, and this gives three Lipschitz curves Γ1, Γ2, and Γ3.
The simplest case, which we shall call Case A, is when

v(x0, a
∗
1), v(x0, a

∗
2) and v(x0, `) make angles

larger than 2π
3 −

π
10 with each other. (12.2)

In this case, we set
Γ = Γ1 ∪ Γ2 ∪ Γ3, (12.3)

and we can check (10.2)–(10.7) right away. There is only one angle condition
to check for (10.2), at x0, and it is satisfied because we claim that

the three Γi make angles larger than π

2 at x0. (12.4)
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The claim follows readily from (12.2) and the Lipschitz graph description of
the Γi; see for instance the proof of (11.24).

If there was also a hanging curve in the configuration, then there are
three Ci that leave from `, they make 120◦ angles there, and the hanging
curve is attached to the third point c∗3 of ∂D. As promised in the description
of Configuration H, we add the corresponding Li (just relabel if needed, and
call it L3) to Γ. The graphs Γ1 and Γ2 go essentially straight in the direction
of a∗1 and a∗2, and the same argument as for (10.24) shows that L3 does not
meet Γ1∪Γ2 outside of D. It does not meet Γ1 or Γ2 inside D either, because
it does not get inside D. So L3 does not meet Γ1∪Γ2∪Γ3, and we feel better.

Next (10.3) holds for the same reason as before (see the proof below
(10.12)), and we are left with the length estimates. First of all, (10.6) holds,
simply by adding the three estimates (8.16) coming from the three curves.
The symmetric difference Γ∆γ of (10.6) is contained in the union of the
symmetric differences Γ1∆γ1, Γ2∆γ2, and Γ3∆γ`, so (10.7) follows by adding
the three estimates from the end of (9.22).

We may now switch to Case B, which is when (12.2) fails. We shall try
a set Γ that goes more directly through `, without passing through x0; the
construction will look like what we did for Case B of Configuration 3+.

Let α > 0 be a small constant, which is allowed to depend on λ and will
be chosen near the end of the section. We need an analogue of Lemma 11.1,
which says that if ε is chosen small enough in (5.3) (depending on α and τ),

|x0 − `|+ |a1 − a∗1|+ |a2 − a∗2| 6 2α2τ. (12.5)

The proof is the same as for Lemma 11.1, with only two branches coming
from the c∗i . The reader may be worried about the special case when there
is a third point c∗3 ∈ D±(τ), that leads to a hanging curve. But, as long
as we stay in the spherical annulus A = S ∩ B(`, 2τ) \ B(`, α2τ), this third
curve L′3 stays far from the other two and does not interfere with the proof
(which, as the reader recalls, consists in saying that we don’t meet a triple
point like x0).

We set (more or less as usual)

r = α−1|x0 − `|, D = S ∩B(x0, r), and ∂D = S ∩ ∂B(x0, r) (12.6)

(compare with (11.26)); notice that r 6 2ατ , by (12.5), so it is still very
small. Since Γ1 and Γ2 are small Lipschitz graphs, they meet ∂D exactly
once, at points that we call z1 and z2. Set, for i = 1, 2,

Γ′i = Γi \D, Γ′′i = Γi ∩D, and Γ̃i = ρ(`, zi) ∪ Γ′i. (12.7)
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Thus Γ̃i is a curve that goes from ` to a∗i , while Γi goes from x0 to a∗i ; both
curves go through zi. Finally we set

Γ = Γ̃1 ∪ Γ̃2, (12.8)
which we really see as a collection of two graphs. So we want to claim that
for i = 1, 2,

Γ̃i is a 8λ-Lipschitz graph over ρ(`, a∗i ). (12.9)
Fortunately, the proof is the same as for Lemma 11.3, so we can skip it. The
point is that since zi and x0 both lie on the small Lipschitz graph Γi, the
geodesic ρ(zi, x0) is almost aligned with Γ′i, and then ρ(zi, `) makes a small
angle because (12.6) says that |x0 − `| � r.

Next we claim that
Γ̃1 and Γ̃2 make an angle larger than π

2 at `. (12.10)
We start from the description of Proposition 2.1, which says that C1 and C2
make an angle at least 2π

3 at ` (see (2.7)). That is,

Angle(v(`, a1), v(`, a2)) > 2π
3 . (12.11)

Let vi be a tangent direction to Γ̃i at `. From (12.9) (and (11.12)) we deduce
that

|vi − v(`, a∗i )| 6 32λ. (12.12)
In addition,
|v(`, a∗i )−v(`, ai)| 6 2|ai−a∗i ||`−ai|−1 6 4α2τ(5η(X))−1 6 α2 < λ (12.13)
by (12.5), (4.2), (4.3), and (6.3), and if α is small enough. Now (12.10) follows
from (12.11), (12.12), and (12.13).

Notice that the description of Γ as a union of small Lipschitz graphs fol-
lows from (12.9), (10.2) (the control on the inside angles) follows from (12.10),
and (10.3) holds for the usual reason (see below (10.12)).

There may also be a hanging curve in the configuration. Then there are
three Ci that leave from `, they make 120◦ angles, and the hanging curve is
attached to the third point of E∩∂D, i.e., c∗3. We add to Γ the corresponding
curve L3, and it is good to know that L3 does not meet Γ. This is the case,
because the Γ̃i are small Lipschitz graphs over the ρ(`, a∗i ) (by (12.9)), which
go away from c∗3 and L3; the proof goes as for (10.24).

So we just need to prove the two usual length estimates. For this we
introduce

f(z) = distS(z, z1) + distS(z, z2) (12.14)
and estimate its gradient

∇f(z) = −[v(z, z1) + v(z, z2)]. (12.15)
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We need to estimate some angles. Set

e1 = v(x0, a
∗
1), e2 = v(x0, a

∗
2), and e3 = v(x0, `). (12.16)

Observe that for i = 1, 2 and z ∈ ρ(x0, `)

|v(z, zi)− v(x0, zi)| 6 2|z − x0||x0 − zi|−1 6 2|`− x0|r−1 = 2α (12.17)

by (12.6), and

|v(x0, zi)− ei| = |v(x0, zi)− v(x0, a
∗
i )| 6 4λ (12.18)

because zi ∈ Γi, which is a λ-Lipschitz graph over ρ(x0, a
∗
i ) and by (11.12);

then
|∇f(z) + e1 + e2| 6 12λ (12.19)

if α is small enough. Next we want to check that

〈e1 + e2,−e3〉 6 1− 10−2. (12.20)

First observe that for i = 1, 2,

|ei − v(`, ai)| = |v(x0, a
∗
i )− v(`, ai)|

6 |v(x0, a
∗
i )− v(`, a∗i )|+ |v(`, a∗i )− v(`, ai)|

6 2|`− x0||`− a∗i |−1 + α2

6 4α2τ(5η(X))−1 + α2 6 2α2 (12.21)

by (12.13), (12.5), (4.2), (4.3), and (6.3). Then by (12.11)

Angle(e1, e2) > 2π
3 − 5α2. (12.22)

Since (12.2) fails (by definition of Case B), the three vectors e1, e2, e3 do
not all make angles larger than 2π

3 −
π
10 . Since this is the case for e1 and e2,

we may assume, without loss of generality, that

Angle(e1, e3) 6 2π
3 −

π

10 . (12.23)

If (12.20) fails, |e1 + e2| > 1− 10−2. Set θ = 1
2 Angle(e1, e2); then |e1 + e2| =

2 cos θ, hence

θ 6 arccos
(

1
2 −

10−2

2

)
6
π

3 + 10−2. (12.24)

Then

Angle(e3, e1 + e2) 6 Angle(e3, e1) + Angle(e1, e1 + e2)

6 Angle(e3, e1) + θ 6 π − π

10 + 10−2 6 π − 2
10 , (12.25)
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Angle(−e3, e1 + e2) > 2
10 , and cos(Angle(−e3, e1 + e2)) 6 1− 2 · 10−2. Since

by (12.22)

|e1 + e2| = 2 cos θ 6 2 cos
(
π

3 −
5α2

2

)
6 1 + 10−4, (12.26)

〈e1 + e2,−e3〉 = |e1 + e2| cos(Angle(−e3, e1 + e2))
6 (1 + 10−4)(1− 2 · 10−2) 6 1− 10−2 (12.27)

and (12.20) holds after all.

We may now return to the computation of∇f(z). We integrate on ρ(x0, `)
and get that

f(`) = f(x0) +
∫
ρ(x0,`)

〈∇f(z), v(z, `)〉dH1(z)

6 f(x0) +
∫
ρ(x0,`)

[
〈e1 + e2,−v(z, `)〉+ 10λ

]
dH1(z)

6 f(x0) +
∫
ρ(x0,`)

[
〈e1 + e2,−e3〉+ 11λ

]
dH1(z) (12.28)

by (12.19) and because

|v(z, `)− e3| = |v(z, `)− v(x0, `)| 6 |x0 − `| 6 2α2τ <
λ

2 (12.29)

for z ∈ ρ(x0, `), because geodesics do not turn too fast, by (12.5), and if α
is small enough. By (12.20) and the definition (12.14), this yields

distS(`, z1) + distS(`, z2)
= f(`) 6 f(x0) + (1− 10−2 + 11λ) distS(x0, `)
6 distS(x0, z1) + distS(x0, z2) + (1− 10−3) distS(x0, `)
6 H1(Γ′′1) +H1(Γ′′2) + (1− 10−3) distS(x0, `) (12.30)

because Γ′′i precisely goes from x0 to zi (see near (12.7)).

We are about ready for (10.6) and (10.7). Because of (12.1),

H1(γ) = H1(γ`) +H1(γ1) +H1(γ2) > H1(γ`) +H1(Γ1) +H1(Γ2) (12.31)

by (8.16). Besides, by (12.8) and (12.7),

H1(Γ) =
2∑
i=1
H1(Γ̃i) =

2∑
i=1

[H1(Γ′i) + distS(x0, zi)] (12.32)
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and, since H1(Γi) = H1(Γ′i) +H1(Γ′′i ), we get that

H1(γ)−H1(Γ) > H1(γ`) +
2∑
i=1

[
H1(Γi)−H1(Γ′i)− distS(x0, zi)

]
= H1(γ`) +

2∑
i=1

[
H1(Γ′′i )− distS(x0, zi)

]
> H1(γ`)− (1− 10−3) distS(x0, `)
> 10−3H1(γ`) > 10−3|x0 − `| (12.33)

by (12.8) and (12.7), and because H1(γ`) > distS(x0, `) > |x0 − `|.

This is better than (10.6). For (10.7), first observe that

r = α−1|x0 − `| 6 103α−1[H1(γ)−H1(Γ)], (12.34)

which is therefore controlled by the right-hand side of (10.7). We write

γ∆Γ ⊂ γ` ∪
( 2⋃
i=1

γi∆Γi

)
∪

( 2⋃
i=1

Γi∆Γ̃i

)
. (12.35)

The first part is in order, since H1(γ`) 6 103[H1(γ)−H1(Γ)] by (12.33). The
second one as well, because

H1(Γi∆Γ̃i) 6 H1(Γ′′i ) +H1(ρ(zi, `)) 6 5r, (12.36)

and by (12.34). We are left with the

H1(γi∆Γi) 6 H1(γi \ Γi) +H1(Γi \ γi)
6 Cλ−2[H1(Γi)− distS(x0, a

∗
i )] (12.37)

by (8.16) and (8.5) (recall that Γi goes from a∗i to x0). In turn H1(Γi) 6
H1(Γ̃i) + 2r and distS(`, a∗i ) 6 distS(x0, a

∗
i ) + 2r, so

H1(Γi)− distS(x0, a
∗
i ) 6 H1(Γ̃i)− distS(`, a∗i ) + 4r, (12.38)

which is also controlled by the right-hand side of (10.7). This completes
the verifications in Case B of Configuration 2+. We finally constructed the
Lipschitz net Γ in all cases.

13. Lipschitz projections near E ∩ S

In Sections 10–12 we started from a net γ of curves in E ∩S, in fact near
a point ` ∈ K∩L, and constructed a corresponding net Γ of Lipschitz curves
on S.
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We did this for each `, and in some cases (Configurations H and 3 = 2+1)
independently for the two or three configurations present near `. For the
other curves Li, the ones for which both endpoints of Ci lie in V1∪V2 = V \V0,
the simplest is to set Γ = γ = Li.

For this to work well, it will be better to know that the Li that do not get
close to L are λ-Lipschitz graphs over the geodesics with the same endpoints.
This is why we made Remark 6.3 and the similar later ones. If we did not do
this, we still would be all right, but we would need to replace each of these
Li with the small Lipschitz curve Γi obtained from Li by the construction
of Section 8. We would also need to check that this replacement does not
alter much the angle conditions (10.3) with the other curves or nets Γ, but
nothing dramatic.

We now let γ∗ denote the union of all the curves γ that we have here, and
Γ∗ the union of all the Γ that we constructed. In the cases (as Configuration
3−) where some points of K ∩L do not lie in any constructed Γ, we just add
them to Γ∗ as isolated points. Thus Γ∗ can be decomposed into nets of one
to four small Lipschitz curves, plus maybe one or two points of K ∩ L.

In this section we shall build a Lipschitz projection on Γ∗. In fact, the
term is a little inappropriate, because what we are interested in is a collection
of Lipschitz mappings, defined in small neighborhoods of the main connected
components of E ∩ S and with values in Γ∗. Let us explain what we want.

Proposition 13.1. — We can find a small number τ3 > 0 and a Lips-
chitz mapping p, defined on

E+ = E+(τ3) =
{
x ∈ S ; dist(x,E ∩ S) 6 τ3

}
, (13.1)

with values in Γ∗, such that
|p(x)− x| 6 60τ for x ∈ E+ , (13.2)

p is 30-Lipschitz on E+ ∩B(x, 2τ3) (13.3)
for each x ∈ E+, and

p(`) = ` for ` ∈ K ∩ L. (13.4)

Proof. — Here τ in (13.2) is as above, but τ3 and the Lipschitz constant
for pmay depend very badly on the set E and the initial radius (here normal-
ized to 1) that we took in Section 5. So we will need to be careful when we
apply the proposition; what will save us is the local Lipschitz bound (13.3),
which will be used to control the measure of the image.

We cannot hope to get a continuous projection which is defined on the
sphere, because even if n = 3 and Γ∗ is a great circle, there is a topological
issue (where do we send the two poles?). Also, Γ∗ may have more than
one connected component, different domains of the sphere will be sent to
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different components, and so we count on small gaps in E+, coming from
the fact that E∩S also is not connected, to patch the various local Lipschitz
mappings that we take.

The distance estimate (13.2) is rather poor (we can expect much better
in many cases), but it will be enough.

Anyway, we shall start our proof with the construction of local Lipschitz
projections defined on relatively large pieces of S, that we will then need to
patch together.

We shall use the description of E ∩ S near the curves Ci that was given
in Proposition 6.5; in particular τ in (13.2) and below is still coming from
this proposition, we assume that τ 6 10−3η(X), and the Li are the curves
in E ∩ S provided by the proposition.

Recall that we split I into I0 (the indices for which Ci has an endpoint
on K ∩ L) and I1 = I \ I0. When i ∈ I0, we shall denote by `(i) the point
of K ∩ L where Ci ends, and by Di the spherical disk Di = S ∩ B(`(i), τ)
associated to `(i).

Recall also that when i ∈ I1, the curve Li given by Proposition 6.5
connects two vertices a∗i and b∗i (that lie close to the vertices ai and bi of
Ci), while for i ∈ I0, Li start at a vertex a∗i but end at a point c∗i of ∂Di.

For i ∈ I we define a region of influence Ri by

Ri =
{
z ∈ S ; dist(z,Li) 6 10−1τ and dist(z,Li) 6 dist(z,Lj)

for j ∈ I \ {i}

}
. (13.5)

Then, when i ∈ I1, we define a projection pi such that
pi : Ri → Li is 3-Lipschitz, (13.6)

and
|pi(x)− x| 6 3 dist(x,Li) < τ for x ∈ Ri, (13.7)

where the second inequality follows from (13.5). For the moment, this is easy
to arrange because Li is such a nice curve.

Now it could be that Li shares an endpoint a∗ with one or two other Lj ,
and to avoid conflicts, we require that when this happens we take
pi(z) = a∗ for z ∈ Ri ∩Rj =

{
x ∈ Ri ; dist(z,Li) = dist(z,Lj)

}
. (13.8)

This is easy to arrange: recall that at a∗, the worse that can happen is that
two other Lj end at a∗, in a nice C1 way and with large angles: see (6.27)
(for endpoints in V1) and (6.37) (for endpoints in V2).

Also, we claim that this is enough to guarantee that if j ∈ I1\{i} and if we
set p(x) = pi(x) for x ∈ Ri∩B(a∗, τ) and p(x) = pj(x) for x ∈ Rj∩B(a∗, τ),
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then
p is 10-Lipschitz on (Ri ∪Rj) ∩B(a∗, τ). (13.9)

The point is that if x ∈ Ri ∩ B(a∗, τ) and y ∈ Rj ∩ B(a∗, τ), then there is
a path from x to y in (Ri ∪Rj) ∩B(a∗, τ), of length at most 10|x− y|, and
that goes through some point z ∈ Ri ∩ Rj . Then pi(z) = pj(z) = a∗, and
the fact that |p(x) − p(y)| 6 |pi(x) − pi(z)| + |pj(z) − pj(y)| gives the right
estimate.

Notice also that when i, j ∈ I1 are such that Li and Lj do not share
an endpoint, then dist(Ri, Rj) > τ

10 , by (6.44), (6.5), and (6.3). This means
that if we set p(z) = pi(z) for i ∈ I1 and z ∈ Ri, not only the definitions are
compatible, but we get a Lipschitz mapping on

⋃
i∈I1

Ri.

This will take care of most of the sphere, but the most interesting part
will be what we do near the two points of S ∩ L. In fact, only the points
of K ∩ L = S ∩X ∩ L matter, because if ` ∈ S ∩ L \K, (4.1), (4.3), (6.3),
and (5.3) say that neither X nor E gets within 2τ of `.

Let us review a little what we did in Section 7 and add some notation.
For each ` ∈ K ∩ L, we introduced a small disk D = D`, then we wrote
the curves Ci that end at ` as C1, . . . ,Cm, introduced the components Hi of
c∗i (the endpoint of Li) in E ∩D, and then grouped the Ci by components.
Let us denote by CC(`) the set of connected components Hi (we need a
different name, because some different indices i may give the same compo-
nent). In Configuration 3 = 2 + 1, for instance, CC(`) has two elements; in
Configuration 3+ or 3−, CC(`) has just one element.

For each c ∈ CC(`), we have a connected set γ = γc, which we eventually
completed into the larger γ = γc, and modified to get a net Γ = Γc. We may
need to use the set I(c) of indices i ∈ I0 such that a∗i ∈ c (or equivalently
Hi ⊂ c).

We also complete CC(`): if ` lies in one the components c ∈ CC(`) we
keep CC+(`) = CC(`). Otherwise, we add the special component c` = H`

(the component of ` in E ∩ D, which is disjoint from the other ones), and
associate to it the degenerate curves γc`

= {`} and Γc`
= {`}. We do the

same thing (i.e., add γc`
= {`} and Γc`

= {`}) if ` does not even lie in E.
Then we set CC+(`) = CC(`) ∪ {c`}.

Also denote by CC the union of the CC(`), ` ∈ K ∩ L, and CC+ the
union of the CC+(`), ` ∈ K ∩ L. Finally, if c ∈ CC(`), we set `(c) = ` and
Dc = S ∩ B(`, τ); this is unambiguous, because a single curve Ci never has
both points of S ∩ L as endpoints.

Our next step is the construction of mappings pc, c ∈ CC+. When c is
one of the special components c`, ` ∈ K ∩ L, we have set Γc = {`} and now
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we take
pc`

(z) = ` for z ∈ S. (13.10)
The more interesting case of c ∈ CC is treated in the next lemma.

Lemma 13.2. — For c ∈ CC(`), set D(c) = Dc ∪
⋃
i∈I(c)Ri. There is a

mapping pc such that
pc : D(c)→ Γc is 10-Lipschitz, (13.11)

|pc(x)− x| 6 10 dist(x,Γc) for x ∈ D(c), (13.12)
and, for each i ∈ I(c) and each index j ∈ I such that a∗i is also an endpoint
of Lj, (13.8) holds with a∗ = a∗i .

Proof. — Recall that a∗i is the endpoint of Li that lies far from Dc (i.e.,
which is not c∗i ). Also, all the indices j ∈ I such that a∗i is also an endpoint
of Lj lie in I1 and we already defined p on the corresponding Rj .

The domain D(c) = Dc ∪
⋃
i∈I(c)Ri is composed of a central disk, which

is so small that it is bilipschitz equivalent to a ball in Rn−1 with a constant
close to 1, plus a small number (between one and three) of appendices that
are thin tubes Ri around C1 curves Li, and leave from D in directions that
make large angles. The set Γc itself is a net of at most four small Lipschitz
curves (that make large angles when they meet), and Γc reaches the same
a∗i , i ∈ I(c). In each case, the construction of pc is rather easy, but may be
painful to write explicitly. This is why we shall simply review the different
cases that we encounter, and hopefully the reader will agree that pc is not
hard to find.

In the case of Configuration 0 (when there is no curve near `), there is
no Γ and we still do nothing.

When c comes from a configuration of type 1, Γ is a small Lipschitz curve
that goes from ` to a∗i (where i is the only index in I(c)), and projecting on
Γ is easy. The additional condition (13.8) is not hard to get either, and we
could easily get a 3-Lipschitz function.

When c is of type H, and we consider one of the hanging curves, recall
that we started from γc = Li, where i ∈ I0 is the index such that the hanging
curve contains c∗i , and we kept Γc = γc = Li. In this case too pc is easy to
find.

When c is of type 2−, γc is the union of two simple curves γi that leave
from a same center x0, and Γc is the union of two Lipschitz curves Γi with
the same endpoints x0 and a∗i , and that make a large angle at x0. Here too
pc is easy to construct.

When c comes from a configuration of type 3 = 2+1, we combine the types
1 and 2− above. We don’t even need to know that the two corresponding sets
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Γc are disjoint, because we build two independent projections pc on different
sets Γc. The fact that the pc share a piece of their domains of definitions
will be compensated by the fact that we will later restrict the pc to disjoint
domains at positive distances from each other.

When c is of type 2+, Γc is either a truncated Y that connects ` to a∗i
and a∗j (where I(c) = {i, j}), or composed of two small Lipschitz graphs
from ` to a∗i and a∗j (and thus make a large angle at `. This case and the
next one are just a little harder to treat than the previous ones, but we shall
only comment on the last one because it looks uglier.

When c is of type 3−, Γc is a small Lipschitz spider that goes from a
center x0 to the three relevant a∗i , and is not hard to project on.

Finally, when c comes from a configuration of type 3+, Γc is either a small
Lipschitz spider that goes from ` to the three relevant a∗i (as in Case A), or
a slightly more complicated union of 4 small Lipschitz graphs, coming from
Case B. As in the previous cases, all the angles between the curves are larger
than π/2.

Let us only explain how we find pc in the apparently most complicated
Case B of type 3+. Here (see Figure 13.1) Γc is composed of two long curves
Γ2 and Γ3, that connect a center x0 to exterior points a∗2 and a∗3, a short
curve Γ0 (previously composed of a Lipschitz curve and a piece of geodesic,
but we put them together) that goes from x0 to `, and a third long curve
(again originally composed of a geodesic and a piece of curve) Γ1 from ` to
a∗1. As in the previous cases, all these curves Γi are small Lipschitz graphs
over the geodesics ρi with the same endpoints, and they make large angles
where they meet.

x0
3
�

2
�

1
�

l

0�

1
�

0�

�� U=
i=0

3

i

Figure 13.1. The curve Γ = Γc.

We will cut D(c) into a few simple regions Di(c), and then take a simple
definition for pc on each piece. Set ρ =

⋃3
i=0 ρi, and then

D1(c) =
{
x ∈ D(c) ; dist(x, ρ1) 6 1

3 dist(x, ρ \ ρ1)
}
. (13.13)
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For i ∈ {2, 3}, choose

Di(c) =

x ∈ D(c) ;
dist(x, ρi) = dist(x, ρ)

and dist(x, ρi) 6
1
3 dist(x, ρ0 ∪ ρ1)

 , (13.14)

and finally set D0(c) = D(c) \
⋃3
i=1Di(c). See Figure 13.2 for a sketch of

our four domains (sitting in the two-dimensional sphere S) when n = 3. The
case when n > 3 is not different; the common boundaries just have a larger
dimension, and the three domains Di(c), 0 6 i 6 2, now have a (n − 3)-
dimensional common boundary that goes through x0 (when n = 4, think
about a curve through x0 that crosses the plane of the picture).
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3
aa*
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2
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Figure 13.2. The domains Di = Di(c).

Notice that the Di(c) cover D(c), and also that for i ∈ {1, 2, 3}, Ri \D ⊂
Di(c). The strange choice of a constant 1/3 is to make sure (as in the picture,
and because the ρi make large angles, as well as the directions of ρ1, ρ2, and
ρ3) thatD1(c) does not get close toD2(c)∪D3(c). Because of this, we can find
5-Lipschitz projections pi : Di(c) → Γi such that |pi(x) − x| 6 2 dist(x,Γi)
for x ∈ Di(c),

pi(x) = x0 when i ∈ {2, 3, 0}
and x ∈ Di(c) ∩Dj(c) for some other j ∈ {2, 3, 0}, (13.15)

and
pi(x) = ` when i ∈ {0, 1} and x ∈ D0(c) ∩D1(c). (13.16)

Of course this would have been hard to arrange if D1(c) ∩D0(c) had been
too close to D0(c)∩ (D2(c)∪D3(c)), but otherwise it is easy. See Figure 13.3
for a hint of what the desired projections should do, and Figure 13.4 for
an equivalent model where the pi could be defined explicitly. We can also
make sure that for 1 6 i 6 3, pi(x) = a∗i on Ri ∩ Rj , where j is any index
j ∈ I \ {i} such that Li and Lj share the endpoint a∗i .
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Figure 13.3. How the mappings pi (and hence pc) act.
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Figure 13.4. The same picture after a small change of variable.

The mapping pc defined by pc(x) = pi(x) for x ∈ Di(c) does the job.
In particular, (13.12) can be arranged on each piece Di(c) separately, and
(13.11) is true because when x ∈ Di(c) and y ∈ Dj(c) for some j 6= i,
the shortest path from x to y in D(c) passes through boundaries where the
definitions coincides. That is, if this path γ goes for instance from Di(c) to
some Dk(c) to Dj(c), it goes through points z ∈ Di(c) ∩ Dk(c) and then
z′ ∈ Dk(c) ∩Di(c), and

|p(x)− p(y)| = |pi(x)− pj(y)|
6 |pi(x)− pi(z)|+ |pk(z)− pk(z′)|+ |pj(z′)− pj(y)|
6 5 length(γ) 6 10|x− y| (13.17)

because pi(z) = pk(z), pk(z′) = pj(z′), and because the geometry of D(c) is
not that complicated. As was announced earlier, the other cases are simpler;
Lemma 13.2 follows. �

At this point we have defined local projections pi, i ∈ I1 and pc, c ∈ CC+,
and now we should glue them to make the mapping p of Proposition 13.1.
The interesting part for the gluing will be near the points ` ∈ K ∩ L, where
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we want to attribute the points of E ∩ D` to the various c ∈ CC+(`) (see
below (13.9)). For this we need a separation lemma.

Lemma 13.3. — We can find a small number τ3 > 0 and closed disjoint
sets Tc, c ∈ CC+(`), such that

c ⊂ Tc ⊂ E ∩D for c ∈ CC+(`), (13.18)

E ∩D ⊂
⋃

c∈CC+(`)

Tc , (13.19)

and
dist(Tc, Tc′) > 10τ3 for c, c′ ∈ CC+(`), c 6= c′. (13.20)

Proof. — Again, we can make no claim on the size of τ3. It may be
extremely small, and it depends on E and our earlier choice of radius for S
(now normalized to be 1).

This is mostly question of connectedness (say that each component c is
the intersection of the open and closed sets in E ∩D that contain c), but we
shall cheat a little and use the fact that by (5.4),

H1(E ∩D) 6 H1(E ∩ S) < +∞. (13.21)
We try an argument by hands, with strings of small balls. Set E0 = E ∩D.
For each integer m > 0, we select a set X(m) ⊂ E0 which is maximal under
the constraint that |x − y| > 2−m for x, y ∈ X(m), x 6= y. Thus the balls
B(x, 2−m), x ∈ X(m), cover E0. Set

X0(m) =
{
x ∈ X(m) ; B(x, 2−m+1) meets some c ∈ CC+(`)

}
, (13.22)

and X1(m) = X(m) \X0(m).

Declare a point x ∈ X1(m) bad, or useless, if there is a radius r ∈
(2−m, 2−m+1) such that E0 ∩ ∂B(x, r) = ∅. Denote by Xb(m) ⊂ X1(m) the
set of bad points, and setXg(m) = X1(m)\Xb(m). Notice that if x ∈ Xg(m),
the radial projection πx defined by πx(z) = |z − x| maps B(x, 2−m+1) onto
a set that contains (2−m, 2−m+1) (otherwise, x ∈ Xb(m)); hence

2−m 6 H1(πx(E0 ∩B(x, 2−m+1))) 6 H1(E0 ∩B(x, 2−m+1)). (13.23)
Because of this, the cardinality of Xg(m) is

](Xg(m)) 6 2m
∑

x∈Xg(m)

H1(E0 ∩B(x, 2−m+1)) 6 C2mH1(E0) (13.24)

because the B(x, 2−m+1), x ∈ X(m), have bounded covering.

By “m-string”, we shall mean a finite sequence of points xk ∈ X0(m) ∪
Xg(m), 0 6 k 6 kmax, such that, if we set Bk = B(xk, 2−m+2) for 0 6 k 6
kmax, we have that

Bk ∩Bk+1 ∩ E0 6= ∅ for 0 6 k < kmax. (13.25)
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First suppose that for some choice of ` and m, there is no m-string as
above such that B0 meets some component c ∈ CC+(`) and Bmmax meets
some other c′ ∈ CC+(`). In this case, we can define the Tc as follows. For
each x ∈ Xb(m), choose r ∈ (2−m, 2−m+1) such that E0 ∩ ∂B(x, r) = ∅ and
set Bx = B(x, r); then set

Eb = E0 ∩
⋃

x∈Xb(m)

Bx. (13.26)

This set is both open and closed in E0, because each Bx is. In fact, for each
x ∈ Xb(m) there is a minuscule τ(x) > 0 such that

dist(E0 ∩Bx, E0 \Bx) > τ(x). (13.27)
Next, for c ∈ CC+(`), we denote by T (c) the set of points y ∈ E0 \ Eb that
can be connected to c by an m-string. This last means that we can find an
m-string as above, such that B0 meets c and Bkmax

contains x. The sets
T (c), c ∈ CC+(`), are disjoint, because if T (c) meets T (c′), then there is an
m-string that connects some point of c to some point of c′. They are also
closed, because each T (c) is in fact a finite union of sets (E0 \ Eb) ∩ Bk,
and we made sure to take closed balls Bk. Similarly, if we denote by T∞ the
set of points of E0 \ Eb that cannot be connected to any c ∈ CC+(`) by an
m-string, this set is also the union of the B(x, 2m+2), x ∈ Xg(m) that meets
it, and it is closed and disjoint of the others.

Finally, each T (c) contains the corresponding c. Indeed, let y ∈ c be
given. We know that the balls B(x, 2m), x ∈ X(m), cover E0, so we can find
x ∈ X(m) such that y ∈ B(x, 2m). Then x ∈ X0(m), by (13.22), so it not
bad. For the same reason, y /∈ Eb, because no ball Bx meets c. We use the
single B(x, 2m+2) to connect y to itself, and this shows that y ∈ T (c).

Now set Tc = T (c) for every component c except one, and Tc = T (c) ∪
Eb ∪ T∞ for the last one. It is a little nicer to choose the special component
c` = H` as the last one, if c` ∈ CC+(`), because this way pc sends the whole
Tc to `. But really it does not matter.

The Tc are disjoint and closed by construction. They cover E0 by con-
struction too, and of course they lie at positive distances from each other,
so (13.20) holds for some τ3 > 0. Thus the lemma holds in this case.

We are left with the case when for some ` and all choices of m, we can
find two different components c, c′ ∈ CC+(`) that can be connected by anm-
string. Since CC+(`) has at most 4 points, we may assume that for a sequence
of m that goes to +∞, the components c and c′ are the same. Choose an
m-string that connects c to c′, with a minimal number of elements. Then
the same ball Bk does not appear twice in the sequence (otherwise, drop all
the intermediate balls), and similarly B0 is the only ball that meets c and
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Bkmax
is the only Bk that meets c′. All the other Bk are thus centered at

points xk ∈ Xg(m), and so kmax 6 C2m + 1, by (13.24).

For 0 6 k 6 kmax−1, connect xk to xk+1 by a line segment. This gives a
curve Γm, that goes from c to c′. Since |xk+1 − xk| 6 2−m+3 because Bk+1
meets Bk, we get that length(Γm) 6 8(C + 2−m). Also, every point of Γm
lies within 2−m+3 of E0, because Bk meets E0.

We can parameterize Γm with a mapping zm : [0, 1]→ Γm, in such a way
that zm is 9C-Lipschitz; then we can extract a sequence for which the zm
converge to a limit z, and z([0, 1]) is a connected set in E0 that goes from c
to c′. This contradiction with the fact that c and c′ are different components
proves that our second case does not happen, and Lemma 13.3 follows. �

We may now return to the construction of a global projection p from the
various pi, i ∈ I1 and pc, c ∈ CC+. We now give a zone of influence to each
c ∈ CC+; for i ∈ I1, this was already done in (13.5).

So fix ` ∈ K ∩ L and c ∈ CC+(`). Set

T+
c =

{
x ∈ Dc ; dist(x, Tc) 6 3τ3

}
and Rc = T+

c ∪

 ⋃
i∈I(c)

Ri

. (13.28)

Here Ri is still defined by (13.5), and Dc is the disk D associated to the
` ∈ K ∩ L such that c ∈ CC+(`). We should be able to avoid confusion
between Ri, with i ∈ I and the larger Rc, c ∈ CC+. The definition may look
a little strange, but away from D, we are happy to keep

⋃
i∈I(c)Ri, and not

more (to avoid complications with the gluing), and in D it is better to add
a small neighborhood of Tc, because we want to cover a small neighborhood
of E ∩ S. Our domain of definition will be

R+ =
(⋃
i∈I1

Ri

)
∪

 ⋃
c∈CC+

Rc

 =
(⋃
i∈I

Ri

)
∪

 ⋃
c∈CC+

T+
c

 (13.29)

and we want to set

p(x) = pi(x) for i ∈ I1 and x ∈ Ri, (13.30)

and
p(x) = pc(x) for c ∈ CC+ and x ∈ Rc ⊂ D(c), (13.31)

where the inclusion is easy (compare (13.28) with the first line of Lemma13.2)
and implies that pc(x) is defined. We need to check that all this is compat-
ible, and produces a Lipschitz function. We will cut R+ into three regions
that overlap, and first check things on each one.
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We start with R+(1) =
⋃
i∈I Ri (where we also include I0). Let us first

check that
if i, j ∈ I are such that dist(Ri, Rj) 6 τ

10 ,

then Li and Lj have a common endpoint a∗. (13.32)

Suppose i 6= j and dist(Ri, Rj) 6 10−1τ . Then dist(Li,Lj) 6 τ by (13.5),
dist(Ci,Cj) 6 2τ by (6.44), and by (6.5) and (6.3) Ci meets Cj . This means
that they have a common endpoint, which we call a.

We can say a bit more. If i or j lies in I1, then dist(a,K ∩ L) > 10η(X)
by (4.1) and (4.3), and Proposition 6.5 says that Li and Lj have a common
endpoint a∗, with |a∗ − a| 6 10−9τ (see (6.43)). Notice that the case when
i, j lie in I0 and end at the same ` does not arise, because in this case

dist(Ri, Rj) > dist(Li,Lj)− 2 · 10−1τ > 8 · 10−1τ (13.33)

because the Lj do not get inside D, start from points c∗i and c∗j such that
|c∗i − c∗j | > τ , and go away in the direction opposite to `. For a proof,
use (6.46) and the fact that Ci and Cj make angles of at least 120◦. The case
when i, j ∈ I0 but come from different ` ∈ K ∩ L goes like when i or j lies
in I1; so (13.32) holds.

Because of (13.32) and our precautions (13.8) and below (13.12), not
only pi(x) = pj(x) when x ∈ Ri ∩ Rj , but the proof of (13.9) shows that
the mapping p on R+(1) that we construct in this way is locally Lipschitz,
in the sense that

p is 30-Lipschitz on R+(1) ∩B for every ball B of radius 10−2τ . (13.34)

Next we pick ` ∈ K ∩ L and consider

R+(2, `) = R+ ∩A, with A0 = B(`, 2τ) \B(`, 2τ/3). (13.35)

Let us apply Proposition 6.5, but with the smaller constant τ ′ = τ/3. We
get a nice description of E∩S in the complement of B(`, τ ′)∪B(−`, τ ′), but
we only care about what happens on the annulus A = B(`, 3τ) \ B(`, τ/3).
We get that

E ∩ S ∩A =
⋃

i∈I(`)

L′i ∩A, (13.36)

where I(`) is the set of concerned indices i, i.e., those for which ` ∈ Ci, and
the L′i are nice C1 curves that go from ∂B(`, 3τ) to ∂B(`, τ/3).

On A\B(`, τ), we have two representations of the same set E∩A\B(`, τ),
given by applications of Proposition 6.5 with different values of τ , but which
must coincide anyway. Thus the L′i coincide with the Li on A \B(`, τ). We
may assume that we chose the labels correctly, so that in fact

Li ∩A \B(`, τ) = L′i ∩A \B(`, τ) for i ∈ I(`). (13.37)
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Set γi = L′i ∩ A ∩D. By Proposition 6.5, γi is a C1 curve that starts at c∗i
(the only point of L′i ∩ ∂B(`, τ) = Li ∩ ∂B(`, τ)) and goes to ∂B(`, τ/3).
Since each L′i stays close to the corresponding Ci, we also have that

dist(γi, γj) > τ/3 for i, j ∈ I(`), i 6= j. (13.38)

For each i ∈ I(`), c∗i lies in some component c ∈ CC(`), which we call
c(i). Then

γi ∩D ⊂ c(i) ⊂ Tc(i) (13.39)
because L′i ∩ A ∩ D is a connected subset of E ∩ D that contains c∗i , and
by (13.18). Since the Tc are disjoint and contained in E, and the γi already
cover E ∩ A ∩D (by (13.36)), we see that the only Tc that meet A ∩D are
the Tc(i), and in addition, for each i

Tc(i) ∩A ∩D =
⋃

j∈I(`);c(j)=c(i)

γj . (13.40)

Recall from (13.28) that T+
c is just a 3τ3-neighborhood of Tc in D. Then

the only T+
c that meet A0 ∩D are the T+

c(i), and each T+
c(i) is just the 3τ3-

neighborhood in A0 ∩D of the
⋃
j∈I(`);c(j)=c(i) γj .

Now R+(2, `) is the union of at most three pieces R+(2, `, i), i ∈ I(`),
where each R+(2, `, i) is composed of Ri, plus the 3τ3-neighborhood in A0∩D
of γi. Each R+(2, `, i) is contained in a single Rc (and meets no other), hence
p is well defined on R+(2, `, i) by (13.31), and 10-Lipchitz by Lemma 13.2.
In addition

dist(R+(2, `, i), R+(2, `, j)) > τ/4 (13.41)
by (13.38), so p is also Lipschitz on their union R+(2, `).

We turn to our last sets

R+(3, `) = R+ ∩B(`, 4τ/5) ⊂
⋃

c∈CC+

T+
c (13.42)

by the second part of (13.29) and because the Ri, i ∈ I, never go that far
inside D (since the Li don’t meet B(`, τ)). By (13.20) and (13.28),

dist(T+
c , T

+
c′ ) > 4τ3 when c 6= c′, (13.43)

and p is well defined and 10-Lipchitz on each T+
c (by Lemma 13.2), so p is

well defined and Lipschitz on R+(3, `), and 10-Lipschitz on each open ball
of radius 2τ3.

At this point we have a coherent definition of p on R+, and proved Lips-
chitz bounds for p on the various pieces that compose R+. These pieces have
sufficient overlap, so we get the local Lipschitz property (13.3) required for
Proposition 13.1. Then p is automatically Lipschitz on R+, although perhaps
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only with the very bad norm τ−1
3 : if x, y ∈ R+, either |x− y| < 2τ1 and then

|p(x)− p(y)| 6 20|x− y|, or else |p(x)− p(y)| 6 2 6 τ−1
1 |x− y|.

Next we check that the domain E+ promised in Proposition 13.1 is con-
tained in R+. Let z ∈ E+ be given, and pick x ∈ E∩S such that |x−z| 6 τ3. If
x lies in a disk D` = S∩B(`, τ), then (13.19) says that it lies in some Tc, and
z ∈ T+

c by (13.28), unless by bad luck z falls outside of D`. But if this hap-
pens, dist(x, ∂B(`, τ)) 6 τ3, (13.36) and (13.37) say that dist(x,Li) 6 2τ3
for some i ∈ I(`), and then z ∈ Ri. In both cases, z ∈ R+ (see (13.29)). The
other case is when x lies in no D`. Then it lies very close to some Li (by
Proposition 6.5), and then z ∈ Ri ⊂ R+ by (13.5) and (13.29). So E+ ⊂ R+.

Next we check (13.2). Let z ∈ R+ be given. When z ∈ Ri for some i ∈ I1,
(13.2) follows from (13.30) and (13.7). Otherwise, z ∈ Rc for some c ∈ CC+,
and

|p(z)− z| = |pc(z)− z| 6 10 dist(z,Γc) (13.44)
by (13.31) and (13.12). Let ` be such that c ∈ CC+(`). If z ∈ T+

c , then
z ∈ D` (see (13.28)), and dist(z,Γc) 6 2τ because every Γc contains at least
a point in D`. In this case (13.2) follows from (13.44).

By (13.28), we are left with the case when z ∈ Ri for some i ∈ I(c), and
we still want to evaluate dist(z,Γc). Let ` be such that c ∈ CC+(`); notice
that in fact c ∈ CC(`); the special components c` that were artificially added
don’t come with a set I(c).

We shall now use the fact that for all the components c such that i ∈ I(c),
Γc contains a small Lipschitz graph Γ, over some geodesic ρ = ρ(a∗i , x), and
where the other endpoint x lies in D. This is why we did not remove Li in
Configuration H, for instance.

We want to see where Γ is localized. Recall that Γ was constructed by
applying Section 8 to a curve γ with the same endpoints. There are a few
ways in which γ was chosen, depending on the configuration, but in all the
cases γ was contained in Li∪D. In the algorithm of Section 8, Γ is obtained
from γ by replacing some of its sub-arcs with the geodesics with the same
endpoints; because of this,

Γ ⊂ Hull(γ) ⊂ Hull(Li ∪D), (13.45)

where the convex hulls Hull(γ) and Hull(Li ∪ D) are defined in terms of
geodesics in S. There is no ambiguity about geodesics, because we shall see
that Li∪D stays quite close to Ci, which is a geodesic of length at most π/2.
More precisely, (6.46) says that dist(x,Ci) 6 10−8τ for x ∈ Li, and since `
is an endpoint of Ci, we deduce from (13.45) that

dist(x,Ci) 6 2τ for x ∈ Γ. (13.46)
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Let us check that this implies that
dist(x,Γ) 6 5τ for x ∈ Ci. (13.47)

Since Γ starts from a∗i (very close to the endpoint ai of Ci, and ends in D,
we can assume that τ < |x− `| < |a∗i − `|. Since Γ is connected, we can find
y ∈ Γ such that |y − `| = |x − `|, and by (13.46) a point z ∈ Ci such that
|z − y| 6 2τ . Then

∣∣|z − `| − |x − `|∣∣ =
∣∣|z − `| − |y − `|∣∣ 6 2τ , and hence

|z − x| 6 3τ because x and z both lie on the geodesic Ci that starts from `.
Finally |y − x| 6 |y − z|+ |z − x| 6 5τ , as needed for (13.47).

We may now return to z ∈ Ri and chase points. By (13.5), there is a point
z1 ∈ Li such that |z1 − z| 6 10−1τ . By (6.46), we can find z2 ∈ Ci such that
|z2 − z1| 6 10−8τ . By (13.47), we can find z3 ∈ Γ such that |z3 − z2| 6 5τ .
Since Γ ⊂ Γc, we get that

dist(z,Γc) 6 dist(z,Γ) 6 |z − z3| 6 6τ, (13.48)
and (13.2) follows from (13.44) in this last case as well.

Finally we need to check (13.4). When ` ∈ c for some c ∈ CC(`), we
made sure to keep ` ∈ Γc. Then pc(`) = ` by (13.12), and (13.4) follows
from (13.31). Otherwise, we added a special component c` = H` to CC+(`),
and took pc`

(z) = ` for all z, in particular z = `. This completes our proof
of Proposition 13.1. �

14. Our first competitor and the contribution from the thin
gluing annulus

We now have a net γ∗ of curves in E ∩ S, another net Γ∗ of Lipschitz
graphs, and (by Proposition 13.1) a projection p from a neighborhood E+ of
E ∩S to the net Γ∗. We want to use these to construct a first competitor for
E. We use the following lemma to choose another very small number τ4 > 0.

Lemma 14.1. — Set
A(t) = B(0, 1) \B(0, 1− t) for 0 < t < 10−1. (14.1)

We can find τ4 > 0 such that
x

|x|
∈ E+(τ3) for x ∈ E ∩A(2τ4). (14.2)

Proof. — Here E+(τ3) is defined by (13.1), and τ3 was chosen in Propo-
sition 13.1. Of course we don’t get any uniform control on τ4; we did not
even get a uniform control on τ3.

The proof is easy. If we could not find τ4, we would be able to find a
sequence of points xk ∈ E ∩ A(2−k), that tends to a limit x∞, but so that
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xk

|xk| stays at distance at least τ3 from E ∩ S. This is impossible because
x∞ ∈ E ∩ S. �

Let τ4 satisfy the conclusion of the lemma, and take any σ ∈ (0, τ4); we
see σ as a small parameter that we may chose later.

Extend p so that it is homogeneous of degree 0. That is, set

p(x) = p (x/|x|) when x

|x|
∈ E+. (14.3)

Then, by (14.2), p is well defined (and Lipschitz with a bad norm) on E ∩
A(2τ4).

We are ready to define a new competitor for E, which we write as
F 0 = ϕ0(E), (14.4)

for some ϕ0 that will be defined soon. The main part of F 0 will be a subset
of the cone over Γ∗. We will not be finished yet, F 0 will need to be further
improved. First we set

ϕ0(x) = x for x ∈ E \B(0, 1). (14.5)
On the exterior part of B(0, 1), we use p to contract reasonably slowly on
Γ∗. That is, we set

ϕ0(x) = |x|+ σ − 1
σ

x+ 1− |x|
σ

p (x) for x ∈ E ∩A(σ). (14.6)

Notice that this makes sense because p(x) is well defined there, and also that
the two definitions yield ϕ0(x) = x on S. On the other sphere,

ϕ0(x) = p (x) ∈ Γ∗ ⊂ S for x ∈ E ∩ ∂B(0, 1− σ). (14.7)

Now we contract very brutally along the cone over Γ∗. Set

ϕ0(x) = |x|+ 2σ − 1
σ

p (x) for x ∈ E ∩A(2σ) \A(σ). (14.8)

Again this is continuous across ∂B(0, 1−σ), and ϕ0(x) = 0 on ∂B(0, 1−2σ).
Thus we can safely take

ϕ0(x) = 0 for x ∈ E ∩B(0, 1− 2σ). (14.9)
This gives a Lipschitz mapping ϕ0 defined on E; its Lipschitz constant de-
pends on σ, τ4, and τ3 and may be really huge, so we will be careful not
to use this directly in the estimates. Since we like to define competitors in
terms of deformations, we are also led to set

ϕ0
t (x) = (1− t)x+ tϕ0(x) for x ∈ E and t ∈ [0, 1], (14.10)

and check that
the ϕ0

t define an acceptable deformation for E in B(0, 1), (14.11)
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as in Definition 1.1. As often, (1.1) and (1.2) are trivial, (1.3) holds because
|p(x)| 6 1 and the unit ball is convex, (1.5) holds because ϕ0 is Lipschitz,
and the only interesting piece is the boundary condition (1.4).

Let x ∈ E ∩ L be given. If |x| > 1, ϕt(x) = x by (14.5) and (14.10), and
ϕ0
t (x) ∈ L trivially. If |x| < 1−2σ, ϕ0(x) = 0 and hence ϕ0

t (x) = (1−t)x ∈ L.
So let us assume that |x| > 1− 2σ > 1/2.

Set ` = x/|x| ∈ L. We claim that ` ∈ K too. Indeed, otherwise (4.1)
and (4.3) say that dist(`,K) > ηL(X) > 10η(X), but yet dist(x,X) 6 2ε
by (5.3), hence dist(`,X) 6 2|x|−1ε 6 5ε, a contradiction. So ` ∈ K ∩ L,
p(`) = ` by (13.4), and the various formulae yield ϕ0

t (x) ∈ L; (14.11) follows.

It is amusing that the very brutal part (14.8) works so well. We like it
because it allows us to concentrate on the set E ∩ A(2σ), and essentially
disregard any bad behavior that E may have in a smaller ball. Of course we
will still need to know that E is nice on the thin annulus A(σ), and we shall
get part of this with a maximal function argument.

The main part of F 0 ∩B(0, 1) is contained in

ΣF (Γ∗) =
{
tx ; t ∈ [0, 1] and x ∈ Γ∗

}
, (14.12)

the (truncated) cone over Γ∗. Indeed,

ϕ0(E ∩B(0, 1− σ))
= {0} ∪ ϕ0(E ∩B(0, 1− σ) \B(0, 1− 2σ)) ⊂ ΣF (Γ∗) (14.13)

by (14.9), because p(E ∩ A(2σ)) ⊂ p (E+) ⊂ Γ∗ (by Proposition 13.1), and
then by (14.8).

In the rest of this section, we control the remaining piece of ϕ0(E ∩ B),
which is the set

F (σ) = ϕ0(E ∩A(σ)). (14.14)
Once this is done, we shall still want to improve on the cone ΣF (Γ∗), and
construct other competitors. But we shall be able to use the next estimates
on F (σ) for those too.

We shall leave the dependence on σ explicit in estimates, because we shall
need to check that some of our estimates do not depend on σ, but we set
A = A(σ) to save some space. We want to estimate

M(σ) = H2(F (σ)). (14.15)

In next lemma we use some of the additional properties of our radius
r = 1 that we required in Section 5.
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Lemma 14.2. — If H1(E∩S) < +∞ and the assumption (5.8) holds for
r = 1, then

lim sup
σ→0

M(σ) 6 C
∫
E∩S

dist(x, p (x))dH1(x). (14.16)

Proof. — This lemma is essentially measure-theoretic; then we shall esti-
mate the right-hand side of (14.16), and this will use the construction of p.

Before we prove this, let us explain roughly why it may be true. We shall
use the area formula to estimate M(σ), but the point is that ϕ0(E ∩ A) is
like a curtain, composed from all the segments [x, p(x)]; thus (14.16) looks
a little like Fubini’s theorem.

The proof is not very complicated, but since it is also done in [10] (see
(9.46) there and its proof), we only give the great lines. First, we use the
rectifiability of E and the area theorem (Corollary 3.2.20 of [29]) to write

M(σ) 6
∫
E∩A

Jϕ0(x)dH2(x), (14.17)

where Jϕ0(x) is the Jacobian of the approximate differential Dϕ0(x) of ϕ0

along E, which is defined for H2-almost every x ∈ E. Then we estimate
the size of Dϕ0(x) on an orthonormal basis of (v, w) of the approximate
tangent plane to E at x. We choose (v, w) so that v is orthogonal to the
radial direction [0, x]; then (14.6) and our local Lipschitz estimate (13.3) for
p yield |Dϕ0(x) · v| 6 C (we may assume that |x| > 1/2 so that (14.3) is
tame, and in the direction of v the differential of the radial cut-off function
in (14.6) vanishes). In the direction w, we get the estimate

|Dϕ0(x) · w| 6 C + σ−1 cos θ(x)|p(x)− x|, (14.18)

where θ(x) is the angle of w with the radial direction, or equivalently
cos θ(x) = |〈w, x|x| 〉|. Then

Jϕ0(x) 6 |Dϕ0(x) · v| |Dϕ0(x) · w| 6 C + Cσ−1 cos θ(x)|p(x)− x|. (14.19)

Then we apply the coarea theorem (3.2.22 of [29]), to the mapping h defined
by h(x) = |x|, integrated against the continuous function x → |p(x) − x|,
and get that∫

E∩A
|p(x)− x|Jh(x)dH2(x)

=
∫
t∈(1−σ,1)

∫
E∩∂B(0,t)

|p(x)− x|dH1(x)dt, (14.20)
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with the one-dimensional jacobian Jh = |Dh(x) · w| = cos θ(x). Thus by
(14.17), (14.19) and (14.20),

M(σ)

6 C
∫
E∩A

[
1 + σ−1 cos θ(x)|p(x)− x|

]
dH2(x)

6 CH2(E ∩A) + Cσ−1
∫
t∈(1−σ,1)

∫
E∩∂B(0,t)

|p(x)− x|dH1(x)dt. (14.21)

Now we let σ tend to 0. Notice that H2(E∩S) = 0 because H1(E∩S) < +∞.
Next H2(E∩B(0, 1)\B(0, 1−σ)) tends to 0, because H2(E∩B(0, 1)) < +∞
and by the monotone convergence theorem (or the definition of a mea-
sure). Thus H2(E ∩ A(σ)) tends to 0. The other term in (14.21) tends to∫
E∩∂B(0,1) |p(x) − x|dH1(x), by our special assumption (5.8); (14.16) and
Lemma 14.2 follow. �

We now estimate the right-hand of (14.16), and proceed as in the end of
Section 9 in [10]. Notice that we are very happy that we have to estimate an
integral on E ∩ S (as opposed to an annulus), because this is precisely the
place that we control. We know from (13.2) that

dist(x, p (x)) 6 60τ for x ∈ E ∩ S, (14.22)

but there are lots of points of E ∩ S for which p(x) = x, and which we can
take out of the estimates. First we check that

p(x) = x for x ∈
⋃
i∈I1

Li. (14.23)

Indeed, x ∈ Ri (see the definition (13.5)), and p(x) = pi(x) = x by (13.30)
and (13.7). Next we claim that

p(x) = x for x ∈
⋃
c∈CC

(
γc ∩ Γc

)
. (14.24)

Recall that γc = γc ∪
(⋃

i∈I(c) Li
)
(we add the curves Li that touch the

points of c ∩ ∂D). The arcs Li above are contained in Rc, by (13.28), so
p(x) = pc(x) = x when x ∈ Li ∩ Γc, by (13.31) and (13.12).

We are left with x ∈ γc ∩ Γc. Let us recall why γc ⊂ c. In Sections 10–
12, when we constructed the nets Γ = Γc, we always started from a set
γ ⊂ E ∩D. This set was connected and contained at least one point of ∂D;
this is how we defined the different configurations. Then γ is contained in the
component c (often called Hi) that contains any point of γ ∩ ∂D. So γc ⊂ c.
In addition, c ⊂ Tc ⊂ T+

c ⊂ Rc by (13.18) and (13.28). Then p(x) = pc(x)
by (13.31), and since x ∈ Γc, (13.44) says that p(x) = x. So (14.24) holds.
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Thus, in the set

γ∗ =
(⋃
i∈I1

Li

)
∪

( ⋃
c∈CC

γc

)
, (14.25)

the only part that remains is
⋃
c∈CC [γc \Γc]. For the rest of E ∩ S, we don’t

try anything, and just keep the set E ∩ S \ γ∗.

Finally, it follows from (14.16) and (14.22) that

lim sup
σ→0

M(σ) 6 Cτ
∑
c∈CC

H1(γc \ Γc) + CτH1(E ∩ S \ γ∗). (14.26)

We are reasonably happy about this. We consider M(σ) as a loss in the
estimates, and we expect it to be compensated by larger wins. In this respect,
E ∩ S \ γ∗ is a part of E ∩ S that we just dropped to get γ∗, so we will save
much more than CτH1(E∩S\γ∗) by removing it from the picture (when we
construct cones), and similarly H1(γc \ Γc) is controlled by (10.7), and the
corresponding term of (14.26) will be compensated by a win of area when
we replace the cone ΣF over Γ∗ with a bunch of harmonic graphs.

15. A second competitor build with harmonic graphs

The competitor F 0 that we constructed in the previous section was just a
first attempt, which still looks a little like the cone over E ∩S. It is better in
some sense, because we got rid of E ∩ S \ γ∗, but the advantage of replacing
γ∗ with Γ∗ is not clear yet.

In this section we construct our first serious competitor, obtained from
F 0 by replacing parts of ΣF (Γ∗) by better surfaces constructed in Section 9.

Recall that Γ∗ is the union of the Lipschitz nets Γ that were constructed
in Sections 10–12. Since the construction was done by connected components
in configurations, our best description so far is that

Γ∗ =
(⋃
i∈I1

Γi

)
∪

( ⋃
c∈CC+

Γc

)
, (15.1)

where the notation is the same as in Section 13 (see below (13.9)), and where,
if we use Remark 6.3, we managed to take Γi = Li for i ∈ I1. But we could
also have kept things the way they were at the beginning, but replaced Li
by a small Lipschitz Γi with the same endpoints, obtained as in Section 8.

To save some space, we condense (15.1) into

Γ∗ =
⋃

c∈I1∪CC+

Γc. (15.2)
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Then the main part of F 0 ∩ B is the cone

ΣF (Γ∗) =
⋃

c∈I1∪CC+

ΣF (Γc), (15.3)

where ΣF is our standard notation for a cone. Thus, as in (14.12),
ΣF (Γc) =

{
tx ; t ∈ [0, 1] and x ∈ Γc

}
. (15.4)

Recall that the sets Γc are disjoint, except for common endpoints at ver-
tices a∗i .

Now we want a finer decomposition of Γ∗ into single Lipschitz curves,
which we shall write as

Γ∗ =
⋃
j∈J∗

Γj (15.5)

for some new set of indices J∗. Let us say how we do it, so as not to create
too much confusion. When i ∈ I1, we have a single curve Γi = Li; we keep
it as it is, just put the set of indices I1 in J∗ and keep the same curves with
the same names. We could also do this when c ∈ CC and Γc is composed of
a single curve, but let us not bother. Instead, for c ∈ CC, we observe that
Γc us composed of at most 4 small Lipschitz graphs Γj , as in the description
of Section 10, and write this as

Γc =
⋃

j∈J(c)

Γj . (15.6)

We also include (the elements of) J(c) in the index set J∗. Finally, there is
the case of the special components c` ∈ CC+\CC. If c` is such a component,
we took Γc = {`}, it is a single degenerate curve, and we also put it in our
bag J∗ with the same name. Thus our new set of indices is

J∗ = I1 ∪

( ⋃
c∈CC

J(c)
)
∪ (CC+ \ CC). (15.7)

But again, we just took all the nets we had, decomposed them into single
curves (some times, just points), and got a bunch of curves Γj . With our
new notation, (15.3) becomes

ΣF (Γ∗) =
⋃
j∈J∗

ΣF (Γj). (15.8)

Now we want to replace each ΣF (Γj), j ∈ I1 ∪
⋃
c∈CC J(c), by a better

surface ΣG(Γj), and this is the place where we shall use Section 9.

We start with the case when we change nothing. When j ∈ CC+ \ CC,
i.e., when j = c` comes from one of our special components, we just keep

ΣG(Γj) = ΣF (Γj) = [0, `], (15.9)
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where the second part comes from the fact that Γc`
= {`}.

But we do the modification for all the other Γj , including the Γj , j ∈ I1. In
this last case, Γj does not come from another curve through the construction
of Section 8, but (if ε in (5.3) is small enough), the proof of Proposition 6.5
shows that it still satisfies the assumptions of Section 9; see Remark 6.3.

The same remark applies to Γj when it comes from Configuration H; in
this case we decided in Section 10 to keep Γj = Lj (i.e., without applying
the construction of Section 8 to it), precisely because Proposition 6.5 tells
us that it is essentially useless.

So fix j ∈ J∗ \ (CC+ \CC); recall that Γj is a small Lipschitz graph over
some geodesic ρj , and by changing coordinates in Rn we can assume that

ρj =
{

(cos θ, sin θ, 0) ; θ ∈ [0, Tj ]
}
⊂ R2 × {0}. (15.10)

We do not have a lower bound on Tj = length(ρj) as in [10], but the con-
struction yields Tj 6 π

2 + 2τ , since length(Ci) 6 π
2 for i ∈ I, and this will be

enough.

It may be that Γj is only 103λ-Lipschitz (if it comes from Lemma 11.5),
but we shall assume that λ is so small that the results of Section 9 apply to
Γj anyway. Then we get a new surface ΣG(Γj), with the same boundary as
ΣF (Γj), and a few additional properties. Let us say more and recall a little
bit of Section 9 at the same time.

We started from the (infinite positive) cone over Γj , which is the graph
of some function F which is defined on a sector of R2 and naturally homoge-
neous of degree 1. In fact, we restricted F to the domain DT of (9.2), and ob-
tained a set Σ′F , which is the graph of F over DT and contains ΣF = ΣF (Γj).

Then we constructed a new function G on the same domain DT , which is
also null on the segments [0, a] and [0, b], where a and b denote the endpoints
of ρj . In addition, G = F on DT \B(0, 9/10) (see (9.13)), so that the graph
Σ′G coincides with Σ′F in a small neighborhood of ∂B. So, in some way, Σ′G
and Σ′F have the same boundary on B.

Then we set ΣG(Γj) = ΣG = Σ′G ∩B. Just like ΣF , ΣG is bounded by Γj
on ∂B, and by the two segments [0, a] and [0, b]. Let us say why it is a little
better than ΣF .

There is an additional condition (9.14), which implies that for some small
constant κ > 0,

ΣG(Γj) ∩B(0, κ) = ΣF (ρj) ∩B(0, κ), (15.11)
where as usual ΣF (ρj) is the cone over ρj ; we will use this later, but for this
section we do not care.
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Also, G is Cλ-Lipschitz (by (9.15)), so ΣG is not too wild, and the im-
portant new information is that ΣG has less area than ΣF , since (9.19) says
that
H2(ΣG(Γj)) 6 H2(ΣF (Γj))− 10−4[length(Γj)− length(ρj)]. (15.12)

Now we glue the ΣG(Γj) together, and get the set

ΣG(Γ∗) =
⋃
j∈J∗

ΣG(Γj). (15.13)

Our next task is to construct a competitor F 1 whose main piece is con-
tained in ΣG(Γ∗) rather than ΣF (Γ∗) (compare to (14.13)). For this the
simplest is to continue the deformation that led to F 0, i.e., deform ΣF (Γ∗)
into ΣG(Γ∗). We proceed piece by piece, and for each j ∈ J∗ find a mapping
ψj : ΣF (Γj)→ ΣG(Γj).

Fix j ∈ J∗. If Γj comes from one of our special components c`, then
ΣG(Γj) = ΣF (Γj) = [0, `] by (15.9), and we just take ψj(z) = z. So let us
assume that Γj is a real curve, either an Lj , j ∈ I1, or coming from the
construction of Section 8.

Choose as above coordinates in Rn so that ρj is, as in (15.10), an arc of
circle inside P = R2. Call π and π⊥ the orthogonal projections on P and its
orthogonal complement P⊥, and otherwise keep the same notation as above.
Recall that Σ′F is the graph of F : P → P⊥ over DT , and similarly with Σ′G
and G. We define ψj : Σ′F → Σ′G by

ψj(z) = π(z) +G(π(z)); (15.14)

in other words, we project along the direction of P⊥. We are only interested
in the restriction of ψi to ΣF (Γj) = ΣF = Σ′F ∩ B. Let us check that

ψj(z) = z for z ∈ ∂ΣF (Γj), (15.15)
where the boundary ∂ΣF (Γj) is composed of the two line segments [0, a] and
[0, b] that go from 0 to the endpoints of ρj , and Σ′F ∩∂B. For [0, a] and [0, b],
this is just because F = G = 0 on these two segments. For Σ′F ∩ ∂B, we can
even see that

ψj(z) = z for z ∈ ΣF (Γj) \B
(

0, 99
100

)
, (15.16)

because F = G outside of 9
10B (by (9.13)); of course we also use the fact

that ‖F‖∞ is small if λ is small enough, to make sure that the two graphs
Σ′F and Σ′G coincide outside of 99

100B.

So we have mappings ψj : ΣF (Γj)→ ΣG(Γj), and we put them together
to get a mapping ψ : ΣF (Γ∗)→ ΣG(Γ∗). Here we use the fact that the curves
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Γj only meet at their endpoints, and with large angles; the result is that the
ΣF (Γj) only meet along the segments that go from 0 to these endpoints, and
with the same angles. Since ψj(z) = z along these segments, we get that ψ
is well defined, and even Lipschitz (because each piece is Lipschitz). We do
not care if the Lipschitz constant is large (typically, if two of the Γj get close
to each other somewhere else than the common endpoints), so we shall not
try to check that this does not happen. Similarly, we shall not try to show
that the sets ΣG(Γj) are disjoint; they probably are, but our argument does
not need this. Finally let us observe that because of (15.16),

ψ(z) = z for z ∈ ΣF (Γ∗) \B
(

0, 99
100

)
. (15.17)

Our second competitor is F 1 = ϕ1(E), where ϕ1 is defined by
ϕ1(x) = ϕ0(x) for x ∈ E \B(0, 1− σ) (15.18)

and
ϕ1(x) = ψ ◦ ϕ0(x) for x ∈ E ∩B(0, 1− σ). (15.19)

This last part makes sense, because ϕ0(x) ∈ ΣF (Γ∗) for x ∈ E ∩B(0, 1− σ)
(by (14.13)).

Let us check that ϕ1 is Lipschitz on E. The only potential problem is
across ∂B(0, 1 − σ). Recall from (14.7) that ϕ0(x) ∈ Γ∗ ⊂ S for x ∈ E ∩
∂B(0, 1 − σ), so we can find σ′ > σ such that |ϕ0(x)| > 99

100 for ∈ E ∩
\B(0, 1− σ′). Then (15.19) actually yields

ϕ1(x) = ϕ0(x) for x ∈ E ∩B(0, 1− σ) \B(0, 1− σ′), (15.20)
so there is an annulus where the two definitions coincide, and ϕ1 is Lipschitz.
We can of course define a one parameter family {ϕ1

t}, 0 6 t 6 1, by linear
interpolation, as we did in (14.10), and, as before, the fact that
the ϕ1

t , 06 t6 1, define an acceptable deformation for E in B(0,1) (15.21)
will follow as soon as we check the boundary constraint, i.e., that

ϕ1
t (x) ∈ L for x ∈ E ∩ L. (15.22)

When |x| > 1− σ, ϕ1
t (x) = ϕ0

t (x), and we already checked this. When |x| <
1− 2σ, ϕ0(x) = 0 by (14.9), and then ϕ1(x) = 0 and ϕ1

t (x) = (1− t)x ∈ L.
We are left with the case when x ∈ A(2σ) \ A(σ). We already checked
below (14.11) that ` = x/|x| lies in K ∩ L. By (13.4), p(`) = `. By (14.8),
ϕ0(x) = α` for some α ∈ [0, 1].

Now there are two cases. If ` lies in one of our special components c = c`,
then ΣF (Γc) = ΣG(Γc) = [0, `], and we took ψj(z) = z on ΣF (Γc) (where j is
the element of J∗ that comes from c`). Otherwise, ` lies in one of the regular
components c ∈ CC(`). In this case, which comes from Configuration 1, 2+,
3 = 2 + 1, or 3+, we made sure to include ` in the Lipschitz net Γc, not
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only as a point, but as a vertex. This means that ` is actually an endpoint
of one of our curves Γj , j ∈ J∗, and by (15.15) ψ(z) = z on [0, `]. Thus
ϕ1(x) = ϕ0(x) = α` by (15.19), and ϕ1

t (x) ∈ L by the analogue of (14.10)
for the ϕ1

t ; (15.22) and (15.21) follow.

With the terminology of Definition 1.1, F 1 is a sliding competitor for E
in B (in fact our first interesting competitor), and since E is a sliding almost
minimal set, Definition 1.2 says that (1.8) holds for F 1. That is,

H2(E ∩ B) 6 Hd(F 1 ∩ B) + h(1) 6 Hd(F 1 ∩ B) + ε (15.23)

by (5.1) and (5.2). Now we cut F 1 ∩ B into pieces. First observe that

F 1 ∩ B = ϕ1(E ∩ B) (15.24)

because ϕ1(x) = ϕ0(x) = x for x ∈ E \ B (by (15.18) and (14.5)). We start
with an exterior part which is the same as before; that is,

ϕ1(E ∩ B \B(0, 1− σ)) = ϕ0(E ∩ B \B(0, 1− σ))
= ϕ0(E ∩A(σ)) = F (σ) (15.25)

by (15.18), (14.1) and (14.14). The size of this part will be estimated by
(14.15) and (14.26). We are left with

ϕ1(E ∩B(0, 1− σ)) ⊂ ψ(ϕ0(E ∩B(0, 1− σ)))
⊂ ψ(ΣF (Γ∗)) ⊂ ΣG(Γ∗), (15.26)

by (15.19), (14.13), and the definition of ψ. We shall thus need to estimate
H2(ΣG(Γ∗)). We start with an easier estimate for the cone ΣF (Γ∗). We claim
that

H2(ΣF (Γ∗)) =
∑
j∈J∗

H2(ΣF (Γj))

= 1
2
∑
j∈J∗

H1(Γj) = 1
2H

1(Γ∗) = 1
2

∑
c∈I1∪CC

H1(Γc). (15.27)

The first equality is true because the union is disjoint, except for segments
that come from the endpoints of the Γj . For the second part, the simplest
is to use the area formula. Let z : I → Γj denote a parameterization of
Γj by arclength. Then we have a parameterization of ΣF (Γj) by (t, x) ∈
[0, 1] × I → tz(x) ∈ ΣF (Γj) (compare with the definition (15.2) if needed).
The area formula says that

H2(ΣF (Γj)) =
∫

[0,1]×I
J(t, x)dxdt, (15.28)
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where J is the appropriate Jacobian. Since z takes values in the sphere, a
simple computation says that J(t, x) = t; then∫

[0,1]×I
J(t, x)dxdt =

∫
[0,1]×I

tdxdt = |I|2 = length(Γj)
2 , (15.29)

as needed. The third identity comes from (15.5) (the Γj are essentially dis-
joint), and in the last one we used (15.7), regrouped indices j ∈ J(c) for
c ∈ CC, and simply dropped the exceptional sets Γc`

coming from CC+\CC,
because they are singletons {`} with no H1-measure.

With the present notation, (10.6) says that H1(Γc) 6 H1(γc) for c ∈ CC;
since we do not want to forget too fast what we win, set

∆1 =
∑
i∈I1

[H1(Li)−H1(Γi)] +
∑
c∈CC

[H1(γc)−H1(Γc)], (15.30)

where we observe that all the terms are nonnegative. With the presentation
we chose (using Remark 6.3 and then taking Γi = Li for i ∈ I1), the first
terms disappear; if we had chosen the other option where Γi is obtained
from Li by the method of Section 8, they would exist but would not harm
(by (8.16)). Then∑

c∈I1∪CC
H1(Γc) =

∑
i∈I1

H1(Γi) +
∑
c∈CC

H1(Γc)

6
∑
i∈I1

H1(Li) +
∑
c∈CC

H1(γc)−∆1 = H1(γ∗)−∆1 (15.31)

because Γi = Li for i ∈ I1, by (14.25), and because the union in (14.25) is
essentially disjoint. Notice that γ∗ ⊂ E ∩S by construction, so we will really
save H1(E ∩ S \ γ∗) here. In the mean time, we return to (15.27) and get
that

H2(ΣF (Γ∗)) = 1
2

∑
c∈I1∪CC

H1(Γc) 6
1
2H

1(γ∗)− ∆1

2 . (15.32)

Next we record what we win in (15.12). Set

∆2 =
∑
j∈J∗

[length(Γj − length(ρj)] > 0; (15.33)

then by (15.12)

H2(ΣG(Γ∗))−H2(ΣF (Γ∗))

6
∑
j∈J∗

H2(ΣG(Γj))−H2(ΣF (Γj)) 6 −10−4∆2, (15.34)
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and
H2(E ∩ B) 6 H2(F 1 ∩ B) + h(1) 6 H2(F (σ)) +H2(ΣG(Γ∗)) + h(1)

6M(σ) + [H2(ΣG(Γ∗))−H2(ΣF (Γ∗))] + 1
2H

1(γ∗)− ∆1

2 + h(1)

6M(σ) + 1
2H

1(γ∗)− ∆1

2 − 10−4∆2 + h(1) (15.35)

by the first part of (15.23), (15.24), (15.25), and (15.26), then (14.15),
(15.32), and (15.34).

Next we estimate M(σ). Let ε′ be a very small number, to be chosen
later. We may now choose σ very small, such that

M(σ) 6 ε′ + lim sup
σ→0

M(σ)

6 ε′ + Cτ
∑
c∈CC

H1(γc \ Γc) + CτH1(E ∩ S \ γ∗), (15.36)

where the second estimate comes from (14.26). For each c ∈ CC, γc \ Γc
is contained in the symmetric difference ∆(γc,Γc) that shows up in (10.4).
Then by (10.7)∑

c∈CC
H1(γc \ Γc)

6
∑
c∈CC

H1(∆(γc,Γc))

6 C(λ)
∑
c∈CC

[H1(γc)−H1(Γc)] + [H1(Γc)−H1(ρc)] (15.37)

where the notation has been adapted, and ρc =
⋃
j∈J(c) ρj , by (10.5) and

the notation of (15.6); also see the definition of ρj above (15.10). In the first
sum we recognize ∆1 from (15.30), and for the second sum we notice that

H1(Γc)−H1(ρc) =
∑
j∈J(c)

[H1(Γj)−H1(ρj)] (15.38)

because Γc is the disjoint union of the Γj , j ∈ J(c) (see (15.6)), and the ρj
also are disjoint (again by construction, by the same proof). We recognize a
partial sum of ∆2; thus (15.36) and (15.37) yield

M(σ) 6 C ′(λ)τ(∆1 + ∆2) + CτH1(E ∩ S \ γ∗) + ε′. (15.39)
For the second term, we just observe that since γ∗ ⊂ E ∩ S,

H1(E ∩ S) = H1(γ∗) +H1(E ∩ S \ γ∗). (15.40)
Now comes the main relation between τ and λ: we require τ to be so small,
depending on λ, that C ′(λ)τ 6 10−5, and Cτ < 1/4 for the second term;
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this way both terms of (15.39) are eaten and (15.35) yields

H2(E ∩ B)

6
1
2H

1(γ∗) + CτH1(E ∩ S \ γ∗)− ∆1

2 − 10−5∆2 + h(1) + ε′

6
1
2H

1(E ∩ S)− 1
4H

1(E ∩ S \ γ∗)− ∆1

2 − 10−5∆2 + h(1) + ε′. (15.41)

We kept ε′ obediently, but since it can be taken arbitrarily small, we may
now drop it from (15.41). We want a more concise version of this, so let us
reorganize some of the terms. We start with
H1(γ∗)−H1(Γ∗)

=
∑
i∈I1

H1(Li) +
∑
c∈CC

H1(γc)−
∑

c∈I1∪CC
H1(Γc)

=
∑
i∈I1

[H1(Li)−H1(Γi)] +
∑
c∈CC

[H1(γc)−H1(Γc)] = ∆1 (15.42)

by (14.25), the end of (15.27), and (15.30). Next we introduce the geodesic
net

ρ∗ =
⋃
j∈J∗

ρj ; (15.43)

these curves are essentially disjoint (by the same proof as for the Γj); we
possibly included one or two degenerate curves {`}. In terms of estimates,
these degenerate curves will not count, so we may also have dropped them
too. But for the moment we keep them. Anyway,

H1(Γ∗)−H1(ρ∗) =
∑
j∈J∗

[H1(Γj)−H1(ρj)] = ∆2 (15.44)

by (15.5), because the Γj are also essentially disjoint, and by (15.33). By
(15.40) and this,

H1(E ∩ S)−H1(ρ∗) = H1(E ∩ S \ γ∗) +H1(γ∗)−H1(ρ∗)
= H1(E ∩ S \ γ∗) + ∆1 + ∆2 (15.45)

and (15.41) implies that

H2(E ∩ B) 6 1
2H

1(E ∩ S)− 10−5[H1(E ∩ S)−H1(ρ∗)] + h(1). (15.46)

We can be confident that this will lead to reasonable differential inequalities
in some cases, because it looks a lot like (9.69) in [10]. But we also expect,
because this is what happens in [10], that it will not be great in some other
cases, and this is the reason why we introduce a last competitor F 2 in the
next section, which uses the full length property. Modulo computations that
will be done below, the estimate above shows that the most delicate case is

– 146 –



A local description of 2-dimensional almost minimal sets bounded by a curve

probably when H1(E ∩ S)−H1(ρ∗) is very small, i.e., when E ∩ S actually
looks a lot like a collection of geodesics ρj . The point of the full length
property is somehow to take care of this situation, at least at the level of
definitions.

16. A third competitor that uses the full length

As was discussed near (9.70) in [10] (and we propose to trust this for the
moment), (15.46) will give good differential inequalities when

H1(ρ∗) 6 2H2(X ∩ B). (16.1)

Otherwise, we shall need to improve (15.46) a little bit, by a quantity which
is roughly proportional to

∆L =
[
H1(ρ∗)− 2H2(X ∩ B)

]
+ = max

(
0,H1(ρ∗)− 2H2(X ∩ B)

)
. (16.2)

In this section we assume that

X has the full length property, (16.3)

improve our second competitor in the small tip near the origin, and use this
show that under the assumptions of Section 5 and if ε in (5.3) is chosen small
enough,

H2(E∩B) 6 1
2H

1(E∩S)−10−5[H1(E∩S)−H1(ρ∗)]−C−1∆L+h(1). (16.4)

This will be our main comparison estimate, the one that leads to nice dif-
ferential inequalities. The constant C in (16.4) depends on X, in particular
through η(X) in (4.3) and the small constants η and c in the full length
property. Also, ε will need to be small, depending on our usual constants λ
and τ , but also the small η in the full length property.

Notice that when (16.1) holds, (16.4) is just the same as (15.46); thus we
can assume that (16.1) fails.

We start from (15.11), which says that for j ∈ J∗, ΣG(Γj) coincides with
the cone ΣF (ρj) in a small ball B(0, κ). We use (15.13) to take the union,
and get that

ΣG(Γ∗) ∩B(0, κ) = ΣF (ρ∗) ∩B(0, κ); (16.5)
we shall see later that (15.24)–(15.26) give the same description for F 1 ∩
B(0, κ). Here κ is the small absolute constant of (9.14).

We shall start our discussion by assuming that

ρ∗ = ϕ∗(K) for some ϕ ∈ Φ+
X(η), (16.6)
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for some η > 0 which is small enough for us to apply the full length prop-
erty (16.3). This is not always the case, but we shall first assume (16.6),
prove our main estimate, and then return and take care of the differences.
Set X1 = ϕ∗(X) (the full cone over ϕ∗(K)). Notice that since (16.6) implies
that

ΣF (ρ∗) = ϕ∗(X) ∩ B = X1 ∩ B, (16.7)
we can try to use competitors for X1 to improve ΣF (ρ∗), ΣG(Γ∗), and then
F 1. Observe also that ϕ is “injective”, i.e., ϕ ∈ Φ+,i

X (η), because the arcs ρj
that compose it (as in (15.43)) only meet at their common endpoints. The
quantity ∆(ϕ) of (4.15) is

∆(ϕ) = H1(ϕ∗(K))−H1(K) = H1(ρ∗)−H1(K)
= H1(ρ∗)− 2H1(X ∩ B) = ∆L > 0 (16.8)

by the proof of the second part of (15.27), the definition (16.2), and be-
cause (16.1) fails. So we are in postion to apply our assumption (16.3).
Definition 4.1 says that there is a sliding competitor X̃ for X1 in B(0, 1)
such that (4.16) holds. By Definition 1.1, there is a one parameter family of
functions gt : X1 → Rn (we change the name because ϕ is already used),
such that (1.1)–(1.5) hold with B = B(0, 1), and for which X̃ = g1(X1).

We want to use the gt to construct a competitor F 2 for F 1, and by the
same token for E. Initially, the mappings gt are only defined on X1, but we
can extend gt to X1 ∪ (Rn \B(0, 2)) by setting

gt(x) = x for x ∈ Rn \B(0, 2). (16.9)
This gives mappings gt that are still continuous, by (1.2), and such that
gt(x) ∈ L when x ∈ L (by (1.4)). Also, g1 is Lipschitz (by (1.5)). We set

ϕ2(x) = κ

2 g1(2κ−1ϕ1(x)) for x ∈ E. (16.10)

Let us check that ϕ2 is well defined. Notice that we can use (16.9) as soon
as |ϕ1(x)| > κ.

For x ∈ E\B, ϕ1(x) = ϕ0(x) = x by (15.18) and (14.5), we can use (16.9),
and we get that ϕ2(x) = x.

For x ∈ A(σ) = B \ B(0, 1 − σ), ϕ1(x) = ϕ0(x) by (15.18), and ϕ0(x) ∈
[x, p (x)] by (14.6). Since p(x) = p (x/|x|) by (14.3) and p(x/|x|) ∈ S ∩
B(x/|x|, 60τ) by (13.2), we see that |ϕ1(x)| > 1/2 > κ, and we can ap-
ply (16.9) again. In this case

ϕ2(x) = ϕ0(x) ∈ F (σ), (16.11)
by (14.14). We are left with the case when x ∈ E ∩B(0, 1− σ). In this case,
(15.26) says that ϕ1(x) ∈ ΣG(Γ∗). If |ϕ1(x)| > κ, we use (16.9) and we get
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that
ϕ2(x) = ϕ1(x) ∈ ΣG(Γ∗) \B(0, κ). (16.12)

Otherwise, if |ϕ1(x)| < κ,

ϕ1(x) ∈ ΣG(Γ∗) ∩B(0, κ) = ΣF (ρ∗) ∩B(0, κ) = X1 ∩B(0, κ) (16.13)

by (16.5) and (16.7),

2κ−1ϕ1(x) ∈ X1 ∩B(0, 2) (16.14)

because X1 is a cone, and this allows us to use the initial definition of g1
in (16.10). We get that

ϕ2(x) = κ

2 g1(2κ−1ϕ1(x)) ∈ κ

2 g1(X1 ∩B(0, 2)). (16.15)

So ϕ2 is well defined.

The fact that ϕ2 is Lipschitz comes directly from the definitions (in par-
ticular, the fact that the extended g1 is Lipschitz); it is easy to find a one-
parameter family {ϕ2

t} that has ϕ2 as its endpoint, and as before the sim-
plest is to use a formula like (14.10) and the convexity of B, the boundary
property (1.4) holds because g1(L) ⊂ L (and L is convex), as usual, so
F 2 = ϕ2(E) is a sliding competitor for E in B. Thus Definition 1.2 yields

H2(E ∩ B) 6 H2(F 2 ∩ B) + h(1) (16.16)

(as in (15.23)). Now

F 2 ∩ B ⊂ F (σ) ∪
[
ΣG(Γ∗) \B(0, κ)

]
∪
[κ

2 g1(X1 ∩B(0, 2))
]

(16.17)

by the discussion above and (16.11)–(16.13). We cut the last set in two. If
z ∈ X1 ∩ B(0, 2) \ B, then g1(z) = z by (1.2) for g1 (i.e., the fact that X̃ is
a competitor for X1 in B); then

κ

2 g1(z) = κz

2
∈ X1 ∩B(0, κ) \B(0, κ/2) = ΣG(Γ∗) ∩B(0, κ) \B(0, κ/2) (16.18)

by (16.13). If instead z ∈ X1 ∩ B, then
κ

2 g1(z) ∈ κ

2 g1(X1 ∩ B) = κ

2 X̃ ∩ B (16.19)

because g1(z) = z for z ∈ X1 \ B and g1(X1 ∩ B) ⊂ B by (1.2) and (1.3).
Thus (16.17) yields

F 2 ∩B ⊂ F (σ) ∪
[
ΣG(Γ∗) \B(0, κ/2)

]
∪ κ2 X̃ ∩ B (16.20)
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and
H2(F 2 ∩B)

6 H2(F (σ)) +H2(ΣG(Γ∗))−H2(ΣG(Γ∗) ∩B(0, κ/2)) +H2
(κ

2 X̃ ∩ B
)

6 H2(F (σ)) +H2(ΣG(Γ∗))−H2(X1 ∩B(0, κ/2)) +H2
(κ

2 X̃ ∩ B
)

6 H2(F (σ)) +H2(ΣG(Γ∗)) + κ2

4 [−H2(X1 ∩ B) +H2(X̃ ∩ B)]

6 H2(F (σ)) +H2(ΣG(Γ∗))− cκ2∆(ϕ)
4 (16.21)

by (16.13) and (4.16). This is the same estimate as we had for F 1, at the
end of the first line of (15.35), except that we saved an extra cκ2∆(ϕ)/4.
Then we continue the computations exactly as in Section 15, and get that

H2(E∩B) 6 1
2H

1(E∩S)−10−5[H1(E∩S)−H1(ρ∗)]− cκ
2∆L

4 +h(1) (16.22)

instead of (15.46), and where ∆L is given by (16.2). This proves the desired
estimate (16.4), with C−1 = cκ2/4, but only in the case when (16.6) holds.

Let us now discuss the reasons why (16.6) may fail, and what to do then.
The problem is with some of the configurations of Section 7, which may not
always produce nets ρj that follow the description of Section 3.

First assume that for some ` ∈ K ∩ L, Configuration H shows up in our
construction of Γ∗ near `. We intend to show that we do not even need the
full length condition to find better competitors for X1 and E, because we
can contract a hanging curve in ρ∗.

Recall that when E ∩ S contains a hanging curve that starts from c∗i ,
we kept the corresponding curve Li both in γc and Γc, where c ∈ CC is
the component that contains c∗i . The geodesic ρi = ρ(a∗i , c∗i ) with the same
endpoints as Γc is contained in ρ∗. Let us identify i with the only index
j ∈ J(c), so that ρi shows up with the same name in the union of (15.43).
Notice that its endpoint c∗i is still hanging in ρ∗, which means that it does
not lie in any other ρj , j ∈ J∗ \{i}. Set ρ′i = ρi \{ai}; then ρ′i does not meet
any other ρj , and this means that the mapping f : ρ∗ → ρ∗ \ ρ′j defined by
f(z) = z for z ∈ ρ∗ \ ρ′j and f(z) = a∗i for z ∈ ρ∗i is Lipschitz (recall that the
ρj that meet ρi at a∗i make large angles with ρi there).

Let us use f to define a nice competitor for the cone over ρ∗. Set X2 ={
tz ; z ∈ ρ∗ and t > 0

}
and define g : X2 ∪ (Rn \ B)→ Rn by
g(x) = x for x ∈ Rn \ B, (16.23)

g(tz) = 2(1− t)tf(z) + (2t− 1)tz for z ∈ ρ∗ and 1
2 6 t 6 1, (16.24)
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where we choose the coefficients so that g(tz) = tz = z when t = 1, and
g(tz) = tf(z) when t = 1/2, and finally

g(tz) = tf(z) for z ∈ ρ∗ and t 6 1
2 . (16.25)

Let X1 be the (full positive) cone over ρ∗ (just as in (16.7)), and set
X̃ = g(X1). Let us check that X̃ is a sliding competitor for X1 in B. Of
course we use g, and the one parameter family naturally associated with
it, defined by gs(x) = sg(x) + (1 − s)x; the usual simple estimates (1.1),
(1.2), and (1.6) hold because g is Lipschitz, (1.3) holds because B is convex,
and (1.4) holds because the only place where g(x) 6= x is the cone over
ρ′j , which does not meet L because ρj starts at c∗j ∈ ∂D, and goes in the
direction of a∗i which is away from `. Next X̃ = g(X1) is contained in X1,
but inside B(0, 1/2) the cone over ρ′j is missing. Thus

H2(X̃ ∩ B) 6 H2(X1 ∩ B)−H2(ΣF (ρ′j) ∩B(0, 1/2))

= H2(X1 ∩ B)− 1
8H

1(ρ′j) 6 H2(X1 ∩ B)− η(X) (16.26)

because distS(c∗j , a∗j ) > 8η(X) by (4.2), (4.3), (6.3), and (6.43). This is even
better than the information we obtained from (16.6) and (16.3): the proof
of (16.22) yields

H2(E∩B) 6 1
2H

1(E∩S)−10−5[H1(E∩S)−H1(ρ∗)]−η(X)+h(1), (16.27)

without even having to assume that (16.1) fails. Notice that the constant
∆L in (16.2) is bounded by H1(ρ∗) 6 2H1(K) (if η is small enough in the
definition of full length), so (16.27) is stronger than (16.4), and we are happy
in this case.

A second case when (16.6) fails is when we encounter Configuration 3 =
2+1 in the construction of Sections 10–12. Recall that in this case we chose a
center x0, in fact x0 = c∗1 because this was simpler, then the corresponding Γ
was composed of three Lipschitz curves, one leaving from ` and two leaving
from x0 = c∗1. At the end of the game, near `, ρ∗ is composed of three
geodesics ρ(c∗1, a∗1), ρ(c∗1, a∗2), and ρ(`, a∗3). More precisely, we claim that
ρ∗ ∩B(`, 9η(X)) = [ρ(c∗1, a∗1) ∪ ρ(c∗1, a∗2) ∪ ρ(`, a∗3)] ∩B(`, 9η(X)). (16.28)

Indeed, all the other ρj , j ∈ J∗ such that meet B(`, 9η(X)) have to come
from curves Lj , j ∈ I1 (the other option, that they would come from curves
that come from −D, is impossible because our curves are not too long). But
in this case (6.43) says that the two endpoints of Lj lie quite close to Cj , so
does the geodesic ρj with the same endpoints, and (16.23) follows from the
fact that dist(Ci, `) > 10η(X). This last fact is true, by (2.5) and (4.3), or
the description of the counterexamples that follows (2.5), plus the fact that
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the diameter of any exceptional arc Ck for (2.4) (so, that Ck ends at ` or −`)
is controlled by (4.2).

In this case, we can find a sliding competitor X̃ forX1 in B, a little bit like
the one given by g in (16.23)–(16.24), except that (instead of just removing
it progressively as above) we deform the union ρ(c∗1, a∗1) ∪ ρ(c∗1, a∗2) into a
shorter arc with the same endpoints, such as the union ρ(x1, a

∗
1)∪ ρ(x1, a

∗
2),

for some x1 that is a little closer to a∗1 and a∗2. The reason why we can easily
find x1 is that, since the three Ci, 1 6 i 6 3, make 120◦ angles at `, the
geodesics ρ1 and ρ2 make an angle smaller than 130◦ at c∗1. Notice also that
ρ(x1, a

∗
1) ∪ ρ(x1, a

∗
2) does not meet ρ(`, a∗3) either, which is comforting even

though it is not needed.

Now we claim that because of this we can find a sliding competitor X̃ for
X1 in B, such that

H2(X̃ ∩B) 6 H2(X1 ∩B)− C−1η(X), (16.29)

where C is a geometric constant; the verification is rather easy (but a little
long), and we skip it. The interested reader may find more or less the same
argument in [10], and slightly more elaborate versions, with three branches
instead of two, in Section 27, starting below (27.5).

Now (16.29) is nearly as good as (16.26); so, when Configuration 3 = 2+1
shows up in the construction, we can still prove that

H2(E ∩ B)

6
1
2H

1(E ∩ S)− 10−5[H1(E ∩ S)−H1(ρ∗)]− C−1η(X) + h(1), (16.30)

still regardless of whether (16.1) holds or not. As before, this estimate is
better than (16.4) because ∆L 6 C.

Now let us assume that Configurations H and 3 = 2+1 do not occur. We
have a last case where (16.6) may fail. Recall that when some ` ∈ V0 does
not lie in the net of curves that we constructed, we added an element c` to
CC(`), to get the extended CC+(`), and we also added the point ` to ρ∗.
Denote by V ′0 the set of (at most two) points ` that we added this way, by
L′ the (full) positive cone over V ′0 , and also set ρ′ = ρ∗ \ L′. Finally denote
by X ′1 the (full) positive cone over ρ′.

First observe that ρ′ satisfies (16.6) (if ε is small enough, as before); this
is the reason why we added the free option in the definition of Φ+

X(η) in
Section 3. So we can apply the full length condition, and we get a sliding
competitor X̃ ′ for X ′1 in the ball B. Let {g′t} denote the associated one
parameter family of mappings. The g′t are defined on X ′1, and we want an
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extension of g′1 to the full X1 = X ′1 ∪ L′. (As was noticed before, we only
need g1 here, we always compute the one parameter extensions at the end.)

Set a = g1(0), it is not clear that a = 0, but at least a ∈ L ∩ B, by (1.3)
and (1.4). Extend g1 to L′, so that it is Lipschitz on L′, with g1(0) = a,
g1(x) = x for x ∈ L′ \ B, and g1(L′ ∩ B) ⊂ L′ ∩ B. This gives a mapping g1,
now defined on X1, and we want to check that it is Lipschitz.

Clearly it is enough to control |g′1(x) − g1(y)| when x ∈ X ′1 and y ∈ L′.
Write x = tz, with t > 0 and z ∈ ρ′; by construction dist(z, L′) > α for some
(possibly very small) α > 0 that depends on ρ∗ and L′; then |x − y| > αt.
If |y| 6 2t, we say that |g′1(x) − g1(y)| 6 |g′1(x) − g1(0)| + |g1(0) − g1(y)| 6
C1|x|+C2|y| 6 (C1 + 2C2)t 6 (C1 + 2C2)α−1|x−y|, which may be very bad
but is enough. Otherwise, |x−y| > |y|/2 and we just need to change the end
of the estimate.

So g1 is Lipschitz, g1(L ∩X1) ⊂ L by construction, and we can use the
same linear interpolation trick as in (14.10) to construct a one parameter
family of mappings that shows that X̃ = g1(X1) is a sliding competitor for
X1 in B. Now H2(L′) = 0, so H2(X1 ∩B) = H2(X ′1 ∩B) and (when we take
the Lipschitz images by g1) H2(X̃ ∩ B) = H2(X̃ ′ ∩ B). In other words, we
still have (4.16) for X1 and X̃ ′, and we may conclude as in the main case.

This completes our verification of (16.4).

We end this section with a small cosmetic modification of (16.4). Set

α = α(X) = min(10−5, C−1), (16.31)

where C is as in (16.4), and observe that in (16.4) the two main correction
terms are nonpositive. That is, ∆L > 0 by (16.2), and H1(E ∩ S) > H1(ρ∗)
by (15.45) and earlier parts of the proof. Then (16.4) implies that

H2(E ∩ B)

6
1
2H

1(E ∩ S)− α[H1(E ∩ S)−H1(ρ∗)]− α∆L + h(1)

6
1
2H

1(E ∩ S)− α[H1(E ∩ S)−H1(ρ∗)]− α[H1(ρ∗)− 2H2(X ∩ B)] + h(1)

= 1
2H

1(E ∩ S)− α[H1(E ∩ S)− 2H2(X ∩ B)] + h(1) (16.32)

by (16.2).
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17. Density excess and a differential inequality

Our next goal is to transform our main estimate (16.4) into a differential
inequality, and then we will integrate it on intervals to get decay estimates
for a density excess f(r).

In this section we fix an open set U of Rn that contains the origin and a
line L through the origin, and we consider a reduced sliding almost minimal
set E of dimension 2 in U , with sliding boundary L. We shall restrict to radii
r ∈ (0, r0), where r0 is so small that

B(0, 2r0) ⊂ U. (17.1)

As in Section 5, we shall assume that the gauge function h (in the definition
of sliding minimal sets) is such that

h(s) 6 Chsβ for 0 < s < 2r0 (17.2)

for some constants Ch > 0 and β > 0.

We shall also give ourselves a fixed number θ0 > 0 and consider the
density θ and the density excess f defined on (0, 2r0) by

θ(r) = r−2H2(E ∩B(0, r)) and f(r) = θ(r)− θ0. (17.3)

In practice, we will take for θ0 the density of E at the origin, i.e.,

θ0 = lim
r→0

θ(r) (17.4)

(which exists, as mentioned near (1.19)), but let us not require this for the
moment. We start with differentiability properties that don’t use much.

Lemma 17.1. — Let E satisfy the assumptions above. Set

v(r) = H2(E ∩B(0, r)) for 0 < r < 2r0. (17.5)

Then v is differentiable almost everywhere on (0, 2r0). Also, if b is a C1

function on (0, 2r0), the product bv is also differentiable almost everywhere
on (0, 2r0), with (bv)′ = bv′ + b′v almost everywhere. In addition,

(bv)(r2) > (bv)(r1) +
∫ r2

r1

(bv)′(r)dr for 0 < r1 6 r2 < r0. (17.6)

Proof. — The simplest is to refer to Lemma 5.1 in [10], but anyway this
is not hard: v is nondecreasing, so it is differentiable almost everywhere; it
also has a distribution derivative µ, and v′dx 6 dµ. This proves (17.6) for
b = 1. For general b, the differentiability of the product is easy to prove
by hand, and (17.6) is proved with a soft integration by parts (i.e., apply
Fubini’s theorem to the right integral). �
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Lemma 17.1 shows that θ and f in (17.3) are differentiable almost-
everywhere on (0, 2r0); next we want to use the previous sections to derive
differential inequalities for f , and after this we’ll get some decay for f .

Before we state our main differential inequality, we introduce some nota-
tion concerning minimal cones and the full length condition. We work with
n and L fixed, as above. Denote by MC(L) the set of minimal cones in Rn
with sliding boundary L (as above (2.1)). To each cone X ∈ MC(L), we
associate a standard decomposition as in Section 3, and then a geometric
constant η(X) as in (4.3). It is fairly easy to see that when η(X) is fairly
small, it does not depend on our choice of standard decomposition, but it
would not matter if it did.

Next denote by FL(L) the set of cones X ∈MC(L) that also satisfy the
full length property. To X ∈ FL(L) we also associate as in Definition 4.1 two
small constants η > 0 and c > 0, which we call the full length constants forX.
For each choice of positive constants cfl, ηfl, and ηg, with ηfl < ηg < 10−2,
say, we shall denote by FL(L, cfl, ηfl, ηg) the set of cones X ∈ FL(L), which
admit a geometric constant η(X) > ηg and full length constants c > cfl and
η > ηfl. We also associate to this choice a small number ε(cfl, ηfl, ηg), which
we choose so that the construction and results of Sections 5–16 are valid as
soon as (5.1)–(5.8) are satisfied with ε 6 ε(cfl, ηfl, ηg), and the constant
α(cfl, ηfl, ηg) that we get in (16.32) when this happens.

The new assumptions for the next proposition are that for almost each
radius r ∈ (0, r0), we can find some constants cfl(r), ηfl(r), and ηg(r),
and a minimal cone X(r) ∈ FL(L, cfl(r), ηfl(r), ηg(r)), with the following
properties. First

d0,2r(E,X(r)) 6 ε(cfl(r), ηfl(r), ηg(r)) (17.7)
(a local Hausdorff distance, as in (1.14)), where ε(cfl(r), ηfl(r), ηg(r)) is the
small constant that we get from the previous sections. We also require that

Chr
β
0 6 ε(cfl(r), ηfl(r), ηg(r)). (17.8)

As the reader may have noticed, we are just copying the assumptions of
Section 5. Our result will be better if we have a good control on the density

θ(X(r)) = H2(X(r) ∩B(0, 1)) (17.9)
of the minimal cone X(r); for the moment let us just assume that we have
a number q(r) > 0 such that

θ(X(r)) 6 θ0 + q(r) for 0 < r < r0. (17.10)
In fact, for our simple applications, we will simply have θ(X(r)) = θ0 and
q(r) = 0. We do not need to assume that q is small, but Proposition 17.2
below will be hard to apply otherwise.
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It is important to let the minimal coneX(r) depend on r, even in the good
cases where we take θ0 = limr→0 θ(r) as in (17.4) and require θ(X(r)) = θ0.
The point is that the X(r) could be various blow-up limits of E at 0; we
do not want to assume that they are all the same, we want to get this as a
conclusion.

Similarly, it would be tempting to require that all the X(r) lie in a same
FL(L, cfl, ηfl, ηg), but we may have more trouble finding the cones X(r). We
find it more flexible to allow some cones X(r) to have different geometric
constants η(X(r)), for instance. We shall see in the next section how to
choose the X(r) in some simple cases.

Proposition 17.2. — Let E satisfy the assumptions above (that is,
(17.1), (17.2), (17.7), (17.8), and (17.10). Then

rf ′(r) > 4α
(1− 2α)f(r)− 3(h(r) + 2αq(r))

for almost every r ∈ (0, r0), (17.11)

where α = α(cfl, ηfl, ηg) is the small constant that is associated to cfl(r),
ηfl(r), and ηg(r) as in (16.31).

Proof. — It turns out that we already did the hard work; the proof will
be derived softly from the previous sections. The first thing we have to do is
check that the assumptions of Section 5 are satisfied (now, without the renor-
malization r = 1) for almost every r ∈ r0. The three first assumptions (5.1)–
(5.3) were just copied above. Next, (5.4), the fact that H1(E ∩ ∂B(0, r)) <
+∞ is true almost-everywhere, holds because H2(E ∩ B(0, s)) < +∞ for
0 < s < r0. Since E is rectifiable, we can deduce this from the coarea for-
mula, but in fact the estimate that we need here is just is the easy part,
which can be obtained directly with a covering lemma.

We said earlier that (5.7) is just requiring that the one-sided Hardy–
Littlewood maximal function of the measure µπ of (5.5) is finite at the point
r, and since µπ is a finite measure, the fact that this is true almost everywhere
(and even with weak integral estimates on C) is a direct consequence of the
weak L1 Hardy–Littlewood estimate; see the first pages of [46].

We are left with (5.8), which requires maximal function estimates like
(5.7), but also some manipulation and a density argument; fortunately the
proof is done in Lemma 4.12 of [10], and applies here.

So we can use the estimates of the previous sections, and (16.32) holds
for almost every r ∈ (0, r0). Written with the variable r, the correct ho-
mogeneity, the notation Sr = ∂B(0, r), and with α = α(cfl, ηfl, ηg), it says
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that

rθ(r) := r−1H2(E ∩B(0, r)) 6 r−1H2(E ∩B(0, r))

6
1
2H

1(E ∩ Sr)− α[H1(E ∩ Sr)− 2rH2(X(r) ∩B(0, 1))] + rh(r)

= 1
2H

1(E ∩ Sr)− α[H1(E ∩ Sr)− 2rθ(X(r))] + rh(r)

= 1
2H

1(E ∩ Sr)− α[H1(E ∩ Sr)− 2rθ0] + 2αr[θ(X(r))− θ0] + rh(r)

6
1
2H

1(E ∩ Sr)− α[H1(E ∩ Sr)− 2rθ0] + r(2αq(r) + h(r)) (17.12)

by (17.9) and (17.10). Next write H1(E ∩ Sr) = 2rx(r) for the duration of
the computation. We claim that (with v as in (17.5))

v′(r) > H1(E ∩ Sr) = 2rx(r) (17.13)

almost everywhere on (0, r0); for a rapid proof with heavy material, apply
the co-area formula to E and the function x→ |x|; for a slow one, see (5.8)
in [10]. Recall that since f(r) = r−2v(r) − θ0 by (17.3), Lemma 17.1 says
that f also is differentiable almost everywhere, with

rf ′(r) = r−1v′(r)− 2r−2v(r) > 2x(r)− 2r−2v(r) (17.14)

by (17.13). Recall that by (17.12),

r−1v(r) = rθ(r) 6 rx(r)− α[2rx(r)− 2rθ0] + r(2αq(r) + h(r)). (17.15)

That is,

rx(r)(1− 2α) > r−1v(r)− 2αrθ0 − r(2αq(r) + h(r)) (17.16)

or equivalently

x(r) > v(r)
(1− 2α)r2 −

2αθ0

1− 2α −
2αq(r) + h(r)

1− 2α . (17.17)

Then we return to (17.14), replace, and get that

rf ′(r) > 2x(r)− 2r−2v(r)

> −2r−2v(r) + 2v(r)
(1− 2α)r2 −

4αθ0

1− 2α −
2(2αq(r) + h(r))

1− 2α

>
4αv(r)

(1− 2α)r2 −
4αθ0

1− 2α −
2(2αq(r) + h(r))

1− 2α

= 4αθ(r)
(1− 2α) −

4αθ0

1− 2α −
2(2αq(r) + h(r))

1− 2α

>
4α

(1− 2α) f(r)− 3(2αq(r) + h(r)) (17.18)
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by (17.3) and because α is small (see (16.31)) and q(r) > 0. This proves
(17.11); the proposition follows. �

We now make some additional comments on Proposition 17.2 and then
show how it may imply decay estimates; the true examples are in the next
sections.

We decided not to require that θ0 is given by (17.4), or that the cones
X(r) have a density equal to θ0, but this will be our main example.

The proposition is also valid on an interval. That is, if E is a reduced slid-
ing almost minimal set (relative to L) in a domain U that contains B(0, 2r0),
if (17.2) holds, and if the assumptions (17.7)–(17.10) hold on an interval
(r00, r0), then (17.11) holds on (r00, r0) too. The proof is the same.

The differential inequality (17.11) is not hard to integrate. Let E and r0
be as in Proposition 17.2, and suppose in addition that the constants cfl(r),
ηfl(r), and ηg(r) are such that

α(cfl(r), ηfl(r), ηg(r)) > α for almost every 0 < r < r0 (17.19)

for some α > 0 that does not depend on r. Then set

a = 4α
1− 2α (17.20)

and consider the auxiliary function g(r) = r−af(r); (17.11) says that

g′(r) = −ar−a−1f(r) + r−af ′(r) > −3r−a−1(h(r) + 2αq(r)), (17.21)

which we interpret as saying that g is nearly nondecreasing. And indeed,
Lemma 17.1 says that for 0 < r1 6 r2 < r0,

g(r2) > g(r1)− 3
∫ r2

r1

(h(r) + 2αq(r)) dr
ra+1 (17.22)

or equivalently (since we are more often interested in letting r1 tend to 0),

f(r1) = ra1g(r1) 6
(
r1

r2

)a
f(r2) + 3ra1

∫ r2

r1

(h(r) + 2αq(r)) dr
ra+1 . (17.23)

If the right-hand side cooperates, this says that f(r1) decays at some speed
when r1 tends to 0. For instance, if

h(r) + q(r) 6 Crb for some b < a (17.24)

(to simplify the computation), we get that near 0,

f(r1) 6
(
r1

r2

)a
f(r2) + Crb1 (17.25)

with a constant C that depends on a and b, but not on r2.
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This will be good when we get it, and we will see examples in the next
section. Then we will not be finished, because it will be much better to show
that some significant geometric quantities, rather than f alone, decay near
the origin. This will be the object of Part III (i.e., Sections 19–22).

18. Compactness, blow-up limits, and decay for f

In this section we fix the dimension n, the line L through the origin, a
sliding almost minimal set E that contains 0, and we use the compactness of
the set MC(L) of sliding minimal cones (with respect to L) to prove that if
in addition to the usual assumptions, all the blow-up limits of E at 0 satisfy
the full length property, then the assumptions of Section 17 are satisfied for
r0 small. See Proposition 18.1 for the ensuing statement.

So we fix n, L, a radius r1 > 0, and a closed set E in B(0, r1), and assume
that

E is a reduced sliding almost minimal set in B(0, r1),
with boundary condition coming from L,

(18.1)

with a gauge function h such that
h(r) 6 Chrβ for 0 < r 6 r1 (18.2)

for some constants Ch > 0, β > 0. Also we assume that
0 ∈ E ∩ L. (18.3)

Let us say a few words about MC(L) before we discuss the blow-up
limits of E at 0, and then state the main result of this section. So far we
have a definition of local Hausdorff convergence on closed subsets of Rn,
which is defined with the local Hausdorff distances dx,r of (1.14), and for
which {Xk} converges to X if limk→+∞ dx,r(Xk, X) = 0 for every choice of
x ∈ Rn and r > 0, or equivalently for x = 0 and every r > 0. But since
MC(L) is composed of cones, d0,1(X,X ′) = d0,r(X,X ′) for X,X ′ ∈MC(L)
and r > 0, and it is enough to use the “distance function”

d0,1(X,X ′) = sup
{

dist(x,X ′) ; x ∈ X ∩B(0, 1)}
+ sup

{
dist(x′, X) ; x′ ∈ X ′ ∩B(0, 1)}, (18.4)

for X,X ′ ∈ MC(L). It is easy to see that d0,1(X,X ′) is also equivalent to
the usual Hausdorff distance between K = X∩S and K ′ = X ′∩S, defined by

dcH(X,X ′) := dH(K,K ′)
= sup

{
dist(x,K ′) ; x ∈ K}+ sup

{
dist(x′,K ′) ; x′ ∈ K ′}. (18.5)

The small advantage of this is that it is well known that dcH is a distance
(i.e., in particular the triangular inequality holds with the constant 1) on
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the set of closed cones, and that some simple facts are very well known in
this context. We shall use the fact that, with either of these distances,

MC(L) is a compact set. (18.6)
Given the fact that the set of closed subset of S, with the Hausdorff distance
dH, is compact, this simply amounts to checking that if X is the limit of the
sequence {Xk} in MC(L), then X ∈ MC(L) too. This is not trivial, but
follows at once from Theorem 10.8 in [14].

Let us also recall some simple facts about blow-up limits. Let E be as
above, and denote by X the set of blow-up limits of E at 0. Recall that X
is the collection of sets X such that

X = lim
k→+∞

r−1
k E (18.7)

for some sequence {rk} of positive numbers that tends to 0. Recall also that
this means that limk→+∞ d0,R(X, r−1

k E) = 0 for every R > 0, with d0,R as
in (1.14). Let us say why

X is a closed subset of MC(L). (18.8)
The fact that if X ∈ X , then X is a sliding minimal cone is Corollary 29.53
in [14]; we even get that the density of X is

H2(X ∩B(0, 1)) = lim
r→0

r−2H2(E ∩B(0, r)) (18.9)

(where the limit exist by near monotonicity of r−2H2(E ∩ B(0, r)), as in
Theorem 28.7 of [14]). So we just need to show that X is closed.

Suppose X is the limit in MC(L) of the sequence {Xj} in X , and write
Xj = limk→+∞ r−1

j,kE for some sequence {rj,k}, k > 0, that tends to 0.
By standard manipulations of sequence extraction, we can find a sequence
{k(j)}, j > 0, such that rj,k(j) tends to 0 and X = limj→+∞ r−1

j,k(j)E. That
is, X ∈ X ; (18.8) follows.

We are ready to state the main result of this section.

Proposition 18.1. — Let the sliding minimal set E satisfy the assump-
tions (18.1), (18.2), and (18.3). Suppose in addition that

every blow-up limit of E at 0 satisfies the full length condition. (18.10)
Then we can find a ∈ (0, 1) and a radius r0 ∈ (0, r1] such that

rf ′(r) > af(r)− 3h(r) for 0 < r < r0, (18.11)
where f(r) is still defined by (17.3), but with

θ0 = lim
r→0

r−2H2(E ∩B(0, r)) (18.12)

as in (17.4).
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Proof. — Recall from Lemma 17.1 that we already knew that f is differ-
entiable almost everywhere on (0, r0), and that we can partially recover the
variations of f from f ′. We will see how to use this after the proof.

The proof will use Proposition 17.2 and a small compactness argument on
MC(L). For each X ∈ X , the definition of full length gives a small constant
c = c(X) and a small radius η = ηfl(X) ∈ (0, η(X)) such that (4.16) holds for
every injective deformation parameter ϕ ∈ Φ+,i

X (η) that satisfies (4.15) (see
Definition 4.1). Then the construction of Sections 5–16 also gives a small con-
stant ε(X), such that if the assumptions of Section 5, and in particular (5.2)
and (5.3), are satisfied with ε = ε(X), we get the main conclusion (16.32),
with some small constant α = α(X). With the notation of the previous sec-
tion, ε(X) = ε(cfl, ηfl, ηg) and α(X) = α(cfl, ηfl, ηg), where ηg = η(X),
ηfl = ηfl(X), and cfl = c(X); this notation has the advantage of making it
plain that ε(X) and α(X) depend only on the constants above. We define a
small ball VX in MC(L) by

VX =
{
Y ∈MC(L) ; dcH(X,Y ) < 10−1ε(X))

}
. (18.13)

Now X is a closed set in the compactMC(L), so there is a finite set X0 ⊂ X ,
such that the VX , X ∈ X0, cover X . In other words,

for Y ∈ X we can find X ∈ X0 such that dcH(X,Y ) < 10−1ε(X). (18.14)

We also need to know that

lim
r→0

{
inf
X∈X

d0,3r(E,X)
}

= 0. (18.15)

Suppose not. Then there is an ε > 0 and a sequence {rk}, that tends to 0,
such that d0,3rk

(E,X) > ε for all k. We may replace {rk} with a subsequence,
for which the sets Ek = r−1

k E converge, locally for the Hausdorff distance,
but on the whole Rn, to a closed set X. By definitions, X ∈ X , and by (18.8),
X is a sliding minimal cone. But the local convergence says that d0,3(Ek, X)
tends to 0, which contradicts the definition of rk.

Set ε0 = infX∈X0 ε(X), and let r0 be such that

0 < r0 <
r1

3 and Chr0 6 10−1ε0, (18.16)

where Ch is the same constant as in (18.2), and

inf
X∈X

d0,3r(E,X) 6 10−1ε0 for 0 < r < r0. (18.17)

We want to show that r0 satisfies all the assumptions of Proposition 17.2 with
U = B(0, r1). This is clear for (17.1) and (17.2). For the other assumptions,
we fix r ∈ (0, r0) and we want to find a cone X(r). But (18.17) gives a cone
X ∈ X such that d0,2r(E,X) 6 10−1ε0, and then (18.14) yields anX(r) ∈ X0
such that dcH(X(r), X) < 10−1ε(X(r)). We take ηg(r) = η(X(r)), ηfl(r) =
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ηfl(X(r)), and cfl(r) = c(X(r)), and then ε(cflX(r), ηflX(r), ηgX(r)) =
ε(X(r)) and α(cflX(r), ηflX(r), ηgX(r)) =α(X(r)) by the definitions above.

Then we need to check (17.7), i.e., that d0,2r(E,X(r)) 6 ε(X(r)), and
this easily follows from the definitions of X and X(r), plus the fact that ε0 6
ε(X(r)) since X(r) ∈ X0. Next (17.8) holds by (18.16), and (17.10) holds,
with q(r) = 0, because X(r) ∈ X and by (18.9). We apply Proposition 17.2
and get (17.11), with q(r) = 0 and α = α(X). But the same proof would
also yield (17.11) with the constant

α = inf
X∈X0

α(X) > 0. (18.18)

So we get (18.11) with a = 4α
1−2α . We prefer to say things like this, because

formally we do not know that (17.11) with some α implies (17.11) with any
smaller α; even here with our special choice of θ0 = limr→0 θ(r), we do not
know for sure that f(r) > 0, because we only know that θ(r) is almost
monotone. On the other hand, if f(r) 6 0, we should be happy anyway,
because the goal of all the story is to show that f(r) is small (but don’t worry,
we don’t need this remark). This completes the proof of Proposition 18.1. �

Let us comment on Proposition 18.1. We had to be slightly careful, be-
cause with the proof above the constants ε in (5.2) and (5.3) depend not
only on the full length constant c for X, but also on the more geometric
constants η(X) and ηfl(X); so we don’t want to use cones X(r) that come
extremely close to L ∩ S without actually meeting it, for instance.

Our proof of Proposition 18.1 relies on compactness, but in concrete cases,
the covering of X by balls VX can be obtained explicitly (and then we get a
better control on the constant C). Suppose for instance that θ0 = limr→0 θ(r)
is equal to 3π/2; then X is contained in the set of cones X ∈ MC(L) such
that θ(X) = 3π/2. If in addition n = 3, say, we know that X is exclusively
composed of cones of type Y. Now some of them contain L in their spine,
others don’t but contain half of L in one of their faces, and some meet L
only at 0. Given r > 0 as above, and if X ∈ X approximates E well in
B(0, 3r), we choose to take X(r) = X if X is of the first type, but otherwise
we will replace X with an X(r) of the first type if its spine is very close
to L, and an X(r) of the second type if half of L is very close to some
face of X, but the other one is reasonably far from X. In this case, the full
length property is proved in Section 37 below. Of course this concrete way
of proving Proposition 18.1 is harder to do when we don’t know well the list
of minimal cones of density θ0, not to mention the fact that we cannot be
sure that they satisfy the full length property.

Once we have (18.11), with a constant a > 0 that does not depend on
r, but only on X , we can use Lemma 17.1 to integrate it and get the decay
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estimate (17.22). Here q(r) = 0, so we get that for 0 < r < s < r0,

r−af(r) 6 s−af(s) + 3
∫ s

r

h(r)dr
ra+1 6 s

−af(s) + 3Ch
∫ s

r

rβ−a−1dr. (18.19)

We may as well assume that a < β (in fact, a depends on β, we expect it
to be very small, and anyway we can always make it smaller); then (18.19)
yields

r−af(r) 6 s−af(s) + 3Ch
β − a

sβ−adr for 0 < r < s < r0. (18.20)

This is good: for s ∈ (0, r0) fixed, this means that f decays like ra near 0.

We end this section with a corollary of the discussion above.

Corollary 18.2. — Let E satisfy (18.1)–(18.3), let θ0 be as in (18.12),
and define f by (17.3). If

every blow-up limit of E at 0 satisfies the full length condition, (18.21)

there exist a constant a > 0 and numbers r0 > 0 and C > 0 such that

f(r) 6 Cra for 0 < r < r0. (18.22)

The constant a depends only on n and a full length constant coming from
the family of blow-up limits of E at 0. But r0 and C depend on the specific
situation (and in particular E).

Proof. — Indeed, the assumptions of Proposition 18.1 are satisfied, so we
can find r0 > 0 and a ∈ (0, 1) (that depends on the class X of blow-up limits
of E at 0, in particular through the full length constants of a finite number
of cones used for a covering) such that (18.11) holds. The estimate (18.22)
now follows from (18.20) (we just dropped the more explicit computation of
constants) and the discussion that leads to it. �

We would like to say that the assumption (18.21) holds automatically
when θ0 6 3π

2 , but for this we would need to know that

if X ∈MC(L) and θ(X) 6 3π
2 , then X ∈ H ∪ V ∪ Y, (18.23)

where H, V, and Y are as below Subsection 1.2 and define the same cones
as in Theorem 1.8.

This looks reasonable, but the author did not find a simple proof. But
see Lemma 23.2 for the simpler special case when θ(X) 6 π + εn. As soon
as we can prove (18.23), we observe that if θ0 6 3π

2 , (18.23) says that every
blow-up limit of E at 0 lies in H ∪ V ∪ Y, hence satisfies the full length
property by Theorem 37.1, and we can apply Corollary 18.2.
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Remark 18.3. — There will be a better statement, Corollary 22.1, where
we only assume that some blow-up limit of E at 0 satisfies the full length
condition, but it will be harder to prove, because we need to be able to find
good approximating cones Z(r) at all the scales r < r0, so that we can apply
Proposition 17.2. For this we will need the approximation results of the next
part.
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Part III. Approximation by cones for balls centered on L

19. The density excess controls the distance to a cone

In this part we still consider balls centered at 0 ∈ E ∩L, assume that the
density excess f(r) is small, and use this to obtain geometric information on
E, and in particular its Hausdorff distance to minimal cones, first on most
spheres, and then on thicker annuli. The rough idea is that if f(r) is small, it
cannot vary much between r/2 and r, hence f ′(ρ) is often small on [r/2, r],
and the proof of the differential inequality (18.11) will allow us to control
various quantities when f ′(ρ) is small.

We are given a reduced sliding almost minimal set E of dimension 2, in
an open set U ⊂ Rn which contains the origin, with a sliding condition that
comes from the line L through 0 and a small enough gauge function h. We
suppose that 0 ∈ E, set

θ0 = lim
t→0

t−2H2(E ∩B(0, t)) (19.1)

as in (17.4) (we shall soon remind the reader of why it exists when h is small
enough), and

f(r) = θ(r)− θ0 = r−2H2(E ∩B(0, r))− θ0 (19.2)
for r < dist(0,Rn \U) (as in (17.3)). We want to show that f(r) controls the
local Hausdorff distance from E to small modifications of minimal cones. We
will roughly proceed as in Section 11 of [10], where we established this for
two-dimensional almost minimal sets with no sliding boundary condition.

We start with a discussion of the list of modifications of minimal cones
that we allow, and how we measure the distances.

Let us first consider a fixed minimal cone X, and use the (in fact, any)
standard decomposition of K = X ∩ ∂B(0, 1) into arcs of circles Ci, i ∈ I,
that was described in Section 3. We consider deformations of K, which we
construct as for the definition of the full length condition near Definition 4.1.
That is, we select a small constant η > 0 (for instance choose any number
smaller than η(X) in (4.3); the actual choice won’t matter), and we define
the extended class Φ+

X(η) of enlarged mappings ϕ, as near (4.12). Most of the
information of ϕ is a mapping defined on the set of endpoints of the Ci, which
says where we send each one, but ϕ also contains some information relative
to the way we glue the pieces near vertices of L∩ S. For each ϕ ∈ Φ+

X(η) we
define a set ϕ∗(K), which is the deformation of K associated to ϕ, and the
cone ϕ∗(X) over ϕ∗(K). Recall that modulo some small modifications of the
protocole near the points of L ∩ S, ϕ∗(K) is obtained by replacing each arc
Ci = ρ(ai, bi) of K by the arc ρ(ϕ(ai), ϕ(bi)).
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Let us denote by Z(X, η) the set of cones Z = ϕ∗(X), where ϕ ∈ Φ+
X(η).

These are not exactly minimal cones, because the angles between the Ci, for
instance, may have changed a bit, but they are close to X if η is small enough
(which we can assume). For some estimates, it may be interesting to measure
how far they are from being minimal, so we introduce a number α(Z) which
records this. In Section 11 of [10], we have used a partial measurement of
minimality based on the angles made by the geodesics that compose Z; here
we find it more pleasant not to describe these angles (the distances of the
edges to L should also be taken into account), and measure the lack of
minimality more directly (but less geometrically). For Z ∈ Z(X, η), set

α(Z) = inf
{
H2(Z ∩B)−H2(Z̃ ∩B) ;

Z̃ is a sliding competitor
for Z in B

}
, (19.3)

where B = B(0, 1) and the notion of sliding competitor in B(0, 1) is ex-
plained in Definition 1.1.

We also want to allow X to vary, so we let X denote a class of sliding
minimal cones centered at the origin; for instance, we shall use

X (θ0) =
{
X ;

X is a reduced sliding minimal cone,
centered at 0 with H2(X ∩B) = θ0

}
. (19.4)

Then we fix a small number η > 0 and set

βX ,η(E, r)=inf
{
d0,r(E,Z)+α(Z)1/4 ; Z∈Z(X, η) for some X∈X

}
, (19.5)

where the local distance d0,r is still as in (1.14), and we put a power 1/4 to
simplify the statement of the next theorem without losing too much infor-
mation (notice that with this definition, βX ,η(E, r) tends to be larger).

The next result summarize what we want to do in the next sections. We
state it in a normalized ball to simplify some expressions (such as the precise
form of (19.6)).

Theorem 19.1. — Let E be a sliding almost minimal set in an open set
U ⊂ Rn which contains B(0, 400), with sliding conditions coming from the
line L through the origin, and with a gauge function h such that

h(t) 6 C0t
β0 for 0 < t < 400 (19.6)

for some constants β0 ∈ (0, 1] and C0 > 0. Suppose θ0 is as in (19.1), let
η > 0 be given, and let X = X (θ0) be as in (19.4). Assume that C0 is small
enough, depending on n, η, and θ0. Then

βX ,η(E, 1) 6 C
[
f(200) +

∫ 400

0

h(t)dt
t

]1/4

, (19.7)
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where f is as in (19.2), and the constant C depends only on β0, C0, θ0, η,
and n.

See Theorem 11.4 in [10] for the analogous statement away from the
boundary. The power 1/4 is certainly not optimal, and the same sort of
contortion as in [10] should probably lead to the power 1/3. See the end of
the proof of Lemma 21.2 for this. But 1/3 is probably not optimal either, and
1/2 would sound more right; we know that in the proof below (and without
the possible improvement on Lemma 21.2), we will probably lose something
significant when we go from isolated estimates on spheres to a global estimate
on the ball. Similarly, we noted a dependence on θ0, because this is the way
that we shall prove things, but probably a more clever argument would allow
us to get rid of this.

Here we decided to assume a geometric decay in (19.6), but a weaker
condition (probably a Dini condition) would be enough. We decided for a
complicated way to state (19.6), where C has some dependence on the con-
stants C0 and β0, but where we allow the possibility that

∫ 400
0

h(t)dt
t is smaller

than suggested by (19.5) and then we get a better estimate.

Notice that since we proved in the earlier sections that f(r) often decays
like a power of r, the theorem will imply a similar decay of βX ,η(E, r). For
the moment, we allow the reference minimal cone X in the computation
of βX ,η(E, r) to vary with r, but once we get a power decay, we will know
that we can take for X any blow-up limit of E at 0, and this will imply the
uniqueness of the blow-up limit in question. But in the mean time it is better
to allow X to vary. On the opposite side, we could have allowed X to be the
whole class of minimal cones, but then (19.7) would have been less precise.

Before we start the proof (which will take some time), let us record that
it is enough to prove (19.7) when

f(200) +
∫ 400

0

h(t)dt
t
6 ε1, (19.8)

where the very small constant ε1 > 0 will be chosen later (depending on n,
θ0 and η). Indeed, if (19.8) fails, then (19.7) holds with C = 2ε−1

1 (try for
X a bow-up limit of E at the origin, and observe that d0,r(E,X) 6 2). So
let us assume that (19.8) holds.

The following lemma will allow us to use the same construction of com-
petitors as in the previous section.

Lemma 19.2. — Let τ1 > 0 be small. If (19.8) hold for a small enough
ε1 > 0 (that depends also on θ0 and n), we can find a minimal cone X ∈
X (θ0) such that

d0,180(E,X) 6 τ1. (19.9)
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Proof. — So let E be as in the theorem, and assume (19.8). We want to
show that because of (19.8), the density θ(r) = r−2H2(E∩B(0, r)) is nearly
constant near 0, and then use this to show that E looks a lot like a minimal
cone in B(0, 180).

We start with the near monotonicity of θ. Recall from Theorem 28.7
in [14] that there is a constant αn, which here depends only on n (because
the geometry of L is simple), such that

θ(r) exp
(
αn

∫ r

0

h(2t)dt
t

)
is nondecreasing on (0, 200). (19.10)

Then (19.1) and (19.8) imply that

θ(r) > θ0 exp
(
−αn

∫ r

0

h(2t)dt
t

)
> θ0 e

−αnε1 for 0 < r 6 200 (19.11)

(where the endpoint r = 200 is obtained by taking a limit), so that
θ0e
−αnε1 6 θ(200) = θ0 + f(200) 6 θ0 + ε1 (19.12)

by (19.2) and (19.8). We deduce from this and (19.10) again that
θ(r) 6 eαnε1θ(200) 6 eαnε1 [θ0 + ε1] for 0 < r < 200. (19.13)

Let us now apply an almost constant density result from [14] to say that
E looks like a minimal cone. Let τ > 0 be small, to be chosen soon, and
let ε > 0 be associated to τ as in Proposition 30.19 in [14]. We want to
apply that proposition to E and the radii r2 = r0 = 200. The bilipschitz
assumption on the boundary L (up to (30.20) in [14]) is trivially satisfied,
(30.21) holds if ε1 is small enough and because (19.8) controls h(300), and
the more important near constant density assumption (30.22) holds because
θ(r2) = θ(200) 6 θ0 + ε1 while θ(r) > e−αnε1θ0 for 0 < r < 10−3r0.

By Proposition 30.19 in [14], there is a sliding minimal cone T such that
d0,190(E, T ) 6 2τ, (19.14)

(see (30.24) and (30.24) there), and
|H2(E ∩B(0, r))−H2(T ∩B(0, r))| 6 2002τ for 0 6 r 6 190 (19.15)

(see (30.26)). We apply this to r = 190, then use (19.11) and (19.13) to
estimate θ(r), and get that
|H2(T ∩B(0, 1))− θ0| 6 |θ(190)− θ0|+ (200/190)2τ

6 [eαnε1 − 1]θ0 + 2ε1 + (200/190)2τ 6 2τ
(19.16)

if ε1 is small enough.

We cannot use X = T in the lemma, because the density H2(T ∩B(0, 1))
may be a little different from θ0. So we shall use (19.16) and a compactness
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argument to find X ∈ X (θ0) that is very close to T , and then deduce (19.9)
from (19.14).

We claim that for all small τ1 > 0, we can choose τ > 0 such that if T is
a sliding minimal cone such that (19.16) holds, then there is a minimal cone
X ∈ X (θ0) such that

d0,1(X,T ) 6 τ1
4 . (19.17)

Indeed, otherwise there is a sequence {Tk} of sliding minimal cones such
that Tk satisfies (19.16) with τ = 2−k, and yet d0,1(X,Tk) > τ1

4 for X ∈
X (θ0). We can extract a subsequence (which we still denote the same way),
for which Tk converges to a limit X in local Hausdorff distance (say, for
d0,1, and see the discussion above (18.6) if you are worried about which
notion of convergence). By the compactness property (18.6), or directly by
Theorem 10.8 in [14], X is a sliding minimal cone.

By Theorem 10.97 in [14] (the lower semicontinuity ofHd along sequences
of quasiminimal sets) and Theorem 22.1 in [14] (the upper semicontinuity
along sequences of almost minimal sets), plus the fact that H2(X ∩ S) = 0,
we get that

θ0 = lim
k→+∞

H2(Tk ∩B) = H2(X ∩B), (19.18)

so X ∈ X (θ0) and this contradicts the fact that the Tk were chosen far from
X (θ0). This proves our claim.

We choose τ with this property, also such that τ 6 10−1τ1, apply this to
the cone T of (19.16), and find X ∈ X (θ0) that satisfies (19.17). It is easy
to see that X satisfies (19.9); the lemma follows. �

Now we want to apply the construction of Sections 5–16 to find cones
Z(r), 0 < r < 180, that approximate E well on the circles Sr = ∂B(0, r).
Since the dependance on X of the constants τ , and then ε in (5.3) seems
to be a little shady at first sight, let us spend some time discussing these
constants.

Remark 19.3. — We claim that we can apply the construction of Sec-
tions 5–16, with a value of the various constants ε and τ that depends only
on β0, C0, θ0, η, and n.

To see this we shall use the same compactness argument as in Section 18,
below (18.12). To eachX ∈ X (θ0) we can associate a standard decomposition
as in Section 3 and a small number η(X) > 0, that satisfies the requirements
of Section 3. Let us even choose η(X) somewhat smaller than the constant
η of the statement of Theorem 19.1. This is a brutal way to make sure that
the deformations of X that we construct later will come from ϕ ∈ Φ+

X(η).
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Then there is a small number ε(X), that depends on η(X), such that
if (5.2) and (5.3) are satisfied with ε(X), then we can apply the construction
of Sections 5–16, except that we do not intend to assume, or use, the full
length property.

Recall from (18.6) that the class MC(L) of sliding minimal cones is
compact. The proof of existence for (19.17) shows that the extra condition
H2(X ∩B) = θ0 that defines X (θ0) is closed, so X (θ0) ⊂MC(L) is compact
too.

For X ∈ X (θ0) define the small ball VX centered at X and with radius
10−5ε(X), essentially as we did in (18.13), except that now we are only
interested in VX ∩ X (θ0). By compactness, we can find a finite family X0 ⊂
X (θ0) such that the sets VX , X ∈ X0, cover X (θ0).

Then set ε0 = 10−3 infX∈X0 ε(X), and apply Lemma 19.2 with τ1 = ε0.
This gives a small constant ε1, and if (19.8) holds with this ε1, we know that
we can find X ∈ X (θ0) such that d0,180(E,X ′) 6 ε0. Then X ′ lies in a ball
VX , X ∈ X0, and this implies that d0,180(E,X) 6 2ε0 (compare with (18.5),
but also note that we can modify the constant 10−5 above as we want). We
took ε0 so small because this way

d0,2r(E,X) 6 180
2r d0,180(E,X) 6 ε(X) for 10−2 6 r 6 90, (19.19)

so (5.3) holds for these r. Because of our assumption that C0 is small enough,
depending on n, η, and θ0, we also have (5.2), and so if we want to apply
the construction of Sections 5–16 (excluding the full length property) to r,
we shall just need to check the conditions (5.4)–(5.8). We shall see now that
they hold for almost every r ∈ [10−2, 90].

Return to the proof of Theorem 19.1. Pick ε1, and then a cone X ∈ X0 =
X0(θ0), as in the remark above. Set

v(r) = H2(E ∩B(0, r)) = r2θ(r) (19.20)

for 0 < r < 200 and denote by R the set of radii r ∈ (10−2, 90) such that θ
and v are differentiable at r,

θ′(r) = r−2v′(r)− 2r−3v(r), (19.21)

v′(r) > H1(E ∩ ∂B(0, r)) (19.22)
(which incidentally implies (5.4)), and in addition (5.7) and (5.8) hold. Then

H1((10−2, 90) \ R) = 0 (19.23)

by Lemma 17.1, (17.13), the Hardy–Littlewood maximal theorem (see be-
low (17.11)), and the proof of Lemma 4.12 in [10] (see below (5.8)). Now

– 170 –



A local description of 2-dimensional almost minimal sets bounded by a curve

each r ∈ R satisfies the constraints (5.3)–(5.8), and we can apply to it the
results of Sections 5–16, excluding those that use the full length property.

Observe that we shall use the same cone X for all the radii r ∈ R; for
smaller values of r, we could still use the same proof, but we would need to
apply Lemma 19.2 to a different radius, get another cone X ′, and possibly
a different type of deformation Z(r) in the argument below. But we do not
need to do this for the moment.

We intend to use the results of the previous sections to get information
on E ∩ Sr, where we set Sr = ∂B(0, r), for r ∈ R. We shall be able to get
better estimates when j(r) is small, where

j(r) = rf ′(r) + f(r) + (1 + 2θ0αn)h(2r) + (1 + θ0αn)
∫ r

0

h(2t)dt
t

= rθ′(r) + f(r) + (1 + 2θ0αn)h(2r) + (1 + θ0αn)
∫ r

0

h(2t)dt
t

. (19.24)

We added the constant αn (from (19.11)) because we want to make sure
that j(r) > 0. Indeed, it could be that θ′(r) and f(r) are slightly negative.
Nonetheless, it follows from (19.11) that

f(r) = θ(r)− θ0 > θ0

(
exp

(
−αn

∫ r

0

h(2t)dt
t

)
− 1
)

> −θ0αn

∫ r

0

h(2t)dt
t

(19.25)

(because (19.8) says that
∫ r

0
h(2t)dt

t 6 ε1 is small). Similarly, it follows
from (19.10) (and in fact this is the way (19.10) is proved) that for r ∈ R;

rf ′(r) = rθ′(r) > −αnθ(r)h(2r) > −2θ0αnh(2r) (19.26)

by (19.13) and if ε1 is chosen small enough (recall that θ0 > π). Thus

j(r) > (rθ′(r))+ + f(r)+ + h(2r) +
∫ r

0

h(2t)dt
t

for r ∈ R, (19.27)

with positive parts, which will be simpler to use than (19.24) for some esti-
mates.

Lemma 19.4. — For r ∈ R, we can find a compact set γ∗(r) ⊂ E ∩ Sr
and a cone Z(r) ∈ Z(X, η) such that

H1(E ∩ Sr \ γ∗(r)) 6 Cj(r) (19.28)

and

sup
z∈Z(r)∩Sr

dist(z, γ∗(r)) + sup
z∈γ∗(r)

dist(z, Z(r) ∩ Sr) 6 Cr1/2j(r)1/2. (19.29)
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Proof. — We will see other properties of Z(r) along the way. The constant
C in (19.28) depends on η too, through the choice of η(X) in Remark 19.3.
We added r1/2 in (19.29) to show the homogeneity, but this was not needed
because r ∈ R ⊂ (10−2, 90).

Let j0 > 0 be small, to be chosen later. We shall keep in mind that it is
enough to prove the conclusion of the lemma when

r ∈ R and j(r) < j0, (19.30)
where the small constant j0 > 0 will be chosen later, depending also on
η. Indeed otherwise we just take Z(r) = X and γ∗(r) = E ∩ Sr, and the
conclusion holds because the Hausdorff distance between E ∩ Sr and X ∩ Sr
is bounded.

So let r ∈ R be given. First notice that
H1(E ∩ Sr) 6 v′(r) = r2θ′(r) + 2r−1v(r) = r2θ′(r) + 2rθ(r)

= r2f ′(r) + 2rf(r) + 2rθ0 6 2rj(r) + 2rθ0 (19.31)

by (19.22), (19.21), (19.20), because f(r) = θ(r)− θ0, and finally by (19.24)
(or rather (19.27), because of the strange case when f ′(r) < 0).

Recall that for r ∈ R, we can apply Sections 6–16, where we constructed
a few competitors and used them to prove estimates on H2(E ∩B(x, r)). In
particular we have (15.46), which says that if we normalized everything so
that r = 1,

H2(E ∩B(0, 1)) 6 1
2H

1(E ∩S)− 10−5[H1(E ∩S)−H1(ρ∗)] +h(1). (19.32)

Here ρ∗ = ρ∗(r) is the net of geodesic that was chosen during the proof;
see (15.43).

Let us observe that this estimate was obtained without using the full
length property. It will be all right to use this if we do not want to include
estimates on α(Z) in (19.3); otherwise we will need to correct the estimate as
we did in Section 16. This will be done later, but for the moment we ignore
this and work with (19.32). Let us rewrite it without the normalization by
r = 1. We get that for r ∈ R

H2(E ∩B(0, r))

6
r

2H
1(E ∩ Sr)− 10−5r[H1(E ∩ Sr)−H1(ρ∗(r))] + r2h(r). (19.33)

The author feels a little better with the powers of r because they give the
homogeneity, but here r ∈ R ⊂ [10−2, 90] so we should not need to worry
much. Next we write

H1(E ∩ Sr)−H1(ρ∗(r)) = ∆0(r) + ∆1(r) + ∆2(r), (19.34)
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where the ∆i(r) are defined as follows. First
∆0(r) = H1(E ∩ Sr)−H1(γ∗(r)) = H1(E ∩ Sr \ γ∗(r)), (19.35)

where γ∗(r) is the union of the curves γ that were constructed in Section 7.
The identity in (19.35) holds because the curves γ are contained in E; also,
it could be observed that the only contribution comes from the two small
disks D near the points of L ∩ Sr, because outside of these disks, E ∩ Sr is
composed of nice curves. Next

∆1(r) = H1(γ∗(r))−H1(Γ∗(r)) > 0, (19.36)
where Γ∗(r) is the union of the Lipschitz graphs Γj that we construct in
Sections 8–12; the fact that ∆1(r) > 0 comes by adding up its analogue for
each configuration; see the comment below (10.7). Notice also that ∆1(r) is
like ∆1 in (15.42). Finally

∆2(r) = H1(Γ∗(r))−H1(ρ∗(r)) > 0, (19.37)
because ρ∗(r) simply consists in replacing each arc Γ of Γ∗ with the geodesic
ρ with the same endpoints; this is the same as ∆2 in (15.44) (and ρ∗ is defined
by (15.43)). Thus (19.34) is essentially the same as (15.45). Also (19.33) can
be rewritten as

∆0(r) + ∆1(r) + ∆2(r)

6 105
[

1
2H

1(E ∩ Sr)− r−1H2(E ∩B(0, r))
]

+ 105rh(r) (19.38)

and since
H1(E ∩ Sr) 6 v′(r) = r2θ′(r) + 2r−1v(r) = r2θ′(r) + 2rθ(r)

= r2θ′(r) + 2rf(r) + 2rθ0 6 2rj(r) + 2rθ0 (19.39)

by (19.22), (19.21), and (19.27), (19.38) yields

∆0(r) + ∆1(r) + ∆2(r)
6 105[rj(r) + rθ0 − r−1H2(E ∩B(0, r))

]
+ 105rh(r). (19.40)

But

r−1H2(E ∩B(0, r)) > rθ(r) > rθ0

(
1− αn

∫ r

0

h(2t)dt
t

)
(19.41)

by (19.25), so

∆0(r) + ∆1(r) + ∆2(r)

6 105r

[
j(r) + θ0αn

∫ r

0

h(2t)dt
t

+ h(r)
]
6 106rj(r) (19.42)

by (19.24).
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This was our basic estimate, but we can try to improve this in the same
way as in Section 16, when we modified the tip of our second competitor
to get a third one. There is a special case when things will be easier, which
we want to mention first; this is when (after the normalization that makes
r = 1)

ρ∗ = ϕ∗(K) for some ϕ ∈ Φ+
X(η). (19.43)

This is the same statement as in (16.6), but here η comes from the defini-
tion (19.5) and the statement of Theorem 19.1. Apart from this, we can still
discuss as in Section 16.

Assume first that (19.43) holds, and let Z(r) denote the cone over ρ∗(r);
that is,

Z(r) =
{
λξ ; ξ ∈ ρ∗(r) and λ ∈ [0,+∞)

}
= ϕ∗(X) (19.44)

by definition of ϕ∗(X), and Z(r) ∈ Z(X, η) by definition of Z(X, η) (see
above (19.3)). In addition, we can modify our first competitor near its tip, ex-
actly as we did below (16.6), to construct an improved competitor and derive
a better estimate than (19.32) (or, if we renormalize back, (19.33)). Indeed
the competitor that we used so far coincides with Z in a small ball B(0, κr),
and we can further replace this tip with the intersection with B(0, κr) of a
competitor for Z in B(0, κr). In Section 16 we used the full length property
of X to find this competitor; here we just use the definition (19.3) of α(Z),
which says that we can find a competitor Z̃ for Z in B(0, κr), such that

H2(Z̃ ∩B(0, κr)) 6 H2(Z ∩B(0, κr))− α(Z)κ2r2

2 . (19.45)

The construction of the new competitor for E, and in particular the gluing
argument, is the same as in Section 16 (all the way up to (16.22)). Thus we
can save an extra α(Z)κ2r2

2 in the estimate (19.33), and the proof of (19.42),
with this extra negative term, also yields

α(Z(r)) 6 Cj(r), (19.46)
where the dependence of C on κ does not matter, because κ is an absolute
constant.

We shall continue with the argument later, but let us now return to the
case when (19.43) fails. As was explained below (16.22), there may be a few
different reasons why this may happen. The first one is when Configuration H
shows up in our construction. In this case, we showed that, without using the
full length condition, we can construct a new competitor (essentially obtained
by contracting a hanging curve), and improve our estimate (15.46) (the one
that was used above to prove (19.32)) by an amount of η(X); see (16.27).
This means that we can subtract η(X) from the right-hand side of (19.32),
or subtract r2η(X) from the right-hand side of (19.33). We claim that this is
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too much to win if j(r) is small enough. Indeed recall from (19.34) and the
discussion below that H1(E ∩Sr)−H1(ρ∗(r)) = ∆0(r) + ∆1(r) + ∆2(r) > 0,
hence the improved (19.33) says that

H2(E ∩B(0, r))− r

2H
1(E ∩ Sr)

6 −10−5r[H1(E ∩ Sr)−H1(ρ∗(r))]− r2η(X) + r2h(r)

6 −r2η(X) + r2h(r) 6 −r2η(X) + ε1 6 −
1
2r

2η(X) (19.47)

by (19.8) and if ε1 is small enough. Here again we feel good because Re-
mark 19.3 allows us to use a constant η(X) that depends only on n, θ0
(through a covering of X (θ0)), and η (because we forced η(X) 6 η). At the
same time

H2(E ∩B(0, r)) > r2θ0

(
1− αn

∫ r

0

h(2t)dt
t

)
> r2θ0

(
1− αnε1

)
(19.48)

by (19.41) and (19.8), and
r

2H
1(E ∩ Sr) 6 r2j(r) + r2θ0 (19.49)

by (19.31); so (19.47) implies that θ0(1−αnε1) 6 θ0 +j(r)− 1
2η(X), which is

impossible when j(r) 6 j0, if j0 and ε1 are chosen small enough (depending
on a lower bound for η(X), which itself depends on η). This proves that this
first case when (19.43) fails does not happen when (19.30) holds.

The second reason why (19.43) may fail is explained below (16.27); it
corresponds to the occurence of Configuration 3=2+1. In this case too, we
constructed (without the help of the full length) a modification of our second
competitor for E, that allows us to save C−1η(X) in the estimate; see (16.30).
This case does not happen either, for the same reasons as for the previous
case.

We are left with the case, described below (16.30), where for some ` ∈
K ∩ L, we added an element c` to CC(`), to get the extended CC+(`), and
we also added the point ` to ρ∗. If ` was already present in some ρj , j ∈ J∗,
we do not even need to worry; otherwise it is an isolated point of ρ∗ and
we remove it. That is, denote by V ′0 the set of (at most two) points ` that
we added this way, or equivalently the set of isolated points of ρ∗, and set
ρ′ = ρ∗ \ V ′0 (with this notation, we still normalize so that r = 1). In this
case we change a little the definition of Z(r), and set

Z(r) =
{
λξ ; ξ ∈ ρ′ and λ ∈ [0,+∞)

}
. (19.50)

Notice that when we have (19.43), this new definition is the same as (19.44),
because ρ∗ = ϕ∗(K) does not have isolated points.
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We checked in Section 16 that ρ′ satisfies (16.6), or in other words that
ρ′ = ϕ∗(K) for some ϕ ∈ Φ+

X(η). Thus Z(r) ∈ Z(X, η) (see the definition
above (19.3)). Also, we can use any competitor for Z(r) in the unit ball to
modify the tip of our second candidate, essentially as in the case when (19.43)
holds. The point is to extend the deformation (originally defined on Z(r))
to the cone over ρ∗, get a competitor for the cone over ρ∗, and glue it to the
tip of our second competitor. The verifications are done below (16.30). This
way we also get the additional estimate (19.46) in this remaining case.

We will still need to check (19.28) and (19.29) with this choice of Z(r);
we will do this at the same time as we do it for the other case. In the
mean time, observe that there is yet another way to improve on our main
estimate (19.35), which is to notice that the first inequality in (19.31) may
be strict. That is, set

∆3(r) = v′(r)−H1(E ∩ Sr) > 0. (19.51)

Notice that (19.33) implies that

H2(E ∩B(0, r)) 6 r

2H
1(E ∩ Sr) + r2h(r) (19.52)

by (19.34) and because ∆i(r) > 0 for 0 6 i 6 2. Then

H1(E ∩ Sr) = v′(r)−∆3(r) 6 2rj(r) + 2rθ0 −∆3(r) (19.53)

by (19.31), so

∆3(r) 6 2rj(r) + 2rθ0 −H1(E ∩ Sr)

6 2rj(r) + 2rθ0 −
2
r
H2(E ∩B(0, r)) + 2rh(r). (19.54)

Since by (19.41)
1
r
H2(E ∩B(0, r)) > rθ0

(
1− αn

∫ r

0

h(2t)dt
t

)
, (19.55)

we see that

∆3(r) 6 2rj(r) + 2rαn
∫ r

0

h(2t)dt
t

+ 2rh(r) 6 4rj(r) (19.56)

by (19.27). This completes the list of our basic estimates on the ∆i(r).

We return to the proof of (19.28) and (19.29) for Z(r). Here we take for
γ∗(r) the set rγ∗, where γ∗ is the set of (14.25), with the normalization by
r = 1. Thus H1(E ∩ Sr \ γ∗(r)) = ∆0(r) 6 106rj(r) by (19.35) and (19.42),
and (19.28) holds.

For (19.29) we first estimate

∆4(r) = H1(Γ∗(r) \ γ∗(r))) +H1(γ∗(r) \ Γ∗(r))), (19.57)
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where Γ∗(r) = rΓ∗ and Γ∗ is the net of Lipschitz graphs that shows up
in (15.1), for instance. We claim that

∆4(r) 6 C[∆1(r) + ∆2(r)] 6 Crj(r). (19.58)

The last part comes from (19.42). For the first part recall the decompositions

γ∗ =
(⋃
i∈I1

Li

)
∪

( ⋃
c∈CC

γc

)
, (19.59)

from (14.25) and

Γ∗ =
(⋃
i∈I1

Γi

)
∪

( ⋃
c∈CC+

Γc

)
, (19.60)

from (15.1). The difference between CC and CC+ is just that maybe for some
` ∈ K ∩L we added the trivial component {c`} to CC(`) to get CC+(`); see
above (13.10). When c ∈ CC+ \ CC, we took Γc = {`}, and this does not
contribute to the measure of the symmetric difference. Thus, returning to
the normalization with r = 1 and using ∆ to denote symmetric differences,

r−1∆4(r) 6
∑
i∈I1

H1(∆(Li,Γi)) +
∑
c∈CC

H1(∆(γc,Γc)). (19.61)

For i ∈ I1, we use the fact that Γi = Li when we dare to apply Re-
mark 6.3, so we get no contribution, but even if we did not dare, Γi would
be obtained from Li by the construction of Section 8, so (8.16) and (8.5)
would yield H1(∆(Li,Γi)) 6 C[H1(Li) − H1(ρi)], where ρi is the geodesic
with the same endpoints as Li. When we sum we would get a contribution
which is dominated by r−1∆2(r); see (15.44).

For c ∈ CC, we already observed in (15.37) that when we apply (10.7)
to each configuration c ∈ CC and then sum, we get that∑

c∈CC
H1(∆(γc,Γc))

6 C(λ)
∑
c∈CC

[H1(γc)−H1(Γc)] + [H1(Γc)−H1(ρc)] (19.62)

which is then dominated by r−1∆1(r) + r−1∆2(r); see the argument be-
low (15.37), and compare our definitions with (15.30) and (15.33). This
completes our proof of (19.58).

Next we use ∆4(r) to control some distances. Set

Γ′ =
(⋃
i∈I1

Γi

)
∪

( ⋃
c∈CC

Γc

)
, (19.63)
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where the only difference with Γ∗ is that we removed CC+ \ CC from the
indices, which means that we may have removed one or two points ` ∈ K∩L
from Γ∗. Let us first check that

dist(z,Γ′) 6 r−1∆4(r) 6 Cj(r) for z ∈ γ∗. (19.64)

First assume that z ∈ γc for some c ∈ CC; notice that H1(γc) > η(X)
because γc meets ∂D = S∩∂B(`, τ) for some ` ∈ K∩L and it reaches out to
some other endpoint a∗i (see (7.1), (10.1), (4.1) and (4.2), and (6.43)). Then,
since (19.30) implies that j(r) 6 j0 < η(X)/C (if j0 is chosen small enough;
recall that by Remark 19.3 we have a lower bound on η(X) that depends
on η and the other usual constants, but not on X), (19.58) implies that γc
meets Γc, and dist(z,Γ∗) 6 dist(z, γc ∩ Γ∗) 6 H1(γc \ Γ∗) 6 ∆4(r) because
γc is connected. The case when z ∈ Li for some i ∈ I1 is treated the same
way, because H1(Li) > η(X) too; (19.64) follows. Conversely,

dist(z, γ∗) 6 r−1∆4(r) 6 Cj(r) for z ∈ Γ′, (19.65)

by the same argument as above, but this time using the fact that Γc and Γi
are connected too. So we control the Hausdorff distance between γ∗ and Γ′.
We still need to compare Γ′ and ρ′ = r−1(Z(r) ∩ Sr) (see (19.50)).

For each of the Lipschitz curves Γj that compose Γ∗ (this time, with
the condensed notation of (15.5), but avoiding the trivial curves {`} that
come from CC+ \ CC), ρj is the geodesic with the same endpoints, and
by Pythagorus (and a tiny bit of spherical geometry, but recall that the
diameter of ρj is less than 11/10, say),

sup
z∈ρj

dist(z,Γj) + sup
z∈Γj

dist(z, ρj)

6 10[length(Γi)− length(ρj)]1/2 length(ρj)1/2

6 Cj(r)1/2 length(ρj)1/2 6 Cj(r)1/2. (19.66)

We take a supremum and get that

sup
z∈ρ∗

dist(z,Γ′) + sup
z∈Γ′

dist(z, ρ∗) 6 Cj(r)1/2. (19.67)

Now (19.29) follows from (19.67), (19.64), and (19.65). This completes our
proof of Lemma 19.4. �

20. Where we control the variations of Z(r)

At this stage, we found for most r ∈ R a nice cone Z(r), which approxi-
mates E well on Sr = ∂B(0, r). The next stage is to show that Z(r) varies
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slowly with r, and for this we start with a study of some almost radial curves
drawn on E, and that cross the annulus

A = B(0, 90) \B(0, 10−2). (20.1)

Let X ∈ X (θ0) be as in the last section, and recall from the discussion
over (19.19) that

d0,180(E,X) 6 2ε0 6 2 · 10−3ε(X). (20.2)

We shall use again the standard decomposition of X into arcs Cj , j ∈ J ,
that is given by Section 3. For each j ∈ J , denote by ∂Cj the boundary of
Cj (composed of its two endpoints), and let

C′j =
{
z ∈ Cj ; dist(z, ∂Cj) > 10−1η(X)

}
(20.3)

denote a slightly smaller arc where we remove a bit of Cj at each end.

Denote by P (j) the 2-plane that contains Cj ; we shall think of P (j) as
being horizontal. For each z ∈ C′j , denote by Pz = Pj,z the vector hyperplane
that contains z and is orthogonal to Cj at z; we think of Pz as the vertical
hyperplane through z. Also denote by L(z) the half line through z, and set

T (z) =
{
ξ ∈ A ; dist(ξ, Lz) 6 104ε0

}
(20.4)

(a thin tube around L(z)),

T =
⋃
z∈C′

j

T (z) (20.5)

and
Gz = T (z) ∩ Pz ∩ E. (20.6)

Lemma 20.1. — For j ∈ J and z ∈ C′j, the set Gz is a C1 and 1
10 -

Lipschitz graph over some segment of L(z), and it crosses A.

Proof. — We shall even prove that T (z) ∩ E is a C1 and 1
20 -Lipschitz

graph, over a piece of P (j), and then the Lipschitz description of Gz will
follow from the Implicit Function Theorem.

We shall use the interior C1 regularity theorem, that we pick from [10].
Set τ = 10−5η(X), and let w ∈ L(z)∩A be given. By (20.2) E is 360ε0-close
to X in B(w, 10τ), and we can pick x0 ∈ E such that |x0 − w| 6 360ε0.

We want to apply Corollary 12.25 of [10] to E, in a small ball centered
at x0, but there will be a few assumptions to check. We first take care of the
distance to a plane. Observe that

dw,10τ (E,X) 6 18
τ
d0,180(E,X) 6 36ε0

τ
(20.7)
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by (20.2), and because we may safely assume that ε0 is much smaller than
η(X) and τ (so that B(w, 10τ) ⊂ B(0, 180)).

Let us check that X coincides with P (j) near w. Recall from (3.9) that

dist(z,K \ Cj) > min(η0,dist(z, ∂Cj)) > 10−1η(X) (20.8)

by (20.3) and (4.3). Then dist(z,X \ P (j)) > 10−1η(X)/2 (because X is a
cone and P (j) contains the cone over Cj), and by homogeneity

dist(w,X \ P (j)) > 10−3η(X)/2 > 50τ. (20.9)

Conversely, dist(w,P (j) \ X) > 50τ even more easily, because Cj contains
a 10−1η(X)-neighborhood of C′j in P (j) ∩ S by (20.3). Thus (20.7) implies
that

dw,10τ (E,P (j)) 6 36ε0

τ
. (20.10)

Let P ′ denotes the 2-plane parallel to P (j) and that contains x0; notice that
P ′ lies within 360ε0 of P (j), so we get that

dx0,9τ (E,P ′) 6 100τ−1ε0, (20.11)

again with τ−1ε0 as small as we want, and because B(x0, 9τ) ⊂ B(w, 10τ),
with some extra space to take care of the difference between P (j) and P ′.

This will take care of the distance assumption in Corollary 12.25 of [10].
But we also have a density requirement, which will be fulfilled because if E
is so close to P ′ in B(x0, 9τ), then its density in B(x0, 8τ) cannot be too
large.

More precisely, we want to apply Lemma 16.43 in [9] to the ball B(x0, ρ),
with ρ = 8τ , and with a small constant δ that will be chosen soon. For
this there are only three things to check. First, that E is almost minimal in
B(x0, 10ρ/9) (without a sliding condition). It is clear that B(x0, 10ρ/9) ⊂
B(x0, 10τ) ⊂ B(0, 180), so we just need to check that x0 is far from L. But

dist(z, L ∩ S) > min(dist(z, L ∩ Cj),dist(z,K \ Cj),dist(z, L ∩ S \K))
> min(dist(z, ∂Cj),dist(z,K \ Cj),dist(K,L ∩ S \K))
> 10−1η(X) (20.12)

because the interior of Cj does not meet L (by (3.2)), and by (4.1), (4.3),
and (20.8). Then dist(z, L) > 2

30η(X), and

dist(x0, L) > dist(w,L)− 36ε0

τ
>

2
3010−2η(X)− 36ε0

τ

>
η(X)
2000 > 50τ, (20.13)

and E is (plain) almost minimal even in B(x0, 50τ).
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Next h(20ρ/9) should be small enough (again as in (16.44) of [9]), but
this follows from (19.8) if ε1 is small enough, depending also on δ. Finally,
dx0,10ρ/9(E,P ′) should be small enough (depending on δ), and this follows
from (20.11) if ε0 is chosen small enough (depending on both τ and δ). So
we may apply Lemma 16.43 in [9], and we get that

H2(E ∩B(x0, ρ)) 6 H2(P ′ ∩B(x0, (1 + δ)ρ)) + δρ2 6 (1 + 3δ)πρ2. (20.14)

Because of the near monotonicity of the density t→ t−2H2(E∩B(x0, t)), we
easily deduce from this that the density of E at x0 is π (because the density
is always > π at a point of E, and the next smallest density is 3π/2, that
corresponds to points of type Y). So the analogue of the density excess for
E at x0 is

f̃(ρ) = ρ−2H2(E ∩B(x0, ρ))− π 6 3δπ (20.15)
by (20.14). This is the first part of the requirement (12.26) of Corollary 12.25
in [10], for the radius r0 = ρ/110 = 8τ/110. We just need to be sure that δ
is small enough, depending on the constant ε1 from [10].

The second requirement, about the size of h (i.e., in the present case, of
C0), follows from the assumptions of Theorem 19.1. The final requirement
is that dx0,100r0(E,P ′) be small enough, and follows from (20.11) if ε0 is
small enough. Then Corollary 12.25 in [10] says that E is C1+β-equivalent
to a plane in B(x0, r0), with some additional precisions on the way it is
equivalent, and an exponent β > 0 that could be computed in terms of our
various constants.

In addition to this, and as described at the beginning of Section 6, E ∩
B(x0, r0) is also a Lipschitz graph with small constant (as small as we want,
if the constants C0, ε1, and ε0 are chosen small enough) over a subset of P ′
that contains P ′ ∩ B(x0, r0/2). See the discussion below (6.22). Thus there
is a neighborhood of T where E is a C1, and small Lipschitz, graph over its
projection on P (j); recall that the width of T is smaller than the radius of
the balls where we get a C1 and flat description above, so that we neither
get a hole in the projection, or two layers (we skip some of the details here).

Now we can apply the implicit function theorem and find that E ∩ Pz ∩
B(x0, r0/4) is a Lipschitz graph over a segment of L(z) that contains L(z)∩
B(w, r0/8). Recall also that r0 = 8τ/110 is much larger than the width
104ε0 of T (z). Lemma 19.1 then follows from our local Lipschitz description
of E ∩ Pz near L(z) ∩A. �

We want to relate average flatness estimates for the graphs Gz to the
variations of the density excess f(r) = θ(r) − θ0. The connection will be
through the coarea theorem, the computation of a Jacobian, and the follow-
ing angle α(x).
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For almost every x ∈ E ∩ A, E has a tangent plane TE(x) at x (the
rectifiability gives an approximate tangent plane, which would be enough
here, but the local Ahlfors regularity, or more brutally the fact that E is C1

in a neighborhood of almost every point of E \L, give a true tangent plane).
For these x, we denote by α(x) ∈ [0, π/2] the (smallest) angle between the
radial direction (0, x) and a unit vector in TE(x).

We want to show that α(x) is small on average, and this will mean some-
thing about the average regularity of Gz

Lemma 20.2. — There is a constant C > 0, that depends only on n,
such that ∫

x∈E∩A ; cosα(x)>0
[1− cosα(x)] dH2(x) 6 CE , (20.16)

where we set E = f(90) +
∫ 180

0 h(r)dr
r .

Proof. — Let us apply the coarea formula (i.e., Theorem 3.2.22 in [29]) to
some nonnegative measurable function g, on the rectifiable set E ∩B(0, 90),
and with the level sets of the function x→ |x|; this yields∫

E∩B(0,90)
g(x)J(x)dH2(x) =

∫ 90

0

{∫
E∩Sr

g(x)dH1(x)
}

dr, (20.17)

where J(r) is the appropriate Jacobian. In the present context, a simple
computation shows that J(x) = cosα(x). See (4.13) and (4.14) in [10] (but
this is not so hard to check anyway).

Let us take g(x) = (cosα(x))−1 when cosα(x) > 0, and g(x) = 0 other-
wise, but first restrict to B(0, r′) \B(0, r), with 0 < r < r′ < 90; notice that
g is integrable on E against J(x)dH2(x), and by (20.17)

v(r′)− v(r) =
∫
E∩B(0,r′)\B(0,r)

dH2(x)

>
∫ r′

r

{∫
E∩Sr

g(x)dH1(x)
}

dr (20.18)

since g(x)J(x) = g(x) cosα(x) 6 1 everywhere. The measurability of the
inside integral is part of the coarea formula. Also, when we divide by r′ − r
and let r′ tend to r in the formula above, we get that

v′(r) >
∫
E∩Sr

g(x)dH1(x) (20.19)

for almost every r ∈ (0, 90) (both sides exist almost everywhere, since both
sides of (20.18) are monotone functions of r and r′). Next, for almost every
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r ∈ R,∫
E∩Sr

[g(x)− 1]dH1(x) 6 v′(r)−H1(E ∩ Sr) = ∆3(r) 6 4rj(r) (20.20)

by (20.19), (19.51), and (19.56). We apply the coarea formula in the other
direction and get that∫

r∈(10−2,90)

∫
E∩Sr

[g(x)− 1]dH1(x)dr

=
∫
E∩A

[g(x)− 1] cosα(x)dH2(x), (20.21)

which is the left-hand side of (20.16) by definition of g (because the set where
cosα(x) = 0 does not contribute). To complete the proof, we just need to
show that∫

r∈(10−2,90)
rj(r) 6 CE , with E = f(90) +

∫ 180

0
h(r)dr

r
. (20.22)

Recall from (19.24) that j(r) = rθ′(r) + f(r) + (1 + 2θ0αn)h(2r) + (1 +
θ0αn)

∫ r
0
h(2t)dt

t . Since here r 6 90, the last two terms are clearly dominated
by the second half of E . For f(r), we observe that for 0 < r 6 90,

f(r) = θ(r)− θ0 6 θ(90) exp
(
αn

∫ 90

0

h(2t)dt
t

)
− θ0

= f(90) + θ(90)
[
exp

(
αn

∫ 90

0

h(2t)dt
t

)
− 1
]

(20.23)

by the almost monotonicity formula (19.10). We multiply by r 6 90, inte-
grate, and get less than CE . We are left with θ′. But∫ 90

0
r2θ′(r)dr 6 902

∫
r∈(0,90);θ′(r)>0

θ′(r)dr

6 902

[∫ 90

0
θ′(r)dr −

∫
r∈(0,90);θ′(r)<0

θ′(r)dr
]

6 902

[
θ(90)− θ0 +

∫
r∈(0,90);θ′(r)<0

αnh(2r)dr
r

]

6 902
[
f(90) + αn

∫ 90

0
h(2r)dr

r

]
(20.24)

by Lemma 17.1 and because we know from (19.10) that θ′(r) > −αnr−1h(2r)
almost everywhere. This proves (20.22) and Lemma 20.2. �

We shall now use Lemma 20.2 to control the variations of the cone Z(r)
from the previous section. Let j ∈ J and z ∈ C′j be given, and let Gz be as
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in (20.6). Lemma 20.1 says that for r ∈ (10−2, 90), there is a unique point
of Gz ∩ Sr, which we denote by wz(r). Set ξz(r) = wz(r)/|wz(r)|. Then set

δj(z) = sup
{
|ξz(r)− ξz(r′)| ; 10−2 < r, r′ < 90

}
; (20.25)

let us check that ∫
z∈C′

j

δj(z)dH1(z) 6 CE1/2. (20.26)

First we fix z ∈ C′j and study the variations of ξz(r). By Lemma 20.1, ξz is
C1. We want to show that

|ξ′z(r)| 6 C sinα(wz(r)), (20.27)

but let us try not to get confused by the various angles. Set x = wz(r),
α = α(wz(r)), e = ξz(r) = x/|x|, denote by T the direction of the tangent
plane to E at x, and let v ∈ T be a unit vector that minimizes the angle
with e. Thus 〈v, e〉 = cosα.

Recall from the proof of Lemma 20.1 that near x, E is a Lipschitz graph
over P (j) (the plane that contains Cj) with a constant as small as we want.
This means that T is as close to P (j) as we want. In particular T is not
contained in Pz, and we can find a unit vector a ∈ T , which is orthogonal to
Pz. Notice that x ∈ Gz ⊂ Pz, so e ∈ Pz and dist(v, Pz) 6 dist(v,Re) = sinα.
Since (20.27) is trivial when α > 10−1, we may assume that α 6 10−1

(we could also have proved this too); then, denoting by πz the orthogonal
projection on Pz,

|〈v, a〉| = |〈v − πz(v), a〉| 6 dist(v, Pz) 6 sinα 6 10−1, (20.28)

the basis (v, a) is nearly orthogonal, and the norm (in T ) of the projection
on the direction of v parallel to a is less than 2.

Denote by w a unit tangent vector to Gz at x; of course w ∈ T , and we
can write w = λv + µa, with |λ| 6 2. Recall that we are interested in the
angle between w and the radial direction e. Denote by π⊥ the orthogonal
projection on the direction orthogonal to e; then

|π⊥(w)| 6 |λ||π⊥(v)|+ |µ||π⊥(a)| = |λ||π⊥(v)| 6 2|π⊥(v)| = 2 sinα (20.29)

because a is orthogonal to Pz, hence to e, and by definition of α.

Now we compute ξ′z(r) brutally. Since the derivative of |wz(r)| is
〈wz(r), w′z(r)〉|wz(r)|−1,

ξ′z(r) = w′z(r)
|wz(r)|

− wz(r)〈wz(r), w′z(r)〉
|wz(r)|3

. (20.30)

That is,

|wz(r)|ξ′z(r) = w′z(r)− wz(r)〈wz(r), w′z(r)〉|wz(r)|−2. (20.31)
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As could be expected, the total contribution of w′z(r) in the direction of wz(r)
(or equivalently, with the notation above, of e) vanishes. Also, |wz(r)| = r;
we are left with

|rξ′z(r)| = |π⊥(w′z(r))| 6 2 sinα|w′z(r)| 6 3 sinα (20.32)

by (20.29) and because Gz is a small Lipschitz graph; (20.27) follows.

We integrate (20.27) on a subinterval of (10−2, 90) and find that

δj(z) 6
∫ 90

10−2
|ξz(r)′|dr 6 C

∫ 90

10−2
sinα(wz(r))dr. (20.33)

Then we integrate on C′j and get∫
z∈C′

j

δj(z)dH1(z) 6 C
∫
z∈C′

j

∫ 90

10−2
sinα(wz(r))drdH1(z). (20.34)

Now the double integral looks like an integral on a piece of E ∩ A. Indeed,
denote by Gr(j) the union of the graphs Gz, z ∈ C′j ; that is,

Gr(j) = E ∩A ∩
⋃
z∈C′

j

(T (z) ∩ Pz) = E ∩A ∩ T ∩
⋃
z∈C′

j

Pz. (20.35)

By the proof of Lemma 20.1, Gr(j) is a 1
20 -Lipschitz graph over (a subset

of) P (j). In addition, (20.10) says that it stays as close as we want to P (j),
and therefore cosα(w) > 0 on Gr(j). Now (20.34) yields∫

z∈C′
j

δj(z)dH1(z) 6 C
∫
w∈Gr(j)

sinα(w)dH2(w)

6 C

{∫
Gr(j)

sin2 α(w)dH2(w)
}1/2

6 C

{∫
w∈E∩A ; cosα(w)>0

[
1− cosα(w)

]
dH2(w)

}1/2

6 CE1/2 (20.36)

by Cauchy–Schwarz, because Gr(j) ⊂
{
w ∈ E ∩ A ; cosα(w) > 0

}
, then

sin2 α(w) 6 2(1− cosα(w)), and by (20.16). This proves (20.26).

Lemma 20.3. — Let Z(r), r ∈ R, denote the cone of Section 19. Then

d0,1(Z(r), Z(s)) 6 Cj(r)1/2 + Cj(s)1/2 + CE1/2 (20.37)

for r, s ∈ R.
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Proof. — Here and below, C is allowed to depend on constants like η(X).
It will be enough to prove (20.37) when

j(r) and j(s) are small enough (20.38)
(depending on η(X) in particular), because otherwise it is trivial. This will
allow us to avoid some unpleasant cases.

First we construct some points. Fix r, s ∈ R, with (20.38), and let an
index j ∈ J be given. By Chebyshev, we can find z1 = z1(j) and z2 =
z2(j) ∈ C′j , with the following properties:

dist(z1, z2) > C−1η(X), (20.39)
(we just use the fact that length(Ci) > 10−1η(X) here)

δj(z1) + δj(z2) 6 CE1/2 (20.40)
(by (20.26), and if we choose C in (20.40) large enough), and, for i = 1, 2
and with the notation of Lemma 19.4,

wzi(r) ∈ γ∗(r) and wzi(s) ∈ γ∗(s). (20.41)
Let us check that (19.28) allows us to arrange this last condition as well.
Recall that wzi

(r) and wzi
(s) lie in E∩A∩T , where T is the thin region near

the cone over C′j that was defined in (20.5). On this region, the projection
which to a point w associates the point z ∈ C′j such that w ∈ Pz is C-
Lipschitz, and now the exceptional set of z ∈ C′j for which (20.41) fails is
contained in the projection of the union of the bad sets for (19.28); we assume
that j(r) is so small that we have a lot of choices left, and use Chebyshev to
get (20.39) and (20.40).

Now we want to use these points to control Z(r), so let us first remind
the reader of how we chose Z(r) and at the same time introduce more no-
tation. Recall from the discussion below (19.46) that since we may assume
that j(r) is small enough, as in (20.38), we may assume that (19.30) holds.
Then there are only two options. The first one is when (19.43) holds, i.e.,
when ρ∗(r) = ϕ∗(K) is an acceptable small deformation of K = X ∩ S, and
then we took Z(r) = ϕ∗(X) (the cone over ρ∗(r), or equivalently the cor-
responding deformation of X), as in (19.44). The other option is described
below (19.49)), where ρ∗(r) has one or two isolated additional points (ver-
tices of K ∩ S), which we remove from ρ∗ to get ρ′, and then we take for
Z(r) the cone over ρ′, as in (19.50). Let us set ρ′ = ρ∗(r) in the first case
(when (19.43) holds), so that Z(r) is the cone over ρ′ = ρ′(r) in both cases.
Of course it will be enough to control ρ′.

By construction, ρ′ is composed of a collection of geodesics. Most of them
are obtained from an arc Cj , j ∈ J , by moving a tiny bit one or two of its
endpoints. Let us write ρ′j the arc of geodesic that comes like this from
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Cj . When ` ∈ K ∩ S is one of the two endpoints of Cj , it may be that the
corresponding endpoint of ρ′j is of the form ϕ(`), or just ` itself, depending on
the configurations. Also, it can happen that in addition to the ρ′j , ρ′ contains
one or two very short additional arcs, that go from some ` ∈ K ∩ S to ϕ(`).
For each `, there is only (at most) one such arc, which we call ρ` = ρ(`, ϕ(`)).
Since we do this construction with both radii r and s, we shall often add
this in the notation. Thus Z(r) is the cone over

ρ′(r) =
⋃
j∈J

ρ′j(r) ∪
⋃
`

ρ`(r), (20.42)

where the last union may be empty and concerns at most two vertices ` ∈
K ∩ L, and there is a similar description for ρ′(s).

We want to place each ρ′j(r) by finding two points in it; we will take
care of the ρ`(r) later. We start from the two points wzi

(r), i = 1, 2. Since
wzi

(r) ∈ γ∗(r), (19.29) tells us that we can find yi(r) = yi(r, j) ∈ Z(r) ∩ Sr
such that dist(yi(r, j), wzi

(r)) 6 Cj(r)1/2. We claim that

yi(r, j) ∈ ρ′j(r) for i = 1, 2 and dist(y1(r, j), y2(r, j)) > C−1η(X). (20.43)

Recall that wzi
(r) ∈ E ∩ T ∩ Sr, so wzi

(r) lies within 104ε0 � η(X) of the
cone over C′j , and (since j(r) is small by (20.38)) yi(r, j) lies very close too.
Since C′j lies at distance at least η(X)/10 from L ∩ S and K \ Cj , and at
the same time ϕ does not move points much, we see that yi(r, j) cannot
lie in any other ρ′k(r), k ∈ J \ {j}, nor any ρ′`(r). That is, yi(r, j) ∈ ρ′j(r).
In addition, the two zi are far from each other (by (20.39)), hence also the
wzi

(r) and the yi(r, j). This proves (20.43).

Let ρ̂j(r) denote the great circle in Sr that contains the geodesic ρ′j . Then
r−1ρ̂j(r) is the great circle in S that contains the two points r−1yi(r, j).
Similarly define the great circles ρ̂j(s) (starting from Z(s)), and points
yi(s, j) ∈ Z(s) ∩ Ss, and notice that s−1ρ̂j(s) is the great circle in S that
contains the two points s−1yi(s, j). In addition, for i = 1, 2,

|s−1myi(s, j)− r−1yi(r, j)|
6 s−1|yi(s, j)− wzi(s)|+ |s−1wzi(s)− r−1wzi(r)|+ r−1|wzi(r)− yi(r, j)|

6 Cj(r)1/2 + |s−1wzi
(s)− r−1wzi

(r)|+ Cj(s)1/2

6 Cj(r)1/2 + CE1/2 + Cj(s)1/2. (20.44)

We deduce from this and (20.43) that

dH(r−1ρ̂j(r), s−1ρ̂j(s)) 6 Cj(r)1/2 + Cj(s)1/2 + CE1/2 = CE ′, (20.45)

where the Hausdorff distance dH is defined as in (18.5), and we set E ′ =
j(r)1/2 + j(s)1/2 + E1/2 to save some space. This is good, but we also want
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to control the position of the endpoints of the ρ′j(r) and the ρ′j(s), because
we want to show that

dH(r−1ρ′(r), s−1ρ′(s)) 6 CE ′. (20.46)
Indeed, (20.37) will follow from (20.46), since Z(r) is the cone over r−1ρ′(r),
and similarly for Z(s).

We intend to prove this locally, in balls of radius roughly equal to
C−1η(X) and centered on K. We start away from K ∩ L, and first con-
sider balls centered on the vertices of V1 ∪V2 of our standard decomposition
(see the definitions near (3.5)).

Let a0 ∈ V1 ∪ V2 be given, call Cj , Ck, and maybe Cl (that is, if a0 ∈ V1)
the two or three arcs of K that end at a0. By the various definitions, ρ′j(r),
ρ′k(r), and maybe ρ′l(r) are arcs of geodesics that end at some point ra(r),
with a(r) ∈ S, and a(r) lies very close to a0 (because it is of the form ϕ(a0)
for some ϕ ∈ Φ+

X(η), with η much smaller than η(X)). We have a similar
description of ρ′j(s), ρ′k(s), and maybe ρ′l(s), with another point a(s) ∈ S.

When a0 ∈ V1, the three Cj , Ck, and Cl make 120◦ angles with each other,
and the position of a(r) is determined, within 10CE ′, as soon as we know
the position of the full circle r−1ρ̂j(r) and its analogues for k and l. The
same thing holds for the radius s, and now (20.45) implies that

|a(r)− a(s)| 6 CE ′. (20.47)
Once we have this, and by (20.45) again, we easily deduce that

da0,10−4η(X)(r−1ρ′j(r), s−1ρ′j(s)) 6 CE ′ (20.48)
and similarly for k and l. Since we are far from the ρ` and by (20.42), we
immediately get that

da0,10−4η(X)(r−1ρ′(r), s−1ρ′(s)) 6 CE ′. (20.49)
This is good enough for (20.46), so we may switch to the case when a0 ∈ V2,
and we started from two arcs Cj and Ck that go in opposite directions. In
this case, we will not control the geodesics separately, but we will be able
to control the union. That is, we may not know so precisely where a(r) and
a(s) lie (i.e., (20.47) may fail), but nonetheless we claim that (20.49) still
holds, although maybe with a larger constant. Indeed if the angle of ρ̂j(r)
and ρ̂k(r) at ra(r) is at most CE ′, the angle of ρ̂j(s) and ρ̂k(s) at sa(s) is
less than CE ′ too, and in the ball B(a0, 10−4η(X)), r−1ρ′(r) is CE ′-close to
r−1ρ̂j(r) (or to r−1ρ̂k(r), since the two are close to each other). If now the
angle of ρj(r) and ρk(r) at ra(r) is roughly λE ′, with λ large, then the proof
of (20.47) merely gives |a(r)−a(s)| 6 Cλ−1, but we still get (20.49) because
the distance between ρj(r) and ρk(r) (or similarly ρj(s) and ρk(s)) varies by
at most CλE ′ times this distance. Said differently, we look for a Lipschitz
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graph (for instance s−1ρ′(s)) composed of two arcs of geodesics, knowing
these two geodesics with errors of CE ′; then we can recover the graph within
CE ′ (after deciding which way it branches), which we can if the geodesics
make angles λE ′, with λ large.

This takes care of small balls B(a0, 10−4η(X)) centered on V1 and V2. It
is even easier to show that

da0,10−6η(X)(r−1ρ′(r), s−1ρ′(s)) 6 CE ′ (20.50)

when a0 ∈ K is such that dist(a0, V0 ∪ V1 ∪ V2) > 10−5η(X), because in the
ball B(a0, 10−6η(X)), r−1ρ′(r) coincides with a single r−1ρ̂j(r), the one for
which a0 ∈ Cj . This comes from the fact that all the other ρ′j(r) (or ρ′`(r))
are far away, by (3.9)–(4.3) and the fact that we have a good control on the
angles that two arcs ρ′j(r) make when they have a common endpoint.

This takes care of the part of ρ′(r) and ρ′(s) that lives far from V0 = K∩L,
and (20.46) (and hence also the lemma) will follow if we can prove that for
` ∈ V0,

d`,10−4η(X)(r−1ρ′(r), s−1ρ′(s)) 6 CE ′. (20.51)
We will need to distinguish cases, depending on the configurations that we
encounter for r and s. A priori, these two configurations may be different.

We start with the case when K has only one branch near `. Since hanging
curves never occur when j(r) and j(s) are small (recall (20.38)), there is only
one curve ρ′j near r`, and this curve ends at `. The same thing happens for
s, and in this case (20.51) is a simple consequence of (20.45), because we
know where the curves stop (and on which side they are).

Next assume thatK has two branches at `. Call the corresponding indices
j and k. Then (again because there is no hanging curve) we can only be in
Configuration 2− (treated below (10.20)) or Configuration 2+ (treated in
Section 12).

In the first case, ρ′(r) is composed, near r`, of the two arcs of geodesic
ρ′j(r) and ρ′k(r), and nothing else. They have a common endpoint ra(r), and
even though the position of ρ̂j(r) and ρ̂k(r) does not necessarily determine
a(r) with great precision (because ρ′j(r) and ρ′k(r) may make an angle at
ra(r) that is close to π), it still determines the union of ρ′j(r) and ρ′k(r)
with a good enough precision. That is, if both r and s are subject to Con-
figuration 2−, then we have (20.51), by the same proof as for (20.49) when
a0 ∈ V2.

When we have Configuration 2+ for r, there are again two cases. We
start with the second one (Case B), because then Γ is composed of just two
curves that start from ` (see near (12.8)), the geodesics ρ′j(r) and ρ′k(r) both
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start from `, and their position near ` is easy to deduce from the position
of ρ̂j(r) and ρ̂k(r). If this happens both for r and s, we get (20.51) right
away, and even if we have this configuration for r and Configuration 2− for
s, or the other way around, we still get (20.51) for the same reason as in
Configuration 2−.

We are left with the case when at least one of the radii, say, r, belongs to
Case A of Configuration 2+. In this case ρ′(r) is composed of three geodesics
near `, the usual ρ′j(r) and ρ′k(r), that end at a common point ra(r), plus
the short geodesic ρ′`(r) that goes from r` to ra(r). In this case these three
geodesics make large angles at ra(r) (see (12.2)). In fact the proof of (12.4)
(even simplified) shows that then ρ′j(r), ρ′k(r), and ρ′`(r) make angles larger
than 2π

3 −
π
9 = 5π

9 at ra(r), and then ρ′j(r) and ρ′k(r) make an angle smaller
than 2π− 2 · 5π

9 = 8π
9 < π at ra(r). In this case, we can recover the position

of a(r), within the usual error of CE ′, from the approximate position of the
geodesics ρ̂j(r) and ρ̂k(r) (known within CE ′). In addition, in this case the
same proof also shows that Cj and Ck make an angle smaller than 8π

9 at `,
and we can recover the point of intersection sa(s) of ρ′j(s) and ρ′k(s) with the
same sort of precision. Thus, if s is also coming from case A, we get (20.51)
with the initial proof of (20.49).

We are left with the case when r is associated to Case A and s is associated
to Case B or Configuration 2−. Case B is not a problem, because a(s), which
is the intersection near ` of s−1ρ̃j(s) and s−1ρ̃k(s), lies very close to a(r)
(which has a similar definition in terms of r), and at the same time is equal to
`, so that the additional geodesic ρ′`(r) is very short and we still get (20.51).
We are left with the case when s belongs to Configuration 2−. But in the
present case Cj and Ck make an angle smaller than 8π

9 at `, and it is easy to
see that our union of curves Γ = Γ1 ∪ Γ2 is not efficient because we may as
well cut its edge near `. We claim that this case (i.e., Configuration 2− with
an angle smaller than 8π

9 ) does not occur for s when j(s) is small enough.
The proof is the same as for Configuration 3 = 2+1, treated below (19.49),
except that we don’t even need to worry about the extra arc leaving from `.
This completes our proof of (20.51) when there are only two arcs Cj and Ck
that leave from `.

Now may now assume that we have three arcs Ci, Cj , and Ck that touch `.
The three main geodesics ρ′j(r), ρ′j(r) and ρ′k(r) make angles nearly equal to
2π
3 near `, so the location of the intersections of the great circles that contain
them is known with good precision. In terms of Configurations, recall that
there is no hanging curve, and that Configuration 3 = 2+1 is also ruled out
by the discussion near (19.49). We are thus left with Configuration 3- (where
ρ′(r) is composed of the three geodesics ρ′i(r), ρ′j(r), ρ′k(r) that all leave from
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a same endpoint that we call ra(r) (see near (10.30)), and Configuration
3+, where again we have two subcases. In Case A, Γ and then r−1ρ′(r) are
three-legged spider centered at ` (see (11.31), the comment that follows it,
and then the discussion above (13.13) that confirms how we cut Γ and found
geodesics).

In Case B, Γ and then and r−1ρ′(r) are authorized to have a fork. That
is, they are composed of one curve that leaves from ` (with the notation
of (11.96), the corresponding piece of Γ is called Γ̃5), a short arc r−1ρ′`(r)
(corresponding to Γ̃4 in (11.96)), that goes from ` to some fork point a(r)
(corresponding to x0 in Section 12), and then two other curves that leave
from a(r) (corresponding to Γ2 and Γ3 in (11.96)).

If both r and s both correspond to Configuration 3− or Case A, then we
have (20.51) because the positions of a(r) and a(s) can be obtained with the
desired precision form the position of the great circles where they cut. The
proof is still the same as for (20.49).

So we may assume that for r we have Case B, and (again without loss
of generality) that a(r) is the common endpoint of r−1ρ′j(r) and r−1ρ′k(r).
First assume that s corresponds to Configuration 3− or Case A. Then a(s),
which is the intersection near ` of s−1ρ̂j(s) and s−1ρ̂k(s), lies within CE ′ of
a(r), which is defined similarly, but with s replaced by r (apply (20.45) as
usual). Also, ` lies close to s−1ρ̂i(s) because it lies in r−1ρ̂i(r). Moreover, if
we assume for the sake of the discussion that the tangent of Ci is horizontal
at ` and leaves from ` in the direction of the right, a(r) is roughly aligned
with the opposite of r−1ρ′i(r) (see Lemma 11.5), i.e., lies on the left of `,
and then a(s) also lies on the left (or at least, not far right) of `; hence `
also lies within CE ′ of s−1ρ′i(s) (and not just s−1ρ̂i(s) as we said above). So
r−1(ρ′i(r)∪ ρ′`(r)) is CE ′-close to s−1ρ′i(s) and we get (20.51) by adding the
two other geodesics.

We may thus assume that s also corresponds to Case B. If ρ′i(s) is also
the geodesic of ρ′(s) that leaves from s`, the intersection a(s) of s−1ρ′j(s)
and s−1ρ′k(s) lies close to a(r), as before, and (20.51) holds as usual. So we
may assume that ρ′j(s), say, is the one that starts from s`, and a(s) is the
common endpoint of s−1ρ′i(s) and s−1ρ′k(s). This is not impossible, but we
shall show that then a(r) and a(s) are both close to `.

By Lemma 11.5, a(r) − ` lies in the direction almost opposite to the
direction of Ci at `; since ra(r) ∈ ρ̂j(r) and ρ̂j(r) runs in a quite different
direction, this proves that dist(`, r−1ρ̂j(r)) > 1

10 |a(r)−`|. On the other hand,
s` ∈ ρ′j(s) ⊂ ρ̂j(s), so ` lies CE ′-close to r−1ρ̂j(r) (by (20.43)) and altogether
a(r) lies CE ′-close to `. The same argument (with r and s exchanged) shows
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that |a(s)− `| 6 CE ′; then (20.51) follows as usual: we control the directions
of the geodesics and their origin.

So (20.51) holds in our last case. We have seen earlier that (20.46), and
then (20.37), follow. This completes the proof of Lemma 20.3. �

21. We finally get a good approximation by cones

In this section we complete the proof of Theorem 19.1. In the previous
sections, we took E as in that theorem, selected a sliding minimal cone X
(see Lemma 19.2), constructed deformations Z(r) ∈ Z(X, η) of X, r ∈ R
(in Lemma 19.4), and proved that they often lie close to each other (see
Lemma 20.3). Now we want to pick one of the cones Z(r) and show that it
is close to E, as needed for Theorem 19.1.

So let us choose a radius r0 ∈ R. We simply use Chebyshev to select
r0 ∈ R such that

r0 ∈ (1, 2) and j(r0) 6 2
∫ 2

1
j(r)dr 6 CE , (21.1)

where the second inequality comes from (20.22).

Set Z = Z(r0); want to show that E is close to Z in, say, B(0, 2), but it
will be simpler to first take care of the annulus A0 = B(0, 2) \ B(0, 10−1);
we will worry later about B(0, 10−1), with an iteration argument. First we
check that points of Z ∩A0 are close to E.

Lemma 21.1. — With Z and A0 = B(0, 2) \B(0, 10−1) as above,
dist(z, E) 6 CE1/3 for z ∈ Z ∩A0. (21.2)

Proof. — Let z ∈ Z ∩A0 be given, set r = |z|, and pick s ∈ R such that
j(s) 6 E2/3. By Chebyshev, we can find s so that

|s− r| 6 2E−2/3
∫ 90

0
j(r)dr 6 CE1/3, (21.3)

by (20.22) again. Set z1 = sr−1z; thus z1 ∈ Z ∩ Ss and |z1 − z| = |s− r| 6
CE1/3. By Lemma 20.3 (applied to r0 and s), we can find z2 ∈ Z(s) ∩ Ss
such that

|z2 − z1| = dist(z1, Z(s)) 6 3d0,1(Z,Z(s))

6 C(j(r0) + j(s) + E)1/2 6 CE1/3. (21.4)

Then we use Lemma 19.4 and find x ∈ γ∗(s) such that |x−z2| 6 Cj(s)1/2 6
CE1/3. Since x ∈ γ∗(s) ⊂ E (see the first line of Lemma 19.4), we get that
dist(z, E) 6 |x− z| 6 CE1/3, as needed. �
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Lemma 21.2. — Keep Z and A0 as above; then

dist(x, Z) 6 CE1/4 for x ∈ E ∩A0. (21.5)

Proof. — We first find some points of E for which (21.5) holds. Let x ∈ E
be given, and first assume that r = |x| lies in R, with j(r) 6 E1/2, and that
in addition x ∈ γ∗(r). Then by (19.29), there is a point z ∈ Z(r) such
that dist(x, z) 6 Cj(r)1/2 6 CE1/4. In addition, Lemma 20.3 gives us a
point w ∈ Z = Z(r0) such that |w − z| 6 C[j(r) + j(r0) + E ]1/2 6 CE1/4,
by (20.37) and the definition of r0. That is, dist(x, Z) 6 C0E1/4 for some
constant C0 that satisfies the usual requirements. Next we consider

E0 =
{
x ∈ E ∩B(0, 3) \B(0, 10−2) ; dist(x, Z) > C0E1/4}. (21.6)

We want to estimate the measure of E0, and unfortunately we will have to
single out the ugly set

Eb =
{
x∈E∩B(0, 3)\B(0, 10−2) ;

E has no tangent plane at x
or cosα(x) = 0

}
, (21.7)

which will be treated separately, after we look at

E1 =
{
x ∈ E0 \ Eb ; |x| /∈ R or j(|x|) > E1/2} (21.8)

and
E2 =

{
x ∈ E0 \ (Eb ∪ E1) ; x ∈ E ∩ S|x| \ γ∗(|x|)

}
. (21.9)

By the discussion above, E0 = Eb ∪ E1 ∪ E2.

We shall now use the coarea formula and Lemma 20.2 to estimate
H2(E1 ∪ E2). We write

H2(E0 \ Eb) =
∫
E0\Eb

{
[1− cosα(x)] + cosα(x)

}
dH2(x)

6 CE +
∫
E0\Eb

cosα(x)dH2(x)

= CE +
∫ 3

r=10−2
H1((E0 \ Eb) ∩ Sr)dr

6 CE +
∫ 3

r=10−2
H1(E1 ∩ Sr)dr +

∫ 3

r=10−2
H1(E2 ∩ Sr)dr (21.10)

by (20.16) and (20.17) with g = 1E0\Eb
, and where we recall that J(x) =

cosα(x). Next∫ 3

r=10−2
H1(E2 ∩ Sr)dr 6

∫ 3

r=10−2
H1(E ∩ Sr \ γ∗(r))dr

6
∫ 3

r=10−2
j(r)dr 6 CE (21.11)
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by (21.9), (19.28) and (20.22). Now we estimate
∫ 3
r=10−2 H1(E1 ∩ Sr)dr. We

can drop the radii r ∈ (10−2, 3) \ R, because the corresponding set has
vanishing measure by (19.23). We also restrict to r such that j(r) > E1/2,
by (21.8), and notice that since r ∈ R,

H1(E1 ∩ Sr)dr 6 v′(r) = r2θ′(r) + 2r−1v(r) = r2θ′(r) + 2rθ(r)
= r2θ′(r) + 2rf(r) + 2rθ0 6 2rθ0 + Crj(r) (21.12)

by (19.22), (19.21), and then (19.27). Thus∫ 3

r=10−2
H1(E1 ∩ Sr)dr

6 θ0

∫ 3

r=10−2
1j(r)>E1/2 rdr + C

∫ 3

r=10−2
rj(r) 6 CE1/2 (21.13)

by (20.22) and Chebyshev. We compare with (21.11) and (21.10) and get
that

H2(E0 \ Eb) 6 CE1/2. (21.14)
Unfortunately, we still have to take care of Eb, where the co-area formula
does not seem to work so well. In fact, if we apply (20.17) with g = 1Eb

, the
left-hand side vanishes (because J(x) = 0 almost everywhere on Eb), and
the right-hand side is

0 =
∫ 90

0

{∫
E∩Sr

g(x)dH1(x)
}

dr =
∫ 90

0
H1(Eb ∩ Sr)dr. (21.15)

Thus H1(Eb ∩ Sr) = 0 for almost every r, and the contribution of Eb is not
seen when we evaluate the variations of v(r) using the integral of v′ and the
estimate (19.22). That is, if we set Ẽ = E \ Er, ṽ(r) = H2(Ẽ ∩ B(0, r)),
and θ̃(r) = r−2ṽ(r), the proof of near monotonicity for θ also yields the
near monotonicity of θ̃, as in (19.10). It is a little sad that the author is
forcing the reader to trust that the proof of near monotonicity uses nothing
else than (19.22); in [10] the author gave an other proof that avoids this
unpleasant point, but at the same time is more complicated. Anyway, the
near monotonicity for θ̃(r) yields

θ̃(90) > θ0 exp
(
−αn

∫ 90

0

h(2t)dt
t

)
> θ0 − θ0αn

∫ 90

0

h(2t)dt
t

(21.16)

by (19.1) (as in (19.11)), and because
∫ 90

0
h(2t)dt

t is small by (19.8). Then
θ(90) = θ̃(90) + 90−2H2(Eb) > θ0 + 90−2H2(Eb)− θ0αn

∫ 90
0

h(2t)dt
t , hence

f(90) > 90−2H2(Eb)− θ0αn

∫ 90

0

h(2t)dt
t

(21.17)
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or equivalently

H2(Eb) 6 902f(90) + 902θ0αn

∫ 90

0

h(2t)dt
t

6 CE (21.18)

by the definition of E in Lemma 20.2. With (21.14), this shows thatH2(E0) 6
CE1/2.

Now assume that we can find x ∈ E∩A0 such that dist(x, Z) > 2C1E1/4,
where the large constant C1 > C0 will be chosen soon. Set ρ = C1E1/4; the
set E3 = E ∩B(x, ρ) stays at distance at least C1E1/4 from Z, and it is also
contained in B(0, 3)\B(0, 10−2) (because x ∈ A0 = B(0, 2)\B(0, 10−1) and
we may assume that E is arbitrarily small), so E3 ⊂ E0. On the other hand,
the local Ahlfors regularity of E yields H2(E3) > C−1ρ2 = C−1C2

1E1/2, with
a constant of the usual type, and that does not depend on C1; we choose
C1 large enough and get the desired contradiction with our upper bound for
H2(E0). This completes the proof of Lemma 21.2. �

Remark 21.3. — In [10] we obtained a better power, namely 1/3 instead
of 1/4. We do not try to do this here, and send the reader to [10] instead in
the unlikely event where something like this would be needed. The general
idea was not hard: because of Lemma 21.1, we already know that all points
of Z∩A lie CE1/3-close to E; we also know that E is reasonably close, in any
ball B0 centered on E ∩A and with radius 10−2, say, to our initial minimal
cone X. The point is to use the fact that, in such a ball (and if we want,
due to the fact that near B0, the cone Z is one step simpler than in the ball
centered at the origin), we have a good description of E in 10−1B0, which
we can use to say that it cannot look like Z, plus a tiny bit that goes away
from Z. In the case of [10], we showed that E is locally Hölder-equivalent
to a cone of type Y or P; here we would use the results of [13] (or even this
paper with a smaller density θ0) to get a good description of E near a point,
that prevents additional spikes that go away from Z. In both case we use
extra flatness instead of Ahlfors-regularity to get a better control of E at
the scale E1/3 rather than E1/4.

We are now ready to prove Theorem 19.1. Our first observation is that
if E is as in the theorem, and we choose a new scale ρ ∈ (0, 1/2), then the
new set Eρ = ρ−1E satisfies almost the same assumptions as E itself. That
is, the new gauge function for Eρ is hρ(r) = h(ρr), and it satisfies (19.6)
(even with the slightly smaller constant C0ρ

β0) if h satisfies (19.6). As for
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the analogue fρ of f , notice that
fρ(200) = f(200ρ) = θ(200ρ)− θ0

6 θ(200) exp
(
αn

∫ 200

0

h(2t)dt
t

)
− θ0

6 [f(200) + θ0]
(

1 + 2αn
∫ 200

0

h(2t)dt
t

)
− θ0

6 f(200) + C

∫ 400

0

h(t)dt
t

(21.19)

because the density at the origin of Eρ is still θ0, and by (19.10). This is
essentially as good as f(200), i.e., when we assume (19.8) for E with a slightly
smaller ε1, we also get (19.8) for Eρ with ε1.

Let us just consider ρk = 2−k, with k ∈ N. For each k, we proceed as
above, i.e., select a minimal cone X = Xρk

, then other cones Z(r) = Zρk
(r),

r ∈ Rρk
, then a radius rk ∈ Rρk

that plays the role of r0 above, and finally
the cone Z(k) = Zρk

(rk) that we used for Lemmas 21.1 and 21.2.

Notice that rk+1 lies in the set Rk that was used for the kth step, that
j(rk+1) is actually the same when we think that rk+1 ∈ Rk or rk+1 ∈ Rk+1,
and that we could have used the same cone Z(k+1) = Zρk+1(rk+1) as the set
Zρk

(rk+1). Then by Lemma 20.3 (applied with choice of Zρk
(rk+1)),

d0,1(Z(k), Z(k+1)) = d0,1(Zρk
(rk), Zρk

(rk+1))

6 C
(
j(rk) + j(rk+1) + CEk

)1/2 (21.20)
where

Ek = f(90ρk) +
∫ 180ρk

0
h(t)dt

t
(21.21)

is the analogue of E at stage k, (see Lemma 20.2). But rk and rk+1 were
chosen so that j(rk) 6 CEk and j(rk+1) 6 CEk+1 (see (21.1)), so

d0,1(Z(k), Z(k+1)) 6 C
(
Ek + Ek+1

)1/2
. (21.22)

Notice that
Ek 6 CEj for 0 6 j < k, (21.23)

by the near monotonicity of f (or θ), with the same proof as for (21.19). We
claim that then

d0,1(Z(j), Z(k)) 6 C(k − j)E1/2
j for 0 6 j < k. (21.24)

For instance, if zj ∈ Z(j) ∩B(0, 1), (21.22) gives a point zj+1 ∈ Z(j+1) such
that |zj+1−zj | 6 C

(
Ej +Ej+1

)1/2
6 CE1/2

j , by (21.23); we may assume that
zj+1 ∈ B(0, 1) (because its projection on B(0, 1) still lies in the cone Z(j+1)
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and is not twice further. By induction, for every ` > j we can find z` ∈
Z(l)∩B(0, 1) such that |z`−zj | 6 C(`− j)E1/2

j ; we stop at ` = k and get the
first half of (21.24). The converse is the same: any point zk ∈ Z(k) ∩B(0, 1)
is within C

(
Ek + Ek−1

)1/2
6 CE1/2

j of Z(k−1) ∩ B(0, 1), and so on until we
reach Z(j) ∩B(0, 1).

Now it is easy to see that

d0,1(E,Z) 6 CE1/4
1 . (21.25)

Recall that we chose Z = Z(0). Let x ∈ E ∩ B(0, 1) be given, and choose k
so that 2−k−1 6 |x| 6 2−k. By Lemma 21.2 (applied to Eρk

), we can find
z ∈ Z(k) such that |z − ρ−1

k x| 6 CE1/4
k 6 CE1/4 (recall that ρk = 2−k). We

may as well take z ∈ B(0, 1), because |ρ−1
k x| 6 1 and so the projection of

z on B(0, 1) cannot be twice further. Then by (21.24) (with j = 0) we can
find w ∈ Z such that |w − z| 6 CkE1/2; thus |x − ρkw| = ρk|ρ−1

k x − w| 6
C(1+k)ρkE1/4 6 CE1/4 and we get the first half of (21.25). The second half
is done the same way, using (21.24) and then Lemma 21.1.

We already noticed in (19.46) that α(Z) = α(Z(r0)) 6 Cj(r0) 6 CE ,
by (21.1). So we can use Z to establish (19.7); Theorem 19.1 follows. �

22. A partial conclusion and the tangent cone is unique

In this section we stop and think a little about what we have done so
far, and prove the existence of a tangent cone X0 at the origin (i.e., the
uniqueness of blow-up limit) in some circumstances, as well as a good ap-
proximation result by X0 in small balls B(0, r).

We shall systematically assume that L is a line through the origin,
E is a reduced sliding almost minimal set in B(0, r1) ⊂ Rn,

with a boundary condition coming from L,
(22.1)

with a gauge function h such that
h(r) 6 Chrβ for 0 < r 6 r1 (22.2)

for some constants Ch > 0, β > 0, and r1 > 0. We also assume that
0 ∈ E ∩ L. (22.3)

Our simplest result is the following.

Corollary 22.1. — Let E satisfy (22.1)–(22.3), and suppose in addi-
tion that

some blow-up limit of E at 0 satisfies the full length condition. (22.4)
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Then E has a unique blow-up limit X0 at 0, and we can find a > 0, r0 ∈
(0, r1), and C1, C2 > 0 such that

f(r) 6 C1r
a and d0,r(E,X0) 6 C2r

a/4 for 0 < r < r0, (22.5)
where as usual
f(r) = θ(r)−θ0, with θ(r) = r−2H2(E∩B(0, r)) and θ0 = lim

t→0
θ(t). (22.6)

Here a depends only on n and the full length constant for X0 (which turns
out to be the unique blow-up limit), while r0, C1, and C2 may depend wildly
on E.

The reader should not pay too much attention to the difference between
a and a/4; this is just how they come in the proof.

This corollary generalizes Corollary 18.2, and will apply automatically
when θ0 = limt→0 θ(t) 6 3π

2 if we ever prove (18.23), by the full length
result of Section 37.

As usual, we prefer to state a more precise result, with more quantifiers,
where we start from the good approximation of E by a full length cone X
in a given ball, and get the existence of a tangent cone X0 and more precise
approximation results for X0 in smaller balls.

Theorem 22.2. — Let X be a sliding minimal cone of dimension 2 in
Rn, with sliding boundary condition coming from L, and assume that X
satisfies the full length condition. For each choice of constant β > 0, we can
find ε0 > 0, such that if the sliding almost minimal set E satisfies (22.1)–
(22.3), has the same density at 0 as X, i.e.,

H2(X ∩B(0, 1)) = lim
r→0

r−2H2(E ∩B(0, r)), (22.7)

and if in addition we can find ε ∈ (0, ε0] such that

Chr
β
1 6 ε and d0,r1(E,X) 6 ε, (22.8)

then E has a unique tangent cone X0 at 0,

d0,r(E,X0) 6 c1(ε)
(
r

r1

)a/4
for 0 < r < r1, (22.9)

and, with f as in (22.6),

f(r) 6
(

3r
r1

)a
f(r1/3) + C3Chr

β
1

(
r

r1

)a
6 c2(ε)(r/r1)a

for 0 < r < r1/3. (22.10)
Here a > 0, ε0, and C3 depend only on n, β, and X through the geometric
constants θ0, η(X), η, and c associated to X and its full length condition.
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The constants c1(ε) and c2(ε) depend also on ε, and tend to 0 (with n, β,
η(X), η, and c fixed) when ε tends to 0.

As we shall see at the end of this section, this result is stronger than
the combination of Theorems 1.8 and 1.9, but not as trivially as one could
think. We cannot apply Theorem 22.2 brutally because the cones of P, Y, and
T, for instance, do not really satisfy the full length property with uniform
constants, since the number η(X) also measures the distance from ` ∈ L\K
to the closest vertex of K, which may be arbitrarily small. We will finesse
the issue by a small covering argument, as we did for Proposition 18.1.

Theorem 22.2 clearly implies Corollary 22.1 (apply it with a full length
blow-up limit X and a small enough radius r1 such that (22.8) holds). In ad-
dition to the more precise estimates, it has an advantage over Corollary 22.1
that we don’t need to compute a blow-up limit of E; it is enough to approx-
imate E well enough by a full length minimal cone. However, we still need
to know the density of E at 0, because of (22.7). And the small constant
ε0 depends on our choice of X, so we may have to make tough arbitrages
between good approximation and large full length constants.

The sets X and X0 are not related a priori, but the proof will show that
X and X0, in addition to having the same density, are based on the same
model. That is, X0 is a deformation of X as in Definition 4.1.

The general strategy for the proof will be to use Proposition 17.2 to get
some decay for f , and Theorem 19.1 to deduce from the size of f(r) that E
lies close to a nice cone. We will have to do the two things at the same time,
because we also need the good approximation result of Theorem 19.1 to find
a nice minimal cone for which (17.7) holds for smaller radii. That is, we will
need to show at the same time that (22.9) and (22.10) hold, for smaller and
smaller radii r.

Before we turn to the proof, let us say that Theorem 22.2 is not enough
to give a good C1 description of E near 0, even when the blow-up limits of
E at 0 are simple. Sure enough, we get a good control on E in every small
ball centered at 0, but what about small balls contained in B(0, r1/10),
but centered at other points of E ∩ L, and more importantly at points of
E \ L? If we want to apply something like Reifenberg’s topological disk
theorem to describe E near 0, it seems that we need a uniform control
on (the approximation of E by nice cones in) these ball to get biHölder
descriptions, and even a uniform decay to get a C1, or slightly better than
C1, description.

We managed in [13] to get enough uniform control on such balls to get a
biHölder description of E near 0 in some specific situations (when E looks a
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lot like a half plane or a V-set in B(0, r1)), and in the present paper we want
a better control (better than C1), and slightly more cases. Both here and
in [13], we rely on the near monotonicity of a close relative of θ, the function
F of (1.27), which is adapted to balls that are centered slightly off L.

This is why we will need to redo a large proportion of the arguments of
this part in the next one, and adapt them to the situation of balls centered
on E \ L, but unfortunately with a limited list of approximating minimal
cones (or truncated cones). In the mean time we prove Theorem 22.2, and
then the fact that it implies Theorems 1.8 and 1.9.

Proof of Theorem 22.2. — Let E and X be as in the statement, and
define θ and f as in (22.6). We want to prove that f decays like a power,
and for this we want to use Proposition 17.2 and integrate the differential
inequality that it gives.

So we want to find a cone X(r) such that (17.7) holds, and since we don’t
want a mess with varying full length minimal cones (that we also would have
to find anyway), the simplest will be to keep the same cone X and hope that
it works for all radii. This means that we will have to prove that it stays
close to E at small scales, which will be done with the help of Theorem 19.1.

Anyway, we want to apply Proposition 17.2 with r0 = r1/2. Let us first
check the easy assumptions: (17.1) holds because of (22.1), and (17.2) follows
from (22.2). For (17.8), we work with the fixed cone X, so (17.8) just requires
that Chrβ0 6 ε(X) for some small constant ε(X), and this follows at once
from (22.8). Finally, (17.10) holds with q(r) = 0, by (22.7). We are left
with (17.7). Again we work with the fixed cone X, so (17.7) demands that

d0,2r(E,X) 6 ε(X); (22.11)

maybe we will not be able to prove this directly for all r ∈ (0, r1/2), so we
define

r00 = sup
{
r ∈ (0, r1/2) ; (22.11) fails

}
, (22.12)

with the convention that r00 = 0 if (22.11) holds for all r ∈ (0, r1/2).
Notice however that since d0,r1(E,X) 6 ε0 by (22.8), we immediately get
that (22.11) holds for r > ε(X)−1ε0r1. That is,

r00 6 ε(X)−1ε0r1, (22.13)

which we can make as small as we wish (compared to r1) by taking ε0 small.

Eventually we shall prove that r00 = 0; in the mean time, set I =
(r00, r1/2). Our last condition (22.11) is only known to hold on I, but for-
tunately it was observed a few lines after the proof of Proposition 17.2 that
with our weaker assumptions (where (17.7) only holds for r ∈ I), the con-
clusion of Proposition 17.2, i.e., the differential inequality (17.11), still holds
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for all r ∈ I. This means that

rf ′(r) > 4α
(1− 2α)f(r)− 3h(r) for almost every r ∈ I, (22.14)

for a fixed constant α = α(X) (and because q(r) = 0). This differential
inequality can be integrated on I as we did in Section 17, and we get the
inequality (17.23), valid for radii in I. We change notation because r1 is
already taken, and get that for r, s ∈ I, r 6 s,

f(r) 6
(r
s

)a
f(s) + 3ra

∫ s

r

h(t) dt
ta+1 6

(r
s

)a
f(s) + 3Chra

∫ s

r

rβdr
ra+1

6
(r
s

)a
f(s) + 6Ch

β
rasβ−a,

(22.15)
where the small positive constant a = 4α

1−2α from (17.20) depends on n, β
and X (as above) but not on Ch, and then by (18.2) and because we can
safely assume that a < β/2.

Let us take s = r1/3. We get that for r ∈ (r00, r1/3),

f(r) 6
(r
s

)a
f(r1/3) + 6Ch

β
sβ
(r
s

)a
6

(
3r
r1

)a
f(r1/3) + CChr

β
1

(
r

r1

)a
. (22.16)

Notice that this is compatible with the first half of (22.10), which therefore
will follow as soon as we prove that r00 = 0.

Let prove the second inequality of (22.10) now. Observe that Chrβ1 6 ε0
by (22.8), so we only need to show that

f(r1/3) 6 c(ε), (22.17)

with a constant c(ε) such that limε→+∞ c(ε) = 0.

We deduce this from the fact that d0,r1(E,X) 6 ε (by (22.8)), with a
simple compactness argument, similar to the proof of Lemma 16.43 in [9],
but based on the limiting arguments of [14] because of the sliding condition.
The point is that if this failed, we could construct a sequence of sliding
almost minimal sets Ej , and a sequence of sliding minimal cones Xj , both
associated to the boundary L, so that (after a dilation that sends r1 to 1)
d0,1(Ej , Xj) tends to 0 but the densities θj(1/3) = 9H2(Ej ∩ B(0, 1/3) and
H2(Xj∩B(0, 1)) stay far from each other. Then we would extract convergent
sequences, use Theorems 10.97 and 22.1 of [14] to control the densities, show
that fj(1/3) = 9Hd(Ej ∩B(0, 1/3))−Hd(Xj ∩B(0, 1)) tends to 0, and get
the desired contradiction.
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For the moment, we only know the first part for r ∈ I, but we still get
that

f(r) 6 c
(
r

r1

)a
for r ∈ (r00, r1/3), (22.18)

with c as small as we want. We want to use this, and Proposition 19.1, to
control the geometry of E, in particular in balls that are too small for (22.8)
to give good results.

Set rk = 10−3kr1, and apply Proposition 19.1 to the set Ek = r−1
k E. The

assumption (19.6) (with β0 = β) follows at once from (22.2) and we can even
take C0 = Chr

β
k 6 10−3kβε0 (by (22.8)). So C0 is small, and Proposition 19.1

says that (19.7) holds, i.e.,

βX ,η(Ek, 1) 6 C
[
fk(200) +

∫ 400

0

hk(t)dt
t

]1/4

, (22.19)

with fk(200) = f(200rk) and∫ 400

0

hk(t)dt
t

6
∫ 400

0

Ch(rkt)βdt
t

6 CChr
β
k 6 Cε010−3kβ (22.20)

by (22.8) again. We shall restrict our attention to integers k > 2 such that

200rk > r00, (22.21)

because this way we can apply (22.18) to r = rk and get that

βX ,η(Ek, 1) 6 Cc
( r
r1

)a/4
+ C

(
ε010−3kβ)1/4 6 c1( r

r1

)a/4
, (22.22)

again with c1 as small as we want, and because a < β/2 and ε0 is small.
By (19.5) this means that we can find a cone Zk ∈ Z(X, η) such that in
particular

d0,rk
(E,Zk) = d0,1(Ek, Zk) 6 c1

(rk
r1

)a/4
= c110−3ka/4. (22.23)

We shall only apply this for k > k0, where k0 will be chosen soon. Notice
that for k > k0 + 1,

d0,1(Zk, Zk−1)
= d0,1/2(Zk, Zk−1) 6 2d0,1(Zk, Ek) + 2d0,1(Ek, Zk−1)
= 2d0,1(Zk, Ek) + 2 · 103d0,10−3(Ek, Zk−1)

= 2d0,1(Zk, Ek) + 2 · 103d0,1(Ek−1, Zk−1) 6 c210−3ka/4, (22.24)

with c2 as small as we want and where for the first line (and similar compu-
tations later) we actually use the fact that our estimates for the normalized
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distances (that follow) are small, so that we can chase points inside B(0, 1).
For k 6 k0, we prefer to use the fact that

d0,rk
(E,X) 6 103kd0,r1(E,X) 6 103kε 6 103kε0 (22.25)

by (22.8). Let us pick k0 so large that∑
k>k0

(c1 + c2)10−3ka/4 6 10−5ε(X), (22.26)

where c1 and c2 come from (22.23) and (22.24) (and we do not care yet
whether they are small or not) and ε(X) comes from (22.11). Also make
sure to pick ε0 6 10−3k0−5ε(X), so that by (22.25)

d0,rk0
(E,X) 6 103kd0,r1(E,X) 6 10−5ε(X) (22.27)

and, by the same proof as for (22.24),

d0,1(Zk0 , X) = d0,1/2(Zk0 , X) 6 2d0,1(Zk0 , Ek0) + 2d0,1(Ek0 , X)
= 2d0,rk0

(Zk0 , E) + 2d0,rk0
(E,X)

6 2c110−3k0a/4 + 2 · 103k0ε 6 4 · 10−5ε(X) (22.28)

by (22.23) and (22.25) (and because ε 6 ε0). We return to (22.23) and get
that

d0,rk/2(E,X) = 2d0,rk
(E,Zk) + 2d0,rk

(Zk, X)

6 2c110−3ka/4 + 2d0,1(Zk, X)

6 2c110−3ka/4 + 8 · 10−5ε(X) 6 10−4ε(X). (22.29)

Hence

d0,400rk+1(E,X) = d0,4rk/10(E,X) 6 2d0,rk/2(E,X) 6 10−3ε(X). (22.30)

We are now ready to prove that r00 = 0. Let k0 be as above; because
of (22.13), we can choose ε0 so small that k0 still satisfies (23.24). Let k > k0
be such that (23.24) holds. Then (22.30) holds too, and says that 200rk+1 >
r00 (compare with (22.12) and (22.11)). That is, we can show by induction
that 200rk > r00 for all k, as needed.

As was said earlier, (22.16), and hence (22.10) are now proved for all
r < r/3. Now we go for (22.9). Now every k > k0 satisfies (22.21), and
by (22.24) the sequence {Zk} converges to a limit X0. By (22.23), (22.24),
and the same computations as for (22.29)

d0,rk/2(E,X0) 6 2d0,rk
(E,Zk) + 2d0,rk

(Zk, X0)

6 c10−3ka/4 = c

(
rk
r1

)a/4
, (22.31)
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with c as small as we want. If 0 < r < rk0/2, we can apply (22.31) to the
smallest rk such that B(0, r) ⊂ B(0, rk/2), and we get that

d0,r(E,X0) 6 103d0,rk/2(E,X0) 6 103c

(
r

r1

)a/4
. (22.32)

Since we can make c arbitrarily small by taking ε small, this takes care of the
small radii in (22.9). As usual, for the large radii we will try to use (22.8).
First observe that

d0,1(X0, X) 6 2d0,1(X0, Zk0) + 2d0,1(Zk0 , X)

6 Cc210−3k0a/4 + 2d0,1(Zk0 , X)

6 Cc210−3k0a/4 + 2c110−3k0a/4 + 4 · 103k0ε

= c3

(
rk0

r1

)a/4
+ 4 · 103k0ε (22.33)

by (22.24) and (22.28), and where c3 is still as small as we want. Now we
deduce from (22.8) that for rk0/2 6 r 6 r1/2,

d0,r(E,X0) 6 d0,r(E,X) + 2d0,1(X0, X)

6
r1

r
d0,r1(E,X) + 2d0,1(X0, X)

6
r1

r
ε+ 2c3

(
rk0

r1

)a/4
+ 8 · 103k0ε

6 3c3
(
r

r1

)a/4
+ 103k0+1ε (22.34)

where for the first inequality we used again that X and X0 are cones. The
first term is all right for (22.9), and for the second term, notice that(

r

r1

)−a/4
103k0+1ε 6 2

(
rk0

r1

)−a/4
103k0+1ε = 20

(
rk0

r1

)−1−a/4
ε (22.35)

is still as small as we want, because k0 was chosen in terms of ε(X), and ε
is as small as we want. This completes the proof of Theorem 22.2. �

Proof of Theorems 1.8 and 1.9. — In the general case, although Theo-
rems 1.8 and 1.9 correspond to two different estimates (decay for f and good
approximation by cones when f is small), we prove them at the same time.
Also, the quantifiers in the statement force us to get constants that do not
depend on how close the spine of an initial approximating cone to E can get
to L, without containing half of it, so we will use the compactness of the
following class of minimal cones.

Denote by X0 the class of minimal cones of type P, Y, T, H(L), or V(L)
(the same as in the statement of Theorems 1.8 and 1.9). Then let n > 3 and
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β > 0 be given. For Theorem 1.8 we want to find a small constant ε0 > 0
such that the good estimate (1.23) holds as soon as E and B(0, r1) satisfy
the assumptions. For Theorem 1.9, we would also give ourselves c > 0 small,
and we would need to get (1.24) with c(ε0) < c.

Let L ⊂ Rn be fixed (we can always do this by rotation invariance), and
for each X ∈ X0, observe that X satisfies the full length property (by Theo-
rem 37.1) and denote by ε0(X) the small constant ε given by Theorem 22.2
(applied so that c1(ε) < c and c2(ε) < 10−10). Then cover X0, as we did
with (18.13), by the small balls

VX =
{
Y ∈ X0 ; dcH(X,Y ) < 10−1ε0(X))

}
. (22.36)

Since X0 is compact, we just need a finite family Y ⊂ X to cover, and we
take ε0 = 1

10 min
{
ε0(Y ) ; Y ∈ Y

}
. Let us check that this work. Let E and

r1 > 0 satisfy the assumptions of Theorem 1.8 or 1.9; then in particular
there is a minimal cone X ∈ X0, with the same density as E (as in (1.21)),
and such that d0,r1(E,X) 6 ε0. Then X ∈ VY for some Y ∈ Y, and this
implies that d0,r1(E,X) 6 3ε0 < ε0(Y ). For this, since we find it neater not
to modify the ball where we look, we use the triangle inequality and also the
fact that X and Y are cones.

The other assumptions of Theorem 22.2 are also satisfied (because Y has
the same density as X; we could also have fixed the density of E at 0 (out of
a set of four values), and restricted to cones that have this density); now the
conclusions of Theorem 22.2 implies the conclusion of Theorems 1.8 and 1.9,
and this completes the proof of these theorems. �
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Part IV. Decay and approximation for balls centered on E \ L

In this part we still consider a sliding almost minimal set E, with a sliding
boundary condition that comes from a line L, and we generalize some of the
results of the previous two parts to balls that are centered on E \ L.

Our starting point is the near monotonicity of the quantity F of (1.27),
which was proved in [13]. We show that when E is sufficiently close to a
half line, a plane, a set of type V, or a short truncated cone of type Y, this
quantity actually decays like a power. This analogue of Part II will be done,
with the same sort of method, in Sections 23–28. For this we will need to
prove analogues of the full length condition in specific situations, and these
computations, done in Sections 27 and 28, will also be used in Section 37,
when we complete the full length verification for balls centered on L.

In addition, we will show in Section 30 that in the same circumstances
as above, F controls the geometry of E. This will allow us to get good
approximation properties of E in balls that are centered slightly off L, as
needed if we want to apply Reifenberg-type constructions.

Let us just describe a situation where we will obtain something. Suppose
that at the unit scale, E looks like a set of type Y truncated by L, with a
spine EY that contains the origin, runs almost parallel to L, and lies very
close to L. At this large scale, E looks essentially like a V-set, with angle
2π
3 . In very small balls near 0, E looks like a full Y-set. We are interested
in what happens at intermediate scales, and in particular in proving some
decay for quantities that show how well E is approximated by truncated
Y-sets. This will be our way of proving that nothing wild happens between
the two extreme scales, and even that the approximation at the small scale
is better than expected.

We will see this sort of situation in the next part, where we use the decay
information from this part to start the desired classification of sliding almost
minimal sets near the boundary.

23. Balls centered on E \ L: preliminaries

In this section we set the stage for a study of decay properties of the
adapted density function F , for balls that are centered on E \ L. We will
proceed like in the previous sections, except that the functional F has an
additional term and the obvious competitors for E are no longer cones over
E∩Sr, but slightly larger sets with an additional triangular piece that allows
retractions on the sets which preserve L.
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In this section and the next ones, we assume that L is a line, no longer
through the origin, and that

E is a reduced sliding almost minimal set (of dimension 2)
in B(0, R), with a boundary condition coming from L,

(23.1)

with a gauge function h such that

h(r) 6 Chrβ for 0 < r 6 R, (23.2)

for some constants Ch > 0, β > 0, and R > 0. Also we assume that

0 ∈ E \ L. (23.3)

The results that will be proved here would still hold when L contains 0, with
essentially the same proof, but there would be no point because in this case
the previous part gives us what we need, and also it will be convenient in
some places to discuss things in terms of

d0 = dist(0, L) > 0. (23.4)

Let us review some of the notation and results of [13]. We shall be interested
in balls B(0, r), 0 < r 6 R. The shade of L (seen from the origin) is

S =
{
z ∈ Rn ; λz ∈ L for some λ ∈ [0, 1]

}
. (23.5)

We keep θ(r) = r−2H2(E ∩B(0, r)) as it was, but now consider

F (r) = θ(r) + r−2H2(S ∩B(0, r))
= r−2[H2(E ∩B(x0, r)) +H2(S ∩B(0, r))

]
. (23.6)

Notice that we take the sum, and not the measure of the union.

Let us review the properties of F that we intend to use. First assume
more, i.e. that

E is a sliding reduced minimal set in B(0, R) of dimension 2,
with a boundary condition coming from L. (23.7)

In this case, F is nondecreasing on the interval (0, R). See Theorem 1.2
in [13].

There are two special cases of sliding minimal sets for which F is constant.
The first one is the half plane H0 bounded by L and that contains the origin;
it is easy to see that for H0, F is constant equal to π (the measure of the
shade exactly compensates for the missing half plane).

The second one is the truncated Y-set Y0, which is Y0 = Y1 \ S, where
Y1 is the only cone of type Y that is centered at 0 and contains L (thus its
singular set is parallel to L and S ⊂ Y1). For this set Y0, F is constant and
equal to 3π

2 .
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We also have local slightly tilted variants of Y0. If Y1 is a cone of type Y
such that L∩B(0, R) is contained in one of the three faces of Y1 (and hence
S ∩ B(0, R) is also contained in that same face, by elementary geometry),
Y = Y1 ∩B(0, R) \ S is also a sliding minimal set in B(0, R) (at least, we
claim that this is very probable but we won’t need to check), and the function
F attached to it is constant and equal to 3π

2 on (0, R).

Theorem 1.3 in [13] gives a nice description of E when (23.7) holds and F
is constant on an interval, but we shall only need the following two specific
cases, which give a converse to the examples above.

Lemma 23.1. — Suppose that (23.7) holds and R > d0 > 0. If F (r) = π
for r ∈ (0, R), then E = H0 ∩ B(0, R). If F (r) = 3π

2 for r ∈ (0, R), then
there is a cone Y1 of type Y, centered at 0, such that L∩B(0, R) is contained
in one of the three faces of Y1, and for which E = Y1 ∩B(0, R) \ S.

Proof. — Notice that we already know, from previous work on the sit-
uation with no sliding boundary (probably even before [47]), that since
F (r) = θ(r) is constant and equal to π or 3π

2 on (0, d0), E coincides with a
plane or a cone of type Y on B(0, d0). But let us apply Theorem 1.3 in [13],
with R0 very small and R1 = R. Recall that “coral” is the same as “reduced”,
so the assumptions are satisfied. Set A = B(0, R1) \B(0, R0) as in [13]. Let
X be the positive cone over E ∩ A (as in (1.13) there). We get that X is a
reduced minimal set in Rn (that is, with no boundary condition), and that
A ∩X \ S ⊂ E (as in (1.14) there), and where S is still the shade of L (see
(1.9) there)). Thus in B(0, d0) \B(0, R0), X coincides with E (by definition
of X, X ⊃ E ∩A), and since F (r) = θ(r) for r < d0, we get that the density
of X is π or 3π

2 , hence X is a plane or a cone of type Y.

It was also observed after the statement of Theorem 1.3 in [13] that in
A, E and X \ S coincide modulo a set of vanishing H2-measure. They also
coincide in B(0, R0): either use the fact that E is a plane or a Y in B(0, d0),
or observe that X cannot depend on R0 and let R0 tend to 0). That is

E ∩B(0, R) = (X \ S) ∩B(0, R),
modulo a set of vanishing H2-measure. (23.8)

Then, for r ∈ (d0, R),

H2(X ∩B(0, r)) = r2H2(X ∩B(0, 1)) = r2F (r)
= H2(E ∩B(0, r)) +H2(S ∩B(0, r))
= H2((X \ S) ∩B(0, r)) +H2(S ∩B(0, r)) (23.9)

because X is a cone, F is constant, by (23.6), and by (23.8). This forces X
to contain almost all of S ∩B(0, r).
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If X is a plane, this forces X to contain a bit of L, then the whole L;
thus X is the plane that contains H0 and the result follows from (23.8) (and
the fact that E is closed and reduced).

If X is a cone of type Y, L∩B(0, r) ⊂ X as above, and since this is true
for all r ∈ (d0, R), X contains L ∩B(0, R). In fact, L ∩B(0, R) is contained
in a single face of X (if L ∩ B(0, R) crossed the spine of X, one piece of it
would not lie in X), so we can take Y = X in the description above. Again
the fact that E = Y1 ∩B(0, R) \ S follows from (23.8). �

We shall also need the simpler version of Lemma 23.1 where 0 ∈ L. We
start with a description of sliding minimal cones with low density. Denote
by P0 the set of planes through the origin.

Lemma 23.2. — There is a small constant τ(n) > 0 such that if X is a
sliding minimal cone of dimension 2 in Rn, with a sliding condition coming
from a line L that contains the origin, and if H2(X ∩ B(0, 1)) 6 π + τ(n),
then X ∈ H(L) ∪ P0 ∪ V(L), i.e., X is a half plane bounded by L, a plane
that contains the origin, but not necessarily L), or a set of type V associated
to L.

Proof. — See the beginning of Subsection 1.2 for the definitions. Notice
that this is a simpler special case of (18.23), wich at least we can prove. We
start with the apparently even weaker statement with τ(n) = 0. Let X be
as in the statement, with a density d(X) = H2(X ∩B(0, 1)) 6 π. Let us use
the description of K = X ∩ ∂B(0, 1) that was given in Proposition 2.1. We
see that K is a union of great circles and arcs of great circles. If K contains
a great circle, this eats all the available density, K is a great circle, and X
is a plane. Otherwise, K is a union of arcs of geodesic.

Suppose two such arcs meet at some point y ∈ K\L. Then there are three
arcs of K meeting at y (with 120◦ angles, but we don’t care), and the density
of X at y is at least 3π/2. This means that limr→0 Fy(r) = 3π/2, where Fy is
the functional defined as in (23.6), but with the setX and an origin at y. That
is, Fy(r) = r−2[H2(X ∩B(y, r)) +H2(Sy ∩B(y, r))

]
, where Sy denotes the

shade of L seen from y. It is easy to see that limr→+∞ r−2H2(X∩B(y, r)) =
limr→+∞ r−2H2(X ∩ B(0, r)) = d(X) 6 π, hence limr→+∞ Fy(r) 6 3π/2.
But Fy is nondecreasing, so Fy(r) = 3π/2 for 0 < r < +∞. By Lemma 23.1,
X coincides in large balls B(0, R) with truncated cones of type Y, but cen-
tered at y. This contradicts the fact that X is a cone centered at 0.

Thus none of the arcs that compose K ends away from L, which means
that K is composed of half circles with endpoints in L. There is no more
than two arcs, because d(X) 6 π. If there is one arc, X ∈ H. Otherwise, X
is composed of two half planes, and X ∈ V because if these two half plane
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make an angle smaller than 2π
3 , it is easy to see (or well known) that X is

not minimal.

We still need to prove the result with a positive τ(n). Suppose the lemma
fails, so that for each large integer k we can find a sliding minimal cone
Xk, such that d(Xk) 6 π + 2−k and yet Xk /∈ H(L) ∪ P0 ∪ V(L). Take a
subsequence (and still call it {Xk}) such that Xk converges to a limit cone
X (or equivalently here, since we work with cones, Kk = Xk ∩ ∂B(0, 1)
converges to K∞ = X ∩ ∂B(0, 1) for the Hausdorf distance on ∂B(0, 1)).

By the various convergence theorems in [14] (Theorems 21.3, 10.97, and
22.1 there) X is a minimal cone and d(X) = limk→+∞ d(Xk) 6 π. By the
case we already proved, X ∈ H(L) ∪ P0 ∪ V(L). Let yk be any endpoint
of an arc of Kk that does not lie in L. Such a point exists, because Xk /∈
H(L) ∪ P0 ∪ V(L) and by the argument above.

If we could find a subsequence for which yk converges to a limit y ∈ K \L,
then K would have a point of type Y at y, because {Kk} converges to K
and all the arcs of Kk that do not end on L have lengths at least η0 for some
constant η0 = η0(n). Thus the endpoints yk all tend to L. For each k large,
Kk has at most two short arcs that leave from the points `± of L∩ ∂B(0, 1)
(see (2.4)), and all the other ones are long, because they go from a small
neighborhood of `− to a small neighborhood of `+. Thus there are at most
two long ones (because H1(Kk) = 2d(Xk) 6 2π+ 2−k+1). If there is a single
yk, then Kk is composed of two long arcs (from `−, say, to yk) and a short
one (the geodesic from yk to `+). This is impossible, because the long arcs
are geodesics that both leave from `−; they can only meet back at `+.

We are left with the case when there are two points yk and y′k, and Kk

is composed of two geodesics from yk to y′k, plus two short geodesics from
these points to the closest `±. As before, the long geodesics can only meet
at the antipode, i.e., y′k = −yk. It is easy to see that the corresponding set is
not minimal. For instance, if the three arcs make the correct angles of 120◦
at yk, then the three arcs at y′k make acute angles of 60◦.

This completes our contradiction and compactness argument; Lem-
ma 23.2 follows. �

Let us continue our rapid description of the results of [13]. We return
to the more general situation where E is a sliding almost minimal set, as
in (23.1), that 0 ∈ E \ L, and that the associated gauge function h is such
that

A(r) =
∫ r

0
h(t)dt

t
< +∞ for 0 < r < R, (23.10)
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and h(R) is small enough (depending on n). Then Theorem 1.5 in [13] says
that

F (r)eαA(r) is a nondecreasing function on (0, R), (23.11)
with a constant α that depends only on n.

It will be psychologically useful to know the general idea of the proof,
which is essentially the same as for the (near) monotonicity of θ when L is
a cone centered at the origin. We would like to compare E with the cone

Γ(E, r) =
{
λz ; z ∈ E ∩ ∂B(0, r) and λ ∈ [0, 1]

}
(23.12)

over E∩∂B(0, r), but since it may no longer be a limit of sliding competitors
(moving a point z ∈ E ∩ L ∩ ∂B(0, r) in the direction of 0 may detach it
from L), we add to Γ(E, r) the set

T (r) =
{
λz ; z ∈ L ∩B(0, r) and λ ∈ [0, 1]

}
, (23.13)

which is the convex hull of the triangle with vertices 0 and the two points of
L ∩ ∂B(0, r). It turns out that Γ(E, r) ∪ T (r) can be used as a competitor
(maybe, after taking a limit), just as Γ(E, r) before. Now Γ(E, r) ∪ T (r) is
not as small as Γ(E, r), and when we do the computation, we find out that
we only get the (near) monotonicity of F (r), where we added the (sometimes
strictly) nondecreasing term r−2H2(S ∩B(x0, r)).

We will be more interested in the case when 0 lies very close to L. Then
T (r) is quite thin; nonetheless it has an effect on the functional F and on
our estimates that we cannot neglect.

In the work that we did so far, with balls centered on L, the main point
was to try to construct a competitor for E that was significantly better than
the cone Γ(E, r), and then we proved some decay for θ (i.e., a good differential
inequality) rather than proving that it is nearly monotone. Here we want
to do the same thing, i.e., improve significantly over Γ(E, r) ∪ T (r), and
then we’ll get a good differential inequality involving F . As in the previous
sections, the main point is the construction of good competitors. This is
what we do in the next two sections, in the two special cases for which we
know that the function F can be constant on some truncated minimal cones.

But before we come to this, let us also show how to use Lemmas 23.1
and 23.2, and a little bit of compactness, to get similar results for almost
minimal sets. We now assume that d0 > 0 (as in (23.3)) and that h satis-
fies (23.2); this way there exists a density

θ0 = lim
r→0

θ(r) = lim
r→0

F (r) (23.14)

because d0 > 0, and by (23.11) or more simply its version in the plain case.
We start with an application of Lemma 23.1, where we show that E is some
times close to a half plane.
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Lemma 23.3. — For each choice of small constants δ > 0 and τ > 0, we
can find ε = ε(δ, τ) > 0, that depends only on δ, τ and n, with the following
property. Let E satisfy (23.1)–(23.3), and let r be such that

r 6
d0

δ
and 11d0

10 6 r < R. (23.15)

Suppose in addition that

h(r) 6 ε and
∫ r

0
h(t)dt

t
6 ε, (23.16)

and
F (r) 6 π + ε. (23.17)

Let H0 denote the half plane bounded by L that contains the origin. Then
d0, 20r

21
(E,H0) 6 τ, (23.18)

and also
|H2(E ∩B(y, t))−H2(H0 ∩B(y, t))| 6 τr2 (23.19)

for all y ∈ Rn and t > 0 such that B(y, t) ⊂ B(0, 20r
21 ).

Proof. — It is important here to have in mind that when r gets too large
compared with d0, we need to take δ large (because of (23.15)), so we may
need to take ε very small. This is not shocking, it is just a reminder of the
fact that limiting arguments (that will be used to prove the lemma) will only
lead you so far. The case when r � d0 will be discussed later.

We shall deduce this lemma from Theorem 1.6 in [13], whose main point
is that when the function F is nearly constant on an interval, E is quite
close to a minimal set for which F is constant. We shall apply that theorem
with a fixed line L0, which we choose so that dist(0, L0) = 1 (otherwise,
the constants would depend on the line, and we want to avoid this). Let
f : Rn → Rn be a composition of a rotation and a dilation, which we choose
so that f(0) = 0 and f(L) = L0. Thus the dilation factor is d−1

0 . We want to
apply the theorem to E′ = f(E), so we check the assumptions, with τ ′ = τ/2
and the radius r1 = d−1

0 r.

But let us first talk about our constant δ. By (23.16), 11
10 6 r1 6 δ−1. On

the other hand, Theorem 1.6 in [13] is stated with a single r1, i.e., the small
constant ε > 0 in that statement depends also r1, which does not make us
happy a priori. It is even noted after the statement that in the present case, ε
depends on the ratio dist(L0)−1r1 (by dilation invariance). A later statement
Corollary 9.3 in [13], solves this issue, and gives a constant ε that does not
depend on r1 as long as r1 6 C (or here, δ−1), but the statement is a little
more unpleasant because it also allows more complicated choices of L0 (that
is, we are only interested in a line L here, and the mapping ξ is an isometry),
and also because the statement would rather concern another dilation f̃(E),
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with a dilation factor r−1, so that now r becomes 1 and d0 = dist(0, L)
becomes r−1d0 ∈ [δ, 10

11 ]. The reader should not pay attention to the fact
that the statement in [13] requires dist(0, L) 6 9

10 ; the proof works the same
way. We decided to simplify our lives, and use Theorem 1.6 in [13] with the
knowledge that ε does not depend on r1 as long as r1 stays bounded.

So we check the assumptions. First, E′ is sliding minimal in B(0, d−1
0 R),

relative to L0 and with the gauge function h′(r) = h(d0r). We need to know
that r1 6 d−1

0 R, or equivalently r 6 R, and this is given by (23.15). Also,
h′(r1) = h(d0r1) = h(r) 6 ε and (1.22) in [13] holds. For (1.23) there, denote
by F ′ the functional associated to L0; then

F ′(r1) = F (r) 6 π + ε 6 θ0 + ε 6 eαA(10−3r) inf
0<ρ<10−3r

F (ρ) + ε

6 eαε inf
0<ρ<10−3r

F (ρ) + ε = eαε inf
0<ρ<10−3r1

F ′(ρ) + ε (23.20)

by the dilation invariance of densities, (23.17), the fact that θ0 = limρ→0 θ(ρ)
= limρ→0 F (ρ) is at least π, the near monotonicity estimate (23.11), the
definition (23.10), and (23.16). This gives the desired bound, if ε is small
enough. We can apply the theorem, and we get a sliding minimal set E0,
with all sort of properties. We want to check that E0 coincides in B(0, r1)
with the half plane bounded by L0 that contains 0 (or equivalently that
f−1(E0) = H0 in B(0, r)), and this way (23.18) and (23.19) will follow from
(1.25)–(1.27) in [13].

Now (1.24) in [13] says that the analogue of F ′ for E0 takes a constant
value D on (0, r1). Notice that r1 = d−1

0 r > 11
10 by (23.15). By (1.27) for

B(y, t) = B(0, 1), we get thatD is as close to π as we want. Now Theorem 1.3
in [13] (about constant density) gives the following extra information on E0.

Set A = B(0, r1) \ {0}, denote by X the cone over A ∩E0, and by S the
shade of L0. We get that H2(A∩E0 ∩ S) = 0, that A∩X \ S ⊂ E0, that X
is a minimal cone (no boundary), and Hd(S ∩B(0, r1) \X) = 0.

Notice that B(0, 1)\{0} ⊂ A (because r1 > 11
10 ), and that inside B(0, 1)\

{0}, E0 ⊂ X by definition of X, and X = X \ S ⊂ E0 because B(0, 1) does
not meet S. Then H2(X ∩ B(0, 1)) = H2(E0 ∩ B(0, 1)) = D, which is as
close to π as we want. Since X is a minimal cone, X is a plane. In addition,
Hd(S ∩ B(0, r1) \X) = 0 and r1 > 11

10 , so X contains a nontrivial bit of S,
hence also the whole L. That is, X is the plane that contains 0 and L0.

Set H = f(H0) = X \ S; we want to show that E0 coincides with H
in B(0, r1), or equivalently in A = B(0, r1) \ {0} (because E0 is closed).
We know that A ∩ X \ S ⊂ E0, hence A ∩ H ⊂ E0 (again, E0 is closed).
Then E0 ∩ A ⊂ X (by definition of X), which means that E0 ∩ A \H ⊂ S.
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Since H2(A∩E0 ∩ S) = 0, and E0 is coral (or more brutally, locally Ahlfors
regular), we get that E0 ∩A ⊂ H, as needed for Lemma 23.3. �

Lemma 23.4. — Lemma 23.3 stays valid when instead of (23.17), we
require that the density of E at 0 is θ0 = 3π

2 and that F (r) 6 3π
2 + ε, and we

get the same conclusion, except that H0 is replaced with the set E0 = Y \ S,
where Y is a minimal cone of type Y, centered at 0 and such that L∩B(0, r)
is contained in a face of Y .

Proof. — SetB = B(0, r). We only care about E0∩B, because the outside
part does not interfere with our description of E in (23.18) and (23.19), since
B(0, 20r

21 ) lies well inside B. Inside B, E0 = Y \ S is really a truncated set
of type Y, where we removed from Y the part that lies on the other side of
L, of the face of Y that contains L ∩B.

For the proof we proceed as for Lemma 23.3. We can still apply Theo-
rem 1.6 in [13], after applying the same composition f of a rotation and a
dilation by d−1

0 . This theorem gives a sliding minimal set, which we now call
E′0 ⊂ B(0, r1), where r1 = d−1

0 r > 11
10 , with the additional property that the

analogue of F takes a constant value D on (0, 1), and which is very close
to f(E) in B(0, r1). In addition, D is still as close as we want to the values
of F (computed with E and for radii smaller than r), which are as close to
θ0 = 3π

2 as we want.

Then we turn to Theorem 1.3 of [13] to get a good description of E′0 in
A = B(0, r1) \ {0}. We get the same basic properties as above, in terms of
some minimal cone X, but now the density of X is D, which is as close to
3π
2 as we want. Proposition 14.1 of [9] gives a description of minimal cones of
dimension 2 that implies that this cannot happen unless D = 3π

2 , and hence
X is a cone of type Y.

Let us now denote by S′ the shade of L0. We still have that Hd(S′ ∩
B(0, r1) \ X) = 0, so X contains S′ ∩ B(0, r1) because X is closed. Notice
also that S′ ∩B(0, r1) is a nontrivial piece of plane, because r1 > 11

10 .

Next we check that E′0∩A = X \ S′∩A. We know thatH2(A∩E′0∩S′) = 0,
so each x ∈ A∩E′0 is the limit of a sequence {xj} in E′0 \S′ (recall that E′0 is
coral). Clearly xj ∈ A for j large, hence xj ∈ X \S′ (because E′0∩A ⊂ X by
definition of X); thus x ∈ X \ S′∩A. Conversely, we know that A∩X \S′ ⊂
E′0, hence A∩X \ S′ ⊂ E′0 ∩A, and our claim follows. Both sets contain the
origin, so E′0 ∩B(0, r1) = X \ S′ ∩B(0, r1).

Set Y = f−1(X) and E0 = f−1(E′0). Then Y is also a cone of type Y, and
E0∩B(0, r) = f−1(E′0∩B(0, r1)) = f−1(X \ S′∩B(0, r1)) = Y \ S∩B(0, r).
Thus, inside B(0, r), E0 has the form that was announced in the lemma. We
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do not care about what it is outside, because Rn\B(0, r) is far from B(0, 20r
21 )

where we want to approximate E, as in (23.18) and (23.19). Finally, the
good approximation of E in B(0, 20r

21 ) follows from the good approximation
of E′ = f(E) in B(0, (1− τ)r1) that is given by (1.24)–(1.27) of [13]. �

For radii r that are much larger than d0, it is easier to use compactness in
another way, and get a good approximation by a plane or a cone of type H or
V centered on L. Here is a statement, whose proof will rely on Lemma 23.2.

Lemma 23.5. — For each choice of small constant τ > 0, we can find
constants ε = ε(τ) > 0 and δ = δ(τ), that depend only on τ and n, with the
following property. Let E satisfy (23.1) and (23.10), and let r be such that

δ−1d0 6 r < R. (23.21)
Suppose in addition that 0 ∈ E \ L,

h(r) 6 ε and
∫ r

0
h(t)dt

t
6 ε, (23.22)

and that there is θ0 ∈ {π, 3π
2 } such that

lim
ρ→0

F (ρ) = θ0 and F (r) 6 θ0 + ε. (23.23)

Then there is a set X0 ∈ H(L) ∪ V(L) ∪ P0 such that
d0, 20r

21
(E,X0) 6 τ (23.24)

and
|H2(E ∩B(y, t))−H2(X0 ∩B(y, t))| 6 τr2 (23.25)

for all y ∈ Rn and t > 0 such that B(y, t) ⊂ B(0, 20r
21 ). If θ0 = π, then

X0 ∈ H(L); if θ0 = 3π
2 , then X0 ∈ V(L) ∪ P0.

Proof. — In this statement the planes through the origin (the elements
of P0) are some sort of a stowaway (or party crasher); the proof allows them,
but we expect to get rid of them later. That is, if we get (23.24) and (23.25)
for a plane X0 that does not nearly contain L (i.e., the two unit vectors of
L are far from X0), then we shall be able to show that E is smooth near 0,
and θ0 = π 6= 3π

2 , a contradiction. See Theorem 30.3 and Remark 30.4 for
another instance of this reasoning, where we need to look at different scales
to exclude apparently acceptable behaviors.

The proof is a standard compactness argument, similar to what was done
for the proof of Theorem 1.6 in [13]. Suppose we can find τ > 0 such that
taking ε = δ = 2−k never works. Let Ek, hk, Lk, rk, etc. provide a coun-
terexample. By scale and rotation invariance, we may assume that rk = 1
for all k, and that we can find orthogonal unit vectors e1 and e2 such that
Lk =

{
dke1 + te2 ; t ∈ R

}
, and with positive numbers dk = dist(0, Lk) that

tend to 0 (by (23.21) and because δk tends to 0).

– 216 –



A local description of 2-dimensional almost minimal sets bounded by a curve

We replace {Ek} with a subsequence which has a limit E∞. Let L∞
denote the limit of the Lk; this is a line through the origin. Also consider
E′k = Ek − dke1; this is a sliding minimal set, with sliding boundary Lk −
dke1 = L∞, and E′k also tends to E∞. Notice that the gauge functions hk
satisfy (23.22) uniformly on (0, 1), and also tend to 0 uniformly on (0, 1). By
Theorem 10.8 in [14], E∞ is a sliding minimal set in B(0, 1), associated to
L∞ (and the gauge function h = 0). Next we check that

H2(E∞ ∩B(0, ρ)) = θ0ρ
2 for 0 < ρ < 1. (23.26)

In fact, let B = B(y, t) be given, with |y| + t < 1; we first apply the lower
semicontinuity result in [14] (namely, Theorem 10.97 there) to the same sets
E′k, with the same assumptions, and get that

H2(E∞ ∩B) 6 lim inf
k→+∞

H2(E′k ∩B) = lim inf
k→+∞

H2(Ek ∩B(y + dke1, t))

6 lim inf
k→+∞

H2(Ek ∩B(y, t+ dk)). (23.27)

For the upper semicontinuity, we call Lemma 22.3 in [14], which we can apply
with M as close as we want to 1 and h as small as we want, and we get that
for the compact set B,

H2(E∞ ∩B) > lim sup
k→+∞

H2(E′k ∩B) = lim sup
k→+∞

H2(Ek ∩B(y + dke1, t))

> lim sup
k→+∞

H2(Ek ∩B(y, t− dk)). (23.28)

Let us apply this with y = 0; notice that if Sk denotes the shade of Lk, then

lim
k→+∞

H2(Sk ∩B(0, t+ dk)) = πt2

2 (23.29)

because dk tends to 0 and Lk tends to L∞. Thus (23.27) implies that

H2(E∞ ∩B(0, t)) 6 lim inf
k→+∞

H2(Ek ∩B(y, t+ dk))

= −πt
2

2 + lim inf
k→+∞

[
(t+ dk)2Fk(t+ dk)

]
. (23.30)

For k large, t+ dk < 1, hence by (23.11)

Fk(t+ dk) 6 eαAk(1)Fk(1) 6 eα2−k

Fk(1) 6 eα2−k

[θ0 + 2−k] (23.31)

because (23.22) holds with ε = 2−k, and then by (23.23). The right-hand
side tends to θ0, hence by (23.30)

H2(E∞ ∩B(0, t)) 6 t2
[
θ0 −

π

2

]
. (23.32)
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Conversely, (23.28) yields

H2(E∞ ∩B(0, t)) > lim sup
k→+∞

H2(Ek ∩B(0, t− dk))

> −πt
2

2 + lim sup
k→+∞

[
(t+ dk)2Fk(t− dk)

]
(23.33)

and, since by (23.11) and (23.23)

Fk(t− dk) > e−αAk(1) lim
ρ→0

Fk(ρ) > e−α2−k

lim
ρ→0

Fk(ρ) = e−α2−k

θ0, (23.34)

which tends to θ0, we get that

H2(E∞ ∩B(0, t)) > t2
[
θ0 −

π

2

]
. (23.35)

It follows that

t−2H2(E∞ ∩B(0, t)) = θ0 −
π

2 for 0 < t < 1, (23.36)

i.e., E∞ has constant density equal to θ0 − π
2 on (0, 1). By the constant

density result (Theorem 29.1 in [14]), E∞ coincides with a sliding minimal
cone in B(0, 1). Call this cone X0; by Lemma 23.2, X0 ∈ H(L) if θ0 = π and
X0 ∈ V(L) ∪ P0 if θ0 = 3π

2 .

Let us now check that (23.24) and (23.25) hold for k large; this will give
the desired contradiction with the definition of Ek and complete the proof
of Lemma 23.5. Now (23.24) holds because X0 is the same as E∞ in B(0, 1),
we normalized things so that rk = 1, and E∞ is the limit of Ek locally in
B(0, 1). For a given ball B = B(y, t), notice that for 0 < t1 < t < t2, with
B(y, t2) ⊂ B(0, 1), (23.27) and (23.28) yield

H2(X0 ∩B(y, t)) = H2(E∞ ∩B(y, t)) 6 lim inf
k→+∞

H2(Ek ∩B(y, t+ dk))

6 lim inf
k→+∞

H2(Ek ∩B(y, t2)) (23.37)

and similarly

H2(X0 ∩B(y, t)) = H2(E∞ ∩B(y, t)) > lim sup
k→+∞

H2(Ek ∩B(y, t− dk))

> lim sup
k→+∞

H2(Ek ∩B(y, t1)). (23.38)

From this it is easy so deduce that for a fixed B(y, t), the estimates in (23.25)
hold for k large. But we do not want to let k depend on y and t, so a little
bit of uniformity is needed to conclude. This is rather easily done, because
we control X0 well; we refer to Lemma 9.2 in [13] for the proof. Thus we get
the desired contradiction, and Lemma 23.5 follows. �

– 218 –



A local description of 2-dimensional almost minimal sets bounded by a curve

24. Statements of decay for F ; differential inequalities

Recall that we want to generalize the work of Sections 3–22, with balls
that are no longer centered on L, and we decided to replace the usual density
θ(r) with the functional F (r) defined in (23.6). In this section we give the
main decay statement for F . Recall that F is almost nondecreasing; we
intend to say that in some circumstances, it actually decays at some speed,
but we shall only be able to do this when E is close enough to some special
minimal sets.

The assumptions for this section and the next ones are the following.
We still work in Rn, with a line L and a sliding almost minimal set E that
satisfies (23.1) and (23.2); we also assume that

0 < d0 := dist(0, L) < 2R
3 , (24.1)

and in the statements additional conditions on the size of Ch in (23.2) will
arise.

Denote by H = H(L) the set of half planes bounded by L, and by V =
V(L) the collection of sets of type V bounded by L, i.e., unions of two half
planes of H that make an angle at least 2π

3 with each other along L. This
includes planes that contain L. Still let P0 denote the collection of all planes
through the origin. We will often require E to be close to sets of H∪V∪P0,
and we measure this with the quantities

βH(r) = inf
H∈H

d0,r(E,H) and βV P (r) = inf
V ∈V∪P0

d0,r(E, V ), (24.2)

where we will naturally restrict to r ∈ (0, R].

Let us give two parallel statements, which will be proved afterwards. We
start with the case when there is a good approximation by a half plane.

Theorem 24.1. — There exist constants a ∈ (0, 10−1), εH > 0, and
CH > 1, that depend only on n and β, with the following properties. Let L,
E, and h satisfy (24.1), (23.1), and (23.2), with a constant Ch such that

ChR
β 6 εH . (24.3)

Suppose also that 0 ∈ E, and that

βH(R) 6 εH or F (R)− π 6 εH . (24.4)

Then

F (r1)− π 6
(

2r1

r2

)a
[F (r2)− π] + CHChr

a
1r
β−a
2 (24.5)

for 0 6 r1 6 r2 6 9R/20.
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See (23.6) for the definition of F . Within minor modifications, this is
the same statement as Theorem 1.10 in the introduction. Notice that be-
cause of (23.2), the limit density θ0 = limr→0 r

−2H2(E ∩ B(x, r)) exists
(by (23.14)); we know that for 0 ∈ E, this limit cannot be smaller than π,
and in the present situation, we will see during the proof that θ0 = π. Or
just notice that you get this when you let r1 tend to 0 in (24.5). We will also
check that the two possible assumptions in (24.4) imply each other, modulo
changing the small constant and replacing R with a slightly smaller radius.

It happens that the good decay provided by (24.5) implies a polynomial
control on βH(r) for r small; see Section 30.

We have a similar statement for the case when E is well approximated
by a set of V; this time the relevant value of density is θ0 = 3π

2 .

Theorem 24.2. — There exist constants a ∈ (0, 10−1), εV > 0, and
CV > 1, that depend only on n and β, with the following properties. Let L,
E, and h satisfy (24.1), (23.1), and (23.2), with a constant Ch such that

ChR
β 6 εV . (24.6)

Suppose also that 0 ∈ E0,

lim
r→0

r−2H2(E ∩B(x, r)) = 3π
2 , (24.7)

and that
βV P (R) 6 εV . (24.8)

Then

F (r1)− 3π
2 6

(
CV r1

r2

)a [
F (r2)− 3π

2

]
+ CV Chr

a
1r
β−a
2 (24.9)

for 0 6 r1 6 r2 6 R/2.

This time see Theorem 1.11 in the introduction. The same sort of remarks
as above apply to this case. Notice the additional constant CaV in (24.9),
which is due to a gap in the set of radii r for which the main differential
inequality described below holds. This could probably be improved, but the
additional constant does not disturb much.

We did not include the option that F (R) − 3π
2 6 εV instead of (24.8),

because it does not imply that E is close to a set of type V or a plane. The
difference will not be enormous in the end; we will see in Lemma 25.2 that
if F (R) − 3π

2 6 εV and d0 is much smaller than r, then βV P (r) 6 ε, and
we can apply Theorem 24.2. When instead d0 is not so small compared to
r (and r 6 R/2, say), Lemma 25.3 will say that we can find a truncated
Y-set centered at 0 that approximates E well in B(x, r). As hinted above,
this set is not close to a V-set because it is centered at 0 (and d0 is not
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so small). We could try to show that F (r) decays also in this intermediate
region, but instead we will just use the fact that F is almost nondecreasing
there (by [13]), and this will be fine because the concerned set of radii r is
not so large anyway.

See Section 30 for the control of the geometry of E that follows from (24.9).

In both statements, the interesting part of the conclusion is when r1 gets
much smaller than r2; otherwise a direct application of (23.11) gives at least
as much. In both cases the main ingredient in the proof is a differential
inequality which we state now.

Proposition 24.3. — There exist constants a ∈ (0, 10−1), ε1 > 0, and
C1 > 1, that depend only on n and β, with the following properties. Let E
and h satisfy (24.1), (23.1), and (23.2), and suppose that 0 ∈ E. For almost
every r such that

2d0 6 r 6
R

2 , (24.10)

Chr
β 6 ε1 (24.11)

and
βH(2r) 6 ε1, (24.12)

the function F of (23.6) is differentiable at r, and

rF ′(r) > a[F (r)− π]+ − C1

∫ 2r

0

h(t)dt
t

. (24.13)

This will be proved in Section 26. We do it on purpose to mention h
explicitly in (24.13), rather than the estimate that we could get from (23.2),
because we may sometimes get an estimate that is better than expected.
Even though ε1 needs to be quite small, we think of it as being roughly
constant, while we hope that F (r)−π, for instance, will become really small.

We took the positive part of F (r) − π not to get confused by the case
when F (r) − π < 0, in which case (24.13) is actually better when a is
smaller. This way, at least, our estimate is better when we can take a larger.
However, we will pay a (moderate) price for this simplification, when we
prove (24.13). We could also have used the same sort of computations as
in [10] and Proposition 17.2. This way the reader gets to choose their prefered
method.

The next statement is similar, but concerns the approximation with sets
of type V ∪ P0 and the larger reference density 2π/3. It is a little more
complicated for the same reasons as for Theorem 24.2; it will be proved in
Sections 26–28.
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Proposition 24.4. — There exist constants a ∈ (0, 10−1), N > 1, ε2 >
0, and C2 > 1, that depend only on n and β, with the following properties.
Let E satisfy (24.1), (23.1), and (23.2), and suppose that

lim
ρ→0

ρ−2H2(E ∩B(0, ρ)) = 3π
2 . (24.14)

For almost every r such that

Nd0 6 r 6
R

2 , (24.15)

Chr
β 6 ε2, (24.16)

and
βV P (2r) 6 ε2, (24.17)

the function F of (23.6) is differentiable at r, and

rF ′(r) > a
[
F (r)− 3π

2

]
+
− C2

∫ 2r

0

h(t)dt
t

. (24.18)

25. How to deduce decay from differential inequalities

In this section we see how to deduce the decay estimates, Theorems 24.1
and 24.2, from the corresponding differential inequalities, Propositions 24.3
and 24.4. Most of it will consist in checking that the main geometric assump-
tion (24.12) or (24.17) is valid.

Throughout this section, we assume that the main assumptions of Sec-
tion 24 are valid, i.e., that L, E, and h satisfy (24.1), (23.1), and (23.2).
By (23.2) and its consequence (23.14), the density

θ0 = lim
r→0

θ(r) = lim
r→0

F (r) (25.1)

exists; we shall either assume or prove that θ0 ∈
{
π, 3π

2
}
. We first check that

the conditions of (24.4) essentially imply each other, and that (24.8) implies
that F (r)− 3π

2 is small.

Lemma 25.1. — For each small ε > 0, there exist εH > 0 and εV > 0,
that depend only on n and β, such that if the assumptions of Theorem 24.1
are satisfied, then

βH(9R/10) 6 ε (25.2)
and

F (r) 6 π + ε for 0 < r 6 9R/10 (25.3)
and if the assumptions of Theorem 24.2 are satisfied, then

F (r) 6 3π
2 + ε for 0 < r 6 9R/10. (25.4)
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Proof. — First assume that E is as in Theorem 24.1, with βH(R) 6 εH .
Then βH(9R/10) 6 10εH/9, by the definition (24.2), so we just need to show
that (25.3) holds if εH is small enough. Let us first check that

F (9R/10) 6 π + ε/2. (25.5)

Let us proceed by compactness. If this fails, then for each large integer k, we
can find Lk, Ek, hk, Rk, as in Theorem 24.1 with εH = 2−k, but for which
Fk(9Rk/10) > π + ε/2, where

Fk(r) = r−2[H2(Ek ∩B(0, r)) +H2(Sk ∩B(0, r))], (25.6)

and Sk is the shade of Lk. We want to take a limit, but first we use the
dilation invariance of our problem to assume that Rk = 1 for all k. Also,
choose two unit vectors e1 and e2 ⊥ e1; we can use the rotation invariance to
ensure that the following two properties hold for each k. First let zk denote
the point of Lk that lies closest to 0. Notice that zk 6= 0 (because 0 /∈ Lk
by (24.1)); we require that zk/|zk| = e1. And also that e2 is parallel to Lk.

Next set dk = dist(0, Ek); recall from (24.1) that dk < Rk = 1, so we may
assume (at the price of replacing our sequence by a subsequence, to which
we automatically give the same name) that dk has a limit d∞ ∈ [0, 1]. Then
Lk converges to the limit L∞ = d∞e1 + Re2.

Since βH(R) 6 2−k (for the set Ek), there is a half plane Hk bounded by
Lk, such that

d0,1(Ek, Hk) 6 2−k. (25.7)

We extract a new subsequence, so that after extraction Hk converges
(say, for the Hausdorff distance in B(0, 2)) to a half plane H∞ bounded by
L∞. We allow the case when d∞ = 0, but notice that dist(0, Hk) 6 2−k,
by (25.7) and because 0 ∈ E. Thus H∞ contains the origin.

Extract again a subsequence, so that {Ek} converges, locally in B(0, 1),
to a closed set E∞. In fact, in the present situation this is not even needed,
because of (25.7), but for the next lemma it will feel better, and anyway this
is costless. We want to apply a theorem about limits to the sequence {E′k},
where E′k = Ek+(d∞−dk)e1. Since d∞−dk tends to 0, {E′k} also converges
to E∞, but the point of the translation is that E′k is sliding minimal, in a
domain Bk = B((d∞−dk)e1, 1) that tends to B(0, 1), with a same boundary
set Lk + (d∞−dk)e1 = L∞. This way we can apply theorems of convergence
with a fixed boundary set.

We put ourselves in B = B(0, 99
100 ), which is contained in Bk for k large.

Thus E′k is almost minimal in B, relative to the boundary L∞, and with a
gauge function h′k such that h′k(1) = hk(Rk) 6 2−k, by (23.2) and (24.3)
with εH = 2−k.
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By (25.7), both Ek and E′k converge to H∞, locally in B(0, 1), i.e., for
any localized Hausdorff distance function d0,r, 0 < r < 1.

Let us fix r ∈ ( 9
10 ,

98
100 ), and apply Theorem 22.1 in [14] to the sequence

{E′k} and the compact set B(0, r). Notice in particular that the minimizing
sequence property (21.14) in [14] is satisfied, with δ = 1, and where k0 is
simply chosen so that hk(1) < ε for k > k0. We find that

H2(H∞ ∩B(0, r)) = H2(H∞ ∩B(0, r)) > lim sup
k→+∞

H2(E′k ∩B(0, r)). (25.8)

But for k large,
H2(E′k ∩B(0, r)) = H2(Ek ∩B((dk − d∞)e1, r)) (25.9)

> H2(Ek ∩B(0, r − |d∞ − dk|)) (25.10)

> H2
(
Ek ∩B

(
0, 9

10

))
, (25.11)

because r > 9
10 . Hence(

9
10

)2
lim sup
k→+∞

Fk

(
9
10

)
= lim sup

k→+∞

[
H2
(
Ek ∩B

(
0, 9

10

))
+H2

(
Sk ∩B

(
0, 9

10

))]
6 H2(H∞ ∩B(0, r)) + lim sup

k→+∞
H2
(
Sk ∩B

(
0, 9

10

))
. (25.12)

If d∞ = 0, then H∞ is a half plane bounded by a line L∞ that contains the
origin, and the right-hand side of (25.12) is πr2

2 + π(9/10)2

2 6 πr2. Otherwise,
we know that 0 ∈ H∞ \ L∞, thus H∞ is the half plane bounded by L∞
and that contains the origin. At the same time, Sk converges nicely to the
closure of the complement of H∞ in the plane that contains it. Thus the
right-hand side of (25.12) is also smaller than 6 πr2 in this case. We put
things together and get that

lim sup
k→+∞

Fk

(
9
10

)
6

(
10r
9

)2
π. (25.13)

We take r > 9
10 so close to 9

10 that the right-hand side is smaller than
π + ε/2, and get a contradiction with the fact that Ek was chosen so that
Fk(9Rk/10) > π + ε/2. This concludes our proof of (25.5).

We shall now easily deduce (25.3) from (25.5) and the near monotonicity
formula (23.11). Let us first recall that if A is as in (23.10), then

A(R) =
∫ R

0
h(t)dt

t
6 Ch

∫ R

0
tβ−1dt = β−1ChR

β 6 β−1εH (25.14)
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by (23.2) and because (24.3) holds. Then for 0 < r 6 9R/10, (23.11) yields

F (r) 6 eαA(r)F (r) 6 eαA(9R/10)F (9R/10)

6 eαβ
−1εHF (9R/10) 6 eαβ

−1εH (π + ε/2) < π + ε (25.15)

by (25.14) and (25.5) and if εH is small enough. Thus (25.3) holds.

Next we assume that E is as in Theorem 24.1 and that F (R) 6 π + εH ,
and we prove (25.2) and (25.3). We start with (25.3). Observe that for 0 <
r < R′ < R,

F (r) 6 eαA(r)F (r) 6 eαA(R′)F (R′) 6 eαβ
−1εHF (R′) (25.16)

by (23.11) and (25.14). We let R′ tend to R in (25.16) and get that for
0 < r < R,

F (r) 6 eαβ
−1εHF (R) 6 eαβ

−1εH (π + εH) 6 π + ε (25.17)

if εH is small enough. This proves (25.3), and we are left with (25.2) to prove.

Let us first try to apply Lemma 23.5, to the radius r = 21
20

9R
10 , with τ = ε

and θ0 = π. If we can do this, (23.24) says that d0, 20r
21

(E,X0) 6 ε for some
X0 ∈ H(L), and this yields (25.2). So we just check the assumptions. First,
(23.22) follows from (23.2) and (24.3) (if εH is small enough). The second
half of (23.23) (the upper bound for F ) follows from (25.17), which also
implies (when you let the radius in (25.17) tend to 0) that θ0 < π + ε < 3π

2 .
This implies that θ0 = π (there is no other possible value, since 0 ∈ E), and
so (23.23) holds. The second half of (23.21) is satisfied too, so we can apply
the lemma and get the desired conclusion (25.2) as soon as d0 6 δr, where
δ = δ(ε) is the small constant attached by the lemma to our choice of τ = ε.

Thus we may assume that d0 > δr, and now we want to apply Lemma 23.3
to the same radius r = 21

20
9R
10 as before, with the constant δ that we just

found, and with τ = ε. As before, the assumptions (23.16) and (23.17) are
satisfied if εH is small enough, 0 ∈ E, and the first part of the remaining
assumption (23.15) is satisfied. So we can apply the lemma if 11d0

10 6 r =
21
20

9R
10 . This is the case, because we required in (24.1) that d0 6 2R/3. So

we get (23.18) for some half plane H0 ∈ H (in fact the one that contains the
origin), and this implies (25.2) as before.

This completes our verification in the two cases that belong to Theo-
rem 24.1. Now assume that E is as in Theorem 24.2. In particular, (24.8)
says that βV P (R) 6 εV . If we prove that

F (9R/10) 6 3π
2 + ε

2 , (25.18)

then (25.4) will follow at once, by the proof of (25.15).
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We prove (25.18) with the same compactness argument as for (25.5). This
time (24.8) yields the analogue of (25.7), but for a set Vk ∈ V(Lk) instead
of Hk. We may still take a subsequence so that Vk converges to a limit V∞,
and V∞ ∈ V(L∞). As before, dist(0, Vk) 6 2−k, hence 0 ∈ V∞.

We can keep the limiting argument (with the sequence {E′k}) as it was,
and we get that for r ∈ ( 9

10 ,
98
100 ),

H2(V∞ ∩B(0, r)) > lim sup
k→+∞

H2(E′k ∩B(0, r))

> lim sup
k→+∞

H2
(
Ek ∩B

(
0, 9

10

))
(25.19)

as in (25.8) and (25.11), and(
9
10

)2
lim sup
k→+∞

Fk

(
9
10

)
= lim sup

k→+∞

[
H2
(
Ek ∩B

(
0, 9

10

))
+H2

(
Sk ∩B

(
0, 9

10

))]
6 H2(V∞ ∩B(0, r)) + lim sup

k→+∞
H2
(
Sk ∩B

(
0, 9

10

))
(25.20)

as in (25.12). We start with the simpler case when L∞ goes through the ori-
gin. ThenH2(V∞∩B(0, r)) = πr2, limk→+∞H2(Sk∩B(0, 9

10 )) = π
2 (9/10)2 6

πr2

2 , and the right-hand side of (25.20) is less than 3πr2

2 . If we take r close
enough to 9/10, we get that lim supk→+∞ Fk( 9

10 ) 6 3π
2 + ε

3 , and for k large
this contradicts the fact that Ek was chosen to violate (25.18).

So we may assume that d∞ > 0. Write V∞ = H1∪H2, with Hi ∈ H(L∞).
Since 0 ∈ V∞, we may assume that 0 ∈ H1. At the same time, Sk tends nicely
to the shade S∞ of L∞, which is just opposite to H1. Thus, if A denotes the
right-hand side of (25.20),

A = H2(V∞ ∩B(0, r)) +H2
(
S∞ ∩B

(
0, 9

10

))
6 H2(V∞ ∩B(0, r)) +H2(S∞ ∩B(0, r))
= H2(H1 ∩B(0, r)) +H2(H2 ∩B(0, r)) +H2(S∞ ∩B(0, r))
= πr2 +H2(H2 ∩B(0, r)). (25.21)

Now H2 makes an angle at least 2π/3 with H1. One way to computeH2(H2∩
B(0, r)) consists in slicing it by planes. That is, write L∞ = d∞e1 + Re2,
where e1 and e2 are orthogonal unit vectors, and let e3 be a third unit vector,
orthogonal to e1 and e2, such that H2 is contained in the 3-space generated
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by e1, e2, and e3. Set Pt =
{
xe1 + te2 + ye3 ; (x, y) ∈ R2} for t ∈ (−r, r).

Then
H2(H2 ∩B(0, r)) =

∫ r

−r
H1(Pt ∩H2 ∩B(0, r))dt, (25.22)

because e2 is parallel to H2. For each t,H1(Pt∩H2∩B(0, r)) is less that what
it would be if H was the half plane bounded by L∞ and that contains d∞e1+
e3, and even less than what it would be (for H2 with the same direction and)
for d∞ = 0. See Figure 25.1. Thus, after integrating, H2(H2∩B(0, r)) 6 πr2

2 ,
A 6 3πr2

2 , and (25.20), with r close enough to 9R/10, implies that (25.18)
holds for k large. This completes our proof of (25.18) by compactness and
contradiction. As was said earlier, (25.4) follows from (25.18), and this last
case ends our proof of Lemma 25.1. �

U
∂B(0,r)Pt

U
L Pt

UU
B(0,r)2Pt H

two longer sets

Figure 25.1. A picture in Pt

In the case of Theorem 24.1, we were able to replace our assumption
that βH(R) is small by a density assumption, but for Theorem 24.2, the
corresponding assumption that

θ0 = 3π
2 and F (R) 6 3π

2 + εV , (25.23)

where θ0 = limr→0 r
−2H2(E ∩ B(x, r)) is still as in (25.1), is not enough

to give a good approximation by a set of type V ∪ P0. We can only do
this when d0 is small enough, as in the following lemma that we state for
general r ∈ (0, R). The initial assumptions are as in Theorem 24.2, but we
replace (24.8) with (25.23).

Lemma 25.2. — For each ε > 0, there exist εV > 0 and δ(ε) > 0, that
depend only on n, β, and ε, with the following property. Let L, E, and h
satisfy (24.1), (23.1), and (23.2) with a constant Ch such that (24.6) holds.
Suppose in addition that (25.23) holds. Then

βV P (r) 6 ε (25.24)

for every r such that

δ(ε)−1d0 6 r 6
9R
10 . (25.25)
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Proof. — We shall proceed as in the previous lemma. Let L, E, and h be
as in the statement. By (25.23) and the proof of (25.17),

F (r) 6 eαA(R)F (R) 6 eαβ
−1εHF (R) 6 eαβ

−1εH

(
3π
2 + εV

)
for 0 < r 6 R. (25.26)

Let r satisfy (25.25). We want to apply Lemma 23.5, this time with the
density θ0 = 3π

2 , τ = ε, and the radius r1 = 21r
20 . The statement gives a

small constant δ that depends on ε, and we take δ(ε) = 20δ
21 .

Let us check the assumptions. We start with (23.1), which is satisfied by
assumption, and (23.10), which follows from (23.2). Next (23.21) (the size
of r1) follows from (25.25), (23.22) follows from (23.2) and (24.6) (if εV is
small enough, now depending also on ε), and (23.23) follows from (25.23)
and (25.26). We get a set X0 ∈ V(L)∪P0 (because θ0 = 3π

2 ) such that (23.24)
holds. That is,

d0,r(E,X0) = d0, 20r1
21

(E,X0) 6 ε, (25.27)

where the first part holds because r1 = 21r
20 . Lemma 25.2 follows; we also

get an extra estimate (23.25) on the Hausdorff measure, which was not men-
tioned in the Lemma but holds anyway. �

The lemma is a little weird (and will be improved seriously later), because
we should be able to prove that the only sets X0 that can show up in the
proof above are sets of type V whose two faces make an angle close to 2π

3 .
For instance, we expect that otherwise, the good approximation of E by a
flat object (say, a plane) at the large scale r implies that 0 is a smooth point
of E. For the moment we have to wait for a more precise statement, because
we do not seem to have the tools yet to prove this, but in Theorem 30.3
(also see Remark 30.4), we will get a better result, that also applies to some
intermediate radii, of approximation by truncated Y-sets. This is of course
compatible, because in a ball of radius r � d0, a truncated Y-sets looks a
lot like a V-set with an angle close to 2π

3 .

In the situation of Lemma 25.2, but for radii r < δ(ε)−1d0, we can still
get some geometric control on E, and show that it looks like a truncated
cone of type Y.

Lemma 25.3. — For each choice of ε > 0 and δ ∈ (0, 1), there exist
εV > 0, that depends only on n, β, ε, and δ, with the following property. Let
L, E, and h satisfy (23.1) and (23.2) with a constant Ch such that (24.6)
holds. Suppose in addition that (25.23) holds. Then for each r such that

22d0

21 6 r < min
(

20R
21 , δ−1d0

)
(25.28)

– 228 –



A local description of 2-dimensional almost minimal sets bounded by a curve

we can find a minimal cone Y of type Y, centered at 0, such that L∩B(0, 21r
20 )

is contained in a face of Y , and for which
d0,r(E,E0) 6 ε, with E0 = Y \ S. (25.29)

Proof. — Here S still denotes the shade of L, and we may observe that
in the ball B(0, 21r

20 ) (the only place that counts for (25.29)), E0 is a nice
truncation of Y by L. The proof will also show that E0 approximates E well
in measure, in the sense that

|H2(E ∩B(y, t))−H2(E0 ∩B(y, t))| 6 2εr2 (25.30)
for all y ∈ Rn and t > 0 such that B(y, t) ⊂ B(0, r).

The proof is easy. We want to apply Lemma 23.4 to the radius r1 = 21r
20 ,

and with τ = ε. The assumptions (23.1), (23.10), and (23.16) follow, as in
Lemma 25.2, from (23.1), (23.2), and (24.6). The replacement for (23.17)
follows from (25.23) and (25.26). Finally the requirement (23.15) on the size
of r1 was computed to be the same as (25.28). Thus we get Y and E0,
as in Lemma 23.4, and the properties announced in Lemma 25.3, as well
as (25.30), are the same as what we get from Lemma 23.4. �

Proof of Theorem 24.1 modulo Proposition 24.3. — Let E be as in
the statement. By Lemma 25.1, we get that if εH is small enough, (25.2)
and (25.3) hold with any small ε > 0 that we may have chosen in advance.
Let us check that we can also get that

βH(r) 6 ε for 3d0

2 < r 6 9R/10. (25.31)

For R/2 < r 6 9R/10, this follows directly from (25.2) (with ε/2). For
r < R/2, let ε1 be the value of εH needed to get ε in Lemma 25.1, and
apply first Lemma 25.1 with ε = ε1 to define εH . Then by Lemma 25.1,
F (10r/9)−π 6 ε1. Next apply Lemma 25.1 again, with ε, and to the radius
R′ = 10r/9; the initial assumptions of Theorem 24.1 are still valid for R′
with the same constants, and (24.4) (with the constant ε1) is true because
F (10r/9)− π 6 ε1. We get (25.2) for R′, which is just (25.31).

Next we apply Proposition 24.3. If ε above is chosen smaller than the
ε1 from the proposition, the main assumption (24.12) is satisfied as soon as
r 6 9R/20. The assumptions (24.1), (23.1), (23.2), and (24.11) are satisfied
by assumption (if εH < ε1), and so we get the differential inequality (24.13),
i.e.,

rF ′(r) > a[F (r)− π]+ − C1

∫ 2r

0

h(t)dt
t

(25.32)

for almost every r such that

2d0 6 r 6
9R
20 . (25.33)
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Recall from (23.6) that F (r) = θ(r) + r−2H2(S ∩B(0, r)). The second term
is a smooth function of r > d0, so the differentiability properties of F are the
same as those of θ. Thus, even though we recalled that F is differentiable
almost everywhere in the statement of Proposition 24.3, we already knew
this from Lemma 17.1. The same lemma, and in particular (17.6), also says
that we can integrate pointwise inequalities on θ′, and hence on F ′ too, to
get lower bounds on the increase of θ and F . Let us do this with (25.32).

We proceed as for (17.23), but change some things because we slightly
changed the error term in (24.13) and (25.32). Set g(r) = r−a[F (r)− π] for
r ∈ I = (2d0, 9R/20); then g is also differentiable almost everywhere (by
Lemma 17.1), with for r in the range of (25.33)

g′(r) = −ar−a−1[F (r)− π] + r−aF ′(r) > −C1r
−a−1

∫ 2r

0
h(t)dt

t

> −C1Chr
−a−1

∫ 2r

0
tβ−1dt > −2C1β

−1Chr
β−a−1

=: −C3Chr
β−a−1 (25.34)

by (25.32) (and we don’t need the positive part), and then (23.2); the last
identity is a definition of C3.

We may as well assume that a 6 β/2 (notice that our form of (24.13),
with the positive part inside, allows us to make a smaller), then β − a −
1 ∈ (−1, 0). Lemma 17.1 allows us to integrate this (recall that F − θ is
continuously differentiable), and we get that for 2d0 6 r1 6 r2 6 9R/20,

g(r1) 6 g(r2)−
∫ r2

r1

g′(r)dr 6 g(r2) + C3Ch

∫ r2

r1

rβ−a−1dr

6 g(r2) + C3Ch(β − a)−1rβ−a2 = g(r2) + C4Chr
β−a
2 , (25.35)

with C4 = (β − a)−1C3 6 2C3/β, and now

F (r1)− π = ra1g(r1) 6
(
r1

r2

)a
[F (r2)− π] + C4Chr

a
1r
β−a
2 . (25.36)

This holds for 2d0 6 r1 6 r2 6 9R/20, and in this region it is better
than (24.5) because we don’t use the extra 2a.

Now we need to consider radii r1 < 2d0. Let us first check what happens
on the interval I1 = [d0, 2d0]. In this range, we simply use the fact that
by (23.11),

F (r1) 6 F (r1)eαA(r1) 6 F (r2)eαA(r2) (25.37)
for d0 6 r1 6 r2 6 2d0 and, since

A(r2) =
∫ r2

0
h(t)dt

t
6 Chβ

−1rβ2 6 Chβ
−1 min(2d0, R)β 6 Chβ−1εH (25.38)
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by (23.2) and (24.3), we see that eαA(r2) 6 1+3αβ−1Chd
β
0 . Also, F (r2) 6 2π

by (25.3), and (25.37) yields

F (r1) 6 F (r2) + 20αβ−1Chd
β
0 = F (r2) + C5Chd

β
0 . (25.39)

This is better than (24.5) because 2r1
r2
> 1. This is the place where we lost

the extra 2a.

If d0 6 r1 6 2d0 < r2 6 9R/10, we combine (25.38) with (25.36) and get
that

F (r1)− π 6
[
F (2d0)− π

]
+ C5Chd

β
0

6

(
2d0

r2

)a
[F (r2)− π] + C4Ch(2d0)arβ−a2 + C5Chd

β
0

6

(
2r1

r2

)a
[F (r2)− π] + C6Chr

a
1r
β−a
2 , (25.40)

which implies (24.5). When 0 < r1 6 r2 6 d0, there is no visible sliding
boundary condition, and we can use the decay estimates from [47], as one
may find them in [10], and which take the same form as in the previous
sections, or even just above with d0 = 0. That is, we get that for some choice
of a > 0 and C7 > 1,

F (r1)− π = θ(r)− π 6
(
r1

r2

)a
[θ(r2)− π] + C7Chr

a
1r
β−a
2

=
(
r1

r2

)a
[F (r2)− π] + C7Chr

a
1r
β−a
2 .

(25.41)

For the remaining case when r1 < d0 6 r2 6 9R/20, we glue this estimate
to (25.40) and get that

F (r1)− π 6
(
r1

d0

)a
[F (d0)− π] + C7Chr

a
1d
β−a
0

6

(
r1

d0

)a{(2d0

r2

)a
[F (r2)− π] + C6Chd

a
0r
β−a
2

}
+ C7Chr

a
1d
β−a
0

6

(
2r1

r2

)a
+ C6Chr

a
1r
β−a
2 + C7Chr

a
1d
β−a
0 , (25.42)

which is also as good as (24.5). Theorem 24.1 follows, modulo Proposi-
tion 24.3 which will be proved in the next section. �

Proof of Theorem 24.2 modulo Proposition 24.4. — This will work es-
sentially as for Theorem 24.1. Let E be as in the statement. Let ε be small,
to be chosen soon. By Lemma 25.1, (25.4) holds (for 0 < r 6 9R/10), while
by Lemma 25.2,

βV P (r) 6 ε for δ(ε)−1d0 6 r 6
9R
10 . (25.43)
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Next we apply Proposition 24.4. The assumptions (24.1) (if r > 2d0),
(23.1), (23.2), (24.4), (24.14), and (24.16) come directly from the assump-
tions of Theorem 24.2, (24.17) follows from (25.43) if ε is chosen smaller
than ε2, and we are left with (24.15), which requires that

Nd0 6 r 6
R

2 . (25.44)

Here N is a constant that depends only on n and β, and since we may now
choose ε, δ(ε) also becomes such a constant. Set N1 = max(N, δ(ε)−1). We
get that for almost all r ∈ (N1d0,

R
2 ), F is differentiable at r and (24.18)

holds. The same argument as for (25.36) shows that

F (r1)− 3π
2 6

(
r1

r2

)a [
F (r2)− 3π

2

]
+ C ′4Chr

a
1r
β−a
2 (25.45)

for N1d0 6 r1 6 r2 6 9R/20. For 0 < r1 6 r2 6 d0, the proof of (25.41)
yields

F (r1)− 3π
2 6

(
r1

r2

)a [
F (r2)− 3π

2

]
+ C ′7Chr

a
1r
β−a
2 . (25.46)

In the intermediate regions where d0 6 r1 6 r2 6 N1d0, we simply use the
near monotonicity of F , as in (25.39). Finally, we glue all these estimates as
above, and get that

F (r1)− π 6
(
N1r1

r2

)a
+ C8Chr

a
1r
β−a
2 (25.47)

in the full range of 0, R/2. This proves (24.9) and Theorem 24.2, modulo
Proposition 24.4 which will be proved in Sections 26–28. �

26. Construction of competitors, with the triangle T (r)

In this section we adapt the main part of the construction of competitors
that was done in Sections 5–16, to the case of balls centered away from L.
The goal is to get the differential inequalities of Section 24, so we will restrict
our attention to the case when E looks a lot like a set X ∈ H ∪ V ∪ P0.

It would be logical to deal also with the case when E looks like a truncated
set of type Y, but this would only give a differential inequality that holds for
a relatively small range of radii, and we decided that in this range we will
just use the near monotonicity of F , and not lose so much.

We will concentrate our attention more on the case when E looks like a
set of type V ∪ P0, because it is a little more complicated, and also seems
more useful. That is, we could probably manage without the case of a half
plane. But this case is easier anyway.

– 232 –



A local description of 2-dimensional almost minimal sets bounded by a curve

We start the construction with assumptions relative to a fixed radius
r < R, where R is as in (23.1) or (23.2), and we assume that the assumptions
of Proposition 24.3 or 24.4 are satisfied. In particular, we assume that 0 ∈ E,

θ0 = lim
ρ→0

ρ−2H2(E ∩B(0, ρ)) ∈
{
π,

3π
2

}
(26.1)

and that there is a set X ∈ H ∪ V ∪ P0, such that

d0,2r(E,X) 6 ε. (26.2)

Here ε is a shortcut for εH or εV , X is a half plane if θ0 = π and a set of
type V or P0 if θ0 = 3π

2 , and (26.2) comes from (24.12) or (24.17). But we
also have the extra information that

2d0 6 r 6
R

2 if θ0 = π (26.3)

and
Nd0 6 r 6

R

2 if θ0 = 3π
2 , (26.4)

where we can choose N as large as we want, and that

F (ρ) 6 θ0 + ε for 0 < ρ 6 r (26.5)

by (25.3) or (25.4).

Our proof of differential inequalities will follow the same route as for
Proposition 17.2; fortunately, we do not need to repeat everything, and the
geometric situation will be simpler. We explain how it goes here, but the
truth is that no real difference with what was done before, except for some
occasional simplification, happens before the description of Section 14, where
we build a competitor, and where the triangle T (r) will show up.

We start as in Section 5; our assumptions (23.2) and (24.3) replace (5.1)
and (5.2), and (26.2) replaces (5.3). We also assume that r satisfies the extra
properties (5.4), (5.7), and (5.8); this is all right, because we noticed in
Section 5 that they hold almost everywhere. These extra assumptions were
used to take some limits, for instance when we proved Lemma 14.2, and we
will apply the same arguments here.

So we fix r with all these properties. For the moment, let us not normal-
ize r away (i.e., take r = 1) as we did earlier. We want to construct nice
competitors for E in B(0, r), that probably beat the natural one. Earlier,
the natural one was just the cone Γ(E, r) over E∩Sr (where Sr = ∂B(0, r)),
but now it is

Γ̃(E, r) = Γ(E, r) ∪ T (r), (26.6)
where T (r) is the triangle with vertices 0 and the two points of L∩Sr, which
we denote by `± = `±(r). This is the same set that was used to prove the
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near monotonicity formula (23.11), and hopefully if we do even better than
Γ̃(E, r), we will get the desired differential inequality. Set

Kr = X ∩ Sr = X ∩ ∂B(0, r). (26.7)

When X ∈ H, Kr is composed of one nice curve ρ1. It is the intersection
of Sr with a half plane bounded by L, which by (26.3) passes rather near 0;
it is not a piece of geodesic unless 0 is exactly in front of X, but it is still
an arc of circle with a not too large curvature. And it has two endpoints in
L ∩ Sr.

When X ∈ V, Kr is composed of two nice curves ρ1 and ρ2, both ending
at the two points of L ∩ Sr. They are not geodesics either in general, but
since (26.4) says that L passes very near 0 (as near as we want), they are
very close to being two arcs of great circle with length πr.

Finally, when X ∈ P0, Kr is a full great circle, that may or may not
contain points of L. This case is slightly different from the others, but we
keep it along for some time. We cut Kr in two roughly equal parts ρ1 and
ρ2 of lengths nearly equal to πr; we may be more specific later on where we
cut, to make some estimates easier to prove.

For i = 1 and maybe 2, let wi denote the point of ρi that lies at equal
distance from its two endpoints. We cut ρi at wi, into two sub-arcs ρi,± that
go from wi to `± in the first two cases; in the last case, ρi,± goes from wi to
an endpoint `′± of the two ρi, which we choose close to `± if Kr gets close to
L. Since we want uniform notation, let us also set `′± = `± in the first two
cases. At this point we have two or four nice arcs ρi,± from the wi to the `′±.

When X ∈ V ∪ P0, we have a constant N > 1, as in (26.4), which we
can make larger if we want, so that some geometric estimates are satisfied;
when X ∈ H, let us also introduce a large constant N too, which this time is
not related to the constraint (26.3). We will pick N so large (in both cases),
that some geometric properties are satisfied, and then ε will be allowed to
be small enough, depending on N . For instance, we claim that for N large,
ρi,± is close to the geodesic ρ(wi, `±) with the same endpoints, and more
precisely

d0,2r(ρi±, ρ(wi, `′±)) 6 10N−1. (26.8)

When X ∈ P0, this is trivial because ρi± is actually an arc of geodesic;
in our remaining case, recall that `′± = `±.

When r > Nd0 (which is automatically the case when X ∈ V), this is
because Sr is almost centered on L (and we put the large constant 10 to be
sure that neither author nor reader has to think about it). Otherwise, X is
a half plane bounded by L, dist(0, X) 6 2rε by (26.2), and we just assumed
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that d0 > N−1r. Then X makes a very small angle with the half plane H0
bounded by L and that contains 0, and Kr lies very close to an arc of H0
through the `±, which happens to be a geodesic. So (26.8) holds in this last
case too, if ε is small enough.

In the discussion below, we shall some times say things as if X were of
type V or P0 and we had two curves ρi, but the case of a half plane will be
included, and easier.

We give ourselves a small constant τ > 0, that depends on the geometry;
probably we can take τ = 10−5. We set D± = D±(r) = Sr ∩B(`′±, τr). The
discussion of Section 6, with the local regularity of E far from L, gives a
nice description of E ∩ Sr \ (D+ ∪ D−), as a union of one or two nice C1

curves Li, that are also small Lipschitz graphs over ρi \ (D+ ∪D−). We cut
the curve Li into two pieces Li,±, at a point which we call mi and which we
choose very close to wi. The curve Li,± leaves from mi, and ends at a point
ci,± ∈ E ∩ ∂D±, where it actually reaches ∂D± transversally. In addition,
near each ∂D±, the intersection E ∩ Sr is just composed of two nice C1

curves, that are extensions of the Li,±, and which cross a thin annulus near
∂D± transversally.

The behavior of E ∩ Sr in each D± can be classified into what we shall
call configurations. Their description is essentially the same as in Section 17,
except with only one or two points in ∂D±, but we use the opportunity to
change the vocabulary slightly.

We start with Configuration 1 (which we may also call Configuration 1±
if we want to specify near which `± we work), where both points ci,± lie in
the same connected component of E ∩D± as `± (which therefore lies in E).
This is the most likely situation, hence the name.

We also have Configuration 2 (or 2±) where we have what we call a
hanging curve, i.e., when at least one of the ci,± (and say that it is c1,±)
does not lie in the component of c2,± in E ∩D± (if X is a V-set), nor in the
component of `± (if `± happens to lie in E). We will like this case because
it is easy to construct a better competitor.

When X ⊂ H, these are the only two options, since there is only one ci,±.
Otherwise, we still have one possibility, Configuration 3 (or 3±), where c1,±
and c2,± lie in the same component of E ∩ D±, but not `±. We call this a
free attachement; we expect this thing to happen, but only when X is very
close to a plane, and then E may leave L. Recall that every plane is a sliding
minimal set, independently of its position relative to L, and that X may
also be a plane that does not contain L. We treat this case like the other
ones for the moment, except that maybe `′± 6= `±, and in the case when
|`′± − `±| > τ/10, say, and ε is small, we are sure to be in Configuration 3,

– 235 –



Guy David

and near `′± we may also have kept the curve L1∪L2, which is perfectly nice
(and does not get close to L).

Next we construct a net of curves, as in Section 7.

When X is a half plane and we are in Configuration 1, we find a simple
curve γ′1,± ⊂ E∩D± that goes from c1,± to `±, and we add it to L1,± to get
a curve γ1,± ⊂ E that goes from m1 to `±. Also set γ± = γ1,± for unified
notation.

When X is of type V or P0 and we are in Configuration 1, we find a point
z± ∈ E ∩ D±, and two simple curves γ′i,± ⊂ E ∩ D± that go from ci,± to
z±, i = 1, 2, and a last one, γ`± ⊂ E ∩D± that goes from z± to `±. We add
to γ′i,± the corresponding Li,± to get a curve γi,± ⊂ E that goes all the way
to mi, and call γ± = γ1,± ∪ γ2,± ∪ γ`± . We allow the degenerate case when
z± = `±.

In Configuration 2, when L1,± is a hanging curve (say), we decide to
essentially remove L1,± and the component of c1,± in D± from the game,
and we set γ1,± = {m1}. If X is a half plane, we are finished with D±.
Otherwise, if L2,± is also a hanging curve, we set γ2,± = {m2}. If not, we
construct γ2,± as in Configuration 1, when X is a half plane. We also set
γ± = γ1,± ∪ γ2,±.

We are left with Configuration 3. In this case we select a simple curve
γ′± ⊂ E ∩ D± that goes from c1,± to c2,±, pick a point z± ∈ γ′± close to
`′± (a point of γ′± closest to `± seems to be the simplest), cut γ′± at the
point z±, into two pieces γ′i,± that go from ci,± to z±, and add Li,± to γ′i,±
to get a longer curve γi,± that starts from mi and ends at z±. Finally set
γ± = γ1,± ∪ γ2,± as usual.

This gives a collection of simple curves. We may call γ∗ the union of these
curves, and we see it as a first net. The curves don’t intersect, because we
kept D+ and D− essentially disjoint from the rest.

Next we proceed as in Section 8. Each of the simple curves (call it γ)
that was constructed above is replaced with a small Lipschitz graph Γ with
the same endpoints. When we deal with a hanging curve, of course, we don’t
see the difference, because both curves γ and Γ are reduced to a point. In
Configuration 1 when X ∈ V∪P0, it could be that the three Lipschitz graphs
that we constructed do not make nice angles or, even worse, intersect; then
we will modify it later appropriately, but let us not worry for the moment
and continue as if this did not happen. We take the union of all these curves
Γ and get a net that we call Γ∗.

Recall that in (8.1) we required the endpoints of the curve γ that we
transform into Γ not to be too far from each other. In the present case, if
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X is of type V, then d0/r is quite small, the curves Li stay quite close to
diameters of Sr, the wi are at distance about πr/2 from the `±, so do the
mi, and we get (8.1) because we can choose τ small and hence the point
z± (when it exists) lies quite close to `±. If X ∈ P0 and the `′± lie close to
the `±, we can argue as when X ∈ V, while otherwise, when for instance `′+
lies at distance at least τr from L, we may as well have taken it opposite
to `′− and get what we want. Finally, assume that X is a half plane; if d0 is
small compared to r, we can still say the same thing. And even when d0 is
large, X is quite close to the half plane H0 that is bounded by L and goes
through the origin, w1 and m1 are quite close to the middle point of the long
geodesic arc Sr ∩H0. But we required in (26.3) that 2d0 6 r, and it can be
checked that this forces the length of Sr∩H0 to be significantly smaller than
3πr
2 , so that H1(ρ(m1, `±)) 6 3πr

4 as needed for (8.1). The reader is invited
not to do the precise computation, since 3πr

4 could have been any number
smaller than πr, and πr corresponds to d0 = r. So we did not cheat with the
assumption (8.1) here.

We do not need to modify what we did in Section 9. That is, for each
of the curves Γ that compose Γ∗, we construct a graph ΣG(Γ), which is
bounded by Γ and the two line segments from 0 to the endpoints of Γ, and
which in general has a smaller area than the cone ΣF (Γ) over Γ. See for
instance (9.19).

The reader may be worried about the fact that in the present situation,
ΣG(Γ∗) =

⋃
Γ ΣG(Γ) does not give a competitor for E (even after we do

the small modification needed to glue things near Sr), because probably
ΣG(Γ∗) detaches itself from L when it leaves the two points `±. We already
had this problem in [13], because in the proof of (23.11) we could not use
ΣF (Γ∗) =

⋃
Γ ΣF (Γ); this is why we added the triangle T (r) to ΣF (Γ∗), and

here again we will need to add T (r) to ΣG(Γ∗) when needed; we will take
care of this later.

But let us first continue with the flow of the previous sections and discuss
analogue of Sections 10–12. We said above how to construct curves Γ by
taking the same endpoints as for our initial curves γ and applying Section 8.
This is what we do in most cases, but there is one case when we apply the
construction of Section 8 to slightly different curves. This is when we are in
Configuration 1, with a set X ∈ V∪P0, and in addition the three endpoints
`±, m1, and m2, seen from our vertex z±, make wrong angles. That is, if we
are so lucky that

Anglez±(`,mi) >
π

2 + 10−1 for i = 1, 2, (26.9)

we proceed exactly as we said above, and construct three curves Γ with the
same endpoint z±, and glue them together. This is all right, because then
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the curves Γ of our net Γ∗ still make large angles at z±, and this will allow
us to produce nice retractions on Γ∗. Notice that we do not need to say that
Anglez±(m1,m2) > π

2 + 10−1, because it is automatic, as either X ∈ V and
the two faces of X make an angle at least 2π

3 at the `± (and z± lies in the
small disk D± centered at `±), or X ∈ P0 and this is even more clear.

The worse picture we have when (26.9) holds is that Γ∗ is composed of
six arcs (with two short ones) that make Γ∗ looks like two long arcs of circle,
plus two little branches that connect the ends to the `±. But of course we
could also have a free attachment on one side, or simpler pictures.

In the bad case when (26.9) fails, it seems that we have no other choice
than proceed as in Configuration 2+ of the earlier discussion, which is treated
in Section 12. More precisely, as in Subcase B where (12.2) fails (just as (26.9)
fails here). In this case we decide that z± is not a nice enough center, and
we use only two curves Γ̃1 and Γ̃2, that go directly from `± to m1 and m2.
The two curves Γ̃i are constructed as in (12.7), as unions of the geodesic
ρ(`±, zi) and the part of our old Lipschitz curve Γ±,i (from z± to mi) that
lies between zi and mi, where zi is a point of Γ±,i that lies reasonably far
from z± (as defined below (12.6), but beware that r there has a different,
local, meaning).

Fortunately, the computations of Section 12 are still valid in this case,
and we do not repeat them. Their result is twofold. First, what we get
when we add Γ̃1 and Γ̃2 to the other curves that we construct is still a nice
net, composed of at most five Lipschitz curves (four long ones whose union
look likes the union of two half circles with common endpoints, and a short
one that connects the other `∓ to its z∓) that are disjoint except for their
endpoints, and make large angles with each other at these points. And we
have good estimates like (12.33)–(12.38) that say that the measure of the
symmetric difference between our initial γ± and Γ̃1∪Γ̃2 is controlled by what
we will win in the estimates, as in (10.6) and (10.7).

We return to the general case. At this point, we have a nice net Γ∗
composed of at most six Lipschitz graphs, which we now decide to call Γj
(hence, 1 6 j 6 6, maybe less), which are glued together at their endpoints
and make reasonably large angles there. For each j there is a cone ΣF (Γj)
over Γj (and these cones are glued nicely along segments that go from 0 to
the endpoints of the Γj), and a nicer graph ΣG(Γj) (and these graphs are
also nicely glued along the same line segments, with reasonably large angles).
We set ΣF (Γ∗) =

⋃
j ΣF (Γj) and ΣG(Γ∗) =

⋃
j ΣG(Γ∗).

Denote by aj and bj the endpoints of Γj ; recall that ΣG(Γj) is a small
Lipschitz graph over its projection on the plane Pj that contains the geo-
desic ρ(aj , bj). Also, ΣG(Γj) is bounded by Γj (on the sphere) and the two
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segments [0, aj ] and 0, bj ], where it is glued to the rest of ΣG(Γ∗). That is, if
Γj and Γk share an endpoint, which we call a = aj = ak, then ΣG(Γj) and
ΣG(Γk) also share the segment [0, a], and they make an angle at of least π/2
along that segment.

Indeed, by the small Lipschitz graph description of ΣG(Γj) and ΣG(Γk),
we just need to control the angle of Γj and Γk. This is rather easy when a
is one of the mi, because then the other endpoints bj and bk essentially lie
in opposite directions seen from a. This is also easy when a = `′± and bj , bk
are the two points mi, because either X ∈ V and its two faces make a large
angle at `± = `′±, or X ∈ P0 and the wi lie in a geodesic X ∩ Sr, in different
directions.

We are left with the case when a = z±. When bj and bk are the two points
mi, we can apply the same reasoning as above, since z± lies in a small disk
D± centered at `′±. So we may assume that we are in Configuration 1±, and
for instance bj = m1 and bk = `±. But in this case we have (26.9) (because
otherwise we decided to start the curves from `±), which is exactly what we
need.

So ΣG(Γj) and ΣG(Γk) make an angle at of least π/2 along [0, a], and the
union Σ̃G(Γ∗) is a nice object. Seen from far (and if X ∈ V), it still looks like
a set of type V, but maybe pinched twice along two thin triangular surfaces.
Notice also that we do not say that Σ̃G(Γ∗) lives in a 3-dimensional space,
but it stays quite close to the 3-space that contains X (but maybe not 0).
We shall also use later the fact that inside B(0, κr), it coincides with the
cone over a net of geodesics ρ∗.

Our next task is to project on Σ̃G(Γ∗) = ΣG(Γ∗)∪T (r) or maybe, in the
case of Configuration 2 or 3, on Σ̃G(Γ∗) alone. This will be useful because
we want to find a deformation that starts as the identity outside of B(0, r),
and maps roughly on Σ̃G(Γ∗) inside.

Because of the hanging and free cases, it may be that `+ or `− does not
lie in Γ∗, so we add them, which means that now Γ∗ may also have one or two
isolated components (which we call Γ again) composed of just a point `±;
in this case ΣG(Γ) is just the line segment [0, `±]. This is the manipulation
described at the beginning of Section 13.

In the computations that follow, and in order to simplify the notation,
we shall return momentarily to the convention of Section 14, where we had
decided to normalize things so that r = 1. So let us suppose that r = 1,
and forget r from some of the notation. We will return to the correct scaling
afterwards.
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The next stage, as in Section 13, is to construct a Lipschitz projection p
that maps points from a neighborhood of E ∩ S to the net of curves Γ∗. See
Proposition 13.1 Let us recall its main properties. Set Ê = E ∩ S ∪ {`−, `+}
(again we add the `± if they are not there already, because of the free case).
Then there is a very small number τ3, such that p is defined on a set R+ ⊂ S
that contains a τ3-neighborhood of Ê. It is Lipschitz (but maybe with a huge
norm), and it is also locally 30-Lipschitz, in the sense that for each x ∈ R+,
the restriction of p to R+ ∩ B(x, τ3) is 30-Lipschitz. Here τ3 is allowed to
depend on r in a wild way; nonetheless, the local 30-Lipschitz property is
useful, because it is enough to give good bounds on the measure of images
of sets by p. The reason for this strange local Lipschitz property is that it is
rather easy to construct a Lipschitz mapping pc near each component of Γ∗
(see Lemma 13.2 for a local version), but we need to split R+ into regions
where we use different maps pc (i.e., that belong to a given component),
but are far from each other (so that p is Lipschitz, but maybe with a bad
constant). The main property of p is that

p(R+) ⊂ Γ∗ and p (x) = x for x ∈ Γ∗. (26.10)

Recall that `± ∈ Γ∗ now, so in particular p(`±) = `±. Also, the local con-
struction component by component is such that, as in (13.44)

|p(z)− z| 6 10 dist(z,Γ∗) for z ∈ R+. (26.11)

Let us now extend p to E ∩A, where A is a small annulus around S1; we do
not take a radial extension as before (see (14.3)), because we want to preserve
L, so we prefer “radial with respect to x0”, where x0 is the projection of 0
on L. That is, for z ∈ B(0, 2) \ B(0, 1/2), denote ξ(z) the point of S such
that ξ(z)− x0 = t(z − x0) for some t > 0; we take

p(z) = p(ξ(x)) when ξ(z) ∈ R+. (26.12)

We refer the reader to Section 13 for a more precise description of p, and
now turn to Section 14 where we start the description of a new competitor.
We shall use the set

Σ̃G(Γ∗) = ΣG(Γ∗) ∪ T (r), with as above ΣG(Γ∗) =
⋃
j

ΣG(Γj) (26.13)

and where r = 1 here, a set which is a little larger than ΣG(Γ∗), as the basis
for our first competitor. Recall that the triangle T (r) is the convex hull of 0,
`+, and `−; it is nicely glued to the sets ΣG(Γj) for which `± is an endpoint
of Γj . With the recent addition of `± to Γ∗, these Γ exist, but they may be
reduced to one point. But we do not say that T (r) makes a large angle with
the faces ΣG(Γ) in question; it could even be that Γ is almost opposite to 0
and ΣG(Γ) has a big intersection with T (r). We shall see later that this is
not a problem.
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We want to construct competitors for E, in B(0, 1) (recall that we often
write estimates with r = 1 now), and for this we construct two deformations
ϕi. We start with a first one, ϕ0, and we define it in rings, starting with
the outside. We first set ϕ0(x) = x for x ∈ E \ B(0, 1), then take a very
small number σ > 0, that will depend on r, and try to do the interesting
modifications on the very thin annulus A(2σ).

By the proof of Lemma 14.1, if we take σ small enough, then
ξ(x) ∈ R+ for x ∈ E ∩A(2σ), (26.14)

which implies that p(x) is defined there. We first set

ϕ0(x) = |x|+ σ − 1
σ

x+ 1− |x|
σ

p (x) for x ∈ E ∩A(σ), (26.15)

just as in (14.6).

Here A(σ) is a gluing region; on the exterior boundary S1, we just took
ϕ0(x) = x, and on the inside boundary, we now have

ϕ0(x) = p (x) ∈ Γ∗ for x ∈ E ∩ S1−σ. (26.16)
The same proof as before yields that if we set F (σ) = ϕ0(E ∩ A(σ)) and
M(ζ) = H2(F (σ)), then M(σ) is small, as in Lemma 14.2.

Next we want all the variation of ϕ0 to occur on the next small ring
A2 = A(2σ) \A(σ) = B(0, 1−σ) \B(0, 1− 2σ), and we shall make sure that

ϕ0(x) ∈ Σ̃G(Γ∗) for x ∈ E ∩A2. (26.17)
We also want to make sure that ϕ0(x) = x0 on ∂B(0, 1 − 2σ), where x0 is
the orthogonal projection of 0 on L, because we will take

ϕ0(x) = x0 for x ∈ E ∩B(0, 1− 2σ). (26.18)
Then we will use ϕ0 to build our first competitor for E.

The construction of ϕ0 on A2 will take some time, because we prefer
to be explicit. Yet it will probably comfort the reader to know that the
specific construction that we adopt does not matter much. What counts is
the measure of the set ϕ0(A2) ⊂ Σ̃G(Γ∗), and things like the respect of our
boundary conditions.

First we want to construct is a deformation of Γ∗ to the point x0, through
Σ̃G = Σ̃G(Γ∗). We will define this mapping independently for each Γ = Γj ,
but so that the different pieces will glue well.

So let Γ be one of our Lipschitz curves, and first assume that it is a
nontrivial curve that starts at ` ∈ L ∩ ∂B, and ends at a point that we
call a. For each z ∈ Γ, we want to find a path t → w(z, t), t ∈ [0, 2], that
goes from z to the final target x0. We cut the path in two, and assign to z
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an intermediate target w(z, 1) that lies on the line [0, `]. We choose w(z, 1)
“linearly”, as follows. Parameterize Γ by v = [0, 1] → Γ at constant speed,
in such a way that v(0) = ` and v(1) = a. Then set w(z, 1) = (1− s)` when
z = v(s).

The second part of the trip (going from w(z, 1) = (1− s)` to x0) is easy
to organize, because T (r) is just a triangle and [0, `] one of its sides. We
simply set w(z, t) = (t − 1)x0 + (2 − t)w(z, 1) = (t − 1)x0 + (2 − t)(1 − s)`
for z ∈ Γ and 1 6 t 6 2.

For the first part of the trip, we recall that ΣG(Γ) is a small Lipschitz
graph over some vaguely triangular sector, which we call SΓ, in the plane
PΓ that contains a, `, and 0. The two segments [0, a] and [0, `] that bound
the sector are contained in ΣG(Γ), and there is a third curvy part of the
boundary, such that Γ (the third part of the boundary of ΣG(Γ)) is a small
Lipschitz graph over that curve. The triangular sector has a third boundary,
that goes from ` to a, and which is the projection of Γ (and is a small
Lipschitz curve too). We want to make sure that w(a, t) = (1 − t)a for
t ∈ [0, 1] (we go linearly from a to its intermediate target 0), and on the
other hand w(`, t) = ` for t ∈ [0, 1]. For the intermediate points z, it turns
out that we can take

w(z, t) = G̃[(1− t)π(z) + tw(z, 1)] for t ∈ [0, 1] (26.19)
where π denotes the orthogonal projection on PΓ, G : SΓ → P⊥Γ is the func-
tion whose graph is ΣG(Γ), and G̃(u) = u + G(u) is the parameterization
of the graph by u ∈ SΓ. The point is that although SΓ is not necessar-
ily convex, the small Lipschitz property of Γ implies that all the segments
[π(z), w(z, 1)] = [π(z), (1− s)`] are contained in SΓ (Figure 26.1 shows such
a segment). That is,

w(z, t) ∈ ΣG(Γ) for z ∈ Γ and t ∈ [0, 1]. (26.20)

l

a

w(z,1)

�(z)

w(z,t)
0

Figure 26.1. The projection π(w(z, t)) in SΓ ⊂ PΓ

This completes the definition of our path function w(z, t) on Γ, when Γ
ends at ` ∈ L. In the other case when Γ goes from a to b, with a, b /∈ L, we
first send points to 0, and then move them to x0. That is, write ΣG(Γ) as
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above as the graph over the sector SΓ of the small Lipschitz G : SΓ → P⊥Γ ,
and this time take the direct path to the origin defined by

w(z, t) = G̃[(1− t)z] for t ∈ [0, 1]; (26.21)
as before, (26.20) holds (this time because the rays from the curved boundary
of SΓ to the origin are contained in SΓ), and we end with w(z, 1) = 0. We
complete the path by taking w(z, t) = (t − 1)x0 for t ∈ [1, 2], which just
moves from 0 to x0. Notice that when two curves Γ end at the same vertex
a, the corresponding functions w(a, t), t ∈ [0, 2], coincide. This is true both
when a ∈ L and when a /∈ L.

There is a third, trivial case when Γ = {`} for some ` ∈ S ∩ L; then we
take the same definitions as before (when ` was an endpoint of Γ): we set
w(`, t) = ` for 0 6 t 6 1, and w(`, t) = (t− 1)x0 + (2− t)` for t ∈ [1, 2].

Now we are ready to define ϕ0 on E∩A2. Recall that ϕ0(x) = p (x) ∈ Γ∗
for x ∈ S1−σ. For x ∈ A2, we still start from z = p (x) ∈ Γ∗ (which is defined,
as before, by (26.12) and (26.14)). We also set t(x) = 2σ−1(1−|x|−σ) ∈ [0, 2],
and finally take

ϕ0(x) = w(z, t(x)) = w(p(x), t(x)) for x ∈ E ∩A2. (26.22)
Thus on S1−2σ, we have ϕ0(x) = w(z, 2) = x0, as needed.

This completes our definition of ϕ0. Notice also that ϕ0(x) ∈ Σ̃G for
x ∈ E ∩B(0, 1−σ), as promised, and it is easy to check that ϕ0 is Lipschitz
(although possibly with a huge norm). We should also mention that it is easy
to find a one-parameter family of Lipschitz mappings that preserve L and
go from the identity to ϕ0; we just need to make sure that points of L stay
in L, and we don’t need to control where the intermediate images lie, so we
can interpolate linearly and the convexity of L does the rest. With all these
remarks in mind, we just need to check that ϕ0 ∈ L for x ∈ A(2σ)∩E∩L. We
made sure to project radially from x0 so that [x, p(x)] ⊂ L, and then p(x) =
`±, and we made sure when we retracted Γ∗ to x0 that w(p(x), t(x)) ∈ L
too, as needed.

Now we need to control the measure of F 0 = ϕ0(E). We don’t need
to worry about E \ B(0, 1), because we did not change anything there; see
above (26.14). Next consider the image of F (σ) = ϕ0(E∩A(σ)) (the exterior
annulus). Fortunately, we took for ϕ0, and in particular in the annulus A(σ),
the same sort of formula as in Section 14 and we can do the same estimates,
which lead to (14.26) for M(σ) = H2(F (σ)); recall that the idea is to choose
correctly arbitrarily small values of σ, and define ϕ0 with such values (and
later take a limit to get a sharp estimate). We are left with ϕ0(B(0, 1−σ) ⊂
Σ̃G. We can keep the same estimates as before, on ΣG(Γ∗), and then we
just need to add H2(T (1)), the additional triangular piece that we decided
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to add to take care of the boundary constraint. We essentially copy (15.46),
and we get that

H2(E ∩B(0, 1))

6
1
2H

1(E ∩ S1)− 10−5[H1(E ∩ S1)−H1(ρ∗)] +H2(T (1)) + h(1), (26.23)

where ρ∗ is defined as in (15.43); it is the union of geodesics that we get when
we join the endpoints of each Γ with a geodesic. Thus there is a maximum
of six geodesics ρΓ (they were called ρj in Section 15), four long ones and
two short ones. Finally observe that we systematically added H2(T (1)) in
our estimate, as if it were disjoint from the other parts. That is, if by luck
T (1) intersects some other piece of F 0, we could perhaps have obtained a
better estimate on the total H2-measure of F 0, but we did not try to do this,
and this way, if we later modify F 0 by modifying ΣG(Γ∗) (including a piece
that may have intersected T (1)), when we do the further estimates, we will
be able to compare the measure of the replaced piece of ΣG(Γ∗) with what
it becomes, without having T (1) interfere in the computation. That is, we
shall not actually compare the sets, but the estimates that we use for the
sets. Hopefully this comment will become clear when we do this.

This was our main estimate, modulo the full length story below. We now
forget our normalization r = 1, and rewrite (26.23) as

H2(E ∩B(0, r))

6
r

2H
1(E ∩Sr)−10−5r[H1(E ∩Sr)−H1(ρ∗r)]+H2(T (r))+r2h(r), (26.24)

where we now write ρ∗r instead of ρ∗, and which is valid almost everywhere
under the assumptions of this section.

In order to know whether we need the full length trick and the construc-
tion of an additional competitor, we introduce the following set X0, which we
will see as the reference minimal set in the given situation. If θ0 = π, X0 is
the half plane bounded by L that contains 0. If θ0 = 3π

2 , X0 is the truncated
set of type Y, centered at 0, and with a spine parallel to L. That is, we take
the cone Y of type Y, centered at 0, and with a face that contains L, and
we take X0 = Y \ S, where S is still the shade of L. The reader should not
get confused (as the author has been a few times); our choice of X0 is just a
way to encode some numbers (such as H1(X0 ∩ Sr) below), but we will not
compare X0 with E directly. It is just pleasant to compute things in terms of
X0, because we know that for X0, the functional F is constant, so we know
in advance that some simplifications will occur. Also recall that we know
from [13], and with a simpler competitor, that F is almost nondecreasing, so
whatever small improvement that we have should lead to a good differential
inequality. When X ∈ P0, X0 does not look like X, but this is all right.
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The computations will be simpler when

H1(ρ∗r) 6 H1(X0 ∩ Sr), (26.25)

which will be our analogue of (16.1), because in this case we will not need
the full length trick.

So let us assume for the moment that (26.25) holds, and see how to
deduce from (26.24) the differential inequalities (24.13) and (24.18). In fact,
let us check that if we have an inequality like

H2(E ∩B(0, r))

6
r

2H
1(E ∩ Sr) +H2(T (r))− qr

[
H1(E ∩ Sr)−H1(ρ∗r)

]
+ r2h(r), (26.26)

for some number q ∈ (0, 10−1), then we have

rF ′(r) > a[F (r)− θ0]+ − C2

∫ 2r

0

h(t)dt
t

. (26.27)

where θ0 is as in (26.1), as long as such that

a 6 3q and C2 > max
(
α,

5
ln(2)

)
, (26.28)

where α is the almost monotonicity constant from (23.11). Of course (26.24)
is included; it corresponds to q = 10−5.

The proof will be similar to what we did in Proposition 17.2, but we need
to check the algebra. Otherwise, for the differentiability of F , for instance,
the justifications are the same as before.

Set v(r) = H2(E∩B(0, r)) and x(r) = (2r)−1H1(E∩Sr) as in Section 17;
then

v′(r) > H1(E ∩ Sr) = 2rx(r) (26.29)
as in (17.13). Next

r2θ(r) = v(r)

6
r

2H
1(E ∩ Sr) +H2(T (r))− qr

[
H1(E ∩ Sr)−H1(ρ∗r)

]
+ r2h(r)

6 r2x(r) +H2(T (r))− qr[H1(E ∩ Sr)−H1(X0 ∩ Sr)] + r2h(r) (26.30)

by (26.26), the definition of x(r), and (26.25).

We want to add H2(S ∩ B(0, r)) to both terms. Let ρ denote the arc of
great circle that is contained in P0 (the plane that contains 0 and L, goes from
`− to `+, and lies on the opposite side of 0. Thus ρ is the geodesic ρ(`−, `+).
Notice that the positive cone over ρ, i.e., Ξ =

{
tξ ; t ∈ [0, 1] and x ∈ ρ

}
is
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the almost disjoint union of the triangle T (r) and S ∩B(0, r) (a piece of the
shade); thus

H2(T (r)) +H2(S ∩B(0, r)) = H2(Ξ) = r

2H
1(ρ). (26.31)

Also, the union X0 ∪ S is essentially disjoint, and is either the plane P0 (if
θ0 = π) or a full cone of type Y (if θ0 = 3π

2 ); hence

H2(X0 ∩B(0, r)) +H2(S ∩B(0, r)) = θ0r
2. (26.32)

Next, by (26.30) and (26.31)

r2F (r)
= H2(S ∩B(0, r)) + r2θ(r)
6 H2(S ∩B(0, r)) + r2x(r) +H2(T (r))
− qr[H1(E ∩ Sr)−H1(X0 ∩ Sr)] + r2h(r)

= r

2H
1(ρ) + r2x(r)− qr[H1(E ∩ Sr)−H1(X0 ∩ Sr)] + r2h(r). (26.33)

Set K0 = X0 ∩ Sr; then K0 ∪ ρ is the intersection with Sr of the full cone P0
or Y , and since the union is almost disjoint, we get that

H1(K0) +H1(ρ) = 2rθ0. (26.34)

Thus (26.33) becomes

r2F (r) 6 r2x(r) +
[
θ0r

2 − r

2H
1(K0)

]
− qr[H1(E ∩ Sr)−H1(K0)] + r2h(r). (26.35)

We multiply this by 2r−2 and get that

2F (r) 6 2x(r) + 2θ0 − r−1H1(K0)
− 2qr−1[H1(E ∩ Sr)−H1(K0)] + 2h(r). (26.36)

Next we compute F ′(r). The derivative of H2(S ∩B(0, r)) is H1(ρ), so

rF ′(r) = −2F (r) + r−1v′(r) + r−1H1(ρ)
> −2F (r) + 2x(r) + r−1H1(ρ)
= −2F (r) + 2x(r) + 2θ0 − r−1H1(K0)
> 2qr−1[H1(E ∩ Sr)−H1(K0)]− 2h(r) (26.37)
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by (23.6), (26.29), (26.34) and (for the last line) (26.36). Next by (26.36)
and the definition of x(r),

F (r)− θ0

6 x(r)− 1
2 r
−1H1(K0)− qr−1[H1(E ∩ Sr)−H1(K0)] + h(r)

=
(

1
2 − q

)
r−1[H1(E ∩ Sr)−H1(K0)] + h(r), (26.38)

hence

r−1[H1(E∩Sr)−H1(K0)
]
>

(
1
2−q

)−1
[F (r)−θ0]−

(
1
2−q

)−1
h(r). (26.39)

We plug this back in (26.37) and get that

rF ′(r) > a0[F (r)− θ0]− b0h(r), (26.40)

with a0 = 2q
( 1

2 − q
)−1
> 3q and b0 = 2 + 2q

( 1
2 − q

)−1
6 5.

First assume that F (r) − θ0 > 0, so as not to get in trouble with
the positive part in (26.27). Since h(r) 6 1

ln(2)
∫ 2r

0
h(t)dt
t , (26.40) is bet-

ter than (26.27) for all the values of a 6 a0 and C2 > 5
ln(2) , which is a little

better than announced in (26.28).

Now suppose that F (r) < θ0. We may also assume that F ′(r) exists, since
this is the case almost everywhere. Then, when we differentiate the mono-
tonicity formula (23.11), we get that F ′(r) > −αA(r). Since the positive
part in (26.27) vanishes, this establishes (26.27) in this case, with any value
of a and as soon as C2 > α.

So we finally proved that the desired differential inequality (26.27) holds,
with a and C2 as in (26.28), as soon as (26.25) holds. We are thus left with
the complementary case, when

H1(ρ∗r) > H1(X0 ∩ Sr). (26.41)

and we will need the help of a full length condition that we state soon. But
for the moment let us exclude a few cases to make our life simpler later.

We start with the case when θ0 = π, and in addition we have a hanging
curve. In this case what is left of ρ∗r is just a single geodesic ρ, from m1 (a
point of E∩Sr near the middle of X∩Sr), to one of the two points of L∩Sr,
say, the point `+. Plus a degenerate curve reduced to {`−}, that counts for
nothing in the length computations. If we had taken m1 = w1, the midpoint
of the arc of X ∩ Sr, we would have exactly the length

H1(ρ(`+, w1)) = 1
2H

1(X ∩ Sr) 6
1
2H

1(X0 ∩ Sr), (26.42)
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where the second part comes from the fact that X0 is the half plane bounded
by L for which H1(X0 ∩ Sr) is the largest. Now we replace w1 by m1, this
hardly changes the lengths, and we still get a contradiction with (26.41). If
there are two hanging curves, ρ∗r is reduced to three points, and (26.41) is
even more impossible.

Let us also exclude the case when θ0 = 3π
2 and we have a hanging curve.

This time (26.4) allows us to take d0/r as small as we want. ThenH1(X0∩Sr)
is as close as we want to 2πr, while we are still missing at least one large
curve in ρ∗r , out of the four, and we get that H1(ρ∗r) is quite close to 3πr

2 , in
contradiction with (26.41).

Next we use a trick to exclude the remaining case when θ0 = π and there
is no hanging curve, with only a small computation. In this case ρ∗r is just
composed of two geodesics ρ± = ρ(m1, `±), that connect the `± to the point
m1 ∈ E ∩ Sr that we chose below (26.8). Recall that m1 is a point of the
curve L1, which is the part of E ∩ Sr that lies far from L, that we need to
choose near the point w1 in the middle of (the unique arc of) X ∩ Sr. In
that region, E ∩ Sr is a nice C1 curve that stays very near X ∩ Sr, and by
the intermediate value theorem, we can choose m1 at equal distance from
`+ and `−. We claim that for such an m1,

H1(ρ∗r) = H1(ρ(`+,m1)) +H1(ρ(`−,m1)) 6 H1(X0 ∩ Sr); (26.43)

as soon as we prove this, we will get the desired contradiction with (26.41).
So we consider points m ∈ Sr, at equal distance from the `±, and show
that f(m) = H1(ρ(`+,m)) is maximal when m is the point m0 of P0 ∩ Sr
that lies just opposite to L (seen from 0). For this we may assume that
r = 1, and work in the 3 space that contains m and P0. Equivalently, we
work in R3, and we study f on the great circle S1 ∩ P , where P is the
vector plane perpendicular to L. The derivative of f in the direction v is
the scalar product of v with the direction of the geodesic ρ(`+,m) when it
arrives at m, and it is easy to see that this is nonnegative when v points in
the direction of m0. So f(m) is maximal when m = m0, and (26.43) follows
because f(m0) = H1(X0 ∩ Sr)/2.

Return to the proof of the differential inequality (26.23). We are left with
only the case when θ0 = 3π

2 , and on each side we have Configuration 1 or 3
(also called free attachment). This is where we need a full length estimate.
We have constructed a network ρ∗ = ρ∗r (we shall often drop the index r
again), and it is of the following type. In all cases, we have selected two
points m1 and m2 (near the middle points w1 and w2 of the two arcs of
X ∩ Sr), and two points z±, close to the `′± (themselves often equal to the
`±). By taking τ , and then ε, very small, we can assume that these four
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distances are as small as we want compared to r. In addition, by taking N
large we may also assume that d0/r is as small as we want, by (26.4).

When we have Configuration 1 on both sides, we take

ρ∗ = ρ(z−,m1) ∪ ρ(z+,m1) ∪ ρ(z−,m2) ∪ ρ(z+,m2)
∪ ρ(`−, z−) ∪ ρ(`+, z+). (26.44)

When we have Configuration 3 on both sides, we only take
ρ∗ = ρ(z−,m1) ∪ ρ(z+,m1) ∪ ρ(z−,m2) ∪ ρ(z+,m2), (26.45)

in fact plus the two additional single points `± that we added half a page
above (26.10), and when we have Configurations 1− and 3+, say, we take
ρ∗ = ρ(z−,m1) ∪ ρ(z+,m1) ∪ ρ(z−,m2) ∪ ρ(z+,m2) ∪ ρ(`−, z−), (26.46)

plus the single point `+.

To each ρ∗ = ρ∗r as above, we associate the truncated cones
X ′(ρ∗) =

{
tξ ; ξ ∈ ρ∗ and t ∈ [0, 1]

}
and X(ρ∗) = T (r) ∪X ′(ρ∗). (26.47)

Notice that even if we had not added the single points `± in the free case,
we would add the corresponding segment [0, `±] now, with T (r). There was
an additional constraint in the definition of the graphs ΣG(Γ) associated to
our various Lipschitz curves Γ, which is that

ΣG(Γ) ∩B(0, κr) = X ′(ρ) ∩B(0, κr), (26.48)
where X ′(ρ) is the cone over the geodesic ρ with the same endpoints as Γ.
See (9.14), which forces the graph of G to be contained in the plane of ρ
near the origin. When we take the union, we get that for ΣG = ΣG(Γ∗) =⋃

Γ ΣG(Γ),
ΣG ∩B(0, κr) = X ′(ρ∗) ∩B(0, κr) (26.49)

and then, adding T (r),

Σ̃G ∩B(0, κr) = X(ρ∗) ∩B(0, κr). (26.50)

If we have a good competitor for X(ρ∗), we can glue it at the tip of Σ̃G, get
a better competitor than E0 = ϕ0(E), and improve our main estimate. We
can even try to do this for X ′(ρ∗) and ΣG, but let us explain what we mean
by good competitors and how we operate the substitution.

We start with the simpler substitution of a sliding competitor for X(ρ∗).
Suppose Z is a sliding competitor for X(ρ∗) in B = B(0, κr/2). This means
that we have a deformation (x, t)→ ft(x) = f(x, t), defined and continuous
on X(ρ∗)× [0, 1], with the usual constrains and in particular ft(x) ∈ L when
x ∈ L and ft(x) = x when x ∈ X(ρ∗) \ B, and then we set Z = f1(X(ρ∗)).
We talk about the whole one-parameter family {ft} because it comes with
the definition, but (as in the next case), giving f1 alone would be enough as

– 249 –



Guy David

a linear interpolation would complete well (since L is convex). Extend f1 by
setting f1(x) = x for x ∈ Rn \ 2B. It is easy to see that f1 is still Lipschitz.

We use this to construct a competitor E1 = f1 ◦ ϕ0(E) = f1(E0). It
is easy to check that this is a sliding competitor for E, and the difference
between E0 and E1 comes from the replacement of Σ̃G ∩ 2B = X(ρ∗) ∩ 2B
by Z ∩ 2B. We are only interested in the replacement if

∆S = H2(X(ρ∗) ∩ 2B)−H2(Z ∩ 2B)
= H2(X(ρ∗) ∩B)−H2(Z ∩B) > 0 (26.51)

(recall that X(ρ∗) = Z outside of B anyway), but when this is the case, we
can replace ϕ0 with ϕ1 in the computations above, find out that we win ∆S
in the intermediate estimate (26.23), and proceed from there on.

Now let us try to see how we can try to modify a piece of X ′(ρ∗). We
try to leave T (r) alone and modify X ′(ρ∗), but there will be a constraint,
because we do not want to move the contact region between the two. Set

L′± =
{
t`± ; t ∈ [0, 1]

}
and L′ = L′+ ∪ L′−. (26.52)

A good competitor for X ′(ρ∗) in the same ball B = B(0, κ/2) as above is a
set Z ′ = f(X ′(ρ∗)), where f is a Lipschitz mapping defined on X ′(ρ∗) ∪ L′,
such that

f(x) = x when x ∈ L′ and when x ∈ X ′(ρ∗) \B, (26.53)

and such that f(B ∩X ′(ρ∗)) ⊂ B. Notice that we are overkilling something
here: since we added the points `± in the free boundary case above, we
already have thatX ′(ρ∗) contains L′. But let us keep things like this, because
we sometimes tend to forget about the one or two extra points.

With this definition we give ourselves a little bit more freedom, because
even ifX ′(ρ∗) casually intersects T (r) in an unexpected place, we can pretend
not to notice and proceed with our modification. But we need to be slightly
careful when we define our next competitor E1 = ϕ1(E).

So let us define ϕ1. As before, extend f by setting f(x) = x on Rn \ 2B.
We keep ϕ1(x) = ϕ0(x) unless all the following conditions are satisfied:

x ∈ A2, t(x) ∈ [0, 1], p (x) ∈ Γ∗ \{`+, `−}, and ϕ0(x) ∈ X ′(ρ∗)∩B. (26.54)

If these conditions are satisfied, we take ϕ1(x) = f(ϕ0(x)). Notice that when
x ∈ A2 and t(x) ∈ [0, 1], the construction gives ϕ0(x) = w(p(x), t(x)) ∈
ΣG(Γ∗), and if in addition ϕ0(x) ∈ 2B, then ϕ0(x) ∈ X ′(ρ∗)∩2B (by (26.49)).
Then f(ϕ0(x)) is well defined, and we still have that ϕ1(x) = f(ϕ0(x)) even
if p(x) ∈ {`+, `−} (because then ϕ0(x) = w(`±, t(x)) = `± ∈ L′ by the line
above (26.19).
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We first need to check that ϕ1 is Lipschitz. Since ϕ0 and f are Lipschitz,
we just need to check that

|ϕ1(x)− ϕ1(x′)| 6 C|x− x′| (26.55)
when x ∈ E satisfies (26.54) and x′ ∈ E does not. Given the fact that
|ϕ0(x)−ϕ1(x′)| = |ϕ0(x)−ϕ0(x′)| 6 C|x′ − x| because ϕ0 is Lipschitz, it is
enough to show that

|ϕ1(x)− ϕ0(x)| = |f(ϕ0(x))− ϕ0(x)| 6 C|x− x′| (26.56)
under the same conditions, and since f(x) = x on L′, this will be proved as
soon as

dist(ϕ0(x), L′) 6 C|x− x′|. (26.57)
We first check this when x′ /∈ A2. Recall from the line above (26.22) that
t(x) = 2σ−1(1 − |x| − σ); since t(x) 6 1, x lies at distance at least σ/2
from B(0, 1 − 2σ). On the other hand, t(x) > C−1 because w is Lipschitz,
p(x) ∈ S, and yet ϕ0(x) = w(p(x), t(x)) ∈ B. Then x is also far from
∂B(0, 1); so (26.57) holds when x′ /∈ A2.

If x′ ∈ A2 and t(x′) 6 1, then either ϕ0(x′) /∈ 2B, and (26.57) holds
because ϕ0 is Lipschitz and |ϕ0(x)−ϕ0(x′)| > κ/2, or else ϕ1(x′) = f(ϕ0(x′))
by the remark below (26.54), and we can prove (26.55) directly without
(26.57).

We are left with the case when x′ ∈ A2 and t(x′) > 1. Recall from the
discussion below (26.18) that w(p(x), 1) = (1− s)` ∈ L′ (for some s), so
|f(ϕ0(x))− ϕ0(x)| 6 C dist(ϕ0(x), L′) 6 C|ϕ0(x)− w(p(x), 1)|

= C|w(p(x), t(x))− w(p(x), 1)|
6 C|t(x)− 1| 6 C|t(x)− t(x′)| 6 C|x′ − x| (26.58)

because f is Lipschitz, f(x) = x on L′, and w is Lipschitz; then (26.56) holds
and ϕ1 is Lipschitz.

Let us check that ϕ1 preserves L. Let x ∈ E∩L be given; we want to show
that ϕ1(x) ∈ L, and we already know this when ϕ1(x) = ϕ0(x), so we may
assume that (26.54) holds. But the construction above yields p(x) = `± when
x ∈ E ∩A2 ∩ L, so (26.54) fails and we don’t need to prove anything new.

Finally, we should construct a one parameter family {ϕ1
t} that ends with

ϕ1, and this is easy; the linear interpolation ϕ1
t (x) = (1− t)x+ tϕ1(x) does

the trick, because L is convex.

We may now use ϕ1 instead of ϕ0 in the computations above. We compare
what we get for the intermediate estimate (26.23). Here we replaced a piece
of Σ̃G, namely X ′(ρ∗)∩B, with its image by f , namely Z ′ = f(X ′(ρ∗))∩B =
f(X ′(ρ∗)∩B). These two pieces are disjoint from the rest of Σ̃G, maybe not
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from the triangular piece T (1), but this does not matter, because on all our
estimates for H2(E1), where E1 = ϕ1(E) is our competitor for E, we sum
H2(Σ̃G) and H2(T (1)). Thus in (26.23) we can save

∆S = H2(X ′(ρ∗) ∩B)−H2(Z ′ ∩B). (26.59)
Of course we only use ϕ1 instead of ϕ0 when ∆S > 0 (for the radius r under
consideration).

The next lemma says that in the present situation, when (26.41) holds,
we can always do one of the two replacements above, and save at least
∆S > c

[
H1(ρ∗r)−H1(X0 ∩ S)

]
.

Lemma 26.1. — There is a small constant c > 0 such that, for ρ∗ = ρ∗r
as above, and keeping the convention that r = 1 to simplify the statement,
either there is a sliding competitor Z for X(ρ∗) in B = B(0, κ/2), such that

H2(Z ∩B) 6 H2(X(ρ∗) ∩B)− c
[
H1(ρ∗)−H1(X0 ∩ S)

]
, (26.60)

or there is a good competitor Z ′ for X ′(ρ∗) in B such that
H2(Z ′ ∩B) 6 H2(X ′(ρ∗) ∩B)− c

[
H1(ρ∗)−H1(X0 ∩ S)

]
. (26.61)

Proof. — We postpone the proof of this lemma to the next sections,
and in the mean time see why it is easy to deduce our differential in-
equality (24.18) from the lemma. We proceed as explained above, and save
∆S > c∆L in the intermediate estimate (26.23), where

∆L = H1(ρ∗r)−H1(X0 ∩ Sr) > 0 (26.62)
(the inequality comes from (26.41), and otherwise we don’t do the last step
and don’t win anything). Thus instead of (26.24) we now have

H2(E ∩B(0, r))

6
r

2H
1(E ∩ Sr)− 10−5r∆E − cr∆L +H2(T (r)) + r2h(r), (26.63)

where we decided to set
∆E = H1(E ∩ Sr)−H1(ρ∗r); (26.64)

notice that even in Configuration 1 when (26.9) failed and we tampered a
little with the curves, we always made sure to take Γ∗, and a fortiori ρ∗,
shorter than E ∩ Sr, so ∆E > 0; see in particular (8.16), and recall that
γ ⊂ E ∩ Sr. We may assume that c 6 10−5, so (26.63) (and the fact that
∆E and ∆L are nonnegative) yield

H2(E ∩B(0, r)) 6 r

2H
1(E ∩ Sr)− cr(∆E + ∆L) +H2(T (r)) + r2h(r)

6
r

2H
1(E ∩ Sr)− cr

[
H1(E ∩ Sr)−H1(X0 ∩ Sr)

]
+H2(T (r)) + r2h(r). (26.65)
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This gives directly the second line of (26.30), with q = c. Then the same
computations as below (26.30) lead to (26.40) (again with q = c). We still
have the two cases, but as before we obtain (26.28), hence also (24.18) (we no
longer care about (24.13), because the case when θ0 = π was settled before
the lemma).

This completes our proof of differential inequalities; hence now Proposi-
tion 24.3 is established, Theorem 24.1 follows because of the previous section,
and Proposition 24.4 and Theorem 24.2 will follow from Lemma 26.1. �

27. Basic gain estimates and full length for flat V sets

In this section we prove Lemma 26.1 in most cases. The author’s initial
plan was to use the estimates of this section also for the full length veri-
fications corresponding to Section 4 (with balls centered on L), but finally
decided that this may be confusing; instead we’ll do a special argument in
Section 37, and only import some estimates from this section and the next
one.

We are given a net ρ∗r as near (26.44)–(26.46), we assume that (26.41)
holds, and we want to find a competitor Z for the truncated cone X(ρ∗r), or
rather Z ′ for the truncated cone X ′(ρ∗r), such that (26.60) (or rather (26.61))
holds. We shall fulfill this program in this section for most cases, and will be
left with a last, more complicated case, to study in the next one.

We shall try to systematically use the Z ′ approach, and reserve the ap-
proach with the sliding competitor Z for a more subtle estimate that may
come up later. The Z ′ approach required more work to start with, but is
more pleasant now because we can forget about T (r) and its intersections
with the rest of the sets.

We may as well assume again that r = 1, and we set ρ∗ = ρ∗r again, and
X ′ = X ′(ρ∗r), the cone over ρ∗, for simplicity. The idea of the proof, as for
the property of “full length because of angles” in [10], is to show that when
∆L = H1(ρ∗) − H1(X0 ∩ S) is positive, then something in the geometry of
X ′, for instance an angle, allows us to find a better competitor.

We keep the same notation as before for X0 (a truncated cone of type
Y with a spine parallel to L) and K0 = X0 ∩ S. Notice incidentally that
H1(X0 ∩ S) = H1(K0) = 3π − H1(S ∩ S) would stay the same if X0 were
replaced by another truncated cone X ′0 of type Y, with a face that contains
L∩B(0, 1), but with a spine that is not parallel to L (but crosses it outside
of B(0, 1). This means in particular that if ρ∗ = X ′0 ∩ S1, we have ∆L = 0
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and this is fortunate because we could not find a better competitor Z or Z ′,
since in this case X(ρ∗r) is probably minimal in B(0, 1).

Let us give a name to the maximal amount of area that we can save with
a competitor for X ′, i.e.,

σ = sup
{
H2(X ′ ∩B(0, 1))−H2(Z ′ ∩B(0, 1)) ;

Z ′ is a good competitor for X ′ in B(0, 1)

}
. (27.1)

Normally, if we want to relate to what we may win in Lemma 26.1, we should
consider a competitor in B(0, κ/2), but here X ′ is a cone, our boundary
condition (26.53) in the definition of a good competitor also concerns a
truncated line L′ through the origin, so it is easy to see that the number σκ
that would come from replacing B(0, 1) with B(0, κ/2) is simply (κ/2)2σ.
Thus Lemma 26.1 will follow if we can prove that

σ > C−1∆L = C−1[H1(ρ∗)−H1(X0 ∩ S)] (27.2)

when (26.41) holds, i.e., when ∆L > 0.

We shall try various sets Z ′ and get some lower bounds for σ; later on we
may proceed by contradiction, assume σ is small, and contradict something
in the geometry of X ′.

We first study the angle of the two branches of ρ∗ that leave from some
mi, where i = 1, 2. Denote by ei,± the unit vector tangent at mi to the
branch ρ(mi, z±) (or ρ(mi, `±), depending on the situation), pointing in the
direction of the other endpoint of the branch. Then set αi = |ei,+ + ei,−|. It
is a good measure of the complement to π of the angle of ei,+ and ei,−. We
claim that

σ > C−1α2
i . (27.3)

This is proved in Lemma 10.23 in [10], but let us say how it goes because
we shall use similar proofs soon. On the ball B = B(mi/2, 1/10), the set
X ′ is just composed of two half planes, that make the same angle with each
other as ei,+ and ei,−. Also, B is far from L′, so we are not worried by the
boundary condition (26.53). We find a competitor in B that smoothes the
angle, where near the middle of B we essentially move the common boundary
of the two half planes by a small fixed vector; on the rest of B there is a
gluing piece, but altogether we save some area. Computations are done with
the help of the area formula.

When we have Configuration 3 near our point `′±, we claim that we can
proceed the same way with the two branches of ρ∗ that leave from z±. The
point is that we do not need to worry about the boundary condition in this
case.
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If none of the two branches of ρ∗ that leave from z± contain `±, we can
simply use the statement: any Lipschitz mapping defined onX ′ and that only
moves points in B(z±/2, 1/4), say, will satisfy condition (26.53) because in
this ball X ′ stays far from L′.

But even otherwise, the definition of Configuration 3 makes that we do
not need to worry about sliding conditions for X(ρ∗) or X ′ near `±. That
is, even though we may detach X ′ from L′, this does not prevent the com-
petitor E1 that we build with the present construction from being a sliding
competitor for E, because we had no sliding constraint near `± by definition
of Configuration 3. That is, we should modify the definition of “good com-
petitor” to suit Configuration 3, but yet we don’t need to worry about the
estimate. Now the proof of (27.3) also yields that

σ > C−1α2
±,3 , (27.4)

where we put the index 3 to remind the reader of Configuration 3, and where
α±,3 = |v±,1 +v±,2|, where v±,i is the unit vector that points in the direction
of ρ(z±,mi) at the point z±.

Next we want some control when we have Configuration 1 near `±. Still
denote by v±,i the unit direction of ρ(z±,mi) at z±, and also let v±,0 de-
note the unit direction of ρ(z±, `±) at z±. For some time we will forget the
subscript ± in our notation. Set

s = v0 + v1 + v2 ; (27.5)
typically, we want to build competitors for X ′ by moving the point z± in
the general direction of s, but at the same time we will need to be careful
because of the boundary constraint along L′.

Let us explain what is our basic competitor. We choose a small multiple v
of v0 (positive or negative), and we push the points of X ′ in the direction of v
(using a cut-off function). For this we repeat the construction of Lemma 10.23
in [10].

Let us choose coordinates so that z = (1, 0) ∈ R × Rn−1, and decide to
work in the region A0 = [1/5, 3/4] × B(0, 2a), where a is a small geometric
constant, for instance a = 10−2. Nothing will happen outside of A0.

Notice that in A0, X ′ is a truncated set of rough type Y, in the sense that
it is composed of three faces F0, F1 and F2, which are the positive cone over
the three geodesics from z to ` and to the mi. Only F0 is truncated in A0
(the geodesics ρ(z,mi) go too far), and we shall consider the half plane F ′0
that contain F0, and X ′1 = F ′0 ∪ F1 ∪ F2, which in A0 coincides with a cone.
This cone is not exactly of type Y because the angles may be wrong. Notice
however that these angles are not too small either, by the construction of
our nets of curves. What we will do is construct a competitor Z ′1 for X ′1 in
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A0, and later on we will see that we can use the construction to restrict to
X ′ and get a competitor Z ′ for X ′.

Our competitor for X ′1 will be Z ′1 = f(X ′1), where

f(x) = x+ ψ(x)v, (27.6)

for some appropriate bump function ψ and a small vector v collinear with
v0. There is an interest in taking the vector v parallel to v0, which is that
with this move, the restriction of f to the face F ′0 is simpler: if v goes in
the direction of −v0, the face only gets larger (that is, we only add a piece
to F ′0 in the plane that contains it), and if v goes in the direction of v0, we
just remove a piece of F ′0. For the other faces F1 and F2, they are moved
sideways, as in [10].

Let us say a little more about ψ. We take ψ supported in A1 = [1/4, 1/2]×
B(0, a) ⊂ R × Rn−1, with the same coordinates as above, and as in Lem-
ma 10.23 of [10]. We shall mention the other (natural) properties of ψ as we
need them. For the moment, let us not worry too much about the boundary
condition, and compute the area of Z ′1 ∩ A0. If we choose v small enough
(depending on a and our choice of ψ, that we may consider fixed), f is
a smooth diffeomorphism (see [10]), and we van use the area formula to
compute the area of the images f(F ′0), f(F1), and f(F2) that compose Z ′1 in
the region A0.

We proceed as in [10], to which we shall refer for some computations. Let
a face, for instance F2, be given. The plane P2 that contains F2 is spanned
by e1 = (1, 0, 0) = z (where now the third coordinate lies in Rn−2), and, by
choice of a suitable basis of Rn, e2 = (0, 1, 0). Also write v = (0, β, v′), with
v′ ∈ Rn−2 (or, with a slight twist of notation, v′ is orthogonal to e1 and e2).

We need to compute the differential of f on P2, which means Df(e1) =
e1 + ∂1ψ v and Df(e2) = e2 + ∂2ψ v. Here we did not yet write the variables
(x1, x2) ∈ P , and the notation ∂1ψ is rather clear. But in fact we take ψ
to be a function of the first variable x1 ∈ R and r = (x2

2 + · · · + x2
n)1/2

(i.e., radial in all the other variables), and this way ∂2ψ will be the same
function (of x1 and the other variable) for all the planes P that contain the
line through e1. Thus

Df(e1) ∧Df(e2) = [e1 + ∂1ψ v] ∧ [e2 + ∂2ψ v]
= e1 ∧ e2 + [∂2ψ e1 − ∂1ψ e2] ∧ v
= [1 + β∂2ψ] e1 ∧ e2 + ∂2ψ e1 ∧ v′ − ∂1ψ e2 ∧ v′ (27.7)
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and the jacobian determinant of the restriction of f to F2 is

J2(x) = |Df(e1) ∧Df(e2)| =
{

[1 + β∂2ψ]2 + (∂2ψ)2|v′|2 + (∂1ψ)2|v′|2
}1/2

6 1 + β∂2ψ + C|v|2 (27.8)

because |v|2 = β2 + |v′|2. Notice also that β = 〈v, e2〉 is the size of the
projection of v on P2; hence, when we apply the area formula to compare
H2(f(P2 ∩A0)) to H2(P2 ∩A0), we get that

H2(f(F2 ∩A0))−H2(F2 ∩A0) =
∫
F2∩A1

[J2(z)− 1] dH2(x)

6
∫
F2∩A1

[
β∂2ψ(x) + C|v|2

]
dH2(x)

6 〈v, e2〉
∫
F2∩A1

∂2ψ + C|v|2H2(F2 ∩A1)

6 〈v, e2〉
∫
F2∩A1

∂2ψ + C|v|2. (27.9)

where we use the fact that f(P2)∩A0 = f(P2 ∩A0), and also that f(x) = x
on Rn \A1.

What we computed for F2 is also valid for F1 and F ′0, except that we
need to replace the unit vector e2 by a unit vector of P1 or P0 that is
perpendicular to e1 = z. As was explained before, the derivative ∂2ϕ in that
direction is the same, because we took ψ radial in the directions orthogonal to
e1. Notice also that by rotation invariance, we can use the same coordinates
(say, (x1, x2) ∈ F2) to write the three integral. We get that

H2(f(Z ′1 ∩A0))−H2(X ′1 ∩A0)

=
2∑
i=0
H2(f(Fi ∩A0))−H2(Fi ∩A0)

6 C|v|2H2(F2 ∩A1) +
( 2∑
i=0
〈v, ei〉

)∫
F2∩A1

∂2ψ. (27.10)

The integral
∫
F2∩A1

∂2ψ = 1 is a constant, which is even computed in (10.33)
of [10] to be equal to −1/5 (what matters is that it is strictly negative). Since∑2
i=0 ei = s by (27.5), we see that

H2(f(Z ′1 ∩A0))−H2(X ′1 ∩A0) 6 −〈v, s〉5 + C|v|2. (27.11)

We take
v = (10C)−1〈v0, s〉v0 (27.12)
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with the same constant C; then 〈v,s〉
5 = (50C)−1〈v0, s〉2, while C|v|2 =

10−2C−1〈v0, s〉2 is twice smaller. Thus

H2(f(Z ′1 ∩A0))−H2(X ′1 ∩A0) 6 −10−2C−1〈v0, s〉2. (27.13)

This was our version of Lemma 10.23 of [10]. Notice that the estimate is
not so good when s is almost orthogonal to v0, but let us keep the option
to use this open. Now we need to worry about the set X ′ and the boundary
condition.

Let us review how the mapping f works; see Figure 27.1 already. On the
two faces F1 and F2, the mapping pushes points in the direction of v, and
the only case when the boundary condition (26.53) may be violated is if F1
or F2 touches L′. Due to the fact that ρ0 makes a large angle with ρ1 and
ρ2, this can only happen if ρ0 is reduced to one point and ρ1 and ρ2 start
from `±. Let us assume that this does not happen for the moment.

Then on F0, the mapping f slides points in the direction of v, which is
parallel to the plane P0 that contains F0. Let us start the discussion with
the case when v is a negative multiple of v0. The effect of f is to extend
the faces F0 and F ′0, by adding to them a piece that lies further than the
boundary [0, z±] (where z± is the common point of the three ρi). With the
way we wrote f , we probably moved points of F ′0 that lie on [0, `±] ⊂ L′ and
beyond, and (26.53) forbids us to do this. But this is easy to fix: we replace f
on F ′0 by a mapping that coincides with f on [0, z±] (so that we can still glue
with f|(F1∪F2), is the identity on F ′0\F0 (and in particular on [0, `±]), and just
moves the points faster in A0∩F0 if needed. This shows that Z ′ = F ′1∪F ′2∪F ′3
is a good competitor for X ′, and since Z ′1\Z ′ = X ′1\X ′ = F ′0\F0, we deduce
from (27.13) that

σ > H2(X ′ ∩A0)−H2(f(Z ′ ∩A0))
= H2(X ′1 ∩A0)−H2(f(Z ′1 ∩A0)) > 10−2C−1〈v0, s〉2. (27.14)

This was our estimate when v is a negative multiple of v0, which by (27.12)
means that 〈v0, s〉 < 0.

F
2

±

1
F

F
0
'

U
0
FA

0
'

0

l±z

Figure 27.1. A picture in Pt
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When 〈v0, s〉 > 0, the mapping f tends to move points of F ′0 in the
direction of v0, i.e., make F ′0 smaller. We can still argue as before, but under
the condition that the points of the common boundary [0, z±] of F0 and
F ′0 do not go all the way to [0, `±]. This means that when we choose v, we
are safe if |v| 6 10−3|z± − `±| = 10−3|z − `|, for instance. We may as well
assume that the constant C in (27.11) is larger than 100, and this way, if
0 6 〈v0, s〉 6 |z − `|, we can keep the same choice of v as in (27.12), and get
the same estimate as in (27.14). Altogether,

σ > C−1〈v0, s〉2 when 〈v0, s〉 6 |z − `|. (27.15)
When 〈v0, s〉 > |z − `|, we take the smaller v = (10C)−1|z − `| v0, and the
same computation as for (27.13) and (27.14) yields the less good result

σ > C−1|z − `|〈v0, s〉 when 〈v0, s〉 > |z − `|. (27.16)

These will be our main estimates, but there are some cases when 〈v0, s〉
is really too small for us, or (almost equivalently) the author did not manage
to prove easily that it is large, and we want to try a different competitor.
We shall try this when v1 and v2 make a small angle, and more precisely
|v1+v2| > 1. We could of course try to control the scalar product above when
this happens, but the author did not manage to do this, and instead we shall
try a slightly different competitor, where we move the points of the faces F1
and F2 above in the direction of v1 + v2 (instead of −v0 above). We need to
be more specific, because we want to use the same computations as above,
but not the same mapping. Suppose we keep F1 and F2 as they are, but
complete them with a third face F3, starting from their common boundary
[0, z], and going in the opposite direction v′0 = −(v1 +v2)/|v1 +v2|. Then use
the same algorithm as before, where f is given by (27.6), with for v a positive
multiple of v1 + v2. We want to do the same computations as above, with v0
replaced by v′0, and hence s replaced by s′ = v′0 +v1 +v2 = −v′0(|v1 +v2|−1).
In particular, we take v = (10C)−1〈v′0, s′〉v′0 = −(10C)−1(|v1 + v2| − 1)v′0 as
in (27.12).

This gives a competitor Z̃ for F1∪F2∪F3, for which the estimate leading
to (27.13) are true. We remove the whole face F3, both from F1 ∪ F2 ∪ F3
and from Z̃, and we get a new set Z ′′ such that
H2(Z ′′ ∩A0))−H2((F1 ∪ F2) ∩A0) 6 −10−2C−1〈v′0, s′〉2

= −10−2C−1(|v1 + v2| − 1)2
+, (27.17)

where we added the positive part to remember that we do this only when
|v1 + v2| > 1. Now in A0, Z ′′ is composed of slightly distorted faces F ′1 =
f(F1) and F ′2 = f(F2), plus a vaguely triangular piece of f(F3), which is
bounded by a piece of the common boundary f([0, z]) of F ′1 and F ′2 on one
side, and the corresponding piece of [0, z] on the other side. We add to Z ′′
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(and in A0 only; since we did not change anything outside of A0) the old
face F0 (bounded by [0, z], [0, `], and the arc ρ0) and get a set Z ′, which is
a competitor for X ′ (which in A0 coincides with the cone over ρ0 ∪ ρ1 ∪ ρ2).
It follows from (27.17) that

H2(Z ′ ∩A0))−H2(X ′ ∩A0) 6 −10−2C−1(|v1 + v2| − 1)2
+. (27.18)

Now we claim that Z ′ is a good competitor for X ′. We do not want to use
the same mapping f as for proving the estimates, but instead observe that
Z ′ = f̃(X ′), for some mapping f̃ that pinches partially the two faces F1 and
F2 (in the direction orthogonal to the plane of F3), is Lipschitz, but will not
be written explicitly here. We need to make sure that f̃ can be extended
by setting f̃(x) = x on L′, because of our boundary constraint, and this
follows from the angle condition (10.2), which says that ρ1 and ρ2 make
large angles with ρ0 at the point z, so that in the present situation where
ρ0 is a nontrivial arc, we only move points that are far from L′. Thus Z ′ is
a good competitor and (27.18) can be used to prove that

σ > C−1(|v1 + v2| − 1)2
+. (27.19)

In fact, we claim that the present estimate also works when ρ0 is reduced to
{`}. In this case, the two vectors v1 and v2 (the direction of ρ1 and ρ2 when
they leave z = `) are still well defined, we can define Z ′ as above, and the
fact that it is a good competitor for X ′ comes from the fact that the pinching
mapping f can be taken to be the identity on [0, `]. The claim follows.

There is a last estimate on σ that we may use, essentially when all the
other ones fail, which says that

σ > C−1|z − `||s|2. (27.20)

This estimate seems less good, because the right-hand side is of order 3.
Its proof also relies on (the proof of) Lemma 10.23 of [10]. We use the fact
that we can find a tube of width roughly equal to |z − `|, centered on the
segment [z/3, 2z/3], that does not meet L, and where X ′ coincides with a
cone which is roughly of type Y, except that at least one of its angles is
off by roughly |s|. We can apply the proof of Lemma 10.23 in [10] to get
an estimate. With the same value of s, and in the unit ball, we would save
C−1|s|2; in a ball of size roughly |z − `|, and by homogeneity, it would be
C−1|z − `|2|s|2. But here we are in a thin tube of roughly unit length, and
the proof of [10] allows us to save C−1|z−`||s|2. This gives the quite general,
but not so good estimate (27.20).

We shall now start distinguishing between cases. To make our life easier
(at least, in the cases that will be settled in this section), let us decide that
the two points mi (that were selected on the curves Ci, near the wi) are
chosen at equal distance from `+ and `−. This is easy to arrange, as in the
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case of a half plane, by the intermediate value theorem and because each Ci
is nicely transverse to the plane equidistant from the `±.

Case 1. — We start with the case when we have Configuration 1 near
each point of L ∩ S (recall that S = ∂B(0, 1)), and in addition X is flat, by
which we mean that either X ∈ P0 or else X ∈ V and for some δ > 0,

the two half planes that compose X
make an angle larger than 2π

3 + δ.
(27.21)

Let us explain why this case is simpler. Assume first that X ∈ V and
(27.21) holds; if ε is small enough, then |z − `| also is as small as we want,
then the two directions v1 and v2 are very close to the directions of the two
half planes of (27.21) (understand, the unit vectors perpendicular to the
direction of L that are tangent to these planes and go away from L). Then
|v1 + v2| 6 1− δ/3, say, by (27.21), and

〈s, v0〉 = 〈v0 + v1 + v2, v0〉 = 1 + 〈v1 + v2, v0〉 > δ/3. (27.22)

When X ∈ P0, the situation is even better: the two geodesics of X that start
from `′± go in opposite directions, and since z = z± lies close to `′± and wi
lies close to mi, we get that |v1 + v2| < 1/2 and (27.22) holds as well.

Most probably, |z − `| 6 〈s, v0〉, and then (27.16) says that

σ > C−1|z − `|〈v0, s〉 > C(δ)−1|z − `|. (27.23)

But even if |z − `| > 〈s, v0〉, we may apply (27.15) instead and get that
σ > C−1δ2, which is better than (27.23). This estimate holds near both
points `±; we use this to majorize

H1(ρ∗) = distS(z+, `+) + distS(z−, `−) +
2∑
i=1

(distS(z+,mi) + distS(z−,mi))

6 C(δ)σ +
2∑
i=1

(distS(`+,mi) + distS(`−,mi)), (27.24)

where the first part is just the definition of ρ∗ as a concatenation of geodesics.

Lemma 27.1. — Denote by H the set of points that lies at equal distance
from `+ and `−. For all choices of m1,m2 ∈ S ∩H,

2∑
i=1

(distS(`+,mi) + distS(`−,mi)) 6 H1(X0 ∩ S). (27.25)

We shall prove the lemma soon, but let us see how it implies Lemma 26.1
in the present case. We deduce from (27.24) and (27.25) that H1(ρ∗) 6
C(δ)σ+H1(X0∩S) and, if ∆L = H1(ρ∗)−H1(X0∩S) (the same as in (26.62))
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is positive, this just means that σ > C(δ)−1∆L. We use the definition (27.1)
of σ and get the conclusion of Lemma 26.1.

So let us prove Lemma 27.1, and our Case 1 will follow. Set
D± = distS(`±,m1) + distS(`±,m2); (27.26)

then (27.25) will follow at once if we prove that for each sign,

D± 6
1
2H

1(X0 ∩ S). (27.27)

Let us prove this. Fix a sign ±, and drop it from the notation. That is, we
set ` = `± and D = D±.

We need to compute a few things. We start with the relation between the
geodesic and Euclidean distances on the sphere. We claim that for x, y ∈ S,

2− 2 cos(distS(x, y)) = |x− y|2 (27.28)
For this computation we may assume that y, z ∈ R2, and even that x = (1, 0)
and y = (cos θ, sin θ) for some θ ∈ [0, π]; in this case distS(x, y) = θ and
|x− y|2 = (1− cos θ)2 + sin2 θ = 2(1− cos θ); the claim follows. Notice also
that distS(x, y) ∈ [0, π] and |x − y|2 ∈ [0, 4], so 1 − 1

2 |x − y|2 ∈ [−1, 1],
and (27.28) is the same as

distS(x, y) = arccos
(

1− 1
2 |x− y|

2
)
. (27.29)

Next we compute numbers like distS(`,m), where ` ∈ L ∩ S and m lies in
the median hyperplane H. Without loss of generality, we may assume that
there are three orthogonal unit vectors e1, e2, e3 such that

L =
{
−d0e2 + te1 ; t ∈ R

}
and m = sinα e3 − cosα e2 for some α ∈ [0, π]. (27.30)

Thus α > 0 small corresponds to a point m just above the shade of L (or if
you prefer −e2), α = π corresponds to an m just opposite to the shade; we
decided that we did not need the case when α ∈ (π, 2π) by symmetry. We
may also assume that

` = −d0e2 +
√

1− d2
0e1 (27.31)

(the other choice ` = −d0e2 −
√

1− d2
0e1 would be equivalent), and then

|m− `|2 = (1− d2
0) + (d0 − cosα)2 + sin2 α = 2− 2d0 cosα; (27.32)

thus by (27.28) or (27.29),
distS(`,m) = arccos

(
d0 cosα

)
. (27.33)

Since d0 is small, we see that distS(`,m) is close to π/2. Notice that
distS(`,m) is a nondecreasing function of α ∈ [0, π].
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Let us return to the two points mi ∈ S ∩ H, which we write mi =
sinαie3,i − cosαie2 as in (27.30), with possibly different vectors e3 = e3,i if
we work in Rn, n > 3. We want to estimate

D = distS(`,m1) + distS(`,m2)
= arccos

(
d0 cosα1

)
+ arccos

(
d0 cosα2

)
. (27.34)

This is again a nondecreasing function of α1 and α2. We also need to evaluate
the angles α1 and α2 in terms of the geometry of X. Start when X ∈ V, and
denote by Angle(X) the angle that the two half planes that compose X make
along L; thus Angle(X) > 2π

3 +δ by (27.8). Call Anglex0(m1,m2) the angle of
m1 and m2, seen from x0 = −d0e2 (the midpoint of [`+, `−]). Since both mi

lie within 2ε fromX (by (26.2)), we get that |Anglex0(m1,m2)−Angle(X)| 6
5ε hence (by (27.21) and if ε is small enough, depending on δ)

Anglex0(m1,m2) > 2π
3 + δ

2 . (27.35)

When X ∈ P0, Anglex0(m1,m2) is almost π, because x0 is not so far from
0, and the two points wi almost lie in opposite directions. In both cases,
(27.35) holds, and so

〈m1 − x0,m2 − x0〉
|m1 − x0||m2 − x0|

= cos(Anglex0(m1,m2)) < −1
2 −

δ

4 . (27.36)

Notice that

〈m1 − x0,m2 − x0〉
= 〈sinα1e3,1 − cosα1e2 + d0e2, sinα2e3,2 − cosα2e2 + d0e2〉
= sinα1 sinα2〈e3,1, e3,2〉+ cosα1 cosα2 − d0(cosα1 + cosα2) + d2

0

> − sinα1 sinα2 + cosα1 cosα2 − 3d0 = cos(α1 + α2)− 3d0 (27.37)

because sinαi > 0. Let us take N > 100/δ in (26.4), so that d0 6 N−1 6
δ/100. Notice that

∣∣|mi − x0| − 1
∣∣ 6 d0 6 δ/100 for i = 1, 2, so by (27.37)

and (27.36)

cos(α1 + α2) 6 〈m1 − x0,m2 − x0〉+ 3d0

6

[
−1

2 −
δ

4

]
|m1 − x0||m2 − x0|+

3δ
100 6 −

1
2 −

δ

100 , (27.38)

hence (since 0 6 α1 + α2 6 2π)

2π
3 + δ

200 6 α1 + α2 6
4π
3 −

δ

200 . (27.39)
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Return to D in (27.26) and (27.34). A Taylor expansion of order 2 near
0 yields arccos(d0 cosαi) = π

2 − d0 cosαi +Oi, with |Oi| 6 d2
0/2, then

D = π − d0(cosα1 + cosα2) +O1 +O2 6 π − d0(cosα1 + cosα2) + d2
0

= π − 2d0(cos((α1 + α2)/2) cos((α1 − α2)/2) + d2
0. (27.40)

If both cosines have the same sign, this yields D 6 π + d2
0 and we’ll be

happier than in the next case. Otherwise, since both 0 6 αi 6 π and hence
cos((α1−α2)/2) > 0, we get that cos((α1 +α2)/2) < 0, hence (α1 +α2)/2 >
π/2 and by (27.39)

π

2 6
α1 + α2

2 6
2π
3 −

δ

400 , (27.41)

0 > cos((α1 + α2)/2) > cos
(

2π
3 −

δ

400

)
> −1

2 + δ

800 , (27.42)

and

D 6 π + 2d0| cos((α1 + α2)/2)|+ d2
0

6 π + d0 −
d0δ

400 + d2
0 6 π + d0 −

d0δ

800 (27.43)

if N is large enough. We also get this in the other case when the cosines
have the same sign. We need to compare this with the right-hand side
of (27.27), so we compute H1(X0 ∩ S). Recall that X0 is composed of two
half great circles, that end at two antipodal points y±, plus the two short
arcs of geodesics ρ(`±, y±). The two half circles account for 2π, and with
the same choice of basis as for (27.30), y± = ±e1 (because the spine of X0
is parallel to L). Recall from (27.31) that `± = −d0e2 ±

√
1− d2

0e1, hence
distS(`±, y±) = arcsin d0 > d0, and H1(X0 ∩ S) > 2π + 2d0. This completes
our proof of (27.27), Lemma 27.1 follows, and we get the desired estimate
for Lemma 26.1 in our Case 1. �

Case 2. — Next we assume that we have Configuration 3 near the two
points of L ∩ S, regardless of whether (27.21) holds or not. In this case ρ∗
is merely composed of four curves from the two mi to the two z±. The
complement to π of the angles at the wi are less than C

√
σ, by (27.3), and

the angles at the z± are also less than C
√
σ, by (27.4). Notice that we may

assume that σ is small, because otherwise the conclusion of Lemma 26.1 is
obvious. Then the four vertices of ρ∗ lie at distance at most C

√
σ from some

great circle (we can follow the curve ρ∗ from z− back to z−, without turning
away from the geodesic more than C

√
σ), and by standard computations

(that can be found in [10], for instance), H1(ρ∗) 6 2π + Cσ. This is better
than what we need for Lemma 26.1, because H1(X0 ∩ S) > 2π. �
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Case 3. — Suppose now that we have Configuration 1 near `− and
Configuration 3 near `+. We still have that α2

3,+ 6 C
√
σ, by (27.4), and

αi 6 C
√
σ, by (27.3). With the same reasoning as above, all the vertices mi

and z± lie within C
√
σ of a great circle, and then

2∑
i=1

(distS(mi, z+) + distS(mi, z−)) 6 2π + Cσ. (27.44)

But this time we also have to account for the additional small piece ρ(`−, z−).
Since α2

3,+ 6 C
√
σ and we can assume that σ is very small (because otherwise

the thesis is trivial), the two half planes that compose X when X ∈ V make
an angle Angle(X) > 9π/10; when X ∈ P0, they are even in front of each
other. The sum s = v0 + v1 + v2 of (27.5) (and for the point z−) is then
quite close to v0 (because v1 + v2 is small), so 〈v0, s〉 > 1/2, which is better
than (27.22). As for (27.23), we also get that σ > C−1|z− − `−|, which
gives a good enough estimate for H1(ρ(`−, z−)) = distS(`−, z−). We add this
to (27.44) and get that H1ρ∗) 6 2π + Cσ 6 H1(X0 ∩ S) + Cσ, as needed.

Recall that we excluded the case of Configuration 2 earlier. At this stage,
we have only one case left, which is when we have Configuration 1 near both
`±, and in addition X /∈ P0 and (27.21) fails, i.e., X ∈ V(L) and

2π
3 6 Angle(X) 6 2π

3 + δ, (27.45)

where the first part comes from our assumption that X ∈ V(L). Recall also
that for this remaining case we are allowed to take δ > 0 as small as we
want. �

28. Full length for sharp V sets

In this section we study the last left case for Lemma 26.1, when we
have Configuration 1 near both `±, and in addition X satisfies (27.45). We
talk about sharp V sets because we could even argue that in this remaining
situation, since we have good approximation by a setX ∈ V such that (27.45)
holds, and in addition we can take δ small, we are left with the case where we
have a reasonably good approximation by a set X ∈ V with dihedral angle
exactly 2π/3. We shall not try proceed like this, because it would not really
help simplify the proof, and also we would at least need to be quite careful
with the quantifiers. Our last case is somewhat more complicated than the
other ones, which is why we left it for the end.

We shall keep some of the notation of the previous cases, concerning the
two points z = z± near the vertices ` = `±, and two intermediate points m1
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and m2, except that we may not choose the two mi exactly as we did in the
previous section (that is, at equal distance from `+ and `−). We shall first
try to estimate the length

L12 =
2∑
i=1

distS(z+,mi) + distS(z−,mi), (28.1)

but for this some additional notation will be useful. We shall think of z = z−
as the lowest point of S, and will project various things along the unit vector

e0 = (v1(z) + v2(z))/|v1(z) + v2(z)|, (28.2)

where for i = 1, 2, vi(z) is the direction of ρ(z,mi) at the point z. Let us
also write

Anglez(v1(z), v2(z)) = 2π
3 + 2α, (28.3)

where we know that α is small because z = z− lies close to `−, the mi lie
close to X, and we have (27.45), but it will be useful later to have a more
precise estimate.

When we continue the two geodesics ρ(z,mi) past the points mi, they
eventually meet back at the point −z, with the same angle 2π

3 +α. But at the
point mi, we turned a little and used the geodesic ρ(mi, z+) instead. Notice
however that we turned by at most αi 6 C

√
σ, by (27.3), and because of

this the new meeting point z+ (we know it exists!) does not move by more
than C

√
σ. That is,

|z+ + z| 6 C
√
σ. (28.4)

Set fi(w) = distS(w,mi); notice that fi(z) + fi(−z) = π because the union
of the two corresponding geodesics is a half great circle. We want to evaluate
f(z+) by estimating the derivative of fi near −z. It is easy to see that at a
given point x ∈ S, x 6= wi, the derivative of fi at x in the direction e is

Dfi(x)(e) = ∂efi(x) = −〈e, vi(x)〉, (28.5)

where again vi(x) is the direction of ρ(x,wi) at x. Moreover, if x is any point
of ρ(−z, z+), |vi(x)−vi(−z)| 6 10|z++z| 6 C

√
σ. In addition, vi(−z) = vi(z)

because these are the endpoint directions of the half circle from z to −z
through wi, so |vi(x) − vi(z)| 6 C

√
σ. Now write v(x, z+) the direction of

ρ(−z, z+) at x; then

fi(z+)− fi(−z) =
∫
ρ(−z,z+)

Dfi(x)(v(x, z+)) = −
∫
ρ(−z,z+)

〈v(x, z+), vi(x)〉.

The length of the geodesic is at most C
√
σ, by (28.4). When we replace

vi(x) by vi(z), we make an error of at most C
√
σ. When we replace v(x, z+)

by (z+ + z)/|z+ + z|, we also make an error of at most C
√
σ (the geodesic

does not turn much). We integrate the error and get at most Cσ. Replacing
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the length of ρ(−z, z+) with |z+ + z| also generates an error of at most Cσ;
altogether ∣∣fi(z+)− fi(−z) + 〈z+ + z, vi(z)〉

∣∣ 6 Cσ. (28.6)
We sum over i, observe that if z+ were equal to −z we would have L12 = 2π,
and get that∣∣L12 − 2π + 〈z+ + z, v1(z) + v2(z)〉

∣∣
=
∣∣f1(z+) + f2(z+)− f1(−z)− f2(−z)− 2π + 〈z+ + z, v1(z) + v2(z)〉

∣∣
6 Cσ. (28.7)

Observe that by (28.2) and (28.3)

v1(z) + v2(z)− e0 = e0|v1(z) + v2(z)| − e0

= 2e0 cos
(π

3 + α
)
− e0 = −α̃e0, (28.8)

where α̃ = 2
(
1 − cos

(
π
3 + α

))
is of the order of

√
2α, but the precise value

will not be so important. Simply notice that by (28.7) and then (28.4),

L12 − 2π + 〈z+ + z, e0〉
= L12 − 2π + 〈z+ + z, v1(z) + v2(z)〉+ 〈z+ + z, e0 − v1(z)− v2(z)〉
6 Cσ + α̃〈z+ + z, e0〉 6 Cσ + Cα

√
σ. (28.9)

Call L± = distS(`±, z±) the lengths of our two remaining short arcs ρ± =
ρ(`±, z±); then the decomposition of ρ∗ yields

H1(ρ∗) = L12 + L− + L+. (28.10)

Observe also that

H1(X0 ∩ S) = 3π − distS(`−, `+) = 2π + distS(`−,−`+), (28.11)

because when we add ρ(`−, `+) = S ∩ S to X0 ∩ S, we get a union of three
half great circles. Recall that we want to show that ∆L 6 Cσ, as in (27.2),
where by (28.9)

∆L = H1(ρ∗)−H1(X0 ∩ S) = L12 + L− + L+ − 2π − distS(`−,−`+)
6 L− + L+ − 〈z+ + z, e0〉 − distS(`−,−`+) + Cσ + α̃〈z+ + z, e0〉
6 L− + L+ − 〈z+ + z, e0〉 − distS(`−,−`+) + Cσ + Cα

√
σ. (28.12)

The estimate that we want to do now looks like the following. Imagine
that there is no curvature in the sphere and that the three geodesics ρ− =
ρ(`−, z−), ρ(z−,−z+) and ρ(−z+,−`+) = −ρ+ are all contained in a line
parallel to e0. Then distS(`−,−`+) = L− − 〈z + z+, e0〉 + L+, where the
middle term may be positive or negative, but in all cases we get that ∆L 6
Cσ+Cα

√
σ. We would still need a good estimate on α, but would get close
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to the desired goal. In the mean time we will try to deal with the curvature
of S and the alignment of our three geodesics.

Let ρ0 denote the geodesic that contains z and points in the direction
±e0 at z; we want to project all sort of points on ρ0, and then try to follow
the sketchy argument above. Denote by `′− the point of ρ0 that lie closest to
`−; we earlier used this notation for a point like `− when X ∈ P0, but there
is no relation. We want to locate `′− more precisely. Denote by β the angle
of v0(z) (the direction of ρ(z, `−)) with −e0. Simple estimates (that we do
not do because we will do more precise computations below) show that since
L− is quite small,

|`′− − `−| 6 2βL− and |distS(`′−, z)− L−| 6 Cβ2L−. (28.13)

In addition, β 6 C|s(z)|, where s(z) = v0(z) + v1(z) + v2(z), since the
projection of s(z) on the line orthogonal to e0 is the same as for v0(z), so its
length is |sin β|. Hence by (27.20)

β2L− 6 2|z − `−|β2 6 C|s(z)|2|z − `−| 6 Cσ. (28.14)

We should also mention that by (10.2), the angle of v0(z) with v1(z) or
v2(z) is at least π/2, and these two vectors make an angle roughly equal to
2π/3 with each other; this forces v0 and e0 to make an angle larger than
5π/6− 10−2, say. At any rate, seen from z, both `− and `′− lie in a direction
almost opposite to e0. Let us restate this and the second part of (28.13) in
terms of the coordinates h(`′−) and h(z) of the points `′− and z, along ρ0,
and which we orient in the direction of e0; we find that

h(z) = h(`′−) + L− + E1, with |E1| 6 Cσ. (28.15)

Next consider the closest point projection z′ of −z+ on ρ0; its position on
ρ0 is −〈z + z+, e0〉 from z in the direction of e0, modulo an error of at most
Cσ (because |z + z+| 6 C

√
σ, so the geodesic does not have much time to

turn). In terms of coordinates h(z′) and h(z) along ρ0, still oriented in the
direction of e0, we find that

h(z′) = h(z)− 〈z + z+, e0〉+ E2, with |E2| 6 Cσ. (28.16)

Finally denote by β+ the angle of −v0(z+) with

e+ = (v1(z+) + v2(z+))/|v1(z+) + v2(z+)|;

the proof of (28.14) also implies that

β2
+L+ 6 C|s(z+)|2|z+ − `+| 6 Cσ. (28.17)

Now |vi(z+) − v(−z, wi)| = |v(z+, wi) − v(−z, wi)| 6 C|z+ + z| 6 C
√
σ

by (28.4), and v(−z, wi) = v(z, wi) (we look at the other tip of the half
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circle), so |e+ − e0| 6 C
√
σ and

|v0(z+) + e0| 6 Cβ+ + C
√
σ. (28.18)

Now v0(z+) is the direction of −ρ+ when it leaves from −z+. Let us compute
some more. A parameterization of −ρ+ is given by

z(t) = −z+ cos t+ v0(z+) sin t, t ∈ [0, L+] (28.19)

(because a parameterization of a great circle can always be written as z(t) =
v1 cos t+v2 sin t, for two orthogonal unit vectors v1 and v2, and then we just
need to identify).

Let P0 denote the 2-plane that contains ρ0 and let π be the orthogonal
projection on P0. Define w = −z+− z′, where z′ is the projection of −z+ on
ρ0; we know that |w| 6 |−z+−z| 6 C

√
σ because z ∈ ρ0 and by (28.4). Also,

w is orthogonal to e′0, the direction of ρ0 at z′, and its orthogonal projection
on the direction of z′ is of norm at most Cσ. In fact, when a and b are two
unit vectors (such as −z+ and z′), then the projection of w = b − a on the
line through a (or b, this is the same) has norm at most |w|2/2, because
1 = ‖b‖2 = ‖a+ w‖2 = 1 + 2〈a,w〉+ ‖w‖2. Altogether |π(w)| 6 Cσ.

Similarly write v0(z+) = e′0 + ξ; then |ξ| 6 Cβ+ + C
√
σ by (28.18) and

because |e′0 − e0| 6 distS(z, z′) 6 C
√
σ. Next the projection of ξ on the

direction of v0(z+) has a norm at most Cβ2
+ +Cσ by the same argument as

above (take a = v0(z+) and b = e′0). In addition,

|〈ξ, z+〉| = |〈e′0, z+〉| = |〈e′0, z+ + z′〉| = |〈e′0, w〉| 6 C|w|2 6 Cσ

because v0(z+) is orthogonal to z+ and z′ is orthogonal to e′0, and then, as
before, because z′ is the “orthogonal” projection of z on ρ0. If π′ denotes
the orthogonal projection on the plane that contains −z+ and v0(z+), we see
that |π′(ξ)| 6 Cβ2

+ +Cσ, but since ‖π− π′‖ 6 C
√
σ and |ξ| 6 Cβ+ +C

√
σ,

we get that

|π(ξ)| 6 Cβ2
+ + Cσ + Cβ+

√
σ 6 Cβ2

+ + Cσ. (28.20)

Set ˜̀= z′ cosL+ + e′0 sinL+; this is the point of ρ0 that lies at distance L+
from z′ (in the direction of e′0); in terms of coordinates along ρ0, this means

h(˜̀) = h(z′) + L+. (28.21)

Notice that since −`+ = z(L+) (the final point of −ρ+), (28.19) yields˜̀+ `+ = z′ cosL+ + e′0 sinL+ − z(L+)
= (z′ + z+) cosL+ + (e′0 − v0(z+)) sinL+

= −w cosL+ − ξ sinL+ (28.22)

– 269 –



Guy David

which implies that

|˜̀+ `+| 6 |w|+ L+|ξ| 6 C
√
σ + CL+β+

and |π(˜̀+ `+)| 6 Cσ + CL+β
2
+

(28.23)

Let `′+ denote the projection of −`+ on ρ0; then by (28.23)

|˜̀− `′+| 6 2|π(˜̀+ `+)| 6 Cσ + CL+β
2
+

and
|`′+ + `+| 6 C

√
σ + CL+β+.

The first estimate yields

|h(`′+)− h(˜̀)| 6 2|`′+ − ˜̀| 6 Cσ + CL+β
2
+ (28.24)

and when we combine with (28.15), (28.16), and (28.21), we get that
distS(`′−, `′+) = |h(`′+)− h(`′−)| = L− + L+ − 〈z + z+, e0〉+ C3, (28.25)

with |C3| 6 Cσ + CL+β
2
+ 6 Cσ by (28.17).

We now add the orthogonal complement, which may remove some dis-
tance because `− and −`+ may turn out to be on the same side of ρ0, and
thus be closer to each other than their projections are. But the estimates
above yield

d := |`− − `′−|+ | − `+ − `′+| 6 C
√
σ + CβL− + Cβ+L+ (28.26)

and we claim that when a, b ∈ S lie within d of a geodesic ρ0, d is small
enough, and a and B denote their respective projections on ρ0, then
distS(a, b) > distS(a,B)− Cd2. Indeed, let π be the projection on the plane
that contains ρ0, observe that |π(a)− a| 6 Cd2 and similarly for b, and that
|a − b| > |π(a) − π(b)| > |a − B| − Cd2, from which we deduce the result
because distS(a, b) = 2 arcsin(|a− b|/2).

From the claim, (28.26), (28.25), and the fact that d2 6 Cσ we deduce
that

distS(`−,−`+) > L− + L+ − 〈z + z+, e0〉 − Cσ. (28.27)
We combine this with (28.12) and get that

∆L 6 α̃〈z+ + z, e0〉+ Cσ 6 Cσ + Cα
√
σ. (28.28)

Recall that Lemma 26.1, our goal for this section, will follow as soon as we
prove that ∆L 6 Cσ; see near (27.2). So we may assume that |α| > C1

√
σ,

with C1 quite large. Recall from (28.8) that

v1(z−) + v2(z−) = 2e0 cos
(
π

3 + α

)
=: (1− α̃)e0. (28.29)

When α < 0, α̃ is negative too, and |α̃| > C−1|α|. In this case |v1(z−) +
v2(z−)| − 1 = |α̃|, and (27.19) implies that σ > C−1|α̃|2 > C−1|α|2. We
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choose C1 above large enough and exclude this case. So we assume that
α > 0, and now (28.29) implies that |v1(z−) + v2(z−)| 6 1− α̃ 6 1−C−1α.
Recall that s(z−) = v0(z−) + v1(z−) + v2(z−); then

〈s(z−), v0(z−)〉 = 1 + 〈v1(z−) + v2(z−), v0(z−)〉 > C−1α. (28.30)
If we could apply (27.15), we would get that α2 6 C〈s(z−), v0(z−)〉2 6 Cσ,
and we excluded this case. Then we can apply (27.16) and we get that

σ > C−1|z− − `−|〈s(z−), v0(z−)〉 > C−1αL−. (28.31)
Let us also try the same estimate near `+. Define α+ by

Angle(v1(z+), v2(z+)) = 2π
3 + 2α+.

Recall that |vi(z+) − vi(z−)| = |vi(z+) − vi(−z−)| 6 C|z+ + z| 6 C
√
σ

by (28.4), so α+ > α − C
√
σ > α/2 if C1 is large enough, and the proof

of (28.31) also yields
σ > C−1α+L+. (28.32)

We complete this with a lower bound on L− + L+. If H1(ρ∗) 6 2π, then
∆L 6 0 simply because H1(X0 ∩ S) > 2π, so we may assume that L12 +
L− +L+ = H1(ρ∗) > 2π (by (28.10)). We combine with (28.9) and get that

L− + L+ > 2π − L12 > 〈z+ + z, e0〉 − Cσ − α̃〈z+ + z, e0〉, (28.33)
hence, since |α̃| 6 1/2, 〈z+ +z, e0〉 6 2(L−+L+)+2Cσ. We may now return
to (28.28), which yields

∆L 6 α̃〈z+ + z, e0〉+ Cσ 6 2α̃(L− + L+) + Cσ

6 Cα(L− + L+) + Cσ 6 Cσ (28.34)
by (28.33), (28.31), and (28.32).

This finally completes our proof of (27.2) and Lemma 26.1 in our last
case. As was mentioned at the end of Section 26, this also completes our
proof of Proposition 24.3, Theorem 24.1 (which in fact were finished before),
Proposition 24.4 and Theorem 24.2.

29. More cases where the free attachment is allowed

We interrupt the study of E in balls centered on E \ L with some com-
ments on the free attachment. In the construction of competitors, both in
Sections 14–16 (with balls centered on L) and Sections 26–28 (with balls
centered on E \ L), there are situations where we can use what we call the
“free attachment”, near one or two of the points `± of Sr∩L. Recall that the
main part of the construction of curves in E ∩Sr happens in two small disks
D± near the `±, and we used the free attachment in the following situations.
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An extreme case of free attachment is what we called a hanging curve,
when E ∩ ∂D± has a point that is not in the same connected component
E ∩D± as any other point of {`±} ∪ E ∩ ∂D±. We like this situation a lot,
because we can contract the hanging curve, use this to find a competitor
which is much better than the curve, and at the end of the estimate show
that rθ′(r) > C−1 or rF ′(r) > C−1. In the phase where we try to deduce
geometric properties from the small size of f , as in Section 19 and the up-
coming Section 30, we can forget about this case, because this never happens
for the good radii r that we select, by (19.30) and (19.27) in the centered
case, and similar upcoming estimates in the non centered case.

Next assume that E ∩ ∂D± has exactly two points; then we talk about
free attachment when these two points lie in the same connected component
of E ∩D± and in addition `± does not lie in the same connected component
of E ∩ D± as these two points (or just `± ∈ L \ E). Except for hanging
curves, this is the only case of free attachment that we have in the context
of Sections 26–28 (and we called this Configuration 3).

Another case, that shows up in Sections 14–16, is when E∩∂D± has three
points, that all lie in the same component of E ∩ D±, but this component
does not contain ` (either because `± /∈ E or because it lies in some other
component); we called this Configuration 3−. And the last case is when two
of the three points of E ∩∂D± lie in a same component of E ∩∂D± but this
component does not contain `±; we call this Configuration 2 + 1 (when `±
is connected to the third point of E ∩ ∂D±).

When we have a free attachment near `±, we are happier because when
we construct competitors, we don’t need to worry about the sliding condition
near `±. Typically, we select a point z± ∈ E ∩ D±, the net γ of curves of
E ∩ Sr that we construct consists near D± in two curves γj that start from
z±, plus maybe (in Configuration 2 + 1) a curve that leaves from `± and
does not get near the γj . The same thing happens with the Lipschitz curves
Γj that we construct starting from γj . It is often very convenient to have
a free attachment, because for instance if the two curves Γj that end at
z± make an angle at z± that is far from π, we can modify our first main
competitor (the set F 1 built in Section 15 or the set F 0 = ϕ0(E) that shows
up above (26.23)), using the same method as when we use the full length
property. That is, we use the fact that the tip of the current competitor
coincides with the cone over the union ρ∗ = ρ∗r of the geodesics with the
same endpoints as the γj and the Γj , to save some area near the tip if the
angle α± of the two geodesics ρj that end at z± if far from flat. With this
manipulation, we save about C−1r2(π − α±)2 in area. If π − α± > 10−2,
say, this leads to a very good estimate like the one that we get in (26.30)
or (26.33), which itself leads to a good lower bound on θ′(r) or F ′(r) and
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later on, when we try to get a geometric control, excludes r of the list of
good radii, again by (19.27). This is typically what happens in the situation
of Theorem 24.2 and Proposition 24.4. In principe it means that when E is
well approximated by a non-flat set of type V, the free attachment situation
will not occur.

In the non centered case of Sections 26–28, we also have to think about
the triangular face T (r). For the moment, when we have a free attachment
near `+, we are simply allowed to detach z+ from L (or T (r)), but we shall
see soon that we may also consider that there is a free attachment near `−,
and even we’ll be able to drop T (r) because we can get away with the sliding
condition.

The goal of this short section is to observe that when E does not contain
L∩B(0, ρ), then we can use the estimates that come with the free attachment
for all the radii r near ρ, even if for some of them, `±(r) lies in the same
component as the other points of E ∩ ∂D±(r). We first give a statement for
the case when 0 ∈ E ∩ L, prove the statement, and then discuss a variant
for the non centered case and how this could be applied.

Lemma 29.1. — Suppose that 0 ∈ E ∩ L and for some ρ > 0, E does
not contain L ∩B(0, ρ). Then, for C−1ρ < r 6 2ρ, we can do the estimates
that lead to differential inequalities of Sections 17–22 as if we always had
free configurations in the description of Section 10. Yet we need to replace
r2h(r) with 9ρ2h(3ρ) in the estimates.

Proof. — The estimate that we have in mind are (15.46), (16.4), and
their variants that were used in Sections 19–21. These estimates in turn
imply some differential inequalities, which we don’t mention here.

As we will see in the proof, the reason for the replacement of r2h(r) is
that we have to use competitors of E where we modify E near B(0, ρ), hence
the error terms get that large. Here C is any given positive constant given in
advance, and it should be noted that the only price that we pay for taking
C large is the fact that the error term 9ρ2h(3ρ) is not necessarily that small
compared to r2.

The main point of the proof will be that when L ∩ B(0, ρ) \ E 6= ∅,
we can prepare the work by finding a first (sliding) competitor F0 of E,
in the ball B(0, 3ρ), which is almost as good as E itself, but for which
F0 ∩ L ∩ B(0, 2ρ) = ∅. Then we replace E with F0 in all the proofs above,
and get almost the same results, except for the following details. First we
lose a small quantity η > 0 when we replace E with F0, but this does not
matter because η will be as small as we want. But also, and this is the reason
for the replacement discussed above, the competitors that we construct now
are only competitors for E in the ball B(0, 3ρ), so the error terms get a little
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larger. Oh course when we use the fact that h(r) 6 Chr
β , this amounts to

multiplying Ch by 9C2+β , which is not too bad.

Let us now prove the main estimate for the lemma. Let ρ be as in the
statement, and also find coordinates of Rn so that Rn ' L × Rn−1 ' R ×
Rn−1. By assumption, one of the points of L ∩B(0, ρ) does not lie in E; let
us write this point y = (tρ, 0), with t ∈ [−1, 1]. Let η > 0 be given, as small
as we want, and let us construct our competitor F0 so that

H2(F0 \ E) 6 η. (29.1)

We start with the choice of a very thin tube T , where most of the construction
will happen. For reasons that will be clear soon, we prefer T to be composed
of cubes. Let τ > 0 be small, to be chosen later (depending on η), but
certainly so small that B(y, 3τ) does not meet E. Identify L with R and
y with tρ ∈ R, and denote by K the set of integers k ∈ Z such that Ik :=
[ρ+kτ, ρ+(k+1)τ ] meets [−2ρ, 2ρ]. Then set I =

⋃
k∈K Ik; thus [−2ρ, 2ρ] ⊂

I ⊂ (−3ρ, 3ρ). Also write I = [a, b], denote by Q the cube in Rn−1 of side
length τ and centered at 0, set Qk = Ik ×Q ⊂ L× Rn−1 ' Rn, and finally
set T = I ×Q =

⋃
k∈K Qk.

We start with a Lipschitz mapping f0 such that f0(x) = x on Rn \ T ,
that maps T to its boundary ∂T , the interval [tρ + τ, b] ⊂ L to the point
b ∈ L, and similarly [a, tρ− τ ] to a ∈ L. This is because we want to respect
the sliding boundary condition.

When n = 3, we can take F0 = f(E), notice that F0 is a (sliding) competi-
tor for E in B(0, 3ρ) (because the linear interpolation between the identity
and f0 gives a one parameter family of mappings with the desired properties,
and that (29.1) holds. More precisely, if we set W0 =

{
x ∈ E ; f0(x) 6= x

}
,

then
H2(F0 \ E) 6 H2(f0(W0)) 6 H2(∂T ) 6 Cτρ < η (29.2)

if τ is small enough. When n > 3, we cannot estimate like this because
H2(∂T ) = +∞, and even though H2(f(E ∩ T )) is finite because f0 is Lips-
chitz, it may be much too large for our taste. So we shall compose f0 with a
Federer–Fleming projection. Write each Qk, k ∈ K, as a union of 2n−1 cubes
Q′j of side length τ/2, and thus write T as a union of smaller cubes Q′j , j ∈ J .
We do this because we want 0 to be a vertex and L to be contained in the
1-skeleton of T (seen as the union of the Q′j). We add to the Q′j the cubes
of the same “dyadic net” (and the same side length τ/2) that touch the Q′j ;
we then get a new tube T ′ ⊃ T , twice thicker and a tiny bit longer, which is
a union of cubes Q′j , j ∈ J .

The Federer–Fleming projection will occur in T ′, which means that we
shall use the composition f1 = ϕ ◦ f , where ϕ is a new Lipschitz mapping
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such that ϕ(x) = x for x ∈ Rn \ T ′, ϕ(T ′) ⊂ T ′, and even ϕ(Q′j) ⊂ Q′j
for j ∈ J ′. This mapping is constructed with the same standard scheme
as in Chapter 3 of [17], so we only recall how the construction goes and
the properties of ϕ that will be helpful. We start with the observation that
T ′ ∩ f(T ) has a finite (although possibly large) H2 measure. Our mapping
ϕ is itself a composition of elementary Federer–Fleming projections that act
on faces of various dimensions. Each elementary Federer–Fleming projection
consists in choosing “centers” xF inside the faces F of cubes that compose
T ′, so that they are not contained in the current image (we start with f(E),
but as the construction goes, we consider the images of that set by the
previously constructed mappings), and we compose with a Lipschitz mapping
that coincides on the current image with the radial projection on F , centered
at xF , that maps F \ {xF } to ∂F and is the identity on ∂F . We proceed
independently on all the faces of the same dimension, but thanks to the fact
that we always take the identity on ∂F , we get a global Lipschitz map. We
first do this on the faces of dimension n, then n−1, and so on, and end with
a projection of the 3-faces on their 2-dimensional boundaries. Each time,
we use the fact that the H2 measure of the image of f(E) by the previous
mapping is finite to choose xF outside of that image, and in fact sufficiently
far from that image in average, so that the projection will never multiply
the measure by more than C.

In fact, we only do this on some of the faces of the Q′j . On the n-faces
(i.e., the interiors) of the cubes that compose T , we don’t really need to do
this, because we have no piece of f(E) left there anyway, but it does not hurt
either. In the faces that are not contained in ∂T ′, we do the construction as
described above, so as to get a 2-dimensional set. But on the faces that are
contained in ∂T ′, we do not do anything, i.e., we keep the identity. This is
important because we take ϕ(x) = x on Rn \ T ′.

Notice that ϕ preserves the cubes, but also the faces. Because of this, it
preserves L and so does f1; thus f1(E) is a sliding competitor for E. We need
to estimate H2(f1(E) ∩ T ′) = H2(f1(E ∩ T ′)). One piece is f1(E ∩ T ), and
for this piece we know that we followed the construction down to 2-faces.
That is, this set is contained in the 2-skeleton of T ′, which has a H2-measure
smaller than Cτ2(]K) 6 Cτρ. For f1(E∩T ′ \T ) = ϕ(E∩T ′ \T ), we observe
that if we choose the centers cF correctly, its measure is multiplied by at
most C, so that

H2(ϕ(E ∩ T ′ \ T )) 6 C
∑
j∈J′
H2(E ∩Q′j) 6 C(]K)τ2 6 Cτρ (29.3)

by the local Ahlfors regularity of E. We may now choose τ so small that

H2(F0 \ E) 6 H2(f1(W0)) 6 Cτρ 6 η, (29.4)

– 275 –



Guy David

where W0 =
{
x ∈ E ; f0(x) 6= x

}
as above. This proves (29.1). Notice also

that W0 ⊂ T ′, and hence H2(W0) 6 Cτ2(]K) 6 Cτρ by the same argument
as above, using the local Ahlfors regularity of E.

The reader may be worried, because the set F0 that we just constructed is
no longer almost minimal. So we don’t want to use estimates that would rely
on the almost minimality of F0. The natural solution would be to adapt the
construction to F0, but this is not what we will do. Instead, we just compute
brutally with our initial set E, construct “competitors” F i = ϕi(E) with the
free attachment if needed, and estimate H2(F i). Now the F i are perhaps not
competitors, because using the free attachment may violate the boundary
condition that ϕi(E ∩ L) ⊂ L, so we are not allowed to compare F i with E
directly. There is no such problem with F0, because F0 ∩ L = ∅ on B(0, 3ρ)
where ϕi moves points, and so ϕi(F0) is really a competitor for E (but in the
larger ball B(0, 3ρ)). Now we use the fact that ϕi is Lipschitz, and let τ and
η tend to 0 in the estimate above. Observe that then H2(F0 ∩B(0, 3ρ)) and
H2(ϕi(F0∩B(0, 3ρ))) tend to H2(E∩B(0, 3ρ)) and H2(ϕi(E∩B(0, 3ρ))), so
that we get the desired estimates on E by applying the almost minimality of
E to the competitor ϕi(F0), and then taking a limit. Lemma 29.1 follows. �

Let us now state the variant of Lemma 29.1 for balls centered on E \ L.

Lemma 29.2. — Suppose that 0 ∈ E \L and for some ρ > 0, E does not
contain L∩B(0, ρ). Then, for C−1ρ < r 6 2ρ, we can do the estimates that
lead to differential inequalities of Sections 26–28 as if we always had free
configurations in the description of Section 10. In particular, we don’t need
T (r) and we may drop H2(T (r)) from the estimates. Yet we need to replace
r2h(r) with 9ρ2h(3ρ) in the estimates.

Proof. — This sounds a little bit like winning the jackpot, but of course
what this means is that in most situations, E contains L ∩ B(0, ρ). The
proof is the same. First we construct a competitor F0 for E in B(0, 3ρ), such
that (29.1) holds, and which no longer meets L ∩ B(0, 2ρ). The proof goes
as before (we never used the fact that L contains 0), and then we can end
the argument as above. As was suggested earlier, not only we can use the
free attachment for the estimates, but since we no longer have to enforce the
sliding condition for our competitors, we don’t need to add the triangular
piece T (r) either. The lemma follows. �

Let us just give an example of how we may use the Lemmas. Suppose
that 0 ∈ E, h(R) is small enough, and that in addition E is quite close
to a generic set X ∈ V, such that the half planes that compose X make
an angle smaller than π − 10−2, say. We may either assume that 0 ∈ L as
in the early sections, or that 0 ∈ E \ L and R−1 dist(0, L) is small enough.
Then L∩B(0, R/2)\B(0, 10−2R) is contained in E. Indeed otherwise we may
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apply Lemma 29.1 or Lemma 29.1, find that we can apply the free attachment
construction for all the nearby radii r, get a very good estimate for such r
that imples that θ′(r) > C−1r−1 or F ′(r) > C−1r−1, and get a contradiction
with the fact that, when E lies close enough to a V set, θ or F is nearly
constant in the range under consideration. In fact, we can also iterate this
argument (apply it to R/2, R/4, and so on) and get that L∩B(0, R/2) ⊂ E.
We will detail the argument during the proof of Lemma 32.4, mostly as an
example of how it may go and to give a flavor of why we get estimates like
θ′(r) > C−1r−1.

We may even apply the same argument to the case when E is very close to
a half plane in B(0, R), and get the same conclusion that L∩B(0, R/2) ⊂ E.
This time, when we apply Lemma 29.1 or 29.2, instead of a standard free
attachment, we immediately get a hanging curve near `±, which also gives
a bound on θ′(r) or F ′(r) that is incompatible with the fact that θ or F
is nearly constant. We shall also sketch a more direct argument, when we
discuss the proof of (31.9), and we will find the proofs of Lemmas 29.1
and 29.2 convenient in Section 37, when we check the full length property in
some special cases.

30. Geometric estimates follow from the decay of F

The decay of F that we got in Sections 27 and 28 is not so much good
in itself, but it will allow us to control the geometry of E. In this section
we prove two main statements to this effect, corresponding to the densities
θ0 = π and θ0 = 3π

2 of Theorems 24.1 and 24.2.

We start with a statement in the simpler case of Theorem 24.1, with an
approximation by half planes, where we will see that under the assumptions
of Theorem 24.1, we also have a good control (with decay) on the approxi-
mation numbers βH(r), in the interesting region where r > d0. We give the
statement first, and then comment.

Theorem 30.1. — There exist constants ε3 > 0 and C6 > 1, that depend
only on n and β ∈ (0, 1], such that the following holds. Let E be a reduced
sliding almost minimal set in B(0, 400R), with a boundary condition coming
from the line L, and a gauge function h such that

h(r) 6 Chrβ for 0 < r 6 400R, (30.1)
for some Ch such that ChRβ 6 ε3. Suppose that 0 ∈ E and 0 < d0 =
dist(0, L) 6 R/2. Then

d0,R(E,H0) 6 C6

[
[F (200R)− π] + ChR

β
]1/4

(30.2)
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where F is defined by (23.6) and H0 denotes the half plane bounded by L
that contains the origin.

Proof. — Notice the analogy with Theorem 19.1, but here the center is
off L. Of course this is only useful when the right-hand side of (30.2) is small,
so that in particular the density excess F (200R)− π is small. Here π is the
smallest value that limt→0 F (t) could possibly take (because 0 ∈ E \L); this
is also why we do not need to put in the assumption that 0 is a point of
density π.

We required that d0 6 R/2, but we do not feel bad about this; for R < d0,
there is no sliding condition in B(0, R), so we may still show E is very
well approximated by planes in B(0, R), using the regularity theorems for
plain almost minimizers. This is just a different story. Notice however that if
200R < d0, the other assumptions of the theorem allow E to coincide with
any plane in B(0, R), not just the ones that nearly contain L.

The point of this estimate is not to give some rough control on d0,R(E,H0)
(we will see something like this as soon as (30.13)), but to use this rough
control to get much better estimates that depend only on the density excess
and h. Since we proved earlier that this excess tends to decay like a power,
this will give a good decay for geometric quantities as well.

Remark 30.2. — We can prove an even better control when the gauge
function is even smaller than Chrβ . Set

J(R) =
∫ 2R

0

h(t)dt
t

and J+(R) =
∑

k>0 ; 10−kR>d0

J(10−kR)1/2. (30.3)

We shall also prove that, under the assumptions of Theorem 30.1, we have
the estimate

d0,R(E,H0) 6 C6[F (200R)−π]1/4+C6J(200R)1/4+C6J+(200R)1/2. (30.4)

Notice that this is better than (30.2), because J(R) 6 CChR
β and

J+(R) 6 CC
1/2
h Rβ/2 when (30.1) holds. The strange definition of J+(R)

reflects some of the trouble we will have with the proof, where we will need
to fetch information at the scale d0 (to get the relative position of H0, L,
and 0) and return to the possibly much larger scale R.

We can use Theorem 30.1 to prove the regularity of E when it satisfies the
assumptions of Theorem 24.1. Indeed, that theorem gives us good estimates
on the density excess F (200R)−π, even with some decay, and Theorem 30.1
then says that E is close to H0 in all the balls B(0, R), R > 2d0. We can even
get a good control in smaller balls B(0, R), R < d0, by first applying the
result to R = 2d0 to show that E is close to a plane (the plane that contains
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H0) in B(0, d0/2), and then applying the regularity results for plain almost
minimal sets (with no sliding boundary) in smaller balls; we get additional
decay there. The consequence is that we get a very good C1 description of
E near 0. See Section 31 for more details.

Yet Theorem 30.1 and the proof of regularity sketched above are not
really needed to control of E in balls that are not centered on E (first via the
decay the functional F , and then through the geometric control that follows),
because we may get the desired regularity result otherwise. When E satisfies
the assumptions of Theorem 24.1 in the large ball B(0, R), R > 103d0, say,
it turns out that every point of L∩B(0, d0) lies in E (and has density π/2).
This is proved in [13]. Then we may also apply the simpler decay results for
balls B(x, r) centered on E ∩ L (see for instance Corollary 22.1), and get
the same geometric information in these balls B(x, r), r > 2d0, as given by
Theorem 30.1. This is fortunate, because this proof of regularity will help us
simplify our proof of Theorem 30.1 itself. We will return to this in due time.

Yet the fact that we can find enough points in E ∩ L with the right
density is quite lucky, it seems, and if we could not find these points in
E ∩ L ∩B(0, 2d0), we would not be able to apply Corollary 22.1 to them!

We will have a second statement (Theorem 30.3) similar to Theorem 30.1,
but with points of density 3π

2 and where we approximate E by truncated Y-
sets. There the story will be different: it seems that we cannot easily get the
regularity results of Sections 32–34 without actually applying Theorem 30.3
to some points of type Y in E \ L.

The proof of Theorem 30.1 will be rather long and complicated, and to
save some energy we will group it with the proof of the upcoming Theo-
rem 30.3.

We shall use the following notation concerning truncated sets of type Y.
First denote by Y(L, r) the set of cones Y of type Y that are centered at the
origin, and for which L∩B(0, r) is contained in a face of Y . For Y ∈ Y(L, r),
we set Y t = Y \ S, where S still denotes the shade of L seen from 0, but
in fact we are only interested in Y t ∩ B(0, r), where Y t truly looks like a
truncated cone of type Y, but not necessarily with a straight truncation
parallel to the spine of Y . Notice that Y t ∩ Sr is a net of geodesics like the
ones that we studied in Section 28, with two large arcs of great circles (in
fact, half circles) and two small tips that connect to the points of L∩Sr (and
may be reduced to one point `±).

Theorem 30.3. — There exist constants ε3 > 0 and C6 > 1, that depend
only on n and β ∈ (0, 1], such that the following holds. Let E be a reduced
sliding almost minimal set in B(0, 400R), with a boundary condition coming
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from L, and a gauge function h such that
h(r) 6 Chrβ for 0 < r 6 400R, (30.5)

for some Ch such that ChRβ 6 ε3. Suppose that 0 ∈ E, with F (0) = 3π
2 , and

0 < d0 := dist(0, L) 6 R/2. Then we can find a cone Y ∈ Y(L,R) such that

d0,R(E, Y t) 6 C6

[[
F (200R)− 3π

2

]
+ ChR

β

]1/4
, (30.6)

where F is defined by (23.6) and Y t is as above the statement.

In fact, under the assumptions of the theorem, we also get that

d0,R(E, Y t) 6 C6

[
F (200R)− 3π

2

]1/4

+ C6J(200R)1/4 + C6J+(200R)1/2, (30.7)
with J and J+ as in (30.3).

As before, we restrict to R > 2d0 because for r � d0 we would get a set
of type Y, but unless we can apply Theorem 30.3 to a radius R > 2d0, we
cannot really say how it is oriented. Notice however that the approximation
in (30.6) or (30.7) is valid on the whole ball B(0, R). The proof will even
give some uniform approximation in all the smaller balls, even leading to
the existence to a tangent Y -set that lies close to Y t. See Remark 30.8 and
Sections 32–34.

Remark 30.4. — There is more in this statement that one may have ex-
pected. The most important assumption is that the modified density excess
F (200R) − 3π

2 is very small, which implies that F ′(r) is often small for
r < 200R. Yet, for instance, it could a priori happen that F ′(r) is very small
for some r � d0, but E looks a lot like a plane, or a flat set of type V,
in B(0, r). So we will need to exclude these cases from the discussion, by
comparing all the different scales between d0 and r, and then using the fact
that the density at 0 is F (0) = 3π

2 .

We intend to prove Theorems 30.1 and 30.3 together, because there are
many common points. The proof will be quite long, even though we shall rely
on some of the computations and estimates that we did for Theorem 19.1,
so we’ll try to cut the proof into steps, often coming with their own tiny
introduction.

One of the features of the proof is that we’ll have to go up and down
between scales, and most of our estimates will be obtained by constructing a
competitor for E at some intermediate scale d0 6 r 6 R, typically as in the
proof of the decay estimate for F . This time the point of the computation
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is that if the geometry is not almost perfect, then we can find a better
competitor, which implies that the derivative of F for the corresponding
radii is not too small, and in principle this does not happen much when F
almost has the minimal value.

Step 1: We make sure that we can apply the construction of Sec-
tions 26–28

We start the proof with a small reduction, that will allow us to apply the
construction and estimates of Sections 26–28, to all radii roughly between
2d0 and 180R. For this we apply the near monotonicity of F and our implicit
assumption that F essentially keeps its minimal value, to get a rough control
of the geometry. Since we want to unify some estimates, it will be convenient
to set

θ0 =
{
π when E and R are as in Theorem 30.1,
3π
2 when they are as in Theorem 30.3,

(30.8)

and then
f(r) = F (r)− θ0 for 0 < r < 400R. (30.9)

Let ε4 > 0 be very small, to be chosen later. We may assume that

f(200R) +
∫ 400R

0

h(t)dt
t

= f(200R) + J(200R) 6 ε4, (30.10)

because otherwise (30.4) or (30.7) holds trivially. This is the same justifica-
tion as for (19.8). Then by (23.11), we also get that for 0 < r 6 200R,

F (r) 6 exp
(
α

∫ 400R

0

h(t)dt
t

)
F (200R)

6 eαε4F (200R) 6 eαε4(θ0 + ε4) 6 θ0 + Cε4 (30.11)

by (23.10) and (30.10). We claim that

θ0 = lim
r→0

F (r) = lim
r→0

θ(r). (30.12)

In the case of Theorem 30.3, this is our assumption that F (0) = 3π
2 , plus the

fact that F (r) = θ(r) for r < d0. In the case of Theorem 30.1, we know that
limr→0 θ(r) exists because θ is almost monotone, and is the density of any
blow-up limit of E at 0. Recall also that E is reduced and contains 0, so these
blow-up limits are nontrivial minimal cones. But the only minimal cones of
density smaller than 3π/2 are the planes; now (30.12) follows from (30.11)
if ε4 is small enough.
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Next we show that E is as close as we want to a set of constant density.
Let τ > 0 be small. We start with the case of Theorem 30.1, and show that

d0,r(E,H0) 6 τ for 2d0 6 r 6 180R. (30.13)
For this we apply Lemma 23.3 to E, the radius r1 = 21r

20 , and the large
radius 200R > r1 (to play the role of R in the lemma). The initial as-
sumptions (23.7) and (23.10) are satisfied (by (30.1) in particular), the con-
straint (23.15) too, because r > 2d0, we just checked that θ0 = π, and (23.17)
holds by (30.11), because r1 < 200R, and if ε4 is small enough. Here we are
only interested in the first conclusion, which is that d0, 20r1

21
(E,H0) 6 τ . This

is precisely (30.13). Let us set X(r) = H0 in the present case, so as to unify
the notation with the next one.

In the case of Theorem 30.3, we claim that there is a constant δ > 0, that
depends on τ , such that if ε4 is small enough, then for

δ−1d0 6 r 6 180R, (30.14)
we can find a cone X(r) ∈ V ∪ P0 such that

d0,r(E,X(r)) 6 τ. (30.15)
This is the same argument, but we replace Lemma 23.3 with Lemma 25.2.
This forces us to restrict to radii r such that (30.14) holds (as in (25.25)),
and we need to take δ 6 δ(τ); the rest is the same.

These approximation properties will be useful (see below), but they are
not what we want eventually. First, they come from compactness arguments
and are far from being precise enough. That is, τ is fixed and we are interested
in the cases when the right-hand sides of (30.2) and (30.6) (or their even
smaller variants) tend to 0. Also, in the case of (30.15), we want to prove
that X(r) is a nearly sharp set of type V, or a truncated cone of type Y,
which is more precise than our description of X(r). Of course, when r is
much larger than d0, a truncated cone of type Y (centered at 0) looks a lot
like a sharp set of type V at the scale r.

When r is not much larger than d0, we can deduce the existence of an
approximating truncated set from Lemma 25.3. That is, for any δ1 ∈ (0, 1),
we claim that if ε4 is small enough (depending in particular on δ1 and τ),
then for

2d0 6 r 6 min
(
d0

δ1
, 180R

)
(30.16)

we can find a minimal cone Y ∈ Y(0, 21r
20 ) such that

d0,r(E, Y t) 6 τ, (30.17)

where Y t = Y \ S is the corresponding truncated cone. Just apply Lem-
ma 25.3, with the same r, the large radius 180R, and ε = τ .
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Again this will be useful. It is closer in spirit to our goal, but we’ll have
to extend it to larger radii, and also get much smaller bounds than τ .

Return to the cone X(r) of (30.13) or (30.15). We now claim that we can
perform all the construction of Sections 26–28, which is good enough to prove
the two differential inequalities (24.13) and (24.18), and then Theorems 24.1
and 24.2. For all these estimates to hold for (almost every) given r, we
need to be able to find R′ such that (24.1), (23.1), (23.2) hold (as usual,
but for that R′, which we could for instance take equal to 240R), but also
2d0 6 r 6 R′/2 when θ0 = π and Nd0 6 r 6 R′/2 otherwise, as in (24.10)
and (24.15) or (26.3) or (26.4). The main assumptions, though, are that
Chr

β and f(r) be small enough, which follow from our assumption that
ChR

β 6 ε3 and (30.11), and that E be close enough to a minimal cone of
type H,P0, or V (see (24.4), (24.8), (24.12), (24.17), or (26.2)). This last
follows from (30.15), and the reader should not worry about the constants
depending on X(r), as we can always choose it from a fixed finite family. So
we’ll remember that the construction of Sections 26–28 works well, provided
that

2d0 6 r 6 180R when θ0 = π, and Nd0 6 r 6 180R otherwise. (30.18)

Also recall, if you are worried about δ, that we can take N somewhat larger
than δ. This completes this first step of preparation. Next we follow for some
time the argument given in Sections 19–21.

Step 2. We approximate E in spheres Sr, by some nets of geodesics

We try to estimate E on the annulus

A0 = B(0, 90R) \B(0, 10−1R), (30.19)

and we first proceed independently on most spheres Sr. We assume that

90R > Nd0 ; (30.20)

otherwise, some parts of the construction will be slightly different but sim-
pler, but we shall discuss this in Steps 8 and 9.

We use our first step and (30.20) to select, as in (19.21)–(19.23), a set
R of full measure in (10−1R, 90R) such that we can apply the construction
of competitors of Sections 26–28 to any r ∈ R, based on the approximation
by the set X(R) ∈ H ∪ V ∪ P0 that we got in (30.13) or (30.15). This
yields different nets of curves on the sphere, and in particular the initial net
γ∗ = γ∗r ⊂ E ∩ Sr, and a net of geodesics ρ∗ = ρ∗r .
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We also introduce a function j, defined as in (19.24) by

j(r) = rf ′(r) + f(r) + (1 + 2θ0αn)h(2r) + (1 + θ0αn)
∫ r

0

h(2t)dt
t

= rF ′(r) + f(r) + (1 + 2θ0αn)h(2r) + (1 + θ0αn)
∫ r

0

h(2t)dt
t

, (30.21)

where the density excess f is defined by (30.8) and (30.9). As before, the
cosmetic addition of the terms with αn is done so that

j(r) > (rθ′(r))+ + f(r)+ + h(2r) +
∫ r

0

h(2t)dt
t

for r ∈ R, (30.22)

as in (19.27). We will prefer to work with the radii r ∈ R such that j(r) is
rather small, and j(r) will control various geometric quantities.

We start with the estimate (19.28) in Lemma 19.4, which says that
H1(E ∩ Sr \ γ∗r ) 6 Cj(r), (30.23)

where γ∗r ⊂ E ∩ Sr is our first net of curves; see below (19.35). The proof
can be repeated here; it consists in checking that the various differences of
lengths ∆j(r) that show up in the estimates are dominated by j(r) (or else
we are in one of the exceptional cases and then j(r) > f ′(r) was large in the
first place).

Next we check that ρ∗r approximates γ∗r well, in the sense that
d0,2r(ρ∗r , γ∗r ) 6 Cj(r). (30.24)

The proof is the same as for Lemma 19.4 in Section 19; we prefer not to
define a cone Z(r) yet, because the fact that 0 /∈ L complicates the geometry,
but Lemma 19.4 concerns only Z(r) ∩ Sr = ρ∗r anyway. In fact, there is a
small lie here: in the special case where we have a free attachment near `±,
ρ∗r has an additional, isolated point `±, which we remove from ρ∗r before
we check (30.24). That is, ρ∗ = ρ∗r should be replaced in (30.24) with ρ′,
obtained from ρ∗ by removing the points `± with a free attachment. See the
discussion that leads to (19.50). Also, it will turn out (later in the argument
below, and independently) that there is no free attachment when j(r) is
small, so the issue does not arise after all.

During the proof of Lemma 19.4, one also shows that j(r) controls various
geometric quantities that show up in the construction of competitors, such
as ∆0(r),∆1(r),∆2(r) in (19.35)–(19.37). In particular, (19.42) (still valid
here with the same proof) says that

∆0(r) + ∆1(r) + ∆2(r) 6 106rj(r) for r ∈ R. (30.25)
It is also proved that some configurations, such as hanging curves of free
attachments when E is close to a half plane or a non-flat set of type V,
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are impossible when j(r) is small; we will return to this issue, but see the
discussion below (19.46).

Step 3. We control the variations of the main part of ρ∗r

Recall that our nets of curves, and in particular the ρ∗r , are initially
constructed with the model X(R). When θ0 = π, X(R) ∈ H(L) and ρ∗r
is composed of two main geodesics, which we shall call ρ1,+ and ρ1,−, and
which go from a midpoint w1 near X(R) to `+ and `−. We can exclude free
attachments here, at least if we restrict to r such that j(r) is small, because
they correspond to hanging curves.

When θ0 = 3π
2 , X(R) ∈ V ∪ P0 and ρ = ρ∗r is composed of four main

geodesics, which we shall call ρj,±, plus maybe some additional short
geodesics ρ±, depending on which type of attachment. For the moment,
let us not discuss attachment, and concentrate on the large ρj,± = ρj,±,r.

We want to show that the ρj,±,r vary slowly with r (both when θ0 = π and
when θ0 = 3π

2 ). We proceed as in Section 20, isolate any of the two or four
ρj,±,r, construct vertical curves on E, near the middle of the corresponding
interval I = Ij,± of X(R) (where E is actually a nice C1 graph), and use the
co-area formula to control the variation of angles along these curves. This
starts with Lemmas 20.1 and 20.2, which we can keep as they are. In the
mean time, we prove the inequality (20.22), which says that (since we no
longer normalize R away any more)

R−1
∫
r∈(10−1R,90R)

j(r) 6 CE , with E = f(90R) +
∫ 180R

0
h(r)dr

r
; (30.26)

this will be useful, because then there are lots of r ∈ R such that j(r) is
small. We use the Lemmas to prove an easier version of Lemma 20.3, i.e.,
the fact that for r, s ∈ R,

dH(r−1ρ̂j,±,r, s
−1ρ̂j,±,s) 6 Cj(r)1/2 + Cj(s)1/2 + CE1/2, (30.27)

where dH denotes the standard Hausdorff distance on the unit sphere (we
could also have used d0,2), ρ̂j,±,r denotes the full great circle that contains
ρj,±,r, and similarly for ρ̂j,±,s. That is, for the moment we do not want to
control the place where these geodesics stop, but just their position near
I; this way we can use (20.41), and skip the slightly unpleasant discussion
below (20.41), about guessing where the geodesics meet, and what happens
near `±.

Let us also observe, as in (19.46), that j(r) also controls some geometric
information on ρ∗r relative to its near minimality. We claim that if vj,±,r
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denotes the unit tangent vector at mi of ρj,±,r (going in the direction of z±
or `±), then

|vj,+,r + vj,−,r| 6 Cj(r)1/2. (30.28)
In other words, the two main geodesics that leave frommj are almost aligned.
The reason is the same as for (19.46): if not, we can modify our construction
of competitors a little near its tip (where the competitor is a cone near
the direction of mj), to make the angle flatter and the measure a tiny bit
smaller. Because of this, (20.37) is really an information on the pairs of
geodesics ending at a same point mi, or the sets ρ̂j,+,r ∪ ρ̂j,−,r. Anyway, we
shall some times find it more convenient to forget some information and just
remember that by (30.27)

dH(r−1ρ̂r, s
−1ρ̂s) 6 Cj(r)1/2 + Cj(s)1/2 + CE1/2, (30.29)

where ρ̂r is the union of the (two or four) pieces ρ̂j,±,r, and similarly for ρ̂s.

Step 4. We fetch information from the scale d0

In Section 20, we used a sharper version of (30.27) directly to control E
near the Sr; let us not try to do this yet, and consider the variations of the
ρj,±,r across smaller annuli

Ak = B(0, 90Rk) \B(0, 10−1Rk), with Rk = 10−kR. (30.30)

Recall from (30.11) that f(r) 6 Cε4 for 0 < r 6 200R. So f(Rk) is as
small as we want, but we shall restrict to k such that 90Rk > Nd0 (or just
to 90Rk > 2d0 when θ0 = π), as in (30.20), because this way we can find
a nice approximating set Xk = X(Rk) as in (30.13) or (30.15) and do the
same construction as above for R = R0. So let e denote the largest value of
k for which 90Rk > Nd0 (think, e like “end”, but the truth is that not so
many letters were left); thus

Nd0 6 90Re 6 10Nd0. (30.31)

When 90R < 10Nd0, let us still take e = 0 and not worry if some of our
statements below are slightly wrong. We shall return to this case in the last
steps and only small adaptations will be needed, because E includes a control
on radii r ∈ [10R, 100R] which is more than enough.

For 0 6 k 6 e, we define a set Rk of full measure in (10−1Rk, 90Rk)
with the same properties as before (namely, we can do the construction of
competitors as in Sections 26–28) and, for r ∈ Rk, define the number j(r)
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as in (30.21). Then construct the nets γ∗r and ρ∗r . We also get the same
estimates as above, but the small quantity E needs to be replaced by

Ek = f(90Rk) +
∫ 180Rk

0
h(r)dr

r
. (30.32)

Then we select for each k a radius rk ∈ Rk ∩ [Rk, 2Rk], so that

j(rk) 6 10R−1
k

∫
Rk

j(r)dr 6 CEk, (30.33)

where the second inequality comes from (20.22).

When we choose rk+1, the reference cone Xk+1 = X(Rk+1) may be a
little different than Xk; yet we claim that the proof of (30.29) also yields

dH(r−1
k ρ̂rk

, r−1
k+1ρ̂rk+1) 6 Cj(rk)1/2 + Cj(rk+1)1/2 + CE1/2

k

6 C(Ek + Ek+1)1/2, (30.34)

where ρ̂rk+1 is defined in terms of Xk+1, or else

θ0 = 3π
2 and γ∗rk+1

has a free attachment (30.35)

(that is, for at least one of the points `± and one of the choices of Xk or
Xk+1). Indeed, when our curves are attached to the points `± in the usual
(non free) way, the algorithm for choosing our nets of curves is the same, i.e.,
does not depend on our choice of Xk or Xk+1, and the variation of ρ̂rk+1 is
just the same as when we pick a different net γ∗ to start with; this matters
no more than it did above. And we have seen earlier that there is no free
attachment when θ0 = π and j(r) is small enough, because this would mean
a hanging curve. Hence the claim.

Notice that when (30.35) happens, say, with a free attachment at the
point z+, the proof of (30.28) also shows that (θ0 = 3π

2 and)

|v1 + v2| 6 Cj(rk+1)1/2, (30.36)

where vj is the direction at z+ of the geodesic ρ(z+,mj). Since we also
have (30.28) at the two vertices mj , we see that

the whole r−1
k+1ρ̂rk+1 is Cj(rk+1)1/2-close to a great circle. (30.37)

Anyway, let us return to (30.34); observe that if 0 6 k1 < k2 6 e, and
if (30.35) fails for k1 6 k 6 k2, then we may sum (30.34) and get that

dH(r−1
k1
ρ̂rk1

, r−1
k2
ρ̂rk2

) 6 C
∑

k16k6k2

E1/2
k 6 CFk1 , (30.38)
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where we set
Fk1 =

∑
k16k6e

E1/2
k . (30.39)

We will estimate the Fk more precisely in the next step, but let us start with
some basic decay. Recall that we chose our constants (such as ε4) so that
we can apply the differential inequality (24.13) and (24.18), and then even
Theorem 24.1 or 24.2 (depending on θ0). When θ0 = 3π

2 , we get that

f(90Rk) = F (90Rk)− 2π
3 6 (CV 10−k)af(90R) + CV Ch10−kaRβ

6 C10−kaε4 + CCh10−kaRβ 6 C10−kaε4 + C10−kaε3, (30.40)

by Theorem 24.2, (30.11), and our fortunate assumption in Theorems 30.1
and 30.3 that ChRβ 6 ε3. When θ0 = π, we get an even better result. Since∫ 180Rk

0
h(r)dr

r
6 CCh10−βRβ 6 C10−kβε3 (30.41)

by the same assumption, we see that Ek 6 C10−ka(ε4 + ε3) and, summing
over l > k,

Fk 6 C10−ka/2(ε3 + ε4)1/2. (30.42)
Thus, under the assumptions of (30.38),

dH(r−1
k1
ρ̂rk1

, r−1
k2
ρ̂rk2

) 6 C10−k1a/2(ε3 + ε4)1/2. (30.43)
This is as small as we want, even for k1 small.

We are finally ready to use the small scale and prove that, in the case
when θ0 = 3π

2 , our approximating cone Xk = X(rk) is never flat. For this,
we shall first use Lemma 25.3 to show that E is also close to a truncated
cone of type Y in B(0, Re).

Let τ3 > 0 be small, and apply Lemma 25.3, with r = Re, R = 2Re, and
ε = τ3. If ε3 and ε4 are small enough, the assumptions (23.1) and (23.2)
with (24.6) hold by (30.10), and (25.23) follows from (30.11) and our as-
sumption that ChRβ 6 ε3. Then we need to check (25.28), but since we
have (30.31), this is true as soon as we take N large enough, depending
on δ, so that δ(τ3)Re 6 20d0/21. So Lemma 25.3 applies, and gives E0, a
truncated cone of type Y centered at 0, such that

d0,Re
(E,E0) 6 τ3. (30.44)

Recall that the approximating cone Xe = X(re) was also such that
d0,Re

(E,Re) 6 τ , by (30.15). Since E0 has its two big faces that make a
2π
3 angle, and τ + τ3 is as small as we want, we deduce from (30.44) that Xe

is of type V (not P0), and that its two faces make an angle α(Xe) which is
at most 2π

3 + 10−3.
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By (30.31) and if N is large enough, Re is quite large compared to d0,
and then r−1

e ρ̂re is very close to the union of two great circles (we knew this
already, because of (30.28)), and that make an angle αe ∈ [ 2π

3 −2 ·10−3, 2π
3 +

2 · 10−3]. Now we prove by backwards induction that for k 6 e, r−1
k ρ̂rk

is
very close to a union of two great circles (as usual), and that make an angle

αk ∈
[

2π
3 − 10−2,

2π
3 + 10−2

]
. (30.45)

Indeed, as long as the free attachment event (30.35) does not happen for
k + 1, we have (30.43) with k1 = k and k2 = e, and then αk is in the right
range. But (30.35) never happens unless r−1

k+1ρ̂rk+1 gets flat as in (30.37);
this completes our induction. Hence (30.45) holds for all k, (30.43) holds
for 0 6 k1 < k2 6 e, (30.37) never happens, and (by the proof of (30.37)),
there is no free attachment associated to any of the Rk. This will simplify
the discussion a little.

Step 5. We estimate the Ek

We use two auxiliary sequences {aj} and {bj} to estimate the Ek. Let T
be a large integer, to be chosen soon, and set

aj = f(90RjT ) and bj =
∫ 180RjT

0
h(r)dr

r
= J(90RjT ), (30.46)

where we use the notation of (30.3), and which we define only when 0 6
jT 6 e. We want to estimate

∑
j a

1/2
j in terms of a1/2

0 and
∑
j b

1/2
j . So we

apply the proof of Theorem 24.2 or 24.1 (depending on the value of θ0),
where we integrate the differential inequality (24.13) or (24.18), between the
radii r1 = 90RjT and r2 = 90R(j−1)T . We get that

aj = f(90RjT ) 6 C110−aT f(90R(j−1)T ) + C2

∫ 180R(j−1)T

0
h(r)dr

r

= C110−aTaj−1 + C2bj−1. (30.47)
where we don’t care if C2 depends on T . We choose T , depending on C1, so
large that C110−aT 6 1/4; then (30.47) yields aj 6 aj−1/4 + C2bj−1. Then
we take square roots, iterate, and get that

a
1/2
j 6

1
2a

1/2
j−1 + Cb

1/2
j−1

6
1
4a

1/2
j−2 + Cb

1/2
j−1 + C

2 b
1/2
j−2

6
1
8a

1/2
j−3 + 2C

2 b
1/2
j−1 + 2C

4 b
1/2
j−2 + 2C

8 b
1/2
j−3 , (30.48)
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and so on. Eventually

a
1/2
j 6 2−ja1/2

0 + 2C
∑

06l6j
2j−lb1/2l . (30.49)

Then for k 6 e, we let j be the integer such that jT 6 k < (j + 1)T , and

E1/2
k 6

(
f(90Rk) +

∫ 180Rk

0
h(r)dr

r

)1/2

6 (2aj + bj)1/2 6 2a1/2
j + b

1/2
j

6 21−ja
1/2
0 + b

1/2
j + 4C

∑
06l6j

2l−jb1/2l (30.50)

by the near monotonicity of f and (30.49). Now we sum over k > m to
get an estimate for Fm =

∑
k6m E

1/2
k . Each estimate (30.50) is used less

than T times, and becomes a sum over indices j > m/T − 1. The first term
yields C2−m/Ta1/2

0 . The second term yields C
∑
j>m/T−1 b

1/2
j . For the last

term, b1/2l is multiplied by C
∑

2l−j , where we sum over j > l such that
j > m/T − 1. When l 6 m/T , we get a geometric series that starts near
j > m/T −1, with a sum less than C2l−m/T . For l > m/T , we get a full sum
bounded by C, but anyway the contribution is similar to that of the second
term. That is,

Fm 6 C2−m/Ta1/2
0 + C

∑
06l6m/T

2l−m/T b1/2l + C
∑

l>m/T

b
1/2
l

6 Ca1/2
0 + C

∑
l>0

b
1/2
l . (30.51)

We translate back into integrals, and get that

Fm 6 F0 6 Cf(90R)1/2 + C
∑
k>0

(∫ 2−k·180R

0
h(r)dr

r

)1/2

= Cf(90R)1/2 + C
∑
k>0

J(2−k · 90R)1/2

6 Cf(90R)1/2 + CJ+(90R) (30.52)
by (30.3), and where for the last inequality we observe that we only (defined
and) used the bj when jT 6 e, hence when 90RjT > 90Re > Nd0, by (30.31);
so the restriction in the definition of J+ in (30.3) is respected.

Step 6. We show that most ρ∗r lie close to a single truncated cone

We are now ready to check that when θ0 = π, most of our nets ρ∗r lie
close to the half plane H0 that contains 0 and L, and when θ0 = 3π

2 they lie
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close to some truncated set of type Y that we will choose. We start with the
easier first case.

Lemma 30.5. — When θ0 = π,

dist(z,H0) 6 CreE1/2
e for z ∈ ρ∗re

, (30.53)

and then, for 0 6 k 6 e,

dist(z,H0) 6 CrkF0 for z ∈ ρ∗rk
. (30.54)

Proof. — First consider r = re, and recall that there is no free attach-
ment. Thus the two arcs of geodesics that compose ρ∗r are the ρ± = ρ(`±,m1),
where the `± are the points of L∩Sr. We are going to use the flatness prop-
erty (30.28) to estimate how far ρ± goes from the plane P0 that contains
0 and L. Let us compute in the 3-space that contains P0 and m1 (and
hence also the `±), assume for the sake of the computation that r = 1,
and choose coordinates where P0 =

{
z = 0

}
, L =

{
(t,−d0, 0) ; t ∈ R

}
,

`± = (±
√

1− d2
0,−d0, 0), and m1 = (0, a, b), with b > 0, and where we

used the possibility to take w at equal distance from `− and `+ to simplify
the computation. The advantage of working with re is that with the present
normalization, (30.31) says that d0 > (10N)−1 is bounded from below; then
it is also easy to see (because E is close to a half plane that contains 0) that
b is small and a > 0.

We are interested in the unit tangent vector v± to ρ± at m1, that points
away from m1. It must lie in the vector plane that contains m1 and `±, and
be orthogonal to m1, hence be proportional to

ξ± = `± − 〈`±,m1〉m1 = `± + d0am1

=
(
±
√

1− d2
0,−d0 + d0a

2, d0ab

)
=
(
±
√

1− d2
0,−d0b

2, d0ab

)
. (30.55)

The square of the norm is n2 = 1 − d2
0 + d2

0b
2(b2 + a2) = 1 − d2

0(1 − b2) =
1−d2

0a
2, which is the same for both signs, and close to 1 (because d0 6 N−1).

Then
v+ + v− = n−1(ξ+ + ξ−) = 2n−1d0b(0, b, a), (30.56)

whose norm is 2n−1d0b > d0b. Whence, by (30.28) and forgetting about our
last normalization re = 1,

dist(z, P0) 6 bre 6 Crej(re)1/2 6 CreE1/2
e for z ∈ ρ∗re

, (30.57)

by (30.33). And then, by (30.38),

dist(z, P0) 6 brk 6 CrkF0 for 0 6 k 6 e and z ∈ ρ∗rk
. (30.58)

We announced distances to H0 instead of P0, but this is the same because
m1 lies near H0, not on the other side of L. �
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Let us now consider θ0 = 3π
2 , and try to define a cone Y that will work

for (30.6). In fact, we’ll try to find it at the scale re, and then use it a larger
scales too, but let us discuss general radii rk for the moment.

Recall from the discussion that leads to (30.38) that there is no free at-
tachment for the rk (because the j(rk) are small). Then ρ∗ = ρ∗rk

is composed
of four main arcs ρj,± = ρ(mj , z±), plus two short ones ρ± = ρ(z±, `±),
where the last two may be reduced to a single point z± = `±.

We already observed for (30.28) that j(r) controls the near minimality
of the ρ∗r , and in particular the angle that the two main arcs that compose
ρ∗r make at their common endpoint m1, but we also want to show that it
control the angles at the points z±. Suppose that z± 6= `± (otherwise, let
us not worry). Denote by v±,j the direction at z± of ρj,±, and by v± the
direction at z± of ρ±. We claim that

(r−1
k dist(z±, L))1/2∣∣v±,1 + v±,2 + v±

∣∣ 6 Cj(rk)1/2. (30.59)
That is, we have the same estimates as for the central angles (in (30.28)), but
less precise because the proof only allows us to modify the tip of our com-
petitors by moving the point z± in a ball of size C−1 dist(z±, L). The proof
is as before, except that we replace (27.3) by the less performant (27.20).
Here j(r) plays the role of σ,

∣∣v±,1 + v±,2 + v±
∣∣ is like s in (27.5), and

r−1
k dist(z±, L) (correctly normalized) plays the role of |z − `|. The power

1/2 on the left-hand side is unexpected (it comes from the fact that we can
do a replacement in a tube rather than a ball), but plays for us. And for
the worried reader, let us observe that we’ll only use this estimate when
r−1
k dist(z±, L) is reasonably large, where the subtle difference does not exist
and the proof of (30.28) works too.

To complete the geometric information that we have, recall that by con-
struction,

the angles at z± of v±,1, v±,2, v± are all at least π/2; (30.60)
see the description below (26.9).

Now let us check that when k = e, the unpleasant factor r−1
k dist(z±, L)

is bounded from below, i.e., z± 6= `± and
dist(z±(re), L) > C−1N−1re, (30.61)

where we now mention explicitly the fact that z± comes from re. Recall
that re 6 90Re (see below (30.31)), so we can apply the proof of (30.17)
to the radius r = 2re; we find a minimal cone Yr ∈ Y(0, 21r

20 ) such that
d0,r(E, Y tr ) 6 τ , with τ as small as we want. Now (30.24) says that the
points of ρ∗re

lie within Cj(re)re 6 CEere of γ∗re
, which itself lies in E, hence

close to Yr. Because of this (and because they are geodesics), the four arcs
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ρj,± lie very close to the two main arcs of Y tr ∩ Sre
. Which means that the

two points z± are very close to the two points of Spine(Yr) ∩ Sre , where
Spine(Yr) is the intersection of the three faces of Yr. But in turn, the two
points of Spine(Yr) ∩ Sre

cannot be too close to L, because Yr ∈ Y(0, 21r
20 ),

with r = 2re; our claim (30.61) follows.

So (30.59) says that for re, all the angles at the z±(re) are Cj(rk)1/2-
close to 2π

3 ; we also control the angles at the mj ; altogether, there is a cone
Y0 ∈ Y(0, re) such that

distH(r−1
e ρ∗re

, r−1
e (Y t0 ∩ Sre

)) 6 Cj(rk)1/2, (30.62)

where as usual Y t0 denotes the truncated cone associated to Y0. We would like
to use Y = Y0, but maybe Y0 does not lie in Y(L,R), because L∩B(0, R) is
not contained in a face of Y0. So we need to discuss a little more. Call F1 and
F2 the two faces of Y0 that pass near m1(re) and m2(re) respectively, and
Y0 the remaining face, which contains L ∩ B(0, 21re

20 ) since Y0 ∈ Y(0, 21re

20 ).
Thus F0 is contained in the 2-plane P0 that contains 0 and L, and one of
our concern is the angle of its boundary with Spine(Y0).

But let us first assume that Y0 ∈ Y(L,R), take Y = Y0, and check that
for 0 6 k 6 e,

d0,2rk
(ρ∗rk

, Y t ∩ Srk
) 6 CF0. (30.63)

When k = e, this is just (30.62); and since all the angles are rather large,
the approximation is valid separately for the two long arcs and the two
short ones. Then for a general k, (30.62) shows that the two long arcs of
ρ∗rk

are CF0rk-close to the two arcs Fj ∩ Srk
, j = 1, 2. We are left with

the two short geodesic arcs ρ±, from z± = z±(rk) to `±, which we want to
approximate by the corresponding arcs of F0 ∩ Srk

. Call these two arcs ρ′±;
thus ρ′± = ρ(`±, z′±), where z′± is the point of Spine(Y0)∩Srk

that lies close to
`±. Since z′± lies at the intersection of the two long arcs F1∩Srk

and F2∩Srk

and these arcs make a large angle at z′±, our estimate on the long arcs shows
that |z±− z′±| 6 CF0rk. Hence ρ± = ρ(`±, z±) and ρ′± = ρ(`±, z′±) are close
to each other, and (30.63) follows.

We are left with the case when Y0 /∈ Y(L,R), and in this case we want to
replace Y0 with Y = R(Y0), for some rotation R with a small angle. Consider
the largest radius r0; when we chose r0 (just below (30.32)), we made sure
that r0 > R, so that if Y0 /∈ Y(L,R) as here, then Y0 /∈ Y(L, r0) either.
Consider r0, and still denote by z′± the point of Spine(Y0) ∩ Sr0 that lies
close to `±. Recall that both points z′± lie in the plane P0 that contains 0,
L, and F0, but in the present case at least one of the points z′± lies on the
other side of Spine(Y0) (compared to the projection on P0 of most of F1 and
F2, or the points m1(r0) and m2(r0), for instance). Notice that this happens
only at one of the two points, say, z′+, because Y0 ∈ Y(L, re) and hence 0
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lies on the same side of P0 \ Spine(Y0) as the projections above. The other
point z′− even lies further from L as 0.

Another way to say that z′+ lies on the other side of Spine(Y0) is to say
that seen from `+, it lies in the direction almost opposite to v±,1 + v±,2.
On the other hand, (30.60) says that z+ (still seen from `+), lies roughly in
the direction of v±,1 + v±,2. But |z+ − z′+| 6 CF0r0 for the same reason as
before, and we deduce from this that |z′+ − `+| 6 CF0r0. Now let R be the
rotation that preserves P0, is the identity on P⊥0 , and maps z′+ to `+. Notice
that it moves the points very little, i.e., |R(ξ) − ξ| 6 CF|ξ| for all ξ, and
Y = R(Y0) lies in Y(L, r0) ⊂ Y(L,R) by construction.

Return to a general k ∈ [0, e], and set
z′′±(rk) = R(z′±(rk)) = (rk/r0)R(z′±);

we see that |z′′±(rk) − z′±(rk)| 6 CF0rk, and also Y ∩ Srk
is CF0rk-close to

Y0 in Srk
, so (30.63) now holds for the same reason as in our first case when

we did not need to move Y0.

This concludes our proof of (30.63), which we see as the correct analogue
of Lemma 30.5.

Step 7. Our truncated cone approximates E well in the exterior
annulus

When θ0 = 3π
2 , we just constructed a truncated cone Y t, and in order

to unify the notation, let us also denote by Y t the half plane H0 when
θ0 = π. This way, we also have (30.63) when θ0 = π. Indeed, by (30.54)
every point of ρ∗k lies close to Y t ∩ Srk

, but then conversely every point of
Y t ∩ Srk

= H0 ∩ Srk
lies close to ρ∗k, because ρ∗k is just the concatenation of

two geodesics that end on L and Srk
= H0 ∩Srk

is simple too. We are ready
to see that E stays quite close to Y t in the region B(0, R) \B(0, Nd0).

Lemma 30.6. — Let Y t be as above (thus Y t = H0 when θ0 = π). Set
A00 = B(0, 2R) \B(0, 2Nd0); then

dist(z, E) 6 C(F0 + E1/4
0 )|z| for z ∈ Y t ∩A00 (30.64)

and
dist(z, Y t) 6 C(F0 + E1/4

0 )|z| for z ∈ E ∩A00. (30.65)

Proof. — We will follow the argument of Section 21. First we claim that
when r ∈ Rk for some k ∈ [0, e],

dist0,2r(γ∗r , Y t ∩ Sr) 6 CF0 + Cj(r), (30.66)
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where γ∗r is our initial curve in E∩Sr. Indeed, (30.24) says that d0,2r(ρ∗r , γ∗r ) 6
Cj(r), then (30.27) says that ρ̂∗r is quite close to r

rk
ρ∗rk

. We now know that
for j(r) small there is no free attachment and we control the angle between
the various pieces of ρ∗rk

, so in fact the proof of (30.63) also yields

d0,2r(ρ∗r , Y t ∩ Sr) 6 CF0 + Cj(r)1/2 (30.67)
(see (30.62) in particular), and (30.66) follows. As we did for Lemma 21.1,
we first restrict our attention to the set R]k of radii r ∈ Rk such that j(r) 6
CE1/3

k . Thus by Chebyshev

|(10−1Rk, 90Rk)\R]k| = |Rk\R
]
k| 6 CE

−1/3
k

∫
Rk

j(r)dr 6 CE2/3
k Rk (30.68)

by (30.33) (or by the proof of (20.22)). Thus every radius ρ ∈ (10−1Rk, 90Rk)
lies within CE2/3

k Rk of a radius r ∈ R]k. For each point z ∈ Y t ∩B(0, 90R) \
B(0, 10−1Re), we can find k ∈ [0, e] such that ρ = |z| lies in (10−1Rk, 90Rk),
then r ∈ R]k such that |r − ρ| 6 CE2/3

k Rk, then z1 ∈ Y t ∩ Sr such that
|z1 − z| 6 CE2/3

k Rk, and finally by (30.66) a point z2 ∈ γ∗r ⊂ E such that
|z2 − z1| 6 C(CF0 + Cj(r))r 6 C(F0 + E1/3

k )r. Thus

dist(z, E) 6 C(F0 + E1/3
k )|z| (30.69)

for z ∈ Y t ∩ B(0, 90R) \ B(0, 10−1Re). We also need to evaluate dist(z, Y t)
when z ∈ E ∩B(0, 90R) \B(0, 10−1Re). We proceed as in Lemma 21.2. We
start with the points z that lie in some r ∈ R]k, (so that j(r) 6 CE1/3

k ), and
in addition lie in corresponding set γ∗r . For those we can use (30.66) and get
that dist(z, Y t) 6 C(F0 +E1/3

k )r. Then we evaluate the measure of the piece
of E∩B(0, 3Rk)\10−1Rk) for which (30.69) fails (because z ∈ E∩Sr \γ∗r , or
because j(r) is too large, or because the co-area formula does not cooperate),
and get a set of measure at most CR2

kE
1/4
k (see below (21.18)). Finally, we

use the Ahlfors regularity of E and get that

dist(z, Y t) 6 C(F0 + E1/4
k )|z| (30.70)

for z ∈ E ∩B(0, 2R) \B(0, 10−1Re). See Lemma 21.1.

The lemma follows because 10−1Re > 2Nd0 by (30.31), and Ek 6 CE0
by its definition (30.32). �

Step 8. Decay in the intermediate and small ranges, in the flat case

So far we assumed that 90R > Nd0 (for some large N), as in (30.20),
and we proved in Lemma 30.6 that E is close enough to a truncated Y-set
Y t in the annulus A00 = B(0, 2R) \B(0, 2Nd0).
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We need to complete this description, both to allow the radii R ∈ and
to get the same control (with the same set Y t) in the interior ball B(0, 3R),
say.

We shall first do this in the flat case (when θ0 = π). If E were minimal,
we could deduce a control on B(0, 3R) from what happens in A00, or even
∂B(0, 3R), by some form of maximum principle (compare E∩B(0, 3R) with
its projection on a small convex neighborhood of H0 ∩ B(0, 3R)). Probably
there is a way to do a similar argument for almost minimal sets, but it does
not seem so pleasant, and the author fears that we would need the co-area
formula, in much the same way as above, to control angles of tangents and
integrate; the case when θ0 = 3π

2 would probably be even worse. Instead we
shall return to our main decay estimate for f(r), extend it to the present
situation where (26.3) or (26.4) fails, and prove a similar decay anyway. And
then we shall proceed as in the first step, say that a slightly bad geomet-
ric configuration, even for these intermediate radii, implies a corresponding
lower bound for f ′(r), which cannot happen too often under the present
assumptions.

Why didn’t we do this earlier? A first (bad) excuse is that the author did
not think that this would be needed, and to be fair, what we are going to
do now does not change the main C1 results of the present paper, but only
gives more precise estimates (including a quantitative C1+β estimate). The
second excuse is that this slightly simplifies the apparent structure of the
proof. In general, the geometric situation for the intermediate radii looks a
little bad for our earlier construction of competitors to run smoothly; here
we shall use some extra information on E to make things easier.

Let us now assume that θ0 = π, and merely assume that R > 2d0 (instead
of (30.20)). We shall use the following fact to control the intersection E ∩Sr
for intermediate radii.

Lemma 30.7. — The set E coincides, in B(0, 10R), with the graph over
H0 of some C1 and 10−1-Lipschitz function ϕ : H0 → H⊥0 such that ϕ(x) = 0
for x ∈ L.

Proof. — Here H⊥0 is the (n−2)-plane orthogonal to P0, the 2-plane that
contains H0. The graph of ϕ is Gϕ =

{
x+ ϕ(x) ; x ∈ H0

}
. The proof of the

lemma will use the C1 and Lipschitz part of Theorem 31.1, which will be
proved later but independently. In fact, the proof of Theorem 31.1 will never
involve decay estimates for balls that are not centered on L. Let us explain
how we deduce Lemma 30.7 from Theorem 31.1, and rapidly sketch the part
of Theorem 31.1 that we need.

We start from (30.13) in the preparation Step 1, which says that
d0,r(E,H0) 6 τ for 2d0 6 r 6 180R. Here τ is as small as we want, and
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with our usual assumption that the gauge function h is small enough, this
is enough to apply Theorem 31.1 and get the conclusion of the lemma. The
arguments for Theorem 31.1 are not that complicated. Since τ is as small
as we want, a compactness argument shows that in B(0, 160R), E is also
close to H0 in measure; this means in particular that for ξ ∈ L ∩B(0, 60R),
(60R)−2H2(E ∩B(ξ, 60R)) is as close to π as we want.

There is an additional argument to show that L ∩ E ∩ B(0, 10R) is not
empty (otherwise we could easily cut out a big part of E), and a variation
of the same argument shows that L ∩ B(0, 60R) ⊂ E. All this allows us to
apply the results of Part III (or Theorems 1.8 and 1.9) and get a good flatness
control on E in balls centered on L∩B(0, 60R). This also mechanically gives
a good control on balls B(x, r) centered on E such that 10−2r 6 dist(x, L) 6
100r, and for the other ones, we start from B(x, dist(x, L)) and then use the
usual regularity theorem with no boundary L. �

Let us now consider radii r such that

d0 < r 6 min(10R, 10Nd0) (30.71)

(we could use N = 2 here, because we are in the flat case, but let us not
bother). By Lemma 30.7 and the implicit function theorem, and since Sr
is perpendicular to H0 where it meets it, E ∩ Sr is a nice C1 curve that
starts from one point `−(r) ∈ L, runs very close to H0 ∩ Sr, and ends at the
other point `+(r) of L ∩ Sr. It is also a small Lipschitz graph over H0 ∩ Sr
(its tangent lies close to the direction of H0, and belongs to the tangent
hyperplane to Sr). That is, even when r is barely larger than d0 and Sr is
nearly tangent to L, it stays nicely transverse to E and nothing bad happens.

Set γ∗r = E ∩ Sr; this is consistant with the notation of Section 26, but
the situation is simpler now. When r is barely more than d0, say, when

d0 < r <
5d0

4 , (30.72)

let us modify our construction and now cut γ∗r in roughly three equal parts
(instead of two), with two intermediate pointsm1 andm2; we do this because
in this case the length of γ∗r may be close to 2πr, and we want arcs of
lengths significantly less than πr to apply the construction and estimates of
Section 8. When r > 5d0

4 , let us just proceed as above and cut γ∗r only once,
near the middle.

Then we do the construction of Section 26, i.e., build a competitor where,
instead of taking the union of the cone over γ∗r and the triangle T (r) (as we
would do in order to prove the near monotonicity of f), we replace the cones
over the two or three pieces γi,r of γ∗r with harmonic graphs that end with
a small flat plate.
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Denote by ρi,r the geodesic with the same endpoints as γi,r, and set
ρ∗r =

⋃3
i=1 ρi,r (when (30.72) holds; otherwise we stop at i = 2). We get the

same control as before on the distance between γi,r and ρi,r, in terms of f ′(r).
That is, we still get that (30.24) holds, with j(r) as in (30.21) or (19.24).
And in addition the same argument as usual, where we modify the tips of
our competitor to get an even better one when the geodesics are not aligned
at some mi, also gives the same control as in (30.28). That is, if we still
denote by vj,±,r the two unit tangent vectors of ρ∗r at the point mi, we still
have that |vj,+,r + vj,−,r| 6 Cj(r)1/2.

Let us first use this information to control the geometry when

5d0

4 6 r 6 min(10R, 10Nd0). (30.73)

Then the proof of Lemma 30.5 yields

dist0,2r(E ∩ Sr, H0 ∩ Sr) 6 Cj(r)1/2. (30.74)

When instead d0 < r < 5d0
4 , the proof does not work (because we cannot get

a good control on the angle with P0 of a great circle that almost contains
ρ∗r when r is too close to d0), but fortunately we can use the same trick as
before, i.e., use transverse curves in E and the co-area formula to control the
variations of the great circles ρ̂i,r that contain the ρi,r. That is, the analogue
of (30.38) holds in the present case too, and allows us to deduce from (30.74)
(for r close to 5d0

4 ) that for our r

dist0,2r(E ∩ Sr, H0 ∩ Sr) 6 Cj(r)1/2 + CE1/2, (30.75)

where E is still as in (30.26), and could even be replaced by f(90d0) +∫ 180d0
0 h(r)dr

r .

We can also do like this for radii r ∈ (d0
10 , d0). For these we proceed

as usual, but since L does not meet B(0, r), we just do as for the interior
regularity result, cut E ∩ ∂B(0, r) into three roughly equal parts, construct
the ρi,r, and get good estimates on their angles. As when (30.72) holds, we
only know a priori that the three ρi,r lie Cj(r)1/2r-close to some great circle,
and in order to show that this circle lies close to the plane P0, we use the
transverse curve and the co-area estimate that relates their variations to the
decay of f , to get that (30.75) holds also for these r.

At this point we obtained a stronger analogue of Lemma 30.5, where
(30.53) still holds for d0

10 < r < min(10R, 10Nd0). This time we managed to
include unpleasant case when (30.20) fails, which we had left alone before.
Now we also have the analogue of Lemma 30.6 for the same radii, again with
the same proof as above.
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We still need to control E ∩ B(0, d0/2), say. For this, the analogue of
Theorems 19.1 and 30.1 is valid, with a simpler proof (see [10]), and we get
a plane P through the origin such that

dist0,d0/2(E,P ) 6 C
[
f(100d0) +

∫ 200d0

0

h(t)dt
t

]1/4

. (30.76)

In addition, we know that on the outside rim B(0, d0) \ B(0, d0/2), E is
quite close to H0, by the analogue of Lemma 30.6; this provides the desired
extension of Lemma 30.6 to the ball, and concludes the proof of Theorem 30.1
and Remark 30.2.

Step 9. Decay in the remaining ranges, when θ0 = 3π
2

We shall now complete the proof in the remaining case when θ0 = 3π
2 .

We start with the fact that for 0 < r 6 200R,

f(r) +
∫ 2r

0

h(t)dt
t

= f(r) + J(r) 6 f(r) + J(200R) 6 Cε4 (30.77)

by (30.3) (the definition of J(r)), (30.10), and (30.11), and where ε4 is as
small as we want. We shall first restrict to r such that

5d0

4 6 r 6 190 min(R, 10Nd0), (30.78)

and then (30.77) allows us to apply Lemma 25.3, with δ small enough (de-
pending on N), and then ε4 small (depending on δ); we get that there is a
set Y ∈ Y(L, r) such that

d0,r(E, Y t) 6 ε5 (30.79)

for the corresponding truncated cone Y t, where ε5 is also as small as we want.
In the definition of Y(L, r), there is the fact that the L∩B(0, r) is contained
in a single face of Y , and in particular does not meet the spine LY of Y (the
singular set of Y ). Since Y is centered at 0 and d0 = dist(0, L) > (1900N)−1r
by (30.78), we see (for instance by drawing the two lines L and LY in the
plane that contains them) that

dist(L ∩B(0, r/2), LY ) > cr, (30.80)

where c > 0 depends on N but this does not matter. If ε5 is small enough,
we can apply the usual regularity results to prove that in B(0, r/3) and when
we stay at distance at least cr/3 from L, E is a C1 version of the Y-set Y t.
And at distance less than 2cr/3, we can apply Theorem 31.1, as we did for
Lemma 30.7, but on smaller balls, to show that E coincides with the graph
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over H0 of some C1 and 10−1-Lipschitz function ϕ : H0 → H⊥0 , with as
above ϕ(x) = 0 for x ∈ L.

This is good, because this shows that for d0 < s < r/3, E ∩ Ss is also a
C1 version of Y t∩Sr. That is, E∩Ss is composed of two long arcs that leave
from nearly opposite points m± ∈ E ∩ Sr (near the points of LY ∩ Sr) with
angles close to 2π

3 , plus two short ones that go from those points to the two
points `± of L∩Ss. We stop at d0, because when s < d0 the sphere no longer
meets L, but when s approaches d0 from above, nothing bad happens, the
two short arcs simply get longer and go to points `± that lie very close to
each other, as we already saw in the flat case.

This allows us to implement the construction that we did the previous
sections, to construct competitors for E in B(0, s). We thus get for each
such s a net γ∗s , composed of two “short” curves γ0,±,s and four “long” ones
(we cut the two initial long arcs in two parts, near the middle, as usual)
γi,±,s, i = 1, 2; then we construct 6 Lipschitz graphs with flat tips, add the
triangle T (s) as usual, and also try to improve it near the tips, depending
on the angles that the six geodesics with the same ends as the six curves γ
(we call these geodesics the ρi,±,s, 0 6 i 6 2) make with each other. The
initial Lipschitz graphs are enough to get the near monotonicity of f , so
lower bounds on the defect of angles yield lower bounds on f ′(s).

More precisely, denote by α = α(s) the largest angle defect, i.e., the
largest of the differences between the angle between two curves ρ of ρ∗s
and the expected value at that point (i.e., π or 2π

3 ). Then, due to the fact
that in spite of their code names, the “short” geodesics are never too short,
by (30.80), we get that α 6 Cj(s)1/2, as in (30.28) for instance.

Now we can recover some of the geometry of ρ∗s in terms of α. Start from
the three geodesics of ρ∗s that leave from z− (we called them ρi,−,s), and
denote by vi the tangent vector to ρi,−,s at z−; the three vi make angles
that are α-close to 2π

3 . If we followed the two geodesics ρi,−,s, i = 1, 2, they
would meet again, with the same angles, at −z−. But we allow them to
turn near their middle (when they become the ρi,+,s), but by less than α.
They still meet at z+ (this was a property of E ∩ Ss), transversally, and in
addition |z++z−| 6 Cαs, and they make an angle that is still Cα-close to 2π

3
at z+. Here we skip some of the details, but we made similar computations in
Sections 27 and 28, in situation that were a little more complicated because
we did not have (30.78). Said differently, there is a Y-set Yρ centered at 0,
whose spine contains z−, and such that the four ρi,±,s, with i = 1, 2, stay
Cαs-close to two of the three arcs that compose Yρ ∩ Ss.

Let us now look at the two remaining geodesics ρ0,±,s as they leave from
z± (with angles nearly 2π

3 with the other ones); recall that they meet L at
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the points `±. By rotating Yρ by less than α along its spine, we may assume
that it contains the arc ρ0,−,s in one of its faces F . Then on the opposite
side, since ρ0,−,s also lies close to Yρ, we see that F also passes within Cαs
of `+.

Let us assume that s > 5d0
4 , so that |`+ − `−| > C−1s. This way, the

distance from `− to F also controls the angle between P0 (the plane that
contains 0 and L) and the plane Pρ that contains F (recall that Pρ contains
0 and `−). Thus this angle is small, and we can find a rotation, which is
Cα-close to the identity, and that fixes 0 and `− and sends F to P0. The
image Ys of Yρ by this rotation has the extra advantage that it lies in Y(L, r)
(because F is mapped into the plane P0, and the spine of Yρ was far from L
in B(0, r/2), by (30.80)). Notice that we do not say that Ys is the cone Y0
of type Y that contains L, because the image of Y0 by a small rotation that
fixes P0 is also allowed. Since we only moved Yρ a little, it is still true that
every point of ρ∗s lies within Cαs from Ys. In fact, given the structure of the
two sets, we even get that

d0,2s(ρ∗s, Y ts ∩ Ss) 6 Cα, (30.81)

where Y ts is the truncated cone associated to Ys.

By the same argument a for (30.75) (and simplified from the same one
in earlier proofs, because here we know that E ∩ Ss is equal to γs), we also
deduce from (30.81) and the fact that α 6 Cj(s)1/2 that

d0,2s(E ∩ Ss, Y ts ∩ Ss) 6 Cj(s)1/2. (30.82)

This takes care of most s such that s > 5d0
4 . For d0 < s < 5d0

4 , we still have
a good description of ρ∗s in terms of Yρ, and we can use transverse curves
and the co-area theorem to control the variations of Yρ, and show that it lies
within Cj(s)1/2 + CE1/2 of some fixed Ys0 (chosen with s0 ∈ ( 5d0

4 , 2d0), by
a Chebyshev argument), as in (30.75). Thus (30.81) even holds for d0 < s <
60 min(R, 10Nd0) (we divide the bound of (30.78) by 3 because s 6 r/3),
and even with a fixed set Ys0 ∈ Y(L, r0), with r0 = 60 min(R, 10Nd0) if we
choose s0 large enough or use (30.79) and the fact that all Ys have a face
contained in P0 and lie close to Y .

As before, this controls most of E ∩B(0, r0) \B(0, d0) (because j(s) may
be too large for some s), but then we can use the local Ahlfors regularity of
E to control the rest. Finally, for E ∩ B(0, d0), we use the same argument,
but without the boundary L, to control the variations of an approximating
set of type Y that approximates E∩Ss for s < d0. The argument is the same
as in the flat case; we just use the standard regularity result near a cone of
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type Y, far from the boundary. At the end of the game, we find that

d0,r0(E, Y ts0
) 6 C

[
f(3r0) +

∫ 6r0

0

h(t)dt
t

]1/4

, (30.83)

as in (30.76); this is enough because f(3r0) and
∫ 6r0

0
h(t)dt
t are controlled by

the same quantity for R, by (30.77).

Recall that we had also established a similar control on the exterior an-
nulus A00; with this last estimate, we end the proof of Theorem 30.1, Re-
mark 30.2, and Theorem 30.3. �

Remark 30.8. — We proved a little more than what we said: we proved
that E can be approximated well by truncated Y-sets in every ball B(0, R′),
R′ 6 R, with uniform, and even improving estimates, leading to the existence
of a tangent Y-cone at 0 (which we already knew), but which is also quite
close to the Y-cone that contains Y t.

At this point we have almost all the information needed to have a good
description of E near a point of type V. We shall summarize this and similar
local descriptions in the next part.
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Part V. Geometric descriptions of E near some cones

In this part we start the local description of sliding almost minimal sets
of dimension 2 near a one-dimensional, smooth sliding boundary L. We will
concentrate on the case when L is a line, and only explain in Section 38 how
to extend our results to the case when L is a C2 curve, say.

In the next few sections, we give ourselves a (reduced) sliding almost
minimal set E of dimension 2, associated to boundary L which is a straight
line through the origin, assume that in the ball B(0, R), E is close enough to
a given sliding minimal cone X, that the gauge function h is small enough,
and we want a good description of E in, say B(0, R/2). In a few good cases,
we will see that E is just C1-equivalent to X in the smaller ball, but in more
interesting cases (in particular when X is a sharp set of type V), we will get
a good description, but where E may have a different topology.

What we can get depends on the cone X; for simple cones we get a good
result, and unfortunately for some cones, such as Y-sets with the spine L,
we have reasonable conjectures but no proof.

In Sections 31–36 we take the possible cones one after the other, and
say what local regularity result we have (or not) near these cones. Then
in Section 37 we will complete the verification of the full length properties
that were announced throughout this paper, and in Section 38 we say why
L can be replaced with a smooth curve in all our regularity results. We also
decided to add a Section 39 where we check that sets of type H or V are
sliding minimal (the verification was not done yet).

31. Local regularity of E near a half plane

We start our list of local regularity results with the description of E when
it lies close to a half plane. We state our main assumptions so that we can
use them in later sections, with different cones X. Let L be a line in Rn,
that contains the origin, and suppose that

E is a reduced almost minimal set in B(0, R), with sliding
boundary L and with the gauge function h, (31.1)

where we shall also assume that
h(r) 6 Chrβ for 0 < r < R (31.2)

for some choice of power β ∈ (0, 1] and Ch > 0, and that

ChR
β 6 ε0 (31.3)
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for some ε0 > 0 that we can chose very small, depending on n and β. The
main geometric assumption that complements this is that there is a sliding
minimal cone X, centered at 0, such that

d0,R(E,X) 6 ε0, (31.4)
where d0,R is the local Hausdorff distance of (1.14). In this section we are
interested in the special case when X ∈ H is a half plane bounded by L; this
case was partially treated in [13], but we add the C1 nature of the estimate
here.

Theorem 31.1. — There is a constant a > 0 that depends only on n
and β and, for each small τ > 0, a constant ε0 > 0, that depends only on n,
β, and τ , with the following properties. Let E, h, R, satisfy (31.1)–(31.3),
and assume that (31.4) holds for some half plane X ∈ H bounded by L. Then
E coincides in B(0, R/10) with the graph of some C1 function ϕ : X → X⊥.
In addition, ϕ(x) = x for x ∈ L, ϕ is τ -Lipschitz, and

Angle(TxE, TyE) 6 τ |x− y|aR−a for x, y ∈ E ∩B(0, R/10), (31.5)
where Tx denotes the tangent plane to E at x ∈ E ∩B(0, R/10).

Proof. — Here X⊥ is the (n − 2)-space perpendicular to the plane that
contains X. When x ∈ L, Tx is only a half-tangent plane. And the sim-
plest definition of Angle(TxE, TyE) is probably ‖πx − πy‖, where πx is the
orthogonal projection on TxE, and similarly for πy.

There is nothing special with the constant 1/10; any constant smaller
than 1 would work, at the price of taking ε0 smaller and complicating the
argument.

We may also replace the assumption (31.4) in Theorem 31.1 with the
density assumption

dist(0, E) 6 ε0R and R−2H2(E ∩B(0, R)) 6 π

2 + ε0; (31.6)

as we shall see, under the other assumptions, (31.4) with X ∈ H and (31.6)
are essentially equivalent to each other (modulo taking a different ε0 and a
slightly smaller R).

Most of the proof of the theorem goes as in the previous papers [13]
and [10]; we shall not repeat the arguments when they are the same.

Let E be as in the theorem. First observe that E ∩B(0, 10−2R)∩L 6= ∅,
because otherwise, E is a plain minimal set in B(0, 10−2R) (with no sliding
boundary) that looks a lot like a half plane. If ε0 is small enough, this is
impossible: either take a limit and find that X is plain minimal in (0, 10−2),
or (alas, by another limiting argument) say that the density of E at some
point near 0 is < π.
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So choose x0 ∈ E∩L∩B(0, 10−2R). It follows from our assumption (31.4),
and the usual upper semicontinuity lemma for limits (see Lemma 22.3 in [14],
which we may apply with M arbitrarily close to 1 and h arbitrarily small,
or if you prefer Theorem 22.1 in [14]) that if ε0 is small enough and if
R1 = 9R/10,

R−2
1 H2(E ∩B(x0, R1)) 6 π

2 + ε1, (31.7)

with ε1 as small as we want (provided that ε0 is small enough). Notice even
that ε0 does not depend on X or our choice of x0; the point is that if this
failed, we could find a sequence of almost minimizers, with ε0 tending to 0,
with R = 1, and so that the points x0 are all translated back to 0; even
that way the corresponding sets E converge to a set like X and the upper
semicontinuity lemma gives the desired contradiction.

By the almost monotonicity of density (and again if ε0 is small enough),
we deduce from (31.7) that

r−2H2(E ∩B(x0, r)) 6
π

2 + 2ε1 for 0 < r 6 R1. (31.8)

So we also control the density. Next we claim that

L ∩B
(
x0,

8R
10

)
⊂ E. (31.9)

This is also proved in [13], but let us sketch an argument that should convince
the reader. Suppose that for some r < 8R

10 , E does not contain the two points
of L ∩ ∂B(0, r). Then the construction of Section 29 gives a competitor F0
of E, in B(0, 9R

10 ), that looks a lot like E on B(0, 9R
10 ) but does not meet

L ∩ B(0, r). Rather than using the whole story about free attachments, let
us just observe that it is now rather easy to contract most of E∩B(0, r) onto
a piece of ∂B(0, r) that is very close to X. When n = 3, this is enough to save
substantial H2-measure (because ∂B(0, r) has a finite measure); in higher
co-dimensions, we also need to do an additional Federer–Fleming projection,
as we did in the proof of Lemma 29.1. Even in this case, we get a competitor
with substantially less area, and the ensuing contradiction proves (31.9).

Next the proof of (31.7) also gives that for x ∈ L ∩B(0, 8R
10 ),

(10−1R)−2H2(E ∩B(x, 10−1R)) 6 π

2 + ε1, (31.10)

and by near monotonicity as above

r−2H2(E ∩B(x, r)) 6 π

2 + 2ε1 for 0 < r 6 10−1R. (31.11)

But x ∈ E by (31.9), and there is no possible density smaller than π
2 + 2ε1

other than π
2 , so this means that

lim
r→0

r−2H2(E ∩B(x, r)) = π

2 . (31.12)
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Now we apply Theorem 22.2, with for X the half plane provided by (31.4);
the excess density assumption comes from (31.11) and (31.12); we get that
(if ε1 is small enough) E has a tangent half plane T (x) at x,

dx,r(E, T (x)) 6 c1(ε1)(10r/R)a/4 for 0 < r <
R

10 (31.13)

(as in (22.9) and with c(ε1) as small as we want), and (as in (22.10)

f(r) 6 c1(ε1)(r/R)a/4 for 0 < r 6
R

10 . (31.14)

This is where there is a difference with [13], because we get some decay.
Observe also that when we apply (31.13) with r = R/10 and compare
with (31.4), we get that T (x) is close to X, i.e.,

d0,1(T (x), X) 6 10c1(ε1). (31.15)

Then we also have (31.13) for R/10 6 r 6 R/2, even though with a larger
constant 20c1(ε1) (compare with (31.4) again).

The estimate (31.13) is good enough to control the approximation of E
by half planes in small balls B(x, r) centered on L ∩ B(0, 8R

10 ), but we also
want to consider balls B(y, t) for which y ∈ E ∩ B(0, R/5) \ L and, say,
t < R/10.

So let y ∈ E ∩ B(0, R/5) \ L and t < R/10 be given. Set d = dist(y, L)
and pick x ∈ L such that |x − y| = d. We start when d 6 4t. Then T (x) is
still close to E in B(y, t), because

dy,t(E, T (x)) 6 d+ t

t
dx,d+t(E, T (x))

6 20c1(ε1)(10(d+ t)/R)a/4 6 60c1(ε1)(t/R)a/4 (31.16)

because B(y, t) ⊂ B(x, d + t), then by our extension of (31.13), applied to
d + t 6 5t 6 R/2, and because we may take a 6 1. Notice that T (x) coin-
cides with a plane P (x) in B(x, d(x)), so (31.16) says that dy,t(E,P (x)) 6
60c1(ε1)(t/R)a/4.

When t > d/3, the simplest is to first use (31.16) with t = d/2, to show
that E is very close to a plane in B(y, d/2). Then we can apply the regularity
result for plain almost minimal sets, i.e., the analogue of Theorem 22.2 near
planes and with no sliding boundary. We find that E has a tangent plane
T (y) at y, and even

dy,t(E, T (y)) 6 c(t/d)a/4, (31.17)
with c as small as we want. This would be enough to prove the more precise
estimate

dy,t(E, T (y)) 6 c(t/R)b/4 (31.18)
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for some other b > 0, by distinguishing the cases in terms of the relative
position of t < d < R; we shall do this with Theorem 32.1 below, for instance,
but in the present we can obtain (31.18) in a slightly more direct way, which
we present here.

Instead of applying Theorem 22.2 to get (31.14) for balls centered on
E ∩ L, we can use decay estimates for the functional F defined as in (23.6),
but associated to the center y ∈ E\L. The density F (0) is π because E has a
tangent at y; we could also use the approximation of E by a plane inB(y, d/2)
to show that it cannot be larger than this. On the other hand, the proof
of (31.7) also shows that H2(E∩B(y, 2R/3)) 6 H2(X ∩B(y, 2R/3))+ε1R

2,
with ε1 as small as we want. Then, denoting by S the shade of L lit by y,

F (2R/3) = (2R/3)−2[H2(E ∩B(y, 2R/3)) +H2(S ∩B(y, 2R/3))]
6 (2R/3)−2[H2(X ∩B(y, 2R/3)) +H2(S ∩B(y, 2R/3))] + 3ε1

= π + 3ε1, (31.19)

because X is a half plane bounded by L, thus H2(X ∩B(y, 2R/3)) is largest
when y ∈ X and thenX∪S is a plane through y, whose density is precisely π.

Then Theorem 24.1 (applied with the second assumption in (24.4), and
for instance with r2 = R/2, gives a good decay estimate (24.5) for F (t).
Then for 0 < t < d,

θ(t) = t−2H2(E ∩B(y, t)) = F (t) 6 π + (4t/R)a + CCht
aRβ−a

6 π + (4t/R)a(1 + Cε0) (31.20)

by (31.2) and (31.3), and now Theorem 30.1 gives (31.18).

Once we have (31.13), it is easy to obtain the C1 description of Theo-
rem 31.1, and we don’t even need to use a form of Reifenberg topological
theorem. For instance, we need to define a function ϕ whose graph contains
E ∩ B(0, R/10). Let π denote the orthogonal projection on the plane that
contains X and set π⊥ = I − π; we need to know that

|π⊥(x)− π⊥(y)| 6 τ |π(x)− π(y)| for x, y ∈ E ∩B(0, R/10). (31.21)

By symmetry, we just need to check this when dist(y, L) 6 dist(x, L). If
|x − y| > dist(x, L)/10, we select x′ ∈ L such that |x − x′| = dist(x, L),
notice that x′ ∈ E ∩ B(0, R/2) by (31.9), use (31.13) with r = 3|x − y| to
find out that x and y are both much closer to T (x′) than they are to each
other. In addition, (31.15) says that T (x′) is almost parallel toX, and (31.21)
in this case follows.

When |x − y| 6 dist(x, L)/10, we first observe that by (31.18) (applied
to t = 2|x − y|) says that x and y are much closer to T (x) as they are to
each other; in addition, T (x) is as close to T (x′) as we want because on
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B(x, |x′ − x|/4), (31.18) says that E is quite close to T (x), while (31.13)
or (31.16) says that E is close to T (x′). So by (31.15) T (x) is also as close
to X as we want, and (31.21) follows.

So E ∩B(0, R/10) is the graph of a Lipschitz function (defined on π(E ∩
B(0, R/10))). The estimate (31.1), which can also be seen as an estimate
on the Hölder norm of Dϕ, follows easily from (31.13) and (31.18), as in
the proof of (31.15). Then ϕ = 0 on L ∩ B(0, R/10) because this set is
contained in E. The fact that π((E ∩ B(0, R/10)) lies on one side of L also
follows from (31.13) (recall that T (x) is a half plane that lies close to X
when x ∈ L).

Finally, we did not mention in the statement that π(E ∩ B(0, R/10))
containsX∩B(0, R/11), for instance. This would follow from the information
that we have from the local regularity of E \ L and a fairly simple degree
argument. Theorem 31.1 follows. �

We also promised a version of Theorem31.1 with (31.4) replaced by (31.6).
We claim that with (31.6) (and the other assumptions of the theorem), it is
easy to find a half plane X such that

d0,98R/100(E,X) 6 ε1, (31.22)

with ε1 as small as we want. We consider the functional F associated to a
center x0 ∈ E \L chosen such that |x0− 0| 6 2ε0R, but otherwise computed
as in (1.27) or (23.6). We know that F (0) > π because there is no smaller
density at a point of E. And

F ((1− 2ε0)R) 6 (1− 2ε0)−2R−2H2(E ∩B(x0, (1− 2ε0)R)) + π

2
6 (1− 2ε0)−2R−2H2(E ∩B(0, R)) + π

2

6 (1− 2ε0)−2
[
π

2 + ε0

]
+ π

2 6 π + 10ε0 (31.23)

by (23.6) and (31.6). So F stays approximately constant on (0, (1− 2ε0)R)
(because F is almost monotone), and Theorem 1.6 in [13] says that in
B(x0, 99R/100), E is as close as we want to a minimal sliding set E0 for
which F is constant and very close to π. Then by Theorem 1.3 in [13], and the
discussion of Lemma 23.1, E0 coincides with a half plane in B(x0, 99R/100),
and we get (31.22). Once we have (31.22), we can end the proof of Theo-
rem 31.1 exactly as if we had (31.4).

A last comment is in order before we go to other cases: if 0 ∈ E ∩ L is a
point of density π/2, then the assumptions of Theorem 31.1 are satisfied for
R small (let us say, with the alternate assumption (31.6) to save some time);
hence we get a good description of E near 0. If all the cases (depending

– 308 –



A local description of 2-dimensional almost minimal sets bounded by a curve

on the blow-up limits of E at 0) were as friendly as this one, we would get
a nearly perfect description of the singularities of E near L. We want to
continue in this direction, but some cases will not be as friendly.

32. When E is close to a generic V set

The second case when we have no surprise is when the cone X in (31.4)
is a generic set of type V. That is, X is the union of two half planes H1 and
H2 bounded by L, and the angle of H1 and H2 along L is such that

2π
3 < Angle(H1, H2) < π. (32.1)

Let us add some notation to simplify our description. Denote by v0 a unit
vector parallel to L, and for i = 1, 2, let vi be the unit vector of Hi that
is orthogonal to v0. That is, vi points directly in the direction of Hi. We
may also need to use the plane Pi that contains Hi, the (n− 2)-dimensional
vector space H⊥i orthogonal to Pi, and the orthogonal projection π from Rn
to Pi. Another way to state (32.1) is to say that

− 1 < 〈v1, v2〉 < −
1
2 . (32.2)

Theorem 32.1. — There is a constant a > 0 that depends only on n
and β and, for each value of Angle(H1, H2) ∈ ( 2π

3 , π) and τ > 0, a constant
ε0 > 0, that depends only on n, β, Angle(H1, H2), and τ , with the following
properties. Let E, h, R, satisfy (31.1)–(31.3), and assume that (31.4) holds
for some set X ∈ V such that (32.1) holds. Then E coincides in B(0, R/10)
with the union of two graphs of C1 functions ϕi : Hi → H⊥i . In addition,
ϕi(x) = x for x ∈ L, ϕi is τ -Lipschitz, and for i = 1, 2,
|Dϕi(x)−Dϕi(y)| 6 τ |x− y|aR−a for x, y ∈ Hi ∩B(0, R/10). (32.3)

Proof. — That is, E coincide with the union of two C1+a faces that meet
along the common edge L, which is thus locally contained in E; the proof will
show that, since the tangent cone at x ∈ L is in fact very close to X, these
faces make an angle at x which is still generic. But this angle is expected to
depend (slowly) on x.

We decided to write the Hölder-continuity of the tangent direction of E
at z ∈ E, on each of the two faces of E near the origin, in terms of the
derivative of ϕi; but this is the same sort of estimate as (31.5).

When the angle of H1 and H2 tends to 2π
3 or π, we make ε0 tend to 0,

because we don’t want to allow the angle of the two half tangents to E along
L to take the limit values. This is because when this happens the topology
of E and E ∩ L may change, as we will see in later sections.
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Finally observe that if 0 ∈ E ∩L and one of the blow-up limits of E at 0
is a generic V-set X, then we can apply Theorem 32.1 for some small radii r,
and we get a local description of E near 0. And in particular X is the only
blow-up limit of E at X.

The proof of Theorem 32.1 will follow a similar route as when X was a
half plane. Some parts of the argument will stay valid in the next cases when
X is not generic, and we shall mention that along the way. For instance, the
following lemma is still valid when X is a plane that contains L (but not a
sharp V set).

Lemma 32.2. — The density of E at every point of E ∩B(0, 2R/3) \ L
is π.

Proof. — Suppose not, and let x0 ∈ E ∩ B(0, 2R/3) \ L have a density
larger than π. Set d0 = dist(x0, L), and first assume that d0 > 10Cε0R,
where C is a large constant that will be chosen soon. Set B0 = B(x0, d0/10);
observe that B0 ⊂ B(0, R), so dx0,d0/10(E,X) 6 10R

d0
d0,R(E,X) 6 10Rε0

d0
6

C−1. This means that X meets B(x0, d0/100) (because x0 ∈ E), and also,
since X coincides with a plane P in 2B0 (the two faces of X make a large an-
gle along L, and 10B0 does not meet L), we get that dx0,d0/10(E,P ) 6 C−1.
Now if C is large enough (maybe depending on n), and since we have (31.2)
and (31.3), the standard regularity theorem of [47] for plain almost minimal
sets implies that x0 is a point of density π.

In fact, we don’t even need the result of [47] to prove this; it is enough to
observe that by the usual use of Theorem 22.1 in [14] and a comparison with
a plane, the density (d0/20)−2H2(E ∩ B(x0, d0/20)) is smaller than π + η,
with η as small as we want, hence by the near monotonicity of density, the
density of E at x0 is at most π + 2η, and now we observe that there is no
possible density between π and π + 2η. So x0 is a point of density π, and
this contradiction with its definition implies that

d0 6 10Cε0R. (32.4)
We are now ready to apply Theorem 30.3, to the set E−x0 so that x0 becomes
the origin, and the radius R′ = 10−4R so that B(x0, 400R′) ⊂ B(0, R). We
obtain a cone Y ∈ Y(L,R′) centered at x0, such that if Y t is the same cone
truncated by L, then

dx0,R′(E, Y t) 6 C6

[
F (200R′)− 3π

2

]
+ ε2, (32.5)

as in (30.6), and with ε2 as small as we want. We also need to estimate

F (200R′) = (200R′)−2H2(E ∩B(x0, 200R′))
+ (200R′)−2H2(S ∩B(x0, 200R′)), (32.6)
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where S is the shade of L seen from x0. Set ρ = 200R′ + d0, and call y0 the
point of L that lies closest to x0; then

H2(E ∩B(x0, 200R′)) +H2(S ∩B(x0, 200R′))
6 H2(E ∩B(y0, ρ)) +H2(S ∩B(y0, ρ))

6 H2(E ∩B(y0, ρ)) + πρ2

2 . (32.7)

We apply the upper semicontinuity estimate again, as for (31.7) and find
that if ε0 is small enough,

H2(E ∩B(y0, ρ)) 6 H2(X ∩B(y0, ρ)) + ε2ρ
2 6 πρ2 + ε2ρ

2; (32.8)

again ε0 does not depend on y0 or X (provided that it is a minimal cone
of density π). When we combine everything we find out that F (200R)− 3π

2
is as small as we want, and so we get that dx0,R′(E, Y t) 6 ε3 with ε3 as
small as we want. But R′ = 10−4R, and in the larger ball B(0, R) our set
E is very close to X, which is a plane or a generic set of type V; this yields
the desired contradiction if ε3 and ε0 are small enough. Not surprisingly, we
need to take ε0 even smaller when X is close to being sharp. �

Lemma 32.3. — The density of E at every point of E ∩ L ∩ B(0, R/2)
is π.

Proof. — This lemma is still true when X is a plane but we expect it to
fail when X is a sharp V set (and also its proof uses Lemma 32.2).

Let z ∈ E ∩ L ∩ B(0, R/2) be given. By the same upper semicontinuity
argument as for (31.7) and (32.8), we find that if ε0 is small enough,

H2(E ∩B(z,R/3)) 6 H2(X ∩B(z,R/3)) + ε4R
2 6 (R/3)2(π+ 9ε4), (32.9)

with an ε4 which is as small as we want. Then by the near monotonicity of
the density,

r−2H2(E ∩B(z, r)) 6 π + 10ε2 for 0 < r < R/2. (32.10)

So the density of E at z is at most π+10ε2. Recall from Lemma 23.2 that (if
ε2 is small enough) all the cones with such a density are half planes, planes,
and sets of type V. Hence, the density of E at z is either π/2 or π, and we
just need to exclude the case when it is π/2.

So we assume that the density is π/2; then some blow-up limit of E at z
is a half plane H, and Theorem 31.1 says that there is a small ball centered
at z where E is C1-equivalent to H.

The topological argument that follows is almost the same as in Section 17
of [9], starting at (17.9), so we will only give an outline, and send to [9] for
details. Notice however that our life is a little simpler here, because we are
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willing to use a C1 description of E near every point of E ∩ B(0, R/2) \ L,
whereas in [9] we wanted to merely use a Hölder description.

Let us first assume that n = 3, because the topology is simpler then,
and consider a small circle C0 of radius ρ centered on z and contained in
the plane orthogonal to L at z. If ρ is small enough, C0 meets E exactly
once, and transversally. On the other hand, let C1 be the circle centered
at 0, contained in the plane orthonormal to L and with radius R/3. Recall
that (31.4) says that E is very close to X in B(0, R); denote by x1 and x2
the two points of C1∩X, and observe that X coincides with a plane in both
B(xi, R/10). Then we can apply the local regularity theorem in B(xi, R/20)
and find that in each of these balls, E meets C1 transversally exactly once.
Of course E does not meet the rest of C1 (too far!), so C1 has just two
transverse intersections with E.

Now there is a homotopy {ht}, 0 6 t 6 1, that goes from C0 to C1,
and whose image lies in B(0, 2R/3) \ L. But E is locally C1 there, because
Lemma 32.2 says that each point of E∩B(0, 2R/3)\L is a point of density π,
and we know that E is a C1 surface near such points. We claim that along the
homotopy, the number of intersections of E with Ct = ht(C0) stays the same
modulo 2, which leads to the desired contradiction. The proof of the claim
would consist in transforming the homotopy slightly, so that for each t the
loop ht(C0) meets E a finite number of times, and each time transversally.
But let us describe the general case first, and anyway refer to [9] for details.

When n > 3, we want to proceed as above, but replace the circles Cj
with (n − 2)-spheres. That is, C0 is now a small (n − 2)-sphere centered
at z and contained in the hyperplane orthogonal to L at z, and C1 is the
(n − 2)-sphere in the hyperplane orthogonal to L at 0, with radius R/3.
As before, we can find a homotopy from C0 to C1, among spheres that are
contained in B(0, 2R/3) \L, and prove that (after a suitable modification to
put things in general position) the number of intersections with E stays the
same modulo 2.

Now we follow a suggestion of Christopher Collins: rather than trying to
use degree theory too soon, we simply write the two equations of Ct, and
thus get a one parameter family of functions ht, defined on Rn and with
values in R2. Thus Ct =

{
x ∈ Rn ; ht(x) = 0

}
, and we want to compute the

number of solutions in E of the system of two equations ht(x) = 0.

Then we discretize, and at the same time modify the functions ht to
put Ct in the general position with respect to E, so that it intersects E
transversally. Also, we cut the elementary move from hti to hti+1 into smaller
modifications, where each time the function ht is only modified in a small
ball where we have a good description of E as a C1 surface. This gives a
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new collection of mappings, that we shall call h̃j , such that h̃−1
j (0) is always

transverse to E and meets it a finite number of times, and h̃j+1− h̃j is small
(in supremum norm) and supported in a small ball.

Then we have to show that E ∩ h̃−1
j+1(0) and E ∩ h̃−1

j (0) have the same
number of points modulo 2, and for this we finally use some degree theory.
We replace the equation h̃j(y) = 0 (in E) with the equivalent equation
ĥj(y) = 0, where ĥj is just a version of h̃j which takes values in the 2-
sphere. Because of our transversality condition and modulo 2, the number
of solutions is the degree of ĥj , and this degree is the same for ĥj+1 and ĥj ,
because h̃j+1 − h̃j is small.

This completes our rapid proof of the fact that θ(x) = π/2 never occurs,
and Lemma 32.3 follows. �

Lemma 32.4. — The set E contains L ∩B(0, 2R/3).

Proof. — This lemma stays valid when X is a sharp V-set. That is, we
just need to exclude flat V-sets here, i.e, planes that contain L.

First we check that E meets L∩B(0, 10−2R). Otherwise, E is also a plain
almost minimal set in B(0, 10−2R), with the same gauge function h, but no
sliding boundary. Yet (31.4) says that X is ε0R-close in E ∩ B(0, R) to the
non-flat set X of type V. If this can happen for arbitrarily small ε0, a small
limiting argument shows that X (or another non-flat V set) is minimal in
B(0, 10−2R). This is false, so E meets L ∩B(0, 10−2R).

Pick x0 ∈ E ∩ L ∩ B(0, 10−2R); if (32.11) fails, then there is a radius
t ∈ (0, 3R/4) such that at least one of the two points of L ∩ ∂B(x0, t) lies
outside of E. So we suppose so and get a contradiction.

Let us first describe a rather brutal argument that uses Lemma 29.1. This
will also be an opportunity to describe what we meant there; after this we
will sketch a more direct argument with the same ideas.

Let us run the argument of Sections 17–22, with the set E − x0 (because
we want to use x0 as an origin), the same approximating cone X that we
have, and radii r ∈ ( R10 ,

R
2 ). The various smallness assumptions that we need

to do are satisfied. In addition, because of our assumption on the existence
of t, Lemma 29.1 allows us to use the estimates of Sections 17–22 with the
free attachment.

Recall that in this case we build four Lipschitz curves Γ±,i, where the
notation makes sense because Γ±,i goes from a point mi ∈ E that lies close
to the midpoint wi of Hi ∩ Sr, to a point z± that lies close to a point
`± ∈ L ∩ Sr. We also construct a net ρ∗ = ρ∗r of geodesics, composed of the
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four geodesics ρ±,i = ρ(wi, z±). Now these endpoints lie on E, very close to
points of X = H1∪H2, and if ε0 is small enough we get that the angle at z±
of ρ±,1 and ρ±,2 is at most π−α/2, where we set α = π−Angle(H1, H2) > 0.

The simplest for us now is to catch the argument during the construction
of our third competitor, where we modify the tip of the second one, which
coincides near the origin with the cone X∗ over ρ∗. We know that we can
modify this tip, and we do so by softening the angles near the z±. Recall that
we don’t need to worry about what happens along L; this is the advantage
of having the free attachment at both points of Sr ∩L. It turns out that we
did this sort of modification and the associated computation in Section 27,
for (27.3). It does not matter that there the point where we soften the angle
was mi rather than z±, the computation is the same and we can save an
area comparable to C−1α2r2. The estimate that we get, instead of (16.4) is
now

H2(E ∩B(0, r))

6
r

2 H
1(E ∩ Sr)− 10−5[H1(E ∩ Sr)−H1(ρ∗r)]− C−1α2r2 +R2h(R)

6
r

2 H
1(E ∩ Sr)− C−1α2r2 +R2h(R), (32.11)

where R2h(R) comes from the almost monotonicity property (and the fact
that we use a competitor in B(0, R)), and we can drop the middle term
with 10−5, which is nonnegative by (15.45), (15.33), and the comment be-
low (15.30).

Now Lemma 17.1 says that v(r) = H2(E ∩ B(0, r)) is differentiable
almost-everywhere, that its distribution derivative is at least as large as
its almost everywhere derivative v′(r), and that the same thing holds for
θ(r) = r−2H2(E ∩B(0, r)) = r−2v(r), with

θ′(r) = −2r−3v(r) + r−2v′(r) > −2r−3v(r) + r−2H1(E ∩ Sr), (32.12)

where the second inequality comes from (17.13) and is valid for almost every
r ∈ (0, 1). Notice that H2(E ∩ Sr) = 0 for almost every r too, so (32.11)
and (32.12) yield

θ′(r) > −2r−3v(r) + r−2H1(E ∩ Sr)
= −2r−3H2(E ∩B(0, r)) + r−2H1(E ∩ Sr)
> −r−2H1(E ∩ Sr) + 2C−1r−1α2 − 2r−3R2h(R) + r−2H1(E ∩ Sr)
= 2C−1r−1α2 − 2r−3R2h(R)
> (3C)−1r−1α2 > (30C)−1R−1α2 (32.13)
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when R
10 < r < R

2 and if ε0 (and hence h(R)) is small enough. As we said
above, Lemma 17.1 allows us to integrate this, and we get that θ(R/2) >
θ(R/10) + (100C)−1α2.

This contradicts either the fact that θ(0) = π by Lemma 32.3, or that
θ(R/2) 6 π + 10ε4 by the proof of (32.10), or the near monotonicity of θ.
This completes the first proof of Lemma 32.4.

For a more natural and direct proof, start by observing that

H2(E ∩B(x0, 2R/3)) > (2R/3)2(π − ε5), (32.14)

with ε5 as small as we want; this time, the simplest is to use the lower
semicontinuity of measure along minimizing sequences (Theorem 10.97 of
[14]), plus the usual limiting argument with a sequence of counterexamples
with ε0 tending to 0, and that tend to a V-set with density π.

Then, since we still assume that L ∩ ∂B(x0, r) is not contained in L, we
can use the proof of Lemma 29.1 to construct a sliding competitor F0 for E
in B(0, R), which does not meet L∩B(x0, 3R/4), and which is as close to E
in measure as we want. That is, in particular,H2(F0\E) 6 η, with η as small
as we want, as in (29.4). And now, since the shape of E in B(x0, 2R/3) is well
known (E is close to the V-set X), we can construct by hand a competitor for
F0 and E in B(0, R), essentially without changing anything in B(x0, 2R/3)
(except for the part of F0 \ E that is already there, in the thin tube near
L), and that does better than the quantity that we get from (32.14). As
usual, the construction is rather easy when n = 3 because we can do the
gluing in a very small portion of ∂B(x0, 2R/3) near X, and when n > 3
we would need to do a piece of Federer–Fleming projection as in the proof
of Lemma 29.1. We leave the details to the reader, as a punishment for not
trusting the brutal but complicated proof above. But either way Lemma 32.4
is proved. �

We are now ready to use decay estimates for the density and the distance
to a V-set. Let x0 ∈ L ∩ B(0, R/2) be given. We know that x0 ∈ E (by
Lemma 32.4) and its density is π (by Lemma 32.3). We may thus apply
Theorem 22.2 to E − x0. The cone X has full length (see Section 37), we
just checked the density condition (22.7), and (22.8) with r1 = R/2 follows
from (31.2)–(31.4). We get the existence of a tangent cone X(x0) to E at 0,
with

dx0,r(E,X(x0)) 6 c1(ε0)
(

2r
R

)a/4
for 0 < r < R/2, (32.15)

where c1(ε0) is as small as we want.
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This cone has density π (just like x0), and by (32.15) and (31.4) X(x0)
is as close to X as we want. We go to the list of Lemma 23.2 and find that
X(x0) is a generic set of type V.

In addition to (32.15), Theorem 22.2 also says that
f(r) := r−2H2(E∩B(x0, r))−π 6 c2(ε0)(2r/R)a for 0 < r < R/4, (32.16)
with c2(ε0) as small as we want.

With this we get a good control of E on all balls centered on L∩B(0, R/2)
and radii r < R/2. Then we proceed as for the end of Theorem 31.1. That
is, we also need to control E in other small balls B(x, t); the main case
is when t < dist(x, L)/10, and for those we start from (32.15) (applied to
r = 2 dist(x, L) and the point x0 ∈ L that lies closest to x), which that E
is very close to a plane in B(x, dist(x, L)/2. Then we can apply the usual
regularity result for plain almost minimizers to prove that E is C1 in B(x, t).

As for the precise control (32.3), which we of course prove with a smaller
constant a, the same argument with the different functional F no longer
works, because x has density π and F (R) is more like 3π

2 . So let us cheat
instead. Set d = dist(x, L) and call x0 the point of L that lies closest to x.
If dt 6

(
R
d

)a/8, then (32.15) yields

dx,t(E,X(x0)) 6 d

t
dx,d(E,X(x0)) 6 2

(
R

d

)a/8
dx0,2d(E,X(x0))

6 2
(
R

d

)a/8
c1(ε0)

(
4d
R

)a/4
6 4c1(ε0)

(
d

R

)a/8
= 4c1(ε0)

(
d

R

)a/16(
d

R

)a/16
6 4c1(ε0)

(
t

R

)a/16
, (32.17)

where for the last line we used the fact that d
R 6

t
d because d

t 6
(
R
d

)a/8
6 R

d
(since a < 1). If P is the plane that coincides with X(x0) near B(x, t), we
also get that

dx,t(E,P ) 6 4c1(ε0)
(
t

R

)a/16
. (32.18)

If instead d
t >

(
R
d

)a/8, we just use the fact that dx0,2d(E,X) is as small
as we want to start anew from a good flat approximation in B(x, d/2). The
analogue of Theorem 22.2 for plain almost minimal sets gives a plane P such
that

dx,t(E,P ) 6 c(t/d)b (32.19)
for some b > 0, and a constant c > 0 that we can take as small as we
want. But (t/d)b 6 (t/d)b/2(d/R)ab/16 6 (t/R)ab/16, so we have an analogue
of (32.18) with a different power.
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Once we have (32.18) and its analogue, we get a good control on the
tangent planes and their variations. We still need to write E ∩ B(0, R/10)
as a union of two Lipschitz graphs on (pieces of) the two half planes Hi that
compose X. Set

Fi =
{
x ∈ E ∩B(0, R/10); dist(x,Hi) 6 10−2 dist(x, L)

}
(32.20)

for i = 1, 2. It is clear that F1∩F2 ⊂ L. Also, we observed below (32.15) that
the V-sets T (x0) are as close to X as we want; then if x ∈ E ∩ B(0, R/10),
(32.15) (applied to the projection x0 of x on L and r = 2 dist(x, L)) shows
that x ∈ F1 or F2, depending on which piece of T (x0) lies closer to x. Now
we want to show that Fi is a nice Lipschitz graph on Hi. For this we can
follow quietly the final argument given for Theorem 31.1, applied to each Fi
separately. Theorem 32.1 follows. �

33. When E is close to a plane that contains L

We now want a variant of Theorems 31.1 and 32.1 for the case when
the approximating cone X is a plane that contains L. We waited this long
because this is the first time where we may have a slightly complicated
singular set.

Let us assume that E satisfies (31.1)–(31.4), and that X is a plane that
contains L. We intend to prove that in B(0, R/10), E looks like a nice C1+a

surface which is also a small Lipschitz graph over X, except that along some
part of E∩L, E may have a crease where all the points admit a tangent cone
which is a generic (and in fact almost flat) set of type V. See Figure 33.1.

 

0

E L

U

L
E L

U

E lies above L here

This is also the section of E by a vertical plane

Figure 33.1. Behavior of E near a plane through L; creases may exist
along pieces of E ∩ L

Let us give a little more notation to prepare the statement. If ϕ : X → X⊥

is a function, the graph of ϕ is the set

Graph(ϕ) =
{
x+ ϕ(x) ; x ∈ X

}
. (33.1)
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Our crease set will be (the intersection of B(0, R/10) with)

Lg =
{
y ∈ E ∩ L ;

E has a blow-up limit at y
which is a generic V cone

}
. (33.2)

We know from Theorem 32.1 that Lg is an open subset of L, and we even
have a nice description of E near each point of Lg.

Theorem 33.1. — There is a constant a > 0 that depends only on n
and β and, for each τ > 0, a constant ε0 > 0, that depends only on n, β,
and τ , with the following properties. Let E, h, R, satisfy (31.1)–(31.3), and
assume that (31.4) holds for some plane X that contains L. Then there is a
τ -Lipschitz function ϕ : X → X⊥ such that

E ∩B(0, R/10) = Graph(ϕ) ∩B(0, R/10). (33.3)
In addition, ϕ(x) = x for x ∈ Lg, ϕ is C1 on X \ Lg ∩B(0, R/10), and

|Dϕ(x)−Dϕ(y)| 6 τ |x− y|aR−a

for x, y ∈ B(0, R/10) such that [x, y] ⊂ X \ Lg. (33.4)

Proof. — We tried to make the statement short, but there are a few
implicit things there that we prefer to explain now. We said that ϕ is defined
on the whole X, but of course only the values on X ∩ B(0, R/10) matter.
This is not too costly, because we can always extend. At points of Lg, we
know that E has a tangent cone T (x) ∈ V, which is nearly flat, and we can
compute the two half tangents as the limits, when y ∈ X \ Lg, of (half of)
the tangent plane T (y) given by the derivative Dϕ(y). We get two different
directions, because we have two ways to approach x. Yet T (x) varies in a
Hölder-continuous way along Lg, because (33.4) controls the variations of
the two half planes. That is,

d0,1(T (x), T (y)) 6 2τ |x− y|aR−a for x, y ∈ Lg ∩B(0, R/10). (33.5)
When x ∈ B(0, R/10) lies in the boundary in L of Lg, then E has a tangent
plane at x; this comes from (33.4) as well (and so it made sense to include
x in the domain X \ Lg).

The author expects that near 0, E ∩L can be almost any closed set that
contains 0. It is less clear to him whether Lg can be very complicated or not,
and whether such pathologies are also possible for locally minimal sets. See
Remark 33.2 below for a short discussion about this.

As usual, Theorem 33.1 can be applied to give a nice description of E
near any point x ∈ E where some a bow-up limit of E at x is a plane that
contains L.

Let us now prove Theorem 33.1. Let y ∈ E ∩ L ∩ B(0, R/2) be given.
Lemma 32.3, which is still valid here when X is a plane, says that y is a
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point of density π. This allows us to apply Theorem 22.2 with the cone X
(certainly a full length cone), after a translation by −y, and to the radius
r1 = R/2. We find that E has a tangent cone T (y) at y, and

dy,r(E, T (y)) 6 c1(ε0)
(

2r
R

)a/4
for 0 < r < R/2, (33.6)

with c1(ε0) as small as we want, as in (22.9). We know that T (y) has density
π as well, and (by (33.6) and (31.4)) that it is fairly close to X. That is,

d0,1(T (y), X) 6 2c1(ε0). (33.7)
But T (y) could be a plane (that contains L or not) or a flat generic V set.
Moreover, a comparison between the various estimates (33.6), with y, z ∈
E ∩ L ∩B(0, R/2), yields

d0,1(T (y), T (z)) 6 100c1(ε0)
(
|y − z|
R

)a/4
for y, z ∈ E ∩ L ∩B(0, R/2). (33.8)

This, and in particular (33.6), gives a good description of E in all the balls
B(y, r), with y ∈ E ∩ L ∩B(0, R/2) and 0 < r < R/2.

Notice that all the points y ∈ E ∩B(0, R) are points of density π, either
by Lemma 32.3 when y ∈ L, or by Lemma 32.2, which is also valid when X
is a plane, when x ∈ E \ L. So, except for the points of Lg where E has a
tangent V-set, E has a tangent plane T (x) at x (recall that a sharp V-set
would not satisfy (33.7)).

At this point we know that E is C1 everywhere on B(0, R/2) \ Lg, and
Theorem 32.1 gives a nice description of E near the points of E∩B(0, R/2)∩
Lg. Yet we want more precise and uniform estimates on the variations of the
direction of T (x), x ∈ E ∩ B(0, R/2), or (essentially equivalently) of the
numbers dx,r(E, T (x)) that control the good approximation of E.

For x ∈ E∩L∩B(0, R/2) and r < R/2, dx,r(E, T (x)) is directly controlled
by (33.6). For x ∈ E∩B(0, R/2)\L and 10−1R 6 r 6 R/2, we can use (31.4)
to show that dx,r(E,X) 6 10ε0. Let us now assume that x ∈ E∩B(0, R/3)\L
and r < 10−1R. Set d = dist(x,E ∩L) = dist(x,E ∩L∩B(0, R/2)) and pick
y ∈ E ∩ B(0, R/2) \ L such that |y − x| = d. If r > d/5, we get a good
approximation by the nearly flat V-set T (y), since by (33.6)

dx,r(E, T (y)) 6 r + d

d
dy,r+d(E, T (y)) 6 6c1(ε0)

(
12r
R

)a/4
. (33.9)

Finally for r < d/4, we first observe that T (y) coincides with a plane P (y, x)
near B(x, 2d/3) (because T (y) is a rather flat V-set), then dx,d/2(E,P (y, x))
is as small as we want (by (33.6) or (33.9)), then we can apply the analogue of
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Theorem 22.2 for approximations by a plane X in the plain case (no sliding
boundaries); we get that for 0 < r < d/4,

dx,r(E,P (x)) 6 c
( r
d

)a/4
, (33.10)

where P (x) denotes the tangent plane to E at x (we already knew its exis-
tence) and c > 0 is as small as we want (provided, as usual, that we take
ε0 small enough). The constant a > 0 may be different (it depends on the
full length constants for a plane). And also, we may replace (33.10) by the
apparently better

dx,r(E,P (x)) 6 c′
( r
R

)b/4
(33.11)

by the same small trick where we distinguish between cases depending on
r/d and use (33.6) or (33.9) when d

r �
R
d as for the end of the proof of

Theorem 32.1 (near (32.17)).

We may now compare (33.10) and (33.9) (use r = d/2); we get that
P (x) is indeed quite close to P (y, x). Because of this, and also (33.7), all the
directions of the planes P (x), x ∈ E ∩B(0, R/3)\L and the half planes that
compose the T (y), y ∈ E ∩ L ∩ B(0, R/2), are as close to the direction of
X as we want. Then E ∩B(0, R/3) is the graph of a τ -Lipschitz function ϕ
defined on a subset of the plane X, by (33.6), (33.9), (33.10), and the proof
of (31.21). Then, the estimate (33.4) on the derivative of ϕ (or equivalently
the direction of P (x) or T (y)) follow from these same estimate (compare
the P (x) or T (y) to E on intersecting balls). The fact that ϕ(y) = y for
y ∈ L ∩ E ∩ B(0, R/10) (and in particular on Lg ∩ B(0, R/10)) comes from
the graph description. As usual, we would deduce additional information,
such as the fact that π(E ∩ B(0, R/10)) contains X ∩ B(0, R/11), with a
little bit of topology. This completes our proof of Theorem 33.1. �

Remark 33.2. — In the description above, L∩E ∩B(0, R/10) can prob-
ably be just any closed subset of L ∩ B(0, R/10) that contains the origin,
and we could even take Lg = ∅ to see this. That is, we can probably make E
leave L and return to L as we wish, provided that we keep it extremely close
to L. We will not prove this here, but the following argument may convince
the reader. It is easy to see that a plane P0 is minimal, no matter which
choice of boundary constraint we take (because it is already minimal with-
out constraint); in particular we could take a boundary L that is a smooth
curve, that comes and leaves P0 in a very tangential way, but along any given
closed subset of L. The part of the argument that we will not do is to show
that we can go from this situation to the situation where L is a straight line,
with a change of variable in Rn that maps L to a line, and which is so close
to the identity that the image of P0 is still almost minimal. See Section 38
for a discussion of changes of variables though.
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Similarly, the author tends to expect that the set Lg can be, locally,
just about any open subset of L that does not contain 0, but constructing
examples may be much more delicate than for the assertion above, because
there will be a balance between pulling E enough in one direction (so as to
create a crease), but not too much (to control the almost minimality and
also not make the creases too long).

Of course the situation of actual minimal sets could be very different,
because minimality probably forces some rigidity conditions that the author
does not understand but that may prevent many pathologies, in the same
way as analytic functions do not always do what we want.

34. When E is close to a sharp V-set

In this section we give a local description of E near 0, under the usual
assumptions of Theorems 31.1, 32.1, and 33.1, except that this time the
approximating cone X is a sharp V-set, i.e., such the two half planes H1 and
H2 that composeX make 2π

3 angles along L. This case looks more interesting
than the previous one, in particular because the topology of E near 0 will
possibly be different from the topology of X.

Another new thing in this case is the possible presence near 0 of a curve,
contained in the set

EY =
{
x ∈ E \ L ; θx(0) = 3π

2

}
, (34.1)

where θx(0) = limr→0 r
−2H2(E∩B(x, r)) is the density of E at x, and along

which the V-part of E detaches itself from L, leaving a thin triangular extra
face of E between the curve and a corresponding piece of L. We try to give a
more precise description below; in the mean time see Figure 34.1 for a good
idea of what E may look like.

E

L 0
EY

generic V here Sharp V-sets tangent here Thin triangular face

Figure 34.1. The set E near a sharp V set; γ is composed of EY and
a bit of L

But first recall that since the Y-cones are the only plain minimal cones
in Rn with a density 3π

2 , EY is also the set of points of E \ L where all the
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blow-up limits of E are Y-cones. We also know, by the regularity theorem
of [47] or [10], that near these points E is C1-equivalent to a Y-cone.

Let us put the description of E near 0 before the statement of The-
orem 34.1 because it is a little longer than the previous ones. Set B0 =
B(0, R/10), call H1 and H2 the two half planes that compose X, then let ei
denote the unit vector of Hi that is perpendicular to L, and let H0 be the
half plane bounded by L and that contains e0 = e1 + e2; we may call it the
vertical half plane. First of all (we will show that)

L ∩B0 ⊂ E. (34.2)
Next, there is a curve γ, which is the graph over L of some τ -Lipschitz
function ψ : L→ L⊥, with τ as small as we want, and which is also of class
C1+a, (for some small constant a > 0 which may depend on n and β), with

|Dψ(x)−Dψ(y)| 6 τ |x− y|a for x, y ∈ L ∩B0. (34.3)
The curve γ is contained in E, meets B(0, 10−10R), and lies in a small sector
near H0. That is,

γ ⊂ H]
0 :=

{
x ∈ Rn ; dist(x,H0) 6 τ dist(x, L)

}
. (34.4)

Also
γ ∩B0 \ L ⊂ EY . (34.5)

Then E has a tangent cone at every point of E ∩B0, as follows.
For x ∈ γ ∩ L ∩B0, E has a unique tangent cone V (x) at x (34.6)

such that
V (x) ∈ V(L) and d0,1(V (x), X) 6 τ. (34.7)

In addition, if x ∈ γ ∩L∩B0 is a boundary point (in L) of γ ∩L, then V (x)
is sharp.

For x ∈ E ∩ L ∩B0 \ γ,
E has a unique tangent cone H(x) at x, H(x) ∈ H(L) (34.8)

(that is, H(x) is a half plane bounded by L), and

for x ∈ E ∩B0 \ (L ∪ γ),
E has a unique tangent cone P (x) at x, which is a plane. (34.9)

In fact, when x ∈ E ∩B0 \ (L∪ γ), there is a small neighborhood of x where
E is a C1+a submanifold of dimension 2 of Rn.

Next E∩B0 is composed of three main (closed) pieces that meet along γ.
The first two, which will be called the faces F1 and F2, are bounded by γ and
correspond to the two half planes Hi that compose X. More precisely, inside
B0, Fi is the Lipschitz graph of some τ -Lipschitz function ϕi : Di → H⊥i ,
where Di is (inside B0) the subdomain of Hi bounded by the orthogonal
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projection πi(γ) and that contains the largest part of Hi near 0 (See the left
part of Figure 34.2 and notice that πi(γ) ⊂ Hi because γ ⊂ H]

0). In addition,
|Dϕi(x)−Dϕi(y)| 6 τ |x− y|a for x, y ∈ Di ∩B0. (34.10)

These are the two largest pieces. The last one, which will be called F0, is
bounded by γ \ L on one side and L \ γ on the other side; it may be empty
(if γ ⊂ L), or on the opposite composed of infinitely many pieces (if γ \ L
has infinitely many connected component), and looks like a succession of
thin nearly vertical surfaces that connects L \ γ to F1 and F2 along γ \ L.
Inside of B0, this piece is the graph of a τ -Lipschitz function ϕ0, defined on
a domain D0 ⊂ H0 bounded by L and the orthogonal projection π0(γ) on
H0, and with values in H⊥0 . See the right part of Figure 34.2. And as usual

|Dϕ0(x)−Dϕ0(y)| 6 τ |x− y|a for x, y ∈ D0 ∩B0. (34.11)
This completes our description of E; hopefully we did not forget anything
important. Now we give the corresponding statement.

L

i �� (   )

Di Hicontained in 

L

D0

�� (   )0
�(   )0

D0
D0

Figure 34.2. On the left, Di and the projection of γ on Hi. On the
right, the projection D0 of F0 on the vertical half plane H0

Theorem 34.1. — There is a constant a > 0 that depends only on n
and β and, for each small τ > 0, a constant ε0 > 0, that depends only on n,
β, and τ , with the following properties. Let E, h, R, satisfy (31.1)–(31.3),
and assume that (31.4) holds for some sharp V-set X bounded by L. Then
E has the description in B0 = B(0, R/10) that was given just before this
statement.

Proof. — The theorem looks complicated but hopefully the pictures give
a good idea of what we claim is going on. Thus E does not leave L entirely,
but two of its branches may (hesitate and then) go away, keeping their 2π/3
angles, and a thin triangular piece stays and connects this main piece F1∪F2
to L. We really expect this sort of behavior to happen, typically when the
film is pulled up by some force that lifts the two wings F1 and F2. But for
minimal sets it is not clear to the author that we can produce curves γ that
leave from L and return to it as many times as we want. Also, we proved in
the previous two sections that this sort of leaving behavior only happens for
sharp tangent V-sets, not when they are flatter. The creases of Section 33
that are produced when E looks like a plane and hesitates to go away are
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different, a plane may even cross L transversally without even noticing (see
the next section for confirmation).

We start the proof as in the previous case, and first observe that all the
bad points are close to L. That is, if we call

EP =
{
x ∈ E \ L ; θx(0) = π

}
, (34.12)

the set of points x ∈ E \L where all the blow-up limits of E at x are planes
(and hence E is a smooth surface near x and has a unique blow-up limit at
x), then there is a constant C > 0, that depends only on n and β, such that

dist(x, L) 6 Cε0R for E ∩B(0, R/2) \ EP . (34.13)

The point is that if x ∈ E ∩ B(0, R/2) and if d := dist(x, L) > Cε0R,
then (31.4) implies that dx,d/2(E,P ) 6 2C−1 for the plane P that coincides
withX near B(x, d/2); if C is large enough and ε0 is small enough (to control
the gauge function h), the standard regularity theorem implies that E is of
class C1 near x. The details are the same as for the first lines of Lemma 32.2.

Next we control some densities. By the upper semicontinuity lemma (see
for instance Lemma 22.3 of [14]), and as for (31.7), we find that (if ε0 is
small enough) for x ∈ E ∩B(0, R/2) and R/10 6 r 6 R/3,

H2(E ∩B(x, r)) 6 H2(X ∩B(x, r))) + ε1R
2, (34.14)

where ε1 > 0 is as small as we want. This will be useful to control our density
functionals. We start our study with the points x ∈ EV ∩B(0, R/2), where

EV =
{
x ∈ E ∩ L ; θx(0) = π

}
. (34.15)

We do not assume a priori that their blow-up limits are V sets, but this will
come soon. Pick x ∈ EV ∩ B(0, R/2). Notice that for r = R/3, (34.14) says
that

θx(r) := r−2H2(E∩B(x, r)) 6 r−2H2(X∩B(x, r)))+9ε1 = π+9ε1. (34.16)

Then, by the almost monotonicity of density and if ε0 is small enough,

θx(r) 6 π + 10ε1 for 0 < r 6 R/3. (34.17)

In particular, the blow-up limits of E at x are planes or V-sets (we excluded
half planes because x ∈ EV ). But what matters to us at this point is that
we can apply Theorem 22.2; we find that E has a tangent cone V (x) at x,
and that

dx,r(E, V (x)) 6 c1(ε0)(r/R)a/4 for 0 < r 6 R/3. (34.18)

In addition, since both V (x) and X are close to E in B(x,R/3), we also get
that

d0,1(V (x), X) 6 2c1(ε0). (34.19)
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Thus V (x) is a set of type V, and even sharp or almost sharp, and (34.18)
will give us enough control on balls centered on EV ∩ B(0, R/2). Notice
that (34.18) also holds (with a slightly worse constant) when R/3 < r < R/2,
by (31.4) and (34.19).

Next we consider points of E ∩B(0, R/2)\ (L∪EP ), and for these points
we prefer to use the functional Fx(r) defined by (23.6), but for the set E−x
because of our choice of origin. We claim that for r = R/3 and as for (34.16),

Fx(r) = r−2H2(E ∩B(x, r)) + r−2H2(Sx ∩B(x, r))

6 r−2H2(X ∩B(x, r)) + 9ε1 + π

2 6
3π
2 + 10ε1, (34.20)

where Sx is the shade of L seen from x, r−2H2(Sx ∩B(x, r)) 6 π
2 is always

true because Sx is at most a half plane, and the last line comes from the fact
that since dist(x, L) 6 Cε0R by (34.13), r−2H2(X ∩ B(x, r)) is as close as
we want to π. As before, the near monotonicity of Fx then yields

Fx(r) 6 3π
2 + 11ε1 for 0 < r 6 R/3, (34.21)

and since θx(0) := limr→0 θx(r) = limr→0 Fx(r) cannot take values strictly
between 3π

2 and 3π
2 + 11ε1, we see that θx(0) 6 3π

2 . In fact, θx(0) = 3π
2

because we assumed that x ∈ E \ (L ∪ EP ), so x ∈ EY . In other words, we
checked along the way that

E ∩B(0, R/2) \ L ⊂ EP ∪ EY . (34.22)

We continue as when x ∈ EV , but with the decay statement associated to
Fx. We first apply Theorem 24.2 to E−x in B(0, R/2); the constraint (24.6)
on h is satisfied if ε0 is small enough, the density of E at x is 3π

2 as required
in (24.7), and dx,R/2(E,X) is as small as we want, by (31.4). Recall that
the numbers βV P allow approximation by V sets or planes (see (24.2)), but
we don’t need planes here. We get that (24.9) holds, we take r1 = r and
r2 = R/3, and obtain that

Fx(r)− 3π
2 6

(
CV 3r
R

)a [
Fx(R/3)− 3π

2

]
+ CV Chr

aRβ−a

6 C
( r
R

)a
(ε1 + ε0) (34.23)

for 0 6 r 6 R/4, by (34.20), (31.2), and (31.3). Now we use Theorem 30.3,
with a radius r 6 R/1200 (so that 400r 6 R/3). Because of our assumption
that dist(x, L) 6 r/2, we restrict to r such that

2 dist(x, L) 6 r 6 R/1200. (34.24)

Notice that there are still lots of radii r available, since (34.13) says that
dist(x, L) 6 Cε0R. The theorem provides a set Y = Y (x, r) ∈ Y(L, r) such
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that

dx,r(E, Y t(x, r)) 6 C6

[[
Fx(200r)− 3π

2

]
+ ChR

β

]1/4

6 C
( r
R

)a/4
ε

1/4
1 (34.25)

as in (30.6), where Y t(x, r) is corresponding truncated cone, and by (34.24).
It may be a little awkward to compare the sets Y t(x, r), because it may
be that the truncation of Y t(x, r) is no longer clean in larger balls, but at
least we can control their directions. Denote by Y ′(x, r) = Y (x, r) − x the
translation of Y (x, r) that is centered at 0; we claim that

d0,1(Y ′(x, r), Y ′(x, s)) 6 C
( r
R

)a/4
ε

1/4
1

for 2 dist(x, L) 6 s 6 r 6 R/1200. (34.26)

When r 6 2s, this is because we can easily evaluate the position of the
two half planes (among the three that compose Y (x, r)) that do not contain
L∩B(x, r), by knowing (34.25); of course the third half plane comes for free
when we have the two main ones. The general case follows as usual: we just
compare successive cones and sum a geometric series.

When we use (34.25) with r = R/1200 and compare with (31.4), we
see that the two half planes of Y (x,R/1200) that compose Y (x,R/1200)
and do not meet L ∩ B(x,R/1200) are very close to the two pieces H1 and
H2 of X. This is not shocking, because the third part of Y t(x,R/1200)
is extremely thin, because dist(x, L) 6 Cε0R. Because of this closeness,
and then by (34.26), we can identify in Y (x, r) two half planes H1(x, t) and
H2(x, t), whose directions H ′1(x, t) = H1(x, t)−x and H ′2(x, t) = H2(x, t)−x
are very close to H1 and H2 respectively. That is,

d0,1(H ′i(x, t), Hi) 6 10ε1 for i = 1, 2. (34.27)

And when we use (34.26) and check the labelling, we find out that for i = 1, 2,

d0,1(H ′i(x, s), H ′i(x, t)) 6 C
( r
R

)a/4
ε

1/4
1

for 2 dist(x, L) 6 s 6 r 6 R/1200. (34.28)

Now we keep our point x ∈ EY ∩ B(0, R/2) and worry about smaller balls.
Set d(x) = dist(x, L) and Yd(x) = Y (x, 2d(x)), and observe that by (34.25)

dx,d(x)/2(E, Yd(x)) = dx,d(x)/2(E, Y td (x))

6 4dx,2d(x)(E, Y td (x)) 6 C
(
d(x)
R

)a/4
ε

1/4
1 , (34.29)

– 326 –



A local description of 2-dimensional almost minimal sets bounded by a curve

so E lies pretty close to a Y-set in B(x, d(x)/2). In fact, if ε0 and ε1 are small
enough, this information is sufficient to use the analogue of Theorem 22.2 for
plain almost minimal sets near a Y-set. This result dates from [47], we can
also refer to [10], but since the exact same statement does not seem to be
explicitly written there, let us also observe that the proof of Theorem 22.2
also goes through (with simplifications). Anyway, we get that E has a tangent
cone Y (x) (a Y-set centered at x), and the analogue of (22.9) is that

dx,r(E, Y (x)) 6 c
(

r

d(x)

)a/4
for 0 < r 6 d(x)/2, (34.30)

maybe with a different constant a > 0, and with a constant c > 0 that can
be taken as small as we want (by making ε0 and ε1 smaller). In fact, when
we combine this and (34.29) (to take care of the radii that are too close to
d), the same trick as for (32.18) shows that

dx,r(E, Y (x)) 6 c
( r
R

)b/4
for 0 < r 6 d(x)/2, (34.31)

for some (other) b < a. When we compare this to (34.29), we find that

d0,1(Y ′(x), Y ′(x, 2d(x))) 6 c′
(
d(x)
R

)b/4
, (34.32)

where Y ′(x) = Y (x) − x is the parallel cone through the origin, and c′ is
another positive constant that we can make as small as we want. And for
even larger radii, we combine this with (34.26) and get that

dx,1(Y (x), Y (x, r)) = d0,1(Y ′(x), Y ′(x, r)) 6 c′
( r
R

)b/4
for 2d(x) < r 6 R/1200. (34.33)

With this, (34.31), and (34.25), we get good enough estimates on the ap-
proximations of E in the small balls B(x, r) centered on EY ∩B(0, R/2).

We want to know a bit more about the set EY (the set of (34.1)) itself.
Observe that

EY ∩B(0, R/2) ⊂ H]
0, (34.34)

the small sectorH]
0 of (34.4). Indeed, (34.27) says that the two main branches

of Yd(x) = Y (x, δ−1d(x)) go in directions very close to H1 and H2, hence
the third one goes in a direction almost opposite to H0. And it is precisely
in this direction that we can find the point y ∈ L that lies closest to x.
So the direction of x − y lies very close to H0 (compared to d(x)), which
proves (34.34).

Next, the regularity theorem for plain almost minimal sets that EY is
a C1 curve (locally in B(0, R/2) \ L), and its tangent line at x ∈ EY is
the spine `(x) of Y (x). Also denote by `′(x) the direction of `(x); that is,

– 327 –



Guy David

`′(x) = `(x)−x. It follows from (34.32) that Y (x) and Yd(x) = Y (x, δ−1d(x))
are as close to each other as we want, and hence also their spines are as close
to each other as we want. Then by (34.27), the spine of Yd(x) is also as close
to the direction of the spine of X as we want. The spine of X is L, and
its direction is L′ = L − x; then `′(x) is as close to L′ as we want. That
is, in B(0, R) \ L, EY is locally the graph of a τ -Lipschitz function over its
projection on L. But we can say a bit more on the variations of `. We claim
that

d0,1(`′(x), `′(y)) 6 c
(
|x− y|
R

)b/4
for x, y ∈ EY ∩B(0, R/2), (34.35)

where as usual c can be made as small as we want. Set r = 3|x − y|. For
r > R/1200, we use (34.27), which as we saw recently implies that `′(x)
and `′(y) are as close to L′ as we want. Otherwise, we compare the two
approximation estimates that we have for E in B(x, r) and B(y, r), which
both contain B(x, 2|x − y|). For x, we use Y (x) and (34.31) if r < d(x),
and Y t(x, r) and (34.25) otherwise. For y we proceed similarly, and when we
compare we get that Y t(x, r), for instance, is close to Y (y) in B(x, 2|x− y|).
We use (34.33) if needed to return to Y (x) and Y (y), observe that for (34.35)
it is enough to control the two main faces, and conclude. Let us also check
that

d0,1(`′(x), L′) 6 c
(

dist(x,EV ∩B(0, R/2))
R

)b/4
for x ∈ EY ∩B(0, R/2). (34.36)

If dist(x,EV ) > R/2500 (which also happens if EY ∩ B(0, R/2) is empty),
we use (34.27) again and get that d0,1(`′(x), L′) 6 c. Otherwise, pick y ∈
EY ∩B(0, R/2) whose distance to x is almost minimal, and apply the same
argument as above with r = 2|x− y|, but where we use V (y) and (34.18) to
approximate E in B(y, r). This time the analogue of `(y) (the spine of V (y))
is L, and (34.36) follows as for (34.35).

Before we continue with EY , let us observe that
L ∩B(0, 2R/3) ⊂ E, (34.37)

by Lemma 32.4, which is still valid for sharp V-sets X. In addition, we claim
that

L ∩B(0, 2R/3) \ EV ⊂ EH , (34.38)
where

EH =
{
x ∈ E ∩ L ; the density of E at x is θx(0) = π

2

}
. (34.39)

By Theorem 31.1, if x ∈ EH , E has a tangent half plane H(x) at x, and E
is even C1-equivalent to H(x) near x; whence the name EH .
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Let us check (34.38). Let x ∈ L ∩ B(0, R/2) \ EV be given. By (34.14)
and the proof of (34.17) (still valid), we get that θx(0) 6 π + 10ε1. Since
θx(0) is also the density of the blow-up limits of E at x, Lemma 23.2 says
that θx(0) ∈ {π2 , π}; in addition, since x /∈ EV and by the definition (34.15),
we are left with θx(0) = π

2 ; (34.38) follows.

We return to EY and EV . Set γ = EY ∪ EV . Notice that γ is closed in
B(0, R/2), because (34.22) and (34.38) say that

E ∩B(0, R/2)) = B(0, R/2) ∩ [EV ∪ EH ∪ EY ∪ EP ], (34.40)

and Theorem 31.1 implies that EH is open in L, while EP is closed in E by
the regularity theorem. Let us check that

π(γ ∩B(0, R/2)) ⊃ L ∩B(0, R/3), (34.41)

where π still denotes the orthogonal projection on L. Suppose this fails,
and pick y ∈ L ∩ B(0, R/3) \ π(γ ∩ B(0, R/2)). We start with the case
when dist(y, γ) 6 R/20. Choose x ∈ γ such that |π(x) − π(y)| + |π⊥(x) −
π⊥(y)| is minimal, where π⊥ = I − π; the existence and the reason for this
strange choice of distance will appear very soon. The infimum is at most
R/10 because dist(y, γ) 6 R/20, so the good competitors lie well inside of
B(0, R/2), and x exists because γ is closed there. Of course x ∈ B(0, R/2).
Suppose for a minute that x ∈ EY . Recall from the discussion above that
there is a small neighborhood of x where EY is a C1 curve that runs nearly
parallel to L. This is because `′(x) is so close to L′. But when we follow
that curve so that the projection gets closer to y, we see that our strange
distance to y gets strictly smaller (the variations of π⊥(x) are too small to
compensate). This contradicts the definition of x, and so x ∈ EV .

We now run the same topological argument as for Lemma 32.3. In the
ball B(x, 2|x − y|), (34.18) says that E looks a lot like V (x). Yet in small
balls centered at y, E is C1-equivalent to H(y) ∈ H. We can find a small
(n− d) sphere C0 centered at y and contained in the hyperplane orthogonal
to L, that meets E exactly once, transversally. We can also find another
(n − d)-sphere centered C1, in the same plane, of larger radius r/100, and
this one meets E twice transversally (once near each wing of V (x)). But
the obvious homotopy from C0 to C1 stays far from EY , because |π(z) −
π(y)|+ |π⊥(z)− π⊥(y)| > |x− y| by minimality of x. Then we can proceed
as in Lemma 32.3 (and in fact [9]) to find a nicer homotopy, show that the
number of intersections stays constant modulo 1, and obtain the desired
contradiction.

We are left with the case when dist(y, γ) > R/20; let us check that this
never happens, and in fact that

dist(y, γ) 6 Cε0R for y ∈ L ∩B(0, R/3). (34.42)
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Indeed suppose that y ∈ L ∩ B(0, R/3) and dist(y, γ) > Cε0R Obviously
x /∈ EV , so x ∈ EH , and as before we can find a small (n − d)-sphere C0
centered at y, contained in the hyperplane orthogonal to L, and that meets
E exactly once and transversally. Also consider the (n − d)-sphere C1 of
radius Cε0R/2 centered at y and contained in the same hyperplane. Recall
from (31.4) that in B(0, R), E stays ε0R-close to the V-set X. If C is large
enough, we can apply the standard regularity theorem, as we did for (34.13)
and the first lines of Lemma 32.2, to find that E is a C1 surface near the
two points of C1 ∩X. Moreover (because E is also a small Lipschitz graph
over the plane that contains the corresponding Hi), C1 cuts E transversally,
once near each point of C1 ∩ X. The same topological argument as above,
using the fact that by definition B(y, Cε0R) does not meet EY , gives the
contradiction that proves (34.42). This also concludes our proof of (34.41),
and of the fact that γ meets B(0, 10−10R).

We are now able to prove that γ∩B(0, R/3) satisfies all the requirements
mentioned before Theorem 34.1. First observe that when x ∈ EV and r <
R/3, it follows from (34.18) and the proof of (34.13) that

dist(y, L) 6 Cc1(ε0)(r/R)a/4r for y ∈ EY ∩B(x, r/2). (34.43)
Since Cc1(ε0)(r/R)a/4 tends to 0 with r, it follows that γ has a tangent at
x, equal to L.

Next we check that γ coincides with a Lipschitz graph in B(0, R/3). Let
x, y ∈ γ ∩B(0, R/3) be given; we want to show that

|π⊥(x)− π⊥(y)| 6 τ |π(x)− π(y)|, (34.44)
with τ > 0 as small as we want. When x, y ∈ EV , this is trivial. When
x ∈ EV and y ∈ EY , this follows from (34.43) with r = 3|x− y| (or directly
from (34.13) if r is large). When x, y ∈ EY , either there is a curve in EY
that goes from x to y, and then we use the fact that the direction `′(x) of the
tangent stays close to L′, or else we can find z ∈ L, between π(x) and π(y),
which does not lie in π(EY ∩ B(0, R/2)); this point lies in EV by (34.41),
and now we can apply (34.43) to the pairs (z, x) and (z, y) to get (34.44).

So γ ∩ B(0, R/3) is the graph of a τ -Lipschitz function ψ; the esti-
mate (34.3) onDψ comes from (34.35), (34.36), and (34.43) (because EV ⊂ L
anyway). We already checked (34.2) (see (34.38)), (34.4) (see (34.34) and no-
tice that EY ⊂ L 6 H]

0), (34.5) is part of the definition of γ, the tangent cone
properties (34.6)–(34.9) were also checked before, and the fact that V (x) is
sharp when x is a boundary point of EV in L follows from Theorem 32.1.

We are left with the task of establishing the description of E in terms of
faces. As usual, this mostly mean proving estimates on the approximation
of E in balls B(x, r). After x ∈ EV (see (34.18)) and x ∈ EY (see (34.25)
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and (34.31)), the next piece of E in the hierarchy is EH . So we take x ∈
EH ∩ B(0, R/4) and try to approximate E in B(x, r). Set d(x) = dist(x, γ)
and pick y ∈ γ such that |y − x| = dist(x, γ). Recall from (34.42) that
d(x) 6 Cε0R, so y lies well inside B(0, R/3). Also, we easily deduce from
the small Lipschitz description of γ that y ∈ EY . Notice also that dist(y, L) 6
d(x) 6 2 dist(y, L), again by the Lipschitz description of γ.

For r > d(x)/2, set D = max(2 dist(y, L), d(x) + r) (so that B(y,D) con-
tains B(x, r) and (34.24) holds for D); notice that D 6 4r and apply (34.25)
in B(y,D); we get that

dx,r(E, Y t(y,D)) 6 D

r
dy,D(E, Y t(y,D))

6 C
D

r

(
D

R

)a/4
ε

1/4
1 6 C

( r
R

)a/4
ε

1/4
1 , (34.45)

which is as good as usual. For r < d(x)/2, we first apply (34.24) with the
radius D = 2 dist(y, L), and notice that near B(x, d(x)/2), the truncated set
Y t(y,D) coincides with a half plane H0(x) ∈ H (compare with the definition
of Y(y,D) above Theorem 30.3); hence

dx,d(x)/2(E,H0(x)) = dx,d(x)/2(E, Y t(y,D))

6
2D
d(x) dy,D(E, Y t(y,D)) 6 C

(
d(x)
R

)a/4
ε

1/4
1 . (34.46)

The right-hand side is still as small as we want, which allows us to apply
Theorem 22.2. We get that E has a tangent half plane H(x) at x (which we
knew already), and that

dx,r(E,H(x)) 6 c
(

r

d(x)

)a/4
for 0 < r 6 d(x)/2. (34.47)

With the usual manipulation (use (34.46) instead of (34.47) when r is rather
close to d(x), and proceeding as for (32.18)), we also have

dx,r(E,H(x)) 6 c
( r
R

)b/4
for 0 < r 6 d(x)/2, (34.48)

with c as small as we want and an even smaller b > 0. In the proof we first get
it with H0(x), but we can compare H0(x) and H(x) using an intermediate
radius (the radius where we switch from (34.46) to (34.47)).

We now go to the last level of the hierarchy, and take x ∈ EP ∩B(0, R/9).
As usual, set d(x) = dist(x, L∪EY ) 6 R/8 (because E contains points near
the origin), and pick y ∈ L ∪ EY such that |y − x| = dist(x, L ∪ EY ). For
r > d(x)/2, we can use the good description of E that we already got in
B(y, d(x) + r), and get a good approximation of E by a set Z(x, r), of the
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form V (y) (if y ∈ EV ), Y t(y, d(x) + r) or Y (y) (if y ∈ EY and depending on
whether y lies far from L or not), or Y t(z, d(x) + r) or H(y) (if y ∈ EH and
depending on its distance to EY ).

When r 6 d(x)/2, we first use the estimate for d(x), notice that Z(x, d(x))
coincides with a plane in B(x, 2d(x)/3) and so E is well approximated
by a plane in B(x, d(x)/2), apply the regularity theorem, get an analogue
of (34.47), and then by the now usual trick an analogue of (34.48). We skip
the details because they are quite similar to what we did before.

At this point we have good Hölder estimates on the variations of the
direction of the tangent to E at x ∈ EP , which are thus valid as long as we
stay in a face, i.e., when we do not cross L or γ. We still need to check that
the organization of the faces is as in our initial description of E near 0. In
particular we need to be able to recognize faces.

Let x ∈ EP be given, and let y ∈ L ∪ EY such that |y − x| 6 10d(x) :=
dist(x, L∪EY ) (we will use the factor 10 to choose points preferably in EV or
EY ). The simplest case is when we can take y ∈ EV ; then by (34.18) (applied
with r = 20d(x)) x lies close to one of the two branches Hi(y) that compose
V (y), and more precisely dist(x,Hi(y)) 6 τd(x), with τ as small as we want.
In this case, x ∈ Fi, and it is even easy to find a nice path from x to y, in
EP , by applying (34.18) and the regularity theorem in the successive balls
B(y, 2−k+1d(x)). We also get the Lipschitz description with ϕi and (34.10)
near x, because we control both the position of points (directly by (34.18)),
and because variations of the direction of the tangent planes are controlled
by our approximation estimates.

The second simplest case is when x is closer to EY than to EV , and we
can pick y ∈ EY ; then we apply (34.25) with r = 20d(x). Again x lies close
to one of the three faces of Y t(y, 20d(x)) or Y (y), depending on whether
20d(x) 6 dist(y, L) or not. If in addition this face is H ′1(y, 20d(x)), then
we can proceed as before and prove that x ∈ F1, there is nice path in EP
that connects x to y, and we even have the desired Lipschitz description of
E = EP near this path. The same thing happens, with F2, if this face is
H ′2(y, 20d(x)).

Otherwise, dist(x,H0(y), 20d(x)) 6 τd(x) for the third face H0(y) of
Y t(y, 20d(x)) or Y (x). In this case, x lies in the third piece of E ∩ B0, and
we can connect x to y as above. Notice that if we see the vector e0 = e1 + e2
of H0 as pointing upwards; then x lies almost right below y, or in other
words y − x ∈ H]

0.

The third and last case is when we have to take y ∈ EH . That is, we may
now assume that |y − x| = d(x) but dist(x,EV ∪ EY ) > 10d(x). Again we
have a nice approximation of E in B(y, 5d(x)), which is given by a half plane
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H(y) (as in the discussion above, for balls centered on EH). In this case, we
get a good description of E between x and y, coming from a mixture of the
standard regularity result for plain almost minimizers that look like a plane
(near x and not too close to y), and Theorem 31.1 (close to y). By looking
at radii larger than d(x), up to d1(x) = 10 dist(x,EV ∪EY ), we find out that
EY lies much closer to x and y than EV , and x lies in the vertical piece F0,
essentially below EY . Hence we can recognize the faces and their regularity
comes from the slow variations of the tangent planes.

Here and for the Lipschitz description of the faces F1 and F2, we are
skipping a small part of the argument, where we check that the orthog-
onal projection, for instance from F1 to H1, is surjective on the domain
D1 bounded by π1(γ) and away from L. Due to the fact that we have a
small bound on the angle between the tangent plane and, here, the direc-
tion of H1, we don’t need a complicated degree argument, and instead we
can proceed as for (34.41), and say that if z ∈ D1 ∩ B0 does not lie in the
projection of the face F1, we can consider the point x ∈ F1 that minimizes
|π(x) − π(z)| + |π⊥(x) − π⊥(z)|, and then observe that x does not lie on
the boundary of the face (here γ) and, since near z, E is a C1 surface with
a tangent plane almost parallel to H1, we can find points near x that do
strictly better. The same argument works for F2, and even the third piece
F0, even though the boundary may be more complicated. This completes
our description of E ∩B0 and our proof of Theorem 34.1. �

35. The missing case of parallel Y-sets

The next interesting case in our study should be when, in the same setting
as for Theorems 31.1–34.1, E is approximated by a minimal cone X ∈ Y(L),
thus composed of three half plane bounded by L and that make 2π

3 angles
along L.

Unfortunately, the methods of this paper do not seem to be enough to
treat this case directly. Yet we try to explain why and what could be expected
in this situation.

The main problem that we have is that, when E is a Y-set centered at 0
and that contains L in one of its face, the monotonicity formula that we have
(for the function F of (23.6)) is not adapted. For sure F is monotone, but
in this case F (r) = 3π

2 for r small, F starts to increase when B(0, r) meets
L, and it tends to 2π at ∞. By contrast, for a truncated set of type Y, F
is constant equal to 3π

2 , while for the full Y-set the measure of the shade is
computed twice. This is not good, because our typical proof is based on the
observation that in many situations F is nearly constant and then we can

– 333 –



Guy David

control the geometric situation. In the case of our Y-set, we would be very
happy with a different monotonicity formula which is adapted to it (either
because it counts the shade in a different way, or for some other reason),
but the author is not sure that such a formula exists. Less ambitiously one
could hope that, in the specific situation where X ∈ Y(L) and E is close
enough to X, there is a quantity that can be controlled and proved to be
nearly monotone. That is, the near monotonicity would specifically use the
description of E ∩ Sr that we have, and possibly also the net of geodesics
that was constructed in Section 26, even though different competitors may
have to be constructed. That is, it does not seem optimal to add the triangle
T (r) as we did. This last scheme looks more plausible but at this time the
author was not able to make it work.

Notice that X ∈ Y(L) satisfies the full length condition; this is not the
point. So if we assume that 0 is a Y-point of L, i.e., a point of E ∩ L where
the density of E is 3π

2 , Theorem 22.2 applies, shows that E has a tangent
cone Y ∈ Y(L) at 0, and says that E is very close to Y in small balls B(0, r).
But in the situation of Theorems 31.1–34.1 with X ∈ Y(L), it could be that
E ∩L contains no point of density 3π

2 . And even if we assume that 0 is such
a point, it could be that E ∩L contains no other point of density 3π

2 ; see the
expected description below. Then we do not know how to control directly E
in other small balls centered on L. We could try to control E in small balls
centered on EY , as we have done when X is a V-set, but for this we used
the monotonicity formula, which no longer works here.

We try now to describe what E should look like in the situation of The-
orems 31.1–34.1 but with X ∈ Y(L). Let us even assume that 0 is a Y-point
of L, with a blow-up limit Y ∈ Y(L) that contains L, so that the description
is interesting starting from 0.

Just as when X is a plane, one option is that E leaves L right away.
After all, Y-sets are minimal even without a sliding condition, so E could
have been any such set, even transverse to L, and in the present case it
may start parallel to L and just leave it. It is also possible that two of the
foils of Y leave from E, and the last one becomes composed of a large face
bounded by L and a triangular face, bounded by L on one side, and on the
other side by the set EY where it connects to the two foils above. Finally,
we expect a complicated combination of these behaviors to be possible, at
least for almost minimal sets. As usual, minimal sets may behave differently
because have more rigidity.

Before we try to describe this with more detail, let us say how apparently
complicated examples may arise (but we will never actually check the almost
minimality of the suggested example below). Start from a Y-set Y0 in R3, say
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through the origin, but consider a boundary set L0 which is not a straight
line, but is smooth and is (very!) tangent to the spine L of Y0 at 0; see the
left part of the somewhat exaggerated Figure 35.1 (the same as Figure 1.7).
Obviously Y0 is also sliding minimal with respect to the boundary L0, and if
L0 is nice enough, we can quite probably (but will not check here) find a C1

diffeomorphism G : R3 → R3 that maps L0 to L and Y0 to an almost minimal
set E = G(Y0) with sliding boundary L. The nice property of G for this to
work is that its derivative should be close to conformal in many places, and
in particular along L0, but nothing so special that it would be impossible to
get. Yet E can have a slightly complicated behavior, in particular concerning
its position with respect to L. This is what is suggested by the right part of
Figure 35.1, which will inspire the tentative description below. But first let
us remark that Y0 itself is already an interesting example, because we try in
these notes to give descriptions of almost minimal sets that stay valid also
when the boundary L is a smooth curve, as will be mentioned in Section 38,
and the left part of Figure 35.1 is a perfectly valid example in this context.

L   leaves Y  here0 0

0L
0Y

E leaves L herepossible creases here

L

E

YE

YE
YE

Figure 35.1. Left: A minimal set Y0 and a boundary curve. Right: The
probably almost minimal set E = G(Y0).

Return to our tentative description of almost minimal sets E that look like
Y ∈ Y(L). First there should be a curve γ, which is the graph of a τ -Lipschitz
function ψ : L→ L⊥ and is also C1+a-continuous near 0, as in (34.3). This
curve may leave and return to L many times, but for x ∈ γ, E has a unique
tangent cone which is a Y-set. In the example above, γ = G(L). Part of
it lies on L (for instance, the origin), and part of it may be away from L,
creating a set EY as in the previous section.

There may also be a set EV ⊂ L of points of E∩L where E has a tangent
V-set, flat or almost flat. In the example above, this corresponds to parts of
L = G(L0) where L0 has left the spine, but still lies in Y0. At such points, E
may have a crease (and on one side we have a face that leads to EY , while
the other side looks like an infinite face of E = G(Y0)). At the boundary
of EV in L, we may find points of γ where γ leaves L, or points where E
has a tangent plane (and E may in fact leave L), but otherwise, if x ∈ EV
is a point where E has a real crease (i.e., the tangent cone of E at x is a
V set which is not a plane), we know from Section 32 that there is a small
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neighborhood of x where E has a crease and L is composed of points where
E has a tangent cone which is a generic V-set, almost flat.

Finally, in our attempted description, it is important to say that all the
other points of E are points of type P, near which E is a C1 surface. These
include points x ∈ E ∩ L where E casually crosses L (see the discussion of
fully transverse cones in the next section). Also notice that E is allowed to
leave L (at a point of L ∩ γ, or at a point of EV where the tangent is a
plane). But there is no point of type H in this discussion, where E would
have a tangent half plane. And there is no point of EY \ γ.

The description should involve a C1+a-behavior, where the direction of
the tangent plane (or cone) to x varies in a Hölder-continuous way along the
faces (and with natural limits on L and γ), as in the previous section, but
we do not write this down.

In order to establish the description above, we could also try to use the
information that we have so far (essentially from the previous sections) and
prove things with topological arguments. Obviously the author did not suc-
ceed so far. One of the difficulties seems to be that in addition to the expected
nice curves that compose γ \L, the set EY of Y-points of E \L may also, a
priori, contain some other curves. We know that away from L, EY is locally
a simple C1 curve with no endpoints, and we may hope to control entrance
and exit points in some planes perpendicular to L, but there seems to be
no topological reason why EY cannot also contain some small loops near 0.
Even worse, the monotonicity of F only allows us to exclude points of E \L
with a density at least 2π, which means that we could also imagine that dif-
ferent curves EY let at some points of type T, and then topological counting
arguments immediately become more complicated. The point of excluding
extra curves in EY is that then we could start arguments as in Lemma 32.3,
where we move curves (or (n − 2)-spheres) and say that since they never
cross EY , they keep the same number of intersections with E modulo 2.

But anyway the author expects a mixture of topological and metric infor-
mation to be needed, to avoid various strange cases. A topological possibility
is evoked in the second part of Figure 1.8, which we repeat here as Fig-
ure 35.2. The top part is a warm-up picture of four sections of the example
of G(Y0) above, and the strange case is depicted in the lower two sections.
On the left, the section that contains the origin does not show any strange
behavior, just a set that looks like a Y . And on the right, we see two nodes,
that correspond to two curves of EY that both leave from L at the origin
and stay close together, allowing a thin triangular face (seen as a curve on
the picture) that connects one of the curves to L, as it happens near sharp
V-sets, another triangular face that connects the two curves of EY (also seen
as a small curve on the picture), and as expected three large faces that make
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the usual 2π
3 angles at the large scale. Some of the faces would have to turn

fast, because of the various 2π
3 angles constraints, and again the author does

not trust that this is a viable model.

LEY& EY

L EY

L EY

L

Four vertical sections of E, seen from the right

LEY& EY

L

EY

Two vertical sections of E (unlikely)

LEY& EY

L EY

L EY

L

Four vertical sections of E, seen from the right

LEY& EY

L

EY

Two vertical sections of E (unlikely)

Figure 35.2. Four sections of G(Y0) and then two less probable sec-
tions of a set E

Another natural argument does not seem to work easily here. In some
configurations, when we have a curve EY that leaves L and is attached to
it by a thin triangular piece, it seems tempting to remove the third piece of
E (the face in front of the thin face, directly across from L), and then say
that what remains is still an almost minimal set, to which we can apply the
results of the previous sections. Of course it is not certain that the truncated
set is still minimal, but more importantly the truncation only works as long
as EY does not do something crazy, like returning to L so that we may need
a different combination of faces. That is, in strange situations like the one
depicted in Figure 35.2, we may have a hard time defining the face that
needs to be removed. Or it could be that what looks like two different faces
near L is actually two pieces of a same face, with a connection somewhere
near L, and then the truncation is impossible as well.

As we shall see when we deal with other cones X, the same issue as for
x ∈ Y(L) arises when X is a minimal cone whose spine contains a half line
of L. For instance, when X is a cone of type T centered at 0 and that comes
from a tetrahedron with a vertex in L. Then the description of E near the
corresponding side of L is essentially as hard to get as when X ∈ Y(L).

36. Approximation by other minimal cones

There are many other possible cones X in the setting of Theorems 31.1–
34.1, and the purpose of this section is to say that the local study of E when
it is close to one of these cones is not very different from what we did (or

– 337 –



Guy David

unfortunately did not manage) in the previous sections. The general theme
is that we can often study E in annuli centered at the origin, and then glue
the pieces together.

The situation will be simpler if we assume also that
0 ∈ E and X is a blow-up limit of E at 0. (36.1)

We did not always assume this, because in the special cases where we were
able to prove something, we were able to find points x ∈ E near the origin,
with an acceptable density. For instance, in the situation of Theorem 34.1
(sharp V-sets), in the simplest case 0 would be a V-point of L, but even if
this were not the case, we could still find points of γ very near 0, and these
points have the maximal F -density.

Notice also that “X is a blow-up limit of E at 0” has always been the
main case where we intended to apply Theorems 31.1–34.1, and we observed
earlier that the assumptions for these theorems are satisfied as soon as (36.1)
holds, for arbitrarily small radii R.

It is often quite convenient to know that
X satisfies the full length condition, (36.2)

because in this case if ε0 is small enough and if (36.1) holds, or even only
θ(0) := lim

r→0
r−2H2(E ∩B(0, r)) = H2(X ∩B(0, 1)), (36.3)

Theorem 22.2 says that E has a unique tangent cone X0 at 0 (if (36.1) holds,
X = X0) and

d0,r(E,X0) 6 c1(ε0)
( r
R

)a/4
for 0 < r 6 R (36.4)

as in (22.9). This is the typical tool which will allow us to cut B(0, R/10)
into annuli where hopefully we can control E.

Recall that we do not know whether all the minimal cones satisfy the full
length property. At least the planes, the cones of type Y, T, or V do. For the
products of two orthogonal Y -sets of dimension 1, V. Feuvrier showed that
they do not satisfy the “full length property because of angles”, but it is not
known whether they satisfy the full length property itself.

Even if 0 ∈ E and we do not know thatX satisfies the full length condition
for one (or equivalently all) of its blow-up limits at 0, we may still be able to
do a decomposition of B(0, R/10) into annuli where E is well approximated
by sliding minimal cones. Indeed, if X (0) denotes the set of blow-up limits of
E at 0, then every element X of X (0) is a sliding minimal cone, and (since
X (0) is actually a compact set) for each ε0 > 0 we can find R0 > 0 such that
for 0 < R 6 R0, we can find X ∈ X (0) such that d0,R(E,X) 6 ε0. Thus
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we are in the situation of Theorems 31.1–34.1 for R small, even though in
this case we do not know whether X depends on R, and at which speed
d0,R(E,X) tends to 0.

36.1. Cones X which are fully transverse to L

We shall say that X is fully transverse to L when K = X ∩ S does not
meet L. That is, L ∩X = {0}. In this case, X is a plain minimal cone (no
sliding condition), and it has full length as a sliding minimal cone (as in
Definition 4.1 and (36.2)) if and only if it has full length as a plain minimal
cone (as in [10]). Set
A = B(0, R) \B(0, 10−2R) and A1 = B(0, R/2) \B(0, 2 · 10−2R). (36.5)

Notice that X ∩A is composed of a finite collection of planar faces, bounded
by (radial line segments and) arcs of great circles, that may meet by sets
of three and with 2π

3 angles, and it does not get close to L. Under the
assumptions of Theorems 31.1–34.1, and as usual if ε0 is small enough, E∩A1
can be described as a nice C1 version of X ∩ A, i.e., composed of C1 faces
that may meet by sets of 3 with 2π

3 angles along C1 curves. This merely uses
the regularity results in the plain case, from [47] or [10].

Once we have the same assumption in the annuli 2−kA, and hence the
same description in the annuli 2−kA1, we can glue them. When we do not
know whether X satisfies the full length property, we still get a reasonably
nice description of E near 0, as a sort of spiral, not exactly C1, but not far.

If in addition X has full length as in (36.2), we can use the extra decay
in (36.4) to apply the regularity results from [47] and [10] with constants
εk in geometric decay, get regularity estimates for E ∩ 2−kA1 with some
geometric decay too, and when we glue we get C1+a faces (including near 0)
and thus a good C1+a description of E ∩B(0, R/2), i.e., that near the origin
E is the image of X0 by a C1+a diffeomorphism, with uniform estimates.

This is enough for us; the main challenge is to get a full list of minimal
cones and establish the full length. But there is nothing special in this sub-
section concerning the sliding boundary L. We like to say that E crosses L
casually, without even noticing that it exists.

36.2. Cones X that contain half of L in the interior of a face

The simplest example of the situation that we describe now is obviously
when X is a plane that contains L. But X could also be a Y-set or a T set,

– 339 –



Guy David

for which X ∩ S meets L, but not at a vertex. Or, in higher dimensions, the
union of a plane that contains L and some additional transverse stuff (the
simplest being another, nearly orthogonal plane, as in [37] or [39]).

We shall first try to describe E under some additional properties; we shall
discuss the other cases later, and in the mean time we will get a simpler
discussion. First assume that X has the full length property (as in (36.2));
this way we can use (36.4), get a description in concentric annuli, and deduce
from this a global description. In fact, if the tangent cone X0 at the origin
were different from X, what we should really study is the behavior of E near
X0, so let us just assume that X0 = X, i.e., X happens to be the unique
tangent cone to E at x. This way we get the following simpler form of (36.4),
i.e.,

d0,2r(E,X) 6 c1
( r
R

)a/4
for 0 < r 6 R/2, (36.6)

for some c1 > 0 which is as small as we want.

So assume that ` ∈ L∩S lies in K = X ∩S, but not as a vertex of K. By
the standard description of K near ` (See Section 3), there is a small η > 0,
which depends only on the dimension, such that in B(`, 40η), K coincides
with a geodesic through `. Call this geodesic C, and denote by P the plane
that contains C. Thus L ⊂ P , and (36.6) also says that

dr`,20ηr(E,P ) 6 (10η)−1c1

( r
R

)a/4
. (36.7)

This is good, because if ε0 and hence also c1 are small enough, E satisfies the
assumptions of Theorem 33.1 in B(r`, 20ηr). Hence E coincides in B(r`, 2ηr)
with a small Lipschitz graph over P , with maybe a crease along part of L.

We have a description like this for every r ∈ (0, R/2), and now we glue
the various descriptions, and see that in the cone

T+(`) =
{
x ∈ Rn ; dist(x, L+(`)) 6 η|x|

}
, (36.8)

where L+(`) =
{
t` ; t > 0

}
is the half line that contains `, E still coincides

with the graph over P of a Lipschitz function ϕ with small Lipschitz constant.
Again we may have a crease along part of L, i.e., a discontinuity of the
derivative Dϕ along a part Lg of L, and we also have the analogue of (33.4)
on P ∩ T+(`), namely that

|Dϕ(x)−Dϕ(y)| 6 τ |x−y|bR−b for x, y ∈ B(0, R/2)∩T+(`)∩P \Lg (36.9)
with a constant τ which is as small as we want. Here we observe that because
we have a power decay in (36.7), and if we follow the proof of (33.4), we also
get (36.9) with an estimate that is also valid when x or y approaches 0 (while
staying in T+(`)∩P \Lg). Since X is tangent to E at 0, observe that Dϕ(x)
tends to 0 (like a power, by (36.9)) when x tends to 0.
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This was the main point of our description. Let us first assume in addition
that X ∩S meets L only once (not at a vertex), as in the examples of a Y-set
or a T set above. We also get a nice description of E in B(0, R/2), obtained
by gluing what we have in T+(`) and what we can easily deduce from the
regularity theorem for plain almost minimal sets. Let us say a little more
about this. Recall the standard description of K; in the present case, it is
composed of a finite collection arcs of circles Cj , all with length at least η,
and which connect vertices ξ ∈ V . Here because of our assumption, we only
have the special vertex `, plus some natural vertices ξ ∈ V1 where K has
a Y -shape. The points of V1 are at distance at least 10η from ` and from
each other, and also (maybe, at the price of redefining η and requiring ε0
to be smaller if X passes near −`), the whole K stays at distance at least
10η from −`. For ξ ∈ V1 and 0 < r 6 R/2, the regularity theorem for plain
almost minimal sets gives us a description of E∩B(rξ, ηr) as a C1 version of
a Y-set centered at ξr and with a nearly radial spine. We can glue all these
results and get a nice description of E in the cone T+(ξ), again as three faces
of class C1+a (including all the way to 0).

Finally, we can deal with ξ ∈ K such that dist(ξ, {`} ∪ V1) > η/10.
For each such point ξ and 0 < r < R/2, X coincides with a plane near
B(rξ, ηr/20), so we may apply the flat case of the regularity theorem to show
that in B(rξ, ηr/100), E is a C1+a-version of an almost radial plane, with
good Hölder estimates on the direction of the tangent plane. We can glue
together the local descriptions in the B(rξ, ηr/100), taking into account that
near 0 we have an extra decay coming from (36.6), complete the information
with what we already have in T+(`) and the T+(ξ), ξ ∈ V1, and get a
description of E∩B(0, R/2) as a finite union of nice C1+b faces, with the 2π

3
angle condition along C1+b curves γξ, ξ ∈ V1 (the set EY , where the various
faces meet), and the creases that were described in T+(`).

We consider ourselves happy with the description above. In the similar
case when −` also lies in K, and is not a vertex either, we have the same
description of E in the opposite cone T+(−`) (as a flat surface with creases),
and we can glue it to the same other local descriptions as above, to get a full
description of E in B(0, R/2). For the moment the only examples that we
have are when X is a plane (already treated in Section 33) and transverse
unions of planes, where we just get transverse unions of flat surfaces with
maybe some creases near L.

For the description above, we left out the case when E is close to X in
B(0, R), but maybe not in smaller balls. If we know that all the blow-up
limits of E at 0 are cones X such that no point of L ∩ K is a vertex of
K, we can still proceed as above, except that instead of (3.6) we only get
thad d0,r(E,X(r)) tends to 0 (but we don’t know the speed) and X(r) is a

– 341 –



Guy David

minimal cone as above, but that may depend on r. In this case, we get nice
descriptions of E in annuli B(0, r)\B(0, r/10) that we can glue, but we don’t
know that the faces and EY become better at 0, and for instance the faces
of E may spiral near the origin. That is, we get a reasonable description
of E ∩ B(0, R/2), but in the small bilipschitz category rather than C1+b.
Notice that this hybrid case can only happen when X does not satisfy the
full length condition. Such cones may exist, but we have no known example.

In the worse case when we do not know about the blow-up limits of E at 0,
we still get a description of E in the annulus A1, for instance. Again without
something like the full length, and especially before we have a concrete list of
minimal cones, it seems a little too abstract to ask for a concrete description.
Notice that when −` /∈ K, the full length should be easier to prove because
Section 29 allows us to use the free attachment in the proofs. At any rate,
the global conclusion of this section is that we do not really fear the case
when X meets L, but not at a vertex.

36.3. Other behaviors of X near L, exotic sliding minimal sets

We continue with the description of E in B(0, R), depending on the
behavior of K = X ∩ S near L. We will proceed as before, assume that
X satisfies the full length property, so that (36.4) holds, and in addition the
blow-up limit of E at 0 is X0 = X, so that the approximation at smaller
scales still comes from X, as in (36.6). Then we take ` ∈ K ∩ L and try to
get a description of E in the cone T+(`), depending on the type of ` in K.
When ` /∈ K, there is nothing to study, because for ε0 small enough T+(`)
does not meet E ∩B(0, R/2). We studied the case when ` ∈ K is not a true
vertex, and got the description of the previous subsection. And there are
three more cases that we can treat essentially as before. This is when only
one geodesic of K leaves from `, or when exactly two geodesics leave from `,
either with a generic angle or with a sharp 2π

3 angle.

Again we use the fact that thanks to Section 3, the length of the geodesics
that leave from ` is at least 40η, and there is no other geodesic that meets
B(`, 40η). Because of this, and for every radius r ∈ (0, R/2), (36.6) implies
an analogue of (36.7), but where P is now a half plane bounded by L, a
generic V cone, or a sharp V cone. So, if ε0 is small enough, c1 is very small
too, and we can apply Theorems 31.1, 32.1, or 34.1 in B(r`, 20ηr). This gives
a good description of E ∩ B(r`, 2ηr). Then we glue the various pieces and
get a good description of E in T+(`), which actually becomes better when
we approach 0, because of the extra decay in (36.6) and (36.7).
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In the slightly more interesting case when K makes a sharp 2π
3 angle at

`, we get that there is a small Lipschitz graph γ over L+(`), with a part in
L+(`) and a part in EY , and then E ∩ B(0, R/2) ∩ T+(`) consists in two
main folds with roughly the same direction as the two branches of X near
`, plus maybe a thin vertical piece that attaches EY and the two folds to
γ∩L+(`). As before, E has a tangent cone X at the origin, so the description
becomes flat there. The precise description is the same as at the beginning
of Section 34, except that we restrict to T+(`). The half plane and generic
cases are the same, except that there is no curve γ and the foils are directly
attached to L+(`).

If −` also lies in K, either as an edge point or a vertex with valence at
most two, we have a similar description of E in B(0, R/2)∩ T+(−`). On the
complement of a thinner cone around L, we also have a good description of
E, as a union of C1+b faces that (maybe) meet along C1+b curves of EY .
We glue all this and get a beautiful description of E ∩ B(0, R), with C1+b

faces bounded by C1+b curves of EY , and maybe thin “vertical” faces and
creases along parts of L. This was the pleasant part of the subsection.

So we are left with two issues. The first one is that we do not have an
explicit list of sliding minimal cones. That is, in addition to the planes,
unions of strongly transverse planes, and sets of type Y, H, andV, there
are probably other sliding minimal cones, that we’ll call exotic. The first
candidate for an exotic minimal cone is the cone over the union of the faces
of a cube centered at 0 and such that L contains a great diagonal of the
cube, but there may be many other ones, in particular in higher dimensions.
Another one (in dimensions 4 and above) is the product Y × Y of [38]. At
least we know that it is minimal. We don’t know whether all these cubes
satisfy the full length property, and if not we may have situations where we
don’t know whether E has a unique blow-up limit at 0 (in which case we can
still try to give a biLipschitz description of E near 0, as suggested at the end
of the previous subsection), or not even (and then we have to distinguish
cases depending on the list of blow-up limits, but even so we can glue good
descriptions in concentric annuli if we can get them). This does not seem so
bad to the author.

But our main problem arises again, full length property or not, when
` ∈ K ∩ L is a point of type Y(L), where three geodesics of K leave from `
with 2π

3 angles. In this case we don’t have an analogue of Theorems 31.1–
34.1, so E may have an erratic behavior in any of the balls B(r`, ηr`). This
seems to be the only important missing piece in our puzzle. See Section 35
concerning our difficulties in this case.
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37. Verification of full length for the basic minimal cones

In this section, we check the full length property for the usual minimal
cones. There would be other cones to study, but we will not do this in the
present paper.

Theorem 37.1. — Let X be a cone centered at the origin, and also as-
sume that the line L contains the origin. The full length property of Section 3
is satisfied by X when X is a plane, a half plane bounded by L, a cone of
type V (two half planes bounded by L and making an angle of at most 2π/3
along L), a cone of type Y (regardless of its position with respect to L), or a
cone of type T (the cone over the edges of a regular tetrahedron centered at
0, again regardless of its position with respect to L).

Proof. — There seems to be lots of cases here, but fortunately the compu-
tations were often done earlier. Recall from Definition 4.1 that what we need
to do is the following. We start from a standard decomposition of K = X∩S
(and we can even choose it if we want), and we consider various deformations
ϕ∗(K) of K associated, through some simple rules that may vary a little,
to a mapping ϕ defined on the set of edges of K. When the total length of
ϕ∗(K) is larger than H1(K), we need to find a sliding competitor for the
cone over ϕ∗(K) that does significantly better than that cone. We will be
more specific soon.

Case 0. — There is a first case that was already treated in Section 14
of [10], which is when K does not meet L (and X is a plane or a cone of type
Y or T). In this case (we shall call it Case 0), the deformation of K simply
consists, when K is the union of the geodesics ρ(ai, bi), in taking

ϕ∗(K) =
⋃
i

ρ(ϕ(ai), ϕ(bi)). (37.1)

When we do this, we do not need to check anything related to the sliding
condition along L, and we can simply import the computations from [10].
So we will not need to worry about this case, even though we shall partially
redo the case of a cone of type Y.

When K contains at least one point ` ∈ L, we cannot do this, because
we have to do the computation alluded to above also for other constructions
of ϕ∗(K), which we call attached, where typically we add the short geodesic
ρ(`, ϕ(`)) and connect the rest of the geodesics in a way that depends on
the number of geodesics of K that end at `. Again, we shall be more specific
soon.

Case 1. — Nonetheless, there is a second case where we can still rely on
the computations of [10]. This is when one point of L ∩ S (call it `) lies in
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K, but not the other one. We shall call this Case 1. Due to the short list
of cones X under scrutiny, this happens only when X is a Y-set and ` is in
the interior of one of the faces of X (Case 1a), X is a T-set and ` is in the
interior of one of the faces of X (Case 1b), and X is a T-set and ` is one of
the vertices of K (Case 1c).

The simplest way to get rid of the computation entirely would be to
observe that, thanks to Lemma 29.1, we never need to use the attached
option near ` when −` /∈ K; then we may as well change the definition of
full length in this case, remove the attached option, and in the other case
rely on the computations of [10] because L no longer plays a role in the
computations.

But we announced full length, so let us take a slightly less lazy attitude
and yet try to avoid complicated computations. We only need to do the full
length verification with the attached deformations ϕ∗(K) (which are the new
ones), but we observe that, by the proof of Lemma 29.1, it is enough to find
competitors for ϕ∗(X), not necessarily satisfying the sliding condition, that
satisfy (4.16). Recall that we can do this because, given such a competitor,
we can always modify it as in Section 29 (i.e., by projecting along thin tubes,
starting from the hole near −`) so that it satisfies the sliding condition and
is nearly as good.

Subcases 1a and 1b. — Let us start with Cases 1a and b, where ` is
connected to two vertices a1 and a2 of K, and near ` the attached deforma-
tion ϕ∗(K) coincides with ρ∗ = ρ(ϕ(a1), ϕ(`)) ∪ ρ(ϕ(a2), ϕ(`)) ∪ ρ(`, ϕ(`));
see (4.9). With the free attachement, we would have used the simpler set
ρ] = ρ(ϕ(a1), ϕ(`)) ∪ ρ(ϕ(a2), ϕ(`)) instead. Call ϕ](K) the corresponding
deformation of K, and ϕ](X) the corresponding cone. One possibility is
that ϕ(`) = `. Then, as sets, ϕ∗(K) = ϕ](K) and ϕ∗(X) = ϕ](X). In this
case, due to the fact that we are allowed to forget the attachment condi-
tion, (4.16) for ϕ∗(X) is the same as (4.16) for ϕ](X), which was checked
in [10]. So we may assume that ϕ(`) 6= `. But then, and again because we
no longer need to worry about the sliding condition, it is very easy to de-
form ϕ∗(X) in B(0, 1) into a subset of ϕ∗(X) which coincides with ϕ](X)
in B(0, 1/2); just contract the additional geodesic ρ(`, ϕ(`)) along itself, and
follow the contraction partially on the cone over ρ(`, ϕ(`)). When we do this,
we cut off a substantial part of the cone over ρ(`, ϕ(`)), and we save at least
∆1 = 1

8H
1(ρ(`, ϕ(`))) = 1

8 distS(`, ϕ(`)) in measure.

But since this may not be enough (for instance if the geodesic is very
short), can even compose this deformation with a deformation of ϕ](X),
done in the smaller ball B(0, 1/2), into a competitor X̃. We take X̃ from
our verification of (4.16) for ϕ](X), except that we divide the scale by 2
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to allow an easy composition. Of course we only do this when ∆](ϕ) :=
H1(ϕ](K)) − H1(K) > 0 (as in (4.15)), and then we save an additional
measure of ∆2 = H2(ϕ](X) ∩ B(0, 1/2)) − H2(X̃ ∩ B(0, 1/2)) > c

4 ∆](ϕ),
by (4.16) for ϕ](X) (which was checked in [10]). Altogether, since we may
assume that c < 1/2,

H2(ϕ∗(X) ∩B(0, 1))−H2(X̃ ∩B(0, 1))
> ∆1 + ∆2

>
1
8 distS(`, ϕ(`)) + c

4
[
H1(ϕ](K))−H1(K)

]
+

>
c

4
[

distS(`, ϕ(`)) +H1(ϕ](K))−H1(K)
]
+

>
c

4
[
H1(ϕ∗(K))−H1(K)

]
+ (37.2)

because H1(ϕ∗(K)) 6 H1(ϕ](K)) + distS(`, ϕ(`)). This proves (4.16) in our
first two cases.

Subcase 1c. — In Case 1c, ` is connected in K to three vertices ai,
1 6 i 6 3, the free deformation ϕ](K) of K coincides near ` with ρ] =⋃
i ρ(ϕ(`), ϕ(ai)), while we are interested in the attached deformation where

we select an index, say, i = 1, and replace ρ(ϕ(`), ϕ(a1)) with ρ(ϕ(`), `) ∪
ρ(`, ϕ(ai)). That is, we force one of the branches ρ(ϕ(`), ϕ(a1)) to make a
detour through `. See (4.11) and (4.12). When ` ∈ ρ(ϕ(`), ϕ(a1)), we did
not change anything to the final sets, ϕ∗(K) = ϕ](K) and ϕ∗(X) = ϕ](X),
and (4.16) for ϕ∗(X) is the same as (4.16) for ϕ](X), which was checked
in [10]. Otherwise, and since Definition 4.1 allows us to restrict to so-called
injective mappings ϕ, ρ(ϕ(`), `) ∪ ρ(`, ϕ(ai)) is disjoint from ρ], and

H1(ϕ∗(K))−H1(ϕ](K))
= distS(`, ϕ(`)) + distS(`, ϕ(a1))− distS(ϕ(`), ϕ(a1)). (37.3)

As before, we take ϕ∗(X) and deform it first, in B(0, 1), into a set X̃1 that
coincides with ϕ](X) in B(0, κ), where κ will be chosen soon. Recall that we
do not need to worry about the sliding condition; we claim that the same sort
of computations as in Lemma 10.23 in [10] (see below (27.3) for a description
of the proof) yield that

∆1 := H2(ϕ∗(X) ∩B(0, 1))−H2(X̃1 ∩B(0, 1))
> C−1α2|ϕ(`)− `| > C−1[H1(ϕ∗(K))−H1(ϕ](K))

]
, (37.4)

where π − α denotes the angle at ` of the two geodesics ρ(ϕ(`), `) and
ρ(`, ϕ(a1)). If we take κ = 0, the first inequality is a direct consequence
of Lemma 10.23 in [10]. Recall that there we use the angle at ` to push the
two faces bounded by ρ(ϕ(`), `) and ρ(`, ϕ(a1)) a little bit in the direction of
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the cone H over ρ(ϕ(`), ϕ(a1)). With a slightly more complicated discussion,
we could even make sure that in B(0, κ), for some small enough κ, we push
X all the way to that cone H. Let us proceed another way. First let the first
competitor (with κ = 0, coming from [10]) be as it is (i.e., lying between H
and the cone over ρ(ϕ(`), `)∪ρ(`, ϕ(a1)), and push it again inside the smaller
ball B(0, Cκ), so that it coincides with H in B(0, κ). We then need to show
that we do not increase the measure by more than Cκ2α2|ϕ(`)− `| when we
do this, because then we take κ small and get the first half of (37.4). We
proceed as in Lemma 10.23 of [10], and in particular follow the error terms,
use the fact that at some point the Jacobian of our soft transformation has
an α2 in it (by Pythagorus), and get the desired estimate. We skip the details
because we believe they would just make the reader feel sick uselessly.

For the second part of (37.4), the strong reader will use elementary geom-
etry in the sphere, while the author would rely on the size of the derivative of
f(z) = distS(z, ϕ(a0)) + distS(z, ϕ(`)) along a path from ` to ρ(ϕ(`), ϕ(a1)),
and use the computations below (28.5). Again we skip the (now easy) details.

Once this first modification is done, we use (4.16) for ϕ](X), which was
checked in [10], to construct a second competitor X̃, where we modify X̃1 =
ϕ](X) in B(0, κ). This time we save only ∆2 = H2(ϕ](X) ∩ B(0, 1/2)) −
H2(X̃ ∩ B(0, 1/2)) > cκ2∆](ϕ). We add the two gains as in (37.2) and get
that

H2(ϕ∗(X) ∩B(0, 1))−H2(X̃ ∩B(0, 1))
> ∆1 + ∆2

> C−1[H1(ϕ∗(K))−H1(ϕ](K))
]

+ cκ2 [H1(ϕ](K))−H1(K)
]
+

> τ
[
H1(ϕ∗(K))−H1(K)

]
+, (37.5)

with τ = min(C−1, cκ2) and because H1(ϕ∗(K)) > H1(ϕ](K)). Again this
is (4.16) for ϕ∗(X).

Case 2. — We may now turn to Case 2, when both points `± of L∩S lie
in K. With the present list of minimal cones X, this happens only when X
is a V set, including a plane through L, when X ∈ Y(L) (a Y-set for which
`+ lies on the interior of a face would not do, because then −` /∈ K), and
also when x ∈ T and `± lie in the middle of two opposite edges of K.

Subcase 2a. — We start with the apparently most interesting case when
X ∈ Y(L). First we recall how we decompose K = X ∩ S and define the
possible deformations ϕ∗(K). The set K is composed of three half circles
Ci, 1 6 i 6 3, we choose a point wi ∈ Ci, in the middle of Ci (because this
is allowed and may simplify some computations), denote by `+ and `− the
two points of L∩S, and also denote by Ci,± the geodesic arc ρ(wi, `±). Thus
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we use a set V of five vertices, and K is the union of the six arcs Ci,± of
length π/2. Recall that for each verification that we have to do, we are given
a mapping ϕ : V → S, such that supv∈V |ϕ(v) − v| is as small as we want,
then we define a set ϕ∗(K) by some set of rules that will be explained soon,
denote by ϕ∗(X) the cone over ϕ∗(K), and, if

∆L = H1(ϕ∗(K))−H1(K) > 0 (37.6)

(as in (4.15) but with a different name), we need to prove that

σ > C−1∆L (37.7)

where σ is, a little bit as in (27.1), the supremum of what we can save in terms
of H2-measure when we replace ϕ∗(X) with one of its sliding competitors
in the unit ball. As earlier, we shall use lower bounds on σ that come from
simple geometric information, like the angles between the geodesic arcs that
compose ϕ∗(K). And the constant C in (37.7) is not allowed to depend on ϕ.

We start with the most interesting subcase when ϕ∗(K) is attached at
both points `±, and ϕ∗(K) is described near (4.11). We select for each choice
of sign ± an index i± ∈ {1, 2, 3} and set

ϕ∗(K) = K
i+
+ ∪K

i−
− , (37.8)

where for each sign

K
i±
± = ρ(ϕ(wi±), `±) ∪ ρ(`±, ϕ(`±)) ∪

⋃
j 6=i±

ρ(ϕ(wj), ϕ(`±)). (37.9)

Thus ϕ∗(K) is composed of six long geodesics starting from the three wi
and that end at or near the `±, plus two short arcs ρ(`±, ϕ(`±)) to connect
them. We allow the degenerate case when ϕ(`±) = `±.

The way we choose the three points mi = ϕ(wi) in the arguments, that
is, when we choose the competitors, allows us to take them in the hyperplane
H at equal distance from `+ and `−. That is, even though in principle the
definition would force us to study the case when mi /∈ H, we know that we
do not need this case and so we will not study it. Even though this would
be possible, at the price of an additional comparison between such a choice
of mi and the closest choice where mi ∈ H. Now set fi(z) = distS(z,mi) =
distS(z, ϕ(wi)) for z ∈ S, and notice that

H1(Ki±
± )− 3π

2 = distS(ϕ(`±), `±)− π +
∑
i 6=i±

fi(ϕ(`±)) (37.10)

because H1(ρ(mi± , `±)) = π
2 and, since we may assume that ϕ is “injective”

as in Definition 4.1, the arcs that compose Ki±
± are disjoint. We add up these
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two identities and get that

∆L = f+(ϕ(`+)) + f−(ϕ(`−))− 2π,

where f±(z) := distS(z, `±) +
∑
i 6=i±

fi(z). (37.11)

What we want next is an estimate for ∆L in terms of various angles and
distances, that we shall then estimate in terms of σ. For the computation
that follows, we fix a sign ±, drop it from the notation, set m0 = `±, and
assume, without loss of generality, that i± = 3, so that

f±(z) = f(z) =
2∑
i=0

fi(z), (37.12)

with f0(z) = distS(z, `±) = distS(z, `) = distS(z,m0). Denote by vi(z) the
unit vector pointing in the direction of ρ(z,mi) (as it leaves from z, and
assuming that z 6= m0,m1,m2). Then set s(z) =

∑2
i=0 vi(z), and for z =

ϕ(`), set vi = vi(ϕ(`)) and s = s(ϕ(`)). Finally define δ = distS(`, ϕ(`)) =
H1(ρ0). We want to estimate f(ϕ(`)) in terms of all these numbers.

Let ξ lie on the geodesic ρ` = ρ(`, ϕ(`)) and let w = w(ξ) denote the tan-
gent vector to ρ` at ξ pointing in the direction of ϕ(`); thus w(ϕ(`)) = −v0.
The derivative of fi in the direction w is −〈vi(ξ), w〉 and so the derivative
of f is −〈s(ξ), w〉. Thus

f(ϕ(`))− π = f(ϕ(`))− f(`)

= −
∫
ρ`

〈s(z), w(ξ)〉dl(ξ) 6 δ〈s, v0〉+ 10δ2 (37.13)

because f(`) = π, and with an easy estimate on the variations of w(ξ) and
the vi(ξ) along the short geodesic. Thus this tends to be larger when v1 and
v2 make an angle which is larger than 2π

3 . Our next goal is to prove that

〈s, v0〉δ + 10δ2 6 Cσ (37.14)

(precisely the large angle situation alluded to above) and for this we shall
use some lower bounds that were obtained in Sections 27 and 28. The point
z = ϕ(`), and the vectors vi and s play the same role as there; see near (27.6).
Here we are thinking about estimates like (27.3), (27.4), (27.16), and (27.20).
The reader may be worried that for these estimates we used a notion of
“good competitors” (see near (26.52)) which is different from our definition
of sliding competitor. But here the origin lies in L, the triangle T (r) reduces
to the interval [`−, `+], and in this context the new condition (26.53) is
actually stronger than the usual sliding condition, which means that the
good competitors that we build are also sliding competitors and so we can
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use the estimates (27.3)–(27.20). Thus, with the same proof as above, (27.16)
yields

σ > C−1δ〈s, v0〉 when 〈s, v0〉 > |z − `|, (37.15)
and by (27.20)

σ > C−1δ|s|2. (37.16)
We start with the case when |s| > 10−10, say. Then σ > C−1δ by (37.16),
which is better than (37.14). So we may assume that |s| 6 10−10.

Next suppose that σ 6 C−1
1 δ2, where C1 will be computed soon. For

i = 1, 2, let αi denote as near (27.3) the norm of the sum of the unit directions
at mi = ϕ(wi) of the two geodesics of ϕ∗(K) that leave from mi, and recall
from (27.3) that α2

i 6 Cσ 6 CC−1
1 δ2. Now follow ϕ∗(K) when it leaves

z = ϕ(`), starting in the direction of mi. When it reaches mi, it turns by
a small angle, of size at most 2αi 6 2

√
CC−1

1 δ � δ. After nearly half a
turn, it has deviated by at most Cαi � δ from the continuation of ρ(z,mi).
This last arc (call it ρi) goes through −z, where it arrives with the direction
−vi. Because |s| 6 10−10, the three vectors vi make angles with each other
that are roughly equal to 2π/3, which means that ρi, when it leaves from z,
meets ρ(z, `) transversally, and does not get close to `. Or equivalently that
ρi, when it arrives at −z, meets ρ(−z,−`) transversally, and does not get
close to −`. Hence, if C1 is large enough, the continuation of ϕ∗(K), which
stays so close to ρi, does not end at −`. That is, the two arcs of ϕ∗(K) that
continue the geodesics ρ(z,mi) meet back at some point z′, the next vertex
of ϕ∗(K), and which is also the other vertex z∓, because we made sure that
we avoid −`. Another way to say this is that the index i∓, associated to
`∓ = −`, is also equal to 3. Now the directions of the three geodesics of
ϕ∗(K) that leave from z′ are C(α1 +α2)-close to v1 and v2, and for the third
one the direction of ρ(z′,−`), which is close to −v0 (and it is important that
this is just the wrong sign!). Thus, near the point z′, the situation is the
following: s′ = s(z′) is large, δ′ = distS(z′,−`) > δ/2, and then σ > C−1δ
by our first case above. Again this is better than (37.14).

Hence we may assume that σ > C−1
1 δ2. Thus, in order to prove (37.14),

we may assume that 〈s, v0〉 > δ, and now (37.14) follows from (37.15).

We also have the analogue of (37.14) neat the other point `∓, we sum,
we use (37.13) and (37.11), and we get that ∆L 6 Cσ, as needed for (37.7).
This completes our proof of full length in the case when ϕ∗(K) is attached
at both points `±.

Now consider the case when ϕ∗(K) is free near both points `±. The
set ϕ∗(K) is now composed of the six geodesics ρi,± = ρ(mi, z±), where
mi = ϕ(wi) and z± = ϕ(`±). For the same reason as before, we may assume
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that the mi all lie in the hyperplane H ′ at equal distance between z− and
−z−, and this will simplify the computation below a little bit. In addition
to the three numbers αi > 0, that measure how flat ϕ∗(K) is near each mi

(as above), we also define s±, the sum of the three unit directions of the
geodesics of ϕ∗(K) that leave from z±, and the proof of (37.16) (or (27.20))
and (27.4) now yield

α2
i + |s±|2 6 Cσ. (37.17)

Consider the geodesic ρi,− that leaves from z−; at the point mi, it turns by
at most 2αi, and then it becomes ρi,+ and ends at z+. We may assume that
σ is as small as we want, so all the αi are as small as we want, the three
geodesics ρi,+ meet with large angles, and with a little bit of geometry we
get that |z++z−| 6 C

∑
i αi 6 C

√
σ. We now observe that since we assumed

that distS(mi, z−) = π/2 = distS(mi,−z−),

∆L = H1(ϕ∗(K))−3π =
3∑
i=1

distS(mi, z+)− 3π
2 = f(z+)−f(−z−), (37.18)

where we set f(z) =
∑3
i=1 distS(mi, z). Then we estimate the derivative of

f along the geodesic ρ from z+ to −z−, which is bounded by |
∑
i vi(z)| 6

|s±| + 10|z+ + z−| 6 C
√
σ. We integrate along this geodesic and find that

|f(z+)− f(−z−)| 6 Cσ, which yields ∆L 6 Cσ, as needed.

The case when ϕ∗(K) is free near `− and attached near `+ is not needed
(see the discussion above where we use Section 29), but would not really
be harder than the two previous ones; we would start near `+ with the
hyperplane H perpendicular to L, compute the position of the opposite free
vertex z′ as in the attached case, and end with the two computations of f
from the two arguments above. This completes our verification of full length
when X ∈ Y(L).

Subcase 2b. — Our next case is when X ∈ V(L) or X is a plane that
contains L. One possibility to prove the full length in this case would have
been to follow the proof of Sections 27 and 28 and notice that we can let
d0 tend to 0, but we can instead follow the proof that was given when
X ∈ Y(L), and simply remove some branches from the computation. That
is, suppose first that ϕ∗(K) is attached at both `±. Set mi = ϕ(wi) for
i = 1, 2 and z± = ϕ(`±), and recall that in the present case ϕ∗(K) is
composed of the four arcs ρi,± = ρ(mi, z±), plus two short connections
ρ± = ρ(z±, `±). Then ϕ∗(K) = K+ ∪K−, with K± = ρ1,± ∪ ρ2,± ∪ ρ± (as
in (37.8) and (37.9), with one less piece each time), H1(K±) = f±(z±) with
f±(z) = distS(z, `±) + distS(z,m1) + distS(z,m2), and then

∆L = H1(ϕ∗(K))−H1(K) = f+(z+) + f−(z−)− π (37.19)
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by (37.6) and as in (37.11) and (37.12), but where we don’t even have to
worry about the two additional arcs leaving directly from `+ and `−.

As before, we may assume that the two points mi = ϕ(wi) lie on the
hyperplaneH that lies at equal distance from `+ and `−, prove that f+(z+)−
π 6 δ〈s+, v0〉 + 10δ2 as in (37.13) and 〈s+, v0〉δ + 10δ2 6 Cσ as in (37.14)
(and similarly for f−(z−)), and conclude from there.

We now stay with the same X ∈ V(L) ∪ P(L), and assume that we have
a free attachment at both `±. We still have that α2

1 +α2
2 6 Cσ as in (37.17)

or (27.4), but we also have numbers α± = |v1(z±) + v2(z±) (coming from
the angles of the two geodesics ρi,± at z±), and the same proof also yields
α2
± 6 Cσ. Notice that even if by bad luck some ρi,± contains `±, we still

do not need to check the sliding condition at that point, by definition of a
free attachment. Here we are in the situation when ϕ∗(K) is very close to
a great circle, and we may appeal to computations that were done in [10],
which yield

∆L = −2π +
2∑
i=1

∑
±

distS(mi, z±) 6 C(α2
1 + α2

2 + α2
−) 6 Cσ, (37.20)

where we do not even need the last angle α2
+ because it is controlled by the

other ones. We refer to [10] for the computation.

If we have a free attachment at `− but not at `+, we still have that
α2

1 + α2
2 + α2

− 6 Cσ as before. In our estimate for ∆L, we also have to add
the length of ρ+ = ρ(z+, `+), so the proof of (37.20) yields

∆L 6 C(α2
1 + α2

2 + α2
−) + distS(z+, `+) 6 Cσ + distS(z+, `+). (37.21)

We may assume that the three angles αi and α− are small, because otherwise
∆L 6 1 6 C(α2

1 +α2
2 +α2

−) 6 Cσ directly. Then the two main geodesics ρ1,+
and ρ2,+ make an angle close to π at z+, hence s+ = v0 + v1 + v2 (the sum
of the three directions of the geodesics that leave from z+) is large because
v1 + v2 is small. That is, |s+| > 1/2. Then σ > C−1δ = C−1 distS(z+, `+) by
the analogue of (37.16) or (27.20), and ∆L 6 Cσ as needed.

Subcase 2c. — We are left with only one possibility in Case 2, when
X ∈ T and L goes through opposite points at the middle of two opposite
edges of X. See the right part of Figure 37.1. The general plan is, as we did
in [10], to use the angles of the deformed tetrahedron to control the lengths
and then ∆L.

Some general notation will be useful. Denote by w1, w2, w3, w4 ∈ S the
four edges of the unit tetrahedron T that defines X. Set mi = ϕ(wi) ∈ S.
We are also interested in the tetrahedron Tϕ with vertices mi. We may
label the points so that the two points of L ∩ S are `12 = (w1 + w2)/2 and
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`34 = (w3 + w4)/2. Then set z12 = ϕ(`12) and z34 = ϕ(`34). See the left
part of Figure 37.1. Some times it will not matter where they are relative
to L; the relative position of these points with respect to Tϕ will be more
important.
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Figure 37.1. The situation of Subcase 2c (T on the left, Tϕ on the right)

What will be controlled best is angles at the vertices mi. First consider
the angles of the tetrahedron Tϕ; denote by αij the angle at mi of the
face of Tϕ that does not contain mj . With the notation of (10.12), α12 =
Anglem1(m3,m4), and similarly for the other ones. That is,

αij = Anglemi
(mk,ml), where i, j, k, l are different. (37.22)

Again see Figure 37.1, on the right. All these angles are close to 2π
3 .

We are also interested in the angle βij , which is close to αij and ob-
tained from αij as follows. if the geodesic ρ(mi,mk) is one of the two
special geodesics ρ(m1,m2) and ρ(m3,m4), we replace mk with the ver-
tex zik = ϕ(`ik) that is about half way; for this notation to work fine we
also set zkj = zjk when j < k. Thus for instance β13 = Anglem1(z12,m4),
β23 = Anglem2(z12,m4), and β43 = α43 = Anglem4(m1,m2), to name the
three angles relative to the front face of Figure 37.1.

Finally, for 1 6 i 6 4 we define the sum si of the three unit vectors
that are used to define the three βij . That is, s1 = v(m1, z12) + v(m1,m3) +
v(m1,m4), s2 = v(m2, z12) + v(m2,m3) + v(m2,m4), s3 = v(m3, z34) +
v(m3,m1) + v(m3,m2), and s4 = v(m4, z34) + v(m4,m1) + v(m4,m2).

Next we explain about ϕ∗(K) and how we control the angles. Except
for the two exceptional geodesics ρ(w1, w2) and ρ(w3, w4), we just replace
ρ(wi, wj) in K with ρ(mi,mj) and get the corresponding piece of ϕ∗(K).
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Then let us explain for ρ(w1, w2); the case of ρ(w3, w4) is similar. If we have
a free attachment, we just replace ρ(w1, w2) with ρ(m1, z12) ∪ ρ(z12,m2). If
instead we have an attached configuration, we also add the short geodesic
ρ(z12, `12). We do this for both points `, take the union, and get ϕ∗(K).

Notice that near the half line through mi, ϕ∗(X) (the cone over ϕ∗(K))
is a Y-set with angles βij , and |si| is the same number as αϕ(wi) in (10.20)
of [10]; thus σ > C−1|si|2 by Lemma 10.23 there. See the discussion be-
low (27.5), too. Let us record this, i.e.,

4∑
i=1
|si|2 6 Cσ, (37.23)

and now try to control the geometry with this information. Later on, we will
take care of the short geodesics of attached configuration.

Subcase 2c1. — We start with a case that is easier to understand, when
z12 and z34 both lie in the 3-space that contains the four mi. Then we can
rely a little more safely on Figure 37.1, which we rather see as a picture on
the unit sphere, with straight lines replaced with geodesics. Let δ1 denote
the angle Anglem1(m2, z12), counted positive if z12 lies outside of the face
(m1,m2,m4) as in the picture. Define δ2 = Anglem2(m1, z12), with the same
sign convention, and then δ3 = Anglem3(m4, z34) and δ4 = Anglem4(m3, z34),
counted positively when z34 lies out of the face (m2,m3,m4), as in the pic-
ture. Since ϕ moves the points very little, δ1/δ2 and δ3/δ4 are as close to 1
as we want.

A second advantage of the fact that z12 lies in the 3-space that contains
the mi is that the three unit vectors whose sum is s1 lie in a same plane (the
tangent plane to S at m1 in that 3-space). Then the fact that |s1|2 6 Cσ
implies that |β1,j − 2π

3 |
2 6 Cσ for j = 2, 3, 4. In fact, the same argument

works at every vertex, and we get that for all i, j,∣∣∣∣βi,j − 2π
3

∣∣∣∣2 6 Cσ. (37.24)

But we prefer to have a similar control the simpler angles αi,j , and for this
we want to show that

δj 6 C
√
σ for 1 6 j 6 4. (37.25)

We need a bit of spherical geometry. Set Lij = sin distS(mi,mj) and con-
centrate on the spherical triangle (m1,m2,m4) in front of the picture. By
18.6.13.4 in [4],

L14

sinα23
= L12

sinα43
= L42

sinα13
. (37.26)
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In terms of βi,j ,
L14

sin(β23 − δ2) = L12

sin β43
= L42

sin(β13 − δ1) . (37.27)

Then we do the same thing with the bottom face (m1,m2,m3), and we get
that

L13

sin(β24 + δ2) = L12

sin β34
= L32

sin(β14 + δ1) , (37.28)

where we exchanged 3 and 4, and changed signs because now z12 lies in the
face. The same computation in the face (m3,m2,m4) yields

L24

sin(β31 − δ3) = L34

sin β21
= L23

sin(β41 − δ4) (37.29)

and in the face (m3,m1,m4) (back there; exchange m1 and m2)
L14

sin(β32 + δ3) = L34

sin β12
= L13

sin(β42 + δ4) . (37.30)

Let us assume that δ1 and δ2 are positive (otherwise, we could just exchange
the names of two faces), and also that δ3 and δ24 are positive (we’ll do the
other case later).

We use (37.24) to estimate the sin(βij). A very simple computation that
gives a hint of what will happen next would be to assume that all the βij
are equal to 2π

3 , and use (37.27)–(37.30) to find that if both δi are positive,
L14 < L12 by (37.27), L12 < L32 by (37.28), L32 = L23 < L34 by (37.29),
and L34 < L14 by (37.30), a contradiction.

Here we take into account small errors that come from (37.24). We deduce
from the first part of (37.27) that

L14 = sin(β23 − δ2)
sin β43

L12 6 (1− δ2/10)(1 + C
√
σ)L12. (37.31)

Then by the second part of (37.28)

L32 = sin(β14 + δ1))
sin β34

L12 > (1 + δ1/10)(1− C
√
σ)L12. (37.32)

We compare, use the fact that δ1/δ2 is close to 1, and get that
L14 6 (1− δ1/10)(1 + C

√
σ)L32. (37.33)

Now (37.29) yields

L32 = L23 = sin(β41 − δ4)
sin β21

L34 6 (1− δ4/10)(1 + C
√
σ)L34 (37.34)

while by (37.30)

L34 = sin β12

sin(β32 + δ3)L14 6 (1− δ3/10)(1 + C
√
σ)L14 (37.35)
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and, when we compare and use the fact that δ3/δ4 is close to 1,

L32 6 (1− δ3/10)(1 + C
√
σ)L14. (37.36)

This is only compatible with (37.33) when δ1 + δ3 6 C
√
σ; (37.25) follows.

We still need to check (37.25) when δ3 and δ4 are negative. The simple
sketchy computation modulo errors from (37.24) is now that L42 6 L12
by (37.27), L12 6 L13 by (37.28), L13 6 L34 by (37.30), and L34 6 L42 = L24
by (37.29). The details with the errors are the same as for (37.33) and (37.36).

At this point we know that (37.25) holds and all the angles αij and βij
are C

√
σ-close to 2π

3 . We now try to reconstruct Tϕ from this information.
By (37.26)–(37.30), there is a number L such that |Lij − L| 6 C

√
σ for

i 6= j. Recall that Lij = sin distS(mi,mj); let us set lij = distS(mi,mj) (so
Lij = sin lij) and xij = cos lij . Since ϕ does not move the points too much)
the Lij , and hence also L, are close to sin l0, where l0 is the common value
of the distances distS(wi, wj) in T . Then, inverting the sine function locally
near l0, |lij − l| 6 C

√
σ, for the number l such that sin l = L which lies close

to l0, and also |xij − x| 6 C
√
σ, where x = cos l.

We want to evaluate L, l, and x more precisely. We use 18.6.13.7 in [4],
which says that in a spherical triangle with angles α1, α2, α3 and opposite
lengths l1, l3, l3,

cosα1 = cos l1 − cos l2 cos l3
sin l2 sin l3

. (37.37)

We can use this to compute l0, because for the equilateral triangles that
compose T , cosα1 = cos 2π

3 = −1/2, and the right-hand side is cos l0−cos2 l0
sin2 l0

,
so that x0 = cos l0 is a solution of x−x2 = − 1

2 (1−x2), or 3x2− 2x− 1 = 0.
The solutions are x = − 1

3 and x = 1 (which we exclude), and so x0 = cos l0 =
−1/3. A confirmation is that if w1 = (1, 0, 0), the common first coordinate
of the other vertices wi is −1/3, because

∑
wi = 0.

Return to (37.37), which we now apply to one of the triangles that com-
pose Tϕ. Set xi = cos li; then the right-hand side is (x1−x2x3)(1−x2

2)−1/2(1−
x2

3)−1/2. Since |xi − x| 6 C
√
σ for i = 1, 2, 3, the partial derivatives of the

expression are less than 100 in the region of interest near x0 = −1/3, and
the left-hand side of (37.37) is C

√
σ-close to cos 2π

3 = −1/2, we see that∣∣(x − x2)(1 − x2)−1 + 1
2
∣∣ 6 C

√
σ. Or (multiplying by 1 − x2), we can find

τ ∈ [−C
√
σ,C
√
σ] such that x− x2 + 1+τ

2 (1− x2) = 0. We expand, solve by
radicals, keep the root that lies close to x0, and get that |x − x0| 6 C

√
σ.

Then we take the cosine and get that |l − l0| 6 C
√
σ. Returning to the tri-

angles of Tϕ, we see that |distS(mi,mj)− l0| = |lij − l0| 6 C
√
σ for all the

distances.
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We may conclude our initial length computation as we did in the last
pages of [10]. We may reconstruct Tϕ (modulo an isometry), from the length
lij and the angles αij , with errors less than C

√
σ. Then we use the fact that

T is a critical point of the sum of lengths to prove that∑
i<j

distS(mi,mj) 6
∑
i<j

distS(wi, wj) + Cσ = 6l0 + Cσ. (37.38)

For the total length of the geodesics of ϕ∗(K), we also need to add the extra
length

[distS(m1, z12) + distS(z12,m2)− distS(m1,m2)]
+ [distS(m3, z34) + distS(z34,m4)− distS(m3,m4)]

6 Cδ2
1 + Cδ2

3 6 Cσ. (37.39)

In the simpler case where we have the free attachment at both points `12
and `34, there is no other term and we get that

∆L = H1(ϕ∗(K))− 6l0 6 Cσ, (37.40)

as needed for the full length property.

We are left with the case where ϕ∗(K) is attached, and we have to
add the length distS(`12, z12) or distS(`34, z34) (or both) to get H1(ϕ∗(K)).
Suppose for instance that ϕ∗(K) is attached near `12 and we have to add
distS(`12, z12) > 0. Near the segment [0, z12], ϕ∗(X) is composed of two large
faces that leave from [0, z12] in almost opposite directions, plus a thin face
(the cone over ρ(z12, `12)) which is disjoint from the rest because we as-
sumed that ϕ is “injective,” so ρ(z12, `12) does not meet the other geodesics
ρ(z12,m1) and ρ(z12,m2). But then, by a minor variant of (27.16) (notice
that in this case, since v1 +v2 in (27.5) is small, s is close to v0), we get that
σ > C−1|z12 − `12|, so the additional term distS(`12, z12) is controlled. The
same estimate would hold near `34, and we still get the conclusion of (37.40).
This completes our proof of full length in our Subcase 2c1 where z12 and z34
both lie in the 3-space that contains the four mi.

Subcase 2c2. — Suppose this is not the case; we want to use the previous
computation, so we denote by V the 3-space that contains the mi, set SV =
S ∩ V , and denote by z̃12 and z̃34 the closest point projection of z12 and z34
on SV . We start with the case when

|z̃12 − z12|+ |z̃34 − z34| 6 C0
√
σ, (37.41)

where C0 will be chosen later. Even though C0 may be large, the estimates
that follow hold because ϕ does not move the points much (hence |z̃12−z12| is
very small, for instance). Since |z̃12−z12| is minimal, the direction v(z̃12, z12)
is orthogonal to v(z̃12,m1) and v(z̃12,m1) (that lie in the tangent space of
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SV ), so the derivative of distS(z,mi) in the direction of v(z̃12, z12) vanishes
at z̃12 (for i = 1, 2), and integrating this derivative on ρ(z̃12, z12) yields

distS(z12,m1) + distS(z12,m2)
6 distS(z̃12,m1) + distS(z̃12,m2) + Cσ. (37.42)

Of course we have the same estimate for z34 and the index 34. Our esti-
mates (37.24) for the angles remains valid when we replace z12 and z34 by z̃12
and z̃34, by (37.41). Then we can follow the computations that we did above,
applied with z̃12 and z̃34, and we get that (37.38) holds, and also (37.39) with
z12 and z34 replaced by z̃12 and z̃34. We add this with (37.42) and its ana-
logue for 34, and get (37.40) for the case when we do not have additional
pieces distS(`12, z12) or distS(`34, z34) to worry about. Finally the estimate
for adding these pieces is the same as in Subcase 2c1.

So we may now assume that (37.41) fails, and for instance |z̃12 − z12| >
C0
2
√
σ. Notice that if z denotes the projection of z12 on V , then |z̃12−z12| 6

|z− z12|+ dist(z,SV ) 6 |z− z12|+
∣∣|z|−1

∣∣ 6 2|z− z12|, so |z− z12| > C0
4
√
σ.

Now let s denote the sum of the unit vectors v(m1,m3), v(m1,m4) and
v(m1, z12) that describe the three faces of ϕ∗(X) near m1. We just keep the
coordinate s⊥ of s along V ⊥; we get that

|s| > |s⊥| = v(m1, z12)⊥ > 1
2 dist(z12, V ) = 1

2 |z − z12| >
C0

8
√
σ. (37.43)

This is good, because Lemma 10.23 in [10] (or if you prefer the discussion
near (27.5)) yields |s|2 6 Cσ, a contradiction if C0 is chosen large enough.
So (37.41) was our only case, this completes the verification of full length in
our last Subcase 2c2, and Theorem 37.1 follow. �

38. Extension to curvy boundaries

The main theorems of this paper are still valid when the boundary L is
a curve of class C1+b, for some b > 0, rather than a line as in the previous
sections. The proof consists in checking that all our arguments still work,
with rather minor modifications, but let us be a little more specific here.

One of the main engines of our proofs is the use of near monotonicity
formulae, provided by [14] and [13]. In the first cases, for balls centered on
L, the relevant extension is presented in Remark 28.11 and Theorem 28.15
of [14]. Our present assumption that L is of class C1+b is stronger than the
sufficient condition given there; it would be enough to assume that L is a
Lipschitz curve, say, and that, if we want to prove the near monotonicity
of θ(r) = r−2B(0, r)) for 0 < r 6 r0, we can find a bilipschitz mapping
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ξ : B(0, 2r0) → Rn, that maps 0 to itself and L ∩ B(0, 2r0) to a line, and
such that the restriction of ξ to B(0, r) is (1 + ρ(r))-bilipschitz, with for
instance ρ(r) 6 crb for some b > 0 and c > 0 small enough.

We also need the near monotonicity of (a minor variant of) the function
F of (23.6), for balls that are centered slightly outside of L. Here again, there
is a statement when L is a curve of class C1+b, which is given in Theorem 7.1
on p. 380 of [13]; notice also that for r small enough (so that L is flat enough
in the given balls), Remark 7.3 on p. 383 of [13] says that the added term in
the functional is still the normalized measure of the shade of L.

Associated to the near monotonicity of θ or F is the fact that we control
the geometry of E in balls where it is almost constant. See Proposition 30.19
in [14] and Theorem 9.1 in [13].

Another fact that is used a lot in our constructions is the local regularity
theory of E far from the boundary, that we import from [10], and that we
use to control E far from L and in particular construct the curves in E ∩ Sr
that lead to competitors. For this, the precise shape of L does not matter.

And finally, there is the main construction of competitors, where one
starts with a fixed origin, almost any small radius r, and one constructs
curves, and finally competitors that we compare with E to get differential
inequalities that eventually lead to a decay of θ or F , and also the geometric
control on the approximation of E (as in Sections 19–21 and 30). For this, the
simplest way seems to proceed as in the proof of Theorem 28.15 of [14], which
consists in using a bilipschitz change of variable ξ as above to transform the
pair (E,L) into another pair (Ẽ, L̃) for which L̃ is a line. We may then
construct the same competitor for Ẽ as above, using in particular the local
regularity of E (or equivalently Ẽ) far from L (or L̃). The estimate on the
competitors F̃ for Ẽ that we construct then yield the desired estimates for
corresponding competitors F for E; the main point is that in B(0, r), if
the mapping ξ is (1 + ρ(r))-bilipschitz, the errors on the H2-measure of
competitors are less than Cρ(r)r2, which is of the same order as the other
error terms that we had already. We skip the details of the computations,
which are very similar to what was done in [14].

For this part of the argument, we could formalize what we are doing, by
defining the notion, for a set E which is already known to be quasiminimal
with sliding boundary L, of being almost-minimal, at the point 0 (say, and
0 does not need to be in L), with the same boundary L and a given function
h. This just means that when F = ϕ1(E) is a sliding competitor for E in
B(0, r), as in Definition 1.1, then we have (1.8). Thus the difference is that
we only consider balls centered at the origin.
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Then we may observe that if E is almost minimal at the point 0 (with
gauge function h), and ξ is a bilipschitz, and asymptotically optimally bilip-
schitz as above, then Ẽ = ξ(E) is also an almost minimal set at the origin,
with a gauge function h̃ such that h̃(r) 6 2h(2r) + Cρ(2r), where C also
depends on the local Ahlfors regularity constant for E near 0 (which exists
because we assumed E to be quasiminimal), and it is enough to take 2r in
the argument because we assume ξ to be bilipschitz with a constant that is
close to 1.

This part is easy to check, just using the definitions and the local Ahlfors
regularity of E and Ẽ. Then the main point of the proof that follows is that
the main decay and approximation results of this paper are still true if we
only assume that E is almost minimal at the point 0, with h(r) 6 Crb as
in the previous sections, and in addition E is quasiminimal near 0 (so that
it is locally Ahlfors-regular), and satisfies the regularity estimates of [10] far
from L. For this part, we would just need to read our proof again, checking
where each estimate comes from.

The author would have preferred to say that it is enough to use the point-
wise almost minimality of E and its quasiminimality (but not the regularity
results far from L), but this does not seem to be the case, or at least the
proof above does not say this (because we often use C1+a-regularity, possi-
bly often for convenience). This is why we decided not to insist so much on
the notion of almost minimality at a point, even though it would be very
convenient during the proof.

So the conclusion of this section is that the generalization of our theorems
to smooth boundaries L is rather straightforward, but tedious and boring
enough for us to skip the proof.

39. Sets of H(L) ∪ V(L) are sliding minimal cones

In this section we prove two sliding minimality results that were appar-
ently not written down yet. They are not needed for this paper, but of course
the results above make more sense because they are true. In both cases the
simplest version is when L is a line through the origin, but we also included
some larger boundaries because it is not much harder, and the dimension of
the ambient space Rn does not matter.

Lemma 39.1. — Let H ∈ H, denote by ∂H its boundary (a line), suppose
that 0 ∈ ∂H, and choose an orthonormal basis (e1, . . . , en) of Rn so that
∂H = Re1 and e2 ∈ H. Let a boundary set L be given, such that ∂H ⊂
L ⊂ e⊥2 . Then H is a sliding minimal set in Rn, associated to the sliding
boundary L.
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Proof. — Let E = ϕ1(H) be a sliding competitor for H in some ball B,
coming from a one parameter family {ϕt} as in Definition 1.1; we want to
show that

H2(H ∩B) 6 H2(E ∩B). (39.1)
In fact, we shall not need to know that ϕ1 is Lipschitz, as in (1.5), so the
lemma also gives the slightly stronger minimality property where (1.5) is not
required. Also, we may assume that B is centered on 0 (otherwise we replace
it with a larger ball).

We use the orthonormal basis above to write coordinates; vectors of Rn
will be denoted by w = (x, y, z), with x, y ∈ R and z ∈ Rn−2. Denote by π
the closest distance projection on H, defined by π(x, y, z) = (x, y+, 0), where
y+ = max(y, 0). We define a new deformation {ϕ∗t } by ϕ∗t (w) = π(ϕt(w)).
The main constraints that we need to check are (1.2) and (1.4); (1.2), which
demands in particular that ϕ∗t (x) = x for x ∈ H \B, holds because π(x) = x
on H. As for (1.4), let x ∈ H ∩ L = ∂H be given; we know that ϕt(x) ∈ L,
which means that its second coordinate vanishes (because L ⊂ e⊥2 ). Then
ϕ∗t (x) = π(ϕt(x)) ∈ ∂H ⊂ L, as needed. The other constraints hold easily,
and in particular ϕ∗1 is Lipschitz if ϕ1 is Lipschitz; hence E∗ = ϕ∗1(H) = π(E)
is another sliding competitor for H in B. Since π is 1-Lipschitz, we see
that H2(E∗ ∩ B) 6 H2(E ∩ B) (the points from Rn \ B do not contribute
because ϕ1(w) = ϕ∗1(w) = w for w ∈ Rn \ B). Thus it is enough to show
that H2(H ∩ B) 6 H2(E∗ ∩ B), or that E∗ contains H ∩ B, or also (since
ϕ∗1(w) = w on Rn \B) that ϕ∗1(H) ⊃ H.

For the topological argument that follows, it is easier to work with the
plane P that contains H. Let σ denote the symmetry with respect to L.
Then extend ϕ∗ to P by setting ϕ∗t (w) = σ(ϕt(σ(w))) for w ∈ σ(H). When
x ∈ H tends to a point x0 of ∂H, ϕt(x) tends to ϕt(x0) ∈ L, and ϕ∗t (x)
tends to ϕ∗t (x0) = π(ϕt(x0)) ∈ ∂H. Then σ(ϕ∗t (x0)) = ϕ∗t (x0). Because of
this, our extension ϕ∗t is continuous across ∂H. In addition, it takes values
in P , and it is the identity on P \B. So it is surjective, and for ξ ∈ H \L, we
can find w ∈ P such that ϕ∗t (w) = ξ. But ϕ∗t (w) ∈ σ(H) when w ∈ σ(H), so
w ∈ P \σ(H) ⊂ H. We are left with H ∩L = ∂H, which is also contained in
ϕ∗t (H) because H is closed and ϕ∗t is continuous. This completes our proof
of (39.1); Lemma 39.1 follows. �

The next lemma is a similar result that concerns V-sets. Since we also
want to include larger boundary sets L, we give some of the notation before
the statement.

Let V be a V set, thus composed of two half spaces H1 and H2 bounded
by a same line `, and that make an angle at least 2π

3 along `. Let us choose
an orthonormal basis of Rn such that if vi denotes the unit vector in Hi that

– 361 –



Guy David

is orthogonal to `, then

` = e1R, v1 = (0, cosα, sinα, 0) ∈ H1,

and v2 = (0,− cosα, sinα, 0) ∈ H2, (39.2)
with 0 6 α 6 π

6 . We will also accept boundaries L larger than `, but require
that ` ⊂ L and, when α > 0, that

L ⊂ (v1 + v2)⊥ = e⊥3 . (39.3)

Lemma 39.2. — Let V be a V-set and L ⊃ ` be as above, and in partic-
ular satisfy (39.3). Then V is a sliding minimal set, associated to the sliding
boundary L.

Proof. — We first prove this lemma with the official Definition 1.1, be-
cause this makes our life much simpler. Yet, we claim that, as for Lemma 39.1,
Lemma 39.2 stays true when we even allow mappings ϕ1 that are not Lips-
chitz in the definition of competitors for V , which makes the notion of mini-
mal set and the lemma a little stronger. We’ll prove this, and the minimality
of V for slightly different problems (related to separation conditions, and
where L is a plane) in the next lemma, but the proof will be less pleasant.

Let us also mention that E. Cavallotto [6] already has a shorter proof
of this with a slicing argument (where this time slices are defined as for
currents, the proof is done with polyhedral chains with coefficients in Z2,
and boundary computations for chains replace the topological separation
argument). This proof also seems to require the official Definition 1.1 where
ϕ1 is required to be Lipschitz.

We start the proof with some reductions. We know that the planes are
minimal regardless of the sliding boundary L; for this we may proceed as in
Lemma 39.1, but directly with the orthogonal projection π on the plane V .
So we may assume that α > 0.

Let E = ϕ1(V ) be a sliding competitor for V in some ball B, coming from
{ϕt} as in Definition 1.1; we can assume that B is centered at 0 and want to
show the analogue of (39.1) for V . We can further assume that B = B(0, 1),
by scale invariance; this will just simplify the notation a little.

Notice that E = ϕ1(V ) is also a sliding competitor for H in B, associated
to the largest possible boundary L′ = e⊥3 , because L ∩ V = L′ ∩ V , and so
{ϕt} also satisfies (1.4) with respect to L′. That is, it is enough to prove the
lemma when L = L′ = e⊥3 , which we assume now.

Denote by W the 3-dimensional space that contains V , and by W+ the
upper half space in W defined by

W+ =
{

(x, y, z, 0) ; (x, y, z) ∈ R3 and z > 0
}
⊂W. (39.4)
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Denote by π the closest distance projection on W+, defined by π(x, y, z, t) =
(x, y, z+, 0). Notice that π is 1-Lipschitz, is the identity on W+ ⊃ V , and
maps L to L ∩W .

Set ϕ∗t = π ◦ ϕt and E∗ = π(E) = ϕ∗1(V ). Since ϕ∗t (x) ∈ L when x ∈
V ∩ L = `, E∗ is a sliding competitor for V in B. As before, H2(E∗ ∩B) =
H2(ϕ∗1(V ∩B)) 6 H2(ϕ1(V ∩B)), so is enough to prove that

H2(V ∩B) 6 H2(E∗ ∩B). (39.5)

We will do this with a slicing and separation argument. Observe that all
the values taken by the ϕ∗t lie in W+ (we composed by π). We will forget
the last coordinates and denote by (x, y, z) the coordinates of points of W .
Set, for x ∈ R,

E∗x =
{

(y, z) ∈ R2 ; (x, y, z) ∈ E∗ ∩B
}
⊂ R2 (39.6)

and
Vx =

{
(y, z) ∈ R2 ; (x, y, z) ∈ V ∩B

}
⊂ R2; (39.7)

we want to show that
H1(Vx) 6 H1(E∗x) for x ∈ R, (39.8)

but let us first explain why (39.5) follows from this, when we use the full
Definition 1.1 and therefore assume that ϕ1 is Lipschitz.

Indeed, on the one hand, it follows from Fubini that H2(V ∩ B) =∫
x
H1(Vx)dx, where here and below all the integrals are in fact taken on

compact sets (projections of B). On the other hand, we claim that∫
x

H1(E∗x)dx 6 H2(E∗ ∩B). (39.9)

As soon as we check this, we can integrate on x, use (39.7), and get that
H2(V ∩ B) =

∫
x
H1(Vx)dx 6

∫
x
H1(E∗x)dx 6 H2(E∗ ∩ B), as needed

for (39.5). Now (39.9) holds because E∗ is rectifiable, which is true because
V is rectifiable and E∗ = ϕ∗1(V ) = π(ϕ1(V )), with mappings ϕ1 and hence
ϕ∗1 that are Lipschitz.

To prove that (39.9) holds when E∗ is rectifiable, the simplest is to apply
the co-area formula (Theorem 3.2.22 in [29]), to the restriction to E∗ ∩B of
the orthogonal projection on `, after noticing that the appropriate Jacobian is
at most 1 and the corresponding level sets are the E∗x. But in fact, we are only
using the easy part of the co-area formula, and it would not be too difficult
to check (39.9) directly. We would first prove it for measurable subsets of
C1 surfaces (essentially by Fubini), and then take countable disjoint unions
to go to the general case. The author wrote a little more about this and the
next lines near (4) in Section 76.b of [8], in a slightly similar context (but
for Mumford–Shah minimizers).
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When E∗ is not rectifiable, the author does not know whether (39.9)
necessarily holds. It would hold for some other variants of the Hausdorff
measure, essentially as good as Hd, but this is not an excuse. Since we do
not necessarily want to assume that our competitor E comes from a Lipschitz
deformation ϕ1, we will give a different proof of minimality in a next lemma.

But here we assumed that ϕ1 is Lipschitz, and then E∗ = ϕ∗1(V ) is
rectifiable and (39.9) holds. Now we just need to show (39.8) (for x in the
projection of B) because (39.5) will ensue, and for this we want to show that
Vx is minimal for some problem. We will use separation properties of V and
ϕ∗1(V ), and again it is easier to work on W rather than Rn, which is why we
composed with π in the first place. We have mappings ϕ∗t : V → W+, that
we would like to extend to W .

Let σ denote the reflection across P =
{

(x, y, 0) ; (x, y) ∈ R2} = L ∩W ;
thus σ(x, y, z) = (x, y,−z) for (x, y, z) ∈ W . We define ϕ∗t on σ(V ) by
ϕ∗t (w) = σ(ϕt(σ(w))) for w ∈ σ(V ). Notice that σ(ϕ∗t (w)) = ϕ∗t (w) for
w ∈ V ∩ σ(V ) = `, because ϕt(w) ∈ L and hence ϕ∗t (w) ∈ L ∩ W = P .
Because of this, we now have a continuous mapping from [V ∪ σ(V )]× [0, 1]
to W .

Consider the three points A1 = (0, 2, 0), A2 = (0,−2, 0), and A3 =
(0, 0, 2) (above V ). We want to show that

ϕ∗t (V ∪σ(V )) separates the three points Ai from each other in W (39.10)

and for this we apply 4.3 in Chapter XVII on p. 360 of [24]. The point is that
for t = 0, ϕ∗t (V ∪ σ(V )) = V ∪ σ(V ), which separates these three points in
W , and then when we deform this set continuously, it never crosses (or get
close to) our three points Ai. To be fair, Dugundji only gives the result when
the initial set is compact, so we should modify things a little bit. That is,
assume to the contrary that A1 and A2 are connected in W \ ϕ∗t (V ∪ σ(V ))
by a path γ, and choose R > 2 such that γ ⊂ B(0, R). Then consider the sets
Zt = [ϕ∗t (V ∪ σ(V ))]∩B(0, R)∪ ∂B(0, R). They are compact, still represent
a continuous deformation of Z0, and never get close to the Ai, hence Zt
separates A1 from A2 because Z0 does, and this contradicts the existence of
γ. So (39.10) holds.

The same deformation argument, without the reflection, also shows that

ϕ∗t (V ) separates A3 from A1 and A2 in W, (39.11)

because this is true for t = 0. We return to (39.10) and claim that

ϕ∗t (V ) separates the three points Ai in W+, (39.12)

where W+ as in (39.4). Otherwise, there is a path γ ⊂ W+ \ ϕ∗t (V ) that
goes from some Ai to some other Aj . Since ϕ∗t (V ∪σ(V )) separates, γ meets
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ϕ∗t (σ(V )). Most of this last set lies in the complement of W+, with the
exception of P ∩ ϕ∗t (σ(V )) = P ∩ ϕ∗t (V ). But we assumed that γ does not
meet ϕ∗t (V ); this contradiction proves (39.12).

Now let x ∈ R be given, and consider slices by the corresponding vertical
plane. Call W ′+ =

{
(y, z) ∈ R2 ; z > 0

}
the (constant) slice of W+, and

denote by A′i the “projection” of Ai, where we just forget the first coordinate.
Finally let

Fx =
{

(y, z) ∈ R2 ; (x, y, z) ∈ ϕ∗1(V )
}

(39.13)
be the slice of ϕ∗1(V ). Notice that Ai,x = Ai + (x, 0, 0) lies in the same
component of W+ \ ϕ∗t (V ) as Ai, so (39.12) (with t = 1) implies that

Fx separates the three points A′i inside of W ′+. (39.14)

Similarly, by (39.11),

Fx separates A′3 from A′1 and A′2 in R2. (39.15)

At this point we would probably have enough information for a calibration
argument, but we decided to use connectedness, so we need some plane
topology. We first use (39.15) in B′ = B(0, 2) ⊂ R2. Since ϕ∗1(V ) only
differs from V in B(0, 1), the set Fx meets ∂B′ only twice, at the points
B± = (± cosα, sinα). By Theorem 14.3 on p. 123 of [44], there is a connected
component of H0 of Fx ∩ B′ that separates A′1 from A′3; this component
contains both points B±, because otherwise one of the two arcs of ∂B′ that
go from A′1 to A′3 does not meet Fx.

We now use (39.14), in B′ ∩W ′+ (a closed half disk). This time we get a
connected component H1 of Fx ∩B′ ∩W ′+ that separates A′1 from A′2. This
set meets ∂B′ ∩W ′+ = {B+, B−}, because otherwise we could use an arc of
∂B′ to go from A′1 to A′2 without meeting Fx. So H1 meets H0. But we can
also try to connect A′1 to A′2 directly with [A′1, A′2] ⊂ ∂W ′+, so H1 meets this
segment too.

The set H0 ∪H1 is connected, contained in Fx, and it contains B+, B−,
and some point of [A′1, A′2] ⊂ ∂W ′+. Said in other words, Fx ∩ B′ connects
B+, B−, and [A′1, A′2].

We claim that among all connected sets (like H0 ∪H1) that do this, the
slice V ′x of V is the shortest. For the standard proof, we would first replace
any connected set that contains the two B± and a point B0 ∈ [A′1, A′2] with
a shorter one composed of at most 3 line segments emanating from a point
of connection between two arcs from B0 to the B±, and then optimize the
position of that point. Our assumption that α 6 π

6 is of course used there. So
H1(Fx ∩W0) > H1(H0 ∪H1) > H1(V ′x), and when we remove the identical
contribution from B(0, 2) \B(0, 1), we get (39.8).
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This completes our proof of Lemma 39.2 when we use the official Defini-
tion 1.1 to define competitors and minimal sets. �

We shall now discuss the minimality of V ∈ V(L) when we insist on
removing (1.5) from the definition of competitors. The author did not find
any other way than going to the separation properties suggested by the
proof above, finding a set that satisfies these properties and minimizes the
Hausdorff measure, and finally proving that this set is rectifiable, hence has
a larger measure than V by the proof of Lemma 39.2. Since this set is a
minimizer, we will also get a control on the other competitors, even the ones
that are not rectifiable.

It is a little strange that we should need to do this, but the point is
that given a competitor E to the separation problem below, it is not so
easy to find directly, by modifying E, a rectifiable competitor E′ that does
better than E, even though it is much easier to show that minimizers are
rectifiable. The difficulty will then be to find an equivalent weak problem,
with the same solutions, but for which we can prove that minimizers exist.
The compactness properties of BV and Caccioppoli sets will be useful for
this.

We shall now state the generalization of Lemma 39.2, set the strong and
weak separation problems, solve the weak one, show that it is equivalent to
the strong one, and then conclude.

Lemma 39.3. — Lemma 39.2 (about the minimality of V sets) is still
valid when we forget the Lipschitz property (1.5) in Definition 1.1.

Before we start the proof, let us add some last comments. So far the pre-
vailing definition of minimality is with the Lipschitz condition (1.5), both
because Almgren asked for it, it accommodates currents and varifolds bet-
ter, and at the same time adding it makes the regularity theorems a little
better and essentially costs nothing. But the author feels that there may be
situations soon where we can only prove existence theorems for our sliding
Plateau problem or variants, where the minimizer that we find is a competi-
tor of our initial data E0, but perhaps not with the Lipschitz condition (1.5);
then we will need to make tough decisions, and possibly leave (1.5) behind.
In this context Lemma 39.3 makes more sense.

Another related situation that arises some times is that we initially set
a problem concerning all closed sets that satisfy some topological condition,
and only have a proof of existence in the category of rectifiable sets. A
simple solution is to pretend that only the rectifiable sets are interesting
(which makes some sense because if there is a minimizer, it is rectifiable),
and replace our initial problem with its variant for rectifiable sets only. The
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author does not think that it is entirely satisfactory, but yet does not have
a general solution to this issue. In the present case, it turns out that thanks
to the existence of an equivalent weak problem, we can prove an existence
theorem first, and then prove after the fact that rectifiable sets are enough.
Since the author does not know, apart from [16] which is in a slightly different
context, of cases where this was done, he decided to put the argument here,
for possible later reference. It also turned out that setting the weak problem
right was more complicated than he had expected, partially due to the sliding
condition, and this is one more reason for not addressing the issue upfront.

Our proof will rely on ideas and results from [16]. We will state separation
problems that are specific to the problem at hand, but one of the reason why
the author thought it would be a good idea to prove the present lemma is that
the techniques should probably be useful for similar problems. He also found
out during the writing process that although separation problems should
always end up with a BV statement, the precise statement is not always
easy to find.

Proof. — Let us first state a strong separation problem. Consider the balls
B = B(0, 1) ⊂ R3 and 2B = B(0, 2), the upper half ball 2B+ =

{
(x, y, z) ∈

2B ; z > 0
}
, and let V denote the same V-set as above (39.2), with α > 0.

We consider the class Fs of compact sets E ⊂ 2B+ such that H2(E) < +∞,
E coincides with V in 2B \ B, E separates the two points A1 = (0, 2, 0)
and A2 = (0,−2, 0) from A3 = (0, 0, 2) inside of 2B, and also separates A1
from A2 in 2B+. Thus the sets E∗ ∩ B = ϕ∗1(V ) ∩ B of Lemma 39.2 lie
in Fs, by (39.11) and (39.12), as soon as they have a finite measure (and
otherwise (39.5) is clear). A minimizer for the strong separation problem
(SSP) will just be a set E0 ∈ Fs such that

H2(E0) = ms, with ms = inf
E∈Fs

H2(F ). (39.16)

As soon as we know that there exists a minimizer for the SSP and prove that
it is rectifiable, the proof of Lemma 39.2, and in particular of (39.5), will say
that H2(E0) > H2(V ∩B), so in fact H2(V ∩B) = ms (because V ∩B ∈ Fs)
and then (39.5) also holds for sets E∗ that are not rectifiable. This is what
we want, even though in the present case the notion of minimizer for the
SSP is not so interesting because we’ll find out a posteriori that E0 was in
fact equivalent to V . We could of course imagine other situations where it is
more interesting.

Unfortunately, getting minimizers for the SSP directly seems unpleasant,
so we introduce a weak separation problem. Since the author is always a bit
afraid of trace conditions in the set BV of functions of bounded variation,
we use a security ring and set our problem in D = B(0, 2) ⊂ R3. Set D+ =
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{
(x, y, z) ∈ 2B ; z > 0

}
and P =

{
(x, y, z) ∈ D ; z = 0

}
, and denote by σ

the reflection across P .

Denote by C(D) the set of Caccioppoli subsets of D, i.e. measurable
subsets of D such that 1F ∈ BV . For such a set, we will denote by |D1F |
the total variation of D1F (in R3, not just in D); it is a finite positive Borel
measure, and its total mass is called the perimeter of F .

Our set of competitor will be the set F of quadruples F = (F1, F2, F3, F4)∈
C(D)4 with the following properties. First, D is the essentially disjoint union
of the Fi, i.e.,

3∑
i=1

1Fi = 1D. (39.17)

Incidentally, we work modulo a set of vanishing Lebesgue measure, as al-
ways with Caccioppoli sets. Next denote by Gi, 1 6 i 6 3, the connected
component of D \ (V ∪ σ(V )) that contains Ai. We require that

σ(Fi) = Fi and Fi ⊃ Gi for i = 1, 2, (39.18)
and that

G3 ⊂ F3 ⊂ D+ and F4 = σ(F3). (39.19)

See the left part of Figure 39.1 for a picture of the Ai and Gj , the right
part for the most obvious quadruple F , and Figure 39.2 for two slightly
different examples of quadruples F ; we’ll explain soon why we decided to
double everything.

We also need to define a functional on F . For F = (F1, F2, F3, F4) ∈ F ,
set

fi = 1Fi
∈ BV (R3) and call µi = |Dfi| = |D1Fi

| (39.20)
the total variation of D1Fi . So µi(A) is the perimeter of Fi in A when A is
an open set. Here and below, we will refer to [30] for the various properties
of BV functions and Caccioppoli sets that will be used. We set

J(F ) = µ3(P ) + µ4(P ) +
4∑
i=1

µi(D). (39.21)

Let us explain why we do this. We treat F3 and F4 differently because in
simple situations like the one suggested by Figure 39.1 (right), where F1∩D+,
F2∩D+, and F3 are the components of D+ \E for a nice competitor E ∈ Fs
with the same topology as for V , we want to obtain J(F ) = 4H2(E); the
additional term µ3(P )+µ4(P ) is designed for this. The author’s first attempt
was to work on the interior of D+ and add 2µ3(P ); this should give the same
result in the nice cases, but defining J as in (39.21) is a way to prevent ugly
mixtures of F1 and F2 on P , that would not have been counted in µ1 + µ2
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Figure 39.1. The central section of D and the sets Gi, and on the
right the competitor associated with V
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Figure 39.2. The same section of D, with two examples of slightly
different competitors

of the interior of D+, but would be counted here. The reader is invited to
check that (39.21) does what we want in the simple examples suggested by
Figure 39.2.

The reader may be shocked because we integrate µ3 and µ4 against a
function which is not lower semicontinuous (its value on P is larger than its
limit), which is usually not a good idea when we want to prove existence for
the minimizers, and indeed we will need to be careful when we show that
we can find F ∈ F such that J(F ) = m, where m = inf

F ′∈F
J(F ′). (39.22)

So let us look for F . Let {F k} be a minimizing sequence in F , i.e., such that
limk→+∞ J(F k) = m. Write F k = (F1,k, F2,k, F3,k, F4,k), and set as above

fi,k = 1Fi,k
∈ BV (R3) and µi,k = |Dfi,k| = |D1Fi,k

|. (39.23)
Notice that for 1 6 i 6 4, the total perimeter of Fi,k stays bounded, because
it is less than m + H2(∂D). So {fi,k} is a bounded sequence in BV (R3),
and since fi,k is supported in B2, {fi,k} is a relatively compact subset of
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L1(B2). We extract a subsequence (still denoted the same way) that con-
verges in L1 to a limit fi. Let us even extract a subsequence which works
for the four indices at the same time, and so that we have pointwise con-
vergence almost everywhere as well. The fact that fi is the characteristic
function of a set Fi (defined modulo a set of vanishing measure), and the
properties (39.17), (39.18), and (39.19), follow from the almost everywhere
convergence. Also, fi ∈ BV (R3) by the lower semicontinuity of the BV
norm; so F = (F1, F2, F3, F4) lies in F . The lower semicontinuity of the BV
norm also says that for 1 6 i 6 4,

µi(U) 6 lim inf
k→+∞

mi,k(U) for every open set U ⊂ D. (39.24)

If we did not have the terms µ3(P ) and µ4(P ) in the definition of J , we
would apply this with U = D, get that J(F ) 6 m, and deduce at once
that F is the desired minimizer. We now have to show that the additional
terms µ3(P ) and µ4(P ) can be estimated by contributions of the measures
mi,k = µi,k = |D1Fi,k

| to sets that lie close to P (and may disappear in the
limit of measures).

We will need a little more information on the µi, which the reader may
find in [30]. For Fi ∈ C(D), there is a measurable and rectifiable set ∂∗Fi ⊂
∂Fi, called the reduced boundary of Fi, such that

µi = H2
|∂∗Fi

(39.25)

(so that in particular µi(P ) = H2(P ∩ ∂∗Fi)) and with some additional
geometric properties that we recall now.

For x ∈ ∂∗Fi, there is an approximate tangent plane P (x) = Pi(x) to ∂∗Fi
at x and a unit normal n(x) = ni(x) to P (x), with the following properties.
For each ε > 0, there exists r(x) > 0 such that for 0 < r < r(x),∣∣{y ∈ B(x, 2r) ∩ Fi ; 〈y − x, n(x)〉 6 0

}∣∣ 6 εr3 (39.26)∣∣{y ∈ B(x, 2r) \ Fi ; 〈y − x, n(x)〉 > 0
}∣∣ 6 εr3, (39.27)

and the density of ∂∗Fi is close to π, i.e.,∣∣H2(∂∗Fi ∩B(x, r))− πr2∣∣ 6 εr2. (39.28)

Notice that when i = 3 and x ∈ ∂∗F3 ∩ P , (39.27) leave us no choice
because F3 is contained in the upper half of B(x, r) : P (x) must be the
plane that contains P , and n(x) = (0, 0, 1). Notice that x is then an interior
point of D, again by (39.27).

Let ε > 0 be small, and let τ > 0 be small too, to be chosen later
(depending on ε). Since for x ∈ P∩∂∗F3 we can choose arbitrarily small radii
r < τ such that (39.26)–(39.28) hold and B(x, 2r) ⊂ D, Vitali’s covering
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lemma (see for instance [41]) allows us to pick disjoint balls Bj = B(xj , rj)
centered on P ∩ ∂∗F3, with the properties above, and such that

µ3

(
P \

⋃
j

Bj

)
= H2

(
P ∩ ∂∗F3 \

⋃
j

Bj

)
6 ε (39.29)

by (39.25). Then we can even find a finite subcollection {Bj}, j ∈ J , with the
same property (but with 2ε in the right-hand side). By (39.25) and (39.28),
we get that

µ3(P ) = H2(P ∩ ∂∗F3) 6 (π + ε)
∑
j∈J

r2
j + 2ε 6 π

∑
j∈J

r2
j + Cε (39.30)

because
∑
j∈J r

2
j 6

2
π

∑
j∈J H2(∂∗F3 ∩ Bj) 6 2

πH
2(∂∗F3) = 2

πµ3(R3) 6 m

by (39.28), because the Bj are disjoint, and by (39.21).

We want to compare this with what we get for F k, k large. Define small
cylinders Tj and T+

j by

Tj =
{

(x, y, z) ; (x, y, 0) ∈ Bi and − rj < z < rj
}
,

T+
j =

{
(x, y, z) ; (x, y, 0) ∈ Bi and 0 < z < rj

}
.

(39.31)

Since the fi,k converge in L1 to fi, we deduce from (39.27) that for k large,∣∣T+
j \ F3,k

∣∣ 6 2εr3
j . (39.32)

For the computation that follows, we may fix k and j. We see Tj as the
product B′ × (−rj , rj), where B′ =

{
(x, y, z) ; (x, y, 0) ∈ Bj

}
' Bj ∩ P .

By (39.32), Fubini and Chebyshev, we can choose ρ ∈ (rj/2, rj) such that if
we define a good set A ⊂ B′ by

A =
{

(x, y) ∈ B′ ; (x, y, ρ) ∈ F3,k
}
, (39.33)

then
H2(B′ \A) 6 Cεr2

j . (39.34)
We are now going to use the fact that fi,k ∈ BV (Tj), seen as a function of the
last variable z, lies in BV (−rj , rj), with the logical estimate for the norm.
That is, Theorem 3.103 on p. 195 of [3] says that for almost every (x, y) ∈ B′,
the function z → fi,k(x, y, z) lies in BV (−rj , rj), and its derivative is a
measure νx,y,i. In addition,∫

B′
|νx,y,i|(−rj , rj)dxdy =

∫
B′
‖fi,k(x, y, · )‖BV (−rj ,rj)dxdy

=
∫

(x,y,z)∈Tj

∣∣∣∂fi,k
∂z

∣∣∣
6
∫

(x,y,z)∈Tj

∣∣Dfi,k∣∣ = µi,k(Tj), (39.35)
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where we use a homogeneous norm on BV , systematically denote the total
variations of measures like absolute values, and the only step which is not a
definition is the second identity, which holds by a combination of the weak
definition of BV , Fubini, and a correct choice of product test functions.

The result above also says that νx,y,i is a finite measure for almost every
(x, y) ∈ B′. Since fi,k only takes the values 0 and 1, this means that (maybe
after changing it on a set of measure 0) it has a finite number Ni,k(x, y) of
jumps, and a simpler way to write (39.35) is∫

B′
Ni,k(x, y)dxdy 6 µi,k(Tj). (39.36)

Consider points (x, y) ∈ A. Thus (x, y, ρ) ∈ F3,k, and by symmetry
(x, y,−ρ) ∈ F4,k.

Start with the set A0 of points of A such that N1,k(x, y) = N2,k(x, y) = 0.
For such a point, (x, y, z) stays in F3,k∪F4,k, and in fact (by (39.19)) in F3,k
for z > 0 and in F4,k for z < 0. We claim that for almost every point
(x, y) ∈ A0, the point (x, y, 0) lies in both sets ∂∗F3,k and ∂∗F4,k. Indeed,
if (x, y) is a Lebesgue density point of A0, then the density of F3,k at (x, y)
is 1/2 (because all the vertical half lines that are contained in F3,k locally),
and similarly for F4,k (this time, we look down). Then (by Poincaré) (x, y) is
a point of positive lower density for µ3,k and µ4,k, and almost all such points
lie in ∂∗F3,k and ∂∗F4,k. Said otherwise, (x, y) lies on what is called the
geometric measure boundaries of F3,k and F4,k, with the same conclusion.
So we like A0 because

2H2(A0) 6 µ3,k(P ∩Bj) + µ4,k(P ∩Bj). (39.37)

Now let A1 be the set of points of A such that N1,k(x, y) > 0. This means
that f1,k(x, y, z), which starts at 0 for z = ρ, becomes 1 for some z < ρ. By
symmetry of F1,k, this happens first for z > 0. Since for almost every (x, y),
the total variation of f1,k(x, y, · ) on (−rj , rj) is finite, and also we only count
jumps when there is a positive measure of each set near the jump point z,
this means that we can take z > 0. Then, by symmetry, f1,k(x, y, · ) also
has a jump at −z, so N1,k(x, y) > 2. These jumps also count for N3,k(x, y)
when z > 0 (because z was chosen to be the first point below ρ) and hence
N4,k(x, y) when z < 0, so N3,k(x, y) > 1 and N4,k(x, y) > 1.

Similarly if A2 is the set of points of A such that N2,k(x, y) > 0, then for
almost every (x, y), N2,k(x, y) > 2, N3,k(x, y) > 1, and N4,k(x, y) > 1. Thus

4H2(A1 ∪A2) 6
∫
A1∪A2

4∑
i=1

Ni,k(x, y)dxdy 6
4∑
i=1

µi,k(Tj \ P ). (39.38)
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by the proof of (39.35). We add this to (twice) (39.37), use (39.34), notice
that A ⊂ A0 ∪A1 ∪A2, and get that

4πr2
j = 4H2(B′)

6 2µ3,k(P ∩Bj) + 2µ4,k(P ∩Bj) +
4∑
i=1

µi,k(Tj \ P ) + Cεr2
j

6 µ3,k(P ∩Bj) + µ4,k(P ∩Bj) +
4∑
i=1

µi,k(Tj) + Cεr2
j , (39.39)

which is the contribution of Tj to J(F k) in (39.21). We return to the full
collection of balls Bj = B(xj , rj), sum (39.39) over j, compare to (39.30),
and get that

4µ3(P ) 6 4π
∑
j∈J

r2
j + Cε

6 Cε+
∑
j∈J

[
µ3,k(P ∩Bj) + µ4,k(P ∩Bj) +

4∑
i=1

µi,k(Tj)
]
, (39.40)

where we also used the line below (39.30) to sum the r2
j . Recall that all the

ri were chosen smaller than the small τ > 0, to be chosen small soon. Thus,
if we set

H(τ) =
{

(x, y, z) ∈ D ; |z| 6 τ
}

and H ′(τ) = H(τ) \ P, (39.41)

then (39.40) says that

4µ3(P ) 6 Cε+ µ3,k(P ) + µ4,k(P ) +
4∑
i=1

µi,k(H(τ)) (39.42)

because the Bj and the Tj are disjoint. We will return to (39.42), but we
also need to control µi(P ) for i = 1, 2. We claim that

µi(P ) = H2(P ∩ ∂∗Fi) = 0 for i = 1, 2, (39.43)

because P ∩ ∂∗Fi cannot have a Lebesgue density point in P . Indeed, for
such a point, the approximate tangent plane would need to be the plane that
contains P , and then (39.26) or (39.27) would contradict the symmetry of
Ai. Finally, for D\H(τ), (39.24) says that µi(D\H(τ)) 6 µi,k(D\H(τ))+ε
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for k large. We add everything and get that

J(F ) = µ3(P ) + µ4(P ) +
4∑
i=1

µi(D) = 4µ3(P ) +
4∑
i=1

µi(D \ P )

6 Cε+ µ3,k(P ) + µ4,k(P ) +
4∑
i=1

µi,k(H(τ)) +
4∑
i=1

µi(D \ P )

6 Cε+ 2µ3,k(P ) + 2µ4,k(P ) +
4∑
i=1

µi,k(H ′(τ)) +
4∑
i=1

µi(D \ P ) (39.44)

by (39.21), (39.19) (for the symmetry), (39.43), (39.42), and the defini-
tion (39.41). Next

4∑
i=1

µi(D \ P ) 6 ε+
4∑
i=1

µi(D \H(τ)) 6 2ε+
4∑
i=1

µi,k(D \H(τ)) (39.45)

by (39.46) and (39.24). We now chose τ so small that
4∑
i=1

µi(H ′(τ)) < ε (39.46)

(recall that the intersection of the sets H ′(τ) is empty). We sum and get
that
J(F ) 6 Cε+ 2µ3,k(P ) + 2µ4,k(P ) + µi,k(D \ P ) 6 Cε+ J(F k) (39.47)

by (39.21) for F k. For each ε > 0 we found that this holds for k large.
Since {F k} was chosen to be a minimizing sequence, we get that J(F ) 6 m;
(39.22) follows, because we knew already that F ∈ F .

Next we take the minimizer F given by (39.22), and study its regularity
to show that it also gives a minimizer for the strong problem. For this part
we will follow the first steps of [16], and often refer to it for details. Denote
by Z the closed support of µ =

∑3
i=1 µi; our next task is to show that µ is

locally Ahlfors regular in B = B(0, 1), which means that
C−1r2 6 µ(B(x, r)) 6 Cr2 for x ∈ Z ∩B and 0 < r < 10−1. (39.48)

Compared to [16], there is a small difference, because we have four sets Fi
rather than two (a set and its complement), but this will not matter for what
we have to do.

Let B(x, r) be as in (39.48), and set B∗ = B(x, r)∪ σ(B(x, r)). We start
with the upper bound, and even the special case when

B(x, 2r) ⊂ B. (39.49)
If µ(B(x, r)) is too large, we replace F = (F1, F2, F3, F4) with F ′ =
(F ′1, F ′2, F ′3, F ′4), obtained by taking F ′1 = F1 ∪ B∗, and F ′i = Fi \ B∗ for
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i > 2. This way we replace the total contribution µ(B(x, r)) with at most
H2(∂B∗) 6 Cr2. This gives a quadruple F ′ ∈ F , because B(x, 2r) ⊂ B
does not see the constraints about the Gi. Since F is a minimizer, we get
the second part of (39.48) in this case. When (39.49) fails, we just proceed
with more caution, and only modify things inside of B; that is, we take
F ′1 = F1 ∪ (B∗ ∩ B), and F ′i = Fi \ (B∗ ∩ B) for i > 2; the added measure
is still at most Cr2, and we did not need to worry about D \ B anyway,
because µ(B(x, r) \B) 6 Cr2 by (39.18) and (39.19) anyway.

So let us now worry about the lower bound. This will be a little more
complicated, and will rely on the isoperimetric inequality. Again we start
with the simplest case when (39.49) holds, and in addition

B(x, 2r) ⊂W+ (39.50)

(the upper half space). Of course the case when B(x, 2r) ⊂ B \W+ would be
similar, and then we will need to worry about balls centered on (or near) P .

Suppose that µ(B(x, r)) 6 cr2, with c very small. First observe that, by
the isoperimetric inequality in B(x, r), three of the sets Fj have very small
measures in B(x, r), and the last one is most of B(x, r); more precisely, since
we know that F4 does not contribute, either

|F1 ∪ F2 ∩B(x, r)| 6 Cµ(B(x, r))3/2 6 Cc3/2r3, (39.51)

or we have the same estimate for some other combination of indices (1 and
3 or 2 and 3).

Let us assume that we have (39.51) (the two other cases will be similar),
or even more generally that

r−3|F1 ∪ F2 ∩B(x, r)| 6 c′, (39.52)

with some very small c′. We want to construct a competitor F ′ for F in
B(x, r)∪σ(B(x, r)), and we first select, by a Fubini and Chebyshev argument,
a radius r1 ∈ (9r/10, r) such that

H2((F1 ∪ F2) ∩ ∂B(x, r1)) 6 10r−1|F1 ∪ F2 ∩B(x, r)| 6 10c′r2. (39.53)

Then we set B1 = B(x, r1), B∗1 = B1∪σ(B1), and define F ′ = (F ′1, F ′2, F ′3, F ′4)
by F ′1 = F1 \B∗1 , F ′2 = F2 \B∗1 , F ′3 = F3 ∪B1, and F ′4 = F4 ∪ σ(B1). Again
F ′ ∈ F because we are far from D \ B and we respected the symmetry
constraints. We save µ(B1) for the total perimeter in B1 because we no longer
have boundaries inside of B1, and similarly on σ(B1), but we may need to
spend an extra 2H2((F1∪F2)∩∂B1)) because of the new discontinuity along
∂B1 ∪ σ(∂B1). Since F is minimal, we get that

µ(B1) 6 2H2((F1 ∪ F2) ∩ ∂B1). (39.54)
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In turn the proof of (39.51) yields for this smaller ball

|F1 ∪ F2 ∩B1| 6 Cµ(B1)3/2 6 CH2((F1 ∪ F2) ∩ ∂B1)3/2

6 C2r−3/2|F1 ∪ F2 ∩B(x, r)|3/2,
(39.55)

by (39.53). We keep a power 1/2 for decay, and record that
r−3
1 |F1 ∪ F2 ∩B1| 6 ar−3|F1 ∪ F2 ∩B(x, r)|, (39.56)

with a = 2C2r−3/2|F1 ∪ F2 ∩ B(x, r)|1/2 6 2C2
√
c′ because r−3|F1 ∪ F2 ∩

B(x, r)| 6 c′. That is, the density of F1 ∪ F2 really decreased, and we can
apply the same argument again and again, on a sequence of balls B(x, rk).
Even more: as the density decreases, a gets smaller and this leaves some
room to take the kth ratio rk/rk−1 closer and closer to 1, to the extent that
actually rk > r/2 for all k. Yet r−3

k |F1 ∪F2 ∩B(x, rk)| tends to 0 and at the
end

|F1 ∪ F2 ∩B(x, r/2)| = 0. (39.57)
We refer to [16] for the organization of the sequence {rk}, the computations
and also details on the argument that follows.

When we have F1 ∪ F3 in (39.51), we proceed as above, except that we
take F ′1 = F1\B∗1 , F ′2 = F2∪B∗, F ′3 = F3\B(x, r), and F ′4 = F4\σ(B(x, r)).
And the last case of F2 ∪ F3 is similar.

Let us rephrase what we proved: if r−2µ(B(x, r)) is small enough, and for
instance F1 and F2 are the two small sets in B(x, r), we get that |F1 ∪ F2 ∩
B(x, r/2)| = 0, which implies that µ(B(x, r/2)) = 0 and the closed support
Z does not meet B(x, r/2). We would get the same conclusion for other
choices of small sets, and of course this excludes the possibility that x ∈ Z;
the first part of (39.48) follows, in the special case when B(x, 2r) ⊂ B ∩W+
(as in (39.49) and (39.50)).

We are left with the case whenB(x, 2r) crosses P or ∂B. First consider the
case when x ∈ P and B(x, 2r) ⊂ B. Again suppose that µ(B(x, r)) 6 cr2,
with c very small. This means that all the Fi, except one, have a small
measure in B(x, r). The unique large one cannot be F3 or F4, because by
symmetry they would both be large, so it is F1 or F2. Let us assume that it
is F1; the other case would be similar. Instead of (39.51), we now have

|F2 ∪ F3 ∪ F4 ∩B(x, r)| 6 Cµ(B(x, r))3/2 6 Cc3/2r3, (39.58)
where we write the information about F4, but it is the same as for F3. Notice
that here σ(B(x, r)) = B(x, r); we now use the competitor F ′ defined by
F ′1 = F1 ∪B(x, r) and F ′j = Fi \B(x, r) for i > 2. Then we follow the same
proof as above when F2∪F3 is small in B(x, r), just replacing F3 by F3∪F4,
and working with balls centered at x ∈ P . This takes care of the case when
x ∈ P and B(x, 2r) ⊂ B.
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When B(x, 2r) ⊂ B but B(x, 2r) meets P , we distinguish between two
cases. If B(x, 2r/3) meets Z ∩P at some point y (recall that Z is the closed
support of µ), we can apply the case when x ∈ P to the ball B(y, r/4),
and get the desired lower bound. Otherwise, P ∩ B(x, 2r/3) is contained
in a single component Fi, and clearly i 6= 3, 4 because the corresponding
components lie in half spaces. So we may assume that P ∩ B(x, 2r/3) ⊂ F1
(the other case would be similar). In this case, we still take F ′1 = F1 ∪ B∗,
with B∗ := B(x, r) ∪ σ(B(x, r)), and F ′j = Fi \ B∗ for i > 2; this does not
introduce new discontinuities along P , and we can continue with the same
estimates as in the general case.

We may now assume thatB(x, 2r) meets ∂B. Again the case when x ∈ ∂B
is a little easier. Suppose first that x ∈ F1∩∂B; then since at least one third of
B(x, r) lies in F1, the large component has to be F1. In particular, B(x, r/2)
does not meet V ∪σ(V ) (or, this amounts to the same thing, G3 or G4). We
can then proceed (almost) as in the general case, i.e., systematically replace
F1 with F1 ∪B(x, r/2) ∪ σ(B(x, r/2)) and the other Fi by Fi \ [B(x, r/2) ∪
σ(B(x, r/2))]; the estimates stay the same. In the situation when x ∈ F3 (F4
would be similar), we first observe that B(x, r/2) does not meet V ∪ σ(V )
(otherwise there would be too much of F1∪F2 in B(x, r)), so we can proceed
as in the general case, with F ′3 = F3 ∪ B(x, r), F ′4 = F4 ∪ σ(B(x, r)), and
F ′i = Fi \ [B(x, r/2) ∪ σ(B(x, r/2))].

In the slightly more general case where B(x, 2r) meets ∂B, either ∂B
meets Z ∩B(x, 2r/3) at some point y, and we can use the previous case on
B(y, r/4), or else the whole ∂B ∩ B(x, 2r/3) is contained in a single Fi. In
this last case, Fi is the large component, and we can proceed as in the general
case, pouring all the other components inside Fi (or F3 ∪ F4) if i = 3, 4).
The computations are the same as usual, and with this last case we end the
long proof of our local Ahlfors-regularity estimate (39.48).

Incidentally, we claim that the proof of (39.48) also shows that in the
same circumstances, the largest of the |Fi ∩ B(x, r)| cannot be too large.
That is, there is a small constant c > 0 such that
|B(x, r) \Fi| > cr3 for i = 1, 2, 3, 4, x ∈ Z ∩B, and 0 < r < 10−1. (39.59)

Indeed, if this fails, then |B(x, r) ∩ Fj | 6 cr3 for all j 6= i, and we can
follow the proof of (39.48), except that we start from the analogue of (39.53)
and (39.58) (now with three small components) to find a first ball B(x, r1)
for which r−2

1 µ(B(x, r1)) is small, proceed as above, and eventually get that
|Fj ∩B(x, r/2)| = 0 for these j. As before, if this happens, Z does not meet
B(x, r/2), and this contradiction proves (39.59).

By (39.48) and a small covering argument, µ is locally equivalent to Hd|Z
on B. See for instance Lemma 18.11 and Exercise 18.25 in [8]. Hence Z is
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a locally Ahlfors regular of dimension 2, and of course |Z| = 0 (we control
things well on B2 \B).

Notice that on the open set D \ Z, the four functions 1Fi are locally
constant (almost everywhere), because µ = 0 there (and by Poincaré). This
means that we can assume that the Fi are, after modification on a set of van-
ishing measure that we’ll assume done, open subsets of D, with boundaries
that are contained in Z. In particular,

H2(∂Fi) 6 H2(Z) 6 Cµ(D) < +∞ (39.60)

where C comes from (39.48) and the comparison between H2
|Z and µ.

Here we could quietly continue as in [16] and prove a form of “Condition
B”, and then the local uniform rectifiability of Z, but for the present purposes
we don’t need as much. We still need to investigate the relations between
H2(Z) and our functional J .

Return to the reduced boundaries ∂∗Fi that were used before. Recall
from (39.25) that µi = H2

|∂∗Fi
. We claim that, due to the local Ahlfors

regularity of µ,

Hd
(
Z \

⋃
i

∂∗Fi

)
= 0. (39.61)

Indeed, otherwise (since H2(Z) < +∞) we can find a point x ∈ Z, which is a
Lebesgue density point for Z, but where

⋃
i ∂
∗Fi has vanishing density (see

for instance the density properties of sets in [41]). This contradicts (39.48)
or the definition of Z as the closed support of µ =

∑
µi.

We are ready to compare J(F ) to Hausdorff measures that comes from
the strong separation problem. Recall from (39.21) that

J(F ) = µ3(P ) + µ4(P ) +
4∑
i=1

µi(D)

= H2(P ∩ ∂∗F3) +H2(P ∩ ∂∗F4) +
4∑
i=1
H2(D ∩ ∂∗Fi); (39.62)

we need to know how the different reduced boundaries ∂∗Fi match up. For
instance, if x ∈ P ∩ ∂∗F3, then it also lies in ∂∗F4, by symmetry. In general,
a point of some ∂∗Fi lies in at most one other ∂∗Fj , because (39.27) say that
each Fi takes at least about half of the measure in small balls. We claim that
conversely, H2-almost every point of Z lies in at least two sets ∂∗Fj .

So let x ∈ Z be given; (39.61) says that (almost surely) x ∈ ∂∗Fi for
some i. For each small enough r, (39.26) says that nearly half of B(x, r) lies
outside of Fi, so we can find j 6= i such that |Fj ∩ B(x, r)| > 10−1|B(x, r)|.
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By Poincaré’s inequality inside of B(x, r) (and since Fi also is large in that
ball), µj(B(x, r)) > C−1r2. Taking a sequence of radii r that tends to 0 and
for which this happens for the same j, we see that x is a point of positive
density for µj . But, since µj = H2

|∂∗Fj
and H2(∂∗Fj) < +∞, this H2-almost

never happens when x /∈ ∂∗Fj (see [41] again). Our claim follows. That is,
almost every point of Z lies in exactly two sets ∂∗Fi, and (39.62) yields

J(F ) = H2(P ∩ ∂∗F3) +H2(P ∩ ∂∗F4) + 2H2(D ∩ Z). (39.63)

We have seen that P ∩ ∂∗F3 is the same as P ∩ ∂∗F4. In addition, H2(P ∩
∂∗Fi) = 0 for i = 1, 2, because H2-almost everywhere on P , the approximate
tangent plane to ∂∗Fi is P itself (by the uniqueness almost everywhere of the
approximate tangent, or because almost everywhere on P ∩∂∗Fi, the density
of the difference of these two sets vanishes), and then (39.26) and (39.27) are
incompatible with the symmetry of Fi. Thus H2(P ∩ Z) = H2(P ∩ ∂∗F3) =
H2(P ∩ ∂∗F4), and (39.63) now says that

J(F ) = 2H2(D ∩ Z) + 2H2(P ∩ Z) = 4H2(D+ ∩ Z), (39.64)

with D+ = D ∩W+ as above.

Recall that we want to show that F also yields a minimizer E0 for the
strong separation problem. We take E0 = Z ∩ 2B+ = Z ∩ 2B ∩W+; it lies in
the class Fs of strong competitors defined above (39.16), because Z separates
the various Fi also in the smaller B+, and

J(F ) = 4H2(E0) (39.65)

by (39.64) and because H2(E0 \ [D+ ∩ Z]) = H2(E0 ∩ ∂D) = 0.

The last step of our long proof consists in taking any other competitor
E ∈ Fs and showing that H2(E) > H2(E0), and for this we first associate
to E a competitor F ′ = (F ′1, F ′2, F ′3, F ′4).

First double the set E, i.e. set E∗ = E ∪ σ(E) ⊂ 2B, and denote by
F ′i , 1 6 i 6 3, the connected component of Gi of in 2B \ E∗. Also let F ′4
denote the component of G4 = σ(G3), or equivalently (by symmetry) set
F4 = σ(F3). We want to show that all these sets are disjoint, i.e., that E∗
separates the four Gi in 2B.

Our assumption that E separates A1 and A2 from A3 in 2B implies that
F1 and F2 do not meet F3. They do not meet F4 either, by symmetry. Also,
we know that E separates A1 from A2 in 2B+, and then E∗ still separates
them in 2B: suppose instead that there exists a path γ ⊂ 2B \E∗ that joins
them, replace γ with a path γ+ ⊂ 2B+ by replacing the last coordinate z
with |z| along γ, and notice that γ+ does not meet E, a contradiction. So
F2 is disjoint from F1.
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We still need to see that F3 does not meet F4, and for this we simply use
the fact that E separates A1 and A2, hence also A4 = σ(A3), from A3 in 2B.
So all these connected components are different. It could be that there are
other components in D \E∗, and if this is the case just add them to F ′1, say.
If we do this, the symmetry is preserved, because we know that our initial
sets F ′i have the required symmetries. Since H2(E) < +∞, we know that all
the F ′i are Caccioppoli sets, so F ′ = (F ′1, F ′2, F ′3, F ′4) ∈ F . Consequently,

J(F ′) > J(F ) = 4H2(E0) (39.66)
by (39.65). We still need prove that

J(F ′) 6 4H2(E), (39.67)
and for this we just follow the argument between (39.62) and (39.64), which
we apply to F ′, but simply replace Z with the union Z ′ of reduced bound-
aries ∂∗F ′i . This yields J(F ′) = 4H2(D+ ∩ Z ′), and (39.67) holds because
Z ′ ⊂ E and E ⊂ D+. So we proved that H2(E) > H2(E0), E0 is a strong
minimizer, and it was enough to consider rectifiable competitors in the proof
of Lemma 39.2. This completes our proof of Lemma 39.3. �
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