ANNALES

DE LA FACULTE
DES SCIENCES

Mathématiques

A. B. GONCHAROV
Exponential complexes, period morphisms, and characteristic classes

Tome XXV, n°2-3 (2016), p. 619-681.
<http://afst.cedram.org/item?id=AFST_2016_6_25_2-3_619_0>

© Université Paul Sabatier, Toulouse, 2016, tous droits réservés.

L’acceés aux articles de la revue « Annales de la faculté des sci-
ences de Toulouse Mathématiques » (http://afst.cedram.org/), implique
I’accord avec les conditions générales d’utilisation (http://afst.cedram.
org/legal /). Toute reproduction en tout ou partie de cet article sous quelque
forme que ce soit pour tout usage autre que 1’utilisation a fin strictement
personnelle du copiste est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/



http://afst.cedram.org/item?id=AFST_2016_6_25_2-3_619_0
http://afst.cedram.org/
http://afst.cedram.org/legal/
http://afst.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/

Annales de la Faculté des Sciences de Toulouse Vol. XXV, n° 2-3, 2016
pp. 619-681

Exponential complexes, period morphisms,
and characteristic classes

A. B. GoncHAROV(D

To Vadim Schechtman on the occasion of his 60th birthday

RESUME. — Nous introduisons des complexes exponentiels de faisceaux
sur une variété. Il s’agit de résolutions des faisceaux (Tate-twistés) con-
stants de nombres rationnels généralisant la suite exacte courte exponen-
tielle. Il existe des applications canoniques de ces complexes vers le com-
plexe de de Rham. A 1’aide de celles-ci, et en calculant la cohomologie de
Deligne rationnelle, nous introduisons de nouveaux complexes que nous
appelons complexes de Deligne exponentiels. L’avantage de ces derniers
est qu’au moins au point générique d’une variété complexe on peut définir
P’application de régulateur de Beilinson vers la cohomologie de Deligne
rationnelle au niveau des complexes. En particulier, nous définissons des
morphismes de périodes a I’aide desquels nous construisons des homomor-
phismes entre les complexes motiviques et les complexes de Deligne expo-
nentiels en un point générique. En combinant cette construction avec celle
des classes de Chern a coefficients dans des bicomplexes, nous obtenons
une formule explicite, & 1’aide de polylogarithmes, pour les classes de
Chern a valeurs dans la cohomologie de Deligne rationnelle, en degré < 4.

ABSTRACT. — We introduce a weight n exponential complex of sheaves
Qg (n) on a manifold X:

On—-1) — 0" x0M-2) — .. - Q" 10" R0 — "0*. (1)

It is a resolution of the constant sheaf Q(n), generalising the classical
exponential sequence:

7(1) — 0 ZB 0*, 7(1) := 27il.
There is a canonical map from the complex Qg (n) to the de Rham com-
plex Q° of X. Using it, we define a weight n exponential Deligne comple,
calculating rational Deligne cohomology:

I'p(X;n):= Cone(@f;(n) @ FZ"Q° — Q‘) [—1].

Its main advantage is that, at least at the generic point X of a complex
variety X, it allows to define Beilinson’s regulator map to the rational
Deligne cohomology on the level of complexes. (A regulator map to real
Deligne complexes for any regular complex variety is known [18]).
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Namely, we define a weight n period morphism. We use it to define a map
of complexes
a weight n motivic complex of X —
the weight n exponential complex of X. (2)

We show that it gives rise to a map of complexes
a weight n motivic complex of X —

the weight n exponential Deligne complex of X. (3)
It induces Beilinson’s regulator map on the cohomology.
Combining the map (3) with the construction of Chern classes with co-
efficients in the bigrassmannian complexes [17], we get a local explicit
formula for the n-th Chern class in the rational Deligne cohomology via
polylogarithms, at least for n < 4. Equivalently, we get an explicit con-
struction for the universal Chern class in the rational Deligne cohomology

cP € H*"(BGLN(C),T'p(n)), n < 4.

In particular, this gives explicit formulas for Cech cocycles for the topo-
logical Chern classes.
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1. Introduction, main definitions, and examples
1.1. A motivation: local construction of Chern classes

Topological invariants can often be localised by introducing additional
structures of local nature.

For example, the topological Chern classes of a vector bundle E on a
manifold can be localised by introducing a connection V on E: the differ-
ential form (27i) " Tr(F&), where Fy is the curvature of V, is a de Rham
representative of the Chern class ¢, (E).

In this paper we address the problem of a local construction of ex-
plicit Cech cocycles representing the Chern classes. A construction of Chern
classes with values in the bigrassmannian complex was given in [17]. To get
from there a local formula for topological Chern classes, or Chern classes in
the rational Deligne cohomology, one needs a transcendental construction
relying on polylogarithms. It should handle the complicated multivalued
nature of polylogarithms.

We develop such a construction. We define a weight n exponential com-
plex, which is a resolution of the constant sheaf Q(n) on a manifold. Using
it, we define a new complex calculating the rational Deligne cohomology,
and construct a period morphism, which gives rise to a regulator map on
the level of complexes at the generic point of a complex algebraic variety.
Yet, more work needs to be done to find a local construction of the Chern
classes ¢, (F) when n > 4.

Let us now look at the problem in detail in the simplest possible case.

1. The first Chern class. Let E be a complex line bundle on a real manifold
X. Here is a classical construction of a Cech cocycle representing the first
Chern class

c1(F) € H*(X,Z(1)).
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Take a cover of X by open subsets U; such that all intersections U;,N...NU;,
are empty or contractible. The restriction of FE to U; is trivial, so we may
choose a nonvanishing section s;. The ratio s;/s; is an invertible function
on U; NU;. Choose a branch of log(s;/s;). Then there is a 2-cocycle in the
Cech complex of the cover, whose cohomology class is ¢1 (F):

U;NU; NU, — log(s;/s;) —log(s;/sk) + log(sk/si) € 2milL.

Equivalently, take the short exact exponential sequence of sheaves on X,
where O is the structure sheaf of continuous complex valued functions:

Z(1) — 0 28 0",
Then the above construction just means the following:

1. We assign to a complex line bundle F on X a Cech cocycle representing
its class
c(E) € HY(X,0%).

2. We calculate the coboundary map in the exponential complex:
§: HY(X,0%) — H*(X,Z(1)).

Then
S(cl(E)) = c1(E) € H*(X,Z(1)).

For an arbitrary vector bundle E, ¢;(E) := ¢1(det(E)). The construction
works the same way for complex manifolds.

The first step is algebraic: the class cl(E) € H'(X,0*) makes sense in
Zariski topology.

The second step is transcendental. The very existence of the integral
class ¢1 (F) reflects the failure of the complex logarithm log(z) to satisfy the
functional equation. And yet the functional equation log(zy) = log x +logy
is satisfied on the real positive axis, and determines the logarithm uniquely.

Our starting point was the following problem:

Find similar in spirit “local formulas” for all Chern classes of a vector
bundle on X.

2. The second Chern class. The next is a local formula for the second Chern
class. It is much deeper. We discuss in Section 1.7 the case when the vector
bundle is two-dimensional - the case of an arbitrary vector bundle requires
additional ideas, and postponed till Section 4.

- 622 -
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Here we see a similar phenomenon: the local formula for the second Chern
class in H*(X,Z(2)) requires the dilogarithm function, and reflects all its
beautiful properties at once:

e The monodromy of the dilogarithm.

e The differential equation of the dilogarithm.

e Abel’s five term relation, or better the failure of the complex dilog-
arithm to satisfy it. Yet, the five term relation on the real positive
locus is clean, and determines the dilogarithm.

The relevance of the real dilogarithm for the first Pontryagin class was
discovered by Gabrielov, Gelfand and Losik [14]. Few years later, the rele-
vance of the complex dilogarithm for the codimension two algebraic cycles
and regulators was discovered by Spencer Bloch [8], [9].

Our formula for the second Chern class of a two-dimensional vector bun-
dle is in the middle.

The construction of the universal second motivic Chern class from [17]
had several applications in low dimensional geometry and mathematical
physics, e.g. [12]. It provides a motivic point of view on the Chern-Simons
theory. It is of cluster nature, and can be quantised using the quantum
dilogarithm [13]. The present paper just clarifies its Hodge-theoretic aspect.

The local formula for the third motivic Chern class has the same level of
precision. In particular it is of cluster nature. However, strangely enough, it
did not have any application in geometry yet. Its quantisation is a tantalising
open problem.

1.2. Exponential complexes

DEFINITION 1.1. — The weight n exponential complex Qg(n) is the fol-
lowing complex of sheaves on a manifold X, concentrated in degrees [0,n]:

On—-1)—0"20MnN-2) — .. — " 0" R0 — @"0*. (1.1)
The differential is
d:0"2...00"02711 ®...0211 — 0" ® ... 0" 02T ® ... R 271,

k-1 times n-k times k times n-k-1 (tim)es
1.2

MR. a1 RbR2TI X ... R 27 —>
—_—————

n-k times

1.3
a4 ® ... ®ap—1 @exp(b) @2 2T @ ... ® 2mi . (1.3)
N—————

n-k-1 times
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To check that we get a complex, observe that each map d? involves a
factor exp(27i) = 1:

. ®bR2miR2mi ...~ . .®exp(b)R2miR2mi . . . I .exp(b)®exp(2mi)R27i . . . .

For example, Z%(1) is the classical exponential resolution of Z(1).

The complex Qg (2) looks as follows:
01 —-0"®0 —0"r0".
b® 2mi — exp(b) ® 2mi, a ® b+— a ® exp(b).

The map Q(n) — O(n — 1) gives rise to a map of complexes Q(n) —
Qg (n). The cone of this map is acyclic. So the exponential complex is a
resolution of the constant sheaf Q(n).

The holomorphic de Rham complex on a complex manifold X is a reso-
lution of the constant sheaf C:

(R o LISy o S INY o RN (1.4)
Let X be a regular complex algebraic variety. Take a compactification X
of X such that D := X — X is a normal crossing divisor. The de Rham
complex Q. of forms with logarithmic singularities at infinity is a complex

of sheaves in the classical topology on X, given by the forms with logarithmic
singularities at D.

The canonical embedding Q(n) < C gives rise to a canonical morphism
of the resolutions

Q) :Qg(n) — Of, (1.5)
defined in the next Lemma.
LEMMA 1.2. — There is a canonical morphism of complezxes of sheaves
on X:

On-1 — 0*®0n-2) —..— U100 — "O*

1o Lol Loy Lol
QO 4, oL, BLIGLN opt — 0
Here

QM (2™ 1 @@ frn ® g) =
(2ri) "N (—1)™g - dlog fi A ... Adlog f, m < n,
QM (fL® ... ® f,) = (—=1)"dlog fi A ... Adlog f,.
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1.3. Exponential Deligne complexes.

Let X be a complex manifold. Consider a subcomplex of the holomorphic
(1.6)

de Rham complex:
FrQ®:=Q" - Q" . cQ°.

The weight n rational Deligne complex on X is defined as a complex of
(1.7)

sheaves
Qp(n) := Cone(@(n) P F'Q* — Q') [—1].
(1.8)

Complex (1.7) is quasiisomorphic to
Qn) — 0 -4 o 4 L ont

Let X be a regular complex algebraic variety. The Beilinson-Deligne com-
plex Qp(n) [2] is a complex of sheaves in the classical topology on X given

by the total complex of the bicomplex
n d d
Q(n) o, — ot —
Qp(n) == | 1= 1=
a, L oo, 5% Lo, b oot b
DEFINITION 1.3. — The weight n exponential Deligne complex is a com-
plex
'p(n) := Cone (@:E(n) @ F"Q% — QX) 1] (1.9)

obtained by replacing Q(n) in (1.7) by its exponential resolution Qy(n), and

using the map (1.5).
2 we get the total complex of the following

d

For example, when n
bicomplex:
o1 — o0*®0 — o0'gor @ 9 L o, L
rp(2):= 40 Logt ol N, = =
e 4L oo L 0%, 4oep, L
The quotient of complex (1.9) by the acyclic subcomplex Cone (F "% —
®"O*

F"Q}) [—1] is a quasiisomorphic complex
On-1) — O0*®0n—-2) —...— " I0"R0 —
\ \ 4
4 L, SN apt
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1.4. Period morphisms

Recall the basic fact, reviewed in Section 2.1, that the equivalence classes
of variations of framed mixed Q-Hodge-Tate structures on a complex man-
ifold X give rise to a sheaf of graded commutative Hopf algebras over Q:

e = @M
n=0

One has Ho = Q, H1 = Of = O*®Q. The reduced coproduct A Hsg —
®2H~¢ give rise to the reduced cobar complex, graded by the weight:
Moo 2 Hoo @ Hoo 25 o 2 @ Mo,

In Section 3 we present our main construction, valid in the category of
complex manifolds:

THEOREM 1.4. — There is a canonical map of complexes of sheaves,
called the period morphism:

the weight n part of cobar complex of H, —

the weight n exponential complex Qg (n). (1.10)
In a more elaborate form, it looks as follows:
Hn 2y He0@Hso)w S B @
LP} L P2 —| Py

On-1 — 0*00Mn-2) — 0*0MN-3) —..— Q"0f
(1.11)
The map (1.11) has the following properties:

er the identification H, = e map is the identity map.
1) After the identification H1 = Og th P! is the identit
(2) The map P} is the big period map from [21].
e composition S o Py is zero unless k = n, i.e. everywhere excep
3) Th tion ko PY less k j h t
on the very right.

Condition 3) just means that the following composition is zero:

A A/ A

Hn — (Hs0® Hso0)n — .= (@ "Hs0)n

\ } 1
0*®0n—-2) — 0*'x0*®0Nn-3) —..— Q" 10*®0

) } 1

Q! BN 02 d, 4, Qn-1
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Ezxample: n = 2.— Then we have a map

Ho — ®2H1
\ 1=
o) — 00 — &0

The period morphism to the exponential Deligne complex. Let us use period
morphism (1.11) and its properties provided by Theorem 1.4 to define a
map of complexes of sheaves

the weight n part of the reduced cobar complex of He — L1
1
the weight n exponential Deligne complex Tp(X;n). (1.12)

Let us recall that
T'p(X;n) = Cone((@]'.:(X; n) @ FrQ% — QX) [~1]. (1.13)

Therefore a map to the complex (1.13) has three components:

(1) The exponential complex Qg (X,n) component;
(2) The Hodge filtration F™)® component;
(3) The de Rham complex Q% component.

We define these components as follows.
(1) The Qg (X, n)-component is just the period morphism:

H, LY Mo ®@Hso)n B @'

L7 1P —L B
On-1) — 0*@0Mn-2) — @KO*@0MN-3) —..— "0
(2) The F™Q*-component is given by the map
—®"dlog: @"H1 — Q%, (f1,.., [n) —> —dlog fiN...Adlog f,. (1.14)

(3) The de Rham complex component is zero.
Here is how the map (1.12) looks in the weight two. The top row is the

weight 2 reduced cobar complex. The second and third rows provide us a
bicomplex whose total is the weight two exponential Deligne complex. The

- 627 -
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map is given by the first row of vertical arrows:

A/

Ho — Hi1®@ Hq

1L P} = N\ — ®2 dlog
o1 — 00 — 0 *RO0" D 02, 4o, 5
= Lol QP N\ = 1=
I SN oz, - o, 5

THEOREM 1.5. — The map defined by the components 1)-3) is a homo-
morphism of complexes.

Proof.— By Theorem 1.4, the component 1) is a homomorphism of com-
plexes. The component 2) is also a homomorphism of complexes. Indeed, the
forms in the image of the map (1.14) are evidently closed. So the statement
reduces to the claim that the following composition is zero:

(®n717‘{>0) il) Q"H, — Q"

This follows from the n = 2 case, telling that (see Theorem 2.11) thanks to
the Griffith transversality, the following composition is zero:

Ho A)?'[l ® Hq — Qb

After that the Theorem reduces to properties 1) and 3) of the period map
in Theorem 1.4. O

Alternatively, using the reduced model (1.11) for the exponential Deligne
complex, the homomorphism (1.12) is given just by the period morphism:

H’I’L A} (H>0 ® H>0) A} “ee i’) (®n_1H>O) i’) ®7LH1
LY VPP LRy LB
On-1) — 0*®@0mn-2) —..— @000 = "0
A \ 1
d d d "
Qo -y o, .= ot
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1.5. A map: Bloch complex — weight two exponential Deligne
complex

The Bloch complex as a “resolution” of Milnor’s Ko. Given a field F, the
Milnor group K»(F) is the quotient of the group F* ® F* by a subgroup
generated by Steinberg relations (1 — z) ® x where z € F* — {1} [30]. Since
T ®y+y®xis a sum of Steinberg relations,

AN2F*

Ky(F) = .
2(F) subgroup generated by Steinberg relations

(1.15)

In other words, the group Ko(F') is the cokernel of the map
§: Z[F* — {1}] — N2F™, {z} — (1—2) A
where {z} is the generator of Z[F* — {1}] corresponding to an x € F* —{1}.

Recall the cross-ration of four points on the projective line:
(51— 54)(52 — 53)

(51— s3)(s2 — 84).

Let Ro(F) be the subgroup of Z[F* — {1}] generated by the “five term
relations”

(1.16)

7“(51,82753,84) =

5
S (=DHr(s1, 08000 85)}, si €PHF),  si # s (1.17)
i=1
It is well known that 6(R2(F')) = 0 (see Lemma 1.8). Let us set
Z[F* — {1}]
By (F) =
2(F) o)
Then the map ¢ gives rise to a homomorphism
§: Bo(F) — N?F*. (1.18)

Let {x}2 € Ba(F) be the image of {x}. We add {0}2 = {1}2 = {oc0}2 =0,
annihilated by . We view (1.18) as a complex, called the Bloch complez [9],
[31], [11], placed in degrees [1,2].

Consider a twin of the weight two exponential complex, which we call
the weight two Lie-exponential complex,! which is a complex of sheaves on
X in degrees [0, 2]:

QL(2) = O(1) —s A20 " 20", (1.19)

IThe prefix Lie refers to the fact that the period map in this case is a map from the
standard Chevalley-Eilenberg complex of the Lie coalgebra L, associated with the Hopf
algebra H.. See Section 2.4 for the definition of Lie-exponential complexes and discussion
of the Lie-period maps for them.
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The differentials are given as follows:
2mi @ a — 2mi A a, a Ab+— exp(a) A exp(b). (1.20)
There is a canonical map of complexes:
Q(2) — Q2(2), (2mi)? — 27i ® 2mi.

Therefore one can easily see that Qg(2) is a resolution of Q(2).

Let us sheafify the Bloch complex to a complex of sheaves on X:
B*(2) := By(0) — A20O*. (1.21)
Let us define a map of complexes

By(0) — A20*
1 p2 1= (1.22)

2
0(1) — A0 = A20r
To define the homomorphism po, we set

Todt dt vodt v dt
Li = ——o—, —log(l—2x) = — 1 = —. (1.2
o) = [ T —lost—a) = [ (T ome = [ S (129)

Here all integrals are along the same path from 0 to z. The last one is
regularised using the tangential base point at 0 dual to dt. When |z| < 1,
we have standard power series expansions
gt . gt
—log(l —z) = 2_:1 —, Lix(z) = Z:l —
Then we set, modifying slightly the original construction of Spencer Bloch
(9],
(27i)?
24 7

1
Lo(z) := Lig(z) + 3 -log(1l — x)logx +

1 1
p2({x}e) == 3 log(1 — ) Alog @ + 2mi A Q—MLQ(I).
Notice that 27 A % =0 in A%C. Indeed, for any integer N we have 2mi A
ni — _N. % A % = 0. Yet it is handy to keep the summand @ri)* 5

N 24
Ly (), although it does not change 2mi A 5--La(z).

i

n

LEMMA 1.6. — i) The map py is well defined on Z[C* — {1}], i.e. does
not depend on the monodromy of the logarithms and the dilogarithm along
the path ~v in (1.23).

it) The map pa sends the five term relations to zero.

- 630 -



Exponential complexes, period morphisms, and characteristic classes

Proof.— The part 1) is easy to check using well known monodromy proper-
ties of the dilogarithm.

Let us prove the five term relation. Recall the map
09 : ZIC(t)" — {1} — C(t)* AC(t)", {z}— (1 —2) Ax.
Then we have a commutative diagram:

Ker 6y — Z[CH)* —{1}]] 2 C(t)* ACH)*

! Lpo =

C)(1) —  CH)ACH) =B C@O)*AC@H)*.
It implies that po(Ker d2) C 2mi A C(t). Next, let us consider a map
1
w:A0 — QY fAg— i(fdgfgdf). (1.24)
The differential equation for the dilogarithm function is
1
dLs(z) = 3 (— log(1 — ) dlogx + logx dlog(1 — x)) (1.25)
It just means that the following composition is zero:
Z[C(t)* — {1}]] 22 A%C(t) = QL. (1.26)
The kernel of the map w : 2mi A C(t) — Q! is 27i A C. This implies that
p2(Ker 62) € 2mi A C.

Given a configuration of five distinct points (21, ...,25) on CP!, denote by
Ry (1, ...,x5) € Z[C] the corresponding five-term relation element (1.17).
Since it lies in the kernel of the map d-, applying the map ps to it we get a
constant:

(21, ..., X5) 1= Do (Rg(:cl, vees x5))€ 2mi A C.

Let us calculate this constant. Similar argument shows that we have con-
stants

b(z) :=pa({x}oe + {1 —2}2) € 2miAC, c(z) := po({x}a+{x™1}2) € 27i AC.
One has b(z) = c¢(z). Indeed, they tautologically coincide if = solves the
equation 1 — z = z~!'. Thus they must coincide for any z € C* — 1. On
the other hand, switching the last two points in the cross-ratio we get
r(z1, T2, 23, 74) = 7(21, T2, 14, x3) L. Therefore

(w1, 2, 73,74, 75) + (71, T2, 3, 5, 74) = c(T).

Finally, b(x) = 0 for x € (0,1). Indeed, log(1—x)Alog z+log zAlog(l—z) =
0, and each term of Lo(x) is well defined if = € (0,1). So it is sufficient to
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show that La(z) 4+ La(1 — ) = 0. One has d(La(z) + Lo(1 — x)) = 0. The
limit of La(x) + La(1 — 2) as @ — 1 is 0 due to Liz(1) = 72/6. O

Recall that the weight two rational Deligne complex Q%(2) is a complex
of sheaves on X in degrees [0, 2]:

Q(2)
Qp(2) = 1
o L o

Consider the following version of the exponential Deligne complex, which
we call the weight two Lie-exponential Deligne complex, and abusing nota-
tion denote also by I'p(2), obtained by replacing the constant sheaf Q(2)
by its Lie-exponential resolution Q%(2). It is a complex of sheaves in the
classical topology on X associated with the following bicomplex:

ol — ONO — O*NO*
I'p(2) := J= Jw

o 4 o

PROPOSITION 1.7. — There is a canonical morphism of complexes of
sheaves
rp: B%(2) — I'p(2). (1.27)
Proof.— Let us define the map (1.27) as a morphism of complexes:
By(0) — A20*

1 p2 11d
o) — A0 — A0*
1= lw
o — o

Here the top raw is the sheafified Bloch complex, and the bottom two raws
describe the weight two Lie-exponential Deligne complex. The morphism
of the first raw to the second is given by the maps (ps,Id). The other
components of the morphism are zero.

To show that this is a map of complexes we use two facts:
1. The top right square is commutative by the definition of the map ps.

2. The composition By(0) 22 A20 5 Q' is zero by the differential
equation for the dilogarithm.

O
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Applications to regulators. Let us look at the dilogarithm regulator map for
Spec(C):
By(C) — AZC*
L p2 ] 1= (1.28)
C (1) — AC =P A2t
It implies that there is a canonical map
Ker(Bg((C) N A2<c*) L Cr(1) = Ker<A2(C s A2<C*).
According to a theorem of Suslin [32], one has
Ker (BQ((C) N A%C*) ®Q = Ki"(C) @ Q.
So we get an explicit construction of Beilinson’s regulator map
KPd(C) — C*(1).

1.6. Regulator maps: motivic complexes — exponential Deligne
complexes

Motivic complexes and regulators. According to Beilinson [3], for any scheme
X over Q, and for each integer n > 0, one should have a complex of sheaves
Zam(X;n) in the Zariski topology on X, called the weight n motivic com-
plex of sheaves on X, well defined in the derived category. For example,
Zm(X;0) = Z, and Zpm(X;1) = O%[—1]. Beilinson’s formula relates its
cohomology to the weight n pieces for the Adams filtration on Quillen’s
K-groups of X:

HY(Zp(X5n) © Q) = grl Kop—i(X) © Q. (1.29)
Beilinson defined higher regulator maps, with the source understood by
(1.29):

H%ar(ZM(X;n) ® Q) — HZ(Xv Q'D(n))

Let X be a regular complex algebraic variety. We want to have higher
regulator maps on the level of complexes. Motivic complexes are complexes
of sheaves in the Zarisky topology on X, while the Beilinson-Deligne com-
plexes are complexes of sheaves in the classical topology on X. To relate
them, let us consider a map of sites

7 : Classical site — Zariski site.

Then the problem is interpreted as a problem of of construction of a map
of complexes
Zm(X;n) — Rm.Qp(X;n). (1.30)
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We address this problem at the generic point X of X — this is sufficient for
local explicit formulas for the Chern classes. Notice that the R, is highly
non-trivial since the constant sheaf Qy has complicated cohomology at the
generic point.

It is unlikely that one can construct a map just to the Beilinson-Deligne
complex on X.

Our point is that replacing the constant sheaf Qx by its exponential
resolution and considering the exponential Deligne complex I'p(X;n), one
should be able to define a map of complexes

Zm(X;n) — mIp(X;n). (1.31)

Combining it with the map 7, I'p(X;n) - Rr.I'p(X;n) we get a regulator
map (1.30) for X.

Here is our strategy to define a map (1.31). We make the following as-
sumption:

The motivic complex Qa(X;n) can be constructed as the weight n part of
the cobar complex of a graded commutative Hopf algebra A.(X), the motivic
Tate Hopf algebra, graded by Z>.

Then the Hodge realisation provides a map of Hopf algebras
A (X) — Hao(X).
It induces a map of their cobar complexes:

the weight n part of the cobar complex of A.(X) —

1.32
the weight n part of the cobar complex of H.(X). (1.32)

Composing (1.10) and (1.12) we arrive at a map of complexes

P : Qum(X;n) — the weight n exponential Deligne complex T'p(X;n).
(1.33)

The induced map on the cohomology provides higher regulators.

Using the polylogarithmic complexes, we can avoid assumptions about
the existence of the motivic Hopf algebra when n < 3. So in this case the
construction goes through unconditionally. In general there is the Bloch-Kriz
construction of the motivic Tate Hopf algebra [10]. However their Hodge
realisation map deserves a more explicit construction.
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1.7. A local formula for the second Chern class of a two-dimensional
vector bundle

We consider complex vector bundles on real manifolds, and produce a
local formula for a Cech cocycle representing the topological second Chern
class, as well as the second Chern class in the integral Deligne cohomology.
All constructions can be applied to vector bundles over complex manifolds.
The algebraic part of the construction makes sense in Zariski topology.

Given a two-dimensional vector bundle E on a manifold X, pick a cover
{U;} of X by open sets such that all intersections U, ;, := U, N...NU;, are
empty or contractible. Choose a non-zero regular section s; on each open
set U;. Then,

e For a three open sets Uy, Us, Us there are three sections si, ss, s3
over Ujaz. They provide a section

l2($1, S92, 53) S 05123 XKz 05123'
Namely, pick a volume form w € det(E&lzg) on the restriction of
to U123. Set
A(si, 85) = (w, 8; A 8;),
lg(Sl, S92, 83) = A(Sl, Sz)/\A(SQ, S3)+A(Sg, 83)/\A(81, Sg)—l—A(Sl, 83)/\A(51, 82).
(1.34)
This expression does not depend on the choice of the volume form
w.
e For any four open sets Uy, Us,Us, U, take the cross-ratio of the
restriction of the four sections to Ujszy:
A(s1, 84)A(s2, 83)
A(s1,53)A(s2,84)

The Pliicker identity implies that it satisfies the crucial relation

(81,582,583, 84) 1= € Of,pas (1.35)
(1 —r(s1,s2,83,84)) Ar(s1,52,53,54) = (1.36)

lo(s2,83,84) — la(s1,83,54) + la(s1, 52, 54) — 1251, 52, 53).

Recall the map d : Z[F* — {1}] — A2F*, given by {z} — (1 —x) A 2.

Recall the subgroup Ra(F) C Z[F* — {1}] generated by the “five term
relations” (1.17).

LEMMA 1.8. — One has 6(R2(F')) = 0.

Proof.— Denote by C,,(k) the free abelian group generated by the configu-
rations of n vectors in generic position in a k-dimensional vector space over
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a field F'. It follows from (1.36) that there is a map of complexes

o2 L ae L e
Lo Lh Lz (1.37)

Ry(F) = Z[F*—{1}] -5 A2F*
Here the map [y is given by (1.34), the map [y is given by (s1,...,84) —
{r(s1,...,54)}, and the map ly assigns to a configuration of five generic
vectors (s1, ..., 85) the configuration of the corresponding five points on P*.
O

Setting Bo(F) := Z[F* — {1}]/R2(F) we get the Bloch complex § :
Bo(F) — A2F*.

Our construction delivers a Cech cochain C, for the covering {U;} of
total degree four with values in the sheafified Bloch complex

B*(2) = By(0) — A0 (1.38)
It has two components given by (1.34) and (1.35):
C3(Us, Uy, Uy) € A0y, and Cy(Us, Uy, Uy, Uy) € Ba(Ou,,y,)-

Condition (1.36) plus the five term relations (1.17) just mean that it is a
cocycle. It represents the second motivic Chern class of the vector bundle
E:

M 4 °

¢y (E) e HY(X,B*(2)). (1.39)

Remark.— The name refers to a construction of the second universal motivic
Chern class of Milnor’s simplicial model BG Ly, of the classifying space
BGLQZ
)" € HY(BGLae, Zpa(2)).

Here Z a4 (2) is the weight two motivic complex, which is a complex of sheaves
in Zariski topology on the simplicial scheme BG La,. It is defined by applying
the Gersten resolution to the Bloch complex at the generic point. A complex
two dimensional vector bundle on a manifold X equipped with a Cech cover
can be described as the pull back of the universal bundle over BG Loo. Then
the class ¢3! pulls back to the class (1.39).

We use the classical topology, aiming at a local formula for the topological
Chern class
co(E) € HY(X,Z(2)).
To get it from the motivic one (1.39) is a non-trivial problem. Although it is
asking for the dilogarithm, we have to deal with its complicated multivalued
nature. We employ the weight two Lie-exponential complex to handle this
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problem, and construct a cocycle representing the second Chern class in the
weight two Lie-exponential Deligne complex

cP(E) € H*(X,Tp(2)). (1.40)

Recall the weight two Lie-exponential complex of sheaves:

Q:(2) = O(1) —s A20 " 20", (1.41)
2w @ a — 2mi A a, a Ab+— exp(a) A exp(b). (1.42)

It is a resolution of Q(2). Recall a map of complexes (1.22):
By(0) —  A20O*
1 p2 ) 1= (1.43)
0(1) — A0 = A0
Here
(27i)?
24 7

1
Lo(x) := Lig(x) + B log(1 — x)logx +
1 o1
p2({x}e) == 3 log(1 — ) Alog @ + 2mi A %Lg(m).

Recall the weight two Lie-exponential Deligne complex I'p(2):

o1 — ONO — O*NO*
T'p(2) = = lw !

o 4L o - 0

By Proposition 1.7, there is a canonical morphism of complexes of sheaves

rp i B(2) — Tp(2). (1.44)

The Cech cocycle (C3, Cy) representing a class in H*(X,B*(2)), combined
with a morphism of complexes (1.44), delivers a Cech cocycle representing
the second Chern class ¢I’(FE) in (1.40).

Namely, we start with the Cech cocycle (Cs, Cy) with values in the Bloch
complex:
Cy € Bo(0) 25 Cy € A207,
Let us define a Cech cochain (Cs, 53, 54, 55) with values in the weight two
Lie-exponential complex, organised as follows:
=~ =~ =~ 26)(
Cse7(2) -5 Cie0o(l) -5 Cier20 2 cye N0
(1.45)
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e For any three open sets Uy, Us, Us, let us define
53(U1> UZa U3) € A2OU123‘

Namely, we choose a branch of each log A(s;, s;) on Uses, and set

C3(U1, Us, U3) = log A(Sl, 82) Alog A(827 Sg) (146)

+log A(s2, s3) Alog A(s1,s3) + log A(s1, s3) Alog A(sy, s2). (1.47)

e We assign to any four open sets Uy, Us, Us, Uy an element

C'4(U17 U2> U3a U4) € OU1234(1)'

To define it, we use an isomorphism, see (1.19) - (1.20):
Ov(1)/Z(2) = Z(1) AOy(1) = Ker(A20U o A20;;).

So we exhibit an element in A?2Oy,,,, which is in the kernel of the
A2?exp map:

04(U17 U27 U3a U4) =

_ 1
(0cech © C3)(Uy, Uz, Us, Uy) — 2mi A %LQ(T(Sh 82,53,54))

+log(1 —r(s1, s2, 83, 84)) Alogr(st, s2, 83, 84). (1.48)
To find 64(U17 Us,Us, Uy) explicitly we start with an equality in
/\2081234:

(0cech © C3) (U1, Uz, Us, Us) + (6B1och © Ca) (U1, Us, Us, Us) =0,  (1.49)
which is just equivalent to (1.36). It follows that

(5Cech o 53)((]17 U27 U37 U4) + (p2 o 04)(U1a UQ; U37 U4)

1
=27 A\ TLQ(T(S:“ S2,83,84)) + 2mi A log F.
i

So we set, “dropping” 2miA in the last formula:

C4(U1, Us, Us, U4) = %LQ(T(Sl, S92, 83, 84)) + log F.

The “correction term” 27mi A log F' shows up as follows. Since
log(fg) — log(f) —log(g) is a locally constant function with values
in 27miZ, an equality ), f; A g; = 0, which in our case is just the
equality (1.49), implies only that, after we choose branches of log( f;)
and log(g;) on a contractible set, . log(f;) Alog(g;) = 2miAlog F.
Notice that in our case the choices of the branches of log consist of
the choices made in (1.47) and (1.48)
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e Finally, to any five open sets Uy, Us, Us, Uy, Us we assign an element

5
Cs(U1,Us,Us, Uy, Us) := Y (=1)'Ca(Ur, ..., Ui, ..., Us) € (27)*Q.

i=1

A priory this sum lives in Oy,,,,,. We claim that it is annihilated

by the differential in the exponential complex. Indeed, the Cech

coboundary of the first line (1.48) is zero due to the five term relation

for the A2C-valued dilogarithm, that is since the map ps sends the

five term relation to zero. For the second line this is just 62, = 0.

Therefore CP € (271)2Q.

We get a cocycle in the Cech complex with coefficients in the Lie-exponential
Deligne complex. It represents the second Chern class ¢ (E), and hence the
usual Chern class.

1.8. Explicit formulas for the universal Chern classes.

Let us formulate our approach to local formulas for the Chern classes.
Denote by BG LY, the classifying space for GLy. The * stands for an open
“generic” part BGL} of Milnor’s BG Le, which is a model of the classifying
space. One should construct universal Chern classes of BG L}, with values
in the exponential Deligne complex:

c? € H*™(BGLYy,,T'p(n)). (1.50)
They induce explicit cocycles for the Chern classes in a given Cech cover.

We define the universal Chern classes in three steps.

(1) An explicit formula for the Chern classes with values in the bigrass-
mannian complexes BC(n) [17].
(2) A map from the bigrassmannian complex to a motivic complex.

There are several flavors of the problem, depending on our choice
of the motivic complex.

When n = 1, 2, 3 there is a map of the bigrassmannian complex to
the polylogarithmic motivic complexes B®(n). The latter reflects the
motivic nature of the classical polylogarithms. For example, B®*(2)
is the Bloch complex. For n = 4 there is also an explicit map to the
motivic complex. So for n < 4 there is a satisfactory construction.

So we should get the universal motivic Chern class?

M e HZ" (BGLye, Z(n)). (1.51)
2Here we do not need to restrict to BGLY.
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(3) A map from the motivic complex to the weight n exponential com-
plex Q%(n), which allows to promote the class it (1.51) to the
universal Chern class (1.50).

One could probably combine Steps 2 and 3, to define an explicit map from
the bigrassmannian complex to the weight n exponential complex. Its most
non-trivial part follows from the motivic construction of the Grassmannian
n-logarithm in [25]. However the problem is open for n > 4.

In contrast with this, the problem of explicit construction of Chern classes
with values in the real Deligne cohomology is solved for all weights n: one
combines the Step 1 with the construction of a map from bigrassmannian
complex to the real Deligne complex given in [18].

An approach to construction of Grassmannian polylogarithms was devel-
oped by Hanamura and MacPherson [26].

Organisation of the paper. In Section 2 we recall the definition of the fun-
damental Hodge-Tate Hopf algebra H.,, and then construct the period mor-
phism.

In Section 3 we calculate the period morphism from the polylogarithmic
motivic complexes of weights < 4 to the Lie-exponential complexes.

Section 4 mostly borrowed from [17]. We recall the construction of charac-
teristic classes using the bigrassmannian complex, articulating the role of the
hypersimplices, and then recall the map from the bigrassmannian complex
to the motivic complexes of weights < 4. Combining with the construction
of the period morphisms from Section 2 we get an explicit construction of
the universal Chern classes of weights < 4.

Section 5 is a continuation of Section 2: we show that the C/R(n)-part
of the canonical map

wy : the Lie-exponential complex — the de Rham complex Q°

M
is homotopic to zero, and construct the homotopy, getting a regulator map
to the real Deligne complex.
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during the Summer of 2015. I am grateful to the NSF and THES for the
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2. Period morphisms

2.1. The Q-Hodge-Tate Hopf algebra, and the period morphisms

The algebra background. Consider a graded commutative Hopf algebra over
Q with a unit:

A, = D52 Ak (2.1)
Let A: A, — A, ® A, be the coproduct. The quotient

. A*

CoLie(A,) := Ao AL,

is a graded Lie coalgebra with the cobracket § induced by the coproduct
A on A,. Let Lie(A,) be its graded dual. Then the universal enveloping
algebra of the Lie algebra Lie(A,) is the graded dual to the Hopf algebra
A,, assuming that all graded components are finite dimensional.

Consider the reduced coproduct
AN=A-Ide®1+1®Id): Ay — Ao ® Asg

The reduced cobar complex of the Hopf algebra A, is the following complex
starting in degree 1:

A 4,04, 8 Bena, B
ANar®...®a,) =Y (a1 ®...0A(a)®... @an.
k=1

The standard cochain complex of the Lie coalgebra CoLie(A,) is given
by
CoLie(A,) % A2CoLie(A,) — A3CoLie(4,) -2 . ...

These two complexes are canonically quasiisomorphic. The degree n > 0
part of either of them calculates RHomy4, (Q(0), Q(n)) in the category of
graded A,-comodules, or, what is the same, graded CoLie( A, )-comodules,
where Q(n) is the trivial one dimensional comodule in degree —n.

The fundamental Hopf algebra of the category of mized Hodge-Tate struc-
tures. For the convenience of the reader I recall some definitions from [BGSV].
See details in [21, Section 4].

A a mixed Q-Hodge structure H is Hodge-Tate if its weight factors are
isomorphic to @Q(k). A n-framing on H is a choice of a nonzero maps
vo : Q0) — gr¥ H and f™ : gr", H — Q(n). Consider the equivalence
relation ~ on the set of all n-framed Hodge-Tate structures induced by the
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following: if there is a map Hy; — Hy compatible with frames, then H; ~ Hs.
In particular, any n-framed Hodge-Tate structure is equivalent to a one H
with W_o,_oH =0, WoH = H. Let H,, be the set of equivalence classes.
We define on H,, an abelian group structure as follows:

(f7L7H7U0)+(fn,fI750) = (fn +fn7H@ﬁaU0+50);
—(f", H,vo) :== (f", H, —vo).

The tensor product of mixed Hodge structures induces the commutative
multiplication

o He @ He = Hige

Let us define a coproduct

A= P Ap:Ho— P Heo M, (2.2)
Let (f™, H,vg) € Hy,. Choose a basis {v,(:)} in Hom(Q(k), gr'%,, H) and the
dual basis {f(kl)} in Hom(gr',, H,Q(k)). Then

Ak,’n—k‘(fn?H? UO) = Z(fnaH’ /Ul(cl)) ® (f(lz)vHv UO)'

7

The graded Q-vector space
H* = @?LO:O?_[fh

has a natural structure of a graded Hopf algebra over Q with the commu-
tative multiplication p and the comultiplication A.

THEOREM 2.1. — The category of mized Q-Hodge- Tate structures is canon-
ically equivalent to the category of finite-dimensional graded H.,-comodules.

Let Al be the restriction of the restricted coproduct A’ to H,,. Then for
n > 0 we have

C

Ker(A)) = @0

— Fxtl 16/0(Q(0), Q(n).

In [21] we constructed a canonical homomorphism, called the big period
map
P,:H, — C'®qgC(n-2). (2.3)
The restriction of P, to the subgroup Ker(A!)) provides an isomorphism
C
——— = Ker(A! —  C*®@2m)" L.
g~ Ker(A)) ® (2ri)
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Period morphisms. The same construction as above for the category of vari-
ations of framed mixed Hodge-Tate structures over a manifold X delivers a
sheaf H. of graded Hopf algebras in the classical topology on X. Consider a
complex of sheaves H®(n) given by the weight n part of the reduced cobar
complex of H., placed in degrees [1,n]:

Ho 25 HoH)n 25 25 @ Hy.

For n > 0 one has a quasiisomorphism of complexes of sheaves in the clas-
sical topology on X:

RHomygs  (Q(0)x, Q(n)x) = Hn 20 (H @ H)n 25 .. 25 @™,

We can state now precisely Theorem 1.4.

THEOREM 2.2. — There exists a canonical morphism of complezes of
sheaves
Pr:H* (n) — Qg(n),
called the period morphism, which satisfies the properties 1)-8) in Theorem
1.4.

A proof of Theorem 2.2 is given in Section 2.3.

2.2. The period homomorphism of algebras P’ : H, — C® C

This Section is an elaborate exposition of Section 4 of [21].

1. The period operator and the period matriz. Let H be a mixed Hodge-Tate
structure over Q. Then there is an isomorphism

He = @prHC N Wy, Hc. (24)
Furthermore, the following canonical map is an isomorphism:
FPHe N WayHe = gryy Ho ®g C. (2.5)

Using isomorphisms (2.5) and (2.4) we get a canonical morphism

SHT : @pgrngQ — He¢.

On the other hand a splitting of the weight filtration on Hg also provides
us a morphism
Sw : Gapgr;/‘{,HQ — He¢.
Both maps became isomorphisms when extended to @pgr% H¢. Therefore
a splitting of the weight filtration on Hg provides a map, called the period
operator:
S;I} oSy : @pgrg‘;HC — @pgrgZH(c.
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Let (fn, H,ug) be a Hodge-Tate structure over Q, framed by Q(0) and
Q(n). Choose a splitting s over Q of the weight filtration on Hg. We define
the period of the splitted framed Hodge-Tate structure (f,, H,vo; s) as the
matrix coefficient of the period operator:

p(.fnaHa /UO;S) =< Uols;lé“ o SW‘fn>

Choose a basis in each Q-vector space gr% Hg, providing a basis in their
direct sum. The period matriz is the matrix of the period operator in this
basis. One can define a mixed Hodge-Tate structure by exhibiting its period
matrix. See an example below.

We define an equivalence relation on the set of all splitted framed Q-
Hodge-Tate structures as the finest equivalence relation for which any mor-
phism of mixed Q-Hodge structure H — H' respecting the splittings and
the frames is an equivalence.

Let ’}—Nln be the set of equivalence classes of splitted n-framed Hodge-Tate
structures. Then H, = @nﬁn is equipped in the usual way with a structure
of a graded Hopf algebra. For instance H =C® Q. In particular there is a
coproduct map A : H, = H, @ H,.

Let H — H’' be a morphism of Hodge-Tate structures respecting the
frames and splittings. Then the periods of H and H’ are the same, so we
get the period homomorphism

Pt Ho — C.

2. The big period map. Let A and B be operators in a Q-vector space V.
Let {v;.} be a Q-basis in V, and {f*} be the dual basis. Define

("B ®q Alvo) := > _{f"|Blox) ®q (f*|Alve) € C®qC,

Uk

where the sum is over all basis vectors vy. It is well defined.

DEFINITION 2.3. — Let (f™, H,vo; s) be a splitted framed Q-Hodge-Tate
structure, and M the period operator on &gr'%y, Ho. Then we set

P/ (f™, H,vg; ) := (f"IM @9 M |vg) € C® C. (2.6)

LEMMA 2.4. — The element (2.6) does not depend on the choice of split-
ting.

Proof.— The normalised period matrix corresponding to a different split-
ting is given by MN, where N is a rational unipotent upper triangular
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matrix. One has

(f"|MN &g (MN)"Hug) = (f"|M ®g M |vo).

Notice that C ®z C is an algebra: (a ®b) - (¢’ @ V') = aa’ @ bb'.

Lemma 2.5 tells that the big period map P/, is multiplicative: it takes
the tensor product of the splitted framed Hodge -Tate structures into the
product in C ®y C.

LEMMA 2.5. — Let M and M’ be splitted framed Hodge-Tate structures
of weights m and m’. Then

P (F@f ™ MM vg@uh; s©s') = P, (£, M, vo; 8)- Pl (f™ M/, vj; ).

Proof.— Let M (respectively M’) be the normalised period matrix for the
splitted framed Hodge-Tate structure M (respectively M’). Then the nor-
malised period matrix describing M ® M’ is just the tensor product M @ M’
of the normalised period matrices M and M’. Evidently,

(fP@f" [ MOM |eo@ep) = (Pl M| eo)(f | M| ep).
The claim follows immediately from this remark. ]

DEFINITION 2.6. — The big period map P,, is the composition of the map
P! with the map

CooC — C*®qC(n—2), a@b — exp(2mi-a)@2mi-bR(27i)" 2. (2.7)

Let U be a complex domain. There is a map
w: Oy @ Ou — Qi f® g (df)g.
THEOREM 2.7. — a) The map P}, is a homomorphism of abelian groups
H, — C®qC.

Given H,,, € H,, and H,, € H,, one has
P (Hm ® Hn) = P;n<Hm> ) P’II’L(HTL)

n+m

So the collection of the maps {P.} gives rise to an algebra homomorphism

P/:H* —>(C®Q(C.

b) The restriction of the map P, to Ker(Al) coincides with the natural
1somorphism

C
m = (C(a & (27.”')71—1. (28)
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¢) Let Hy be a variation of framed mized Hodge-Tate structures over a
domain U. Then there is a section P'(Hy) € Oy ®q Ou, and the following
composition s zero:

HULOU(@OUL)Q}J, wOPIZO.

Proof.— To prove the part a) of Theorem 2.7 we rewrite the map P} in
terms of the Hopf algebra H.. This is done in the Appendix. The second
statement follows then from Lemma 2.5.

b) Clear from the definitions.
¢) We will prove it in paragraph 5 below. O

3. Ezplicit formulas. Given a variation of splitted framed Q-Hodge-Tate
structure H, choose a basis {v;} over Q in each fiber of a variation. We
assume that basis vectors v; are of pure weight wt(v;). Denote by {f?} the
dual basis. We use notation (f|M|v) for p(f, H,v;s).

We usually assume that the framing is given by basis vectors (v, f™).

Set M = 1+ M. Since M, is nilpotent, expanding (1 + M)~ =
Zkzo(—l)k/\/lg we get

(Mg M ) = Y (1) ("M @g Mgeo). (2.9)

k>0

By (2.9), the big period of a splitted framed Hodge-Tate structure
(H; [, vo5 s) is
P'(f™, H,vo;s) € C® C.
P'(f™, H,vo;s) = (f"|Mlvg) @ 1+ (2.10)
Z Z (_1)k_1<fn|M‘wik—1>®<fik71|M|vik—2>""'<fi1|M|UO>+

k>20<i1<...<ip—1<n

S DRI IMIv ) M) - (M)
E>10<ii<...<ip_1<n

(2.11)
The sum is over all nonempty chains of basis vectors v; € gr‘iVQiHQ, 0<i<
n.

Since the term (2.11) disappears after the projection C ®g C — C* ®q
C(n — 2), we have

(2mi) " P2P(f™, H,vp;8) € C* @ C.
(2mi) " P2P(f™, H,vp; ) = exp(2mi - (™| M]vo)) @ 2mi+ (2.12)
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Z(_l)k_l Z eXp(27Ti ’ <fin|M‘vik—1>) ® 27 - <fik71|M|’Uik—2>

E>2 0<iy <...<ip_1<n

e ([ Mo).

4. Examples. 1. Let us define a Hodge-Tate structure M using a normalised
period matrix:

1
M = 1 1 . . cC
= o Y 1 , LiyYj, 21 .

z3 Y2 2z 1
Let Z be the matrix of the operator acting by (277)~* on grg%HQ. Then the
period matrix is

1
~ o 2wt - 11 211
M= MI= | o2 ey @ri)2oy (2m0)2
2mi)3 a2z (2mi)3 - ye  (2mi)3 -z (2m0)3

Remark.— The matrix M is the period matrix which appear naturally in
algebraic geometry. The normalized period matrix M is more convenient
when we work with the big period.

Precisely, if M is the Hodge realization of a mixed Tate motive, the
entries of the canonical period matrix are periods of rational algebraic dif-
ferential forms over relative cycles. The M is the matrix of the comparison
isomorphism Mpr ® C —> Mpey; @ C in the natural Q-bases in Mpgr and
MBpetti-

Let C; be the i-th column of the matrix Mv Let e_; be the column whose
only non zero entry is 1 on j-th place. We define the weight filtration W,
and the Hodge filtration F'® by

W_eM = (C3)q, W_uM = (C2,C3)q, W_oM = (C1,C2,Cs)q,
WoM = (Co, C1,C2,C3)q-
FOM = <60>, FﬁlM = <€076,1>, F72M = <€076,1,6,2>,

F73M = <80, €_1,€_9, 6_3>.

The splitted Hodge-Tate structure M has a framing given by eg and

(27i) =3 f3. Its period is z3. The big period is
Pi(M)=2301+4ys @ (—x1) (2.13)
+21 ® (—332 + 33‘1:(/1) +1® (—1‘3 + 1Y + X221 — xlylzl) eC ®q C.
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The period Pj3 is given by
P4 (M) = exp(2mi - x3) ® 2mi + exp(2mi - y2) @ exp(27i - (—x1))

+exp(2mi - z1) ® exp(27i - (—x2 + x1Y1)).

2. Here is a classical example of the period matrix for the variation of
Hodge-Tate structures related to the dilogarithm (due to Deligne):

_ 1 0
Lo = —Li; (2) 27
—Lis(z) 2mi-logz (2mi)?

Then

Lis(z) logz log(1l—z) Liz(z) —log zlog(1 — 2)
— 1 1
(27ri)2® + 2mi © 2mi e (27i)?

271
The invariant Po(Ly) was first written by S. Bloch [BI3]. Generalizing it,
Sym(’;l@ ® C*-valued invariants of the Hodge-Tate structures related to
classical n-logarithms where constructed in [BD] and [Bl4]. However the
approach of these papers is different from ours; it uses the specific structure
of the Hodge-Tate structures related to classical polylogarithms, which can
not be generalized to other mixed Tate motives.

Py (L) = € C®C.

Po(Ls) = exp( )@ 27+ 2z ®log(l —2) e C* @ C.

5. Differential equations on periods and the Griffiths transversality condi-
tion. A variation of mixed Hodge structures satisfies the Griffiths transver-
sality condition. We say that a partial period (f!|M|vy), where vy, € gr',, H
and f! € (gr'",, H)*, has amplitude | — k.

THEOREM 2.8. — Let M be a normalised period matriz of a variation of
splitted framed Hodge-Tate structures (Hy;vg, [™;s). Then

i) The connection V on the variation is given by

Viog) == > (fFdM]v) - vp1. (2.14)

{vk+1}

The sum is over basis vectors {vgy1} of weight —2(k + 1).

it) The Griffiths transversality condition is equivalent to the following
differential equations on the entries of the normalised period matriz M :

(FFrs M dM|vy) = 0Vs > 1. (2.15)
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iii) The period (vo|M|f™) satisfies a differential equation

d(f"|Mlvo) = > (fMvp_1)d(f" [ M]uo). (2.16)
{Un—l}

iv) The Griffiths transversality is equivalent to differential equations (2.16)
for all partial periods of amplitudes > 2.

Proof.— The vectors Zj<fj|./\/l|vi>vj are flat sections of the connection V
on then variation:

0= V(X IMIves) = S IMIv) - V) + 3 Al M) ;.

J J

Therefore

V() =— Z<fj|M_1dM|vi> $Vj.

J

i) To check (2.14) notice that the only way M~'dM can have a non-
zero matrix coefficient of amplitude 1 is that it is the matrix coefficient of
amplitude 1 of dM.

ii) The Griffiths transversality just means that all matrix coefficients of
M~LdM of amplitude bigger then 1 are zero, which is just what (2.15) says.

i) - iv). Let us write, using (2.15) and assuming n > 1,
0= (f"IM™ dM|vo) =
(FHldMlvo)= 3 dlf* IMIon ) M)+ D (f7IMT M [ue) (£F Meo).
{vn-1} k<n-—2
The last summand is zero by (2.15). So we get differential equation (2.16),
and the Claim iv). O
Remark.— Define a homomorphism €2, : H, — Qf; as the composition

~ Ap_11 55 ~  pdp
Hy 5 Hyr @ Hi 5 Qg

The differential equation (2.16) for the period {f™|M|vg) can be rewritten
as

d(f"[M]vo) = Qn(Hy; f7,v0; 5). (2.17)
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6. The big period map via the Hopf algebra H.,. We use notation as in Section
2.1. Projecting to ®P A~ the coproduct and the iterated coproduct, we get
their reduced versions:

A A, s Asg®@ Asy, AP A s ePA,.

For n > 2, let us consider an algebra map
my, © A‘)A>O®A>O

given by the n-iterated reduced coproduct followed by the product of the
first n — 1 factors:

A B LD gid
A S @M As o ® Ao —T Aso ® Aso.

Let my : Ay, — A, ® Ay, a— 1 ® a. Now set:

m: A, — A, ® A, m:= Z(—l)"_lmn.

n>1

Let us define amap m: A, — A, ® 1 — A, ® A, by setting

M= (~1)"uMoAM A, — A, = A, @1 A, ® A,

n>1
AW = M =g,

We apply this to the Hopf algebra H.. We get a map
m—+m: He — Hi @ He.
The explicit formula for the map P/, just means the following.

LEMMA 2.9. — The big period map P’ is equal to a composition

H, o e H, TP cgg C

Then P,, is the composition
e 2 HooH, B CoeC—CeuC*(n—2). (218)

The term (2.11) corresponding to m disappears after the projection C ®q
C— C®qgC*(n—2).
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2.3. Construction of period morphisms and proof of Theorem 2.2

Step 1. The map P Let us define a homomorphism of abelian groups

Pr ", —0"®..00"00321®...3 2. (2.19)
N——— N—— —
k times n-k-1 times

First, there is an associative algebra structure on ®°*~1O given by
(@10) * (&' 0) — "0,
(a0®...®ak)*(b0®...®bl) n—>a0®...®ak b0®®bl

Let H; € H.. We set
P (Hy ®...® Hy) := P.(Hy) * ...« P.(Hy,) € @*10.
Next, consider a map
Exp®™ @ 27i-1d: @0 — 0" ®...0 0" ®0. (2.20)
k times

EXp(k) = exp(27ri . *) ®...Q exp(?ﬂ'i : *) .

k times
We define the map (2.19) by setting
Pr=omi®.. . 92mie (Exp(k) ® (2mi - Id)) oP*. (221
—_————

n-k-1 times

Step 2. The maps {(—1)*P*Y provide a morphism of complexes. Equiva-
lently, we have to show that the following diagram is a bicomplex, where A’
is the restricted coproduct:

H,, AL (H®H)n A AL gy,

s} P2 Lpr

0*®0mn-2 % 0'®0*20n-3) -L .4 gro*

Let us show that the left square is anticommutative.

For the restricted coproduct A’, we have the following element in O ®

O®O:

P (A (M) = > Mu) @ (FIM o) - (£ M (o) @ (M)
(2.22)
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The sum is over all basis vectors v; satisfying the following two conditions
wt(vy) < wit(vy) < wt(vy,) < wt(vg) < 0. (2.23)

wt(vy,) < wt(vy,) < 0. (2.24)

Condition (2.24) results from taking the restricted coproduct A’ rather then
the coproduct A.

Let us compute the image of element (2.22) under the map
Exp® ®21i: 00000 — 0*20*® 0, (2.25)

a®b® cr— exp(2mia) ® exp(2mib) ® 2mic.

Observe that since MM ™! = I, we have

> (UM o) - (f™ | Mlve) = Go,. (2.26)

wt(vy) Swt(ve,) <wt(vy)

Now there are three cases of the summation.

i) If wt(vg) < 0, and wt(v,) < wt(v;), then thanks to conditions (2.23) -
(2.24) and formula (2.26), the corresponding sum in (2.22) collapses to

D (M Mvg) @ 1@ (FFM o). (2.27)

ii) If wt(vy) = 0, then, thanks to (2.24) the corresponding sum in (2.22)
is
(2.26)

D0 (M) @ (FIIM T o) - (M Mvg) @1 7=

VI Uy £V0

=DM e @ (FIM o) © 1. (2.28)
Indeed, since (fo|M]vg) = 1, formula (2.26) implies
Y M o) - (F[Mvo) = = (1M o).

Vi £ V0

i) If wt(v;) = wt(v,), we similarly get

> 1@ (MM o) - (7 M]ok) @ (FFIM T wg).

Um FVn

=D 1@ (f" Mlve) @ (FFM o). (2.29)

Uk
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Since exp(27i) = 1 is the neutral element in O*, (2.27) and (2.29) con-
tributes zero after applying map (2.25). So applying the map (2.25) to the
expression (2.28) we get

- Zexp(Zm' M) ® exp(2mi - (fYMHug)) @ 2mi.

v

On the other hand, by the definition of P/, in (2.6),
PL(M) =Y (f"[Mlvr) @ (f| M uo).

v
Therefore thanks to the definition of P,, = P. in (2.7), and the definition
of din (1.2),

doPL(M) = Zexp(Zm’ (M) ® exp(2mi - (fYMHug)) @ 2mi.

Y

We conclude that
P2 (A (M) +do P (M) =0.

In general we have to check that the composition of the restricted co-
product

Mi® . @M — Y (-1)7TIM @ .. @ A (M) @ ... @ My,
with the map PX+! is equal to —d o P¥(M; ® ... ® My,). Notice that
PFHIM @ @ A'M) @ .. M) =0 if i>1.

Indeed, M1 ®...QA'(M;)®...@ M, has three terms, just like (2.27), (2.28),
and (2.29). Each of them has the j-th factor 1, where j = i+2,i+1,i. So each
of them vanishes when we apply the Exp®) ®(2mi-Id) map (2.20). In the case
i = k only the very right factor survives, contributing —doP* (M;®...@My).

Step 3. The composition QF o PX =0 for k < n. It is enough to check an
equivalent claim for dP;lk. For k = 1, Theorem 2.8ii) implies, since n > 1,

dP, (M) =3 (f"dM o) ® (f¥]M ™ wo) = 0.
k

For k = 2 we have

AP *(M @ N) =
D AN o) @ FIUN T om) - (FMdM o) ® (FFM T ug)+
D MAN o) @ (AN om) - (F7 M ok) @ (fFM o).
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Since n > k = 2, either m > 1 or n — m > 1. Then in the first line is zero
since the factor of amplitude > 1 is zero by Theorem 2.8ii). The second line
is always zero.

For general k we proceed just as in the case k = 2. The expression dP;lk
consists of sums of k factors. If one of them has two differentials, it is zero.
Otherwise each has just one differential, and one is of amplitude > 1, and
so vanishes by Theorem 2.8ii). Theorem 2.2 is proved.

2.4. A variant: Lie-exponential complexes and Lie-period morphisms

Let X be a manifold, either a real or a complex analytic one.

DEFINITION 2.10. — The weight n Lie-exzponential complex Qg (n) is a
complex of sheaves on X, concentrated in degrees [0,n]:

On —1) — A20(n — 2) — ... — A"O "“3P AnO*, (2.30)
The differentials are given by
2ri) " F@ar A Aag — )P @2 Aar A Aag, k<,

a1 A ... Aap — exp(ar) A ... Aexp(an).

For example, the complex Qg (2) is
2
0(1) -5 A20 " A20%.

Take the n-th symmetric power of the complex Q(1) — O in degrees
[0,1]. Tt is augmented by the exponential map to A"O*[—n]. There is an
isomorphism of complexes

Q(n) — Qz(n) = Cone(Sym" (Q(l) — (’)) Alexp A"(’)*[—n]). (2.31)
Therefore the complex (2.30) is a resolution of the constant sheaf Q(n).

Mapping Lie-exponential complexes to differential forms. Recall the holo-
morphic de Rham complex Q°® on a complex manifold X. There is a natu-
ral map from the weight n Lie-exponential complex to the holomorphic de
Rham complex:

wr:Q(n) — Q°.
Precisely, we have the following Lemma, proved by a simple check, which is

left to a reader.
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LEMMA 2.11. — There is a canonical morphism of complexes of sheaves
on X:

On-1) — AN0On-2) —...— A0 — A"O*

R Jwt) LD Jwi
4 0 e § R o )
Here
wi™ ((2m')"—’"—1 ® (fo A fi Ao A fm)) -
@ri)" bl S (<17 f5 dfo A ANdf AL Adfn, 0<m <,
=0

w%”)(fl Ao A fn) :=nl dlog f1 A ... Ndlog f,.

Lie-period morphisms of complezes. The graded commutative Hopf algebra
H. gives rise to a graded Lie coalgebra (L., d):

H-o
L, = — "
Ho-Hso

Let £°(n) be the weight n part of the standard cochain complex of the
graded Lie coalgebra L,:

Lo(n) = L2 (A2L), 55 (A3L), 25 ...

CONJECTURE 2.12. — There exists a canonical morphism of complexes
of sheaves on X

Py £5(n) — Qg(n),
called the Lie-period morphism:

Lo S @A), S5 o), S Anc

1Lp) Lpl Lot Loy
Omn—-1) — A0n-2) — AOn-3) — .. — A"O = Aror

(2.32)
such that

(1) After the identification L1 = O* the map plt is the identity map.
(2) The composition wy ops is zero everywhere except on the very right.
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The condition 2) just means that the following composition is zero:
s s 5

L, ——  (LAL), .= (A"lD),

1 \ 1
A20(n—-2) — AOn-3) — ..— A"O

1 3 \J

Qb - 02 4GS ot

Let us explain the meaning of “canonical” in Conjecture 2.12. A canonical
map of complexes
L%(n) — Rp(n) (2.33)
was defined in [24]. There we defined, on the level of appropriate complexes,
a product Rp(a) @ Rp(b) — Rp(a+b) making G2 (Rp(a) into a DG com-
mutative algebra. The key property of the map (2.33) is that its components
describe a map DG commutative algebras
S*(L[-1]) — B2 yRp(a).

So this map is completely determined its restriction to the Lie coalgebra L£°.
The map p?, combined with a map s? from Section 6 or its modification,
should deliver canonical map (2.33).

2.5. The Lie-period map

Recall the graded commutative Hopf algebra over Q with a unit A, =
B Ag, see (2.1), coming with a product p : Aq ® Aq — A, and a
coproduct A : Ay — Ae @ A,.

Let u® : AP? —s A, be the product map: a; ® ... ® Qp — Q1 - ... - Qp.
Let us consider the iterated coproduct maps
AP A, — A®P.
They are defined inductively:
AP .— (A® Id(”72)) o AP=1)

(ARIAP ) (@) ®...®ap_1) :=Ala1) Qaz @ ... ap_1.
Equivalently, they are dual to the product maps p™ for the dual Hopf
algebra.

Let us consider the following map:

l: Ay — Ao, (M) := i (_1)17#(1)) o AP(M).
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Elaborating this:

1 1 .
1:M+— M — iu@) OA(Z)(M)Jrgu(d)oA(g)(M) -

The map [ has the following geometric interpretation. Denote by G the
pro-nilpotent group with the Lie algebra Lie(A,). Then O(G) = A, as
algebras. Let Log be the inverse of the exponential map. Then the map [
reads as follows:

1: 0(G) — O(G), I(F)(g) := (dF, Log(g)).

So evidently the map [ is zero on A~q - A~g. Therefore we get a canonical
map of graded spaces
CoLie(As) — A,.

Let us define a map, which we call the Lie-period map:
P,, : CoLie, (He) — A*C.
Consider the composition of the map ! with the big period map P/ :
Po =Pl ol: Hy —H, —5 CoC.
PropoSITION 2.13. — The map P,, provides a map

P,, : CoLie, (He) — A*C.

Proof.— The map P,, is a map CoLie,(Ho) — C ® C. We need to check

that its image lies in A2C. (]
Functions Ly (z) obtained from classical polylogarithms via the Lie-period
map. Set
t B
k_ . Dk

Zﬂkt - et—l’ Bk = A .

k>0
S0 fBami1 =0 form > 1, and o = 1,81 = =5, 82 = 15,1 = —=55, - Let

us consider a function
n—1
L,(z) := Z BrLin—r(2) log” z.
k=0

The right hand side is defined as follows. Take a path v from a € (0,1)
to a point z € C and continue analytically along this path the functions
Liy(2), ..., Lin(2) using the inductive formula Li,,(z) := fv Liy,—1(t)dlogt.
Then make the sum on the right hand using these brunches. So

Lo(2z) = Lia(z) — %Lil(z) log z.
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. 1. 1. 2
Ls(z) = Lis(z) — §L12(z) logz + ELll(Z) log” z.

1 1
Ly(z) = Lig(z) — 5Li3( z)logz + ELQ( 2)log® z.

The real version m, (Zz;é BrLin_x(2)log" |z|) of the function L, (2),

where 7,,(a+1ib) = a for odd n and b for even n, was considered by Zagier in
[34], who showed that it is single valued. Its Hodge-theoretic interpretation
was given by Beilinson and Deligne in [4].

Denote by (Li,(2)) = (f™,Li,(2),v) the n-framed Hodge-Tate structure
assigned to the classical n-logarithm, whose normalised period matrix is
given as follows:

1
Lil (Z)
T 2mi 1
_ Lia(2) log z 1
(27i)? 27i
_ Liz(2) log? z log z 1
(27i)3 2-(2mi)2 271
_ Lig(2) log® z log? z log z 1
(2mi)* 31 (2mi)3 2-(2mi)2 274
Lis (2) log? z log® 2 log? 2z logz 1

T (@ri)  A(2m)f  3L(2m)® 22w 2mi

Notice that in the normalised period matrix all entries are of weight zero.

PROPOSITION 2.14. — The maximal period of n-framed Hodge-Tate struc-
ture I[(Li, (2)) is:

(f" [ ULin(2)) | vo) = —Lin(2).

Proof.— Let us do an example first, the 5-logarithm. The calculation gives
(273) 75 times

1 1 2 1 1 4
Lis — 3 (Li4(z)logz+Lig(z) Og2 z in(2) Og 2 L (2) Oi, Z)
L 1 1 1 111
—|—§-<Li3(z) log® Z—|—(§-1+1-§)-Lig(z) log® z—|—(§ 141 54_, Z)-Lij (2) log? Z)

1 . 1 1 4 . 4
_Z(LIZ( ) log® z+(§ 1-1+1- 3 1411 7) Lii(2) log z)—l-g-Lll(z)log 2.

In general we need to sum the following series in = (where x = log z in our
application):

. 1 T 1 T 271. r 1 o
S(z) :=1- 3 (e" —1)+ 3 (e —1) 1 (e® —1)3 + 3 (e —1)° —
One has S(z)(e” — 1) = log(1 + e — 1) = x. Therefore S(z) = =%5. O
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Calculating the monodromy. Let 7o (resp. v1) be a small counterclockwise
loop around 0 (resp. 1). Let T, (resp. T,,) be the monodromy operator
around loop 7o (resp. 71).

LEMMA 2.15. — One has

%(Tw —Id): Ly(z) — —(=1)"1B,_1 log" *(z). (2.34)

Proof.— One has

n—1

1 log" " 2
—(T,,, — 1d) : —Li —_—
ot (T ~ 1) =Lin(2) — 5y
From the definition of the Bernoulli polynomials, % => 1o B%gt)x”. So

B,(t) = Z (Z) Bit" % and B,(1)=(-1)""'B, forn>1.
k=0

Therefore Zz;é k!(an_l)I = (553!. Using this identity we get the formula

(2.34). O
Ezamples. —
%(T70 —Id): logx+—1, Lij(x)—0, Ly(z)+— —% Ly (),
Ls(z) — ! <Lo(z) — 1 -Li(z) -logz + 1 Ly (z),
2 12 12
La(z) — _% Ly () — % To(x) logz + % (),

1

1
%(T’n —Id): logx+—0, Lij(z)— —1, La(z)+— —3 -log z,

1
Ls(z) — D dog?z, Ly(z) — 0.

3. Period morphisms on polylogarithmic motivic complexes
of weights <4

Given a field F', let us recall the inductive definition of the groups B, (F')
[16]. One can set By(F') = By(F). There is a map

ZIF* — {1}] 2% B,(F) @ F*, {a} — {2}n1®z, n > 2.

Let us define a subgroup A, (F) C Ker d,,. Given an element >, n;{f;(t)}
in the kernel of ¢,, for the field F(t), the element ), n;({fi(to)} — {fi(t1)}),
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where tg,t, € F*—{1}, lies in A, (F), and the subgroup A, (F) is generated
by such elements.

Our goal. We are going to construct, for n < 4, a morphism of complexes

Bu(C) — Bai(C)®C* —..— By(C)@A"2C* —» A"C*

v L2 L L
A2C(n—2) — AC(n—-3) —..— A"C NP A
(3.1)

such that its composition with w; is zero, and the map [} is the identity.

Remark.— If n = 4 it will not be the canonical map from Conjecture
2.12.

We start with a few general observations which help to construct the map

PROPOSITION 3.1. — Let O := C(t). Let us suppose that we have maps
and 12 such that:
i) The following diagram commutative:

Z[0* — {1}] 2% B, 1(0)® O

L L2
AO(n—-2) —  A30(n-3)
1) The following composition is zero:
woll : Z[O* — {1}] — A*O(n —2) — Q' w(f Ag) = fdg — gdf. (3.2)

Then
1L(Aa(0)) = 0. (3.3)

Proof.— Consider the following diagram:

A, (0) —  Kers, —  Z[O] O Bali(0) @ OF

' v e
On-2) — A20n-2) — AO(n-3)
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Then
1L (Ker 6,) C Ker(AQO(n —2) — A3O(n — 3)) = O(n—2).

The kernel of the restriction of the map w : A20 — Q', fAg+— fdg = gdf
to the subgroup 2mi A O C A20 is 27mi A C. Therefore, since the composition
(3.2) is zero, we have [} (Ker §,,) C C. This implies (3.3). O

LEMMA 3.2. — Let U C C* — {1} be an open subset. Suppose that we
have a commutative diagram

Zu] 2 B, (C)®C*
i N
A°C(n—2) — A3C(n-3)

where the maps 1,12 are given by products of log z, Lix(z), and the following

n»’'n

composition s zero:
woll : Z[U] — A*C(n —2) — Qé/Q, w(f ANg)= fdg — gdf. (3.4)

Then the map 1} extends to a well defined map on Z[C].

Proof.— Since the map [} is given by polylogarithms, it can be analytically
continued to a multivalued function on C* — {1} with values in A%2C(n — 2).
we need to prove that this function is single-valued. Take the monodromy
around some loop minus the identity map. We get a multivalued function
on C* — {1} with values in A2C(n — 2) which is annihilated by the map
A%2C(n —2) — A3C(n — 3), and thus takes values in C(n — 1). Since it is
also killed by w, it is a constant, and then one can easily see that it must
be zero. O

Non-associative x-product. Any ring A provides a * - product

AFFLA S AFTA oy ARFIHI Y

(agA...Aag)*(boA...Aby) == Z(—l)’“—j“ao/\...Aai/\.../\ak/\ai-bjAbo/\.../\Bj/\..

For instance

(ao/\al)*(bo/\bl) = ao/\albo/\bl —al/\aobo /\bl —|—a0/\a1b1 Abo—aoAa1b1 /\bo.

If A is a commutative ring, then (A®*~1A, %) is a supercommutative non-
associative algebra:

(ag Ao Nam) % (bo A oo Aby) = (=1)"(bg A .. Aby) # (ag A oo A ).
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We define the *-product on A®*~*O using the following algebra structure
on O:

1
b:= —ab.
a * 579

It is useful to note the following formula:

(2TINaI A e A )% (2TTEADL A ADy) = (MAn+1)-2TiAa Ao AGy AbL AL ADy, .

Ezample 1. — Let us define a homomorphism of complexes
BQ ((C) — A2(C*

1 Lo 1=
A2C  — AZC

1 1
Lo: - {a}s— 2mi A 57 Lo(z) — iLil(x) Alog .

™

DN =

Ezample 2. — Set
" {xYo @Yt A e AYp—o — Lo(z) % (2mi Alogys A ... Alogy,_2). (3.5)
LEMMA 3.3. — The map (3.5) gives rise to a group homomorphism
"7t By(C) ® A"2C* — A"C.
It makes the following diagram commutative:
By(C) ® An~2C* — A"C*

L = (3.6)
A"C =8 AnCH
The following composition is zero:
wp o ln ™t i By(C) @ AMTPCT — A"C — Qg (3.7)

Proof.— The maps y1 A ... A ym +— 2mi Alogyy A ... Alogy,, and Lo :
B3 (C) — A2C are well defined group homomorphisms. Therefore the map
(3.5) is a well defined group homomorphism. The commutativity is evident.

Let us check that the composition (3.7) is zero. We write d((a; A ag) *
(b1 A...Aby,)) as a sum with certain coefficients A, u, skewsymmetrising with
respect to {aj,as} as well as {by, ..., b, }:

A Alb gy a0), (b1, o) ((blal) Aday — d(byay) A ag) Adby A ... A dby,
(3.8)
1+ Altayas) ) (AB101) A daz ) Aby Adby A A by,
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In our case
ardas — asda; = 0, and dby A dby A ... A db,, = 0.

The first condition implies that the second line is zero. The first and second
condition imply that the first line is zero. O

Example 3. — Let us define a homomorphism of complexes

B3(C) — B(C)®@C* — A3C*
L 13 =
A%C(1) — APC —  A3C*
Set
2 {z} @y — % ‘La({z}2) x (2mi Alogy) =

| 1 ‘
(2m A %Lg@'}) ~3 -Li(x) Alog z) * (2mi N logy) =

1 (3.9)
3 - 2772‘/\2—m_L2(m)/\logy—Ll(x)/\logm/\logy
1 1 1
—&—5 - 2N <%logy Ll(x)/\logx—i—Ll(:r)/\Q—mlogylog:v).

By Lemma 3.3, the map I3 is well defined, makes the second square
commute, and w3 o 13 = 0.

Set
Ly: —sfads s 2miALy(@)— s —Lo(z)Al 1(L()/\1 )1
31— 17} miNL3(z)—5 5 —Le(z)Alogz—15-(Li(z)Alog z | +log z.

One checks that w} o I3 = 0 thanks to the differential equations for the
polylogarithms.

This map makes the first square commutative. Indeed, we have

1
2:{z}y ®x+— 2mi A (3-L2(x) Nlogx + 3 (Ll(m) /\logac) *logx).

Thanks to Lemma 3.2 the map L3 provides a single-valued map
Lz :C* — {1} — A%C(1).
Proposition 3.1 implies that it gives rise to a homomorphism
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Therefore we get a well defined morphism of complexes.

Example 4.— We define a homomorphism of complexes

Bi(C) — Bs3(C)®C* — By(C)®A2C* — ALCH

v v L vt
A2C(2) —  A3C(1)) — A*C —  A*C*
We set

li({x}g ®y1 Ay2) = Lo(z) * (2mi Alogys Alogys) =

1 1
(27ri A ﬂLz(l‘) — §L1(x) A logx> x (2mi A logyy Alogys).
T

By Lemma 3.3 the map I3 is well defined, makes the last square commute,
and wj o I3 = 0.

Next, set

({z}s @y) =

) 1 1
2mi A (—12 : W[{g(ﬂ?) Nlogy — 2 - (Q—Lg(x) Nlogz) xlogy
1

5 2 (Ll( )logx)/\logxlogy—% 57 (Ll( )logy)/\(logx)Q)

+4- TLQ(:L') Alogz Alogy + 5 . (Ll(sc) /\logx) * (logx A logy).
i
(3.10)
Direct check shows that the middle square has all the desired properties.
Finally, we set

1
]]_44.%‘{[['}4)—)

1 1 1
2mi N —=La(x) — = - —=5Ls(z) Alogx
(2mi)3 2 (2mi)? (3.11)
1 /1 11 )
13 <%L2(x) A logx) xlogz — TR ﬁ( 1(x) logx) Alog® z.

One checks that the left square is formally commutative. Thanks to
Lemma 3.2 and Proposition 3.1 the map [} := L, is a well defined ho-
momorphism of abelian groups. Finally, we check that w} o [} = 0 by using
the differential equations for the classical polylogarithms.
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Ezxample: the requlator map on the weight three motivic complex. Let X be a
regular complex projective curve. Then the motivic complex Zn(X; 3) is the
total of the following complex, where Oy := C(X) and Res stands for the
tame symbol on the right and the map {f}2 ® g —— >y valo(g){f(2)}2
in the middle:

5

Bs(Ox) -5 By(Ox)®0% -5 A30%
I Res I Res (3.12)

HzGX B ((C) — HzeX AC*

The top line is mapped to the weight three Lie-exponential complex at the
generic point X:

B3(Ox) -5 Ba(Ox)®2 0% 25 A3O%
\ \ \
Ox(2) — A2OX(1) — ASOX — ASO}

An important property of the Lie-period is that the element Ls(f(z)) €
A?20x(1) is non-singular:

Ls(f(z)) € A2O(1).
So there is a map

Bg(@x) — AQO(l)

The element 13(>°{fi(z)}2®gi(x)) € A3Ox can have singularities at the
divisors of the functions g;. To guarantee that the singularity at y € X is
absent it is sufficient to require that the residue of that element at y is zero.
So there is a map on the kernel of the residue map:

Ker(By(0x) © 03 =3 ] Bo(C)) — A%0.
reX
So we get a map
Z2(B*(X;3)) = Ker(Bg((’)X) © 0y — [[ B:C) & A3O§()
veX (3.13)
— Ker(A3O o “EPASOF )

It gives rise to an explicit map
H?(B*(X;3)) — H*(X,T'n(3)).

It can be described explicitly as follows. Take a cycle A € Z2(B*(X;3)).
Then we have

3
13(A) e Ker(A3(9 gy A3o*) = A20(1).
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Pick an open cover {U;} of X by small discs. On each cover we get can find
an element

C(U;) € N0y, (1) : dC(U;) = Ay, € A*Oy,.

Then d(C(U;) — C(Uy)) = 0 on Uyj. So we can find a C(U;,Uj) € Oy,;(2)
such that dC(U;,U;) = C(U;) — C(U;). Similarly we find C(U;,U;,Uy) €
Q(3). Now taking the image of the cocycle (C(U;), C(U;, U;), C(U;, U, Ug))
in the Lie-exponential Deligne complex I'p (X; 3) we get a cycle representing
the regulator of A.

Unlike the de Rham complex, the exponential complex is exact in a trivial
way: finding a primitive does not require integration. So our construction is
effective.

One can generalize the above construction to the case when X is an
arbitrary regular complex variety. In this case the motivic complex we use
is the Gersten resolution of the weight three polylogarithmic complex. It is
obtained by adding to (3.12) the contributions of the codimension two and
three cycles. The construction remains the same.

4. A local combinatorial construction of characteristic classes
4.1. A map: decorated flags complex — Bigrassmannian complex

Configuration complexes. Let X be a set. Let G be a group acting on X.
Configurations of m elements in X are orbits of the group G acting on X".
The complex of configurations C(X) is the complex of the G-coinvariants
of the chain complex of the simplex with the vertices parametrized by X:

Lo x)-Lon (X)L L oyx).
So C! (X) is the free abelian group generated by configurations. Denote by
(z1,...,2m) the generator provided by the configuration corresponding to
the G-orbit of an m-tuple {1, ..., x,, }. The differential is

d: Chy (X)) — C(X), (20, @) > D (1) (@0, 0o0s By eoey o).
1=0

Let us assume now that X is an algebraic variety over Z, and G an
algebraic group over Z acting on X. Then for any field F' there is a G(F)-
set X (F'). So we get complexes of configurations of X (F"). Abusing notation,
we skip the field F' from the notation.
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Suppose that we have a notion of generic configurations of points in X,
stable under the operation of forgetting a point. We assume that generic
configurations of m points in X are parametrised by a variety Conf},(X).
So forgetting the i-th point provides a map

fi : Conf’ (X) — Conf’, | (X).

m—1
Consider the free abelian group generated by the F-points of Conf}, (X).
Cm(X) := Z[Conf} (X)(F)].

We get a subcomplex of the complex C}(X), called the complex of generic
configurations:

Co(X): -5 C(X) -5 Cr 1 (X) -5 -5 Oy (X).

An ezample: Grassmannian complezes [32]. Let Conf},(q) be the variety
of generic configurations of m vectors in a vector space of dimension q. A
configuration is generic if any k < ¢ of the vectors are linearly independent.
Observe that the configuration spaces assigned to isomorphic vector spaces
are canonically isomorphic.

The variety Conf), (¢q) is defined over Spec(Z): a collection of generic
vectors is given by a ¢ X m matrix with non-zero principal minors. So we
get abelian groups

Cm(q) := Z[Confy, (q)(F)].
They form the weight ¢ Grassmannian complex:

L Conlg) 5 Crui(g) 5 .. -5 Cu(g).

The Bigrassmannian [17]. Given a configuration of (m+1) vectors (lo, ..., {m,)
in a g-dimensional vector space Vj, there are two ways to get a configuration
of m vectors:

(1) Forgetting the i-th vector l;, we get a map

fi: Conf? 1 (q) — Confy(q), (loyereslin) = Loy oees Liy vy L)

(2) Projecting the vectors (lo,...,l;,...,l») to the quotient V,/(l;) by
the subspace spanned by [;, we get a map

p; = Confl, 1 (q) — Confl (g — 1), (loyeoes lin) — (I | oy ooy Liy o lim)-

Denote by G, (¢) the Grassmannian of g-dimensional subspaces in a vec-
tor space of dimension m with a given basis (e, ..., €,,), in generic position
to the coordinate hyperplanes.
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There is a canonical isomorphism
G (g) = Confy, (q).

It assigns to a generic ¢-plane 7 a configuration of vectors in the dual space
7* given by the restrictions of the linear coordinate functionals x; dual to
the basis.

Using this, we organise the spaces Conf) (¢) into a single object, the
Bigrassmannian:

LS G
el el
L GsB) S Gad)

e bl bl (4.1)
L Gs(2) S Ga(2) 5 Gy(2)
e e N
G(1) 5 Gal) 5 Gyl) b Ga(l)

Applying the functor X — Z[X(F')] to the Bigrassmannian we get the
Grassmannian bicomplex:

()

ip ip

L a3 L oas)

Ip Ip ip
Lo Loae Lo
Ip Ip ip ip

o) Loa) Lo Lo

Here the maps f and p are the alternating sums of the maps f;, and p;:
F=Y (1 fe p=> (-1)"ps.
s=0

s=0

Denote by BC the sum of the groups on the diagonals:

m—1
BCp = P Cml(q).
q=1

Changing the signs of the differentials in the bicomplex, we get the Bigrass-
mannian complex

...— BCs — BCy — BC3 — BCs.
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Decorated flags.

DEFINITION 4.1. — A decorated flag Fy in an N -dimensional vector space
s a collection of subspaces

FhcFiCFyC---CFy, dimF; =1, (4.2)

together with a choice of a non-zero vector f; € F;/F;_1 foreachi=1,...,N.

A collection of m+1 decorated flags (Fo e, Fi e, .., Fim,e) in an N-dimensional
vector space Vi is generic, if for any integers ay, ..., a@,, which sum to N one
has an isomorphism

Fouo @ ... ® Fipa,, = VN

Denote by Ay the variety of all decorated flags in Viy, and by Conf} (Ay)
the variety of generic configurations of m decorated flags. It is defined over
Spec(Z). So for any field F' there is the complex of generic configurations of
decorated flags

s — Cm(.AN) — .. — CQ(.AN) — Cl(AN)

From configurations of decorated flags to configurations of vectors. We start
with a collection of m+1 generic decorated flags in an N-dimensional vector
space V:

(Fo.05--s Fime)- (4.3)

Given a partition

a={ag,...,am}, a+...+am=N—(¢+1), a; >0, (4.4)

consider a codimension ¢ 4 1 linear subspace of Vi given by the sum of the
flag subspaces F; ,,:

Fou @Fr0,®...® Fyq,, CVn. (4.5)

Take the quotient by this subspace
Vi
Qa

 Fouy ®Fi4,®...0 Fpg,,

(4.6)

We use the decorations to produce a configuration of (m + 1) vectors in
the quotient Qa. Namely, the “next” decoration vector fo,+1 € Fia,+1/Fia;
in the decorated flag F; provides a vector in the quotient, denoted by I;. The
vectors {lp, ..., l;,} in the space @, provide a configuration (lg,...,lL,). So
we put

Ta(Fo,e - Fmye) == (lo, ..., 1) € Confy (g +1).
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So a partition a gives rise to a projection

7 : Conf, (Anx) — Conf}, (¢ +1).
The main construction [17, Section 2].

o Given a configuration (Fo e, F1,e,..., Fine) of decorated flags in Vi,
we assign to every partition a as in (4.4) the configuration of vectors
Ta(EF0.0, Fie; .y Fin,e) in a (¢ + 1)-dimensional vector space, and
take the sum over all ¢ and all partitions a:

Cm * (FO,Oﬂ FLoa ey Fm,o) — Zﬂa(FO,ov Fl,oa ) Fm,o) € BCm+1~
a

We extend the map to a homomorphism of abelian groups

Cm - Cm—i—l(AN) — BOm+1~

The following crucial result was proved in Lemma 2.1 from [17].

THEOREM 4.2. — The collection of maps ¢, gives rise to a homomor-
phism of complexes

— 05(./4]\[) — 04(./4]\[) — Cg(.AN) — CQ(.AN)

la les e la (4.7)
— BCj — BC, — BCs — BCy

Our next goal is to give an interpretation of this map via hypersimiplicial
decompositions.

4.2. Hypersimplicial decompositions of simplices and a proof of
Theorem 4.2

Hypersimplices [14]. Let p,q > 0 be a pair of non-negative integers. Set
p+q=m—1. A hypersimplex AP*? is a hyperplane section of the (m + 1)-
dimensional unit cube:

AP = {(20, .oy ) € [0, 1] [ Y i =g+ 1}, ptg=m— L
=0

The hypersimplex AP:9 is a convex polyhedron isomorphic to the convex
hull of the centers of ¢-dimensional faces of an m-dimensional simplex.

The hypersimplices AP0 and A%9 are just simplices. The hypersimplex
A1 is the octahedron. It is the convex hull of the centers of the edges of a
tetrahedron.
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The boundary of a hypersimplex AP¢ is a union of m + 1 hypersimplices
AP~14 and m+1 hypersimplices A?9~ 1. They are given by the intersections
with the hyperplanes x; = 1 and z; = 0 of the unit cube. For example, the
boundary of the octahedron AM' consists of four Al-triangles and four
A% triangles.

Hypersimplicial N-decomposition of a simplex [12, Section 10.4]. It is a
canonical decomposition of an m-dimensional simplex into hypersimplices
which depend on an additional natural number N.

Consider the standard coordinate space R™*!. It contains the integral
lattice Z™*1. The integral hyperplanes z; = s, s € Z, cut the space into unit
cubes with vertices at integral points. Take an m-dimensional simplex given
by the intersection of the hyperplane y_ z; = N with the positive octant:

=0

The integral hyperplanes x; = s cut this simplex into a union of hyper-
simplices. Indeed, the hyperplane > x; = N intersects each of the stan-
dard unit lattice cubes either by an empty set, or by a hypersimplex. We
call it a hypersimplicial N-decomposition of an m-dimensional simplex. A
hypersimplicial N-decomposition of a simplex induces a hypersimplicial N-
decomposition of each face of the simplex.

LEMMA 4.3.— The AP9-hypersimplices of the hypersimplicial N -decompo-
sition of an m-simplex match partitions a = (ag, ..., G, ), where

ag+...+am=N—(q+1), a; € Z>o. (4.8)

Proof.— The standard hypersimplex AP+ consists of the points of the unit
cube with coordinates (xq, ..., T,,) satisfying xg + ... + 2,, = ¢+ 1. So any
partition a provides a hypersimplex

(@0, -, am) + (T0; s ) C Aflly-

So we parametrise hypersimplices in AE’}V) by the coordinates (ag, .., ., a@m)
of their “lowest” vertices. O

Let AP be the hypersimplex of a hypersimplicial N-decomposition assigned
to a partition a.

Examples. — 1. The N-decomposition of a segment A' is a decomposition
into IV little A%%-segments. They match partitions ag + a; = N — 1.
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2. The N-decomposition of a triangle A? is a decomposition into triangles
of two types, AL? and A%, The AMY-triangles match partitions ag + a1 +
ay = N — 1. The A%!-triangles match partitions ag + a; +as = N — 2.

3. The N-decomposition of a tetrahedron A? has tetrahedrons of two
types and octahedron. The A?C-tetrahedrons match partitions ag+aj +as -+
a3 = N —1. The All-octahedrons match partitions ag+ai+as+as = N —2.
The A®2-tetrahedrons match partitions ag + a1 + a2 +az = N — 3.

Recall that a hypersimplex AP'¢ has 2(m + 1) codimension one faces:
(m + 1) of them are hypersimplices of type AP~14 and the other (m + 1)
are hypersimplices of type AP»4~1,

Each hypersimplex A29 is surrounded by m+1 hypersimplices Aﬁ“’f‘“l,
sharing with it a codimension one face of type AP*¢~1. The b’s are obtained
from a by adding 1 to one of the coordinates (ag, ..., a;,). So the collection

of b’s is

(ap +1,a1,a2,....am), (ag,a1 +1,az2,...;am), ... ,(ag,a1,a2,...,am +1).

Each hypersimplex A2 is also surrounded by m + 1 hypersimplices
AP=Latl sharing with it a codimension one face of type AP~1:4. The ¢’s are
obtained from a by subtracting 1 from one of the coordinates (aq, ..., am,)-
So the collection of ¢’s is

(a0 —1,a1,a2,...;am), (ag,a1 —1,az,...,anm), ... ,(ao,ar,az,...,am —1).
The combinatorics of hypersimplices is related [15] to the geometry of
the Grassmannians.
The Grassmannian Gpyg+2(q+ 1) matches the hypersimplex AP9.

Precisely, consider the action of the coordinate torus T, 442 = GEF9T2 on
the Grassmannian Gp4q+2(q + 1). Then the closure of each of the generic
T,4q+2-orbits is a (p+¢+1)-dimensional toric variety, and combinatorics of
its boundary strata coincides with the structure of the hypersimplex AP:9.
Alternatively, it follows from the general Convexity Theorem of Atiyah [1]
that the image of Gpt442(q¢ + 1) under the moment map assigned to the
torus action is the hypersimplex AP-4.

A proof of Theorem 4.2. Our key construction provides a map
Complex of decorated flags — Bigrassmannian complex. (4.9)

To see that it commutes with differentials, we rephrase it as a correspon-
dence from the variety Conf;, , ;(Ax) to the Bigrassmannian:
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o Given a generic configuration of (m=+1) decorated flags (Fo.e, F1,0, -,
Foe) in Vi, we define a collection of points in the Grassmannians
G +1(x). These points are parametrised by the hypersimplices of
the hypersimplicial N -decomposition of an m-dimensional simplex:

Each hypersimplex AD? C A’(q}v) gives rise to a point of the Grass-
mannian G,11(q+1):
Wa(FO,o,Fl,opu,Fm,o) S Gm+1(q+ ].) (410)

Furthermore, the 2(m + 1) elements provided by the boundary of the
element (4.10) match the ones assigned to the boundaries of the hypersim-
plex AR4 C AE’}V). The sum of the boundaries of all these hypersimplices is,
of course, the boundary of the simplex A?fv) presented as a sum of its own
hypersimplices. This just means that we get a homomorphism of complexes.

We defined homomorphisms of complexes (4.7):
Complezes of generic decorated flags in Viy — the Bigrassmannian complez.
(4.11)
We will review in Section 4.3 homomorphisms of complexes,

the Bigrassmannian compler — weight n motivic complex, n < 4.

(4.12)
Finally, we defined in Section 2.5 for n < 4 maps
Weight n polylogarithmic complex —
weight n Lie-exponential complex, n < 4. (4.13)

Combining these three maps, we get explicit cocycles for the Chern classes
with values in the Deligne cohomology for n < 3. The n = 4 case needs a
more general map (4.13), since the weight four motivic complex in (4.12) is
no longer the polylogarithmic complex, it is rather, see [22]:

G4(F) — B3(F) @ F* — By(F) @ A*°F* — A*F*. (4.14)

However, using the big period map on the H,4, one can extend (4.13) to this
case.
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4.3. Maps Bigrassmannian complex — motivic complexes

1. Bigrassmannian complex — Bloch complex. We construct a map of
complexes

BC5 — BC4 — BC3 — BCQ

1 \: U \ (4.15)
0 — By(F) — AF* — 0

It is defined at the Grassmannian bicomplex, raw by raw. The bottom raw
goes to zero. The map on the second raw amounts to the following map of
complexes, defined in (1.37), Section 1:

05(2) — 04(2) — 03(2)

1 1k 1l (4.16)
0 — BQ(F) — AQF*

Combining the homomorphism (4.7)= (4.11) with the homomorphism
(4.15), we arrive at a homomorphism from the complex of decorated flags
in Vi to the Bloch complex:

— C5(.AN) — C4(.AN) — Cg(.AN)
10 ! | (4.17)

— 0 —  Bo(F) — A%F*
It is the main ingredient of the cocycle for the second motivic Chern class
in [17]:
CM € HY(BGLy,Zm(2)). (4.18)

2. Bigrassmannian compler — weight three motivic complex. Let us con-
struct a map of complexes

BC7 — BCﬁ — BC5 — BC4 —

! ! | ! 1 (19)
0 — By(F) — Bo(F)®F* — AF* — 0

We define it by looking at the Grassmannian bicomplex, and defining the
map raw by raw.

We send the bottom two raws to zero. The map on the third raw amounts
to a construction of the following map of complexes:
! ) ) h (4.20)
0 — B3(F) — By(F)®F* — AF*
)

This has been done in Section 3.2 in [19]
in [20].

, see some additions in Section 5
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Combining homomorphism (4.7) with the homomorphism (4.19) from the
Bigrassmannian complex to the weight three motivic complex, we arrive at
a homomorphism of complexes

— Cg(Ay) —  Cs(Ay)  — Cu(An)

\ 1 1 (4.21)
—  B3(F) — By(F)®@F* — A3F*

It is the main ingredient of the cocycle for the third motivic Chern class in
[17]:
CM € HS(BGLy,Zm(3)). (4.22)

Bigrassmannian complex — weight four motivic complex. We will treat
it in a different place, since it requires an elaborate exposition.

Remark. — Motivic Chern classes C* € H*"(BGLy,Zm(n)) are defined
for n < 4 on Milnor’s simplicial model of the classifying space BG Ly, and
take values in the motivic complexes there. We construct cocycles repre-
senting these classes at the generic point of BGLy. It is a key property of
the construction that these cocycles extend to cocycles on the whole space
BGLy with the values in the motivic complex defined using the Gersten
resolution, see details in [17] for the weights 2 and 3, and even more details
in Section 4 of [19] for the weight 3.

Contrary to this, our construction of cocycles representing the Deligne
cohomology classes

CP ¢ H*™(BGLY,Zp(n))

works at the generic point only. This is sufficient for the goal, since BG L},
is a model of the classifying space for the GLy. And this is sufficient to get
explicit formulas for the Chern classes of vector bundles. Yet it is desired
to extend the construction to BGLy.

5. Appendix: a map to the real Deligne complex

An outline. Let (S°®,d) be the de Rham complex of smooth real valued forms
on a manifold X. Recall that we constructed a map of complexes

wl® :Qe(n) — Q°.

Consider the canonical projection:

7 : C — C/R(n) =R(n —1); mp(a+1ib):

a mn odd,
ib n even.
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The map 7, induces a projection of the de Rham complex of complex valued
smooth forms to the de Rham complex of R(n — 1)-valued forms:

Tyt Q2 — S%(n—1).
So we get a canonical map from the exponential complex:
©®) =1, owl® : Q% (n) — S*(n —1). (5.1)
(o)

We will show that the map ¢y, ’ is canonically homotopic to zero by con-
structing a homotopy

s Qe(n) — S*(n—1)[-1], dos!® + 5 od =, (5.2)
Let us assume that we have a map, conjectured in Conjecture 2.12, from

the weight n part £°(n) of cochain complex of the Q-Hodge-Tate Lie coal-
gebra L to the Lie-exponential complex:

P L0 (n) — Q2 (n).
Recall an important feature of the map (5.1):
the composition ¢(*) o p{®) : £*(n) — Q% (n) — S*(n — 1) is zero.
(®) o (®)

Therefore the composition sy’ o p;, ’ is a map of complexes:

5 opl® : £%(n) — Qt(n) — S*(n — 1)[-1]. (5.3)

Recall that the weight n real Deligne complex is given by the cone
Rp(n) = Cone(wn QS — S°(n — 1)[—1}).

LEMMA 5.1. — The map (5.3) gives rise to a morphism to the weight n
real Deligne complex:

(509 0 p), w1 0 p1) - £2(n) — R (). (5.4)

Proof.— The map (5.3) gives the component of the map (5.4) in (S° — ... —
S7~1)(n—1)[—1]. The only other non-trivial component is the standard map

wy(Ln) Op,(f) AL — Q™ |

In particular, combining this with a regulator map from the motivic
complex to £°(n) we would get a homomorphism from the motivic complex
to the weight n real Deligne complex.
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The morphism gagf). It is a morphism of complexes which looks as follows:

On-1 — A0m-2) > .. 2 T T ek
Lol Vel e Lol
Pn-1) - S'm-1) S . L s te-1) L shn-1)

(5.5)

Namely,
e AP0 — 8™ (n— 1), Fy A ... A Fy — mo(dlog Fy A ... Adlog F,),
and for k=1,...,n,

=D ARO(n — k) — SF " (n — 1),

2r) " F - fLA A fy— T od T ((27ri)"_k “dfy A A dfk) =

k _ . (5.6)
(k—1)! ((2m')"*’@ SNy df A N A A dfk).

i=1

A homotopy s%'). For example for n = 2 we are going to get a diagram of

maps

o1 5 A0 2B A20r

R R AT S SR S LX)

0o — s L st L sz

Let Alt,F(xq1,....,x,) = desn(—l)‘”'F(a:g(l), iy T (ny); and Im(z +
1y) = iy. Let us set
Tt A"O — 8" Y n—1), fAA A for—d P om(dfi A Adfy) =
Alt, Y cjnRefyr dRefo A ... AdRefaji1 Adimfaja A ... Adlmf,.
720
Here ijn = m FOI' example,
71 A0 — SY(1),  finfe — d toma(dfiAdfs) == Refi dimfo—Refs dimf;.

A primitive d=1 o 7, (df1 A ... Adf,,) is not uniquely defined. Our choise has
a property that
Tk,1(27TZ' Afa Ao A fk) =0. (58)
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Set s%n) = %Tn_l. Let us define maps

s ARLO( -k — 1) — S* Y n —1) 1<k<n-1
by setting

(Qﬁi)nfkfl

s+ (2mi) A for A fi s ST Altk+1(Imfo-?k_l(fl/\.../\fk)).

THEOREM 5.2. — The map 35;) is a homotopy between the map <p7(1') and

ZEero:

S£f+1)05+d05$lk):@g€) for 1<k<n-—1

Proof.— Let us prove the statement for the diagram

AOMm—k) -5 AMIOMm—k—1)

/ Sglk—l) \l/ SDglk—l) / Sglk)

SF2m—1) L% Skl(n—1)

Thank to (5.8), for k < n — 1 one has

s o (5((27m')"7]C & fi N A fk> =

s(®) ((2m')”*k*1 Q2TiA fi Ao A fk) - (5.9)
i)k

o G

o Th—1(f1 Ao A fr).

It is easy to see that the same result is valid also for kK = n. On the other
hand

do sslk) ((27Ti)"_k R fiN. A fk) =

\n—k
d%mm(lmﬁ Frea(fo A A fk)) -
(k—1)'W-d(f:(—1)i-llmf--? (FL A AFi A /\f))
: l 2 i Tk—2lJ1 /\ ... AN k) -

(5.10)
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Putting together (5.6), (5.9) and (5.10), and dividing by (k — 1)!, the
statement reduces to the following basic identity:
k

d(Z(—l)FlImfi Foma(Fr A e AFi A e A fk)) bk T (fL A A fi) =

i=1

k
e (Z(—l)"*lfi CAfL A NAF A A dfk>.
- (5.11)

We can rewrite it in its natural form:
k- (ﬂk od ' —d! o7r;€)(f1 A A ) =

E - (5.12)
d(Z(—l)lfllmf,’ T (fiIN A fi N A fk)

=1

Proof of the basic identity. — We need the following simple observation:

Tho1(fi A e A fi) = Th—2(fi Ao A fe—1) Adlmfy, + terms without dlm fy.

We prove the basic identity by induction. Let £ = 2. Then it boils down
to

d(lm fiRefs — ImfyRe fl) 4 2(Re fudIm fy — Re fodIm f1>
Refidlm fy — Refodlm fi 4+ Im f1dRefo — Im fodRef1,

which is easy to check.

Let us assume that the identity was already proved for k£ — 1. We com-
pute first the parts of each of the sides containing the term dImfy. The
contribution of the right hand side is

k—1

Th—1 (Z(—l)i_lfi cdft A A A A dfk) A dIm fy.
i=1
By the induction assumption this is equal to

k—1
(d Z(—l)iilImfi-?k_g(fl/\.../\ﬁ'/\.../\fk_1)+(k—1)?k_2(f1/\.../\fk_1)> AdIm .
=1

We have to show that this expression is equal to the dlm fx-content of the
left hand side of the basic equality, i.e. to
—’T’kag(fl VANRTRIVAN fkfl) Adlmf + k‘?kfg(fl A A fkfl) A dIm fr,+
k—1

(Z(qyfldﬁc_z(fl A AFiA A fk._l)lmfi> A dlm f.

=1
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This is obvious. It remains to check that the dlm fi-free parts of the basic
equality also coincide. The right hand side gives us
k
> (1)t m(fi)(dRefi A .. AdRefi A ... A dRefy). (5.13)
i=1
Let us assume first that &k is odd. Then the left hand side is
k
> (=1)""'Refi(dRefy A... AdRef; A ... A dRefy),
i=1
which coincides with (5.13) since 7, (f;) = Ref; if k is odd. If k is even the
first term contributes

k
Z(_l)i_llmfﬂkfl(fl N NFi NN fr),
i=1
which coincides with (5.13) since Im f; = 7, (f;) in this case. O
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