ANNALES

DE LA FACULTE
DES SCIENCES

Mathématiques

ALEXANDER GIVENTAL
Explicit Reconstruction in Quantum Cohomology and K-Theory

Tome XXV, n°2-3 (2016), p. 419-432.
<http://afst.cedram.org/item?id=AFST_2016_6_25_2-3_419_0>

© Université Paul Sabatier, Toulouse, 2016, tous droits réservés.

L’acceés aux articles de la revue « Annales de la faculté des sci-
ences de Toulouse Mathématiques » (http://afst.cedram.org/), implique
I’accord avec les conditions générales d’utilisation (http://afst.cedram.
org/legal /). Toute reproduction en tout ou partie de cet article sous quelque
forme que ce soit pour tout usage autre que 1’utilisation a fin strictement
personnelle du copiste est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/



http://afst.cedram.org/item?id=AFST_2016_6_25_2-3_419_0
http://afst.cedram.org/
http://afst.cedram.org/legal/
http://afst.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/

Annales de la Faculté des Sciences de Toulouse Vol. XXV, n° 2-3, 2016
pp. 419-432

Explicit Reconstruction in Quantum Cohomology
and K-Theory

ALEXANDER GIVENTAL(

To my friend Vadim Schechtman

RESUME. — Les invariants de Gromov-Witten cohomologiques de genre 0
d’une variété donnée peuvent étre codés par le ” potentiel descendant”, une
fonction génératrice définie sur I’espace des séries formelles en une variable
a coefficients dans ’espace de cohomologie de la variété. En remplagant
I’espace des coefficients par le sous-espace engendré multiplicativement
par les classes de degré 2, nous reconstruisons explicitement le graphe
de la différentielle de la fonction génératrice & partir d’un point sur le
graphe. En utilisant le théoréme de Hirzebruch-Riemann-Roch quantique
démontré dans notre travail conjoint avec Valentin Tonita, nous déduisons
une formule de reconstruction similaire dans la K-théorie quantique en
genre 0. Les résultats amplifient le réle des structures, en se basant sur les
équations des diviseurs, des D-modules et Dgy-modules par rapport aux
variables de Novikov, dans la cohomologie quantique et dans la K-théorie
quantique.

ABSTRACT. — Cohomological genus-0 Gromov-Witten invariants of a
given target space can be encoded by the “descendent potential,” a gen-
erating function defined on the space of power series in one variable with
coefficients in the cohomology space of the target. Replacing the coefficient
space with the subspace multiplicatively generated by degree-2 classes, we
explicitly reconstruct the graph of the differential of the restricted gen-
erating function from one point on it. Using the Quantum Hirzebruch—
Riemann—-Roch Theorem from our joint work [10] with Valentin Tonita,
we derive a similar reconstruction formula in genus-0 quantum K-theory.
The results amplify the role in quantum cohomology and quantum K-
theory of the structures, based on divisor equations, of D-modules and
Dgy-modules with respect to Novikov’s variables.

(1) University of California Berkeley, USA, and the IBS Center for Geometry and
Physics, Korea
This material is based upon work supported by the National Science Foundation under
Grant DMS-1007164.
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1. Formulations

Let X be a compact Kéhler (or, more generally, symplectic) manifold.
Its genus-0 descendent potential is defined by

> d
Fi)i= 30 3 L)t o

de M n=0

where M C Hy(X,Z) is the Mori cone of X, Q% stands for the element
corresponding to d in the semigroup ring of M, t := Z,@O 2" is a power
series with coefficients t;, which are cohomology classes of X, and the cor-
relator stands for the integral over the virtual fundamental class [Xg . 4] of
the moduli space of degree-d stable maps to X of rational curves with n
marked points:

(G19M, . et Yona = / Vi@t - evi(dn)dnn
[Xﬂ,n,d]
Here ev; is the pull-back of cohomology classes from X to Xy, 4 by the
evaluation map at the i-th marked point, and ; is the 1st Chern class of
the line bundle over X , 4 formed by cotangent lines to the curves at the
i-th marked point.

Following [8], we embed the graph of the differential of F into the sym-
plectic loop space ‘H. By definition, it consists of formal Q-series whose co-
efficients are Laurent series in one indeterminate z with vector coefficients
from H*(X,Q).

The “loop space” H (which is actually a Zs-graded module over the
Novikov ring Q[[Q]]) is equipped with the Q[[Q]]-valued even symplectic
form

Q(f,9) :=Res.—o(f(—2),9(2)) dz,

where (-, ) is the Poincaré pairing (i.e. (a,b) = [ ab = (a,1,b)0,3,0). Decom-
posing H into the sum H, @ H_ of complementary Lagrangian subspaces
(by the standard splitting of a Laurent series into the sum of the power
z-series, and the polar part), we identify H with T*#H, . Translating the
origin in Hy from 0 to —1z (the operation, refered to as the dilatdn shift),
we embed the graph of dF into H as a Lagrangian submanifold. Explicitly
(see [8]) it is given byXS the following J-function:
d «
H+ S5t— j(t) =z +t(2’) + Z %¢a<%_w

n,d,x
where {¢,} and {¢*} are Poincaré-dual bases in H*(X, Q).

,t(lﬁ)’ s at(¢)>0,n,d;
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In fact, this construction leads to some (rather mild) divergence problem.
To elucidate it, pick a graded basis {¢,} in H*(X,Q), and assume that
¢o = 1, and ¢, with a = 1,...,7 = rkH?(X) are integer degree-2 classes
p1, ..., pr taking non-negative values d; := p;(d) on degrees d € M C Hy(X)
of holomorphic curves in X. Writing

t, = Ztk,a(ba =trol +tg1p1 + - - + Ly rpr + the rest of the sum,

«

one can show (on the basis of string and divisor equations), that each Q%-
term in J contains the factor ef0.0/# (which, unless expanded in powers
of tg 9, does not fit the space of formal Laurent series in z), and besides
comes with the factor eXi%ito.i (which is not defined over Q). Also, as it
follows from dilaton equation, with respect to the variable t; o, the series
has convergence radius 1. It follows from dimensional considerations that
the rest of each Q?-term is a polynomial in 1/z and in (finitely many of)
the coefficients of the power series ¢(z).

There are several ways to handle the problems. In this paper, we will
ignore the convergence properties by interpreting the J-function (and other
geometric generating objects) in the sense of formal geometry. That is, ¢ —
J(t) is considered as the germ at —z of a formal series in the components
of the vector variables ¢, with coefficients which belong to the symplectic
loop space.

We will take Q[[Q1, ..., Q]] on the role of the Novikov ring, and rep-
resent Q7 by the monomial QJ*...Q% . By virtue of the Q-adic conver-
gence, one can specialize formal variables tj o to their values in the Novikov
ring, taken from its maximal ideal (which is necessary indeed in the case of
to,0, to,i» and t1,0). One can also make formal changes of the variables {tj,  }
with coefficients in the Novikov ring.

THEOREM 1.1.— Let Y, 1,Q%, where I4(z, 2~1) are cohomology-valued
Laurent z-series, represent a point on the graph of dF in H, and let P,
be polynomials in p1,...,p, (or, more generally, power z-series, with coef-
ficients polynomial in pq,...,p, ). Then the family

1
I(r) ==Y I.Q%exp {; > Ta®alpr - 2di,. .. pyr — Zdr)}
d «

lies on the graph of dF.

Furthermore, for arbitrary scalar power series ca(z) = ;-0 Ta k2", the
linear combination Y, co(2)20-, 1 of the derivatives also lies on the graph.
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Moreover, in the case when pi,...,p, generate the entire cohomology
algebra H*(X,Q), and ®,, represent a linear basis, such linear combinations
comprise the whole graph.

Ezample 1.2.— Take X = CP"!, p to denote the hyperplane class (and
hence p™ = 0), and ®; = p',i = 0,...,n — 1, for a basis in H*(X,Q). The
“small J-function”

Qd
Y e e B IR Py AL
is known (see, for instance, [6]) to represent a point on the graph of dF. It
follows from THeorem 1 that the whole graph is comprises by
Qde(To+T1 (p—dz)+-+71p_1(p—dz)""1) /2 Z?:_Ol Ci(Z)(p _ dz)i

(=22 (p—2)"(p—22)" - (p—d2)"

=0

)

when ¢;(z) run arbitrary power series. More explicitly, one equates the power
z-series part of this formula to —z + t(2):

— Q-adically small [
i T RC ' _ = - ‘ tei2",
;(T zeilz)p + (and nonlinear terms) i ;p kz—o k%

and expresses 7; and all coefficients of the series ¢; (here ¢(0) needs to
lie in a formal neighborhood of 1) in terms of {¢y;}. Substituting these
expressions back into the formula, one obtains (according to Theorem 1)
the standard form of the J-function for CP"~1.

In K-theoretic version of GW-theory of a compact Kahler manifold X,
the genus-0 descendent potential F¥ is defined by the same formula as its
cohomological counterpart:

& d
FE)=>>" %{t(L,L‘l),...,t(L,L‘1)>£fn’d,
deMn=0

using the correlators
(@ Lk, @ LEE = X (Xon,a; OV @ evi (@)L - - evy (9,)LE).

Here x is the holomorphic Euler characteristic (on Xg,.4), O is the
virtual structure sheaf introduced by Yuan-Pin Lee [14], ®; € K9(X) is a
holomorphic vector bundle on X, Lfi, k; € Z, is the k;th tensor power of the
line bundle formed by the cotangent lines to the curves at the ith marked

— 422 —



Explicit Reconstruction in Quantum Cohomology and K-Theory

point. The input ¢ in F¥ is a Laurent polynomial of L with coefficients in
the K-ring of X.

Adapting the symplectic loop space formalism, we embed the graph of
dFE as a Lagrangian submanifold into the “space” K consisting of power Q-
series whose coeflicients are rational functions in one indeterminate, ¢, which
take vector values in K°(X) ® Q. Each rational function of ¢ is uniquely
written as the sum of a Laurent polynomial and a rational function having
no pole at ¢ = 0 and vanishing at ¢ = co. The space K is thereby decomposed
into the direct sum of two subspaces, K4 and K_ respectively. They are

Lagrangian with respect to the symplectic form
K —1,k dq
(f,9) = [Resg=0 + Resq=oa] (f(q),9(q¢™") ;,

where (-,-)% stands for the K-theoretic Poincaré pairing:
(A,B)X =x(X;A®B) = / ch(A)ch(B)td(Tx).
X

Using this Lagrangian polarization to identify /C with T*K, and applying
the dilaton shift 1 — ¢, we identify the graph of dF* with a submanifold in
K, which is described explicitlyby the J-function

’C+9ti—>jK():

1—q+t(g,q Z AL, LY (L L)) 0

n,d,«

Here ®, and ®“ run Poincaré-dual bases of K"(X). Similar to the coho-
mological case, we consider J¥ as a germ (at 1 — ¢) of a formal section of
T*H . That is, it is a formal series of the coordinates t; o, (on the space of
vector Laurent polynomials ), tkya@aqk), whose coefficients are (Q-series
with coefficients in rational functions of q.

Let P, ..., P, be line bundles over X such that ¢;(P;) = —p;, i.e. d; =

_fd c1(F;)

THEOREM 1.3.— Let ), 1,Q% be a point in K, lying on the graph of
dFE, and let ¥, be polynomials in Py, ..., P, (with coefficients which could
be Laurent polynomials in q). Then the family

ZIde exp{— ZTO‘ qu . Prqdr)}

also lies on the graph.
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Furthermore, for arbitrary scalar Laurent polynomials co(q,q~ 1), the lin-
ear combinations Y., ca(q,q7 1) (1 — q)0,, I% of the derivatives also lie on
the graph.

Moreover, in the case when Py, ..., P. generate the algebra K°(X) ® Q,
and @, form a linear basis in it, such linear combinations comprise the
whole graph.

Ezample 1.4.— Let X be CP"~!, P = O(—1) (and hence (1—P)" = 0),
and 1,1—P,...,(1—P)"! be the basis in K°(X). It was shown in [9] that
the following series lies on the graph of dFX:

(=0 2 TPy = Py Pay

It follows that the whole graph can be parameterized this way:

n—1_ (1 _p dyi _ n— _ i
> Qd eZi:O 7i(1-=Pq“)")/(1—q) Zi:ol Ci(q’q 1)(1 — qu> .

DY (L= Pay(i -~ Pa) (1~ Pal)y

More explicitly, one equates the Laurent polynomial part of this formula to
(1—q)+tlg.q )

n—1
Z(l —P)i(ri+(1—q)ci(g g )+ =1—q+ Ztk,iqk(l — P)!
i=0 ki

to express 7; and all coefficients of the Laurent polynomials ¢; in terms of
the variables {tx;}. Substituting these expressions back into the formula,
one obtains the K-theoretic J-function of CP"~1.

Remark. — For target spaces, whose 2nd cohomology multiplicatively
generate the entire cohomology algebra, their cohomological and K-theoretic
genus-0 GW-invariants are reconstructible from small degree data, as it is
established by the reconstruction results of Kontsevich-Manin [13], Lee-
Pandharipande [15], and Iritani-Milanov—Tonita [12]. Our results are closely
related to them, and in a sense, explicize the reconstruction procedure.

Added at revision.— A preliminary version of this paper was posted in
May, 2014 to the author’s website. After that we learned that Theorem 1
appears: (a) in a toric context — in the earlier preprint [1], Section 5.4,
by I. Ciocan-Fontanine and B. Kim, and (b) in a general context (though
in a slightly less explicit form) — in the even earlier paper [11], Example
4.14, by H. Iritani. We are thankful to Ionut Ciocan-Fontanine for this
communication.
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2. Proof of Theorem 1.1

Denote by £ C H the dilaton-shifted graph of d.F.

Step 1. We begin by noting that modulo Novikov’s variables, the graph
is known to have the form [§]

€_T/22H+,
where 7 = )" To¢o runs the cohomology space of X.

Step 2. The actual graph £ is known (see Appendix 2 in [4]) to have
the form

S~ (2)2 My,

where 7 — S;(2) is a certain family of matrices (whose entries also depend
on Novikov’s variables), which has the following properties. Firstly, it is
an 1/z-series: S = I + O(1/z). Secondly, it belongs to the “twisted” loop
group: S71(z) = S*(—z), where “x” denotes transposition with respect to
the Poincaré pairing. Thirdly, it is a fundamental solution to Dubrovin’s
connection on the tangent bundle of the cohomology space of X:

2008 = ¢ @ S,

where 0, := 0/07,, and ¢,e is the matrix of quantum multiplication by
¢« (it depends on the application point 7 and on Novikov’s variables, but
not on z, and is self-adjoint). Finally S is constrained by the string and
divisor equations. Namely, assuming as before, that {¢,} is a graded basis
in cohomology, with ¢g = 1 and ¢1 = p1,..., ¢ = p,, we have:

2005 =S, and 20;S = 2Q;09,5S + Sp;, i=1,...,r

(Here p; means the operator of multiplication by p; in the classical coho-
mology algebra of X.)

Moreover, according to the “descendent—ancestor correspondence” theo-
rem [4] S;L is tangent to Hy along zH_ . This shows that £ is an overruled
Lagrangian cone. By definition, this means that tangent spaces T, to L
(which are S-1H) are tangent to £ exactly along zT. We refer to [4, §]
for a more detailed discussion of this notion.

Step 3. Let D be the algebra of differential operators in Novikov’s vari-
ables. It follows from the above divisor equations for S that tangent spaces
T, = S7'H, to L are D-modules with respect to the action of D defined by
the multiplication operators @); and differentiation operators 2Q;0¢g, — pi,
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where p; stands for multiplication by p; in the classical cohomology algebra
of X. Consequently, the same is true about the ruling spaces zT.

Indeed, since S~1(—z) = S*(2), and p} = p;, we have:
(pi + 2Qi00,)S ™ (—2) = (Sp; + 2Q:09,9)* = 20;S* = 20,8~ (—2).

Here S = S, depends on 7 € H*(X) and inependently on Q. Now fix a
value of 7 = 7(Q), and consider f € 2T, C L, that is: f = S 'h, where
h € »H,. Then

(2Qi0q, — pi)f = 20:S7 ' h + > (Qi0q,7a)20aS;  h + 287 (Qi0q,h),

where each summand on the right side lies in 27’;.

We arrive at the following conclusion.!

LEMMA. — Let ® be a polynomial expression in 2Q;0q, — pi. Then the
flow f +— e®/*f preserves L.

Proof.— If T denotes the tangent space to £ at f € 2T, then &f/z € T,
i.e. the linear vector field on H: f +— ®f/z is tangent to L. O

Remark. — Since we are using differentiations in @), it is counter-intuitive
to think of Novikov’s variables as constants. In fact one can think of the
symplectic loop space H geometrically as the space of formal sections, over
the spectrum of the Novikov ring, of the bundle whose fiber consists of
Laurent z-series with vector coefficients. Likewise, the cone £ C H consists
of sections of the fibration whose fibers are overruled Lagrangian cones. The
differential operators ®/z and their flows e“®/% act by linear transformations
on the space of sections H. In particular, g = e¢®/# f is an e-family of sections
Q — g(e, Q) of the fibration of overruled Lagrangian cones. One can choose
any function @ — €(Q) and obtain section @ — ¢(e(Q), Q) lying in L. We
should note that it differs from e<(@)®/%f since multiplication by €(Q) and
® do not commute.

Step 4. Write f =", f4Q%. Then

eE‘I’(..qPi*ZQiaQP,.n)/Zf _ Z fdeeeQ(...,pifzdi,...)/z’
d

(1) This is a variant of Lemma from the proof of Quantum Lefschetz Theorem in
Section 8 of [4]. As we've recently realized, the proof of it given in [4] was incorrect.
Apparently, the argument was first corrected in [3] within the proof of the orbifold version
of the Quantum Lefschetz Theorem.
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which according to Step 3 lies in £ whenever f does. Here one can consider
€ as a parameter, or take its value from the Novikov ring (or at least from
its maximal ideal).

One obtains the first statement of Theorem 1 by replacing e® with a
linear combination Y 7,®P, of commuting differential operators.

The derivatives 0,1 (7) lie in the tangent space T to £ at I, and hence
all linear combination ) ¢ (2)20,1(7), where ¢, are scalar power z-series,
lie in the same ruling space 2T C L.

When p1,...,p, generate the entire cohomology algebra of X, it fol-
lows from Step 1 that modulo Novikov’s variables, such linear combinations
comprise the whole of £. Now the last statement of Theorem 1 follows the
formal Implicit Function Theorem.

3. Proof of Theorem 1.3
Let £X C K denote the graph of dFX.

It is known (as explained in [10], Section 3) that £X is an overruled
Lagrangian cone too. More precisely, as in the case of quantum cohomology
theory, there is a family 7 — S, (¢, Q) of matrices depending on 7 € K*(X)
which transform £X to S,L£% tangent to K, along (1 — ¢)K,. As a con-
sequence, L is a cone whose tangent spaces T, = S;71K; are Q[g,q 7]
modules, and are tangent to £ exactly along (1 — ¢)T,. Theorem 2 is
based on the property of the tangent and ruling spaces of L& to be Dg-
modules. Let us recall, following [10], how this is proved. Another approach
to this result is contained in [12].

The main result of [10] (together with [16, 17]) is the Quantum Hirzebruch—
Riemann-Roch Theorem which completely characterizes £ in terms of £
in the following, “adelic” way. For each complex value ¢ of ¢ # 0, one
introduces the localization space K¢ which consists of series in @ whose
coefficients are vectors in K°(X)®Q(¢) and formal Laurent series in 1 —q(.
The adelic map

K—K=]]k¢
¢

assigns to a rational function f of ¢ the collection (f(¢)) of its Laurent series
expansions (one at each ¢ = (7 1).

Next, in each K¢, a certain cone LS is described. For ¢ which is not a
root of 1, L& = ICi, the space of power series in 1 — ¢(. For ( =1, £} C K!
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is the graph of the differential of F/%*¢, the genus-0 descendent potential of
fake quantum K-theory (studied in [8, 5, 2]). For ¢ # 1, which is a primitive
mth root of 1, LS is a certain linear subspace originating in a certain fake
twisted quantum K-theory with the orbifold target space X/Z,, (see [10]
for more detail).

The adelic characterization of LK says that f € LK if and only if f(©
LS for each (.

Furthermore, £¢ have the following description in terms of the cone
L C H of quantum cohomology theory.

First, the quantum Chern character defines an isomorphism qch : ! —
Hever. By definition, qch acts by the usual Chern character on the coeffi-
cients of Laurent g — 1-series, preserves Novikov’s variables, and transforms
q into e*. According to the “quantum HRR theorem” in fake quantum K-
theory [2, 5],

oo

1_ -1 N T —rz
L =qch AL, where A H H Py

— e—xFrz :
Chern roots x of Tx r=1

Here ~ means taking the “Fuler-Maclaurin asymptotic” of the right hand
side. We won’t remind the reader what it is (see, for instance, [4, 10]),
but note that (just as the expression on the right hand side suggests), it
is multiplication by a series in z*! built of operators of multiplication in
classical cohomology algebra of X, but independent of Novikov’s variables.
As a consequence, all tangent and ruling spaces of the overruled Lagrangian
cone £/ are D-modules (just like those of £ are).

Then, when ¢ # 1 is a primitive mth root of 1, one can give the following
(somewhat clumsy) description of £¢. On the cone £¥, there is the point,
denoted J(0) which corresponds to the input ¢ = 0. It is called the “small
J-function,” and modulo K_, it is congruent to the dilaton shift 1 — gq.
Expanding J(0) into a Laurent series in ¢ — 1, we obtain the corresponding
point J(0)) in £fe*¢, The tangent space to £/*¢ at 7(0)") has the form

A(z)S;(lQ)(z, Q)HS", where z = logg,
and S, is the S-matrix of the cohomological theory computed at a certain

value 7 = 7(Q) (characterized by the application point J(0)("). In this
notation, f € £¢ if and only if for some h € Hen
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where

-3 ( YNTY) ‘Pk’"(TSE))
VC —e E>0 \ k(1—C—Fkqgk/m) E(1—gF™) 7
and V¥ are the Adams operations K°(X) — K°(X) acting (by way of the
Chern isomorphism) on cohomology classes of degree 2r as multiplication
by k".

Let Pi,..., P, be line bundles on X such that ¢;(P;) = —p;, and let D,
be the algebra of finite-difference operators in Novikov’s variables. By def-
inition, it acts on K by the “translation” operators P;q®?:%e: = exp(—p; +
(log 9)Q;0g,) and multiplications by Q;. Let us show that £° is a D,-
module.

Indeed, first note that V,, and A commute with D (and hence with D).
Next, on functions of Q™, we have

(T0an = (TR = (¢ e =,

Therefore

(ql/m/C)QiaQie_pi _ qQ:naQ:n e Pi — e—Pi"rZQ;naQ;n-

Since p; U™ = W™p, /m, the operator 2Q7" Oqr —pi, when commuted accross
U™, becomes 2Q}"dqgr — pi/m. By the divisor equations for S, we have:

(2Qi"0gr — pi/m)S=t(mz, Q™) = 20,87 (mz, Q™).

The remaining part of the computation (such as differentiation in @ hidden
in 7 = 7(Q™)) works out the same way as in the cohomological case. It
is also essential here that HS"“" is invariant under any differential or finite
difference operators, including (?:9@i .

As it was explained in [10], the adelic characterization of £X now implies
that all tangent spaces T, to L& (as well as the ruling subspaces (1—¢)T, C
LK of the cone) are D -modules.

Indeed, the whole space K is Dy-invariant. If f € I lies in a ruling space
(1—¢q)Ty C L5, then the adelic components £ lie in £¢. By the previous
discusssion, P;q?:92: f(©) ¢ £¢. Therefore, by the adelic characterization,
Pig@%if € (1-q)Ty.

The proof of Theorem 2 proceeds now the same way as that of Theorem
L. If W(..., P;g@%:,...) is a polynomial expression in the translation op-
erators, then the linear vector field on K given by f — W f/(1—q) is tangent
to the cone £, and therefore the flow f — e¥/(1=9 f preserves LK.
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Decomposing f into Q-series ), faQ?, we find that

e/ (=a) f — Z fdeeE\I/(.A.,Piqdi,...)/(l—q).
d

Replacing eV with a linear combination Y 7,¥, of finite difference oper-
ators, one concludes that the family 7 +— I'(7) (introduced in Theorem
2) lies in £¥. The derivatives 9,1(7) lie in the tangent space T to LK at
I% (7). Since T is a module over Q[q, ¢~ '], and (1—¢)T C LX, one finds that
> calq, ) (1—q)0oI% (1) also lie in LK. Finally, assuming that P, ..., P,
generate K°(X), one derives that such linear combinations comprise the
whole of £¥ by checking this statement modulo Novikov’s variables, and
employing the formal Implicit Function Theorem.

4. Further implications and generalizations

A. Birkhoff’s factorization and mirror maps

When H*(X,Q) is generated by the degree-2 classes p1,...,p,, Theo-
rems 1 and 2 can be reformulated as the following reconstruction results
for the “S-matrix.” Starting with polynomials ®(p) representing a basis in
H*(X,Q), and with a point Y I;Q% on the cone £, one obtains a family of
such points

I(T) = Z Id(Z, Z_l)Qde_ > Ta‘ba(l)—dz)/z.

We may assume here that Iy = —z. The derivatives d,1 form a Q[[z]]-
basis in the tangent spaces to £ (depending on 7). The square matrix
U := [(0a1,¢")], formed by the components of these derivatives, can be
factored into the product of U(z,z71) = V(2)W(271) of two matrix se-
ries (in the variables 7 and @), whose coefficients are power series of z (on
the left) and polynomial functions of z=! (on the right). In the procedure
(known as Birkhoff factorization), one may assume that W(0) = I. Then W
coincides with S, (—2z71) up to a change of variables 7, + 7, +O(Q), which
generalizes the “mirror map” known in the mirror theory. To describe the
change of variables, assume that &3 = 1, and note that the “first row” of
W has the form

1—271> " 2, (p)(7a + O(Q)) +0(z71).
The mirror map is read off the z~!-term of the expansion.

In quantum K-theory, a similar result is obtained by Birkhoff factoriza-
tion U = VW, where the entries of U, V, and W are built respectively
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of arbitrary rational functions, Laurent polynomials, and reduced rational
functions of ¢ regular at ¢ = 0.

B. Torus-equivariant theory

It is often useful [7] to consider GW-invariants equivariant with re-
spect to a torus action on X. The above results apply to this case with-
out any significant changes. One only needs to extend the coeflicient ring
by the power series completion Q[[\]] of the coefficient ring of the equiv-
ariant theory. For example, when the torus 7" of diagonal matrices acts
on X = CP" ! = proj(C"), the T"-equivariant cohomology algebra of X
is described by the relation (p — A1) -+ (p — A) = 0. For the purpose of
employing fixed-point localization, it is convenient to assume that the hy-
perplane class p localizes to each of the values ;. However, for the purpose
of our proof it suffices to assume that \; are generators of the formal series
ring Q[[A1, - .., Ay]], and obtain the following parameterization of the graph
dF in the T™-equivariant GW-theory:

de(ro+m1(p—d2)+-+Tn_1(p—d2)" ") /2 S e(2)(p — dz)

D v i wps Ty S N By

d=0

Here the fractions 1/(p—A—rz) are to be interpreted as Laurent polynomials
in 2! modulo high powers of \.

C. Twisted GW-invariants

Our results also extend to the case of twisted GW-invariants in the sense
of [4] (e.g. “local” ones, i.e. GW-invariants of the non-compact total space of
a vector bundle £ — X, or GW-invariants of the “super-bundle” I[IE — X,
which in genus 0 are closely related to those of the zero locus of a section
of E). In such cases, to remove degenerations caused by non-compactness,
one needs to act equivariantly, equipping E with the fiberwise scalar circle
action. To adapt our arguments to this case, it suffices to work over the
coefficient ring H*(BS!,Q) = Q[)] localized to Q(()\)). For example, the
graph of dF of the local theory on the total space E of degree [ line bundle
over CP"~ ! for [ > 0 obtains the following description:

d
(-3 ¥

1d d
d=0 [[—oUp+A—=7rz) [[,—,(p—72)"

Here p™ = 0, while the fractions 1/(lp + A — rz) should be expanded as
power z-series, whose coefficients, however, can be Laurent series of .

(o471 (p=d2) T a (p=d2)" ") /2 L o () ()i
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