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Exponential complexes, period morphisms,
and characteristic classes

A. B. Goncharov(1)

To Vadim Schechtman on the occasion of his 60th birthday

RÉSUMÉ. – Nous introduisons des complexes exponentiels de faisceaux

sur une variété. Il s’agit de résolutions des faisceaux (Tate-twistés) con-

stants de nombres rationnels généralisant la suite exacte courte exponen-
tielle. Il existe des applications canoniques de ces complexes vers le com-

plexe de de Rham. A l’aide de celles-ci, et en calculant la cohomologie de

Deligne rationnelle, nous introduisons de nouveaux complexes que nous
appelons complexes de Deligne exponentiels. L’avantage de ces derniers

est qu’au moins au point générique d’une variété complexe on peut définir

l’application de régulateur de Beilinson vers la cohomologie de Deligne
rationnelle au niveau des complexes. En particulier, nous définissons des

morphismes de périodes à l’aide desquels nous construisons des homomor-
phismes entre les complexes motiviques et les complexes de Deligne expo-

nentiels en un point générique. En combinant cette construction avec celle

des classes de Chern à coefficients dans des bicomplexes, nous obtenons
une formule explicite, à l’aide de polylogarithmes, pour les classes de

Chern à valeurs dans la cohomologie de Deligne rationnelle, en degré ≤ 4.

ABSTRACT. – We introduce a weight n exponential complex of sheaves

Q•E(n) on a manifold X:

O(n− 1) −→ O∗ ⊗O(n− 2) −→ ... −→ ⊗n−1O∗ ⊗O −→ ⊗nO∗. (1)

It is a resolution of the constant sheaf Q(n), generalising the classical

exponential sequence:

Z(1) −→ O exp−→ O∗, Z(1) := 2πiZ.

There is a canonical map from the complex Q•E(n) to the de Rham com-

plex Ω• of X. Using it, we define a weight n exponential Deligne complex,
calculating rational Deligne cohomology:

ΓD(X;n) := Cone
(
Q•E(n)⊕ F≥nΩ• −→ Ω•

)
[−1].

Its main advantage is that, at least at the generic point X of a complex

variety X, it allows to define Beilinson’s regulator map to the rational

Deligne cohomology on the level of complexes. (A regulator map to real
Deligne complexes for any regular complex variety is known [18]).
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Namely, we define a weight n period morphism. We use it to define a map
of complexes

a weight n motivic complex of X −→
the weight n exponential complex of X . (2)

We show that it gives rise to a map of complexes

a weight n motivic complex of X −→
the weight n exponential Deligne complex of X . (3)

It induces Beilinson’s regulator map on the cohomology.
Combining the map (3) with the construction of Chern classes with co-
efficients in the bigrassmannian complexes [17], we get a local explicit
formula for the n-th Chern class in the rational Deligne cohomology via
polylogarithms, at least for n ≤ 4. Equivalently, we get an explicit con-
struction for the universal Chern class in the rational Deligne cohomology

cDn ∈ H2n(BGLN (C),ΓD(n)), n ≤ 4.

In particular, this gives explicit formulas for Cech cocycles for the topo-
logical Chern classes.
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1. Introduction, main definitions, and examples

1.1. A motivation: local construction of Chern classes

Topological invariants can often be localised by introducing additional
structures of local nature.

For example, the topological Chern classes of a vector bundle E on a
manifold can be localised by introducing a connection ∇ on E: the differ-
ential form (2πi)−nTr(Fn

∇), where F∇ is the curvature of ∇, is a de Rham
representative of the Chern class cn(E).

In this paper we address the problem of a local construction of ex-
plicit Cech cocycles representing the Chern classes. A construction of Chern
classes with values in the bigrassmannian complex was given in [17]. To get
from there a local formula for topological Chern classes, or Chern classes in
the rational Deligne cohomology, one needs a transcendental construction
relying on polylogarithms. It should handle the complicated multivalued
nature of polylogarithms.

We develop such a construction. We define a weight n exponential com-
plex, which is a resolution of the constant sheaf Q(n) on a manifold. Using
it, we define a new complex calculating the rational Deligne cohomology,
and construct a period morphism, which gives rise to a regulator map on
the level of complexes at the generic point of a complex algebraic variety.
Yet, more work needs to be done to find a local construction of the Chern
classes cn(E) when n > 4.

Let us now look at the problem in detail in the simplest possible case.

1. The first Chern class. Let E be a complex line bundle on a real manifold
X. Here is a classical construction of a Cech cocycle representing the first
Chern class

c1(E) ∈ H2(X,Z(1)).

- 621 -
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Take a cover of X by open subsets Ui such that all intersections Ui0∩...∩Uik

are empty or contractible. The restriction of E to Ui is trivial, so we may
choose a nonvanishing section si. The ratio si/sj is an invertible function
on Ui ∩ Uj . Choose a branch of log(si/sj). Then there is a 2-cocycle in the
Cech complex of the cover, whose cohomology class is c1(E):

Ui ∩ Uj ∩ Uk �−→ log(si/sj)− log(sj/sk) + log(sk/si) ∈ 2πiZ.
Equivalently, take the short exact exponential sequence of sheaves on X,
where O is the structure sheaf of continuous complex valued functions:

Z(1) −→ O exp−→ O∗.
Then the above construction just means the following:

1. We assign to a complex line bundle E onX a Cech cocycle representing
its class

cl(E) ∈ H1(X,O∗).

2. We calculate the coboundary map in the exponential complex:

δ : H1(X,O∗) −→ H2(X,Z(1)).

Then

δ(cl(E)) = c1(E) ∈ H2(X,Z(1)).

For an arbitrary vector bundle E, c1(E) := c1(det(E)). The construction
works the same way for complex manifolds.

The first step is algebraic: the class cl(E) ∈ H1(X,O∗) makes sense in
Zariski topology.

The second step is transcendental. The very existence of the integral
class c1(E) reflects the failure of the complex logarithm log(z) to satisfy the
functional equation. And yet the functional equation log(xy) = log x+log y
is satisfied on the real positive axis, and determines the logarithm uniquely.

Our starting point was the following problem:

Find similar in spirit ”local formulas” for all Chern classes of a vector
bundle on X.

2. The second Chern class. The next is a local formula for the second Chern
class. It is much deeper. We discuss in Section 1.7 the case when the vector
bundle is two-dimensional - the case of an arbitrary vector bundle requires
additional ideas, and postponed till Section 4.

- 622 -
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Here we see a similar phenomenon: the local formula for the second Chern
class in H4(X,Z(2)) requires the dilogarithm function, and reflects all its
beautiful properties at once:

• The monodromy of the dilogarithm.
• The differential equation of the dilogarithm.
• Abel’s five term relation, or better the failure of the complex dilog-
arithm to satisfy it. Yet, the five term relation on the real positive
locus is clean, and determines the dilogarithm.

The relevance of the real dilogarithm for the first Pontryagin class was
discovered by Gabrielov, Gelfand and Losik [14]. Few years later, the rele-
vance of the complex dilogarithm for the codimension two algebraic cycles
and regulators was discovered by Spencer Bloch [8], [9].

Our formula for the second Chern class of a two-dimensional vector bun-
dle is in the middle.

The construction of the universal second motivic Chern class from [17]
had several applications in low dimensional geometry and mathematical
physics, e.g. [12]. It provides a motivic point of view on the Chern-Simons
theory. It is of cluster nature, and can be quantised using the quantum
dilogarithm [13]. The present paper just clarifies its Hodge-theoretic aspect.

The local formula for the third motivic Chern class has the same level of
precision. In particular it is of cluster nature. However, strangely enough, it
did not have any application in geometry yet. Its quantisation is a tantalising
open problem.

1.2. Exponential complexes

Definition 1.1.— The weight n exponential complex Q•E(n) is the fol-
lowing complex of sheaves on a manifold X, concentrated in degrees [0, n]:

O(n− 1) −→ O∗ ⊗O(n− 2) −→ ... −→ ⊗n−1O∗ ⊗O −→ ⊗nO∗. (1.1)

The differential is

d : O∗ ⊗ . . .⊗O∗︸ ︷︷ ︸
k-1 times

⊗O⊗2πi⊗ . . .⊗ 2πi︸ ︷︷ ︸
n-k times

−→ O∗ ⊗ . . .⊗O∗︸ ︷︷ ︸
k times

⊗O⊗2πi⊗ . . .⊗ 2πi︸ ︷︷ ︸
n-k-1 times

,

(1.2)
a1 ⊗ ...⊗ ak−1 ⊗ b⊗ 2πi⊗ . . .⊗ 2πi︸ ︷︷ ︸

n-k times

�−→

a1 ⊗ ...⊗ ak−1 ⊗ exp(b)⊗ 2πi⊗ 2πi⊗ . . .⊗ 2πi︸ ︷︷ ︸
n-k-1 times

.
(1.3)

- 623 -
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To check that we get a complex, observe that each map d2 involves a
factor exp(2πi) = 1:

. . .⊗b⊗2πi⊗2πi . . . d−→ . . .⊗exp(b)⊗2πi⊗2πi . . . d−→ . . . exp(b)⊗exp(2πi)⊗2πi . . . .

For example, Z•E(1) is the classical exponential resolution of Z(1).

The complex Q•E(2) looks as follows:

O(1) −→ O∗ ⊗O −→ O∗ ⊗O∗.
b⊗ 2πi �−→ exp(b)⊗ 2πi, a⊗ b �−→ a⊗ exp(b).

The map Q(n) ↪→ O(n − 1) gives rise to a map of complexes Q(n) −→
Q•E(n). The cone of this map is acyclic. So the exponential complex is a
resolution of the constant sheaf Q(n).

The holomorphic de Rham complex on a complex manifold X is a reso-
lution of the constant sheaf C:

Ω• := Ω0
d−→ Ω1

d−→ Ω2
d−→ ... (1.4)

Let X be a regular complex algebraic variety. Take a compactification X
of X such that D := X − X is a normal crossing divisor. The de Rham
complex Ω•log of forms with logarithmic singularities at infinity is a complex
of sheaves in the classical topology onX, given by the forms with logarithmic
singularities at D.

The canonical embedding Q(n) ↪→ C gives rise to a canonical morphism
of the resolutions

Ω(•)n : Q•E(n) −→ Ω•log (1.5)

defined in the next Lemma.

Lemma 1.2.— There is a canonical morphism of complexes of sheaves
on X:

O(n− 1) −→ O∗ ⊗O(n− 2) −→ ... −→ ⊗n−1O∗ ⊗O −→ ⊗nO∗

↓ Ω(0)n ↓ Ω(1)n ... ↓ Ω(n−1)n ↓ Ω(n)n

Ω0
d−→ Ω1log

d−→ ...
d−→ Ωn−1

log −→ Ωn
log,cl

Here

Ω(m)
n ((2πi)n−m−1 · f1 ⊗ ...⊗ fm ⊗ g) :=

(2πi)n−m−1(−1)mg · d log f1 ∧ ... ∧ d log fm, m < n,

Ω(n)n (f1 ⊗ ...⊗ fn) := (−1)nd log f1 ∧ ... ∧ d log fn.
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1.3. Exponential Deligne complexes.

LetX be a complex manifold. Consider a subcomplex of the holomorphic
de Rham complex:

FnΩ• := Ωn → Ωn+1 → . . . ⊂ Ω•. (1.6)

The weight n rational Deligne complex on X is defined as a complex of
sheaves

QD(n) := Cone
(
Q(n)⊕ FnΩ• −→ Ω•

)
[−1]. (1.7)

Complex (1.7) is quasiisomorphic to

Q(n) ↪→ Ω0
d−→ Ω1

d−→ ...
d−→ Ωn−1. (1.8)

Let X be a regular complex algebraic variety. The Beilinson-Deligne com-
plex QD(n) [2] is a complex of sheaves in the classical topology on X given
by the total complex of the bicomplex

Q(n) Ωn
log

d−→ Ωn+1
log

d−→ . . .

QD(n) := ↓ ↓= ↓=
Ω0log

d−→ Ω1log
d−→ . . .

d−→ Ωn
log

d−→ Ωn+1
log

d−→ . . .

Definition 1.3.— The weight n exponential Deligne complex is a com-
plex

ΓD(n) := Cone
(
Q•E(n)⊕ FnΩ•X −→ Ω•X

)
[−1] (1.9)

obtained by replacing Q(n) in (1.7) by its exponential resolution Q•E(n), and
using the map (1.5).

For example, when n = 2 we get the total complex of the following
bicomplex:

O(1) −→ O∗ ⊗O −→ O∗ ⊗O∗ ⊕
Ω2

log
d−→ Ω3

log
d−→ . . .

ΓD(2) := ↓ Ω(0)
2 ↓ Ω(1)

2 Ω
(2)
2 ↘ ↙= ↓=

Ω0 d−→ Ω1
log

d−→ Ω2
log

d−→ Ω3
log

d−→ . . .

The quotient of complex (1.9) by the acyclic subcomplex Cone
(
FnΩ•X −→

FnΩ•X

)
[−1] is a quasiisomorphic complex

O(n− 1) −→ O∗ ⊗O(n− 2) −→ . . . −→ ⊗n−1O∗ ⊗O −→ ⊗nO∗
↓ ↓ ↓
Ω0

d−→ Ω1log
d−→ . . .

d−→ Ωn−1
log
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1.4. Period morphisms

Recall the basic fact, reviewed in Section 2.1, that the equivalence classes
of variations of framed mixed Q-Hodge-Tate structures on a complex man-
ifold X give rise to a sheaf of graded commutative Hopf algebras over Q:

H∗ =
∞⊕

n=0

Hn.

One hasH0 = Q, H1 = O∗Q := O∗⊗Q. The reduced coproduct Δ′ : H>0 −→
⊗2H>0 give rise to the reduced cobar complex, graded by the weight:

H>0
Δ′
−→ H>0 ⊗H>0

Δ′
−→ ...

Δ′
−→ ⊗nH>0.

In Section 3 we present our main construction, valid in the category of
complex manifolds:

Theorem 1.4.— There is a canonical map of complexes of sheaves,
called the period morphism:

the weight n part of cobar complex of H∗ −→
the weight n exponential complex Q•E(n). (1.10)

In a more elaborate form, it looks as follows:

Hn
Δ′
−→ (H>0 ⊗H>0)n

Δ′
−→ ...

Δ′
−→ ⊗nH1

↓ P 1
n ↓ P 2

n =↓ Pn
n

O(n− 1) −→ O∗ ⊗O(n− 2) −→ ⊗2O∗ ⊗O(n− 3) −→ ... −→ ⊗nO∗Q
(1.11)

The map (1.11) has the following properties:

(1) After the identification H1 = O∗Q the map Pn
n is the identity map.

(2) The map P 1
n is the big period map from [21].

(3) The composition Ωk
n◦P k

n is zero unless k = n, i.e. everywhere except
on the very right.

Condition 3) just means that the following composition is zero:

Hn
Δ′
−→ (H>0 ⊗H>0)n

Δ′
−→ ...

Δ′
−→ (⊗n−1H>0)n

↓ ↓ ↓
O∗ ⊗O(n− 2) −→ O∗ ⊗O∗ ⊗O(n− 3) −→ ... −→ ⊗n−1O∗ ⊗O

↓ ↓ ↓
Ω1

d−→ Ω2
d−→ ...

d−→ Ωn−1

- 626 -
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Example: n = 2.— Then we have a map

H2 −→ ⊗2H1

↓ ↓=
O(1) −→ O∗ ⊗O −→ ⊗2O∗Q

The period morphism to the exponential Deligne complex. Let us use period
morphism (1.11) and its properties provided by Theorem 1.4 to define a
map of complexes of sheaves

the weight n part of the reduced cobar complex of H• −→
the weight n exponential Deligne complex ΓD(X;n).

(1.12)

Let us recall that

ΓD(X;n) = Cone
(
Q•E(X;n)⊕ FnΩ•X −→ Ω•X

)
[−1]. (1.13)

Therefore a map to the complex (1.13) has three components:

(1) The exponential complex Q•E(X,n) component;
(2) The Hodge filtration FnΩ• component;
(3) The de Rham complex Ω•X component.

We define these components as follows.

(1) The Q•E(X,n)-component is just the period morphism:

Hn
Δ′
−→ (H>0 ⊗H>0)n

Δ′
−→ ...

Δ′
−→ ⊗nH1

↓ P 1
n ↓ P 2

n =↓ Pn
n

O(n− 1) −→ O∗ ⊗O(n− 2) −→ ⊗2O∗ ⊗O(n− 3) −→ ... −→ ⊗nO∗Q

(2) The FnΩ•-component is given by the map

−⊗n d log : ⊗nH1 −→ Ωn
X , (f1, ..., fn) �−→ −d log f1∧ . . .∧d log fn. (1.14)

(3) The de Rham complex component is zero.

Here is how the map (1.12) looks in the weight two. The top row is the
weight 2 reduced cobar complex. The second and third rows provide us a
bicomplex whose total is the weight two exponential Deligne complex. The
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map is given by the first row of vertical arrows:

H2
Δ′
−→ H1 ⊗H1

↓ P 1
2 ↙= ↘ −⊗2 d log

O(1) −→ O∗ ⊗O −→ O∗ ⊗O∗ ⊕
Ω2

log
d−→ Ω3

log
d−→ . . .

↓= ↓ Ω(1)
2 Ω

(2)
2 ↘ ↙= ↓=

Ω0 d−→ Ω1
log

d−→ Ω2
log

d−→ Ω3
log

d−→ . . .

Theorem 1.5.— The map defined by the components 1)-3) is a homo-
morphism of complexes.

Proof.— By Theorem 1.4, the component 1) is a homomorphism of com-
plexes. The component 2) is also a homomorphism of complexes. Indeed, the
forms in the image of the map (1.14) are evidently closed. So the statement
reduces to the claim that the following composition is zero:

(
⊗n−1H>0

)
n

Δ′
−→ ⊗nH1 −→ Ωn.

This follows from the n = 2 case, telling that (see Theorem 2.11) thanks to
the Griffith transversality, the following composition is zero:

H2
Δ′
−→ H1 ⊗H1 −→ Ω1.

After that the Theorem reduces to properties 1) and 3) of the period map
in Theorem 1.4. �

Alternatively, using the reduced model (1.11) for the exponential Deligne
complex, the homomorphism (1.12) is given just by the period morphism:

Hn
Δ′
−→

(
H>0 ⊗H>0

)
n

Δ′
−→ . . .

Δ′
−→

(
⊗n−1H>0

)
n

Δ′
−→ ⊗nH1

↓ P (1)
n ↓ P (2)

n ↓ P (n−1)
n ↓ P (n)

n

O(n− 1) → O∗ ⊗O(n− 2) → . . .→ ⊗n−1O∗ ⊗O → ⊗nO∗Q
↓ ↓ ↓
Ω0

d−→ Ω1log
d−→ . . .

d−→ Ωn−1
log
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1.5. A map: Bloch complex → weight two exponential Deligne
complex

The Bloch complex as a “resolution” of Milnor’s K2. Given a field F , the
Milnor group K2(F ) is the quotient of the group F ∗ ⊗ F ∗ by a subgroup
generated by Steinberg relations (1− x)⊗ x where x ∈ F ∗ − {1} [30]. Since
x⊗ y + y ⊗ x is a sum of Steinberg relations,

K2(F ) =
∧2F ∗

subgroup generated by Steinberg relations
. (1.15)

In other words, the group K2(F ) is the cokernel of the map

δ : Z[F ∗ − {1}] −→ ∧2F ∗, {x} �−→ (1− x) ∧ x.

where {x} is the generator of Z[F ∗−{1}] corresponding to an x ∈ F ∗−{1}.

Recall the cross-ration of four points on the projective line:

r(s1, s2, s3, s4) :=
(s1 − s4)(s2 − s3)

(s1 − s3)(s2 − s4)
. (1.16)

Let R2(F ) be the subgroup of Z[F ∗ − {1}] generated by the “five term
relations”

5∑

i=1

(−1)i{r(s1, ..., ŝi, ..., s5)}, si ∈ P1(F ), si �= sj . (1.17)

It is well known that δ(R2(F )) = 0 (see Lemma 1.8). Let us set

B2(F ) :=
Z[F ∗ − {1}]

R2(F )
.

Then the map δ gives rise to a homomorphism

δ : B2(F ) −→ ∧2F ∗. (1.18)

Let {x}2 ∈ B2(F ) be the image of {x}. We add {0}2 = {1}2 = {∞}2 = 0,
annihilated by δ. We view (1.18) as a complex, called the Bloch complex [9],
[31], [11], placed in degrees [1, 2].

Consider a twin of the weight two exponential complex, which we call
the weight two Lie-exponential complex,1 which is a complex of sheaves on
X in degrees [0, 2]:

Q•E(2) := O(1) −→ Λ2O ∧2exp−→ Λ2O∗. (1.19)

1The prefix Lie refers to the fact that the period map in this case is a map from the

standard Chevalley-Eilenberg complex of the Lie coalgebra L∗ associated with the Hopf
algebra H∗. See Section 2.4 for the definition of Lie-exponential complexes and discussion
of the Lie-period maps for them.
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The differentials are given as follows:

2πi⊗ a �−→ 2πi ∧ a, a ∧ b �−→ exp(a) ∧ exp(b). (1.20)

There is a canonical map of complexes:

Q(2) −→ Q•E(2), (2πi)2 �−→ 2πi⊗ 2πi.

Therefore one can easily see that Q•E(2) is a resolution of Q(2).

Let us sheafify the Bloch complex to a complex of sheaves on X:

B•(2) := B2(O) −→ Λ2O∗. (1.21)

Let us define a map of complexes

B2(O) −→ Λ2O∗

↓ p2 ↓=

O(1) −→ Λ2O ∧2exp−→ Λ2O∗

(1.22)

To define the homomorphism p2, we set

Li2(x) :=

∫ x

0

dt

1− t
◦ dt

t
, − log(1− x) =

∫ x

0

dt

1− t
, log x :=

∫ x

0

dt

t
. (1.23)

Here all integrals are along the same path from 0 to x. The last one is
regularised using the tangential base point at 0 dual to dt. When |x| < 1,
we have standard power series expansions

− log(1− x) =

∞∑

n=1

xn

n
, Li2(x) =

∞∑

n=1

xn

n2
.

Then we set, modifying slightly the original construction of Spencer Bloch
[9],

L2(x) := Li2(x) +
1

2
· log(1− x) log x+

(2πi)2

24
,

p2({x}2) :=
1

2
· log(1− x) ∧ log x+ 2πi ∧ 1

2πi
L2(x).

Notice that 2πi ∧ 2πi
24 = 0 in Λ2C. Indeed, for any integer N we have 2πi ∧

2πi
N = −N · 2πiN ∧ 2πi

N = 0. Yet it is handy to keep the summand (2πi)2

24 in

L2(x), although it does not change 2πi ∧ 1
2πiL2(x).

Lemma 1.6.— i) The map p2 is well defined on Z[C∗ − {1}], i.e. does
not depend on the monodromy of the logarithms and the dilogarithm along
the path γ in (1.23).

ii) The map p2 sends the five term relations to zero.

- 630 -



Exponential complexes, period morphisms, and characteristic classes

Proof.— The part i) is easy to check using well known monodromy proper-
ties of the dilogarithm.

Let us prove the five term relation. Recall the map

δ2 : Z[C(t)∗ − {1}] −→ C(t)∗ ∧ C(t)∗, {x} �−→ (1− x) ∧ x.

Then we have a commutative diagram:

Ker δ2 −→ Z[C(t)∗ − {1}]] δ2−→ C(t)∗ ∧ C(t)∗

↓ ↓ p2 ↓=

C(t)(1) −→ C(t) ∧ C(t) exp−→ C(t)∗ ∧ C(t)∗.

It implies that p2(Ker δ2) ⊂ 2πi ∧ C(t). Next, let us consider a map

ω : Λ2O −→ Ω1, f ∧ g �−→ 1

2
(fdg − gdf). (1.24)

The differential equation for the dilogarithm function is

dL2(x) =
1

2
·
(
− log(1− x) d log x+ log x d log(1− x)

)
. (1.25)

It just means that the following composition is zero:

Z[C(t)∗ − {1}]] p2−→ Λ2C(t) ω−→ Ω1t . (1.26)

The kernel of the map ω : 2πi ∧ C(t) −→ Ω1 is 2πi ∧ C. This implies that

p2(Ker δ2) ∈ 2πi ∧ C.

Given a configuration of five distinct points (x1, ..., x5) on CP1, denote by
R2(x1, ..., x5) ∈ Z[C] the corresponding five-term relation element (1.17).
Since it lies in the kernel of the map δ2, applying the map p2 to it we get a
constant:

c(x1, ..., x5) := p2

(
R2(x1, ..., x5)

)
∈ 2πi ∧ C.

Let us calculate this constant. Similar argument shows that we have con-
stants

b(x) := p2({x}2+{1−x}2) ∈ 2πi∧C, c(x) := p2({x}2+{x−1}2) ∈ 2πi∧C.
One has b(x) = c(x). Indeed, they tautologically coincide if x solves the
equation 1 − x = x−1. Thus they must coincide for any x ∈ C∗ − 1. On
the other hand, switching the last two points in the cross-ratio we get
r(x1, x2, x3, x4) = r(x1, x2, x4, x3)

−1. Therefore

c(x1, x2, x3, x4, x5) + c(x1, x2, x3, x5, x4) = c(x).

Finally, b(x) = 0 for x ∈ (0, 1). Indeed, log(1−x)∧log x+log x∧log(1−x) =
0, and each term of L2(x) is well defined if x ∈ (0, 1). So it is sufficient to
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show that L2(x) + L2(1 − x) = 0. One has d(L2(x) + L2(1 − x)) = 0. The
limit of L2(x) + L2(1− x) as x→ 1 is 0 due to Li2(1) = π2/6. �

Recall that the weight two rational Deligne complex Q•D(2) is a complex
of sheaves on X in degrees [0, 2]:

Q(2)
Q•D(2) := ↓

O d−→ Ω1

Consider the following version of the exponential Deligne complex, which
we call the weight two Lie-exponential Deligne complex, and abusing nota-
tion denote also by ΓD(2), obtained by replacing the constant sheaf Q(2)
by its Lie-exponential resolution Q•E(2). It is a complex of sheaves in the
classical topology on X associated with the following bicomplex:

O(1) −→ O ∧O −→ O∗ ∧ O∗
ΓD(2) := ↓= ↓ ω

O d−→ Ω1

Proposition 1.7.— There is a canonical morphism of complexes of
sheaves

rD : B•(2) −→ ΓD(2). (1.27)

Proof.— Let us define the map (1.27) as a morphism of complexes:

B2(O) −→ Λ2O∗

↓ p2 ↓ Id

O(1) −→ Λ2O −→ Λ2O∗
↓= ↓ ω
O −→ Ω1

Here the top raw is the sheafified Bloch complex, and the bottom two raws
describe the weight two Lie-exponential Deligne complex. The morphism
of the first raw to the second is given by the maps (p2, Id). The other
components of the morphism are zero.

To show that this is a map of complexes we use two facts:

1. The top right square is commutative by the definition of the map p2.

2. The composition B2(O) p2−→ Λ2O ω−→ Ω1 is zero by the differential
equation for the dilogarithm.

�
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Applications to regulators. Let us look at the dilogarithm regulator map for
Spec(C):

B2(C) −→ Λ2C∗
↓ p2 ↓=

C∗(1) −→ Λ2C ∧2exp−→ Λ2C∗
(1.28)

It implies that there is a canonical map

Ker
(
B2(C) −→ Λ2C∗

)
−→ C∗(1) = Ker

(
Λ2C −→ Λ2C∗

)
.

According to a theorem of Suslin [32], one has

Ker
(
B2(C) −→ Λ2C∗

)
⊗Q = K ind

3 (C)⊗Q.

So we get an explicit construction of Beilinson’s regulator map

K ind
3 (C) −→ C∗(1).

1.6. Regulator maps: motivic complexes → exponential Deligne
complexes

Motivic complexes and regulators. According to Beilinson [3], for any scheme
X over Q, and for each integer n ≥ 0, one should have a complex of sheaves
ZM(X;n) in the Zariski topology on X, called the weight n motivic com-
plex of sheaves on X, well defined in the derived category. For example,
ZM(X; 0) = Z, and ZM(X; 1) = O∗X [−1]. Beilinson’s formula relates its
cohomology to the weight n pieces for the Adams filtration on Quillen’s
K-groups of X:

Hi(ZM(X;n)⊗Q) ?
= grnγK2n−i(X)⊗Q. (1.29)

Beilinson defined higher regulator maps, with the source understood by
(1.29):

Hi
Zar(ZM(X;n)⊗Q) −→ Hi(X,QD(n)).

Let X be a regular complex algebraic variety. We want to have higher
regulator maps on the level of complexes. Motivic complexes are complexes
of sheaves in the Zarisky topology on X, while the Beilinson-Deligne com-
plexes are complexes of sheaves in the classical topology on X. To relate
them, let us consider a map of sites

π : Classical site −→ Zariski site.

Then the problem is interpreted as a problem of of construction of a map
of complexes

ZM(X;n) −→ Rπ∗QD(X;n). (1.30)

- 633 -



A. B. Goncharov

We address this problem at the generic point X ofX – this is sufficient for
local explicit formulas for the Chern classes. Notice that the Rπ∗ is highly
non-trivial since the constant sheaf QX has complicated cohomology at the
generic point.

It is unlikely that one can construct a map just to the Beilinson-Deligne
complex on X .

Our point is that replacing the constant sheaf QX by its exponential
resolution and considering the exponential Deligne complex ΓD(X ;n), one
should be able to define a map of complexes

ZM(X ;n) −→ π∗ΓD(X ;n). (1.31)

Combining it with the map π∗ΓD(X ;n)→ Rπ∗ΓD(X ;n) we get a regulator
map (1.30) for X .

Here is our strategy to define a map (1.31). We make the following as-
sumption:

The motivic complex QM(X ;n) can be constructed as the weight n part of
the cobar complex of a graded commutative Hopf algebra A∗(X ), the motivic
Tate Hopf algebra, graded by Z≥0.

Then the Hodge realisation provides a map of Hopf algebras

A∗(X ) −→ H∗(X ).

It induces a map of their cobar complexes:

the weight n part of the cobar complex of A∗(X ) −→
the weight n part of the cobar complex of H∗(X ).

(1.32)

Composing (1.10) and (1.12) we arrive at a map of complexes

P : QM(X ;n) −→ the weight n exponential Deligne complex ΓD(X ;n).
(1.33)

The induced map on the cohomology provides higher regulators.

Using the polylogarithmic complexes, we can avoid assumptions about
the existence of the motivic Hopf algebra when n ≤ 3. So in this case the
construction goes through unconditionally. In general there is the Bloch-Kriz
construction of the motivic Tate Hopf algebra [10]. However their Hodge
realisation map deserves a more explicit construction.
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1.7. A local formula for the second Chern class of a two-dimensional
vector bundle

We consider complex vector bundles on real manifolds, and produce a
local formula for a Cech cocycle representing the topological second Chern
class, as well as the second Chern class in the integral Deligne cohomology.
All constructions can be applied to vector bundles over complex manifolds.
The algebraic part of the construction makes sense in Zariski topology.

Given a two-dimensional vector bundle E on a manifold X, pick a cover
{Ui} of X by open sets such that all intersections Ui0...ik := Ui0∩...∩Uik are
empty or contractible. Choose a non-zero regular section si on each open
set Ui. Then,

• For a three open sets U1, U2, U3 there are three sections s1, s2, s3
over U123. They provide a section

l2(s1, s2, s3) ∈ O∗U123
⊗Z O∗U123

.

Namely, pick a volume form ω ∈ det(E∨U123
) on the restriction of E

to U123. Set

Δ(si, sj) := 〈ω, si ∧ sj〉,
l2(s1, s2, s3) := Δ(s1, s2)∧Δ(s2, s3)+Δ(s2, s3)∧Δ(s1, s3)+Δ(s1, s3)∧Δ(s1, s2).

(1.34)
This expression does not depend on the choice of the volume form
ω.

• For any four open sets U1, U2, U3, U4 take the cross-ratio of the
restriction of the four sections to U1234:

r(s1, s2, s3, s4) :=
Δ(s1, s4)Δ(s2, s3)

Δ(s1, s3)Δ(s2, s4)
∈ O∗U1234

. (1.35)

The Plücker identity implies that it satisfies the crucial relation

(1− r(s1, s2, s3, s4)) ∧ r(s1, s2, s3, s4) = (1.36)

l2(s2, s3, s4)− l2(s1, s3, s4) + l2(s1, s2, s4)− l2(s1, s2, s3).

Recall the map δ : Z[F ∗ − {1}] −→ ∧2F ∗, given by {x} �−→ (1− x) ∧ x.

Recall the subgroup R2(F ) ⊂ Z[F ∗ − {1}] generated by the “five term
relations” (1.17).

Lemma 1.8.— One has δ(R2(F )) = 0.

Proof.— Denote by Cn(k) the free abelian group generated by the configu-
rations of n vectors in generic position in a k-dimensional vector space over
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a field F . It follows from (1.36) that there is a map of complexes

C5(2)
d−→ C4(2)

d−→ C3(2)
↓ l0 ↓ l1 ↓ l2

R2(F ) ↪→ Z[F ∗ − {1}] δ−→ Λ2F ∗
(1.37)

Here the map l2 is given by (1.34), the map l1 is given by (s1, ..., s4) �−→
{r(s1, ..., s4)}, and the map l0 assigns to a configuration of five generic
vectors (s1, ..., s5) the configuration of the corresponding five points on P

1.
�

Setting B2(F ) := Z[F ∗ − {1}]/R2(F ) we get the Bloch complex δ :
B2(F ) −→ Λ2F ∗.

Our construction delivers a Cech cochain C• for the covering {Ui} of
total degree four with values in the sheafified Bloch complex

B•(2) = B2(O) −→ Λ2O∗. (1.38)

It has two components given by (1.34) and (1.35):

C3(Ui, Uj , Uk) ∈ Λ2O∗Uijk
and C4(Ui, Uj , Uk, Ul) ∈ B2(OUijkl

).

Condition (1.36) plus the five term relations (1.17) just mean that it is a
cocycle. It represents the second motivic Chern class of the vector bundle
E:

cM2 (E) ∈ H4(X,B•(2)). (1.39)

Remark.— The name refers to a construction of the second universal motivic
Chern class of Milnor’s simplicial model BGL2• of the classifying space
BGL2:

cM2 ∈ H4(BGL2•,ZM(2)).

Here ZM(2) is the weight two motivic complex, which is a complex of sheaves
in Zariski topology on the simplicial scheme BGL2•. It is defined by applying
the Gersten resolution to the Bloch complex at the generic point. A complex
two dimensional vector bundle on a manifold X equipped with a Cech cover
can be described as the pull back of the universal bundle over BGL2•. Then
the class cM2 pulls back to the class (1.39).

We use the classical topology, aiming at a local formula for the topological
Chern class

c2(E) ∈ H4(X,Z(2)).
To get it from the motivic one (1.39) is a non-trivial problem. Although it is
asking for the dilogarithm, we have to deal with its complicated multivalued
nature. We employ the weight two Lie-exponential complex to handle this
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problem, and construct a cocycle representing the second Chern class in the
weight two Lie-exponential Deligne complex

cD2 (E) ∈ H4(X,ΓD(2)). (1.40)

Recall the weight two Lie-exponential complex of sheaves:

Q•E(2) := O(1) −→ Λ2O ∧2exp−→ Λ2O∗. (1.41)

2πi⊗ a �−→ 2πi ∧ a, a ∧ b �−→ exp(a) ∧ exp(b). (1.42)

It is a resolution of Q(2). Recall a map of complexes (1.22):

B2(O) −→ Λ2O∗
↓ p2 ↓=

O(1) −→ Λ2O ∧2exp−→ Λ2O∗
(1.43)

Here

L2(x) := Li2(x) +
1

2
· log(1− x) log x+

(2πi)2

24
,

p2({x}2) :=
1

2
· log(1− x) ∧ log x+ 2πi ∧ 1

2πi
L2(x).

Recall the weight two Lie-exponential Deligne complex ΓD(2):

O(1) −→ O ∧O −→ O∗ ∧ O∗
ΓD(2) := ↓= ↓ ω ↓

O d−→ Ω1 −→ 0

By Proposition 1.7, there is a canonical morphism of complexes of sheaves

rD : B•(2) −→ ΓD(2). (1.44)

The Cech cocycle (C3, C4) representing a class inH4(X,B•(2)), combined
with a morphism of complexes (1.44), delivers a Cech cocycle representing
the second Chern class cD2 (E) in (1.40).

Namely, we start with the Cech cocycle (C3, C4) with values in the Bloch
complex:

C4 ∈ B2(O) δ−→ C3 ∈ Λ2O∗.
Let us define a Cech cochain (C3, C̃3, C̃4, C̃5) with values in the weight two
Lie-exponential complex, organised as follows:

C̃5 ∈ Z(2) d−→ C̃4 ∈ O(1) d−→ C̃3 ∈ Λ2O ∧2exp−→ C3 ∈ Λ2O∗
(1.45)
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• For any three open sets U1, U2, U3, let us define

C̃3(U1, U2, U3) ∈ Λ2OU123
.

Namely, we choose a branch of each logΔ(si, sj) on U123, and set

C̃3(U1, U2, U3) := logΔ(s1, s2) ∧ logΔ(s2, s3) (1.46)

+ logΔ(s2, s3) ∧ logΔ(s1, s3) + logΔ(s1, s3) ∧ logΔ(s1, s2). (1.47)

• We assign to any four open sets U1, U2, U3, U4 an element

C̃4(U1, U2, U3, U4) ∈ OU1234
(1).

To define it, we use an isomorphism, see (1.19) - (1.20):

OU (1)/Z(2)
∼
= Z(1) ∧ OU (1) = Ker

(
Λ2OU

∧2exp−→ Λ2O∗U
)
.

So we exhibit an element in Λ2OU1234
which is in the kernel of the

∧2exp map:
C̃4(U1, U2, U3, U4) :=

(δCech ◦ C̃3)(U1, U2, U3, U4)− 2πi ∧ 1

2πi
L2(r(s1, s2, s3, s4))

+ log(1− r(s1, s2, s3, s4)) ∧ log r(s1, s2, s3, s4). (1.48)

To find C̃4(U1, U2, U3, U4) explicitly we start with an equality in
∧2O∗U1234

:

(δCech ◦ C3)(U1, U2, U3, U4) + (δBloch ◦ C4)(U1, U2, U3, U4) = 0, (1.49)

which is just equivalent to (1.36). It follows that

(δCech ◦ C̃3)(U1, U2, U3, U4) + (p2 ◦ C4)(U1, U2, U3, U4)

= 2πi ∧ 1

2πi
L2(r(s1, s2, s3, s4)) + 2πi ∧ log F.

So we set, “dropping” 2πi∧ in the last formula:

C̃4(U1, U2, U3, U4) :=
1

2πi
L2(r(s1, s2, s3, s4)) + log F.

The “correction term” 2πi ∧ log F shows up as follows. Since
log(fg) − log(f) − log(g) is a locally constant function with values
in 2πiZ, an equality

∑
i fi ∧ gi = 0, which in our case is just the

equality (1.49), implies only that, after we choose branches of log(fi)
and log(gi) on a contractible set,

∑
i log(fi)∧ log(gi) = 2πi∧ log F .

Notice that in our case the choices of the branches of log consist of
the choices made in (1.47) and (1.48)
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• Finally, to any five open sets U1, U2, U3, U4, U5 we assign an element

C̃5(U1, U2, U3, U4, U5) :=
5∑

i=1

(−1)iC̃4(U1, . . . , Ûi, . . . , U5) ∈ (2πi)2Q.

A priory this sum lives in OU12345 . We claim that it is annihilated
by the differential in the exponential complex. Indeed, the Cech
coboundary of the first line (1.48) is zero due to the five term relation
for the Λ2C-valued dilogarithm, that is since the map p2 sends the
five term relation to zero. For the second line this is just δ2Cech = 0.
Therefore CD5 ∈ (2πi)2Q.

We get a cocycle in the Cech complex with coefficients in the Lie-exponential
Deligne complex. It represents the second Chern class cD2 (E), and hence the
usual Chern class.

1.8. Explicit formulas for the universal Chern classes.

Let us formulate our approach to local formulas for the Chern classes.
Denote by BGL∗N• the classifying space for GLN . The ∗ stands for an open
“generic” part BGL∗• of Milnor’s BGL•, which is a model of the classifying
space. One should construct universal Chern classes of BGL∗N• with values
in the exponential Deligne complex:

cDn ∈ H2n(BGL∗N•,ΓD(n)). (1.50)

They induce explicit cocycles for the Chern classes in a given Cech cover.

We define the universal Chern classes in three steps.

(1) An explicit formula for the Chern classes with values in the bigrass-
mannian complexes BC(n) [17].

(2) A map from the bigrassmannian complex to a motivic complex.
There are several flavors of the problem, depending on our choice

of the motivic complex.
When n = 1, 2, 3 there is a map of the bigrassmannian complex to

the polylogarithmic motivic complexes B•(n). The latter reflects the
motivic nature of the classical polylogarithms. For example, B•(2)
is the Bloch complex. For n = 4 there is also an explicit map to the
motivic complex. So for n ≤ 4 there is a satisfactory construction.
So we should get the universal motivic Chern class2

cMn ∈ H2n
Zar(BGLN•,ZM(n)). (1.51)

2Here we do not need to restrict to BGL∗N .
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(3) A map from the motivic complex to the weight n exponential com-
plex Q•E(n), which allows to promote the class cMn (1.51) to the
universal Chern class (1.50).

One could probably combine Steps 2 and 3, to define an explicit map from
the bigrassmannian complex to the weight n exponential complex. Its most
non-trivial part follows from the motivic construction of the Grassmannian
n-logarithm in [25]. However the problem is open for n > 4.

In contrast with this, the problem of explicit construction of Chern classes
with values in the real Deligne cohomology is solved for all weights n: one
combines the Step 1 with the construction of a map from bigrassmannian
complex to the real Deligne complex given in [18].

An approach to construction of Grassmannian polylogarithms was devel-
oped by Hanamura and MacPherson [26].

Organisation of the paper. In Section 2 we recall the definition of the fun-
damental Hodge-Tate Hopf algebra H∗, and then construct the period mor-
phism.

In Section 3 we calculate the period morphism from the polylogarithmic
motivic complexes of weights ≤ 4 to the Lie-exponential complexes.

Section 4 mostly borrowed from [17]. We recall the construction of charac-
teristic classes using the bigrassmannian complex, articulating the role of the
hypersimplices, and then recall the map from the bigrassmannian complex
to the motivic complexes of weights ≤ 4. Combining with the construction
of the period morphisms from Section 2 we get an explicit construction of
the universal Chern classes of weights ≤ 4.

Section 5 is a continuation of Section 2: we show that the C/R(n)-part
of the canonical map

ω•n : the Lie-exponential complex −→ the de Rham complex Ω•

is homotopic to zero, and construct the homotopy, getting a regulator map
to the real Deligne complex.
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2. Period morphisms

2.1. The Q-Hodge-Tate Hopf algebra, and the period morphisms

The algebra background. Consider a graded commutative Hopf algebra over
Q with a unit:

A∗ = ⊕∞k=0Ak. (2.1)

Let Δ : A∗ −→ A∗ ⊗A∗ be the coproduct. The quotient

CoLie(A∗) :=
A∗

A>0 ·A>0

is a graded Lie coalgebra with the cobracket δ induced by the coproduct
Δ on A∗. Let Lie(A∗) be its graded dual. Then the universal enveloping
algebra of the Lie algebra Lie(A∗) is the graded dual to the Hopf algebra
A∗, assuming that all graded components are finite dimensional.

Consider the reduced coproduct

Δ′ := Δ− (Id⊗ 1 + 1⊗ Id) : A∗ −→ A>0 ⊗A>0

The reduced cobar complex of the Hopf algebra A∗ is the following complex
starting in degree 1:

A∗
Δ′
−→ A∗ ⊗A∗

Δ′
−→ ...

Δ′
−→ ⊗nA∗

Δ′
−→ . . . .

Δ′(a1 ⊗ . . .⊗ an) :=
n∑

k=1

(−1)ka1 ⊗ . . .⊗Δ′(ak)⊗ . . .⊗ an.

The standard cochain complex of the Lie coalgebra CoLie(A∗) is given
by

CoLie(A∗)
δ−→ Λ2CoLie(A∗)

δ−→ Λ3CoLie(A∗)
δ−→ . . . .

These two complexes are canonically quasiisomorphic. The degree n > 0
part of either of them calculates RHomA∗(Q(0),Q(n)) in the category of
graded A∗-comodules, or, what is the same, graded CoLie(A∗)-comodules,
where Q(n) is the trivial one dimensional comodule in degree −n.

The fundamental Hopf algebra of the category of mixed Hodge-Tate struc-
tures. For the convenience of the reader I recall some definitions from [BGSV].
See details in [21, Section 4].

A a mixed Q-Hodge structure H is Hodge-Tate if its weight factors are
isomorphic to ⊕Q(k). A n-framing on H is a choice of a nonzero maps
v0 : Q(0) → grW0 H and fn : grW−2nH → Q(n). Consider the equivalence
relation ∼ on the set of all n-framed Hodge-Tate structures induced by the
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following: if there is a mapH1 → H2 compatible with frames, thenH1 ∼ H2.
In particular, any n-framed Hodge-Tate structure is equivalent to a one H
with W−2n−2H = 0, W0H = H. Let Hn be the set of equivalence classes.
We define on Hn an abelian group structure as follows:

(fn, H, v0) + (f̃n, H̃, ṽ0) := (fn + f̃n, H ⊕ H̃, v0 + ṽ0);

−(fn, H, v0) := (fn, H,−v0).

The tensor product of mixed Hodge structures induces the commutative
multiplication

μ : Hk ⊗H� → Hk+�.

Let us define a coproduct

Δ =
⊕

k+�=n

Δk� : Hn →
⊕

k+�=n

Hk ⊗H�. (2.2)

Let (fn, H, v0) ∈ Hn. Choose a basis {v(i)k } in Hom(Q(k), grW−2kH) and the

dual basis {fk
(i)} in Hom(grW−2kH,Q(k)). Then

Δk,n−k(f
n, H, v0) :=

∑

i

(fn, H, v
(i)
k )⊗ (fk

(i), H, v0).

The graded Q-vector space

H∗ := ⊕∞n=0Hn,

has a natural structure of a graded Hopf algebra over Q with the commu-
tative multiplication μ and the comultiplication Δ.

Theorem 2.1.— The category of mixed Q-Hodge-Tate structures is canon-
ically equivalent to the category of finite-dimensional graded H∗-comodules.

Let Δ′n be the restriction of the restricted coproduct Δ
′ to Hn. Then for

n > 0 we have

Ker(Δ′n) =
C

(2πi)nQ
= Ext1MHS/Q(Q(0),Q(n)).

In [21] we constructed a canonical homomorphism, called the big period
map

Pn : Hn −→ C∗ ⊗Q C(n− 2). (2.3)

The restriction of Pn to the subgroup Ker(Δ′n) provides an isomorphism

C
(2πi)nQ

= Ker(Δ′n) −→ C∗ ⊗ (2πi)n−1.
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Period morphisms. The same construction as above for the category of vari-
ations of framed mixed Hodge-Tate structures over a manifold X delivers a
sheaf H∗ of graded Hopf algebras in the classical topology on X. Consider a
complex of sheaves H•(n) given by the weight n part of the reduced cobar
complex of H∗, placed in degrees [1, n]:

Hn
Δ′
−→ (H⊗H)n Δ′

−→ ...
Δ′
−→ ⊗nH1.

For n > 0 one has a quasiisomorphism of complexes of sheaves in the clas-
sical topology on X:

RHomMHSX
(Q(0)X ,Q(n)X) = Hn

Δ′
−→ (H⊗H)n Δ′

−→ ...
Δ′
−→ ⊗nH1.

We can state now precisely Theorem 1.4.

Theorem 2.2.— There exists a canonical morphism of complexes of
sheaves

P •n : H•(n) −→ Q•E(n),
called the period morphism, which satisfies the properties 1)-3) in Theorem
1.4.

A proof of Theorem 2.2 is given in Section 2.3.

2.2. The period homomorphism of algebras P′ : H∗ −→ C⊗ C

This Section is an elaborate exposition of Section 4 of [21].

1. The period operator and the period matrix. Let H be a mixed Hodge-Tate
structure over Q. Then there is an isomorphism

HC = ⊕pF
pHC ∩W2pHC. (2.4)

Furthermore, the following canonical map is an isomorphism:

F pHC ∩W2pHC
∼−→ grW2pHQ ⊗Q C. (2.5)

Using isomorphisms (2.5) and (2.4) we get a canonical morphism

SHT : ⊕pgr
W
2pHQ −→ HC.

On the other hand a splitting of the weight filtration on HQ also provides
us a morphism

SW : ⊕pgr
W
2pHQ −→ HC.

Both maps became isomorphisms when extended to ⊕pgr
W
2pHC. Therefore

a splitting of the weight filtration on HQ provides a map, called the period
operator:

S−1HT ◦ SW : ⊕pgr
W
2pHC −→ ⊕pgr

W
2pHC.
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Let (fn, H, v0) be a Hodge-Tate structure over Q, framed by Q(0) and
Q(n). Choose a splitting s over Q of the weight filtration on HQ. We define
the period of the splitted framed Hodge-Tate structure (fn, H, v0; s) as the
matrix coefficient of the period operator:

p(fn, H, v0; s) :=< v0|S−1HT ◦ SW |fn〉.

Choose a basis in each Q-vector space grW2pHQ, providing a basis in their
direct sum. The period matrix is the matrix of the period operator in this
basis. One can define a mixed Hodge-Tate structure by exhibiting its period
matrix. See an example below.

We define an equivalence relation on the set of all splitted framed Q-
Hodge-Tate structures as the finest equivalence relation for which any mor-
phism of mixed Q-Hodge structure H → H ′ respecting the splittings and
the frames is an equivalence.

Let H̃n be the set of equivalence classes of splitted n-framed Hodge-Tate

structures. Then H̃∗ := ⊕nH̃n is equipped in the usual way with a structure

of a graded Hopf algebra. For instance H̃1 = C⊗Q. In particular there is a
coproduct map Δ : H̃∗ → H̃∗ ⊗ H̃∗.

Let H → H ′ be a morphism of Hodge-Tate structures respecting the
frames and splittings. Then the periods of H and H ′ are the same, so we
get the period homomorphism

p̃n : H̃n → C.

2. The big period map. Let A and B be operators in a Q-vector space V .
Let {vk} be a Q-basis in V , and {fk} be the dual basis. Define

〈fn|B ⊗Q A|v0〉 :=
∑

vk

〈fn|B|vk〉 ⊗Q 〈fk|A|v0〉 ∈ C⊗Q C,

where the sum is over all basis vectors vk. It is well defined.

Definition 2.3.— Let (fn, H, v0; s) be a splitted framed Q-Hodge-Tate
structure, and M the period operator on ⊕kgr

W
−2kHQ. Then we set

P′n(f
n, H, v0; s) := 〈fn|M⊗QM−1|v0〉 ∈ C⊗ C. (2.6)

Lemma 2.4.— The element (2.6) does not depend on the choice of split-
ting.

Proof.— The normalised period matrix corresponding to a different split-
ting is given by MN, where N is a rational unipotent upper triangular
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matrix. One has

〈fn|MN⊗Q (MN)−1|v0〉 = 〈fn|M⊗QM−1|v0〉.
�

Notice that C⊗Z C is an algebra: (a⊗ b) · (a′ ⊗ b′) = aa′ ⊗ bb′.

Lemma 2.5 tells that the big period map P′n is multiplicative: it takes
the tensor product of the splitted framed Hodge -Tate structures into the
product in C⊗Z C.

Lemma 2.5.— Let M and M′ be splitted framed Hodge-Tate structures
of weights m and m′. Then

P′m+m′(fm⊗f ′m
′
,M⊗M′, v0⊗v′0; s⊗s′) = P′m(f

m,M, v0; s)·P′m′(f ′
m′

,M′, v′0; s
′).

Proof.— LetM (respectivelyM′) be the normalised period matrix for the
splitted framed Hodge-Tate structure M (respectively M′). Then the nor-
malised period matrix describing M⊗M′ is just the tensor productM⊗M′

of the normalised period matricesM andM′. Evidently,

〈fp ⊗ f ′
q | M⊗M′ | e0 ⊗ e′0〉 = 〈fp| M | e0〉〈f ′q | M′ | e′0〉.

The claim follows immediately from this remark. �

Definition 2.6.— The big period map Pn is the composition of the map
P′n with the map

C⊗QC −→ C∗⊗QC(n−2), a⊗b �−→ exp(2πi·a)⊗2πi·b⊗(2πi)n−2. (2.7)

Let U be a complex domain. There is a map

ω : OU ⊗Q OU −→ Ω1U , f ⊗ g �−→ (df)g.

Theorem 2.7.— a) The map P′n is a homomorphism of abelian groups
Hn −→ C⊗Q C.

Given Hm ∈ Hm and Hn ∈ Hn one has

P′n+m(Hm ⊗Hn) = P′m(Hm) · P′n(Hn).

So the collection of the maps {P′n} gives rise to an algebra homomorphism

P′ : H∗ −→ C⊗Q C.

b) The restriction of the map Pn to Ker(Δ′n) coincides with the natural
isomorphism

C
(2πi)nQ

= C∗Q ⊗ (2πi)n−1. (2.8)
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c) Let HU be a variation of framed mixed Hodge-Tate structures over a
domain U . Then there is a section P′(HU ) ∈ OU ⊗Q OU , and the following
composition is zero:

HU
P′
−→ OU ⊗OU

ω−→ Ω1U , ω ◦ P′ = 0.

Proof.— To prove the part a) of Theorem 2.7 we rewrite the map P′n in
terms of the Hopf algebra H∗. This is done in the Appendix. The second
statement follows then from Lemma 2.5.

b) Clear from the definitions.

c) We will prove it in paragraph 5 below. �

3. Explicit formulas. Given a variation of splitted framed Q-Hodge-Tate
structure H, choose a basis {vi} over Q in each fiber of a variation. We
assume that basis vectors vi are of pure weight wt(vi). Denote by {f i} the
dual basis. We use notation 〈f |M|v〉 for p(f,H, v; s).

We usually assume that the framing is given by basis vectors (v0, f
n).

Set M = 1 +M0. Since M0 is nilpotent, expanding (1 +M0)
−1 =∑

k≥0(−1)kMk
0 we get

〈fn|M⊗QM−1|v0〉 =
∑

k≥0
(−1)k〈fn|M⊗QMk

0 |v0〉. (2.9)

By (2.9), the big period of a splitted framed Hodge-Tate structure
(H; fn, v0; s) is

P′(fn, H, v0; s) ∈ C⊗ C.
P′(fn, H, v0; s) = 〈fn|M|v0〉 ⊗ 1+ (2.10)

∑

k≥2

∑

0<i1<...<ik−1<n

(−1)k−1〈fn|M|vik−1
〉⊗〈f ik−1 |M|vik−2

〉 · ... · 〈f i1 |M|v0〉+

∑

k≥1

∑

0<i1<...<ik−1<n

(−1)k · 1⊗ 〈fn|M|vik−1
〉〈f ik−1 |M|vik−2

〉 · ... · 〈f i1 |M|v0〉.

(2.11)
The sum is over all nonempty chains of basis vectors vi ∈ grW−2iHQ, 0 < i <
n.

Since the term (2.11) disappears after the projection C⊗Q C −→ C∗ ⊗Q
C(n− 2), we have

(2πi)−n+2P(fn, H, v0; s) ∈ C∗ ⊗ C.

(2πi)−n+2P(fn, H, v0; s) = exp(2πi · 〈fn|M|v0〉)⊗ 2πi+ (2.12)
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∑

k≥2
(−1)k−1

∑

0<i1<...<ik−1<n

exp(2πi · 〈f in |M|vik−1
〉)⊗ 2πi · 〈f ik−1 |M|vik−2

〉

·... · 〈f i1 |M|v0〉.

4. Examples. 1. Let us define a Hodge-Tate structure M using a normalised
period matrix:

M :=

⎛
⎜⎜⎝

1
x1 1
x2 y1 1
x3 y2 z1 1

⎞
⎟⎟⎠ , xi, yj , z1 ∈ C.

Let I be the matrix of the operator acting by (2πi)−k on grW2kHQ. Then the
period matrix is

M̃ :=MI =

⎛
⎜⎜⎝

1
2πi · x1 2πi
(2πi)2 · x2 (2πi)2 · y1 (2πi)2

(2πi)3 · x3 (2πi)3 · y2 (2πi)3 · z1 (2πi)3

⎞
⎟⎟⎠ .

Remark.— The matrix M̃ is the period matrix which appear naturally in
algebraic geometry. The normalized period matrix M is more convenient
when we work with the big period.

Precisely, if M is the Hodge realization of a mixed Tate motive, the
entries of the canonical period matrix are periods of rational algebraic dif-

ferential forms over relative cycles. The M̃ is the matrix of the comparison
isomorphism MDR ⊗C −→MBetti ⊗C in the natural Q-bases in MDR and
MBetti.

Let Ci be the i-th column of the matrix M̃. Let e−j be the column whose
only non zero entry is 1 on j-th place. We define the weight filtration W•
and the Hodge filtration F • by

W−6M = 〈C3〉Q, W−4M = 〈C2, C3〉Q, W−2M = 〈C1, C2, C3〉Q,
W0M = 〈C0, C1, C2, C3〉Q.

F 0M = 〈e0〉, F−1M = 〈e0, e−1〉, F−2M = 〈e0, e−1, e−2〉,
F−3M = 〈e0, e−1, e−2, e−3〉.

The splitted Hodge-Tate structure M has a framing given by e0 and
(2πi)−3f3. Its period is x3. The big period is

P′3(M) = x3 ⊗ 1 + y2 ⊗ (−x1) (2.13)

+z1 ⊗ (−x2 + x1y1) + 1⊗ (−x3 + x1y2 + x2z1 − x1y1z1) ∈ C⊗Q C.
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The period P3 is given by

P′3(M) = exp(2πi · x3)⊗ 2πi+ exp(2πi · y2)⊗ exp(2πi · (−x1))

+exp(2πi · z1)⊗ exp(2πi · (−x2 + x1y1)).

2. Here is a classical example of the period matrix for the variation of
Hodge-Tate structures related to the dilogarithm (due to Deligne):

L̃2 :=

⎛
⎝

1 0
−Li1(z) 2πi
−Li2(z) 2πi · log z (2πi)2

⎞
⎠ .

Then

P′2(L2) = −
Li2(z)

(2πi)2
⊗1+log z

2πi
⊗ log(1− z)

2πi
+1⊗Li2(z)− log z log(1− z)

(2πi)2
∈ C⊗C.

P2(L2) = exp(
−Li2(z)
2πi

)⊗ 2πi+ z ⊗ log(1− z) ∈ C∗ ⊗ C.

The invariant P2(L2) was first written by S. Bloch [Bl3]. Generalizing it,
Symn−1

Q C ⊗ C∗-valued invariants of the Hodge-Tate structures related to

classical n-logarithms where constructed in [BD] and [Bl4]. However the
approach of these papers is different from ours; it uses the specific structure
of the Hodge-Tate structures related to classical polylogarithms, which can
not be generalized to other mixed Tate motives.

5. Differential equations on periods and the Griffiths transversality condi-
tion. A variation of mixed Hodge structures satisfies the Griffiths transver-
sality condition. We say that a partial period 〈f l|M|vk〉, where vk ∈ grW−2kH
and f l ∈ (grW−2lH)∗, has amplitude l − k.

Theorem 2.8.— LetM be a normalised period matrix of a variation of
splitted framed Hodge-Tate structures (HU ; v0, f

n; s). Then

i) The connection ∇ on the variation is given by

∇(vk) = −
∑

{vk+1}
〈fk+1|dM|vk〉 · vk+1. (2.14)

The sum is over basis vectors {vk+1} of weight −2(k + 1).

ii) The Griffiths transversality condition is equivalent to the following
differential equations on the entries of the normalised period matrix M:

〈fk+s|M−1dM
∣∣∣vk〉 = 0 ∀s > 1. (2.15)
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iii) The period 〈v0|M|fn〉 satisfies a differential equation

d〈fn|M|v0〉 =
∑

{vn−1}
〈fn|M|vn−1〉d〈fn−1|M|v0〉. (2.16)

iv) The Griffiths transversality is equivalent to differential equations (2.16)
for all partial periods of amplitudes ≥ 2.

Proof.— The vectors
∑

j〈f j |M|vi〉vj are flat sections of the connection ∇
on then variation:

0 = ∇
(∑

j

〈f j |M|vi〉vj
)
=

∑

j

〈f j |M|vi〉 · ∇(vj) +
∑

j

d〈f j |M|vi〉 · vj .

Therefore

∇(vi) = −
∑

j

〈f j |M−1dM|vi〉 · vj .

i) To check (2.14) notice that the only way M−1dM can have a non-
zero matrix coefficient of amplitude 1 is that it is the matrix coefficient of
amplitude 1 of dM.

ii) The Griffiths transversality just means that all matrix coefficients of
M−1dM of amplitude bigger then 1 are zero, which is just what (2.15) says.

iii) - iv). Let us write, using (2.15) and assuming n > 1,

0 = 〈fn|M−1dM|v0〉 =

〈fn|dM|v0〉−
∑

{vn−1}
d〈fn|M|vn−1〉〈fn−1|M|v0〉+

∑

k≤n−2
〈fn|M−1dM|vk〉〈fk|M|v0〉.

The last summand is zero by (2.15). So we get differential equation (2.16),
and the Claim iv). �

Remark.— Define a homomorphism Ωn : H̃n −→ Ω1U as the composition

H̃n
Δn−1,1−→ H̃n−1 ⊗ H̃1

pdp−→ Ω1U .

The differential equation (2.16) for the period 〈fn|M|v0〉 can be rewritten
as

d〈fn|M|v0〉 = Ωn(HU ; f
n, v0; s). (2.17)
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6. The big period map via the Hopf algebra H∗. We use notation as in Section
2.1. Projecting to ⊗pA>0 the coproduct and the iterated coproduct, we get
their reduced versions:

Δ′ : A∗ −→ A>0 ⊗A>0, Δ′
(p)

: A −→ ⊗pA>0.

For n ≥ 2, let us consider an algebra map

mn : A −→ A>0 ⊗A>0

given by the n-iterated reduced coproduct followed by the product of the
first n− 1 factors:

A∗
Δ′(n)

−→ ⊗n−1A>0 ⊗A>0
μ(n−1)⊗id−→ A>0 ⊗A>0.

Let m1 : A∗ −→ A∗ ⊗A∗, a �−→ 1⊗ a. Now set:

m : A∗ −→ A∗ ⊗A∗, m :=
∑

n≥1
(−1)n−1mn.

Let us define a map m̃ : A∗ −→ A∗ ⊗ 1 ↪→ A∗ ⊗A∗ by setting

m̃ :=

∞∑

n≥1
(−1)nμ(n) ◦Δ(n) : A∗ −→ A∗ = A∗ ⊗ 1 ↪→ A∗ ⊗A∗,

Δ(1) = μ(1) = id.

We apply this to the Hopf algebra H∗. We get a map

m+ m̃ : H∗ −→ H∗ ⊗H∗.

The explicit formula for the map P′n just means the following.

Lemma 2.9.— The big period map P′n is equal to a composition

H∗ m+m̃−→ H∗ ⊗H∗ 2πi·p⊗2πi·p−→ C⊗Q C.

Then Pn is the composition

H∗ m−→ H∗ ⊗H∗ p⊗p−→ C⊗Q C −→ C⊗Q C∗(n− 2). (2.18)

The term (2.11) corresponding to m̃ disappears after the projection C ⊗Q
C −→ C⊗Q C∗(n− 2).
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2.3. Construction of period morphisms and proof of Theorem 2.2

Step 1. The map P•n. Let us define a homomorphism of abelian groups

P k
n : ⊗kH∗ −→ O∗ ⊗ . . .⊗O∗︸ ︷︷ ︸

k times

⊗O ⊗ 2πi⊗ . . .⊗ 2πi︸ ︷︷ ︸
n-k-1 times

. (2.19)

First, there is an associative algebra structure on ⊗•−1O given by

(⊗k+1O) ∗ (⊗l+1O) −→ ⊗k+l+1O,

(a0 ⊗ ...⊗ ak) ∗ (b0 ⊗ ...⊗ bl) �−→ a0 ⊗ ...⊗ ak · b0 ⊗ ...⊗ bl.

Let Hi ∈ H∗. We set

P′
k
n(H1 ⊗ ...⊗Hk) := P ′n(H1) ∗ ... ∗ P ′n(Hk) ∈ ⊗k+1O.

Next, consider a map

Exp(k) ⊗ 2πi · Id : ⊗k+1O −→ O∗ ⊗ . . .⊗O∗︸ ︷︷ ︸
k times

⊗O. (2.20)

Exp(k) := exp(2πi · ∗)⊗ ...⊗ exp(2πi · ∗)︸ ︷︷ ︸
k times

.

We define the map (2.19) by setting

P k
n := 2πi⊗ . . .⊗ 2πi︸ ︷︷ ︸

n-k-1 times

⊗
(
Exp(k) ⊗ (2πi · Id)

)
◦ P′kn. (2.21)

Step 2. The maps {(−1)kP k
n} provide a morphism of complexes. Equiva-

lently, we have to show that the following diagram is a bicomplex, where Δ′

is the restricted coproduct:

Hn
Δ′
−→ (H⊗H)n Δ′

−→ ...
Δ′
−→ ⊗nH1

↓ P1n ↓ P2n ↓ Pn
n

O∗ ⊗O(n− 2)
d−→ O∗ ⊗O∗ ⊗O(n− 3)

d−→ ...
d−→ ⊗nO∗

Let us show that the left square is anticommutative.

For the restricted coproduct Δ′, we have the following element in O ⊗
O ⊗O:
P′
2
n(Δ

′(M)) =
∑
〈fn|M|vl〉 ⊗ 〈f l|M−1|vm〉 · 〈fm|M|vk〉 ⊗ 〈fk|M−1|v0〉.

(2.22)
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The sum is over all basis vectors vi satisfying the following two conditions

wt(vn) ≤ wt(vl) ≤ wt(vm) ≤ wt(vk) ≤ 0. (2.23)

wt(vn) < wt(vm) < 0. (2.24)

Condition (2.24) results from taking the restricted coproduct Δ′ rather then
the coproduct Δ.

Let us compute the image of element (2.22) under the map

Exp(2) ⊗ 2πi : O ⊗O ⊗O −→ O∗ ⊗O∗ ⊗O, (2.25)

a⊗ b⊗ c �−→ exp(2πia)⊗ exp(2πib)⊗ 2πic.

Observe that sinceMM−1 = I, we have
∑

wt(vl)≤wt(vm)≤wt(vk)

〈fl|M−1|vm〉 · 〈fm|M|vk〉 = δ0,l. (2.26)

Now there are three cases of the summation.

i) If wt(vk) < 0, and wt(vn) < wt(vl), then thanks to conditions (2.23) -
(2.24) and formula (2.26), the corresponding sum in (2.22) collapses to

∑
〈fn|M|vk〉 ⊗ 1⊗ 〈fk|M−1|v0〉. (2.27)

ii) If wt(vk) = 0, then, thanks to (2.24) the corresponding sum in (2.22)
is ∑

vl

∑

vm �=v0

〈fn|M|vl〉 ⊗ 〈f l|M−1|vm〉 · 〈fm|M|v0〉 ⊗ 1
(2.26)
=

−
∑

vl

〈fn|M|vl〉 ⊗ 〈f l|M−1|v0〉 ⊗ 1. (2.28)

Indeed, since 〈f0|M|v0〉 = 1, formula (2.26) implies
∑

vm �=v0

〈f l|M−1|vm〉 · 〈fm|M|v0〉 = −〈f l|M−1|v0〉.

iii) If wt(vl) = wt(vn), we similarly get
∑

vm �=vn

1⊗ 〈fn|M−1|vm〉 · 〈fm|M|vk〉 ⊗ 〈fk|M−1|v0〉.

−
∑

vk

1⊗ 〈fn|M|vk〉 ⊗ 〈fk|M−1|v0〉. (2.29)
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Since exp(2πi) = 1 is the neutral element in O∗, (2.27) and (2.29) con-
tributes zero after applying map (2.25). So applying the map (2.25) to the
expression (2.28) we get

−
∑

vl

exp(2πi · 〈fn|M|vl〉)⊗ exp(2πi · 〈f l|M−1|v0〉)⊗ 2πi.

On the other hand, by the definition of P′n in (2.6),

P′n(M) =
∑

vl

〈fn|M|vl〉 ⊗ 〈f l|M−1|v0〉.

Therefore thanks to the definition of Pn = P1n in (2.7), and the definition
of d in (1.2),

d ◦ P1n(M) =
∑

vl

exp(2πi · 〈fn|M|vl〉)⊗ exp(2πi · 〈f l|M−1|v0〉)⊗ 2πi.

We conclude that

P2n(Δ
′(M)) + d ◦ P(1)n (M) = 0.

In general we have to check that the composition of the restricted co-
product

M1 ⊗ ...⊗Mk −→
∑

(−1)i−1M1 ⊗ ...⊗Δ′(Mi)⊗ ...⊗Mk

with the map Pk+1
n is equal to −d ◦ Pk

n(M1 ⊗ ...⊗Mk). Notice that

Pk+1
n (M1 ⊗ ...⊗Δ′(Mi)⊗ ...⊗Mk) = 0 if i > 1.

Indeed,M1⊗...⊗Δ′(Mi)⊗...⊗Mk has three terms, just like (2.27), (2.28),
and (2.29). Each of them has the j-th factor 1, where j = i+2, i+1, i. So each

of them vanishes when we apply the Exp(k)⊗(2πi·Id) map (2.20). In the case
i = k only the very right factor survives, contributing−d◦Pk

n(M1⊗...⊗Mk).

Step 3. The composition Ωk
n ◦ Pk

n = 0 for k < n. It is enough to check an

equivalent claim for dP′n
k
. For k = 1, Theorem 2.8ii) implies, since n > 1,

dP′n
1
(M) =

∑

k

〈fn|dM|vk〉 ⊗ 〈fk|M−1|v0〉 = 0.

For k = 2 we have

dP′n
2
(M⊗N ) =

∑
〈fn|dN|vl〉 ⊗ 〈f l|N−1|vm〉 · 〈fm|dM|vk〉 ⊗ 〈fk|M−1|v0〉+

∑
〈fn|dN|vl〉 ⊗ 〈f l|dN−1|vm〉 · 〈fm|M|vk〉 ⊗ 〈fk|M−1|v0〉.
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Since n > k = 2, either m > 1 or n −m > 1. Then in the first line is zero
since the factor of amplitude > 1 is zero by Theorem 2.8ii). The second line
is always zero.

For general k we proceed just as in the case k = 2. The expression dP′n
k

consists of sums of k factors. If one of them has two differentials, it is zero.
Otherwise each has just one differential, and one is of amplitude > 1, and
so vanishes by Theorem 2.8ii). Theorem 2.2 is proved.

2.4. A variant: Lie-exponential complexes and Lie-period morphisms

Let X be a manifold, either a real or a complex analytic one.

Definition 2.10.— The weight n Lie-exponential complex Q•E(n) is a
complex of sheaves on X, concentrated in degrees [0, n]:

O(n− 1) −→ Λ2O(n− 2) −→ ... −→ ΛnO ∧nexp−→ ΛnO∗. (2.30)

The differentials are given by

(2πi)n−k ⊗ a1 ∧ ... ∧ ak �−→ (2πi)n−k−1 ⊗ 2πi ∧ a1 ∧ ... ∧ ak, k < n,

a1 ∧ ... ∧ an �−→ exp(a1) ∧ ... ∧ exp(an).

For example, the complex Q•E(2) is

O(1) δ−→ Λ2O ∧2exp−→ Λ2O∗.

Take the n-th symmetric power of the complex Q(1) ↪→ O in degrees
[0, 1]. It is augmented by the exponential map to ΛnO∗[−n]. There is an
isomorphism of complexes

Q(n) −→ Q•E(n) = Cone
(
Symn

(
Q(1) ↪→ O

) ∧nexp−→ ΛnO∗[−n]
)
. (2.31)

Therefore the complex (2.30) is a resolution of the constant sheaf Q(n).

Mapping Lie-exponential complexes to differential forms. Recall the holo-
morphic de Rham complex Ω• on a complex manifold X. There is a natu-
ral map from the weight n Lie-exponential complex to the holomorphic de
Rham complex:

ω•n : Q•E(n) −→ Ω•.

Precisely, we have the following Lemma, proved by a simple check, which is
left to a reader.
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Lemma 2.11.— There is a canonical morphism of complexes of sheaves
on X:

O(n− 1) −→ Λ2O(n− 2) −→ . . . −→ ΛnO −→ ΛnO∗

↓ ω(0)n ... ↓ ω(1)n ↓ ω(n−1)n ↓ ω(n)n

Ω0
d−→ Ω1

d−→ . . .
d−→ Ωn−1 −→ Ωn

cl

Here

ω(m)
n

(
(2πi)n−m−1 ⊗ (f0 ∧ f1 ∧ ... ∧ fm)

)
:=

(2πi)n−m−1m!
m∑

j=0

(−1)jfj df0 ∧ . . . ∧ d̂fj ∧ . . . ∧ dfm, 0 ≤ m < n,

ω(n)n (f1 ∧ ... ∧ fn) := n! d log f1 ∧ ... ∧ d log fn.

Lie-period morphisms of complexes. The graded commutative Hopf algebra
H∗ gives rise to a graded Lie coalgebra (L∗, δ):

L∗ :=
H>0

H>0 · H>0
.

Let L•(n) be the weight n part of the standard cochain complex of the
graded Lie coalgebra L∗:

L•(n) := Ln
δ−→ (Λ2L)n δ−→ (Λ3L)n δ−→ . . .

Conjecture 2.12.— There exists a canonical morphism of complexes
of sheaves on X

p•n : L•(n) −→ Q•E(n),

called the Lie-period morphism:

Ln
δ→ (L ∧ L)n δ→ ...

δ→ (Λn−1L)n δ→ ΛnL1

↓ p1
n ↓ p2

n ↓ pn−1
n ↓ pn

n

O(n− 1) → Λ2O(n− 2) → Λ3O(n− 3) → ...→ ΛnO exp→ ΛnO∗

(2.32)

such that

(1) After the identification L1 = O∗ the map pnn is the identity map.
(2) The composition ω•n ◦p•n is zero everywhere except on the very right.
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The condition 2) just means that the following composition is zero:

Ln
δ−→ (L ∧ L)n δ−→ ...

δ−→ (Λn−1L)n
↓ ↓ ↓

Λ2O(n− 2) −→ Λ3O(n− 3) −→ ... −→ ΛnO
↓ ↓ ↓
Ω1U

d−→ Ω2U
d−→ ...

d−→ Ωn−1
U

Let us explain the meaning of “canonical” in Conjecture 2.12. A canonical
map of complexes

L•(n) −→ RD(n) (2.33)

was defined in [24]. There we defined, on the level of appropriate complexes,
a product RD(a)⊗RD(b) −→ RD(a+b) making ⊕∞a=0RD(a) into a DG com-
mutative algebra. The key property of the map (2.33) is that its components
describe a map DG commutative algebras

S•(L•[−1]) −→ ⊕∞a=0RD(a).
So this map is completely determined its restriction to the Lie coalgebra L•.
The map p•n, combined with a map s•n from Section 6 or its modification,
should deliver canonical map (2.33).

2.5. The Lie-period map

Recall the graded commutative Hopf algebra over Q with a unit A• =
⊕∞k=0Ak, see (2.1), coming with a product μ : A• ⊗ A• −→ A• and a
coproduct Δ : A• −→ A• ⊗A•.

Let μ(p) : A⊗p
• −→ A• be the product map: a1 ⊗ ...⊗ ap �−→ a1 · ... · ap.

Let us consider the iterated coproduct maps

Δ(p) : A• −→ A⊗p
• .

They are defined inductively:

Δ(p) := (Δ⊗ Id(p−2)) ◦Δ(p−1),

(Δ⊗ Id(p−2))(a1 ⊗ . . .⊗ ap−1) := Δ(a1)⊗ a2 ⊗ . . .⊗ ap−1.

Equivalently, they are dual to the product maps μ(n) for the dual Hopf
algebra.

Let us consider the following map:

l : A• −→ A•, l(M) :=
∞∑

p=1

(−1)p
p

μ(p) ◦Δ(p)(M).
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Elaborating this:

l :M �−→M − 1

2
μ(2) ◦Δ(2)(M) +

1

3
μ(3) ◦Δ(3)(M)− . . . .

The map l has the following geometric interpretation. Denote by G the
pro-nilpotent group with the Lie algebra Lie(A•). Then O(G) = A• as
algebras. Let Log be the inverse of the exponential map. Then the map l
reads as follows:

l : O(G) −→ O(G), l(F )(g) := 〈dF,Log(g)〉.
So evidently the map l is zero on A>0 · A>0. Therefore we get a canonical
map of graded spaces

CoLie(A•) −→ A•.

Let us define a map, which we call the Lie-period map:

Pn : CoLien(H•) −→ Λ2C.

Consider the composition of the map l with the big period map P′n:

Pn = P′n ◦ l : Hn
l−→ Hn

P′
n−→ C⊗ C.

Proposition 2.13.— The map Pn provides a map

Pn : CoLien(H•) −→ Λ2C.

Proof.— The map Pn is a map CoLien(H•) → C ⊗ C. We need to check
that its image lies in Λ2C. �

Functions Ln(z) obtained from classical polylogarithms via the Lie-period
map. Set

∑

k≥0
βkt

k =
t

et − 1
, βk :=

Bk

k!
.

So β2m+1 = 0 for m ≥ 1, and β0 = 1, β1 = − 1
2 , β2 =

1
12 , β4 = − 1

720 , ... Let
us consider a function

Ln(z) :=

n−1∑

k=0

βkLin−k(z) log
k z.

The right hand side is defined as follows. Take a path γ from a ∈ (0, 1)
to a point z ∈ C and continue analytically along this path the functions
Li1(z), ...,Lin(z) using the inductive formula Lim(z) :=

∫
γ
Lim−1(t)d log t.

Then make the sum on the right hand using these brunches. So

L2(z) = Li2(z)−
1

2
Li1(z) log z.

- 657 -



A. B. Goncharov

L3(z) = Li3(z)−
1

2
Li2(z) log z +

1

12
Li1(z) log

2 z.

L4(z) = Li4(z)−
1

2
Li3(z) log z +

1

12
Li2(z) log

2 z.

The real version πn

(∑n−1
k=0 βkLin−k(z) log

k |z|
)
of the function Ln(z),

where πn(a+ib) = a for odd n and ib for even n, was considered by Zagier in
[34], who showed that it is single valued. Its Hodge-theoretic interpretation
was given by Beilinson and Deligne in [4].

Denote by 〈Lin(z)〉 = (fn,Lin(z), v0) the n-framed Hodge-Tate structure
assigned to the classical n-logarithm, whose normalised period matrix is
given as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

−Li1(z)
2πi 1

−Li2(z)
(2πi)2

log z
2πi 1

−Li3(z)
(2πi)3

log2 z
2·(2πi)2

log z
2πi 1

−Li4(z)
(2πi)4

log3 z
3!·(2πi)3

log2 z
2·(2πi)2

log z
2πi 1

−Li5(z)
(2πi)5

log4 z
4!·(2πi)4

log3 z
3!·(2πi)3

log2 z
2·2πi

log z
2πi 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Notice that in the normalised period matrix all entries are of weight zero.

Proposition 2.14.— The maximal period of n-framed Hodge-Tate struc-
ture l〈Lin(z)〉 is:

〈fn | l〈Lin(z)〉 | v0〉 = −Ln(z).

Proof.— Let us do an example first, the 5-logarithm. The calculation gives
(2πi)−5 times

Li5 −
1

2
·
(
Li4(z) log z + Li3(z)

log2 z

2
+ Li2(z)

log3 z

3!
+ Li1(z)

log4 z

4!

)

+
1

3
·
(
Li3(z) log

2 z+(
1

2
·1+1·1

2
)·Li2(z) log3 z+(

1

3!
·1+1· 1

3!
+
1

2
·1
2
)·Li1(z) log3 z

)

−1
4
·
(
Li2(z) log

3 z+(
1

2
·1·1+1· 1

2
·1+1·1· 1

2
)·Li1(z) log4 z

)
+
1

5
·Li1(z) log4 z.

In general we need to sum the following series in x (where x = log z in our
application):

S(x) := 1− 1

2
· (ex − 1) +

1

3
· (ex − 1)2 − 1

4
· (ex − 1)3 +

1

5
· (ex − 1)5 − ...

One has S(x)(ex − 1) = log(1 + ex − 1) = x. Therefore S(x) = x
ex−1 . �
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Calculating the monodromy. Let γ0 (resp. γ1) be a small counterclockwise
loop around 0 (resp. 1). Let Tγ0

(resp. Tγ1
) be the monodromy operator

around loop γ0 (resp. γ1).

Lemma 2.15.— One has
1

2πi
(Tγ1

− Id) : Ln(x) �−→ −(−1)n−1βn−1 log
n−1(x). (2.34)

Proof.— One has

1

2πi
(Tγ1

− Id) : −Lin(z) �−→
logn−1 z
(n− 1)!

.

From the definition of the Bernoulli polynomials, xetx

ex−1 =
∑∞

k=0
Bn(t)
n! xn. So

Bn(t) =
n∑

k=0

(
n

k

)
Bkt

n−k, and Bn(1) = (−1)n−1Bn for n ≥ 1.

Therefore
∑n−1

k=0
Bk

k!(n−k−1)! =
Bn−1

(n−1)! . Using this identity we get the formula

(2.34). �

Examples. —

1

2πi
(Tγ0

− Id) : log x �−→ 1, L1(x) �−→ 0, L2(x) �−→ −1
2
· L1(x),

L3(x) �−→ −1
2
· L2(x)−

1

12
· L1(x) · log x+

1

12
· L1(x),

L4(x) �−→ −1
2
· L3(x)−

1

12
· L2(x) · log x+

1

12
· L2(x).

1

2πi
(Tγ1 − Id) : log x �−→ 0, L1(x) �−→ −1, L2(x) �−→ −1

2
· log x,

L3(x) �−→ − 1

12
· log2 x, L4(x) �−→ 0.

3. Period morphisms on polylogarithmic motivic complexes
of weights ≤ 4

Given a field F , let us recall the inductive definition of the groups Bn(F )
[16]. One can set B2(F ) = B2(F ). There is a map

Z[F ∗ − {1}] δn−→ Bn(F )⊗ F ∗, {x} �−→ {x}n−1 ⊗ x, n > 2.

Let us define a subgroup An(F ) ⊂ Ker δn. Given an element
∑

i ni{fi(t)}
in the kernel of δn for the field F (t), the element

∑
i ni({fi(t0)}−{fi(t1)}),
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where t0, t1 ∈ F ∗−{1}, lies in An(F ), and the subgroup An(F ) is generated
by such elements.

Our goal. We are going to construct, for n ≤ 4, a morphism of complexes

Bn(C) −→ Bn−1(C)⊗ C∗ −→ ... −→ B2(C)⊗ Λn−2C∗ −→ ΛnC∗

↓ l1n ↓ l2n ↓ ln−1n ↓ lnn

Λ2C(n− 2) −→ Λ3C(n− 3) −→ ... −→ ΛnC ∧nexp−→ ΛnC∗
(3.1)

such that its composition with ω•n is zero, and the map lnn is the identity.

Remark. — If n = 4 it will not be the canonical map from Conjecture
2.12.

We start with a few general observations which help to construct the map
l•n.

Proposition 3.1.— Let O := C(t). Let us suppose that we have maps
l1n and l2n such that:

i) The following diagram commutative:

Z[O∗ − {1}] δn−→ Bn−1(O)⊗O∗

↓ l1n ↓ l2n

Λ2O(n− 2) −→ Λ3O(n− 3)

ii) The following composition is zero:

ω ◦ l1n : Z[O∗ − {1}] −→ Λ2O(n− 2) −→ Ω1, ω(f ∧ g) = fdg − gdf. (3.2)

Then

l1n(An(O)) = 0. (3.3)

Proof.— Consider the following diagram:

An(O) −→ Ker δn −→ Z[O] δn−→ Bn−1(O)⊗O∗

↓ ↓ l1n ↓ l2n

O(n− 2) −→ Λ2O(n− 2) −→ Λ3O(n− 3)
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Then

l1n(Ker δn) ⊂ Ker
(
Λ2O(n− 2) −→ Λ3O(n− 3)

)
= O(n− 2).

The kernel of the restriction of the map ω : Λ2O −→ Ω1, f∧g �−→ fdg = gdf
to the subgroup 2πi∧O ⊂ Λ2O is 2πi∧C. Therefore, since the composition
(3.2) is zero, we have l1n(Ker δn) ⊂ C. This implies (3.3). �

Lemma 3.2.— Let U ⊂ C∗ − {1} be an open subset. Suppose that we
have a commutative diagram

Z[U ] δn−→ Bn−1(C)⊗ C∗

↓ l1n ↓ l2n

Λ2C(n− 2) −→ Λ3C(n− 3)

where the maps l1n, l
2
n are given by products of log z,Lik(z), and the following

composition is zero:

ω ◦ l1n : Z[U ] −→ Λ2C(n− 2) −→ Ω1C/Q, ω(f ∧ g) = fdg − gdf. (3.4)

Then the map l1n extends to a well defined map on Z[C].

Proof.— Since the map l1n is given by polylogarithms, it can be analytically
continued to a multivalued function on C∗−{1} with values in Λ2C(n− 2).
we need to prove that this function is single-valued. Take the monodromy
around some loop minus the identity map. We get a multivalued function
on C∗ − {1} with values in Λ2C(n − 2) which is annihilated by the map
Λ2C(n − 2) −→ Λ3C(n − 3), and thus takes values in C(n − 1). Since it is
also killed by ω, it is a constant, and then one can easily see that it must
be zero. �

Non-associative ∗-product. Any ring A provides a ∗ - product
Λk+1A ∗ Λl+1A −→ Λk+l+1A,

(a0∧...∧ak)∗(b0∧...∧bl) :=
∑

(−1)k−j+ia0∧...∧âi∧...∧ak∧ai·bj∧b0∧...∧b̂j∧...∧bl.
For instance

(a0∧a1)∗(b0∧b1) = a0∧a1b0∧b1−a1∧a0b0∧b1+a0∧a1b1∧b0−a0∧a1b1∧b0.

If A is a commutative ring, then (Λ•−1A, ∗) is a supercommutative non-
associative algebra:

(a0 ∧ ... ∧ am) ∗ (b0 ∧ ... ∧ bn) = (−1)mn(b0 ∧ ... ∧ bn) ∗ (a0 ∧ ... ∧ am).
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We define the ∗-product on Λ•−1O using the following algebra structure
on O:

a ∗ b := 1

2πi
ab.

It is useful to note the following formula:

(2πi∧a1∧...∧am)∗(2πi∧b1∧...∧bn) = (m+n+1)·2πi∧a1∧...∧am∧b1∧...∧bn.

Example 1.— Let us define a homomorphism of complexes

B2(C) −→ Λ2C∗

↓ L2 ↓=

Λ2C −→ Λ2C∗

L2 :
1

2
· {x}2 �−→ 2πi ∧ 1

2πi
L2(x)−

1

2
Li1(x) ∧ log x.

Example 2.— Set

ln−1n : {x}2 ⊗ y1 ∧ ...∧ yn−2 �−→ L2(x) ∗ (2πi∧ log y1 ∧ ...∧ log yn−2). (3.5)
Lemma 3.3.— The map (3.5) gives rise to a group homomorphism

ln−1n : B2(C)⊗ Λn−2C∗ −→ ΛnC.
It makes the following diagram commutative:

B2(C)⊗ Λn−2C∗ −→ ΛnC∗

↓ ln−1n ↓=

ΛnC exp−→ ΛnC∗

(3.6)

The following composition is zero:

ωn−1
n ◦ ln−1n : B2(C)⊗ Λn−2C∗ −→ ΛnC −→ Ωn−1

C/Q . (3.7)

Proof.— The maps y1 ∧ . . . ∧ ym �−→ 2πi ∧ log y1 ∧ ... ∧ log ym and L2 :
B2(C) −→ Λ2C are well defined group homomorphisms. Therefore the map
(3.5) is a well defined group homomorphism. The commutativity is evident.

Let us check that the composition (3.7) is zero. We write d((a1 ∧ a2) ∗
(b1∧ ...∧bm)) as a sum with certain coefficients λ, μ, skewsymmetrising with
respect to {a1, a2} as well as {b1, ..., bm}:
λ ·Alt(a1,a2),(b1,...,bm)

(
(b1a1) ∧ da2 − d(b1a1) ∧ a2

)
∧ db2 ∧ ... ∧ dbm

+ μ ·Alt(a1,a2),(b1,...,bm)

(
d(b1a1) ∧ da2

)
∧ b1 ∧ db2 ∧ ... ∧ dbm.

(3.8)
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In our case

a1da2 − a2da1 = 0, and db1 ∧ db2 ∧ ... ∧ dbm = 0.

The first condition implies that the second line is zero. The first and second
condition imply that the first line is zero. �

Example 3.— Let us define a homomorphism of complexes

B3(C) −→ B2(C)⊗ C∗ −→ Λ3C∗

↓ l13 ↓ l23 ↓=

Λ2C(1) −→ Λ3C −→ Λ3C∗

Set

l23 : {x}2 ⊗ y �−→ 1

2
· L2({x}2) ∗ (2πi ∧ log y) =

(
2πi ∧ 1

2πi
L2(x)−

1

2
· L1(x) ∧ log x

)
∗ (2πi ∧ log y) =

3 · 2πi ∧ 1

2πi
L2(x) ∧ log y − L1(x) ∧ log x ∧ log y

+
1

2
· 2πi ∧

( 1

2πi
log y L1(x) ∧ log x+ L1(x) ∧

1

2πi
log y log x

)
.

(3.9)

By Lemma 3.3, the map l23 is well defined, makes the second square
commute, and ω23 ◦ l23 = 0.

Set

L3 : −
1

6
·{x}3 �−→ 2πi∧L3(x)−

1

2
· 1
2πi

L2(x)∧log x−
1

12
·
(
L1(x)∧log x

)
∗log x.

One checks that ω13 ◦ l13 = 0 thanks to the differential equations for the
polylogarithms.

This map makes the first square commutative. Indeed, we have

l23 : {x}2 ⊗ x �−→ 2πi ∧
(
3 · L2(x) ∧ log x+

1

2
·
(
L1(x) ∧ log x

)
∗ log x

)
.

Thanks to Lemma 3.2 the map L3 provides a single-valued map

L3 : C∗ − {1} −→ Λ2C(1).

Proposition 3.1 implies that it gives rise to a homomorphism

L3 : B3(C) −→ Λ2C(1).
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Therefore we get a well defined morphism of complexes.

Example 4.— We define a homomorphism of complexes

B4(C) −→ B3(C)⊗ C∗ −→ B2(C)⊗ Λ2C∗ −→ Λ4C∗

↓ l14 ↓ l24 ↓ l34 ↓ l44

Λ2C(2) −→ Λ3C(1) −→ Λ4C −→ Λ4C∗

We set

l34({x}2 ⊗ y1 ∧ y2) := L2(x) ∗ (2πi ∧ log y1 ∧ log y2) =
(
2πi ∧ 1

2πi
L2(x)−

1

2
L1(x) ∧ log x

)
∗ (2πi ∧ log y1 ∧ log y2).

By Lemma 3.3 the map l34 is well defined, makes the last square commute,
and ω34 ◦ l34 = 0.

Next, set

l24({x}3 ⊗ y) :=

2πi ∧
(
−12 · 1

(2πi)2
L3(x) ∧ log y − 2 · ( 1

2πi
L2(x) ∧ log x) ∗ log y

− 1

2
· 1

2πi

(
L1(x) log x

)
∧ log x log y − 1

2
· 1

2πi

(
L1(x) log y

)
∧ (log x)2

)

+ 4 · 1

2πi
L2(x) ∧ log x ∧ log y +

1

2
·
(
L1(x) ∧ log x

)
∗
(
log x ∧ log y

)
.

(3.10)

Direct check shows that the middle square has all the desired properties.

Finally, we set

L4 :
1

24
· {x}4 �−→

2πi ∧ 1

(2πi)3
L4(x)−

1

2
· 1

(2πi)2
L3(x) ∧ log x

− 1

12
·
( 1

2πi
L2(x) ∧ log x

)
∗ log x− 1

24
· 1

2πi

(
L1(x) log x

)
∧ log2 x.

(3.11)

One checks that the left square is formally commutative. Thanks to
Lemma 3.2 and Proposition 3.1 the map l14 := L4 is a well defined ho-
momorphism of abelian groups. Finally, we check that ω14 ◦ l14 = 0 by using
the differential equations for the classical polylogarithms.
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Example: the regulator map on the weight three motivic complex. Let X be a
regular complex projective curve. Then the motivic complex ZM(X; 3) is the
total of the following complex, where OX := C(X) and Res stands for the
tame symbol on the right and the map {f}2 ⊗ g �−→∑

x∈X valx(g){f(x)}2
in the middle:

B3(OX ) δ−→ B2(OX )⊗O∗X
δ−→ Λ3O∗X

↓ Res ↓ Res
∐

x∈X B2(C) −→ ∐
x∈X Λ2C∗

(3.12)

The top line is mapped to the weight three Lie-exponential complex at the
generic point X :

B3(OX ) δ−→ B2(OX )⊗O∗X
δ−→ Λ3O∗X

↓ ↓ ↓
OX (2) −→ Λ2OX (1) −→ Λ3OX −→ Λ3O∗X

An important property of the Lie-period is that the element L3(f(x)) ∈
Λ2OX (1) is non-singular:

L3(f(x)) ∈ Λ2O(1).
So there is a map

B3(OX ) −→ Λ2O(1).

The element l23(
∑{fi(x)}2⊗ gi(x)) ∈ Λ3OX can have singularities at the

divisors of the functions gi. To guarantee that the singularity at y ∈ X is
absent it is sufficient to require that the residue of that element at y is zero.
So there is a map on the kernel of the residue map:

Ker
(
B2(OX )⊗O∗X

Res−→
∐

x∈X
B2(C)

)
−→ Λ3O.

So we get a map

Z2(B•(X; 3)) := Ker
(
B2(OX )⊗O∗X −→

∐

x∈X
B2(C)⊕ Λ3O∗X

)

−→ Ker
(
Λ3O ∧3exp−→ Λ3O∗

)
.

(3.13)

It gives rise to an explicit map

H2(B•(X; 3)) −→ H2(X,ΓD(3)).

It can be described explicitly as follows. Take a cycle A ∈ Z2(B•(X; 3)).
Then we have

l23(A) ∈ Ker
(
Λ3O ∧3exp−→ Λ3O∗

)
= Λ2O(1).
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Pick an open cover {Ui} of X by small discs. On each cover we get can find
an element

C(Ui) ∈ Λ2OUi
(1) : dC(Ui) = A|Ui

∈ Λ3OUi
.

Then d(C(Ui) − C(Uj)) = 0 on Uij . So we can find a C(Ui, Uj) ∈ OUij
(2)

such that dC(Ui, Uj) = C(Ui) − C(Uj). Similarly we find C(Ui, Uj , Uk) ∈
Q(3). Now taking the image of the cocycle (C(Ui), C(Ui, Uj), C(Ui, Uj , Uk))
in the Lie-exponential Deligne complex ΓD(X; 3) we get a cycle representing
the regulator of A.

Unlike the de Rham complex, the exponential complex is exact in a trivial
way: finding a primitive does not require integration. So our construction is
effective.

One can generalize the above construction to the case when X is an
arbitrary regular complex variety. In this case the motivic complex we use
is the Gersten resolution of the weight three polylogarithmic complex. It is
obtained by adding to (3.12) the contributions of the codimension two and
three cycles. The construction remains the same.

4. A local combinatorial construction of characteristic classes

4.1. A map: decorated flags complex → Bigrassmannian complex

Configuration complexes. Let X be a set. Let G be a group acting on X.
Configurations of m elements in X are orbits of the group G acting on Xm.
The complex of configurations C ′∗(X) is the complex of the G-coinvariants
of the chain complex of the simplex with the vertices parametrized by X:

d−→ C ′m(X)
d−→ C ′m−1(X)

d−→ . . .
d−→ C ′1(X).

So C ′m(X) is the free abelian group generated by configurations. Denote by
(x1, ..., xm) the generator provided by the configuration corresponding to
the G-orbit of an m-tuple {x1, ..., xm}. The differential is

d : C ′m+1(X) −→ C ′m(X), (x0, ..., xm) �−→
i∑

i=0

(−1)i(x0, ..., x̂i, ..., xm).

Let us assume now that X is an algebraic variety over Z, and G an
algebraic group over Z acting on X. Then for any field F there is a G(F )-
set X(F ). So we get complexes of configurations of X(F ). Abusing notation,
we skip the field F from the notation.
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Suppose that we have a notion of generic configurations of points in X,
stable under the operation of forgetting a point. We assume that generic
configurations of m points in X are parametrised by a variety Conf∗m(X).
So forgetting the i-th point provides a map

fi : Conf
∗
m(X) −→ Conf∗m−1(X).

Consider the free abelian group generated by the F -points of Conf∗m(X).

Cm(X) := Z[Conf∗m(X)(F )].

We get a subcomplex of the complex C ′•(X), called the complex of generic
configurations:

C•(X) :
d−→ Cm(X)

d−→ Cm−1(X)
d−→ . . .

d−→ C1(X).

An example: Grassmannian complexes [32]. Let Conf∗m(q) be the variety
of generic configurations of m vectors in a vector space of dimension q. A
configuration is generic if any k ≤ q of the vectors are linearly independent.
Observe that the configuration spaces assigned to isomorphic vector spaces
are canonically isomorphic.

The variety Conf∗m(q) is defined over Spec(Z): a collection of generic
vectors is given by a q ×m matrix with non-zero principal minors. So we
get abelian groups

Cm(q) := Z[Conf∗m(q)(F )].
They form the weight q Grassmannian complex:

d−→ Cm(q)
d−→ Cm−1(q)

d−→ . . .
d−→ C1(q).

The Bigrassmannian [17]. Given a configuration of (m+1) vectors (l0, ..., lm)
in a q-dimensional vector space Vq, there are two ways to get a configuration
of m vectors:

(1) Forgetting the i-th vector li, we get a map

fi : Conf
∗
m+1(q) −→ Conf∗m(q), (l0, ..., lm) �−→ (l0, ..., l̂i, ..., lm).

(2) Projecting the vectors (l0, . . . , l̂j , . . . , lm) to the quotient Vq/(lj) by
the subspace spanned by lj , we get a map

pj : Conf
∗
m+1(q) −→ Conf∗m(q − 1), (l0, ..., lm) �−→ (lj | l0, ..., l̂i, ...lm).

Denote by Gm(q) the Grassmannian of q-dimensional subspaces in a vec-
tor space of dimension m with a given basis (e1, ..., em), in generic position
to the coordinate hyperplanes.
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There is a canonical isomorphism

Gm(q) = Conf∗m(q).

It assigns to a generic q-plane π a configuration of vectors in the dual space
π∗ given by the restrictions of the linear coordinate functionals xi dual to
the basis.

Using this, we organise the spaces Conf∗m(q) into a single object, the
Bigrassmannian:

. . .
−→
...−→ G5(4)

↓ ... ↓ ↓ ... ↓
. . .

−→
...−→ G5(3)

−→
...−→ G4(3)

↓ ... ↓ ↓ ... ↓ ↓ ... ↓
. . .

−→
...−→ G5(2)

−→
...−→ G4(2)

−→
...−→ G3(2)

↓ ... ↓ ↓ ... ↓ ↓ ... ↓ ↓ ... ↓
G5(1)

−→
...−→ G4(1)

−→
...−→ G3(1)

−→
...−→ G2(1)

(4.1)

Applying the functor X → Z[X(F )] to the Bigrassmannian we get the
Grassmannian bicomplex:

. . .
p−→ C5(4)

↓ p ↓ p
. . .

f−→ C5(3)
f−→ C4(3)

↓ p ↓ p ↓ p
. . .

f−→ C5(2)
f−→ C4(2)

f−→ C3(2)
↓ p ↓ p ↓ p ↓ p

C5(1)
f−→ C4(1)

f−→ C3(1)
f−→ C2(1)

Here the maps f and p are the alternating sums of the maps fj , and pi:

f =
m∑

s=0

(−1)sfs, p =
m∑

s=0

(−1)sps.

Denote by BC∗ the sum of the groups on the diagonals:

BCm :=

m−1⊕

q=1

Cm(q).

Changing the signs of the differentials in the bicomplex, we get the Bigrass-
mannian complex

. . . −→ BC5 −→ BC4 −→ BC3 −→ BC2.
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Decorated flags.

Definition 4.1.— A decorated flag F• in an N -dimensional vector space
is a collection of subspaces

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ FN , dimFi = i, (4.2)

together with a choice of a non-zero vector fi ∈ Fi/Fi−1 for each i = 1, ..., N .

A collection ofm+1 decorated flags (F0,•, F1,•, ..., Fm,•) in anN -dimensional
vector space VN is generic, if for any integers a0, ..., am which sum to N one
has an isomorphism

F0,a0 ⊕ ...⊕ Fm,am = VN .

Denote byAN the variety of all decorated flags in VN , and by Conf
∗
m(AN )

the variety of generic configurations of m decorated flags. It is defined over
Spec(Z). So for any field F there is the complex of generic configurations of
decorated flags

. . . −→ Cm(AN ) −→ . . . −→ C2(AN ) −→ C1(AN ).

From configurations of decorated flags to configurations of vectors. We start
with a collection ofm+1 generic decorated flags in an N -dimensional vector
space VN :

(F0,•, ..., Fm,•). (4.3)

Given a partition

a = {a0, . . . , am}, a0 + . . .+ am = N − (q + 1), ai ≥ 0, (4.4)

consider a codimension q+1 linear subspace of VN given by the sum of the
flag subspaces Fi,ai :

F0,a0
⊕ F1,a1

⊕ . . .⊕ Fm,am
⊂ VN . (4.5)

Take the quotient by this subspace

Qa =
VN

F0,a0
⊕ F1,a1

⊕ . . .⊕ Fm,am

. (4.6)

We use the decorations to produce a configuration of (m+ 1) vectors in
the quotient Qa. Namely, the “next” decoration vector fai+1 ∈ Fi,ai+1/Fi,ai

in the decorated flag Fi provides a vector in the quotient, denoted by li. The
vectors {l0, ..., lm} in the space Qa provide a configuration (l0, . . . , lm). So
we put

πa(F0,• . . . , Fm,•) := (l0, . . . , lm) ∈ Conf∗m+1(q + 1).
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So a partition a gives rise to a projection

πa : Conf
∗
m+1(AN ) −→ Conf∗m+1(q + 1).

The main construction [17, Section 2].

• Given a configuration (F0,•, F1,•, ..., Fm,•) of decorated flags in VN ,
we assign to every partition a as in (4.4) the configuration of vectors
πa(F0,•, F1,•, ..., Fm,•) in a (q + 1)-dimensional vector space, and
take the sum over all q and all partitions a:

cm : (F0,•, F1,•, ..., Fm,•) −→
∑

a

πa(F0,•, F1,•, ..., Fm,•) ∈ BCm+1.

We extend the map to a homomorphism of abelian groups

cm : Cm+1(AN ) −→ BCm+1.

The following crucial result was proved in Lemma 2.1 from [17].

Theorem 4.2.— The collection of maps cn gives rise to a homomor-
phism of complexes

−→ C5(AN ) −→ C4(AN ) −→ C3(AN ) −→ C2(AN )
↓ c4 ↓ c3 ↓ c2 ↓ c1

−→ BC5 −→ BC4 −→ BC3 −→ BC2

(4.7)

Our next goal is to give an interpretation of this map via hypersimiplicial
decompositions.

4.2. Hypersimplicial decompositions of simplices and a proof of
Theorem 4.2

Hypersimplices [14]. Let p, q ≥ 0 be a pair of non-negative integers. Set
p+ q = m− 1. A hypersimplex Δp,q is a hyperplane section of the (m+1)-
dimensional unit cube:

Δp,q := {(x0, ..., xm) ∈ [0, 1]m+1 |
m∑

i=0

xi = q + 1}, p+ q = m− 1.

The hypersimplex Δp,q is a convex polyhedron isomorphic to the convex
hull of the centers of q-dimensional faces of an m-dimensional simplex.

The hypersimplices Δp,0 and Δ0,q are just simplices. The hypersimplex
Δ1,1 is the octahedron. It is the convex hull of the centers of the edges of a
tetrahedron.
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The boundary of a hypersimplex Δp,q is a union of m+1 hypersimplices
Δp−1,q andm+1 hypersimplices Δp,q−1. They are given by the intersections
with the hyperplanes xi = 1 and xi = 0 of the unit cube. For example, the
boundary of the octahedron Δ1,1 consists of four Δ1,0-triangles and four
Δ0,1-triangles.

Hypersimplicial N -decomposition of a simplex [12, Section 10.4]. It is a
canonical decomposition of an m-dimensional simplex into hypersimplices
which depend on an additional natural number N .

Consider the standard coordinate space Rm+1. It contains the integral
lattice Zm+1. The integral hyperplanes xi = s, s ∈ Z, cut the space into unit
cubes with vertices at integral points. Take an m-dimensional simplex given
by the intersection of the hyperplane

∑
xi = N with the positive octant:

Δm
(N) = {(x0, ..., xm) | xi ≥ 0,

m∑

i=0

xi = N}.

The integral hyperplanes xi = s cut this simplex into a union of hyper-
simplices. Indeed, the hyperplane

∑
xi = N intersects each of the stan-

dard unit lattice cubes either by an empty set, or by a hypersimplex. We
call it a hypersimplicial N -decomposition of an m-dimensional simplex. A
hypersimplicial N -decomposition of a simplex induces a hypersimplicial N -
decomposition of each face of the simplex.

Lemma 4.3.— The Δp,q-hypersimplices of the hypersimplicial N -decompo-
sition of an m-simplex match partitions a = (a0, ..., am), where

a0 + . . .+ am = N − (q + 1), ai ∈ Z≥0. (4.8)

Proof.— The standard hypersimplex Δp,q consists of the points of the unit
cube with coordinates (x0, ..., xm) satisfying x0 + ... + xm = q + 1. So any
partition a provides a hypersimplex

(a0, ..., am) + (x0, ..., xm) ⊂ Δm
(N).

So we parametrise hypersimplices in Δm
(N) by the coordinates (a0, .., ., am)

of their “lowest” vertices. �

Let Δp,q
a be the hypersimplex of a hypersimplicialN -decomposition assigned

to a partition a.

Examples.— 1. The N -decomposition of a segment Δ1 is a decomposition
into N little Δ0,0-segments. They match partitions a0 + a1 = N − 1.
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2. The N -decomposition of a triangle Δ2 is a decomposition into triangles
of two types, Δ1,0 and Δ0,1. The Δ1,0-triangles match partitions a0 + a1 +
a2 = N − 1. The Δ0,1-triangles match partitions a0 + a1 + a2 = N − 2.

3. The N -decomposition of a tetrahedron Δ3 has tetrahedrons of two
types and octahedron. The Δ2,0-tetrahedrons match partitions a0+a1+a2+
a3 = N−1. The Δ1,1-octahedrons match partitions a0+a1+a2+a3 = N−2.
The Δ0,2-tetrahedrons match partitions a0 + a1 + a2 + a3 = N − 3.

Recall that a hypersimplex Δp,q has 2(m + 1) codimension one faces:
(m + 1) of them are hypersimplices of type Δp−1,q, and the other (m + 1)
are hypersimplices of type Δp,q−1.

Each hypersimplex Δp,q
a is surrounded bym+1 hypersimplices Δp+1,q−1

b ,
sharing with it a codimension one face of type Δp,q−1. The b’s are obtained
from a by adding 1 to one of the coordinates (a0, ..., am). So the collection
of b’s is

(a0 + 1, a1, a2, ..., am), (a0, a1 + 1, a2, ..., am), . . . , (a0, a1, a2, ..., am + 1).

Each hypersimplex Δp,q
a is also surrounded by m + 1 hypersimplices

Δp−1,q+1
c , sharing with it a codimension one face of type Δp−1,q. The c’s are

obtained from a by subtracting 1 from one of the coordinates (a0, ..., am).
So the collection of c’s is

(a0 − 1, a1, a2, ..., am), (a0, a1 − 1, a2, ..., am), . . . , (a0, a1, a2, ..., am − 1).

The combinatorics of hypersimplices is related [15] to the geometry of
the Grassmannians.

The Grassmannian Gp+q+2(q + 1) matches the hypersimplex Δp,q.

Precisely, consider the action of the coordinate torus Tp+q+2 = Gp+q+2
m on

the Grassmannian Gp+q+2(q + 1). Then the closure of each of the generic
Tp+q+2-orbits is a (p+q+1)-dimensional toric variety, and combinatorics of
its boundary strata coincides with the structure of the hypersimplex Δp,q.
Alternatively, it follows from the general Convexity Theorem of Atiyah [1]
that the image of Gp+q+2(q + 1) under the moment map assigned to the
torus action is the hypersimplex Δp,q.

A proof of Theorem 4.2. Our key construction provides a map

Complex of decorated flags −→ Bigrassmannian complex. (4.9)

To see that it commutes with differentials, we rephrase it as a correspon-
dence from the variety Conf∗m+1(AN ) to the Bigrassmannian:
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• Given a generic configuration of (m+1) decorated flags (F0,•, F1,•, ...,
Fm,•) in VN , we define a collection of points in the Grassmannians
Gm+1(∗). These points are parametrised by the hypersimplices of
the hypersimplicial N -decomposition of an m-dimensional simplex:

Each hypersimplex Δp,q
a ⊂ Δm

(N) gives rise to a point of the Grass-

mannian Gm+1(q + 1):

πa(F0,•, F1,•, ..., Fm,•) ∈ Gm+1(q + 1). (4.10)

Furthermore, the 2(m + 1) elements provided by the boundary of the
element (4.10) match the ones assigned to the boundaries of the hypersim-
plex Δp,q

a ⊂ Δm
(N). The sum of the boundaries of all these hypersimplices is,

of course, the boundary of the simplex Δm
(N) presented as a sum of its own

hypersimplices. This just means that we get a homomorphism of complexes.

We defined homomorphisms of complexes (4.7):

Complexes of generic decorated flags in VN −→ the Bigrassmannian complex.
(4.11)

We will review in Section 4.3 homomorphisms of complexes,

the Bigrassmannian complex −→ weight n motivic complex, n ≤ 4.
(4.12)

Finally, we defined in Section 2.5 for n ≤ 4 maps

Weight n polylogarithmic complex −→
weight n Lie-exponential complex, n ≤ 4. (4.13)

Combining these three maps, we get explicit cocycles for the Chern classes
with values in the Deligne cohomology for n ≤ 3. The n = 4 case needs a
more general map (4.13), since the weight four motivic complex in (4.12) is
no longer the polylogarithmic complex, it is rather, see [22]:

G4(F ) −→ B3(F )⊗ F ∗ −→ B2(F )⊗ Λ2F ∗ −→ Λ4F ∗. (4.14)

However, using the big period map on the H4, one can extend (4.13) to this
case.
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4.3. Maps Bigrassmannian complex → motivic complexes

1. Bigrassmannian complex −→ Bloch complex. We construct a map of
complexes

BC5 −→ BC4 −→ BC3 −→ BC2

↓ ↓ ↓ ↓
0 −→ B2(F ) −→ Λ2F ∗ −→ 0

(4.15)

It is defined at the Grassmannian bicomplex, raw by raw. The bottom raw
goes to zero. The map on the second raw amounts to the following map of
complexes, defined in (1.37), Section 1:

C5(2) −→ C4(2) −→ C3(2)
↓ ↓ l1 ↓ l2
0 −→ B2(F ) −→ Λ2F ∗

(4.16)

Combining the homomorphism (4.7)= (4.11) with the homomorphism
(4.15), we arrive at a homomorphism from the complex of decorated flags
in VN to the Bloch complex:

. . . −→ C5(AN ) −→ C4(AN ) −→ C3(AN )
↓ 0 ↓ ↓

. . . −→ 0 −→ B2(F ) −→ Λ2F ∗
(4.17)

It is the main ingredient of the cocycle for the second motivic Chern class
in [17]:

CM2 ∈ H4(BGLN ,ZM(2)). (4.18)

2. Bigrassmannian complex → weight three motivic complex. Let us con-
struct a map of complexes

BC7 −→ BC6 −→ BC5 −→ BC4 −→ . . .
↓ ↓ ↓ ↓ ↓
0 −→ B3(F ) −→ B2(F )⊗ F ∗ −→ Λ3F ∗ −→ 0

(4.19)

We define it by looking at the Grassmannian bicomplex, and defining the
map raw by raw.

We send the bottom two raws to zero. The map on the third raw amounts
to a construction of the following map of complexes:

C7(3) −→ C6(3) −→ C5(3) −→ C4(3)
↓ ↓ ↓ ↓
0 −→ B3(F ) −→ B2(F )⊗ F ∗ −→ Λ3F ∗

(4.20)

This has been done in Section 3.2 in [19]), see some additions in Section 5
in [20].
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Combining homomorphism (4.7) with the homomorphism (4.19) from the
Bigrassmannian complex to the weight three motivic complex, we arrive at
a homomorphism of complexes

. . . −→ C6(AN ) −→ C5(AN ) −→ C4(AN )
↓ ↓ ↓

. . . −→ B3(F ) −→ B2(F )⊗ F ∗ −→ Λ3F ∗
(4.21)

It is the main ingredient of the cocycle for the third motivic Chern class in
[17]:

CM3 ∈ H6(BGLN ,ZM(3)). (4.22)

Bigrassmannian complex −→ weight four motivic complex. We will treat
it in a different place, since it requires an elaborate exposition.

Remark.— Motivic Chern classes CMn ∈ H2n(BGLN ,ZM(n)) are defined
for n ≤ 4 on Milnor’s simplicial model of the classifying space BGLN , and
take values in the motivic complexes there. We construct cocycles repre-
senting these classes at the generic point of BGLN . It is a key property of
the construction that these cocycles extend to cocycles on the whole space
BGLN with the values in the motivic complex defined using the Gersten
resolution, see details in [17] for the weights 2 and 3, and even more details
in Section 4 of [19] for the weight 3.

Contrary to this, our construction of cocycles representing the Deligne
cohomology classes

CDn ∈ H2n(BGL∗N ,ZD(n))
works at the generic point only. This is sufficient for the goal, since BGL∗N
is a model of the classifying space for the GLN . And this is sufficient to get
explicit formulas for the Chern classes of vector bundles. Yet it is desired
to extend the construction to BGLN .

5. Appendix: a map to the real Deligne complex

An outline. Let (S•, d) be the de Rham complex of smooth real valued forms
on a manifold X. Recall that we constructed a map of complexes

ω(•)n : Q•E(n) −→ Ω•.

Consider the canonical projection:

πn : C −→ C/R(n) = R(n− 1); πn(a+ ib) :=

{
a n odd,

ib n even.
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The map πn induces a projection of the de Rham complex of complex valued
smooth forms to the de Rham complex of R(n− 1)-valued forms:

πn : Ω
• −→ S•(n− 1).

So we get a canonical map from the exponential complex:

ϕ(•)n := πn ◦ ω(•)n : Q•E(n) −→ S•(n− 1). (5.1)

We will show that the map ϕ
(•)
n is canonically homotopic to zero by con-

structing a homotopy

s(•)n : Q•E(n) −→ S•(n− 1)[−1], d ◦ s(•)n + s(•)n ◦ d = ϕ(•)n . (5.2)

Let us assume that we have a map, conjectured in Conjecture 2.12, from
the weight n part L•(n) of cochain complex of the Q-Hodge-Tate Lie coal-
gebra L to the Lie-exponential complex:

p(•)n : L•(n) −→ Q•E(n).

Recall an important feature of the map (5.1):

the composition ϕ(•)n ◦ p(•)n : L•(n) −→ Q•E(n) −→ S•(n− 1) is zero.

Therefore the composition s
(•)
n ◦ p(•)n is a map of complexes:

s(•)n ◦ p(•)n : L•(n) −→ Q•E(n) −→ S•(n− 1)[−1]. (5.3)

Recall that the weight n real Deligne complex is given by the cone

RD(n) = Cone
(
πn : F

nΩ• −→ S•(n− 1)[−1]
)
.

Lemma 5.1.— The map (5.3) gives rise to a morphism to the weight n
real Deligne complex:

(s(•)n ◦ p(•)n , ω(n)n ◦ p(n)n ) : L•(n) −→ RD(n). (5.4)

Proof.— The map (5.3) gives the component of the map (5.4) in (S0 → ...→
Sn−1)(n−1)[−1]. The only other non-trivial component is the standard map
ω
(n)
n ◦ p(n)n : ΛnL1 −→ Ωn. �

In particular, combining this with a regulator map from the motivic
complex to L•(n) we would get a homomorphism from the motivic complex
to the weight n real Deligne complex.
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The morphism ϕ
(•)
n . It is a morphism of complexes which looks as follows:

O(n− 1) → Λ2O(n− 2)
δ→ ...

δ→ ΛnO exp→ ΛnO∗

↓ ϕ(0)n ↓ ϕ(1)n ... ... ... ↓ ϕ(n−1)n ↓ ϕ(n)n

S0(n− 1) → S1(n− 1)
d→ ...

d−→ Sn−1(n− 1)
d→ Sn(n− 1)

(5.5)

Namely,

ϕ(n)n : ΛnO∗ �−→ Sn(n− 1), F1 ∧ ... ∧ Fn �−→ πn(d logF1 ∧ ... ∧ d logFn),

and for k = 1, ..., n,

ϕ(k−1)n : ΛkO(n− k) �−→ Sk−1(n− 1),

(2πi)n−k · f1 ∧ ... ∧ fk �−→ πn ◦ d−1
(
(2πi)n−k · df1 ∧ ... ∧ dfk

)
:=

(k − 1)! πn

(
(2πi)n−k ·

k∑

i=1

(−1)ifi df1 ∧ ... ∧ d̂fi ∧ ... ∧ dfk

)
.

(5.6)

A homotopy s
(•)
n . For example for n = 2 we are going to get a diagram of

maps

O(1) δ−→ Λ2O exp−→ Λ2O∗

↙ s
(0)
2 ↓ ϕ(0)2 ↙ s

(1)
2 ↓ ϕ(1)2 ↙ s

(2)
2 ↓ ϕ(2)2

0 −→ S0(1)
d−→ S1(1)

d−→ S2(1)

(5.7)

Let AltnF (x1, ..., xn) :=
∑

σ∈Sn
(−1)|σ|F (xσ(1), ..., xσ(n)), and Im(x +

iy) := iy. Let us set

r̃n−1 : Λ
nO −→ Sn−1(n− 1), f1 ∧ ... ∧ fn �−→ d−1 ◦ πn(df1 ∧ ... ∧ dfn) :=

Altn
∑

j≥0
cj,nRef1 dRef2 ∧ ... ∧ dRef2j+1 ∧ dImf2j+2 ∧ ... ∧ dImfn.

Here cj,n :=
1

(2j+1)!(n−2j−1)! . For example,

r̃1 : Λ
2O −→ S1(1), f1∧f2 �−→ d−1◦π2(df1∧df2) := Ref1 dImf2−Ref2 dImf1.

A primitive d−1 ◦ πn(df1 ∧ ... ∧ dfn) is not uniquely defined. Our choise has
a property that

rk−1(2πi ∧ f2 ∧ ... ∧ fk) = 0. (5.8)
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Set s
(n)
n := 1

n!rn−1. Let us define maps

s(k)n : Λk+1O(n− k − 1) −→ Sk−1(n− 1) 1 ≤ k ≤ n− 1

by setting

s(k)n : (2πi)n−k−1⊗f0∧...∧fk �−→
(2πi)n−k−1

n!
Altk+1

(
Imf0·r̃k−1(f1∧...∧fk)

)
.

Theorem 5.2.— The map s
(•)
n is a homotopy between the map ϕ

(•)
n and

zero:

s(k+1)n ◦ δ + d ◦ s(k)n = ϕ(k)n for 1 ≤ k ≤ n− 1

Proof.— Let us prove the statement for the diagram

ΛkO(n− k)
δ−→ Λk+1O(n− k − 1)

↙ s
(k−1)
n ↓ ϕ(k−1)n ↙ s

(k)
n

Sk−2(n− 1)
d−→ Sk−1(n− 1)

Thank to (5.8), for k ≤ n− 1 one has

s(k)n ◦ δ
(
(2πi)n−k ⊗ f1 ∧ ... ∧ fk

)
=

s(k)n

(
(2πi)n−k−1 ⊗ 2πi ∧ f1 ∧ ... ∧ fk

)
=

k!
(2πi)n−k

n!
r̃k−1(f1 ∧ ... ∧ fk).

(5.9)

It is easy to see that the same result is valid also for k = n. On the other
hand

d ◦ s(k)n

(
(2πi)n−k ⊗ f1 ∧ ... ∧ fk

)
=

d
(2πi)n−k

n!
Altk

(
Imf1 · r̃k−2(f2 ∧ ... ∧ fk)

)
=

(k − 1)!
(2πi)n−k

n!
· d

( k∑

i=1

(−1)i−1Imfi · r̃k−2(f1 ∧ ... ∧ f̂i ∧ ... ∧ fk)
)
.

(5.10)
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Putting together (5.6), (5.9) and (5.10), and dividing by (k − 1)!, the
statement reduces to the following basic identity:

d
( k∑

i=1

(−1)i−1Imfi · r̃k−2(f1 ∧ ... ∧ f̂i ∧ ... ∧ fk)
)
+ k · r̃k−1(f1 ∧ ... ∧ fk) =

πk

( k∑

i=1

(−1)i−1fi · df1 ∧ ... ∧ d̂fi ∧ ... ∧ dfk

)
.

(5.11)

We can rewrite it in its natural form:

k ·
(
πk ◦ d−1 − d−1 ◦ πk

)
(f1 ∧ ... ∧ fk) =

d
( k∑

i=1

(−1)i−1Imfi · r̃k−2(f1 ∧ ... ∧ f̂i ∧ ... ∧ fk

)
.

(5.12)

Proof of the basic identity. — We need the following simple observation:

r̃k−1(f1 ∧ ... ∧ fk) = r̃k−2(f1 ∧ ... ∧ fk−1) ∧ dImfk + terms without dImfk.

We prove the basic identity by induction. Let k = 2. Then it boils down
to

d
(
Imf1Ref2 − Imf2Ref1

)
+ 2

(
Ref1dImf2 − Ref2dImf1

)

Ref1dImf2 − Ref2dImf1 + Imf1dRef2 − Imf2dRef1,

which is easy to check.

Let us assume that the identity was already proved for k − 1. We com-
pute first the parts of each of the sides containing the term dImfk. The
contribution of the right hand side is

πk−1
(k−1∑

i=1

(−1)i−1fi · df1 ∧ ... ∧ d̂fi ∧ ... ∧ dfk

)
∧ dImfk.

By the induction assumption this is equal to

(
d
k−1∑

i=1

(−1)i−1Imfi·r̃k−3(f1∧...∧f̂i∧...∧fk−1)+(k−1)r̃k−2(f1∧...∧fk−1)
)
∧dImfk.

We have to show that this expression is equal to the dImfk-content of the
left hand side of the basic equality, i.e. to

−r̃k−2(f1 ∧ ... ∧ fk−1) ∧ dImfk + kr̃k−2(f1 ∧ ... ∧ fk−1) ∧ dImfk+

(k−1∑

i=1

(−1)i−1dr̃k−2(f1 ∧ ... ∧ f̂i ∧ ... ∧ fk−1)Imfi

)
∧ dImfk.
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This is obvious. It remains to check that the dImfk-free parts of the basic
equality also coincide. The right hand side gives us

k∑

i=1

(−1)i−1πk(fi)(dRef1 ∧ ... ∧ d̂Refi ∧ ... ∧ dRefk). (5.13)

Let us assume first that k is odd. Then the left hand side is
k∑

i=1

(−1)i−1Refi(dRef1 ∧ ... ∧ d̂Refi ∧ ... ∧ dRefk),

which coincides with (5.13) since πk(fi) = Refi if k is odd. If k is even the
first term contributes

k∑

i=1

(−1)i−1Imfiπk−1(f1 ∧ ... ∧ f̂i ∧ ... ∧ fk),

which coincides with (5.13) since Imfi = πk(fi) in this case. �
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