ANNALES

DE LA FACULTE
DES SCIENCES

Mathématiques

Y URI MANIN AND MATILDE MARCOLLI
Symbolic Dynamics, Modular Curves, and Bianchi IX Cosmologies

Tome XXV, n°2-3 (2016), p. 517-542.
<http://afst.cedram.org/item?id=AFST_2016_6_25_2-3_517_0>

© Université Paul Sabatier, Toulouse, 2016, tous droits réservés.

L’acceés aux articles de la revue « Annales de la faculté des sci-
ences de Toulouse Mathématiques » (http://afst.cedram.org/), implique
I’accord avec les conditions générales d’utilisation (http://afst.cedram.
org/legal /). Toute reproduction en tout ou partie de cet article sous quelque
forme que ce soit pour tout usage autre que 1’utilisation a fin strictement
personnelle du copiste est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/



http://afst.cedram.org/item?id=AFST_2016_6_25_2-3_517_0
http://afst.cedram.org/
http://afst.cedram.org/legal/
http://afst.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/

Annales de la Faculté des Sciences de Toulouse Vol. XXV, n° 2-3, 2016

pp. 517-542
Symbolic Dynamics, Modular Curves,
and Bianchi IX Cosmologies
YUrt MANIN®Y | MATILDE MARCOLLI(?)
To Vadim Schechtman, most cordially
RESUME. — 1l est bien connu que ’espace-temps de Bianchi IX avec

symétrie du groupe SO(3) montre, dans le voisinage du Big Bang, un
comportement chaotique a trajectoires typiques dans le sens inverse du
mouvement du temps. Ce comportement (modele Mixmaster de I'univers)
peut étre codé par le décalage de fractions continues & deux cotés.
Exactement le méme décalage code les suites d’intersections de géodé-
siques hyperboliques dont ’axe imaginaire pur se situe dans le demi-plan
complexe supérieur, c’est-a-dire a flot géodésique dans une surface mod-
ulaire appropriée.

Une interprétation physique de cette coincidence a été suggérée dans [Ma-
Marl4]: en effet, le chaos Mixmaster est une description approchée du pas-
sage d’un univers quantique chaud au moment du Big Bang a 'univers
classique refroidissant. Nous discutons et étayons cette suggestion ici, en
regardant le modele Mixmaster pour la deuxieme classe d’espaces-temps
de Bianchi IX : ceux avec une symétrie SU(2) (métriques d’Einstein auto-
duales). Nous I’étendons aussi au contexte plus général relié aux équations
de Painlevé VI.

ABSTRACT. — It is well known that the so called Bianchi IX spacetimes
with SO(3)-symmetry in a neighbourhood of the Big Bang exhibit a
chaotic behaviour of typical trajectories in the backward movement of
time. This behaviour (Mixmaster Model of the Universe) can be encoded
by the shift of two-sided continued fractions. Exactly the same shift en-
codes the sequences of intersections of hyperbolic geodesics with purely
imaginary axis in the upper complex half-plane, that is geodesic flow on
an appropriate modular surface.

A physical interpretation of this coincidence was suggested in [MaMar14]:
namely, that Mixmaster chaos is an approximate description of the pas-
sage from a hot quantum Universe at the Big Bang moment to the cooling
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classical Universe. Here we discuss and elaborate this suggestion, look-
ing at the Mixmaster Model from the perspective of the second class
of Bianchi IX spacetimes: those with SU(2)-symmetry (self-dual Einstein
metrics). We also extend it to the more general context related to Painlevé
VI equations.

1. Introduction, background and notation

1.1. Plan of the paper

The Mixmaster Model of the early Universe with SO(3)-symmetry in a
neighbourhood of the Big Bang predicts a chaotic behaviour of “typical”
trajectories (in the backward movement of time) encoded by the shift of
two-sided continued fractions: cf. [18], [5], [24], and references therein.

The same shift encodes the sequence of intersections with purely imagi-
nary axis of hyperbolic geodesics in the upper complex half-plane, see [28].

This coincidence invites a closer attention, because the accepted math-
ematical source of the classical Mixmaster chaos involves the behaviour of
separatrices on the real boundary of the respective dynamical system (cf.
[4]). Geometry of these separatrices and approximate dynamics that it en-
codes are not visibly related to hyperbolic geodesics.

A physical interpretation of this coincidence was suggested in [23]. Here
we discuss and elaborate this suggestion, looking at the Mixmaster model
from the perspective of Bianchi IX model with SU(2)-symmetry.

More precisely, according to [23], the Mixmaster “classical chaos” should
be considered as an approrimation to an unknown quantum description of
the transition from the infinitely hot quantum Universe at the moment of
Big Bang to the cooling Universe gradually fitting a classical Einsteinian
model. Time axis at the moment of Big Bang is purely imaginary, and it
becomes real during the observable history of Universe.

We argued that a mathematical model of such a transition explaining
Mixmaster chaos consists in inverse Wick rotation of time axes mediated by
a move of time along random geodesics in the complex hyperbolic half-plane
or rather its appropriate modular quotient. This passage to the modular
quotient was critically important for our argument. It was suggested by
two initially disjoint evidences. The first one was P. Tod’s remark that a
conformal version of cosmological time in the Friedman-Robertson-Walker
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models has a natural structure of the elliptic integral (cf. [23], sec. 4.2). The
second evidence was a well known formal coincidence of two encodings: of
Kasner’s trajectories, on the one hand, and of hyperbolic geodesics with
ideal ends, on the other hand.

In this paper we develop and present further details of this picture.
Namely, we now look at such a transition from the side of “gravitational
instantons” that is, self-dual Einstein spacetimes with SU(2)-symmetry.
Many such spacetimes have a natural complexification, in particular, time
axis can be extended to the complex half-plane, whereas the instantons
themselves are defined by restricting time to the imaginary semi-axis.

Following the behaviour of the respective models along oriented geodesics
in time connecting imaginary half-axis with real half-axis, we get the new
aspect of the Mixmaster picture. This is the main content of this note.

Structure of the paper. In the remaining part of Section 1, we introduce
some basic notations and constructions.

Sec. 2 compares (and shows a satisfying agreement) the sequences of
Kasner eras in the classical Mixmaster models with sequences of geodesic
distances between consecutive intersections of a geodesic with sides of the
Farey tessellation. Finally, in sec. 3 and 4 we study an “instanton analogue”
of the sequences of Kasner solutions determining chaotic behaviour in the
classical Mixmaster model.

Geodesics in upper half-plane and their intersections with boundaries
of fundamental domains of modular groups can be also treated as ball tra-
jectories in hyperbolic billiards (see section 2.1). This picture goes back at
least to Emil Artin’s paper [1]. It was also used in a recent useful survey
[19] of physical literature dedicated to Big Bang. In [19], it was suggested
to quantize this classical system, see also [15].

1.2. Continued fractions

We denote by Z, resp. Z,, the set of integers, resp. positive integers;
Q, resp. R is the field of rational, resp. real numbers. For x € R, we put
[z] ;== max{m € Z|m < x}.

Irrational numbers x > 1 admit the canonical infinite continued fraction
representation

r=ko+ = [ko,kl,k27...], ks € Z4 (1].)

k1+ 21 .
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in which ko := [z], k1 = [1/x] etc. Notice that our convention differs from
that of [18]: their [k1, ko, ...] means our [0, kq, ko, ...].

1.3. Transformation T

The (partial) map T : [0,1]2 — [0,1]2 is defined by
~ 1 1 1
Pt (- 2] o) "

If both coordinates (z,y) € [0, 1] are irrational (the complement is a subset
of measure zero), we have for uniquely defined ks € Z.:

r = [0,]4)0,](31,]{52,...}, Yy = [O,k_l,kj_g,...].

Then

1

1 1 1
- — |:—:| :[O,kl,kg,...],
x €T

y+1/z] ko+y

= [0, ko, k_1,k_a,...].

On this subset, T is bijective and has invariant density

dx dy
log2-(1+ zy)?

(cf. [24]). Thus we may and will bijectively encode irrational pairs (z,y) €
[0,1]% by doubly infinite sequences

(k’) = [ ko k1, ko, k1, ko, . ],kl S Z+

in such a way that the map T above becomes the shift of such a sequence
denoted T':

T(k)s = ksy1. (1.3)

1.4. Continued fractions and chaos in Einsteinian Bianchi IX type
models

Bianchi classified metric space-times with a Lie group action transitive
on space sections. In particular 4-dim Bianchi IX models of space-time can
be of two types: with the symmetry group SO(3) or else SU(2). In the
first case, metric has Minkowski’s signature, whereas in the second case it
is Riemannian. In sec. 1 we survey the now classical results about chaotic
behaviour in the SO(3)-case (Mixmaster Universe) and prepare ground for
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the treatment of SU(2)-models. Sec. 2 and 3 are dedicated to the SU(2)-
case.

Consider the real circle defined in R? by equations
Patpytpe=1, pi+pp+pi=1 (1.4)

Each point of this circle defines a 4-dimensional space-time with metric of
Minkowski signature dt? — a(t)da?® — b(t)dy? — c(t)dz? with scaling factors
a,b,c:

a(t) = tPe, b(t) =P, c(t) =tP<,t > 0.

Such a metric is called the Kasner metric with exponents (pq, pp, pe)-

Any point (pa, s, ) can be obtained by choosing a unique u € [1, o],
putting

(w) u () l+u
= — e |—1/3,0], = € 10,2/3|,
pl 1—|—’LL—|—U2 [ /7]p2 1+u+u2 [ /]
(w) u(l+u)
=———"-¢€12/3,1 1.5
(= D oy (15)

and then rearranging the exponents p(lu) < péu) < pgu) by a bijection
(1,2,3) = (a,b,c).

The main result of a series of physical papers dedicated to the Mixmaster
Universe can be roughly summarized as follows.

A “typical” solution 7 of Einstein equations (vacuum, but also with
various energy momentum tensors) with SO(3)-symmetry of the Bianchi
IX type, followed from an arbitrary (small) value ¢y > 0 in the reverse time
direction t — +0, oscillates close to a sequence of Kasner type solutions.
(See subsection 2.2 below qualifying the use of adjective “typical” in this
context).

Somewhat more precisely, introduce the local logarithmic time 2 along
dt

_abe’
and the time itself is counted from an arbitrary but fixed moment. Then

Q0 — 400 approximately as —logt as t — +0, and we have the following
picture.

this trajectory with inverted orientation. Its differential is df) :=

As Q= —logt — +o00, a “typical” solution « of the Einstein equations
determines a sequence of infinitely increasing moments Qp < Q7 < -+ <
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< ... and a sequence of irrational real numbers u,, € (1,400), n =
2

The time semi-interval [, ,1) is called the n-th Kasner era (for the
trajectory ). Within the n-th era, the evolution of a, b, ¢ is approximately
described by several consecutive Kasner’s formulas. Time intervals where
scaling powers (p;) are (approximately) constant are called Kasner’s cycles.

The evolution in the n-th era starts at time €2,, with a certain value
u = u, > 1 which determines the sequence of respective scaling powers
during the first cycle (1.5):

u 1+u u(l 4 u)
- 27]92: 27p3: 2
l1+u+u 1+u—+u l1+u+u

pP1=

The next cycles inside the same era start with values v = u,, — 1, u, —
2,..., and scaling powers (1.5) corresponding to these numbers, rearranged
corresponding to a bijection (1,2,3) — (a,b,¢) which is in turn identical to
the previous one, or interchanges b and ¢ (see [22]).

After k, := [uy] cycles inside the current era, a jump to the next era
comes, with parameter

1

Uy — [Un]

Unp+1 = (16)

Moreover, ensuing encoding of 7’s and respective sequences (u;)’s by
continued fractions (1.1) of real irrational numbers = > 1 is bijective on the
set of full measure.

Finally, when we want to include into this picture also the sequence of
logarithmic times €2,, starting new eras, we naturally pass to the two-sided
continued fractions and the transformation 7'. See some details in the next
section.

1.5. Doubly infinite sequences and modular geodesics

Let H := {z € C[Imz > 0} be the upper complex half-plane with its
Poincaré metric |dz|?/|Im z|2. Denote also by H := H U {Q U {co}} this
half-plane completed with cusps.

The vertical lines Re z = n,n € Z, and semicircles in . H connecting pairs
of finite cusps (p/q,p’'/q’) with p¢’ — p'q = +1, cut H into the union of
geodesic ideal triangles which is called the Farey tessellation.
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Following [28], consider the set of oriented geodesics ’s in H with ideal
irrational endpoints in R. Let S_, resp. 85 be the initial, resp. the final
point of 5. Let B be the set of such geodesics with f_o, € (—1,0), B €
(1,00). Put

57002_[())]{:07]{717]672;"'}, Boo: [k13k27k37"']7 kl €Z+a (17)
and encode by the doubly infinite continued fraction
[...k_o,k_1,ko, k1, ka,...]. (1.8)

The geometric meaning of this encoding can be explained as follows. Con-
sider the intersection point « = x(8) of 8 with the imaginary semiaxis in H.
Moving along S from x to S, one will intersect an infinite sequence of Farey
triangles. Each triangle is entered through a side and left through another
side, leaving the ideal intersection point (a cusp) of these sides either to the
left, or to the right. Then the infinite word in the alphabet {L, R} encoding
the consecutive positions of these cusps wrt 3 will be LFtRF2LFsRF+
Similarly, moving from S_., to x, we will get the word (infinite to the left)
...LF-1Rko,

We can enrich the new notation ...LF-tRFo[ki Rk2 ks RFa  (called
culting sequence of our geodesic in [28]) by inserting between the consecutive
powers of L, R notations for the respective intersection points of 5 with the
sides of Farey triangles. So z¢ := x = x(3) will be put between R and
LF+, and generally we can imagine the word

Lz RFexgLFia RF2a, LFsxsRM (1.9)

We will essentially use this enrichment in the next section.

2. Hyperbolic billiard, geodesic distance,
and cosmological time

2.1. Hyperbolic billiard

We will first present a version of the geometric description of geodesic
flow: an equivalent dynamical system which is the triangular hyperbolic
billiard with infinitely distant corners (“pockets”).

Here we use the term “hyperbolic” in order to indicate that sides (boards)
of the billiard and trajectories of the ball (“particle”) are geodesics with re-
spect to the hyperbolic metric of constant curvature —1 of the billiard table.
This is not the standard meaning of the hyperbolicity in this context, where
it usually refers to non-vanishing Lyapunov exponents.
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PROPOSITION 2.1. — a) All hyperbolic triangles of the Farey tessellation
of H are isomorphic as metric spaces.

b) For any two closed triangles having a common side there exists unique
metric isomorphism of them identical along this side. It inverts orientation
induced by H. Starting with the basic triangle A with vertices {0, 1,ic0} and
consecutively using these identifications, one can unambiguously define the
map b: H— A.

¢) Any oriented geodesic on H with irrational end-points in R is sent by
the map b to a billiard ball trajectory on the table A never hitting corners.

All this is essentially well known.

It is also worth noticing that although all three sides of A are of infinite
length, this triangle is equilateral in the following sense: there exists a group
Sg of hyperbolic isometries of A acting on vertices by arbitrary permuta-
tions. This group has a unique fixed point p := exp(7i/3) in A, the centroid
of A.

1

In fact, this group is generated by two isometries: z — 1 — 2z~ and

symmetry with respect to the imaginary axis.

Three finite geodesics connecting the centre p with points 7,1 + 4, %
respectively, subdivide A into three geodesic quadrangles, each having one
infinite (cusp) corner. We will call these points centroids of the respective

sides of A, and the geodesics (p,4) etc. medians of A.

Each quadrangle is the fundamental domain for PSL(2,7Z).

2.2. Billiard encoding of oriented geodesics

Consider the first stretch of the geodesic § encoded by (1.9) that starts
at the point z¢ in (0, 700). If kg = 1,the ball along [ reaches the opposite side
(1,4i00) and gets reflected to the third side (0,1). If kg = 2, it reaches the
opposite side, then returns to the initial side (0,i00), and only afterwards
gets reflected to (0, 1).

More generally, the ball always spends kg unobstructed stretches of its
trajectory between (0, i00) and (1,4i00), but then is reflected to (0,1) either
from (1,i00) (if ko is odd), or from (0, i00) (if kg is even). We can encode this
sequence of stretches by the formal word oo showing exactly how many
times the ball is reflected “in the vicinity” of the pocket ioco, that is, does
not cross any of the medians.
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A contemplation will convince the reader that this allows one to define
an alternative encoding of S by the double infinite word in three letters ,
say a, b, ¢, serving as names of the vertices {0, 1,i00}.

2.3. Kasner’s eras in logarithmic time and doubly infinite contin-
ued fractions

Now we will explain, how the double infinite continued fractions enter
the Mixmaster formalism when we want to mark the consecutive Kasner
eras upon the t-axis, or rather upon the Q-axis, where Q := —log [ dt/abc

In the process of construction, these continued fractions will also come
with their enrichments, and the first new result of this note will compare
this enrichment with the one described by (1.9).

We start with fixing a “typical” space-time v whose evolution with
t — +0 undergoes (approximately) a series of Kasner’s eras described by a
continued fraction [ko, k1, k2, ... ], where kg is the number of Kasner’s cycles
within s-th era [, Qs41). We have enriched this encoding by introducing
parameters u; which determine the Kasner exponents within the first cycle
of the era number s by (1.5). A further enrichment comes with putting these
eras on the Q-axis. According to [18], [5], [4], if one defines the sequence of
numbers d, from the relations

Qo1 = [L 4 0sks(us + 1/{us})]s,

then complete information about these numbers can be encoded by the
extension to the left of our initial continued fraction:

["'7k—17k03k17k27"'] (21)

in such a way that
0s = /(af +a7)
where

l‘j = [O,ks,ks+17...], I; = [O,ks_hks_g,...]. (22)

THEOREM 2.2. — Let a “typical” Bianchi IX Mixmaster Universe be
encoded by the double-sided sequence (2.1). Consider also the respective
geodesic in H with its enriched encoding (1.9).

Then we have “asymptotically” as s — 00, s € Z4:

s—1

IOg QQS/QO >~ QZdISt (:CQT-’IQT_A'_l), (23)
r=0
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where dist denotes the hyperbolic distance between the consecutive intersec-
tion points of the geodesic with sides of the Farey tesselation as in (1.9).

Proof.— According to the formulas (5.1) and (5.5) in [18], and our notation
(2.2), we have

2s
log Qa4/Q ~ — > log(a;} ;)
2 Pt
= Z log([kp—1,kp—2,kp—3,--.]) - [kp, kpt1, kpya, - ]). (2.4)
p=1

On the other hand, according to the formula (3.2.1) in [28], we have
. 1
dist (l‘o,l‘l) = 5 10g([l€0, ki_l, k‘_g, v }'Ufl, k?g, .. .]~[k‘1, ]fo, kj_l, ce ]-[kg, ]{ig, .. ])

and hence, more generally,

. 1
dist (2o, Tory1) = 3 log([k2r, kor—1, kar—2, .. .]

'[k2r+1a k27"+2a .. } : [k2r+17 k2T7 k2r—1a .. ] : [k2r+27 k2r+37 s ]) (25)

Inserting (2.5) into the r.h.s. of (2.3), we will see that it agrees with the
r.h.s. of (2.4). This completes the proof. O

The formula (2.3) justifies identification of distance measured along a
geodesic with (doubly) logarithmic cosmological time in the next section.

During the stretch of time/geodesic length which such a geodesic spends
in the vicinity of a vertex of A, the respective space-time in a certain sense
can be approximated by its degenerate version, corresponding to the vertex
itself, and this justifies considering the respective segments of geodesics as
the “instanton Kasner eras”.

3. Mixmaster chaos in complex time and Painlevé VI

3.1. Painlevé VI

Contrary to the separatrix approximation methods, the results about
encoding of geodesics  with irrational ends and formulas for the distances
between consecutive cutting points are exact, but we did not yet introduce
analogs of space-times fibered over geodesics as their time axes. We will do
it in this section. The respective space-times are (complexified) versions of
Bianchi IX models with SU(2) (rather than SO(3)) action, the so called
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gravitational instantons. An important class of them is described by solu-
tions of the Painlevé VI equation corresponding to a particular point in the
space of parameters of these equations: for us, the main references will be
[32], [17], and [2].

However, the hyperbolic billiard’s picture of Sec. 2 can be lifted to es-
sentially arbitrary Painlevé VI equations, and we will start this section with
a brief explanation of the relevant formalism.

Equations of the type Painlevé VI form a four-parametric family. If the
parameters (a, 3,7, ) are chosen, the corresponding equation for a function
X (t) looks as follows:

EX 11 1 L (XN 1 1YY
) X—-1 X-—t)\ dt t t—1 X-—t) dt
X(X -1)(X —1) t t—1 tt—1)
— b : 1
ea—z |“T P o PO e (3:-1)
In 1907, R. Fuchs has rewritten (3.1) in the form

2 (X.Y) x
t(1 —t) [t(l—t)%+(1—2t)d 1]/ o _dl)(m_t) -

dt 4
(t-1)Y ( _l)t(t—l)Y
(X —1)2 27 (X —t)?
Here he enhanced X := X (¢) to (X,Y) := (X(¢),Y(¢)) treating the latter

pair as a section P := (X (t),Y (t)) of the generic elliptic curve E = E(t) :
Y? = X(X — 1)(X —t). The section can be local and/or multivalued.

tY

In this form, the left hand side of (3.2) which we denote p(P) has a
beautiful property: it is a non-linear differential expression (additive differ-
ential character) in coordinates of P such that u(P + Q) = u(P) + Q)
where P + () means addition of points of the generic elliptic curve F, with
infinite section as zero. In particular, u(Q) = 0 for points of finite order.

To see it, notice that the integral in the Lh.s. of (3.2) is additive modulo
periods of our elliptic curve, considered as multivalued functions of ¢. These
periods are annihilated by the Gauss differential operator which is put before
the integral sign in (3.2).

The right hand side of (3.2) looks more mysterious. In order to clarify its
meaning, notice that u(P) is defined up to multiplication by an invertible
function of t.
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If we choose a differential of the first kind w on the generic curve and
the symbol of the Picard-Fuchs operator of the second order annihilating
periods of w, the character will be defined uniquely. Moreover, it is functorial
with respect to base changes (cf. [21], sec. 0.2, 1.2, 1.3). In particular, if we
pass to the analytic picture replacing the algebraic family of curves E(t)
by the analytic one E, := C/(Z + Z1) — 7 € H, and denote by z a fixed
coordinate on C, then (3.1) and (3.2) can be equivalently written in the
form

dQZ 1 3 Tj
szz%pz(z—l—gﬂ') (3.3)
j=0

where (ap,...,a3) = (o, —f,7, % —0) and (Ty, T, T, T5) := (0,1, 7,1 +71),
and

1 1 1
pln) =5+ D ((Z—m7’—n)2 - (m7+n)2)' (3.4)

(m;n)#(0,0)

Moreover, we have

p:(2,7) = 4(p(z,7) — e1(7))(p(2,7) — e2(7))(p(2,7) —es(1))  (3.5)

where

so that ey +e9 +e3 =0.

The family Painlevé VI was written in this form in [21]. It was consider-
ably generalised by K. Takasaki in [29], in particular, he found its versions
for other families of Painlevé equations.

Now, any multivalued solution z = z(7) of (3.3) defines a multi-section
of the family which is a covering of H. In particular, if we can control
its ramification and monodromy, then we may consider its behavior over
geodesics with ideal ends in H and study the relevant statistical properties.
The most accessible examples are algebraic solutions classified in [3], [20]
and other works.

However, here we will return to Bianchi IX models, which according to
[17] correspond to the equation with parameters (a, 3,7,6) = (3,3, %, 2),
solvable in elliptic functions. We will skip the beautiful twistor geometry
bridging Painlevé VI and Bianchi IX and simply reproduce the relevant

results from [32] and [17], somewhat reworked and simplified in [2].
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3.2. SU(2) Bianchi IX metric and scaling factors

Consider the SU(2) Bianchi IX model with metric of the form

o3 . 03
g— <d,LL +VV1+VV2+W2> (37)

Here p is cosmological time, (0;) are SU(2)-invariant forms along space-
sections with do; = o A oy, for all cyclic permutations of (1,2,3), and F is
a conformal factor.

By analogy with the SO(3) case and metric dt? — a(t)?dz? — b(t)*dy* —
c(t)?dz?, we may and will treat W; (as well as some natural monomials in
W; and F) as SU(2)-scaling factors.

However, contrary to the SO(3)-case, generic solutions of Einstein equa-
tions in the SU(2)-case can be written explicitly in terms of elliptic modular
functions, whereas their chaotic behaviour along geodesics in the complex
half-plane of time is only a reflection of the chaotic behaviour of the respec-
tive billiard ball trajectories.

3.3. Theta-functions with characteristics

Explicit formulas in [2] use the following basic function of the complex ar-
guments iu € H, z € C, with parameters (p, ¢) called theta-characteristics:

Ip, ql(z,ip) =Y exp{—w(m+p)°u+2mi(m+p)(z+q)}.  (38)
meZ

It can be expressed through the theta-function with vanishing characteris-
tics:

Op, q)(z,ip) = exp{—mp’ i+ 2mipq} - 9]0,0](z + pipn + q,ip).  (3.9)

All these functions satisfy classical automorphy identities with respect to
the action of PGL(2,Z).

THEOREM 3.1. — ([32], 17, [2].) Put
9p. q) == I[p, 4)(0, i) (3.10)

and
V9 == 9[1/2,0], 95 :=0[0,0], ¥4 :=0[0,1/2]. (3.11)
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(A) Consider the following scaling factors as functions of p with param-
eters (p,q):

. lé]
L9p+1/2,q+1/2)

— 1 9q ’

, Wy : 2’[92194 e“ipﬁ[p, q]

. 9
5qVp.q+1/2]
[ — 1 —aq ’

Wiy . 2193’(94 €7Tip’t9[p, q]

29[p+1/2,]
Ip.ql

Moreover, define the conformal factor F with non-zero cosmological constant
A by

1
W3 = —5192193 (312)

2
.2 WiWaWs

A (5 log 9[p, q])2 (3:19)

The metric (3.7) with these scaling factors for real p > 0 is real and satisfies
the Einstein equations if either

1
A<0,p€]R,q€§—|—i]R7 (3.14)
or

1
A>O,qER,pE§+iR. (3.15)

(B) Consider now a different system of scaling factors

1 d 1 d
Wi = +2—1logty, W,:= + 2— log Vs,
VT g Tap BT TR g Tdn P
1 d
W= +2—log ¥y, 3.16
3 ot g dp g U4 ( )
and

F' = —C(u+ qo)* WWyW3, (3.17)

where qo,C € R, C' > 0.

The metric (3.7) with these scaling factors for real u > 0 is real and
satisfies the Finstein equations with vanishing cosmological constant.
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We will now consider values of iy € A C H in the vicinity of ico but
not necessarily lying on the imaginary axis. Since we are interested in the
instanton analogs of Kasner’s solutions, we will collect basic facts about
asymptotics of scaling factors for iy — ico.

For brevity, we will call a number r € R general, if r ¢ Z U (1/2 + Z).

For such r, denote by (r) € (—1/2,0) U (0,1/2) such real number that
r 4+ mg = (r) for a certain (unique) mg € Z.

THEOREM 3.2. — The scaling factors of the Bianchi IX spaces listed in
Theorem 3.1 have the following asymptotics near y = 400:

(i) For A =0:

s 1
Wi ~—=, Wi,~Wji~ .
1 5 2 3 T

(3.18)

(i) For A <0 and general p:
Wy ~ —m(p) exp{mi({p) —p)}, Wz~ £Ws,

W3 ~ =2mi(p+1/2) - exp{misgn (p)q} - exp{mp(|(p)| — 1/2)}.  (3.19)
(iii) For A > 0, real ¢ and p = 1/2 + ipy, po € R:

1
Wy ~ mpo tan{m(q — pop) } — > Wy ~ —W3,

W3 ~ 27pg - (cos m(q — pop)) ~ . (3.20)

Comments. Theorem 3.2 shows that for general members of all solution
families from [2], after eventual sign changes of some W;’s and outside of the
pole singularities on the real time axis, we have asymptotically Wy = Wiy,
Wy # Wa.

In the next section, we will show that precisely such a condition allows
one to quantize the respective geometric picture in terms Connes-Landi
([8]. This gives additional substance to our vision that chaotic Mixmaster
evolution along hyperbolic geodesics reflects a certain “dequantization” of
the hot quantum early Universe.

(Sign changes alluded to above are allowed, since Babich and Korotkin
get their much simpler formulas by cleverly extracting square roots from
expressions given in [17].)
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Proof of Theorem 3.2.— Directly from (3.9)-(3.11), we obtain:

1

2= Y exp{=m(m+3)*u} ~2exp{-mp/4}, (3.21)

meZ
93 = Z exp{—mm?u} ~ 1+ 2 exp{—mu}, (3.22)

meZ

Vg = Z exp{—mm?u}(—1)™ ~1—2 exp{—mpu}. (3.23)

meZ

Therefore

d d d
i log ¥y ~ —%, n log ¥ ~ =21 exp{—mu}, n log ¥4 ~ 27 exp{—mpu}.

From this and (3.16), (3.17) one gets (3.18) for A = 0.
Now consider the case A < 0, p general.

Then from (3.8), (3.10), and (3.14) one gets

Ip.a] = D exp{—m(m +p)*p+ 2mi(m + p)g} ~
meZ

~ exp{27i(p)q} - exp{—m(p)*p}, (3.24)

because for general p, the leading term of 9[p, q] corresponds to the unique

value of m for which (m + p)? is minimal, that is, equals (p)2.

Hence
0 ) )
87119[1), q] ~ 2mi (p) exp{2mi(p)q} - exp{—m(p)°u}. (3.25)
Thus, from (3.12), and (3.21)-(3.25) we obtain

29p,q+1/2]

g 52 (p) exp{27i(p)(q+1/2)}-exp{—m(p)*p} x

Wi = éﬁ304
exp{—mip} - exp{—2mi(p)q} - exp{m(p)*n} = —m(p) exp{mi((p) —p)}.

Furthermore,

sl +1/2,0+1/2]
emrip, q]

1
Wy = 5’[92194
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~ %-2 exp{—mp/4}-2mi (p+1/2)-exp{2mi(p+1/2)(¢+1/2)}-exp{—m(p+1/2)*u}

x exp{—mip} - exp{—=2mi(p)q} - exp{m(p)’u} ~
=27 (p+1/2) exp{mi[(p + 1/2) — p — sgn(p)q]} - exp{mpu(|(p)| — 1/2)}.

Notice that exponential terms were rewritten using the identity
1
(p+1/2) = (p) — 55e0(p).

Similarly,

12}
1, 50 +1/2,
W3 = —iﬂglggw

N —%-2 exp{—u/A}-2mi (p+1/2)-exp{2mi(p+1/2)q}-exp{ —m(p+1/2) 1} x
exp{—2mi(p)q} - exp{m(p)*u} ~
—2mi (p +1/2) - exp{misgn (p)q} - exp{mu(|(p)| — 1/2)}.

Comparing expressions for Wy and W3, one easily sees that Wy = £Wj,
where the exact sign can be expressed through p and q.

For the conformal factor (3.13) we then get the following asymptotic:

P T U A6
T TA (Z ol aZ
T (5, log d[p, q})

2
2 exp{(p-+ 1/2) + () + 258 ) 0} -explmn 21(6)| - D).

Finally, pass to the case A > 0. Put p = % +ipo, po € R. We have again
to locate first the leading terms as p — 400 in

O[p,q = exp{—m(m+ p)’u+ 2mi(m + p)q},

and also respective terms when p and/or ¢ are shifted by 1/2. Obviously,
they correspond to the minimal values of Re (m+p)?, resp. Re (m+p+1/2)?,
for m € Z. Since

1 1
Re(m +p)* = (m+5)* =pj, Re(m+p+)”=(m+1)*=pj,
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in the first case there are two leading terms, for m = 0 and m = —1, and in
the second case just one, for m = —1.

Thus, for A > 0, we have

Ip, q] ~ exp{mu(pg—1/4)}-[exp{2mipg—mipop}+exp{2mi(p—1)g+mipopu}].

The sum of two terms in square brackets can be rewritten so that in the
end we obtain

Op, q) ~ exp{mp(py — 1/4)} - exp{—2mpoq} - cosm(q — pop).  (3.26)

Ip+1/2,q] ~ exp{mupt} - exp{—27mpoq}. (3.27)

When we have to replace a real ¢ by ¢ + 1/2, we may do it formally in the
right hand side expressions in (3.26), (3.27).

Therefore, we have from (3.12), (3.22) and (3.27):

Wo s aVp+1/2,0+1/2]
Ws U3 e”ipa%ﬁ[p+1/2,q]

exp{—2mpo(q+1/2)}

x - - =—1.
exp{mi(1/2 +ipo)} - exp{—27poq}

Now, )
Ws = —%192193—&]19[2[;;/2’(1]
exp{—mp/4} - (2mpo) - exp{mppg} - exp{—2mpoq}
exp{mu(pg — 1/4)} - exp{—2mpoq} - cos m(q — pop)
21po - (cosm(q —pop)) -
Furthermore,

i 0pa+1/2)
9q

Wy = ?%WW

i exp{mu(pg — 1/4)} - Flexp{—2mpo(g +1/2)} - cosm(g +1/2 = pop)]

2 exp{m(i/2 = po)} - exp{mu(p§ — 1/4)} - exp{—2mpog} - cos m(q — pop)
i %[exp{—Qﬂpo(q +1/2)} - cosm(q+1/2 — pop))
2 exp{m(i/2 — po)} - exp{—2mpoq} - cos m(q — pop)
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1 splexp{—2mpo(q +1/2)} - sinm(q — pop)]

2 exp{—2mpo(q+1/2)} - cosm(q — pop)

1
mpo tan{m(q — pop)} — 5
This completes the proof of Theorem 3.2. O

4. Theta deformations of gravitational instantons

4.1. Theta deformations

In Section 5 of [23] we showed that the gluing of space-times across
the singularity using an algebro-geometric blowup can be made compati-
ble with the idea of spacetime coordinates becoming noncommutative in a
neighborhood of the initial singularity where quantum gravity effects begin
to dominate.

This compatibility is described there in terms of Connes-Landi theta
deformations ([8]) and Cirio-Landi-Szabo toric deformations ([7]) of Grass-
mannians.

Here we consider the same problem in the case of the Bianchi IX models
with SU(2)-symmetry, namely whether they can be made compatible with
the hypothesis of noncommutativity at the Planck scale, using isospectral
theta deformations.

The metrics on the S sections, in this case, are only left SU(2)-invariant.
We show that among all the SU(2) Bianchi IX spacetime, the only ones that
admit isospectral theta-deformations of their spatial S3-sections are those
where the metric tensor

waw wLw wLw

2 2W3 o 1W3 o 1W2 9
g = wiwows dp” + o] + o5+ o3 (4.1)
w1 w9 ws

is of the special form satisfying wy # wy = w3 (the two directions o5 and o3
have equal magnitude). In these metrics, the S sections are Berger spheres.
This class includes the general Taub-NUT family ([31], [25]), and the Eguchi-
Hanson metrics ([11], [12]). The theta-deformations are obtained, as in the
case of the deformations Sj of [8] of the round 3-sphere, by deforming all
the tori of the Hopf fibration to noncommutative tori.

PROPOSITION 4.1. — A Bianchi IX Euclidean spacetime X with SU(2)-
symmetry admits a noncommutative theta-deformation Xy, obtained by de-
forming the tori of the Hopf fibration of each spacial section S® to non-
commutative tori, if and only if its metric has the SU(2) x U(1)-symmetric
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form
2.0 W3 o 2, 2
g = wiws du® + o 01 +wy (03 + 03). (4.2)
1
Proof. In appropriate local coordinates the SU(2)-invariant forms (o;) sat-

isfying relations do; = o; A oy, for all cyclic permutations (3, 7, k) have the
explicit form

1
01 = o1 dvy — 12 d21 + 23 dTg — TH dT3 = §(d@[1 + cos0dg),

1
09 = Tg drs — x3dre + 11 dXg — TH dT1 = §(Sin¢ df — sin 6 cos ¢ do),

1
03 = x3dr1 — 21 das + 1o drg — 20 dTe = 5(— cos ) df — sin 0 sin do),

with Euler angles 0 < 0 < 7, 0 < ¢ < 27 and 0 < 9 < 47 (for the SU(2)
case).

The Hopf coordinates (£1,&2,7) are defined by

) 0 )
21 =21 +ixg = /P19 cos 3= €'t cos,

i .0 iEy -
29 = T3 + ixg = 'Y sin — = %2 sin 7.
Equivalently, identifying S® with unit quaternions, we write ¢ € SU(2)

(= =\ [ eicosy e's2 sinn
=\ 2 z) 7 \—e€ging e €icosy)’

where |21|? + |22]? = 1 and (&1, &9,n) are the Hopf coordinates as above.

as

The noncommutative §-deformations ([8]) of the 3-sphere S® are ob-
tained by deforming all the 2-tori of the Hopf fibration to noncommutative
2-tori Tj. Namely, replace ¢ with

U cosn V sinn
—V*sinn U* cosn)’

where U,V are the generators of the noncommutative 2-torus T92.
Then one obtains the algebra generated by ao = U cosn and = Vsinn

with a8 = 2™ 8a, o*f = e 2™ Ba*, a*a = aa*, f*f = BB* and aa* +
BB* = 1. It is shown in [8] that this deformation is isospectral with respect
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to the bi-invariant round metric on S3, in the sense that the data of the
Hilbert space of square integrable spinors H = L?(S3,S) and the Dirac
operator D for the round metric on S give rise to spectral triples on the
deformed algebras Sj.

In fact, the general result of [8] shows that isospectral theta-deformations
can be constructed whenever there is an isometric torus action. In particular,
in our case the question reduces to whether the action of T2 that rotates
the tori of the Hopf fibration preserves the Bianchi IX metric.

In Hopf coordinates the action of T2 is given by (t1,t2) : (&1,&) —
(&14t1,&a+t2), or in terms of the Euler angles, (u,v) : (¢, ) — (¢+u, p+v),
with ¢; = (u +v)/2 and t2 = (v — u)/2. It is immediate to check that the
U(1)-action u : ¢ — ¢+ u leaves the 1-forms o; invariant. This is the U(1)-
action of the Hopf fibration S' <+ S§3 — S2. The form o is also invariant
under the other U(1)-action v : ¢ — 1t + v, while the other forms oy, 03
transform as

viog = %(sin(z/) + B)df — cos(v) + ) sin @ do)

V' = 5(—cos(ib + )b —sin(i + B) sin6 do),

hence it is clear that we have v*g = ¢ for a Bianchi IX metric

g =dp*+a* o} +b* 03 + P ol (4.3)
if and only if b = ¢. In the case b = ¢, with

a2 2

g = dp? + (A + cos 0 ) + - (d6° + sin? 0 do?),

the T? action is isometric and the resulting theta-deformations are therefore
isospectral, with spectral triples (A, H, D), with A = C*°(S3), and spinors
H = L?(S3,5) and Dirac operator D with respect to the Bianchi IX metric
with b = c. O

This is in stark contrast with the situation described in [13], where
(Lorentzian and Euclidean) Mixmaster cosmologies of the form

Fdt? + a(t)*dz? + b(t)?dy* + c(t)?dz>

were considered, with T3-spatial sections, which always admit isospectral
theta-deformations.

We have recalled in the previous section how the self-duality equations
for the SU(2) Bianchi IX models can be described in terms of Painlevé
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VI equations [32], [17], [26], and how the general solutions (with w; #
wg # ws) can be written explicitly in terms of theta constants [2], and are
obtained from a Darboux-Halphen type system [27], [30]. In the case of the
family of Bianchi IX models with SU(2) x U(1)-symmetry, considered in
Proposition 4.1, this system has algebraic solutions that give
1 [ iy VP

P = po’ o (b — po)?’ )
with singularities at p. (curvature singularity), po (Taubian infinity) and
oo (nut). The condition u. < po avoids naked singularities, by hiding the
curvature singularity at g, behind the Taubian infinity, see the discussion
in Section 5.2 of [27].

Consider the operator

1 . 2

DB:_Z<X21'X3 —1x, ™

where { X1, X2, X3} constitute a basis of the Lie algebra orthogonal for the
bi-invariant metric. Assume moreover that the left-invariant metric on S° is
diagonal in this basis, with eigenvalues {w? /w1, w1, w; }, with w = we = w3
and A = w/wy, and where the w; are as in (4.4). Consider also the operator

1 0 1w 1w
D=—— O<++>+w DB,\_w). 4.6
e <7 on 5o+ 50h)) 4w Dol (4.6)
PROPOSITION 4.2. — The operators D of (4.6) give Dirac operators for

isospectral theta deformations of the SU(2) x U(1)-symmetric spacetimes of
Proposition 4.1.

Proof. We consider the frame 6 with i € {0, 1,2, 3}, given by

0 =uwdp, 0'=uloy, > =wos, 6> =uos,

where u = wi/z and A = w/wy, for w = wy = ws. Since the o; satisfy

do; = 0 A oy, for cyclic permulations {4, j, k} of {1,2,3}, we have df° = 0,
and furthermore

: 1 A 1
d01:(u/\+u)\)du/\al+u>\ag/\g3:—(3+—)9°/\91+—A292/\93,
uww U A U\
2 _ Loty g2 I s
df° =uduNog+uog Aoy = — —0° NO“+ —0° NG,
uw u U\
3 _ L g a3 Lo, g2
dO° =uduNos+uoy Nog = — —0" N0+ —0" N0
uw u U\

where dot denotes the time derivative.
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Proceeding then as in [6], we use the df’ to write the spin connection
and we obtain a Dirac operator of the form

1 o 1 luy wi’?

D= o~ (= —(— - D —w
v w}/zw (3u+2(w+2w1)>+ w B|A—w1’

or equivalently of the form (4.6), where Dp is the Dirac operator on a
Berger 3-sphere. The explicit form of Dirac operator on a Berger 3-sphere
with metric \20%? + 03 + 03 was computed in [16], and it is given by the
operator (4.5).

As in [13], the Dirac operator of Proposition 4.2 can be seen as involving
an anisotropic Hubble parameter H. In the case of the metrics (4.3) of [13]

this was of the form )
1({a b ¢
H=—-|-+-+-
3<a+b+c>

with a, b, ¢ the scaling factors in (4.3).

In the case of the SU(2) Bianchi IX models, the anisotropic Hubble
parameter is again of the form H = %(H1 + Hy + Hj), where now the H;
correspond to the three directions of the vectors dual to the SU(2)-forms
o; in (4.1). For a metric of the form (4.2), or equivalently

g = vw dp® + u?N? 0% + u?ol + ulo?,

with u, A\, w as in Proposition 4.1, we take the anisotropic Hubble parameter

to be .
1 [ a\+u) i 1 A
H:— 2_ = — — —
3( U\ u> 3<3u+)\>7
where )
@ _ 1w AW
v 2w N w  w
so that

as in (4.6), so that we can write the 4-dimensional Dirac operator in the

form ) 5 3
D=~"— (— + —H> + Dpg,
uw \Op 2
where Dp = (w%/Q/w) Dp |,\:#;1 is the Dirac operator on the spatial sections

S3 with the left SU(2)-invariant metric.
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Explicit computations of the spectral action for the Bianchi IX metrics
have been carried out in [14].

Notice that in the construction above we have considered the same mod-
ulus 4 for the noncommutative deformation of all the spatial sections S® of
the Bianchi IX spacetime, but one could also consider a more general sit-
uation where the parameter 6 of the deformation is itself a function of the
cosmological time p.

This would allow the dependence of the noncommutativity parameter
0 on the energy scale (or on the cosmological timeline), with § = 0 away
from the singularity where classical gravity dominates and noncommutativ-
ity only appearing near the singularity. Since a non-constant, continuously
varying parameter 6 crosses rational and irrational values, this would give
rise to a Hofstadter butterfly type picture, with both commutativity (up
to Morita equivalence, as in the rational noncommutative tori) and true
noncommutativity (irrational noncommutative tori).

Another interesting aspect of these noncommutative deformations is the
fact that, when we consider a geodesic in the upper half plane encoding
Kasner eras in a mixmaster dynamics, the points along the geodesic also
determine a family of complex structures on the noncommutative tori Tj of
the theta-deformation of the spatial section.
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