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The dual boundary complex of the SL2 character
variety of a punctured sphere

Carlos Simpson(1)

Dedicated to Vadim Schechtman on the occasion of his 60 th birthday

RÉSUMÉ. — Soient C1, . . . , Ck des classes de conjugaison génériques dans
SL2(C ). On considère la variété de caractères des systèmes locaux sur
P1 − {y1, . . . , yk} dont les transformations de monodromie autour des
yi sont dans les classes de conjugaison Ci respectives. On montre que le
complexe dual du bord de cette variété est équivalent par homotopie à un
sphère de dimension 2(k − 3)− 1.

ABSTRACT. —Suppose C1, . . . , Ck are generic conjugacy classes in SL2(C ).
Consider the character variety of local systems on P1−{y1, . . . , yk} whose
monodromy transformations around the punctures yi are in the respec-
tive conjugacy classes Ci. We show that the dual boundary complex of
this character variety is homotopy equivalent to a sphere of dimension
2(k − 3)− 1.

1. Introduction

Given a smooth quasiprojective variety X, choose a normal crossings
compactification X = X ∪ D and define a simplicial set called the dual
boundary complex D∂X, containing the combinatorial information about
multiple intersections of divisor components of D. Danilov, Stepanov and
Thuillier have shown that the homotopy type of D∂X is independent of the
choice of compactification, and this structure has been the subject of much
study.

We consider the case when X = MB(S;C1, . . . , Ck) is the character vari-
ety, of local systems on a punctured sphere S ∼ P1−{y1, . . . , yk} such that
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the conjugacy classes of the monodromies around the punctures are given
by C1, . . . , Ck respectively [38]. If these conjugacy classes satisfy a natural
genericity condition then the character variety is a smooth affine variety.
We prove that its dual boundary complex is a sphere of the appropriate
dimension (see Conjecture 11.1), for local systems of rank 2.

Theorem 1.1. — Suppose C1, . . . , Ck are conjugacy classes in SL2(C )
satisfying the genericity Condition 7.1. Then the dual boundary complex of
the character variety is homotopy equivalent to a sphere:

D∂MB(S;C1, . . . , Ck) ∼ S2(k−3)−1.

This statement is a part of a general conjecture about the boundaries
of moduli spaces of local systems [30]. The conjecture says that the dual
boundary complex of the character variety or “Betti moduli space” should
be a sphere, and that it should furthermore be naturally identified with
the sphere at infinity in the “Dolbeault” or Hitchin moduli space of Higgs
bundles. We will discuss this topic in further detail in Section 11 at the end
of the paper.

The case k = 4 of our theorem is a consequence of the Fricke-Klein
expression for the character variety, which was indeed the motivation for
the conjecture. The case k = 5 of Theorem 1.1 has been proven by Komyo
[33].

1.1. Strategy of the proof

Here is the strategy of our proof. We first notice that it is possible to
make some reductions, based on the following observation (Lemma 2.3): if
Z ⊂ X is a smooth closed subvariety of a smooth quasiprojective variety,
such that the boundary dual complex is contractible D∂Z ∼ ∗, then the
natural map D∂X → D∂(X − Z) is a homotopy equivalence. This allows
us to remove some subvarieties which will be “negligeable” for the dual
boundary complex. The main criterion is that if Z = A1×Y then D∂Z ∼ ∗
(Corollary 2.5). Together, these two statements allow us successively to
remove a whole sequence of subvarieties (Proposition 2.6).

The main technique is to express the moduli space MB(S;C1, . . . , Ck)
in terms of a decomposition of S into a sequence of “pairs of pants” Si

which are three-holed spheres. The decomposition is obtained by cutting S
along (k − 3) circles denoted ρi. In each Si, there is one boundary circle
corresponding to a loop ξi around the puncture yi, and two other boundary
circles ρi−1 and ρi along which S was cut. At the start and the end of the
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sequence, two of the circles correspond to ξ1, ξ2 or ξk−1, ξk and only one to a
cut. One may say that ρ1 and ρk−1 are confused with the original boundary
circles ξ1 and ξk respectively.

We would like to use this decomposition to express a local system V on
S as being the result of “glueing” together local systems V |Si on each of the
pieces, glueing across the circles ρi. A basic intuition, which one learns from
the elementary theory of classical hypergeometric functions, is that a local
system of rank 2 on a three-holed sphere is determined by the conjugacy
classes of its three monodromy transformations. This is true generically,
but one needs to take some care in degenerate cases involving potentially
reducible local systems, as will be discussed below.

The conjugacy classes of the monodromy transformations around ρi are
determined, except in some special cases, by their traces. The special cases
are when the traces are 2 or −2.

If we assume for the moment the uniqueness of V |Si as a function of Ci

and the traces ti−1 and ti of the monodromies around ρi−1 and ρi respec-
tively, then the local system V is roughly speaking determined by specify-
ing the values of these traces t2, . . . , tk−2, plus the glueing parameters. The
glueing parameters should respect the monodromy transformations, and are
defined modulo central scalars, so each parameter is an element of Gm. In
this rough picture then, the moduli space could be viewed as fibering over
(A1)k−3 with fibers Gk−3

m .

The resulting coordinates are classically known as Fenchel-Nielsen coor-
dinates. Originally introduced to parametrize PGL2(R) local systems cor-
responding to points in Teichmüller space, they have been extended to the
complex character variety by Tan [50].

In the above discussion we have taken several shortcuts. We assumed
that the traces ti determined the monodromy representations, and in saying
that the glueing parameters would be in Gm we implicitly assumed that
these monodromy transformations were diagonal with distinct eigenvalues.
These conditions correspond to saying ti �= 2,−2.

We also assumed that the local system V |Si
was determined by Ci, ti−1

and ti. This is not in general true if it can be reducible, which is to say if
there is a non-genericity relation between the conjugacy classes. The locus
where that happens is somewhat difficult to specify explicitly since there
are several possible choices of non-genericity relation (the different choices
of εi in Condition 4.3). We would therefore like a good way of obtaining
such a rigidity even over the non-generic cases.
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Such a property is provided by the notion of stability. One may envi-
sion assigning parabolic weights to the two eigenvalues of Ci and assigning
parabolic weights zero over ρj . The parabolic weights induce a notion of
stable local system over Si. But in fact we don’t need to discuss parabolic
weights themselves since the notion of stability can also be defined directly:
a local system Vi on Si is unstable if it admits a rank 1 subsystem L such
that the monodromy matrix in Ci acts on L by c−1

i (a previously chosen
one of the two eigenvalues of Ci). It is stable otherwise. Now, it becomes
true that a stable local system is uniquely determined by Ci, ti−1 and ti.
This will be the basis of our calculations in Section 10, see Corollary 10.3.

The first phase of our proof is to use the possibility for reductions given
by Proposition 2.6 to reduce to the case of the open subset

M ′ ⊂ MB(S;C1, . . . , Ck)

consisting of local systems V such that ti ∈ A1−{2,−2} and such that V |Si

is stable. In order to make these reductions, we show in Sections 7 and 8
that the strata where some ti is 2 or −2, or where some V |Si is unstable,
have a structure of product with A1, hence by Lemma 2.5 these strata are
negligeable in the sense that Lemma 2.3 applies.

For the open set M ′, there is still one more difficulty. The glueing pa-
rameters depend a priori on all of the traces, so we don’t immediately get a
decomposition of M ′ as a product. A calculation with matrices and a change
of coordinates allow us to remedy this and we show in Theorem 10.6 that
M ′ ∼= Qk−3 where Q is a space of choices of a trace t together with a point
[p, q] in a copy of Gm.

It turns out that this family of multiplicative groups (it is a group
scheme) over A1 − {2,−2} is twisted: the two endpoints of the fibers Gm

get permuted as t goes around 2 and −2. This twisting property is what
makes it so that

D∂Q ∼ S1,

and therefore by [45, Lemma 6.2], D∂(Qk−3) ∼ S2(k−3)−1. This calculates
D∂M ′ and hence also D∂MB(S;C1, . . . , Ck) to prove Theorem 1.1.

We should consider the open subset M ′ as the natural domain of defini-
tion of the Fenchel-Nielsen coordinate system, and the components in the
expression M ′ ∼= Qk−3 are the Fenchel-Nielsen coordinates.

1.2. Relation with other work

What we are doing here is closely related to a number of things. Firstly, as
pointed out above, our calculation relies on the Fenchel-Nielsen coordinate
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system coming from a pair of pants decomposition, and this is a well-known
technique. Our only contribution is to keep track of the things which must
be removed from the domain of definition, and of the precise form of the
coordinate system, so as to be able to conclude the structure up to homotopy
of the dual boundary complex.

A few references about Fenchel-Nielsen coordinates include [10] [15]
[44] [54], and for the complex case Tan’s paper [50]. Nekrasov, Rosly and
Shatashvili’s work on bend parameters [41] involves similar coordinates and
is related to the context of polygon spaces [14]. The work of Hollands
and Neitzke [27] gives a comparison between Fenchel-Nielsen and Fock-
Goncharov coordinates within the theory of spectral networks [13]. Jeffrey
and Weitsman [28] consider what is the effect of a decomposition, in arbi-
trary genus, on the space of representations into a compact group. Recently,
Kabaya uses these decompositions to give algebraic coordinate systems and
furthermore goes on to study the mapping class group action [29]. These
are only a few elements of a vast literature.

Conjecture 11.1 relating the dual boundary complex of the character
variety and the sphere at infinity of the Hitchin moduli space, should be
viewed as a geometric statement reflecting the first weight-graded piece of
the P = W conjecture of de Cataldo, Hausel and Migliorini [7] [18]. This will
be discussed a little bit more in Section 11 but should also be the subject
of further study.

Komyo gave the first proof of the theorem that the dual boundary com-
plex was a sphere, for rank 2 systems on the projective line minus 5 points
[33]. He did this by constructing an explicit compactification and writing
down the dual complex. This provides more information than what we get
in our proof of Theorem 1.1, because we use a large number of reduction
steps iteratively replacing the character variety by smaller open subsets.

I first heard from Mark Gross in Miami in 2012 about a statement, which
he attributed to Kontsevich, that if X is a log-Calabi-Yau variety (meaning
that it has a compactification X = X ∪ D such that KX + D is trivial),
then D∂X should be a sphere. Sam Payne points out that this idea may be
traced back at least to [35, Remark 4] in the situation of a degeneration.

Gross also stated that this property should apply to character varieties,
that is to say that some or all character varieties should be log-CY. That
has apparently been known folklorically in many instances cf [17].

Recently, much progress has been made. Notably, Kollár and Xu have
proven that the dual boundary of a log-CY variety is a sphere in dimension
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4, and they go a long way towards the proof in general [32]. They note
that the correct statement, for general log-CY varieties, seems to be that
D∂X should be a quotient of a sphere by a finite group. In our situation of
character varieties, part of the statement of Conjecture 11.1 posits that this
finite quotienting doesn’t happen. This is supported by our theorem, but it
is hard to say what should be expected in general.

De Fernex, Kollár and Xu have introduced a refined dual boundary com-
plex [8], which is expected to be a sphere in the category of PL manifolds.
That is much stronger than just the statement about homotopy equiva-
lence. See also Nicaise and Xu [42]. For character varieties, as well as for
more general cluster varieties and quiver moduli spaces, the Kontsevich-
Soibelman wallcrossing picture could be expected to be closely related to
this PL sphere, more precisely the Kontsevich-Soibelman chambers in the
base of the Hitchin fibration should to correspond to cells in the PL sphere.
One may witness this phenomenon by explicit calculation for SL2 character
varieties of the projective line minus 4 points, under certain special choices
of conjugacy classes where the character variety is the Cayley cubic.

Recently, Gross, Hacking, Keel and Kontsevich [17] building on work
of Gross, Hacking and Keel [16], have given an explicit combinatorial de-
scription of a boundary divisor for log-Calabi-Yau cluster varieties. Their
description depends on a choice of toroidal cluster coordinate patches, and
the combinatorics involve toric geometry. It should in principle be possible
to conclude from their construction that D∂MB(S;C1, . . . , Ck) is a sphere,
as is mentioned in [17, Remark 9.12]. Their technique, based in essence on
the Fock-Goncharov coordinate systems, should probably lead to a proof in
much greater generality than our Theorem 1.1.

1.3. Varying the conjugacy classes

In the present paper, we have been considering the conjugacy classes
C1, . . . , Ck as fixed. As Deligne pointed out, it is certainly an interesting
next question to ask what happens as they vary. Nakajima discussed it long
ago [40]. This has many different aspects and it would go beyond our current
scope to enter into a detailed discussion.

I would just like to point out that the natural domain on which every-
thing is defined is the space of choices of C1, . . . , Ck which satisfy the Kostov
genericity Condition 4.3. This is an open subset of Gk

m, the complement of a
toric arrangement [3], a divisor K whose components are defined by multi-
plicative monomial equalities. It therefore looks like a natural multiplicative
analogue of the hyperplane arrangement complements which enter into the

– 322 –



The dual boundary complex of the SL2 character variety of a punctured sphere

theory of higher dimensional hypergeometric functions [52]. The variation
with parameters of the moduli spaces MB(S;C1, . . . , Ck) leads, at the very
least, to some variations of mixed Hodge structure over Gk

m − K which
undoubtedly have interesting properties.
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2. Dual boundary complexes

Suppose X is a smooth quasiprojective variety over C . By resolution
of singularities we may choose a normal crossings compactification X ⊂ X
whose complementary divisor D := X − X has simple normal crossings.
In fact, we may assume that it satisfies a condition which might be called
very simple normal crossings: if D =

⋃m
i=1 Di is the decomposition into
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irreducible components, then we can ask that any multiple intersection
Di1∩· · ·∩Dik be either empty or connected. If the compactification satisfies
this condition, then we obtain a simplicial complex denoted D∂X, the dual
complex D(D) of the divisor D, defined as follows: there are m vertices
e1, . . . , em of D∂X, in one-to-one correspondence with the irreducible com-
ponents D1, . . . , Dm of D; and a simplex spanned by ei1 , . . . , eik is contained
in D∂X if and only if Di1 ∩ · · · ∩Dik is nonempty.

This defines a simplicial complex, which could be considered as a sim-
plicial set, but which for the present purposes we shall identify with its
topological realization which is the union of the span of those simplicies in
Rm with ei being the standard basis vectors.

The simplicial complex D∂X goes under several different terminologies
and notations. We shall call it the dual boundary complex of X. It contains
the purely combinatorial information about the divisor compactifying X.
The main theorem about it is due to Danilov [4]:

Theorem 2.1 (Danilov). — The homotopy type of D∂X is independent
of the choice of compactification.

The papers of Stepanov [48] [49], concerning the analogous question
for singularities, started a lot of renewed activity. Following these, a very
instructive proof, which I first learned about from A. Ducros, was given by
Thuillier [51]. He interpreted the homotopy type of D∂X as being equivalent
to the homotopy type of the Berkovich boundary of X, namely the set of
points in the Berkovich analytic space [2] associated to X (over the trivially
valued ground field), which are valuations centered at points outside of X
itself.

Further refinements were given by Payne [45] and de Fernex, Kollár and
Xu [8]. Payne showed that the simple homotopy type of D∂X was invariant,
and proved several properties crucial to our arguments below. De Fernex,
Kollár and Xu defined in some cases a special choice of compactification
leading to a boundary complex D∂X whose PL homeomorphism type is
invariant. Nicaise and Xu show in parallel, in the case of a degeneration
at least, that the essential skeleton of the Berkovich space is a pseudo-
manifold [42]. Manon considers an embedding of “outer space” for character
varieties, into the Berkovich boundary [39]. These refined versions provide
very interesting objects of study but for the present paper we just use the
homotopy type of D∂X.

Our goal will be to calculate the homotopy type of the dual boundary
complex of some character varieties. To this end, we describe here a few
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important reduction steps allowing us to modify a variety while keeping its
dual boundary complex the same.

One should be fairly careful when manipulating these objects, as some
seemingly insignificant changes in a variety could result in quite different
boundary complexes. For example, in the case of an isotrivial fibration
it isn’t enough to know the homotopy types of the base and the fiber—
essentially, the fibration should be locally trivial in the Zariski rather than
étale topology in order for that kind of reasoning to work. The spaceQ to be
considered at the end of the paper provides an example of this phenomenon.

In a similar vein, I don’t know of a good notion of dual boundary com-
plex for an Artin stack. It is possible that a theory of Berkovich stacks could
remedy this problem, but that seems difficult. Payne has suggested, in an-
swer to the problem of étale isotrivial fibrations, to look at an equivariant
notion of isotrivial fibration which could give a natural group action on a
dual boundary complex such that the quotient would be meaningful. This
type of theory might give an alternate approach to some of our problems.

Let us get now to the basic properties of dual boundary complexes.
The first step is to note that if U ⊂ X is an open subset of a smooth
quasiprojective variety, then we obtain a map D∂X → D∂U .

Lemma 2.2 (Stepanov-Payne). — If X is an irreducible smooth quasipro-
jective variety and Z → X is obtained by blowing up a smooth center, then it
induces a homotopy equivalence on dual boundary complexes D∂Z ∼ D∂X.

Proof.— See [45, Theorem 5.3], where more generally boundary com-
plexes of singular varieties are considered but we only need the smooth case.
Then it is a corollary of Stepanov’s lemma (cf [45, §5] once we choose a com-
pactification that has simple normal crossings with the smooth subvariety
that needs to be blown up. �

It follows from this lemma that if U ⊂ X is an open subset of a smooth
quasiprojective variety, it induces a natural map of boundary complexes
D∂X → D∂U . Indeed, for that we may assume by resolving singularities and
applying the previous lemma, that U is the complement of a divisor B ⊂ X,
and furthermore there is a very simple normal crossings compactification
X = X ∪D such that B ∪D also has very simple normal crossings. Then
D∂U is the dual complex of the divisor B ∪ D, which contains D∂X, the
dual complex of D, as a subcomplex.

Following up on this idea, here is our main reduction lemma:
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Lemma 2.3. — Suppose U ⊂ X is an open subset of an irreducible
smooth quasiprojective variety, obtained by removing a smooth irreducible
closed subvariety of smaller dimension Y = X − U ⊂ X. Suppose that
D∂Y ∼ ∗ is contractible. Then the map D∂X → D∂U is a homotopy equiv-
alence.

Proof.— Let XBlY be obtained by blowing up Y . From the previous
lemma, D∂XBlY ∼ D∂X. Let Bl(Y ) ⊂ XBlY be the inverse image of Y . It is
an irreducible smooth divisor, and U is also the complement of this divisor
in XBlY . By resolution of singularities we may choose a compactification
XBlY such that the boundary divisor D, plus the closure B := Bl(Y ), form
a very simple normal crossings divisor. This combined divisor is therefore a
boundary divisor for U , so

D∂U ∼ D(D ∪B).

Now this bigger dual complex D(D ∪ B) has one more vertex than D(D),
corresponding to the irreducible component B. The star of this vertex is the
cone over D∂Bl(Y ) = D(B ∩D). The cone is attached to D(D) via its base
D(B ∩D), to give D(B ∪D).

We would like to show that D∂Bl(Y ) ∼ ∗. The first step is to notice that
Bl(Y ) → Y is the projective space bundle associated to the vector bundle
NY/X over Y .

We claim in general that if V is a vector bundle over a smooth quasipro-
jective variety Y , then D∂(P(V )) ∼ D∂(Y ). The proof of this claim is that
there exists a normal crossings compactification Y of Y such that the vector
bundle V extends to a vector bundle on Y . That may be seen by choosing
a surjection from the dual of a direct sum of very ample line bundles to
V , getting V as the pullback of a tautological bundle under a map from Y
to a Grassmanian. The compactification may be chosen so that the map to
the Grassmanian extends. We obtain a compactification of P(V ) wherein
the boundary divisor is a projective space bundle over the boundary divisor
of Y , and with these choices D∂P(V ) = D∂Y . It follows from Danilov’s
theorem that for any other choice, there is a homotopy equivalence.

Back to our situation where Bl(Y ) = P(NY/X), and assuming that
D∂Y ∼ ∗, we conclude that D∂Bl(Y ) ∼ ∗ too. Therefore the dual com-
plex D(B ∩D) is contractible.

Now D∂U = D(B ∪D) is obtained by attaching to D(D) the cone over
D(B ∩D). As we have seen above D(B ∩D) is contractible, so coning it off
doesn’t change the homotopy type. This shows that the map

D∂X = D(D) → D(B ∪D) = D∂U
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is a homotopy equivalence. �

In order to use this reduction, we need a criterion for the condition
D∂Y ∼ ∗. Note first the following general property of compatibility with
products.

Lemma 2.4 (Payne). — Suppose X and Y are smooth quasiprojective
varieties. Then D∂(X×Y ) is the join of D∂(X) and D∂(Y ), in other words
we have a homotopy cocartesian diagram of spaces

D∂(X)×D∂(Y ) → D∂(Y )
↓ ↓

D∂(X) → D∂(X × Y ) .

Proof.— This is [45, Lemma 6.2]. �

Corollary 2.5. — Suppose Y is a smooth quasiprojective variety. Then
D∂(A1 × Y ) ∼ ∗.

Proof.— Setting X := A1 in the previous lemma, we have D∂(X) ∼ ∗,
so in the homotopy cocartesian diagram the top arrow is an equivalence
and the left vertical arrow is the projection to ∗; therefore the homotopy
pushout is also ∗. �

Proposition 2.6. — Suppose U ⊂ X is a nonempty open subset of a
smooth irreducible quasiprojective variety, and suppose the complement Z :=
X −U has a decomposition into finitely many locally closed subsets Zj such
that Zj

∼= A1 × Yj. Suppose that this decomposition can be ordered into a
stratification, that is to say there is a total order on the indices such that⋃

j�a Zj is closed for any a. Then D∂(X) ∼ D∂(U).

Proof.— We first prove the proposition under the additional hypothesis
that the Yj are smooth. Proceed by induction on the number of pieces in
the decomposition. Let Z0 be the lowest piece in the ordering. The ordering
hypothesis says that Z0 is closed in X. Let X ′ := X−Z0. Now U ⊂ X ′ is the
complement of a subset Z ′ =

⋃
j>0 Zj decomposing in the same way, with a

smaller number of pieces, so by induction we know that D∂(X ′) ∼ D∂(U).

By hypothesis Z0
∼= A1 × Y0. Lemma 2.5 tells us that D∂(Z0) ∼ ∗ and

now Lemma 2.3 tells us that D∂(X) ∼ D∂(X ′), so D∂(X) ∼ D∂(U). This
completes the proof of the proposition under the hypothesis that Yj are
smooth.

Now we prove the proposition in general. Proceed as in the first para-
graph of the proof with the same notations: by induction we may assume
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that D∂(X ′) ∼ D∂(U) where X ′ = X − Z0 such that Z0 is closed and iso-
morphic to A1×Y0. Choose a totally ordered stratification of Y0 by smooth
locally closed subvarieties Y0,i. Set Z0,i := A1 × Y0,i. This collection of sub-
varieties of X now satisfies the hypotheses of the proposition and the pieces
are smooth. Their union is Z0 and its complement in X is the open sub-
set X ′. Thus, the first case of the proposition treated above tells us that
D∂(X) ∼ D∂(X ′). It follows that D∂(X) ∼ D∂(U), completing the proof.
�

Caution. — A simple example shows that the condition of ordering, in the
statement of the propostion, is necessary. Suppose X is a smooth projective
surface containing two projective lines D1, D2 ⊂ X such that their intersec-
tion D1 ∩D2 = {p1, p2} consists of two distinct points. Then we could look
at Z1 = D1 − {p1} and Z2 = D2 − {p2}. Both Z1 and Z2 are affine lines.
Setting U := X − (D1 ∪D2) = X − (Z1 ∪ Z2) we get an open set which is
the complement of a subset Z = Z1 �Z2 decomposing into two affine lines;
but D∂X = ∅ whereas D∂U ∼ S1.

3. Hybrid moduli stacks of local systems

The moduli space of local systems is different from the moduli stack, even
at the points corresponding to irreducible local systems. Indeed, the open
substack of the moduli stack parametrizing irreducible GLr-local systems is
a Gm-gerbe over the corresponding open subset of the moduli space. Even by
considering SLr-local systems we can only reduce this to being a μr-gerbe.

However, it is usual and convenient to consider the moduli space instead.
In this section, we mention a construction allowing to define what we call
a hybrid moduli stack in which the central action is divided out, making it
so that for irreducible points it is the same as the moduli space. This is a
special case of the rigidification procedure introduced by Abramovich, Corti
and Vistoli [1].

Our initial discussion will use some simple 2-stacks, however the reader
wishing to avoid these may refer to Proposition 3.1 which gives an equivalent
definition in more concrete terms.

Consider a reductive group G with center Z. The fibration sequence of
1-stacks

BZ → BG → B(G/Z)
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may be transformed into the cartesian diagram

BG → B(G/Z)
↓ ↓
∗ → K(Z, 2)

(3.1)

of Artin 2-stacks on the site Affft,et
C of affine schemes of finite type over C

with the étale topology.

Suppose now that S is a space or higher stack. Then we may consider
the relative mapping stack

M(S,G) := Hom(S,B(G/Z)/K(Z, 2)) → K(Z, 2).

It may be defined as the fiber product forming the middle arrow in the
following diagram where both squares are cartesian:

Hom(S,BG) → M(S,G) → Hom(S,B(G/Z))
↓ ↓ ↓
∗ → K(Z, 2) → Hom(S,K(Z, 2))

.

Here the bottom right map is the “constant along S” construction induced
by pullback along S → ∗.

The bottom left arrow ∗ → K(Z, 2) is the universal Z-gerbe, so its
pullback on the upper right is again a Z-gerbe. We have thus constructed
a stack M(S,G) over which Hom(S,BG) is a Z-gerbe. From the definition
it is a priori a 2-stack, and indeed M(∅, G) = K(Z, 2), but the following
alternate characterization tells us that M(S,G) is almost always a usual
1-stack.

Proposition 3.1. — Suppose S is a nonempty connected CW-complex
with basepoint x. Then the hybrid moduli stack may be expressed as the
stack-theoretical quotient

M(S,G) = Rep(π1(S, x), G)//(G/Z).

In particular, it is an Artin 1-stack.

Proof.— The representation space may be viewed as a mapping stack

Rep(π1(S, x), G) = Hom((S, x), (BG, o)).

The internal Hom can be taken in the Jardine model category of simplicial
presheaves, where S denotes the constant simplicial presheaf whose values
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are the singular complex of the space S, and BG denotes the fibrant re-
placement of the Eilenberg-MacLane simplicial presheaf associated to the
sheaf of groups G.

Consider the big diagram

Hom((S, x), (BG, o)) → Hom((S, x), (B(G/Z), o))
↓ ↓
∗ → Hom((S, x), (K(Z, 2), o)) → ∗
↓ ↓ ↓

K(Z, 2) → Hom(S,K(Z, 2)) → K(Z, 2)

where the bottom right map is evaluation at x. The pointed mapping 2-
stack in the middle is defined by the condition that the bottom right square
is homotopy cartesian. The composition along the bottom is the identity, so
if we take the homotopy fiber product on the bottom left, the full bottom
rectangle is a pullback too so that homotopy fiber product would be ∗ as
is written in the diagram. In other words, the bottom left square is also
homotopy cartesian. The middle horizontal map on the left sends the point
to the map S → o ↪→ K(Z, 2), indeed it is constant along S because it
comes from pullback of the bottom left map, and its value at x is o because
of the right vertical map. Now, the upper left square is homotopy cartesian,
just the result of applying the pointed mapping stack to the diagram (3.1).
It follows that the whole left rectangle is homotopy cartesian.

Consider, on the other hand, the diagram

Hom((S, x), (BG, o)) → Hom((S, x), (B(G/Z), o)) → ∗
↓ ↓ ↓

M(S,G) → Hom(S,B(G/Z)) → B(G/Z)
↓ ↓

K(Z, 2) → Hom(S,K(Z, 2)) .

The bottom square is homotopy-cartesian by the definition of M(S,G). We
proved in the previous paragraph that the full left rectangle is homotopy
cartesian. In this 2-stack situation note that a commutative rectangle con-
stitutes a piece of data rather than just a property. In this case, these data
for the left squares are obtained by just considering the equivalence found in
the previous paragraph, from Hom((S, x), (BG, o)) to the homotopy pull-
back in the full left rectangle which is the same as the composition of the
homotopy pullbacks in the two left squares. In particular, the upper left
square is homotopy-cartesian. It now follows that the upper full rectangle
is homotopy-cartesian. That exactly says that we have an action of G/Z on
Hom((S, x), (BG, o)) = Rep(π1(S, x), G) and M(S,G) is the quotient. �
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The hybrid moduli stacks also satisfy the same glueing or factorization
property as the usual ones.

Lemma 3.2 Suppose S = S1 ∪ S2 with S12 := S1 ∩ S2 excisive. Then

M(S,G) ∼= M(S1, G)×M(S12,G) M(S2, G).

Proof.— The mapping stacks entering into the definition of M(S,G) as
a homotopy pullback, satisfy this glueing property. Notice that this is true
even for the constant functor which associates to any S the stack K(Z, 2).
The homotopy pullback therefore also satisfies the glueing property since
fiber products commute with other fiber products. �

Suppose G = GLr so Z = Gm and G/Z = PGLr, and suppose S is a
connected CW-complex. Let

Hom(S,BGLr)
irr ⊂ Hom(S,BGLr)

denote the open substack of irreducible local systems. It is classical that
the stack Hom(S,BGLr) has a coarse moduli space MB(S,GLr), and that
the open substack Hom(S,BGLr)

irr is a Gm-gerbe over the corresponding
open subset of the coarse moduli space MB(S,G)irr.

Proposition 3.3. — In the situation of the previous paragraph, we have
a map

M(S,GLr) → MB(S,GLr)

which restricts to an isomorphism

M(S,GLr)
irr ∼= MB(S,GLr)

irr

between the open subsets parametrizing irreducible local systems.

Indeed, comparing with the description of Proposition 3.1, the coarse
moduli space is the universal categorical quotient of the space of represen-
tations by either G or G/Z, and for irreducible representations the action
of G/Z is faithful.

The same holds for G = SLr.

Remark 3.4.— The determinant map GLr
det→ Gm induces a cartesian

diagram
M(S, SLr) → M(S,GLr)

↓ ↓
∗ → M(S,Gm)
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which essentially says thatM(S, SLr) is the substack ofM(S,GLr) parametriz-
ing local systems of trivial determinant. Note that M(S,Gm) is isomorphic
to the quasiprojective variety Hom(H1(S),Gm).

In what follows, we shall use these stacksM(S,GLr) which we call hybrid
moduli stacks as good replacements intermediary between the moduli stacks
of local systems and their coarse moduli spaces.

4. Boundary conditions

Let S denote a 2-sphere with k open disks removed. It has k boundary
circles denoted ξ1, . . . , ξk ⊂ S and

∂S = ξ1 � · · · � ξk.

From now on we consider rank 2 local systems on this surface S.

Fix complex numbers c1, . . . , ck all different from 0, 1 or −1. Let

Ci :=

{
P

(
ci 0
0 c−1

i

)
P−1

}

denote the conjugacy class of matrices with eigenvalues ci, c
−1
i .

Consider the hybrid moduli stack M(S,GL2) constructed above, and let

M(S;C) ⊂ M(S,GL2)

denote the closed substack consisting of local systems such that the mon-
odromy transformation around ξi is in the conjugacy class Ci. See [38].

If we choose a basepoint x ∈ S and paths γi going from x out by straight
paths to the boundary circles, around once and then back to x, then π1(S, x)
is generated by the γi subject to the relation that their product is the
identity.

Therefore, the moduli stack of framed local systems is the affine variety

Hom((S, x), (BGL2, o)) = Rep(π1(S, x), GL2)

= {(A1, . . . , Ak) ∈ (GL2)
k s.t. A1 · · ·Ak = 1}.

The unframed moduli stack is the stack-theoretical quotient

Hom(S,BGL2) = Rep(π1(S, x), GL2)//GL2

by the action of simultaneous conjugation.
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The center Gm ⊂ GL2 acts trivially on Rep(π1(S, x), GL2) so the action
of GL2 there factors through an action of PGL2.

Proposition 3.1 may be restated as

Lemma 4.1. — The hybrid moduli stack M(S,GL2) may be described as
the stack-theoretical quotient

M(S,GL2) = Rep(π1(S, x), GL2)//PGL2.

Let Rep(π1(S, x), GL2;C) ⊂ Rep(π1(S, x), GL2) denote the closed sub-
scheme of representations which send γi to the conjugacy class Ci. These
conditions are equivalent to the equations Tr(ρ(γi)) = ci + c−1

i . We have

Rep(π1(S, x), GL2;C) = {(A1, . . . , Ak) s.t.Ai ∈ Ci andA1 · · ·Ak = 1}.

Corollary 4.2. — The hybrid moduli stack with fixed conjugacy classes
is given by

M(S;C) = Rep(π1(S, x), GL2;C)//PGL2

= {(A1, . . . , Ak) s.t. Ai ∈ Ci and A1 · · ·Ak = 1}//PGL2.

It is also isomorphic to the stack one would have gotten by using the group
SL2 rather than GL2.

Proof.— Our conjugacy classes have been defined as having determi-
nant one. Since the γi generate the fundamental group, if the ρ(γi) have de-
terminant one then the representation ρ goes into SL2. As PGL2 = PSL2,
the hybrid moduli stack for GL2 is the same as for SL2. �

Recall the following Kostov-genericity condition [37] on the choice of the
numbers ci.

Condition 4.3. — For any choice of ε1, . . . , εk ∈ {1,−1} the product

cε11 · · · cεkk
is not equal to 1.

The following basic lemma has been observed by Kostov and others, see
[37, Remark 5] for example.

Lemma 4.4. — If Condition 4.3 is satisfied then any representation in
Rep(π1(S, x), GL2;C) is irreducible. In particular, the automorphism group
of the corresponding GL2 local system is the central Gm.
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The set of (c1, . . . , ck) satisfying this condition is a nonempty open subset
of (Gm − {1,−1})k. We also speak of the same condition for the sequence
of conjugacy classes C.

Proposition 4.5. — Suppose C satisfy Condition 4.3. The hybrid mod-
uli stack M(S;C) is an irreducible smooth affine variety. It is equal to the
coarse, which is indeed fine, moduli space MB(S;C1, . . . , Ck) of local systems
with our given conjugacy classes.

Proof.— The representation space Rep(π1(S, x), GL2;C) is an affine
variety, call it Spec(A), on which the group PGL2 acts. The moduli space
is by definition

MB(S;C1, . . . , Ck) := Spec(APGL2).

By Lemma 4.4 and using the hypothesis 4.3 it follows that the stabilizers of
the action are trivial. Luna’s étale slice theorem (see [9]) implies that the
quotient map

Spec(A) → Spec(APGL2)

is an étale fiber bundle with fiber PGL2. Therefore this quotient is also the
stack-theoretical quotient:

Spec(APGL2) = Spec(A)//PGL2.

By Corollary 4.2 that stack-theoretical quotient is M(S;C), completing the
identification between the hybrid moduli stack and the moduli space re-
quired for the proposition.

Smoothness of the moduli space has been noted in many places, see for
example [19] [38]. Irreducibility is proven in a general context in [20] [38] as a
consequence of computations of E-polynomials, and a different proof is given
in [47] using moduli stacks of parabolic bundles. In our case irreducibility
could also be obtained by including dimension estimates for the subvarieties
which will be removed in the course of our overall discussion. �

This proposition says that our hybrid moduli stack M(S;C) is the same
as the usual moduli space. A word of caution is necessary: we shall also be
using M(S′, C) for subsets S′ ⊂ S, and those are in general stacks rather
than schemes, for example when Condition 4.3 doesn’t hold over S′.

5. Interior conditions and factorization

We now define some conditions concerning what happens in the interior
of the surface S. These conditions will serve to define a stratification of
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M(S;C). The biggest open stratum denoted M ′, treated in detail in Section
10, turns out to be the main piece, contributing the essential structure of
the dual boundary complex. The smaller strata will be negligeable for the
dual boundary complex, in view of Lemmas 2.3 and 2.5 as combined in
Proposition 2.6.

Divide S into closed regions denoted S2, . . . , Sk−1 such that Si ∩Si+1 =
ρi is a circle for 2 � i � k − 2, and the regions are otherwise disjoint. We
assume that Si encloses the boundary circle ξi, so it is a 3-holed sphere with
boundary circles ρi−1, ξi and ρi. The orientation of ρi−1 is reversed when it
is viewed from inside Si. The end piece S2 has boundary circles ξ1, ξ2 and
ρ2 while the end piece Sk−1 has boundary circles ρk−2, ξk−1 and ξk. This is
a “pair of pants” decomposition.

Factorization properties, related to chiral algebra cf [11] [12], are a kind
of descent. As explained in Theorem 5.4 below, we will be applying the
factorization property of Lemma 3.2 to the decomposition of our surface
into pieces Si. This classical technique in geometric topology was also used
extensively in the study of the Verlinde formula. The factorization is often
viewed as coming from a degeneration of the curve into a union of rational
lines with three marked points.

For our argument it will be important to consider strata of the moduli
space defined by fixing additional combinatorial data with respect to our
decomposition. To this end, let us consider some nonempty subsets σi ⊂
{0, 1} for i = 2, . . . , k − 1, and conjugacy-invariant subsets G2, . . . , Gk−2 ⊂
SL2. We denote by α = (σ1, . . . , σk−1;G2, . . . , Gk−2) this collection of data.
The subsets Gi will impose conditions on the monodromy around the circles
ρi, while the σi will correspond to the following stability condition on the
restrictions of our local system to Si. Recall that a local system V ∈ M(S;C)
is required to have monodromy around ξi with eigenvalues ci and c−1

i . We
are making a choice of orientation of these boundary circles, and ci �= c−1

i

by hypothesis, so the c−1
i eigenspace corresponds to a well-defined rank 1

sub-local system of V |ξi .

Definition 5.1. — We say that a local system V |Si
on Si, satisfying

the conjugacy class condition, is unstable if there exists a rank 1 subsystem
L ⊂ V |Si such that the monodromy of L around ξi is c−1

i . Say that V |Si is
stable otherwise.

An irreducible local system V |Si is automatically stable; one which de-
composes as a direct sum is automatically unstable. If V |Si is a nontrivial
extension with a unique rank 1 subsystem L, then V |Si

is unstable if L|ξi is
the c−1

i -eigenspace of the monodromy, whereas it is stable if L|ξi is the ci-
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eigenspace. We will later express these conditions more concretely in terms
of vanishing or nonvanishing of a certain matrix coefficient.

Definition 5.2. — Given α = (σ1, . . . , σk−1;G2, . . . , Gk−2), denote by
Mα(S;C) ⊂ M(S;C) the locally closed substack of local systems V satisfy-
ing the following conditions:

• if σi = {0} then V |Si
is required to be unstable; if σi = {1} then it

is required to be stable; and if σi = {0, 1} then there is no condition;
and

• the monodromy of V around ρi should lie in Gi.

Consider a subset S′ ⊂ S made up of some or all of the Si or the circles.
Let Mα(S′;C) denote the moduli stack of local systems on S′ satisfying the
above conditions where they make sense (that is, for the restrictions to those
subsets which are in S′).

Notation. — In the case of the inner boundary circles we may just use
the notationMα(ρi) since the choices of conjugacy classes Ci, corresponding
to circles ξi, don’t intervene.

In the case of Si, only the conjugacy class Ci matters so we may use the
notation Mα(Si;Ci).

Suppose S′ ⊂ S is connected and x ∈ S′. Let

Repα(π1(S
′, x), GL2;C) ⊂ Rep(π1(S

′, x), GL2)

denote the locally closed subscheme of representations which satisfy conju-
gacy class conditions corresponding to C and the conditions corresponding
to α, that is to say whose corresponding local systems are in Mα(S′;C).
Proposition 3.1 says:

Lemma 5.3. — The simultaneous conjugation action of GL2 on the space
of representations Repα(π1(S

′, x), GL2;C) factors through an action of PGL2

and

Mα(S′;C) = Repα(π1(S
′, x), GL2;C)//PGL2

is the stack-theoretical quotient.

The hybrid moduli stacks allow us to state a glueing or factorization
property, expressing the fact that a local system L on S may be viewed as
being obtained by glueing together its pieces L|Si

along the circles ρi.
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Theorem 5.4. — We have the following expression using homotopy fiber
products of stacks:

Mα(S;C)=Mα(S2;C2)×Mα(ρi) M
α(S3;C3)· · · ×Mα(ρk−2) M

α(Sk−1;Ck−1).

Proof.— Apply Lemma 3.2. �

Proposition 4.5 has the following corollary:

Corollary 5.5. — Suppose the requirements given for the boundary
pieces of ∂S′ (which are circles either of the form ξi or ρi) satisfy Condi-
tion 4.3 for S′. Then the moduli stack Mα(S′;C) is in fact a quasiprojective
variety.

Proof.— This follows from Proposition 4.5 applied to S′. �

6. Universal objects

Let us return for the moment to the general situation of Section 3, of a
space S and a group G. If x ∈ S is a basepoint, then we obtain a principal
(G/Z)-bundle over Hom(S,B(G/Z)), and this pulls back to a principal
(G/Z)-bundle denoted F (S, x) → M(S,G). It may be viewed as the bundle
of frames for the local systems, up to action of the center Z.

If y ∈ S is another point, and γ is a path from x to y then it gives
an isomorphism of principal bundles F (S, x) ∼= F (S, y) over M(S,G). In
particular, π1(S, x) acts on F (S, x) in a tautological representation.

Suppose S = Sa ∪ Sb is a decomposition into pieces (in the application
these will be some unions of pieces of the form Si considered above), such
that the intersection Sab = Sa∩Sb is connected. Choose a basepoint x ∈ Sab.
This yields principal (G/Z)-bundles F (Sa, x) and F (Sb, x) over M(Sa, G)
and M(Sb, G) respectively. The fundamental group π1(Sab, x) acts on both
of these. We may restate the glueing property of Lemma 3.2 in the following
way.

Proposition 6.1. — We have an isomorphism of stacks lying over the
product M(Sa, G)×M(Sb, G),

M(S,G) ∼= Isoπ1(Sab,x)−G/Z(p
∗
1F (Sa, x), p

∗
2F (Sb, x))

where on the right is the stack of isomorphisms, relative to M(Sa, G) ×
M(Sb, G), of principal G/Z-bundles provided with actions of π1(Sab, x).
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Return now to the notation from the immediately preceding sections.
There are several ways of dividing our surface S into two or more pieces,
various of which shall be used in the next section.

Choose basepoints xi in the interior of Si, and si on the boundary circles
ρi. Connect them by paths, nicely arranged with respect to the other paths
γi, recalling that the γi are the paths gong out to the original boundary
circles ξi, around and back to the basepoint.

Then, over any subset S′ containing a basepoint xi, we obtain a principal
PGL2-bundle F (S′, xi) → M(S′, C), and the same for si. Our paths, when
in S′, give isomorphisms between these principal bundles.

It will be helpful to think of the description of glueing given by Propo-
sition 6.1, using these basepoints and paths. The following local triviality
property is useful.

Lemma 6.2. — Suppose S′ has at most one boundary circle of the form
ρi, and suppose that the conjugacy classes determining the moduli problem
on Mα(S′, C) satisfy Condition 4.3, and suppose that x ∈ S′ is one of
our basepoints. Then the principal PGL2-bundle F (S′, x) → Mα(S′, C) is
locally trivial in the Zariski topology of the moduli space Mα(S′, C), and
Zariski locally F (S′, x) may be viewed as the projective frame bundle of a
rank 2 vector bundle.

Proof.— Consider a choice of three loops (γj1 , γj2 , γj3) and a choice of
one of the two eigenvalues of the conjugacy class Cj1 , Cj2 , or Cj3 for each
of them respectively. This gives three rank 1 eigenspaces in Vx for any local
system V . Over the Zariski open subset of the moduli space where these
three subspaces are distinct, they provide the required projective frame.
Notice that the eigenspaces of the γj cannot all be aligned since these loops
generate the fundamental group of S′, by the hypothesis that there is at
most one other boundary circle ρi. Therefore, as our choices of triple of
loops and triple of eigenvalues range over the possible ones, these Zariski
open subsets cover the moduli space. We get the required frames. A framed
PGL2-bundle comes from a vector bundle so F (S′, x) locally comes from a
GL2-bundle. �

7. Splitting along the circle ρi

In this section we consider one of the circles ρi which divides S into two
pieces. Let

S<i :=
⋃

j<i

Sj , S>i :=
⋃

j>i

Sj ,
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and similarly define S�i and S�i. We have the decomposition

S = S�i ∪ S>i

into two pieces intersecting along the circle ρi. Thus,

Mα(S;C) = Mα(S�i;C)×Mα(ρi) M
α(S>i;C).

This factorization will allow us to analyze strata where Gi is a unipotent or
trivial conjugacy class. The following condition will be in effect:

Condition 7.1. — We assume that the sequence of conjugacy classes
C1, . . . , Ck is very generic, meaning that for any i the partial sequences
C1, . . . , Ci and Ci, . . . , Ck satisfy Condition 4.3, and they also satisfy that
condition if we add the scalar matrix −1. That is to say, no product of
eigenvalues or their inverses should be equal to either 1 or −1.

Suppose that Gi = {1}. Then Mα(ρi) = B(PGL2). On the other hand,
Condition 7.1 means that the sequences of conjugacy classes defining the
moduli problems on S�i and S>i themselves satisfy Condition 4.3. There-
fore Proposition 4.5 applies saying that the moduli stacks Mα(S�i;C) and
Mα(S>i;C) exist as quasiprojective varieties.

The projective frame bundles over a basepoint of ρi are principal PGL2-
bundles denoted

F�i → Mα(S�i;C)

and
F>i → Mα(S>i;C).

These principal bundles may be viewed as given by pullbacks of the universal
principal bundle on B(PGL2), along the maps

Mα(S�i;C) → Mα(ρi) = B(PGL2) ← Mα(S>i;C).

These principal bundles are locally trivial in the Zariski topology by Lemma
6.2.

The principal bundle description of the moduli space in Proposition 6.1
now says

Mα(S;C) = Iso(p∗1(F�i), p
∗
1(F�i)) over M

α(S�i;C)×Mα(S>i;C).

The bundle of isomorphisms between our two principal bundles, is a fiber
bundle with fiber PGL2, locally trivial in the Zariski topology because the
two principal bundles are Zariski-locally trivial. We may sum up this con-
clusion with the following lemma, noting that the argument also works the
same way if Gi = {−1}.
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Lemma 7.2. — Under the assumption that Gi = {1}, the moduli space
Mα(S;C) is a fiber bundle over M(S�i;C) × M(S>i;C), locally trivial in
the Zariski topology, with fiber PGL2. The same holds true if Gi = {−1}.

Consider the next case: suppose thatGi is the conjugacy class of matrices
conjugate to a nontrivial unipotent matrix

U =

(
1 1
0 1

)
.

In that case,Mα(ρi) = BGa. The situation is the same as before: the moduli
spaces Mα(S�i;C) and Mα(S>i;C) are quasiprojective varieties, and we
have principal bundles F�i and F>i. This time, these principal bundles have
unipotent automorphisms denoted R′ and R respectively, in the conjugacy
class of U . We have

Mα(S;C) = IsoMα(S�i;C)×Mα(S>i;C)(p
∗
1(F�i, R

′), p∗2(F>i, R)).

This means the relative isomorphism bundle of the principal bundles to-
gether with their automorphisms.

We claim that these principal bundles together with their automor-
phisms may be trivialized locally in the Zariski topology. For the princi-
pal bundles themselves this is Lemma 6.2. The unipotent endomorphisms
then correspond, with respect to these local trivializations, to maps into
PGL2/Ga. One can write down explicit sections of the projection PGL2 →
PGL2/Ga locally in the Zariski topology of the base, and these give the
claimed local trivializations. One might alternatively notice here that a Ga-
torsor for the étale topology is automatically locally trivial in the Zariski
topology by “Hibert’s theorem 90”.

From the result of the previous paragraph, Mα(S;C) is a fiber bundle
over Mα(S�i;C)×Mα(S>i;C), locally trivial in the Zariski topology, with
fiber the centralizer Z(R) ⊂ PGL2 of a unipotent element R ∈ PGL2. This
centralizer is Ga

∼= A1. We obtain the following statement.

Lemma 7.3. — Under the assumption that Gi is the unipotent conju-
gacy class, the moduli space Mα(S;C) is a fiber bundle over Mα(S�i;C)×
Mα(S>i;C), locally trivial in the Zariski topology, with fiber A1. The same
holds true if Gi is the conjugacy class of matrices conjugate to −U .

We may sum up the conclusion of this section as follows.

Proposition 7.4. — With the hypothesis of Condition 7.1 in effect,
suppose that the datum α is chosen such that for some i, Gi is one of
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the following four conjugacy classes

{1}, {−1}, {PUP−1}, or {−PUP−1},

that is to say the conjugacy classes whose traces are 2 or −2. Then the dual
boundary complex of the α-stratum is contractible:

D∂Mα(S,C) ∼ ∗.

Proof.— In all four cases, covered by Lemmas 7.2 and 7.3 above, the
space Mα(S,C) admits a further decomposition into locally closed pieces
all of which have the form A1×Y . Therefore, Corollary 2.5 and Proposition
2.6 apply to show that the dual boundary complex is contractible. �

8. Decomposition at Si in the unstable case

Define the function ti : M(S,C) → A1 sending a local system to the
trace of its monodromy around the circle ρi. In the previous section, we
have treated any strata which might be defined in such a way that at least
one of the Gi is a conjugacy class with ti equal to 2 or −2. Therefore, we
may now assume that all of our subsets Gi consist entirely of matrices with
trace different from 2,−2. In particular, these matrices are semisimple with
distinct eigenvalues.

If Gi consists of a single conjugacy class, it is possible to choose one of
the two eigenvalues. But in general, this is not possible. However, in the
situation considered in the present section, where one of the σi indicates an
unstable local system, then the destabilizing subsystem serves to pick out
a choice of eigenvalue.

In the case where one of the σi is {0} stating that V |Si should be unsta-
ble, we will again obtain a structure of decomposition into a product with
A1 locally over a stratification, essentially by considering the extension class
of the unstable local system. Some arguments are needed in order to show
that this leads to direct product decompositions.

8.1. Some cases with Gi−1 and Gi fixed

We suppose in this subsection that Gi−1 and Gi are single conjugacy
classes, with traces different from 2,−2, and furthermore chosen so that the
moduli problem for Mα(S>i;C) on one side is Kostov-generic. Hence, that
moduli stack is a quasiprojective variety. Furthermore we assume that σi =
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{0}. Therefore, Mα(Si;Ci) is the moduli stack of unstable local systems on
Si. The elements here are local systems V fitting into an exact sequence

0 → L → V → L′ → 0

such that the monodromy of L on ξi has eigenvalue c−1
i . We assume that

Mα(Si;Ci) is nonempty.

Lemma 8.1. — If we are given the conjugacy classes Gi−1 and Gi such
that there exists an unstable local system V on Si, then the eigenvalues bi−1

of L on ρi−1, and bi of L on ρi, are uniquely determined.

Proof.— The conjugacy classesGi−1,Gi determine the pairs (bi−1, b
−1
i−1)

and (bi, b
−1
i ) respectively. The instability condition says that L has eigen-

value c−1
i along ξi. Suppose that bi−1c

−1
i bi = 1 so there exists a local system

L with eigenvalues bi−1 and bi. We show that the other products with either
b−1
i−1 or b−1

i or both, are different from 1. For example, bi−1c
−1
i b−1

i = b−2
i ,

but b2i �= 1 since we are assuming that Gi is a conjugacy class with dis-
tinct eigenvalues. Thus bi−1c

−1
i b−1

i �= 1. Similarly, b−1
i−1c

−1
i bi �= 1. Also,

b−1
i−1c

−1
i b−1

i = c−2
i �= 1. This shows that if there is one possible combination

of eigenvalues for a sub-local system, then it is unique. �

From the assumption that Mα(Si;Ci) is nonempty and the previous
remark, we may denote by bi−1 and bi the eigenvalues of L on ρi−1 and ρi
respectively.

We are assuming a genericity condition implying that Mα(S>i;C) is a
quasiprojective variety. It has a universal principal bundle F>i over it, and
this has an automorphism R corresponding to the monodromy transforma-
tion around ρi. The eigenvalues of R are bi and b−1

i .

Restrict to a finer stratification of Mα(S>i;C) into some strata denoted
Mα(S>i)

a on which (F>i, R) is trivial. Let Mα(S;C)a be the inverse image
of Mα(S>i;C)a under the map Mα(S;C) → Mα(S>i;C).

Proposition 8.2. — We have

Mα(S;C)a = Mα(S>i;C)a ×Mα(S�i;C)fr,R

where Mα(S�i;C)fr,R is the moduli space of framed local systems, that is
to say local systems with a projective framing along ρi compatible with the
monodromy and having the specified eigenvalues (bi, b

−1
i ).

Proof.— Use Proposition 6.1. �
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Without the conditions α = (σ·, G·), the framed moduli space is just
the space of sequences of group elements A1, . . . , Ai, in conjugacy classes
C1, . . . , Ci respectively, such that A1 · · ·AiR = 1. Denote this space by

Rep(C1, . . . , Ci;R).

The moduli space Mα(S�i, C)fr,R is the subspace of Rep(C1, . . . , Ci;R)
given by the conditions σ· and G·.

Notice here that, since we don’t know a genericity condition for (C1, . . . ,
Ci, Gi) the moduli space might not be smooth. Even though we are consid-
ering framed representations, at a reducible representation the space will in
general have a singularity. Furthermore, the conditions Gj might, in princi-
ple, introduce other singularities.

Theorem 8.3. — With the above notations, let R′ be an element in the
conjugacy class Gi−1. We have

Mα(S�i;C)fr,R ∼= A1 ×Mα(S�i−1;C)fr,R
′
.

Proof.— It isn’t too hard to see that the moduli space is an A1-bundle
over the second term on the right hand side, where the A1-coordinate is the
extension class. The statement that we would like to show, saying that there
is a natural decomposition as a direct product, is a sort of commutativity
property.

Let Rep(C1, . . . , Ci;R)u denote the subspace of Rep(C1, . . . , Ci;R) con-
sisting of representations which are unstable on Si. This is equivalent to
saying that Ai fixes, and acts by c−1

i on the eigenvector of R of eigenvalue
bi. We will show an isomorphism

Rep(C1, . . . , Ci;R)u ∼= A1 × Rep(C1, . . . , Ci−1;R
′),

and this isomorphism will preserve the conditions (σ·, G·) over Si−1 so it
restricts to an isomorphism between the moduli spaces as claimed in the
theorem.

Write

R =

(
b−1
i 0
0 bi

)
.

Then Rep(C1, . . . , Ci;R)u is the space of sequences (A1, . . . , Ai) such that

A1 · · ·AiR = 1
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and

Ai =

(
ci 0
y c−1

i

)
(8.1)

for some y ∈ A1.

Similarly, write

R′ =

(
b−1
i−1 0
0 bi−1

)
,

and Rep(C1, . . . , Ci−1;R
′) is the space of sequences (A′

1, . . . , A
′
i−1) such that

A′
1 · · ·A′

i−1R
′ = 1.

Suppose (A1, . . . , Ai) is a point in Rep(C1, . . . , Ci;R)u and let y ∈ A1

be the lower left coefficient of Ai from (8.1). Note that c−1
i bi = bi−1 so

AiR =

(
b−1
i ci 0
b−1
i y c−1

i bi

)
=

(
b−1
i−1 0

b−1
i y bi−1

)
.

Let

U :=

(
1 0
u 1

)

be chosen so that UAiRU−1 = R′, which happens if and only if

b−1
i−1u+ b−1

i y − bi−1u = 0,

in other words

u :=
−b−1

i y

b−1
i−1 − bi−1

.

The denominator is nonzero because we are assuming the trace of Gi−1 is
different from 2 or −2, which is equivalent to asking bi−1 �= b−1

i−1.

Then put A′
j := UAjU

−1. From the equation UAiRU−1 = R′ we get

A′
1 · · ·A′

i−1R
′ = U(A1 · · ·Ai−1)U

−1(UAiRU−1) = 1.

Hence, (y, (A′
1, . . . , A

′
i−1)) is a point in A1 × Rep(C1, . . . , Ci−1;R

′). This
defines the map

Rep(C1, . . . , Ci;R)u → A1 × Rep(C1, . . . , Ci−1;R
′),

Its inverse is obtained by mapping (y, (A′
1, . . . , A

′
i−1)) to (A1, . . . , Ai) where

for 1 � j � i − 1 we put Aj = U−1A′
jU with U defined as above us-

ing y, and Ai is the upper triangular matrix (8.1). We obtain the claimed
isomorphism. �
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By symmetry the same holds in case of Kostov-genericity on the other
side, giving a statement written as

Mα(S�i−1;C)fr,R
′ ∼= A1 ×Mα(S�i;C)fr,R.

8.2. Open Gi−1 and Gi

If σi={0} and the moduli space is nonempty, then we cannot have both
sides being Kostov-nongeneric at once. Also, if either one of Gi−1 or Gi

are single conjugacy classes, then it constrains the other one to be in one
of finitely many conjugacy classes, and we return to the situation of the
previous subsection.

Therefore, the remaining case is when Gi−1 and Gi are open sets which
are unions of all but finitely many conjugacy classes (that is to say, allowing
all traces but a finite number), such that the moduli problems on both
S<i and S>i are Kostov-generic. In this situation, which we now assume,
the moduli spaces Mα(S<i;C) and Mα(S>i;C) exist and have principal
bundles F<i and F>i respectively.

We have a map

Mα(S<i;C)×Mα(S>i;C) → Gi−1 ×Gi.

Consider the étale covering space G̃i which parametrizes matrices with a
choice of one of the two eigenspaces. This was considered extensively by
Kabaya [29]. Let

M̃α(S>i;C) := Mα(S>i;C)×Gi
G̃i

and similarly for M̃α(S<i;C).

Our hypothesis that σi = {0}, in other words that for any local system
V in Mα(S;C) the restriction is unstable, provides a factorization of the
projection map through

Mα(S;C) → M̃α(S<i;C)× M̃α(S>i;C).

Indeed the destabilizing rank one subsystem is uniquely determined by the
condition that the monodromy around ξi have eigenvalue c

−1
i , and this rank

one subsystem serves to pick out the eigenvalues of the matrices for ρi−1

and ρi.

Now the same argument as before goes through. We may choose a strati-
fication such that on each stratum the principal bundles have framings such
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that the automorphisms R′ and R are diagonal (note, however, that the
eigenvalues are now variable).

We reduce to the following situation: Z is a quasiprojective variety with
invertible functions bi−1 and bi such that b−1

i1
c−1
i bi = 1, and we look at the

moduli space of quadruples (z, Vi, β
′, β) such that z ∈ Z, Vi is an unstable

local system on Si, and

β′ : V |ρi−1
∼= (V,R′(z)),

β : V |ρi
∼= (V,R(z))

where

R′(z) =

(
bi−1(z)

−1 0
0 bi−1(z)

)
R(z) =

(
bi(z)

−1 0
0 bi(z)

)
.

The map Y = β′β−1 is an automorphism of V (defined up to scalars, so it
is a group element in PGL2) and it preserves the marked subspace, so it is
a lower-triangular matrix. It uniquely determines the data (Vi, β, β

′) up to
isomorphism. Indeed we may consider Vi

∼= V using for example β′, then
our local system is (R′, Ai, Y RY −1) where Ai is specified by the condition
(R′)−1AiY RY −1 = 1. As the group of lower triangular matrices in PGL2

is isomorphic to Gm ×Ga we obtain an isomorphism between our stratum
and Z ×Gm ×Ga.

Alternatively, one could just do a parametrized version of the proof of
Theorem 8.3.

8.3. Synthesis

We may gather together the various cases that have been treated in this
section so far. Let Gu denote the set of matrices with Tr = ±2 and let Gv

denote its complement, the open subset of matrices with trace �= 2,−2.

Theorem 8.4. — Suppose α is any datum such that for some i we have
σi = {0}. If Mα(S;C) is nonempty, then D∂Mα(S;C) ∼ ∗.

Proof.— In the previous section we have treated the cases where any
Gi is one of the four conjugacy classes of trace 2 or −2, that is to say we
have treated the conjugacy classes in Gu. Therefore we may assume that
Gi−1 and Gi are contained in Gv.

Suppose that Gi−1 and Gi are conjugacy classes chosen so that the se-
quences (C1, . . . , Ci−1, Gi−1) and (Gi, Ci+1, . . . , Ck) are both Kostov-non-
generic. Under the hypothesis σi = {0} and supposing Mα(S;C) nonempty,
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containing say a local system V , then an eigenvalue of Gi−1 is the product of
an eigenvalue of Ci and an eigenvalue ofGi, since there exists a rank one sub-
system of V |Si . The same holds for the other eigenvalue of Gi−1. Combining
with the nongenericity relations among eigenvalues of (C1, . . . , Ci−1, Gi−1)
and (Gi, Ci+1, . . . , Ck), we obtain a nongenericity relation for (C1, . . . , Ck).
This contradicts the hypothesis of Condition 4.3 for C. Therefore, we con-
clude that ifMα(S;C) is nonempty, then for any specific choice of conjugacy
classes Gi−1 and Gi, at least one of the moduli problems over S<i or S>i

has to satisfy Condition 4.3. These cases are then covered by Theorem 8.3
above.

There are finitely many choices of single conjugacy classes Gi−1 (resp.
Gi) such that (C1, . . . , Ci−1, Gi−1) (resp. (Gi, Ci+1, . . . , Ck)) is Kostov non-
generic. We may therefore isolate these choices and treat them by Theorem
8.3 according to the previous paragraph. Let now Gi−1 and Gi be the com-
plement in Gv of these nongeneric conjugacy classes. These are open subsets
such that for any conjugacy classes therein, the moduli problems on S<i and
S>i satisfy Condition 4.3. The discussion of subsection 8.2 now applies to
give the conclusion that this part of Mα(S,C) has contractible dual bound-
ary complex. �

9. Reduction to M ′

In this section, we put together the results of the previous sections to
obtain a reduction to the main biggest open stratum. Recall from Condition
7.1 that we are assuming that C is very generic.

Recall also that G = Gv �Gu where Gv be the open subset of matrices
with trace �= 2,−2, with its complement Gu of matrices with Tr = ±2.

Let the datum α′ consist of the following choices: for all i, σ′
i = {1} and

Gi = Gv. Then we put

M ′ := Mα′
(S,C).

It is an open subset of M(S,C) since stability, and the conditions on the
traces, are open conditions.

Theorem 9.1. — There exist collections of data denoted αj such that

M(S,C) = M ′ �
∐

j

Mαj

(S,C)

is a stratification, i.e. a decomposition into locally closed subsets admitting
a total order satisfying the closedness condition of 2.6. Furthermore, this
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admits a further refinement into a stratification with M ′ together with pieces
denoted Zj,a ⊂ Mαj

(S,C), such that all of the pieces Zj,a have the form

Zj,a = Y j,a ×A1.

Proof.— Let αj run over the 22k−3 choices of (σ2, . . . , σk−1;G2, . . . , Gk−2)
with σi either {0} or {1}, and Gi either G

u or Gv. The locally closed pieces

Mαj

(S,C) are disjoint and their union is M(S,C). Furthermore, the set of
indices is partially ordered with the product order induced by saying that
{0} < {1} and Gu < Gv and j1 � j2 if each component of αj1 is � the
corresponding component of αj2 . If J is a downward cone in this partial or-
dering then

⋃
j∈J Mαj

(S,C) is closed, because specialization decreases the
indices (stable specializes to unstable and Gv specializes to Gu). Choosing
a compatible total ordering we obtain the required closedness property.

The highest element in the partial ordering is the datum α′ considered
above, so M ′ is the open stratum of the stratification.

The discussion of the previous two sections allows us to further decom-
pose all of the other strata Mαj

(S,C), in a way which again preserves the
ordered closedness condition, into pieces of the form Zj,a = Y j,a ×A1. �

Corollary 9.2. — The natural map D∂M(S,C) → D∂M ′ is a homo-
topy equivalence.

Proof.— Apply Proposition 2.6 to the stratification given by the theo-
rem. Note that M ′ is nonempty and the full moduli space is irreducible so
the other strata are subvarieties of strictly smaller dimension. �

10. Fenchel-Nielsen coordinates

We are now reduced to the main case M ′ = Mα(S;C) for α′ such that
all σi = {1} and all Gi = Gv. We would like to get an expression for M ′

allowing us to understand its dual boundary complex by inspection. We will
show M ′ ∼= Qk−3 where Q is defined near the end of this section, such that
D∂(Q) ∼ S1. The conclusion D∂M ′ ∼ S2(k−3)−1 then follows from Lemma
2.4.

This product decomposition is a system of Fenchel-Nielsen coordinates
for the open subset M ′ of the moduli space.

10.1. Local systems on the three-punctured sphere

One of the main things we learn from the basic theory of the classical
hypergeometric function is that a rank two local system on P1−{0, 1,∞} is

– 348 –



The dual boundary complex of the SL2 character variety of a punctured sphere

heuristically determined by the three conjugacy classes of the monodromy
transformations at the punctures. This general principle is not actually true,
in cases where there might be a reducible local system. But, imposing the
condition of stability provides a context in which this rigidity holds precisely.
This is the statement of Corollary 10.3 below.

For convenience, we keep our standard notations for any one of our pieces
Si which is a sphere with three punctures. For this subsection, let us view
Si as the complement of three open discs in the sphere; the three boundary
circles are denoted ρi−1, ρi and ξi.

Let ti−1 and ti be points in A1 − {2,−2}. We will write down a stable
local system Vi(ti−1, ti) on Si, whose monodromy traces around ρi−1 and
ρi are ti−1 and ti respectively, and whose monodromy around ξi is in the
conjugacy class Ci. Furthermore, any stable local system with these traces
is isomorphic to Vi(ti−1, ti) in a unique way up to scalars.

Construct Vi(ti−1, ti) together with a basis at the basepoint xi, by ex-
hibiting monodromy matrices R′

i−1, Ri and Ai in SL2. Set

Ai :=

(
ci 0
0 c−1

i

)
and Ri :=

(
ui 1
wi (ti − ui)

)

with ui given by the formula (10.1) to be determined below, and wi :=
ui(ti − ui)− 1 because of the determinant one condition.

We could just write down the formula for ui but in order to motivate it
let us first calculate

R′
i−1 = AiRi =

(
ciui ci
c−1
i wi c−1

i (ti − ui)

)
.

We need to choose ui such that

ti−1 = Tr(R′
i−1) = ciui + c−1

i (ti − ui).

This gives the formula

ui =
ti−1 − c−1

i ti

ci − c−1
i

. (10.1)

The denominator is nonzero since by hypothesis ci �= c−1
i .

Lemma 10.1. — Suppose Vi is an SL2 local system with traces ti−1 and
ti. Suppose Vi is given a frame at the base point xi, such that the monodromy
matrix around the loop γi is diagonal with ci in the upper left, and such that
the monodromy matrix around ρi (via the path going from xi to si ∈ ρi) has
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a 1 in the upper right corner. Then the three monodromy matrices of Vi are
the matrices R′

i−1, Ri and Ai defined above.

Proof.— The matrix Ai is as given, by hypothesis. The matrix Ri has
trace ti and upper right entry 1 by hypothesis, so it too has to look as
given. Now the calculation of the trace ti−1 as a function of ui has a unique
inversion: the value of ui must be given by (10.1) as a function of ti−1, ti
and ci. This determines the matrices. �

Lemma 10.2. — Suppose Vi is an SL2 local system with traces ti−1 and
ti different from 2 or −2, and suppose Vi is stable. Then, up to a scalar
multiple, there is a unique frame for Vi over the basepoint xi satisfying the
conditions of the previous lemma.

Proof.— Let e1 and e2 be eigenvectors for the monodromy around γi,
with eigenvalues ci and c−1

i respectively. They are uniquely determined up
to a separate scalar for each one. We claim that the upper right entry of
the monodromy around ρi is nonzero. If it were zero, then the subspace
generated by e2 would be fixed, with the monodromy around ξi being c−1

i ;
that would contradict the assumption of stability.

Now since the upper right entry of the monodromy around ρi is nonzero,
we may adjust the vectors e1 and e2 by scalars such that this entry is equal
to 1. Once that condition is imposed, the only further allowable change of
basis vectors is by multiplying e1 and e2 by the same scalar. �

Corollary 10.3. — Suppose Vi is a local system on Si, with conjugacy
class Ci around ξi, stable, and whose traces around ρi−1 and ρi are ti−1

and ti respectively. Then there is up to a scalar a unique isomorphism Vi
∼=

Vi(ti−1, ti) with the system constructed above.

10.2. Preliminary equations

We now put together the discussions of the previous subsection for the
pieces Si, to obtain a first explicit description of the moduli space.

Suppose V is a point in M ′, and let ti denote the traces of the mon-
odromies of V around the loops ρi. Then by the definition of the datum α′,
ti �= 2,−2 and the restriction to each Si is stable, so by the corollary there
is up to scalars a unique isomorphism hi : V |Si

∼= Vi(ti−1, ti).

Recall that xi is a basepoint in Si, and that we have chosen a path
in Si from xi to a basepoint si in ρi, and then a path in Si+1 from si to
xi+1. Let ψi denote composed the path from xi to xi+1, and use the same
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symbol to denote the transport along this path which is an isomorphism
ψi : Vxi

∼= Vxi+1 . The stalk of the local system Vi(ti−1, ti) at xi is by
construction C 2, and the same at xi+1, so the map

Pi := hi+1ψih
−1
i : Vi(ti−1, ti)xi

→ Vi+1(ti, ti+1)xi+1

is a matrix Pi : C
2 → C 2 well-defined up to scalars, that is Pi ∈ PGL2.

By the factorization property of M ′, the local system V is determined by
these glueing isomorphisms Pi, subject to the constraint that they should
intertwine the monodromies around the circle ρi for Vi and Vi+1. We have
used the notation R′

i for the monodromy of the local system Vi+1 around
the circle ρi, whereas Ri denotes the monodromy of Vi around here. We
will have made sure to use the same paths from xi or xi+1 to the basepoint
si ∈ ρi in order to define these monodromy matrices as were combined
together to make the path ψi. Therefore, the compatibility condition for Pi

says

R′
i ◦ Pi = Pi ◦Ri. (10.2)

The frames for Vxi
are only well-defined up to scalars, so the matrices Pi

are only well-defined up to scalars and conversely if we change them by
scalars then it doesn’t change the isomorphism class of the local system.
Putting together all of these discussions, we obtain the following preliminary
description of M ′.

Lemma 10.4. — The moduli space M ′ is isomorphic to the space of
(t2, . . . , tk−2) ∈ (A1 − {2,−2})k−3 and (P2, . . . , Pk−2) ∈ (PGL2)

k−3 sub-
ject to the equations (10.2), where R′

i and Ri are given by the previous
formulas in terms of the tj.

For the end pieces, one should formally set t1 := c1 + c−1
1 and tk−1 :=

ck + c−1
k .

At this point, we have not yet obtained a good “Fenchel-Nielsen” style
coordinate system, because the equation (10.2) for Pi contains R′

i which
depends on ti+1 as well as ti, and Ri which depends on ti−1 as well as ti.

10.3. Decoupling

In order to remedy this point, let us proceed to decouple the equations.
The strategy is to introduce the matrices

Ti :=

(
0 1
−1 ti

)
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which serve as a canonical normal form for matrices with given traces ti,
not requiring the marking of one of the two eigenvalues. Notice that if we
set

Ui :=

(
1 0
ui 1

)

then

U−1
i TiUi =

(
1 0

−ui 1

)(
0 1
−1 ti

)(
1 0
ui 1

)
=

(
ui 1
wi ti − ui

)

with wi as before. Therefore, using the formula (10.1) for ui and including
the dependence of Ri on ti−1 and ti in the notation, we may write

Ri(ti−1, ti) = U−1
i TiUi.

Now
R′

i−1 = AiRi = AiU
−1
i TiUi = U−1

i (UiAiU
−1
i Ti)Ui.

Furthermore, UiAiU
−1
i is lower triangular with ci and c−1

i along the diago-
nal, and when we multiply with Ti it gives a matrix of the form

UiAiU
−1
i Ti =

(
ci 0
∗ c−1

i

)(
0 1
−1 ti

)
=

(
0 ci

−c−1
i ∗

)
.

However, we know that ui was chosen so that this matrix has trace ti−1 (it
is conjugate to R′

i−1), therefore in fact

UiAiU
−1
i Ti =

(
0 ci

−c−1
i ti−1

)

as could alternately be seen by direct computation. By inspection this ma-
trix is conjugate to Ti−1 as it should be from its trace. Interestingly enough,
the conjugation is by the matrix

A
1
2
i :=

(
c

1
2
i 0

0 c
− 1

2
i

)
,

with
UiAiU

−1
i Ti = A

1
2
i Ti−1A

− 1
2

i .

This half-power seems also to occur somewhere in the classical treatments
of the Fenchel-Nielsen coordinates,

We obtain

R′
i−1 = U−1

i (UiAiU
−1
i Ti)Ui = U−1

i A
1
2
i Ti−1A

− 1
2

i Ui.
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Recall that the equation (10.2) for Pi−1 reads

R′
i−1 ◦ Pi−1 = Pi−1 ◦Ri−1,

and using the above formula for R′
i−1 as well as Ri−1 = U−1

i−1Ti−1Ui−1, this
equation reads

U−1
i A

1
2
i Ti−1A

− 1
2

i Ui ◦ Pi−1 = Pi−1 ◦ U−1
i−1Ti−1Ui−1. (10.3)

Set
Qi−1 := A

− 1
2

i UiPi−1U
−1
i−1.

This is a simple change of variables of the matrix Pi−1, with the matrices
entering into the change of variables depending however on ti−2, ti−1 and
ti. Notice that the coefficients of Qi−1 are linear functions of the coefficients
of Pi−1, in particular the action of scalars is the same on both.

Our equation which was previously (10.2) (but for i − 1 instead of i),

has become (10.3) which, after multiplying on the left by Ui then by A
− 1

2
i

and on the right by U−1
i−1 and substituting Qi−1, becomes:

Ti−1 ◦Qi−1 = Qi−1Ti−1. (10.4)

A sequence of matricesQi satisfying these equations leads back to a sequence
of matrices Pi satisfying (10.2) and vice-versa. Recall that the glueing for
the local system depended on these matrices modulo scalars, that is to say
in PGL2. We may sum up with the following proposition:

Proposition 10.5. — The moduli space M ′ is isomorphic to the space
of choices of

(t2, . . . , tk−2) ∈ (A1 − {2,−2})k−3 and (Q2, . . . , Qk−2) ∈ (PSL2)
k−3

subject to the equations TiQi = QiTi, with Ti, depending on ti, defined as
at the start of this subsection.

10.4. The product description

The expression for the moduli space of the previous proposition is now
decoupled, and furthermore the equations are in a nice and simple form. We
can therefore write M ′ as a product.

Theorem 10.6. — Let Q be the space of pairs (t, [p : q]) ∈ A1×P1 such
that t �= 2,−2 and

p2 + tpq + q2 �= 0. (10.5)

Then we have
M ′ ∼= Qk−3.
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Proof.— This will follow from the previous proposition, once we calcu-
late that the space of matrices Qi in PGL2 commuting with Ti, is equal to
the space of points [p, q] ∈ P1 such that p2 + tipq + q2 �= 0. Write

Qi =

(
p q
p′ q′

)

then

QiTi =

(
p q
p′ q′

)(
0 1
−1 ti

)
=

(
−q p+ tiq
−q′ p′ + tiq

′

)

whereas

TiQi =

(
0 1
−1 ti

)(
p q
p′ q′

)
=

(
p′ q′

tip
′ − p tiq

′ − q

)
.

The equation QiTi = TiQi thus gives from the top row

p′ = −q, q′ = p+ tiq

and then, those actually make the other two equations hold automatically.
Therefore a solution Qi may be written

Qi =

(
p q
−q p+ tiq

)
.

The statement Qi ∈ PGL2 means that Qi is taken up to multiplication by
scalars, in other words [p : q] is a point in P1 (clearly those coordinates are
not both zero); and

det(Qi) = p2 + tipq + q2 �= 0.

We conclude that the space of (ti, Qi) ∈ (A1 − {2,−2})× PGL2 such that
TiQi = QiTi is isomorphic to Q. Therefore Proposition 10.5 now says M ′ ∼=
Qk−3. �

The variety Q may be seen as a group scheme over A1−{2,−2} in a few
different ways, but those aren’t needed for our current considerations. There
are several different possible choices of identity section, including the fami-
lies of points (t, [0 : 1]), (t, [− t

2 , 1]), and the same with p and q interchanged.
We leave it to the reader to write down the multiplication operations in these
cases. The fibers are projective lines with two points removed, hence non-
canonically isomorphic to Gm with a twist by the automorphism z �→ z−1

when going around t = ±2.

Lemma 10.7. — The dual boundary complex of Q is

D∂Q ∼ S1.
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Therefore
D∂Qk−3 ∼ S2(k−3)−1.

Proof.— Let Φ ⊂ P1 × A1 be the open subset defined by the same
inequation (10.5). Then Q ⊂ Φ is an open subset, whose complement is
the disjoint union of two affine lines. Furthermore, Φ := P1 × P1 is a (non
simple) normal crossings compactification of Φ. The divisor at infinity is
the union of two copies of P1, namely the fiber over t = ∞ and the conic
defined by p2 + tpq + q2 = 0. These intersect transversally in two points.
Therefore, the incidence complex of Φ ⊂ Φ at infinity is a graph with two
vertices and two edges joining them.

It follows that the incidence complex at infinity for Q is a circle. That
may also be seen directly by blowing up two times over each ramification
point of the conic lying over t = ±2.

Now applying Lemma 2.4 successively, and noting that the successive
join of k − 3 times the circle is S2(k−3)−1, we obtain the second state-
ment. �

Corollary 10.8. — Let C be a collection of conjugacy classes satisfy-
ing Condition 7.1. Then the moduli space MB(S;C1, . . . , Ck) of rank 2 local
systems with those prescribed conjugacy classes, has dual boundary complex
homotopy equivalent to a sphere

D∂MB(S;C1, . . . , Ck) ∼ S2(k−3)−1.

Proof.— We have been working with the hybrid moduli stack M(S;C)
above, but Proposition 4.5 says that this is the same as the moduli space
MB(S;C1, . . . , Ck). By Corollary 9.2, D∂M(S;C) ∼ D∂M ′. By Theorem
10.6, M ′ ∼= Qk−3, and by Lemma 10.7 D∂Qk−3 ∼ S2(k−3)−1. Putting these
all together we obtain the desired conclusion. �

This completes the proof of Theorem 1.1.

Remark 10.9.— The space Φk−3 itself has a modular interpretation: it
is Mα(S,C) for α given by setting all σi to {1} (requiring stability of each
V |Si

), but having Gi = GL2 for all i, that is no longer constraining the
traces.

11. A geometric P = W conjecture

In this section we discuss briefly the relationship between the theorem
proven above, and the Hitchin fibration. For this discussion, let us suppose
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that the eigenvalues ci are ni-th roots of unity, so the conjugacy classes Ci

have finite order ni. Fix points y1, . . . , yk ∈ P1 and let

X := P1[
1

n1
y1, . . . ,

1

nk
yk]

be the root stack with denominators ni at the points yi respectively. It
is a smooth proper Deligne-Mumford stack. The fundamental group of its
topological realization [43] is generated by the paths γ1, . . . , γk subject to the
relations that γ1 · · · γk = 1 and γni

i = 1. We may also let S be a punctured
sphere such as considered above, the complement of a collection of small
discs in P1 centered at the points yi. Therefore, a local system on Xtop is
the same thing as a local system on S such that the monodromies around
the boundary loops ξi have order ni respectively. We have

MB(X
top, GLr) =

∐

(C1,...,Ck)

MB(S,C)

where the disjoint union runs over the sequences of conjugacy classes such
that Ci has order ni. Recall that if we assume that C satisfies the Kostov-
genericity condition then the character variety with fixed conjugacy classes
MB(S,C) is the same as the hybrid moduli stack M(S,C). It may be seen
as a connected component of the character variety MB(X

top, GLr).

Now we recall that there is a homeomorphism between the character vari-
ety MB(X

top, GLr) and the Hitchin-Nitsure moduli space MDol(X
top, GLr)

of Higgs bundles. One may consult for example [46], [34], [40] for the gen-
eral theory in the open or orbifold setting. We denote by MDol(S,C) the
connected component of MDol(X

top, GLr) corresponding to the choice of
conjugacy classes, which it may be recalled corresponds to fixing appropri-
ate parabolic weights for the parabolic Higgs bundles. Hitchin’s equations
give a homeomorphism, the “nonabelian Hodge correspondence”

MDol(S,C)top ∼= MB(S,C)top. (11.6)

Recall that the resulting two complex structures on the same underlying
moduli space, form a part of a hyperkähler triple [26].

In the smooth proper orbifold setting we have the same theory of the
Hitchin map

MDol(S,C) → An

which is a Lagrangian fibration to the space of integrals of Hitchin’s Hamil-
tonian system [25]. In particular, n is one-half of the complex dimension
of the moduli space, that dimension being even because of the hyperkähler
structure.
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Fix a neighborhood of infinity in the Hitchin base B∗ ⊂ An, and let N∗
Dol

denote its preimage in MDol(S,C). Similarly, let N∗
B denote a neighborhood

of infinity in MB(S,C). The homeomorphism 11.6 gives a natural homotopy
equivalence N∗

Dol ∼ N∗
B .

The neighborhood at infinity B∗ ⊂ An has the homotopy type of the
sphere S2n−1, and indeed we may view S2n−1 as the quotient of B∗ by
radial scaling, so the Hitchin map provides a natural map

N∗
Dol → S2n−1.

On the other hand, there is a natural projection N∗
B → D∂MB(S,C).

This is a general phenomenon, indeed if we have chosen a very simple normal
crossings compactification with divisor components D1, . . . , Dm then we
may choose an open covering of N∗

B by open subsets U1, . . . , Um punctured
neighborhoods of the Di, such that Ui1 ∩ · · · ∩ Uir is nonempty if and only
if Di1 ∩ · · · ∩Dir is nonempty. Then, any partition of unity for this covering
provides a map N∗

B → Rm which just goes into the subspace D∂MB(S,C).

Recall the following conjecture [30], which was motivated by considera-
tion of the case P1 − {y1, y2, y3, y4}.

Conjecture 11.1. — There is a homotopy-commutative square

N∗
Dol

∼→ N∗
B

↓ ↓
S2n−1 ∼→ D∂MB(S,C)

where the top and side maps are those described above, such that the bottom
map is a homotopy equivalence.

Our main theorem provides a homotopy equivalence such as the one
which is conjectured to exist on the bottom of the square, for the group
GL2 on P1 − {y1, . . . , yk}. This was our motivation, and it was also the
motivation for Komyo’s proof in the case k = 5 [33].

We haven’t shown anything about commutativity of the diagram. This
is one of the motivations for looking at the geometric theory of harmonic
maps to buildings developed in [30] [31]. A result in this direction is shown
by Daskalopoulos, Dostoglou andWentworth [5]. The Kontsevich-Soibelman
wallcrossing picture [36] should provide a global framework for this question.

Conjecture 11.1 may be viewed as a geometrical analogue of the first
weight-graded piece of the P = W conjecture [7] [18]. That conjecture states

– 357 –



Carlos Simpson

that weight filtration W of the mixed Hodge structure on the cohomology
of the character variety MB should be naturally identified with the perverse
Leray filtration P induced by the Hitchin fibration. For the case of rank two
character varieties on a compact Riemann surface, it was in fact proved by
de Cataldo, Hausel and Migliorini [7]. Davison treats a twisted version [6].

It is known [45] that the cohomology of the dual boundary complex is the
first weight-graded piece of the cohomology of MB . Conjecture 11.1 states
that this should come from the cohomology of the sphere at infinity in the
Hitchin fibration, which looks very much like a Leray piece.

Furthermore, indeed from discussions with L. Migliorini and S. Payne it
seems to be the case that the characterization of the cohomology of the dual
boundary complex in [45], and the computations [21] [22] [19] [20] of the
cohomology ring of MDol used to prove the P = W conjecture for SL2 in [7],
should serve to show commutativity of the diagram in rational cohomology.

The question of proving the analogue of our Theorem 1.1 for a compact
Riemann surface, even in the rank 2 case, is an interesting problem for
further study. One may also envision the case of a punctured curve of higher
genus. The techniques used here involved a choice of stability condition on
each of the pieces of the decomposition, which in the higher genus case would
require having at least a certain number of punctures. Weitsman suggests,
following [53] and [28], that it might be possible to obtain a similar argument
with only at least one puncture. The compact case would seem to be more
difficult to handle.

Let us note that Kabaya [29] gives a general discussion of coordinate
systems which can be obtained using decompositions, and he treats the
problems of indeterminacy of choices of eigenspaces up to permutations.

The other direction which needs to be considered is local systems of
higher rank. Here, the first essential case is P1 − {0, 1,∞}, where there is
no useful decomposition of the surface into simpler pieces. We could hope
that if this basic case could be treated in all ranks, then the reduction
techniques we have used above could allow for an extension to the case of
many punctures.
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