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Veech groups of flat surfaces with poles (∗)

Guillaume Tahar (1)

ABSTRACT. — Flat surfaces that correspond to meromorphic 1-forms with poles
or to meromorphic quadratic differentials containing poles of order two and higher
have infinite flat area. We classify groups that appear as Veech groups of translation
surfaces with poles. We characterize those surfaces such that their GL+(2,R)-orbit
or their SL(2,R)-orbit is closed. Finally, we provide a way to determine the Veech
group for a typical infinite surface in any given chamber of a stratum.

RÉSUMÉ. — Les surfaces plates correspondant aux 1-formes méromorphes ou aux
différentielles quadratiques contenant des pôles d’ordre au moins deux ont une aire
infinie. Nous donnons une classification des groupes apparaissant comme groupes
de Veech de surfaces de translation avec pôles. Nous caractérisons les surfaces dont
l’orbite sous l’action de GL+(2,R) ou SL(2,R) est fermée. Enfin, nous déterminons
le groupe de Veech d’une surface générique appartenant à une chambre donnée d’une
strate.

1. Introduction

Moduli spaces of translation structures on surfaces are endowed with an
action of GL+(2,R). The Veech group of a flat surfaceX is the stabilizer ofX
by this group action. Characterization of Veech groups of translation surfaces
corresponding to Abelian differentials is an open problem [3, 10, 15]. We show
in this paper that flat surfaces corresponding to meromorphic differentials
are rigid enough to allow a full solution to this problem. Some results about
the Veech group of a flat surface of infinite area are already known. In [13],
Valdez computes the Veech group of some families of surfaces of infinite area
associated to irrational billards. In [7], Hubert and Schmithüsen provide
examples of square tiled surfaces with an infinite number of tiles and whose
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Veech groups are infinitely generated subgroups of SL(2,R). In this paper,
we consider only surfaces of finite type, that is surfaces of finite genus and
whose singularities have a finite order.

Meromorphic 1-forms and quadratic differentials with poles of higher or-
der induce flat structures of infinite area. However, they have finite complex-
ity and we have some tools to study them [2, 4, 12]. Since we cannot normalize
the area, the action of GL+(2,R) does not reduce to that of SL(2,R).

Let X be a compact Riemann Surface and q be a meromorphic quadratic
differential with at least one pole of higher order, that is a pole of order
no smaller than two. Such a pair (X, q) is called a flat surface with poles of
higher order. When there is no ambiguity, it will be referred to as X. The
meromorphic quadratic differential q is allowed to be the global square of
a meromorphic differential so our study includes meromorphic 1-forms as a
special case.

Zeroes and poles of order one of the quadratic differential are conical
singularities for the induced flat metric [11]. We denote by Q(a1, . . . , an,
−b1, . . . ,−bp) the stratum in moduli space of meromorphic quadratic differ-
entials that corresponds to meromorphic differentials with conical singular-
ites of degrees a1, . . . , an ∈ {−1} ∪ N∗ and poles of degrees b1, . . . , bp > 2.
We have

∑n
i=1 ai−

∑p
j=1 bj = 4g− 4 where g is the genus of the underlying

Riemann surface. Unless otherwise indicated, we will assume that n > 0 and
p > 0. Besides, if g = 0, we will assume that n+ p > 3. In order to simplify
our study, there are no marked points. In this paper, we consider the Veech
group of a flat surface with poles of higher order (X, q) as a subgroup of
GL+(2,R)/{± Id}. When the quadratic differential is the global square of a
meromorphic 1-form ω, what we get is a finite index subgroup of the Veech
group of (X,ω) using the usual definition.

2. Statement of main results

There is a fundamental geometric invariant of translation surfaces with
poles and their quadratic counterparts. The convex hull core(X) of the set
of conical singularities of a surface X is a kind of polygon, see [4, 12], whose
boundary is a finite chain of saddle connections. The core is invariant for
the action of the Veech group. Therefore, symmetries of the surface are
significantly restricted. For instance, in most cases, the GL+(2,R) action
is not ergodic [2]. Besides, unlike strata of translation surfaces, strata of
flat surfaces with poles of higher order have a walls-and-chambers structure
defined by topological changes of the core. The cores of two surfaces that
belong to the same chamber are topologically identical.
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Our main theorem is a complete classification of Veech groups of flat
surfaces with poles of higher order. Valdez proved an analogous classification
in the context of Abelian differentials on stable curves, see [13].

Theorem 2.1. — The Veech group of a flat surface with poles of
higher order belongs to one of the following three types of subgroups of
GL+(2,R)/{± Id}:

• Finite type: conjugated to a finite rotation group ;
• Cyclic parabolic type: conjugated to {( 1 k

0 1 ) | k ∈ Z} ;
• Continuous type: conjugated to

{
( 1 b

0 a ) | a ∈ R∗+, b ∈ R
}
.

It should be noted that flat cones that belong to strata Q(a,−a−4) with
a ∈ {−1}∪N∗ have the whole GL+(2,R)/{± Id} as Veech group. We exclude
these trivial cases by assuming n+ p > 3.

Theorem 2.1 is proved in Section 4.

For classical translation surfaces, the GL+(2,R)-orbit is closed if and
only if the Veech group is a lattice subgroup in SL(2,R), see [14]. There is
an analogous result for translation surfaces with poles.

Theorem 2.2. — The following statements are equivalent for a flat sur-
face with poles of higher order (X, q):

(i) The Veech group of (X, q) is of continuous type.
(ii) All saddle connections of (X, q) share the same direction.
(iii) The GL+(2,R)-orbit of (X, q) is closed in the ambient stratum.

As we cannot normalize the area of the surface, we have to distinguish the
action of GL+(2,R) and that of SL(2,R). Surfaces whose SL(2,R)-orbit is
closed are very specific among classical translation surfaces. They are called
Veech surfaces. On the contrary, it is common for a translation surface with
poles to have a closed SL(2,R)-orbit.

Theorem 2.3. — The SL(2,R)-orbit of a flat surface with poles of higher
order (X, q) is closed in the ambient stratum in these two cases:

(i) Not all saddle connections of ∂C(X) share the same direction.
(ii) All saddle connections of ∂C(X) share the same direction and

core(X) decomposes into a (maybe empty) family of cylinders of
commensurable moduli.

Otherwise, the SL(2,R)-orbit of (X, q) is not closed in the ambient stratum.

Theorems 2.2 and 2.3 are proved in Section 5.
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Following definitions of [9], we say that a flat surface (X, q) is generic
in its stratum (or its chamber) if it lies outside a countable union of real
codimension one submanifolds. Two saddle connections are said to be parallel
when their relative homology classes are not linearly independant over R.

Generic Veech groups of flat surfaces of finite area are already known,
see [9]. They are trivial as long as g > 2. We get similar results for flat
surfaces with poles of higher order. It should be recalled that the dimension
of a stratum Q is 2g + n+ p− 2, see [1].

Theorem 2.4. — In strata of dimension one, the Veech group of ev-
ery surface is of continuous type. In strata of dimension at least three, the
Veech group of a generic surface is trivial. In strata of dimension two, we
distinguish several cases:

(i) The Veech group of every surface is of cyclic parabolic type in cham-
bers where the core is a cylinder in the following strata:
• Q(a,−a) with a > 2,
• Q(a,−12,−2− a) with a > 1,
• Q(a, b,−a− 2,−b− 2) with a, b > 1.

(ii) In chambers where the core is a triangle, the Veech group of every
surface is isomorphic to Z/3Z. Such chambers exist in the following
strata:
• Q(3b− 4,−b,−b,−b) with b > 2,
• Q(a, a, a,−3a− 4) with a > 1,

(iii) In the chamber of each stratum Q(3a,−3a) with a > 1 where the core
is a triangle and the three elementary loops have the same topological
index, the Veech group of every surface is isomorphic to Z/3Z.

(iv) The Veech group of every surface is isomorphic to Z/2Z in the open
GL+(2,R)-orbits of the following flat surfaces:
• Flat surface whose core is degenerated and where all angles are
congruent angles in Q(4k,−4k) with k > 1,

• Flat surface whose core is degenerated and whose four angles
are (2 + a)π, (2 + a)π, (2k+1)π

2 and (2k+1)π
2 in strata Q(2k − 1,

a, a,−2a− 2k − 3) with k > 1 and a ∈ {−1} ∪ N∗,
• Flat surface whose core is degenerated and whose four angles
are (b − 1)π, (b − 1)π, (2k+1)π

2 and (2k+1)π
2 in Q(2b+ 2k − 3,

−b,−b,−2k − 1) with b > 2 and k > 1,
• Flat surface whose core is formed by two saddle connections
between two distinct conical singularities and whose four an-
gles are (1+2k)π

2 , (1+2k)π
2 , (1+2l)π

2 and (1+2l)π
2 in Q(k + l − 1,

k + l − 1,−2k − 1,−2l − 1) with k, l > 1,
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• Flat surface whose core is formed by two saddle connections
between two distinct conical singularities and whose four an-
gles are (1+2k)π

2 , (1+2k)π
2 , (1+2l)π

2 and (1+2l)π
2 in Q(2k − 1,

2l − 1,−k − l − 1,−k − l − 1) with k, l > 1.
(v) Outside these chambers or orbits, the Veech group of a generic sur-

face is trivial.

Theorem 2.4 is proved in Section 6.

The structure of the paper is the following:

• In Section 3, we recall the background and tools useful to study flat
surfaces of infinite area: flat metric, saddle connections, the moduli
space, the core of a surface and its associated wall-and-chambers
structure, the contraction flow.
• In Section 4, we prove our theorem of classification.
• In Section 5, we provide complete criteria of closedness of orbits of

GL+(2,R) and SL(2,R).
• In Section 6, we characterize loci where the Veech group of a generic
surface is nontrivial.

3. Definitions and tools

3.1. Flat structures

Let X be a compact Riemann surface and let q be a meromorphic qua-
dratic differential. Λ and ∆ respectively are the set of conical singularities
and poles of higher order of q. Outside Λ and ∆, q is locally the square of
a holomorphic differential ω. Integration of ω in a neighborhood of z0 gives
local coordinates whose transition maps are of the type z 7→ ±z + c. The
pair (X, q) seen as a smooth surface with such a translation atlas is called a
flat surface with poles of higher order.

In the case of quadratic differentials that are the global square of a 1-
form, the holonomy of the metric is trivial. Otherwise, the holonomy of the
metric is Z/2Z.

In a neighborhood of an element of Λ, the metric induced by q admits
a conical singularity of angle (k + 2)π where k is the degree of the corre-
sponding zero of q. In particular, poles of order one are conical singularities
of angle π.

See Strebel [11] for a complete description of the local geometry around
poles of higher order.
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Definition 3.1. — A saddle connection is a geodesic segment joining
two conical singularities of the flat surface such that all interior points are
not conical singularities.

In [12], we proved a bound on the number of saddle connections of a flat
surface with poles of higher order.

Theorem 3.2. — Let |SC| be the number of saddle connections of a flat
surface with poles of higher order (X, q) of genus g belonging to Q(a1, . . . , an,
−b1, . . . ,−bp), then we have |SC| > 2g − 2 + n+ p.

3.2. Moduli space

If (X, q) and (X ′, q′) are flat surfaces such that there is a biholomorphism
f from X to X ′ such that q is the pullback of q′, then f is an isometry for
the flat metrics defined by q and q′.

We define the moduli space of meromorphic quadratic differentials as the
space of equivalence classes of pairs (X, q) up to biholomorphism preserving
the quadratic form.

We denote by Q(a1, . . . , an,−b1, . . . ,−bp) the stratum that corresponds
to meromorphic quadratic forms with singularities of degrees a1, . . . , an and
−b1, . . . ,−bp. We have a1, . . . , an ∈ {−1} ∪ N∗. They are the poles of or-
der one and the zeroes of arbitrary order. They define conical singularities.
Singularities are referred to as poles of higher order when they are poles of
order no smaller than two. That is why we have b1, . . . , bp > 2.

3.3. Canonical double covering

Outside the set of singularities, every quadratic differential is locally the
square of a 1-form. The canonical double covering assigns to every pair (X, q)
of a Riemann surface and a quadratic differential a flat surface such that
the quadratic differential is globally the square of a 1-form, see [1]. For
quadratic surfaces that are already the global square of a 1-form ω, instead
of constructing a canonical double covering, we simply choose a square root.

Let (X, q) be a flat surface of Q(2c1, . . . , 2cs, 2d1 + 1, . . . , 2dt + 1) where
c1, . . . , cs ∈ Z∗ and d1, . . . , dt ∈ Z. We denote by Pi ∈ X the point corre-
sponding to the singularity of order 2di+1 and by (X̃, ω) the canonical double
cover of (X, q). Translation surface (X̃, ω) belongs to H(c1, . . . , cs, c1, . . . , cs,
2d1 + 2, . . . , 2dt + 2).
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Quadratic differentials that are the global square of a 1-form belong to
strata of the form Q(2c1, . . . , 2cs) where all singularities are of even order.
Their square roots belong to stratum H(c1, . . . , cs).

3.4. Period coordinates

The double canonical covering (X̃, ω) of (X, q) admits an involution τ
that induces another involution τ∗ on H1(X \ ∆,Λ) where ∆ is the set of
poles of higher order and Λ is the set of conical singularities.

Thus H1(X \ ∆,Λ) decomposes into an invariant subspace H+ and an
anti-invariant space H−. Strata are complex-analytic orbifolds with local
coordinates given by the period map of H−, see Theorem 2.1 in [1]. In
particular, its complex dimension is 2g + n+ p− 2.

We can associate homology classes to saddle connections. In the case of
quadratic differentials, the way to do that is somewhat subtle, see [8] for
details. We consider a flat surface with poles (X, q) and its double canonical
covering (X̃, ω).

H1(X̃ \∆′,Λ′) is the first relative homology group of (X̃, ω) where ∆′ and
Λ′ respectively are the preimages by π of the conical singularities and poles
of higher order associated to q. An involution τ associated to the covering
acts on H1(X̃ \∆′,Λ′).

We denote by γ1 and γ2 the two preimages of an oriented saddle connec-
tion γ. If the relative cycle [γ1] ∈ H1(X̃ \∆′,Λ′) satisfies [γ1] = −[γ2], then
we define [γ] = [γ1]. Conversely, if [γ1] = [γ2], then we define [γ] = [γ1]− [γ2].
Two saddle connections are said to be parallel when their relative homology
classes are linearly dependant over R. The holonomy vector of a saddle con-
nection is essentially determined by the period of its relative homology class.
Its direction modulo π is that of the period and its length is one-half of the
modulus of the period.

3.5. Index of a loop

The topological index of a loop is particularly easy to handle in flat
geometry.

Definition 3.3. — Let γ be a simple closed curve in a flat surface with
(or without) poles of higher order. γ is parametrized by arc-length and passes
only through regular points. We consider the lifting η of γ by the canonical
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double covering. Then η′(t) = eiθ(t). We have 1
2π
∫ T

0 θ′(t)dt ∈ 1
2Z because of

the holonomy of the flat surface. This number is the topological index ind(γ)
of our loop γ.

In particular, the topological index of a simple closed curve around a
singularity of order k is 1 + k

2 .

3.6. Core of a flat surface with poles of higher order

The core of a flat surface of infinite area was introduced in [4] and sys-
tematically used in [12]. It is the convex hull of the conical singularities of a
flat surface. Since all saddle connections belong to it, the core encompasses
most of the qualitative (see walls-and chambers structure in Subsection 3.7)
and quantitative (periods of the homology) information about the geometry
of the flat surface.

Definition 3.4. — A subset E of a flat surface is convex if and only
if every element of any geodesic segment between two points of E belongs to
E. The core of a flat surface with poles of higher order (X, q) is the convex
hull core(X) of its conical singularities Λ. IC(X) is the interior of core(X)
in X and ∂C(X) = core(X) \ IC(X) is its boundary. The core is said to be
degenerated when IC(X) = ∅ that is when core(X) is just graph ∂C(X).

Lemma 3.5. — Let X be a flat surface with poles of higher order
Q(a1, . . . , an,−b1, . . . ,−bp), then X \ core(X) has p connected components.
Each of them is a topological disk. We refer to these connected components
as domains of poles.

Proof. — Following Proposition 2.3 in [4], core(X) is a deformation re-
tract of X\∆ where ∆ is the set of poles of higher order. �

Lemma 3.6. — For any flat surface with poles of higher order X, ∂C(X)
is a finite union of saddle connections.

Proof. — See Proposition 2.2 in [4]. �

In [12], we proved an upper bound on the maximal number of noncrossing
saddle connections. The bound depends on the number β of saddle connec-
tions that belong to the boundary of the core (counted twice if the two sides
of a saddle connection belong to domains of poles). A maximal graph of non-
crossing saddle connections defines a flat triangulation of the core formed by
ideal triangles (triangles where the vertices may be the same).
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Theorem 3.7. — Let |A| be the maximal number of noncrossing saddle
connections of a flat surface with poles of higher order (X, q) of genus g
belonging to Q(a1, . . . , an,−b1, . . . ,−bp), then we have |A| = 6g − 6 + 3n +
3p − β. Besides, |A| = 2g − 2 + n + p + t where t is the number of ideal
triangles in any flat triangulation of the core.

3.7. Discriminant and walls-and-chambers structure

Strata of flat surfaces with poles of higher order decompose into chambers
where the qualitative shape of the core is the same. The discriminant is the
locus that separates these chambers from each other.

Definition 3.8. — A flat surface with poles of higher order X belongs
to the discriminant of the stratum if and only if there exists a pair of two
nonparallel consecutive saddle connections of the boundary of the core that
share an angle of π. Chambers are defined to be the connected components
of the complementary to the discriminant in the strata.

The following lemma is proved as Proposition 4.12 in [12].

Lemma 3.9. — The discriminant is a GL+(2,R)-invariant hypersurface
of real codimension one in the stratum.

The topological map on a flat surface with poles of higher order (X, q)
defined by the embedded graph ∂C(X) is invariant along the chambers. The
qualitative shape of the core and in particular the number of saddle con-
nections of its boundary depend only on the chamber (see Proposition 4.13
in [12] for details).

3.8. Dynamics and decomposition into invariant components

We essentially follow the definitions Strebel gives in [11].

Definition 3.10. — Depending on the direction, a trajectory starting
from a regular point is of one of the four following types:

• regular closed geodesic (the trajectory is periodic),
• critical trajectory (the trajectory reaches a conical singularity in fi-
nite time),
• trajectory finishing at a pole (the trajectory converges to a pole of
higher order as t→ +∞),
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• recurrent trajectory (infinite trajectory nonconverging to a pole of
higher order).

Theorem 3.11 describes how the directional flow decomposes flat surfaces
into a finite number of invariant components. This theorem is proved as
Theorem 2.3 in [12].

Theorem 3.11. — Let (X, q) be a flat surface with poles of higher order.
Cutting along all saddle connections sharing a given direction θ, we obtain
finitely many connected components called invariant components. There are
four types of invariant components:

• finite volume cylinders where the leaves are periodic with the same
period,
• minimal components of finite volume where the foliation is mini-
mal, the directions are recurrent and whose dynamics are given by
a nontrivial interval exchange map,
• infinite volume cylinders bounding a simple pole and where the leaves
are periodic with the same period,
• free components of infinite volume where generic leaves go from a
pole to another or return to the same pole. Finite volume components
belong to core(X).

3.9. GL+(2,R) action and contraction flow

On each stratum, GL+(2,R) acts by composition with coordinate func-
tions, see [15]. Since neighborhoods of poles of higher order have infinite
area, we cannot normalize the area of the surface and thus must consider
the full action of GL+(2,R).

For a flat surface (X, q), the stabilizer stab(X) ⊂ GL+(2,R) is the
subgroup of those g ∈ GL+(2,R) for which gX = X. The quotient
stab(X)/{± Id} ⊂ GL+(2,R)/{± Id} is called the Veech Group of the flat
surface (X, q).

Veech groups of two surfaces belonging to the same GL+(2,R)-orbit are
conjugated.

The contraction flow is a tool that allows to construct surfaces with de-
generated core in a systematic way. All foundation results are already proved
in [12].
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Definition 3.12. — Let α and θ be two distinct directions. The con-
traction flow is the action of the semigroup of matrices Ctα,θ conjugated to
( e−t 0

0 1 ) such that α is the contracted direction and θ is the preserved direc-
tion.

Lemma 3.13. — Let (X, q) be a flat surface with poles of higher order.
θ is a direction that is not a direction of a saddle connection and α is any
direction different from θ. The sequence Ctα,θ(X, q) converges to a surface
(X0, q0) in the ambiant stratum. All saddle connections of (X0, q0) share the
same direction θ and core(X0) is degenerated.

Proof. — See Lemma 2.2 of [12]. �

4. Classification of Veech Groups

Veech groups of flat surfaces with poles of higher order are very different
from those of usual translation surfaces. They are either very big (not dis-
crete) or very small (virtually cyclic). For instance, they cannot be lattices
so there are no Veech surfaces with poles.

Proof of Theorem 2.1. — Let (X, q) be a flat surface with poles of higher
order. There is a finite number of saddle connections in ∂C(X). The holonomy
vectors of these saddle connections are a finite subset of C/{±1}. Since this
set is preserved by the action of the Veech group, either all saddle connections
of ∂C(X) share the same direction or the Veech group is a finite group. Finite
subgroups of GL+(2,R) are rotation groups. We say in this case that the
Veech group is of finite type.

In the following, we consider that all saddle connections of ∂C(X) share
the same direction θ. This direction is unchanged by the action of the Veech
group and the lengths of these saddle connections are preserved. Therefore,
in this case, the Veech group is conjugated to a subgroup of {( 1 b

0 a ) | a, b ∈ R}.

The next disjonction is between surfaces with degenerated and nondegen-
erated core. If core(X) is degenerated, then every saddle connection belongs
to ∂C(X) and by hypothesis they belong to the same direction. Without loss
of generality, we can consider they all belong to the horizontal direction.
The whole geometry of X is that of infinite vertical strips whose intersection
with core(X) are horizontal saddle connections. Thus, the action of every
element of GL+(2,R) preserving the horizontal direction leaves (X, q) un-
changed. Thus, the Veech group of (X, q) is conjugated to {( 1 b

0 a ) | a, b ∈ R}.
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Figure 4.1. A flat surface in Q(8,−26) with a discrete rotational symmetry.

If core(X) is not degenerated, then the Veech group of (X, q) is a sub-
group of SL(2,R)/{± Id} because its action preserves the area of the core.
Besides, nondegenerated core implies that there are two saddle connections
that have different directions. The set of holonomy vectors of the saddle
connections of the whole surface is a discrete subset S of C/{±1} that is
preserved by the action of the Veech group. As there are two saddle con-
nections that have different directions, then an element of the Veech group
is entirely characterized by its action on S. Therefore, the Veech group of
X is a discrete subgroup of GL+(2,R)/{± Id}. Besides, the action of the
Veech group preserves the area of the core. This implies in particular that
the Veech group of (X, q) is a discrete subgroup of SL(2,R)/{± Id}. We know
it is also conjugated to a subgroup of {( 1 b

0 a ) | a, b ∈ R}. Therefore, either it
is conjugated to {( 1 k

0 1 ) | k ∈ Z} or it is the trivial group. �

One can find a realization for every Veech group of the classification
provided by Theorem 2.1. The following example shows in particular that
every cyclic finite group is realizable as a Veech group.

Example 4.1. — Gluing infinite cylinders on the edges of a regular 2k-
gon, we get a surface in Q(4k − 4,−22k) whose Veech group is conjugated
to Z/kZ, see Figure 4.1.

In the following, we characterize surfaces with Veech groups of cyclic
parabolic type in terms of the decomposition in invariant components.
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Proposition 4.2. — The Veech group of a flat surface with poles of
higher order X is of cyclic parabolic type if and only if the following propo-
sition hold:

• every saddle connection of ∂C(X) belongs to the same direction θ,
• core(X) is not degenerated and admits a decomposition into a finite
number of cylinders with commensurable moduli in direction θ.

Proof. — We first assume the Veech group of a flat surface (X, q) is of
cyclic parabolic type. We denote by θ the direction preserved by the para-
bolic element M . Since the boundary of core(X) is a finite union of saddle
connection that is globally preserved by the action of the parabolic element,
all of them share the same direction θ. Besides, core(X) is not degenerate
because otherwise the Veech group would be of continuous type, see proof
of Theorem 2.1.

Among flat surfaces whose core is not degenerate and such that every
saddle connection of ∂C(X) belongs to the same direction θ, we will prove
that there is a parabolic element in the Veech group that preserves direction
θ if and only if core(X) decomposes into a finite number of cylinders with
commensurable moduli in direction θ.

We identify the saddle connections in the boundary of the interior of the
core IC(X) in an arbitrary way and get a classical half-translation surface
of finite area (Y, q′) whose dynamics in direction θ is exactly the same as
that in IC(X). It must be noted that Y may fail to be connected. It is well
known that for classical translation surfaces (and half-translation surfaces),
existence of a parabolic element of the Veech group preserving a direction θ is
equivalent to existence of a decomposition of the surface into a finite number
of cylinders whose closed geodesics belong to direction θ and whose moduli
are commensurable, see [5, §2.3] or [14]. Consequently, if the Veech group
of (X, q) is of cyclic parabolic type, then there is a parabolic element M
that preserves core(X) and therefore (Y, q′). Therefore, (Y, q′) (and IC(X))
admits a decomposition into cylinders whose moduli are commensurable.
Conversely, if IC(X)) admits a decomposition into cylinders whose moduli
are commensurable in some direction θ, then (Y, q′) admits the same decom-
position and there is a parabolic element that preserves (Y, q′) and direction
θ. Since the rest of X is formed by saddle connections whose direction is
also θ, then parabolic element M preserves the whole surface (X, q) and its
Veech group is of cyclic parabolic type. �

Example 4.3. — We can construct many surfaces with a Veech group of
cyclic parabolic type starting from a square-tiled core, see Figure 4.2.
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Figure 4.2. A flat surface in Q(8,−24) whose Veech group is of cyclic
parabolic type.

Figure 4.3. A surface in Q(4,−22) and the surface obtained through
the use of the contraction flow along a given direction.

Starting from any surface, the contraction flow in a generic direction pro-
vides examples of surfaces with a Veech group of infinite type, see Figure 4.3.

The contraction flow provides many examples of surfaces with a Veech
group of infinite type. However, many of these surfaces belong to the dis-
criminant of the ambiant stratum. The following example shows that this is
not always true.

Example 4.4. — Three flat planes with a vertical slit in each of them and
connected cyclically provide a surface in Q(42,−43) with a Veech group of
continuous type and that does not belong to the discriminant.
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5. Closedness of orbits

In the study of classical translation surfaces, the Veech surfaces have
a particular importance because they are the class of surfaces such that
their GL+(2,R)-orbit is closed, see [6]. Here, we characterize the class of flat
surfaces with poles of higher order that share such a property. Theorem 2.2
proves that surfaces whose GL+(2,R)-orbit is closed are exactly the surfaces
whose Veech group is of continuous type.

Proof of Theorem 2.2. — We first prove that (i) implies (iii). Let G be
the Veech group of continuous type of a flat surface (X, q).

C∗ ∼=
{(

a cos(θ) −a sin(θ)
a sin(θ) a cos(θ)

) ∣∣∣∣ a ∈ R∗, θ ∈ R
}

and G generate GL+(2,R). So the action of C∗ by rotations and homotheties
is an affine parametrization of GL+(2,R).(X, q). Therefore, GL+(2,R).(X, q)
is an affine plane that is closed.

Then we prove that (iii) implies (ii). If there are two saddle connections
of different directions in a flat surface with poles of higher order (X, q),
pushing the surface (X, q) through the contraction flow along a direction
θ that is not a direction of saddle connection gives in the limit a surface
(X0, q0) whose saddle connections share the same direction θ. So (X0, ω0) /∈
GL+(2,R).(X, q) which is not closed. We proved by contraposition that (iii)
implies (ii).

Finally, a flat surface (X, q) such that all saddle connections share the
same direction has a Veech group that is of continuous type, see the proof
of Theorem 2.1 for details. Therefore (ii) implies (i). This ends our circular
reasoning. �

While surfaces with a closed GL+(2,R)-orbit are quite exceptional, most
flat surfaces with poles of higher order have a closed SL(2,R)-orbit. The-
orem 2.3 characterizes the surfaces whose SL(2,R)-orbit is closed in the
ambient stratum.

Proof of Theorem 2.3. — We consider a flat surface (X, q) with poles of
higher order such that there are two saddle connections of different directions
in ∂C(X). As their holonomy vectors are defined with an ambiguity of ±1,
we consider one of the representatives in C for each of these two saddle
connections. We denote by w and z the representatives. They form a basis
of C as a R-vector space. Every surface (Y, q′) in the SL(2,R)-orbit closure
of (X, q) arises as the limit of a sequence An.(X, q) where ∀ n > 0, we
have An ∈ SL(2,R). As there are finitely many saddle connections in ∂C(Y ),
sequences An.w and An.z converge respectively to z∞ and w∞ in C. Since

– 71 –



Guillaume Tahar

matrices in SL(2,R) are area-preserving, (z∞, w∞) is a basis of C as well. A
matrix of SL(2,R) is characterized by the image of a basis. Thus, sequence
An converges to a limit A∞ ∈ SL(2,R). Therefore, (Y, q′) = A∞(X, q). In
other words, every surface in the SL(2,R)-orbit closure of (X, q) actually
belongs to the orbit of (X, q).

If the Veech group of a flat surface with poles of higher order (X, q) is of
continuous type, then GL+(2,R).(X, q) is closed (Theorem 2.2). As SL(2,R)
is a closed subgroup of GL+(2,R), SL(2,R).(X, q) is closed too. This covers
situations where all saddle connections of ∂C(X) share the same direction
and core(X) is degenerated.

Then we consider surfaces (X, q) such that all saddle connections of
∂C(X) share the same direction θ and core(X) is not degenerated. With-
out loss of generality, we suppose that θ is the horizontal direction. We are
going to use the Iwasawa decomposition of SL(2,R). Every M ∈ SL(2,R)
has a unique representation as M = K.A.N where we have

K =
(

cos(α) − sin(α)
sin(α) cos(α)

)
, A =

(
r 0
0 1/r

)
and N =

(
1 x
0 1

)
with α, x ∈ R and r > 0. In particular, K ∈ SO(2,R).

Every surface (Y, q′) in the SL(2,R)-orbit closure of (X, q) arises as the
limit of a sequence Mn.(X, q) where ∀ n > 0, we have Mn ∈ SL(2,R).
Besides, ∀ n > 0, we have Mn = KnAnNn in the Iwasawa decomposition.

First, SO(2,R) is compact so there is α∞ ∈ R and an increasing subse-
quence (φ(n))n>0 such that we have:

lim
n→+∞

Kφ(n) =
(

cos(α∞) − sin(α∞)
sin(α∞) cos(α∞)

)
∈ SO(2,R).

We have An = ( rn 0
0 1/rn

). Since all saddle connections of ∂C(X) share the
same direction, if there is an increasing subsequence (µ(n))n>0 such that
limn→+∞ rµ(n) = +∞, then the length of the longest saddle connection in
the boundary of the core ofMµ(n).(X, q) grows to infinity. Therefore, (rn)n>0
is bounded. For the same reasons (no saddle connection can shrink to saddle
connection of zero length), (rn)n>0 is bounded below by a positive number.
That is why there is r∞ > 0 and an increasing subsequence (ψ(n))n>0 such
that limn→+∞ rψ◦φ(n) = r∞. To recapitulate, we get an increasing subse-
quence (φ ◦ ψ(n))n>0 such that we have:

lim
n→+∞

Kφ◦ψ(n).Aφ◦ψ(n) =
(

cos(α∞) − sin(α∞)
sin(α∞) cos(α∞)

)
.

(
r∞ 0
0 1/r∞

)
.
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Therefore, the SL(2,R)-orbit of (X, q) is closed if and only if its H-orbit
is closed where H = {( 1 x

0 1 ), x ∈ R}.

If core(X) decomposes into finite volume cylinders with commensurable
moduli, then the Veech group of (X, q) is of cyclic parabolic type (Propo-
sition 4.2) and the H-orbit of (X, q) is closed. Then, its SL(2,R)-orbit is
closed too.

The last case is about surfaces (X, q) such that all saddle connections of
∂C(X) share the same direction (without loss of generality, we suppose this
is the horizontal direction) and core(X) does not decompose into a family
of cylinders of commensurable moduli. Either there is a minimal component
or two cylinders whose moduli are not commensurable. Following Proposi-
tion 4.2, the Veech group of such a surface (X, q) is not of cyclic parabolic
type and its H-orbit is not periodic. We denote by IC(X) the interior of
core(X). Since the boundary of U is made of horizontal saddle connections
whose total holonomy is zero, we can glue the boundary components on
each other while adding marked points if necessary or modifying the or-
der of the conical singularities. We get a flat surface (Xc, qc) without poles
of higher order but with some marked horizontal saddle connections (those
that have been glued on each other). Flat surface (Xc, qc) belongs to a stra-
tum Q of meromorphic quadratic differentials with at most simple poles.
No saddle connection shrinks under the action of H. Thus, lengths of sad-
dle connections remain bounded below by a positive number all along the
orbit. Therefore H.(Xc, qc) lies in a compact subset of Q. So if H.(Xc, qc)
is closed, then it is also compact and consquently H.(Xc, qc) is a periodic
orbit. However, as the action of H preserve the marked horizontal saddle
connections, the fact that H.(X, q) is not periodic implies that H.(Xc, qc) is
not periodic either. Therefore, H.(Xc, qc) is not closed. As the action of H
preserve the marked horizontal saddle connections, the H-orbit of (X, q) is
not closed either. Consequently, the SL(2,R)-orbit of (X, q) is not closed in
this case. This ends the proof. �

6. Generic Veech groups

Just as flat surfaces of finite area, the typical flat surface with poles of
higher order has a trivial Veech group. Theorem 2.4 provides a similar result
to what Möller proved in [9]. As a result of our definition of a Veech group,
we do not have to deal with hyperellipticity.

– 73 –



Guillaume Tahar

Proof of Theorem 2.4. — Strata of dimension one are strata of flat sur-
faces of genus zero with n + p = 3 singularities. Automorphisms of the
sphere allow to fix three points so there is a unique surface up to scaling.
All of these flat surfaces have a unique saddle connection and therefore their
core is degenerated. Following proof of Theorem 2.1, their Veech group is of
continuous type.

In strata of dimension at least three, for any flat surface (X, q), we con-
sider the Z-module A in C generated by the holonomy vectors of the relative
homology classes. For a generic choice of periods of the relative homology,
there is no matrix of GL+(2,R) that preserves A. Therefore, the Veech group
of the generic surface in such strata is trivial.

In strata of dimension two, flat surfaces whose Veech group is of continu-
ous type lie a real codimension one subset of the stratum (holonomy vectors
of all relative homology classes are R-colinear). Therefore, outside this locus,
the Veech group of any surface is discrete.

If the Veech group of a flat surface is of cyclic parabolic type, then fol-
lowing Proposition 4.2, the core decomposes into finite volume cylinders. If
there are more than one cylinder in this decomposition, there are more than
two complex parameters of deformation of the flat metric. So the core of
such a flat surface is formed by a unique cylinder and maybe other saddle
connections. Following Theorem 3.7, the maximal number |A| of noncrossing
saddle connections is 6−β. It is also equal to 2+t. Since a cylinder is formed
by at least two ideal triangles, the number β of saddle connections in the
boundary is at most 2. If there were other saddle connections in the core
other than those that belong to the cylider or its boundary, their two sides
would belong to domains of poles and we would have β > 3. Consequently, in
flat surfaces whose Veech group is of cyclic parabolic type, the whole core is
a cylinder. Such a shape is shared by every flat surface of the same chamber,
see Subsection 3.7. Strata where such chambers exist has already be charac-
terized in [12]. These chambers appear in any stratum of the form Q(a,−a).
When the genus is zero, the closed geodesics of a cylinder cuts out the surface
into two connected components where the degrees of the singularities sum
to −2. Therefore, such chambers exist in strata Q(a,−12,−2−a) with a > 1
and Q(a, b,−a − 2,−b − 2) with a, b > 1. Outside the previous chambers
and the locus where the Veech group of the surfaces is of continuous type,
surfaces have a finite Veech group. The Veech group preserves the boundary
of the core and its action is that of a finite rotation group. In particular, its
action does not preserve any direction. If the Veech group of a flat surface
is not trivial, then the saddle connections of boundary of the core cannot
belong to the same direction. Since the maximal number |A| of noncrossing
saddle connections is 6 − β, the boundary of the core is formed by atmost
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three saddle connections. There are two loci where the Veech group may be
nontrivial:

(i) The core is an ideal triangle and its boundary is formed by three
saddle connections.

(ii) The core is degenerated and formed by two saddle connections.

In particular, if the core is not degenerated and bounded by two saddle
connections, the core is formed by two triangles and is a cylinder. This case
has already been settled. These loci are chambers in the stratum because
they are characterized by the topological shape of the core.

In the case (i), the only nontrivial action for the Veech group is to send
each of the three directions of thee saddle connections of the triangle to the
next one in the cyclic order. In this case, the action is conjugated to the
action of the rotations of order four. The Veech group in GL+(2,R)/{± Id}
is therefore isomorphic to Z/3Z.

In strata where g = 0 and p = 3, a nontrivial action should act faithfully
on the domains of the poles. Therefore, they should have the same degree.
In such strata Q(3b − 4,−b,−b,−b) with b > 2, there is a unique chamber
formed by surfaces where the three domains of poles (topological disks) are
glued on the three sides of an ideal triangle.

In strata where g = 0 and n = p = 2, two of the three saddle connections
would lie between two distinct conical singularities while the other would be
closed. Therefore, the Veech group could not act nontrivially on the sides of
the ideal triangle.

In strata where g = 0 and n = 3, the three vertices of the triangle would
be distinct conical singularities. The Veech group would act faithfully on
them so they should have the same degree. In such strata Q(a, a, a,−3a−4)
with a > 1, there is a unique chamber formed by surfaces where the core is
a triangle. Indeed, up to an action of GL+(2,R), we can assume the triangle
is equilateral. The angles of the domain of poles have the same magnitude
(5+3a)π

3 .

In strata Q(a,−a) with a > 2, we consider a flat surface where the core
is a triangle. There are three angles in the triangle and three angles in the
domain of the pole. For every pair of sides of the triangle, there is a loop
that leave the triangle by the first side and then return to the triangle by
the second side. There are three such elementary loops. If there is a nontriv-
ial action of the Veech group, then these elementary loops have the same
topological degree k

2 where k is an integer number. A direct computation of
the angles concerned by the loops show that the total angle in the surface
is 2π + 3kπ. Therefore, such a surface is in Q(3k,−3k) with k > 1. Since
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topological indexes and the shape of the core are the same for every surface
of a given chamber. Flat surfaces of Q(3k,−3k) where the Veech group is
isomorphic to Z/3Z are exactly those whose core is a triangle and whose
elementary loops have the same degree.

In the case (ii), the only nontrivial action for the Veech group is to inter-
change the two directions of the saddle connections. In this case, the action
is conjugated to the action of the rotations of order four. The Veech group in
GL+(2,R)/{± Id} is therefore isomorphic to Z/2Z. In a bidimensional stra-
tum, if the Veech group of a flat surface (X, q) is not of continuous type, the
GL+(2,R)-orbit of (X, q) is an open subset of the stratum. Since the Veech
group is invariant in a GL+(2,R)-orbit, we can assume saddle connections
have the same length and the magnitude of every angle is a multiple of π2 .

In strata where g = 0 and n = p = 2, there are two shapes of degenerate
core. In the first case, there is a closed saddle connection and one saddle
connection whose ends are distinct conical singularities. The Veech group
should preserve the closed saddle connection and its action could not be
conjugated to rotations of order four. Therefore, we assume surfaces are
formed by two domains of poles separated by a pair of saddle connections
ending in distinct conical singularities. Residues at the poles of even degree
are globally preserved by the action of the Veech group so we can assume
poles are of odd degree. If the poles have not the same degree, then every
domain of pole is preserved by rotations of order four and thus the two
angles of each domain of pole are congruent. Consequently, the two conical
singularities have the same degree. It is clear that the flat surface of Q(k+l−
1, k+ l−1,−2k−1,−2l−1) with k, l > 1 whose angles are (1+2k)π

2 , (1+2k)π
2 ,

(1+2l)π
2 and (1+2l)π

2 has a Veech group isomorphic to Z/2Z. If on the contrary,
the two poles have the same degree whereas the two conical singularities have
a different degree, then the action of the Veech group permutates the two
angles of each conical singularity. It is possible only if the total angle of each
conical singularity is an odd multiple of π. It is clear that the flat surface of
Q(2k−1, 2l−1,−k− l−1,−k− l−1) with k, l > 1 whose angles are (1+2k)π

2 ,
(1+2k)π

2 , (1+2l)π
2 and (1+2l)π

2 has a Veech group isomorphic to Z/2Z.

In strata where g = 0 and n = 1, there is a central domain of pole and
two peripherical domains of poles. If the Veech group acts by rotations of
order four, the directions of the two saddle connections are permuted so the
two peripherical poles have same degree. Similarly, the two angular sectors in
the central domain of pole should be congruent and of the form (2k+1)π

2 with
k > 1. Such a flat surface belongs to a stratum Q(2b+2k−3,−b,−b,−2k−1)
with b > 2 and k > 1. It is clear that such a flat surface is invariant by
rotations of order four.

– 76 –



Veech groups of flat surfaces with poles

Figure 6.1. A surface in Q(2,−2) whose Veech group is of cyclic par-
abolic type.

In strata where g = 0 and n = 3, there is a central conical singularity
from which start the two saddle connections ending in peripherical conical
singularities. There are two angular sectors around the central conical sin-
gularity and rotations of order four should transform each into the other.
Thus they have the same magnitude (2k+1)π

2 with k > 1. The central conical
singularity is of degree 2k − 1. Similarly, the peripherical conical singulari-
ties should have the same degree a. Consequently, in strata where g = 0 and
n = 3, flat surfaces with a Veech group isomorphic to Z/3Z are those that
belong to the unique GL+(2,R)-orbit of a surface this such precribed angles
in strata Q(2k − 1, a, a,−2a− 2k − 3) with k > 1 and a ∈ {−1} ∪ N∗.

In strata Q(a,−a) with a > 2, there are four angles in the flat surface.
Since they are angles between distinct saddle connections, their magnitude
is of the form (2k+1)π

2 . If the Veech group acts by rotation of order four, then
these angles have the same magnitude and the total angle in the flat surface
is (4k + 2)π. Therefore, the Veech group is isomorphic to Z/2Z if and only
if the flat surface belongs to the unique open GL+(2,R)-orbit of the surface
with four congruent angles in Q(4k,−4k) with k > 1. Such flat surfaces have
trivial holonomy. �

Example 6.1. — There is a chamber C in Q(2,−2) such that every surface
in C has a Veech group of cyclic parabolic type, see Figure 6.1.
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