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The logarithmic Sobolev constant of some finite
Markov chains(∗)

Guan-Yu Chen1, Wai-Wai Liu2, Laurent Saloff-Coste3

ABSTRACT. — The logarithmic Sobolev constant is always bounded above
by half the spectral gap. It is natural to ask when this inequality is an
equality. We consider this question in the context of reversible Markov
chains on small finite state spaces. In particular, we prove that equality
holds for simple random walk on the five cycle and we discuss assorted
families of chains on three and four points.

RÉSUMÉ. — La constante de Sobolev logarithmic est toujours inférieure
ou égale à la moitié du trou spectral. Il est naturel de se demander dans
quels cas l’égalité à lieu. Nous considérons cette question dans le cadre
des châınes de Markov sur un espace fini de petite taille. En particulier,
nous montrons l’égalité pour la marche aléatoire simple sur un cycle fini
de 5 points et discutons plusieurs familles de châınes sur 3 et 4 points.

1. Introduction

1.1. Motivation and results

Let (Ω, µ) be a probability space equipped with a Dirichlet form (E ,D).
Let Var(f) denote the variance of f , that is, Var(f) = µ(|f −µ(f)|2) where
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µ(f) is the mean (i.e., expectation) of f under µ. The spectral gap λ is
defined by the classic variational formula

λ = inf
{
E(f, f)
Var(f)

: f ∈ D, Var(f) �= 0
}
. (1.1)

The logarithmic Sobolev constant α, introduced (implicitly) in the ground-
breaking paper of Gross [18], is defined by

α = inf
{
E(f, f)
L(f)

: f ∈ D, L(f) �= 0
}

(1.2)

where
L(f) = µ(|f |2 log(|f |2/µ(|f |2))) = Ent(|f |2/µ(|f |2)) (1.3)

is the (relative) entropy of the probability measure with density |f |2/µ(|f |2)
with respect to µ.

In the most classical example illustrating these definitions, Ω is the real
line, µ is the Gaussian measure dµ(x) = (2π)−1/2e−x2/2dx and E(f, f) =∫ +∞
−∞ |f ′|2dµ which is the Dirichlet form of the celebrated Ornstein-Uhlenbeck

process. In this case, λ = 1 is the lowest non-zero eigenvalue of the generator
−d2/dx2 + xd/dx (diagonalized by the Hermite polynomials) and α = 1/2
(attained on any exponential function). See [18, Theorem 4] where it is also
proved that α = 1/2 is equivalent to Nelson’s hypercontractivity [31].

It is a remarkable fact that the constant α captures non-trivial informa-
tion already in the simplest case where Ω = {0, 1} is the symmetric two-
point space with µ(0) = µ(1) = 1/2 and E(f, f) = |f(0) − f(1)|2/2. Then,
λ = 2 (the minimum is attained on any function such that f(0) = −f(1))
and α = 1 (the minimum is not attained). If we write f(0) = 1 + s,
f(1) = 1 − s, the fact that α = 1 is equivalent to the Calculus inequal-
ity

1
2

(
(1 + s)2 log(1 + s)2 + (1 − s)2 log(1 − s)2 − 2(1 + s2) log(1 + s2)

)
� 2s2

(1.4)
which can be proved by taking two derivatives. See [18, p.1068]. An equiv-
alent form of this inequality (via hypercontractivity) appeared first in the
work of A. Bonami [9, Lemma 3]. A recent application (via passage to the
hypercube, see Theorem 1.3 below) is in [6] where further relevant references
can be found.

The constants λ and α are related by the universal inequality stated in
the following well-known result.
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Theorem 1.1. — One always has

α � λ/2. (1.5)

Moreover, the inequality is strict if the spectral gap λ admits an eigenfunc-
tion φ ∈ D such that µ(φ3) �= 0.

The inequality (1.5) was first proved by B. Simon [38] in an equivalent
form involving hypercontractivity, and, later, by O. Rothaus [33] in this
form. Rothaus’ proof consists in testing (1.2) on function of the form 1+ εf
and performing a Taylor expansion in ε. See e.g., [2, 19, 37]. The remark
concerning the case of equality is due to Rothaus and follows easily from
his proof of (1.5).

Observe that in the two examples discussed above one has

α = λ/2.

Here is a list of examples where this equality holds.

(E1) The Sphere Sn, n � 2, equipped with its natural Riemannian struc-
ture has λ = 2α = n. An important related example is Ω = [−1, 1]
equipped with the measure dµa(x) = ca(1 − x2)a/2−1dx and the
Dirichlet form E(f, f) =

∫ +1

−1
(1 − x2)|f ′(x)|2dµa(x), a > 0. This

form is orthonormalized by the ultraspherical polynomials and, for
a = n, it amounts to projecting the n-sphere on its diameter. For
these examples, α was first computed in [30].

(E2) The circle. See [14, 40]. By specializing to functions on the circle such
that f(θ) = f(−θ), this also gives the interval [0, 1] with Neumann
boundary condition.

(E3) Simple random walk on Z/kZ, k = 2n. See [10].

In fact, for the examples in (E1), the equality α = λ/2 can be obtained
by an application of the celebrated Bakry-Émery technique of [4]. For (E2),
the equality can be proved using Rothaus’ improvement of the Bakry-Émery
argument presented in [35]. The finite example (E3) is of a different nature
and will be discussed further below. One of the main result of the present
paper concerns the case of simple random walk on Z/5Z and shows that
α = λ/2 in that case also.

It is now understood that, typically, α < λ/2 (possibly much smaller).
See, e.g., [13, 25, 36]. The first examples that were obtained in this direction
are the following.
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(E4) The Laguerre polynomials example where Ω = (0,∞), dµ(x) = e−xdx
and E(f, f) =

∫ ∞
0

x|f ′|2e−xdx. Korzeniowski and Stroock observed
in [23] that λ = 1 and α = 1/4. Bakry extended this to part of the
Laguerre family (i.e. µ is a Gamma distribution) in the final remarks
of [3].

(E5) The asymmetric two point space with

Ω = {0, 1}, µ(0) = p, µ(1) = q, E(f, f) = pq|f(0) − f(1)|2.

Then λ = 1 and α = (q − p)(log q/p)−1. See [8, 13, 28, 37].

(E6) The one step ergodic chain with Ω finite, µ an arbitrary positive prob-
ability measure on Ω and E(f, f) = 1

2

∑
x,y |f(x)−f(y)|2µ(x)µ(y). In

this case λ = 1 and α = (1− 2µ∗)(log(1/µ∗ − 1))−1, µ∗ = minΩ µ(x).
This generalizes (E5) but in fact the proof is by reduction to (E5).
See [8, 13, 37]. A case of special interest is Ω = {0, 1, 2} equipped with
the uniform measure which has λ = 1, α = (3 log 2)−1. By a simple
time change argument to get rid of the holding, this gives λ = 3/2,
α = (2 log 2)−1 for simple random walk on Z/3Z.

(E7) For the natural Riemannian structure on the following objects, λ is
known explicitly, α is not, but α < λ/2: (a) The rank one compact
symmetric spaces that are not spheres, in particular, the projective
spaces; (b) SU(3), SO(3), and the exceptional simple compact groups
G2, F4, E6, E7, E8. See [36].

It may be worth emphasizing that, in a sense (e.g., modulo taking direct
products), (E4)-(E6) are the only known examples where α is known ex-
plicitly and is different from λ/2. This possibly indicates how difficult it is
to compute the constant α. Some of the most natural open problems in this
directions are the following.

(Q1) Decide whether or not, on any flat torus of dimension n � 2, α = λ/2.
If not, compute α. A flat torus is the quotient of Euclidean space by
a (cocompact) lattice and the spectral gap can be computed in terms
of the lattice. See [7].

(Q2) Show that for simple random walk on Z/nZ, n odd, n �= 3, one has
α = λ/2.

(Q3) Among all ergodic chains on the three-point space Ω = {0, 1, 2},
which have α = λ/2?
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This paper is devoted to partial results concerning (Q2) and (Q3). We will
show that α = λ/2 for simple random walk on Z/5Z and for some Markov
chains on three-point and four-point spaces. We also believe our results give
some insights on the difficulties that arise in computing or estimating the
logarithmic Sobolev constant α.

1.2. Hypercontractivity, products and projections

Let us recall two of the main basic properties of the logarithmic Sobolev
constant α. The first gives the equivalent formulation in terms of hypercon-
tractivity. The second concerns taking products.

Theorem 1.2 (Gross [18]). — Let (Ω, µ) and (E ,D) be as above. Let Ht,
t > 0, be the associated Markov semigroup acting on L2(Ω, µ). The logarith-
mic Sobolev constant α at (1.2) is also the largest of all real β such that
‖Ht‖p→q � 1 for all t, p, q satisfying t ∈ (0,∞), 1 < p � q < ∞ and
e4βt � q−1

p−1 .

Hypercontractivity (for the Gaussian measure) first appeared in the work
of Nelson. We refer the reader to [19] for a historical perspective. Observe
that the spectral gap λ defined at (1.1) admits a similar (much simpler)
characterization as the largest real β such that ‖Ht − µ‖2→2 � e−βt, for all
t > 0.

Suppose now that we are given n Dirichlet forms (Ei,Di) on probability
spaces (Ωi, µi). For any sequence w = (w1, . . . , wn) of positive weights, we
can form the Dirichlet form

Ew(f, f) =
n∑
1

wiẼi(f, f)

on Ω =
⊗n

1 Ωi equipped with the measure µ =
⊗n

1 µi where

Ẽi(f, f) =
∫

Ωi

Ei(f i
xi , f i

xi)dµi(xi)

with Ωi =
⊗

j �=i Ωj , µi =
⊗

j �=i µj , xi is the (n − 1)-tuple where the i-th
coordinate of x = (x1, . . . , xn) has been omitted, and f i

xi : Ωi �→ R is the
function defined by f i

xi(xi) = f(x). We omit the description of the domain.
The associated semigroup is the commutative product of the semigroups act-
ing on the individual factors (with time scale adjusted to the corresponding
weight).
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Theorem 1.3 (Faris, Segal, See [19, Theorem 2.3]). — Referring to the
notation introduced above the logarithmic Sobolev constant α and the spectral
gap λ of the form Ew are given by

α = min{wiαi : i = 1, . . . n}, λ = min{wiλi : i = 1, . . . n}

where αi, λi are, respectively, the logarithmic Sobolev constant and the spec-
tral gap of the i-th factor (Ωi, µi, (Ei,Di)).

This theorem is the single most important source of examples for which
the logarithmic Sobolev constant is known. For instance, consider the hy-
percube Ω = {0, 1}d equipped with the uniform measure and the Dirichlet
form

E(f, f) =
1
2d

∑
x

d∑
1

|f(x) − f(x+ ei)|2µ(x)

where ei denotes the binary vector with a single 1 in position i and addition
is mod 2. This is the product of d symmetric two point chains and thus
Theorem 1.3 yields 2α = λ = 2/d. See [6] and the references therein for
problems where this example is relevant. With the help of the central limit
theorem, the tensorization of the two-point space above leads to the sharp
logarithmic Sobolev constant for the Gauss measure on the real line. See [18,
Theorem 4]. This shows that computing the logarithmic Sobolev constants
of “small” examples is not an entirely futile exercise. For d = 2, this is also
a simple random walk on Z/4Z.

Another simple but useful technique that belongs to the folklore of the
subject involves collapsing to a smaller state space.

Theorem 1.4. — Let (Ω, µ, (E ,D)) and (Ω̃, µ̃, (Ẽ , D̃)) be two Dirichlet
spaces as above. Assume that there is a map p : Ω̃ �→ Ω such that for any
f ∈ D we have

f̃ = f ◦ p ∈ D̃ and Ẽ(f̃ , f̃) = E(f, f).

Assume further that µ is the pushforward of µ̃ under p, i.e., µ̃(f̃) = µ(f)
for any measurable non-negative f on Ω. Let λ̃, α̃, be the spectral gap and
logarithmic Sobolev constant on Ω̃. Then

α � α̃, λ � λ̃.

In particular, if α̃ = λ̃/2 and λ̃ = λ then α = λ/2.

This result is useful both for finding examples with α = λ/2 and exam-
ples with α < λ/2. The reason is that it is often easy to decide whether or
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not λ̃ = λ since it simply involves finding an eigenfunction associated to λ̃
on Ω̃ that can be projected on Ω. If no such eigenfunctions exist, then λ
will often be significantly larger than λ̃ because it must come from a higher
part of the spectrum on Ω̃. Here are explicit known examples.

(E8) Let Ω = {0, 1, . . . , d} with

µ(k) = 2−d
(
d
k

)
, E(f, f) = (1/d)

d∑
k=1

|f(k) − f(k − 1)|2kµ(k)

This birth and death chain with binomial stationary distribution cor-
responds to following the number of 1 on the hypercube Ω̃ = {0, 1}d.
If |x| denotes the number of 1 in x ∈ Ω̃, then |x| − d/2 is an eigen-
function with eigenvalue λ̃ = 2/d which obviously “lives” on Ω. Thus
Theorem 1.4 gives α = λ/2 = 1/d.

(E9) The n dimensional real projective space Pn is the quotient of the
sphere Sn by the antipodal map x �→ −x. All the eigenfunctions
associated to the spectral gap λ̃ = n on the sphere are odd and
thus, cannot be projected on Pn. Indeed, the spectral gap on Pn is
λ = 2(n + 1), coming from the second non-zero eigenvalue on the
sphere. The logarithmic Sobolev constant of the projective space is
not known but satisfies α < λ/2. Moreover, it is proved in [36] that as
n tends to infinity, λ/α tends to 4. This means that, asymptotically
as the dimension goes to infinity, the logarithmic Sobolev constant of
the real projective space and the sphere are the same.

We now treat in more details two applications of these techniques that
are not in the literature. Consider the following questions.

� � � �
� � � �
� � � �
� � � �
� � � �

✲✲✲✛✛✛
✲✲✲✛✛✛
✲✲✲✛✛✛
✲✲✲✛✛✛
✲✲✲✛✛✛

✻
✻
✻
✻

❄
❄
❄
❄

✻
✻
✻
✻

❄
❄
❄
❄

✻
✻
✻
✻

❄
❄
❄
❄

✻
✻
✻
✻

❄
❄
❄
❄

❞ ❞
❞ ❞
❞ ❞

❞

❞

❞

❞

❞

❞

❞

❞

Figure 1. — The box Rb with its Dirichlet form structure, b = (b1, b2) = (4, 5)

All edges have weight 1/4 except the corner loops which have weight 1/2

The stationary measure is uniform

(Q4) Fix an integer vector b = (b1, . . . , bd), 1 � b1 � . . . � bd. In Z
d

with basis {e1, . . . , ed}, consider the rectangular box Rb = {x ∈ Z
d :
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xi ∈ {1, . . . , bi}, 1 � i � d}. Let µ be the uniform distribution on Rb

and

E(f, f) =
1
4d

∑
x∈Rb

d∑
i=1

∑
u∈{±ei}

|f(x) − f(x+ u)|2µ(x) (1.6)

with the convention that x + u = x if x ∈ Rb and x + u �∈ Rb.
This is the Dirichlet form of the simple random walk on Z

d, forced
to stay in Rb. See Figure 1. It is well-known and easy to check that
λ = 1

d (1 − cosπ/bd). What is α?

(Q5) Fix an integer n. Let p = (p1, . . . , pn) be a probability vector on
Ω = {1, . . . , n}. Define the relative entropy and Fisher information of
p by

Ent(p) = log n+
n∑
1

pi log pi, J(p) = 2
n∑
2

|√pi −
√
pi−1|2.

Can one control the (relative) entropy by the Fisher information and
what is the best inequality? In classical terms, the Fisher informa-
tion can be defined in a number of different ways, one of which is
J(f) = 4

∫
|∇

√
f |2dµ. Note that, in discrete cases where derivatives

are replaced by differences, the various definitions are not equivalent
anymore.

The two questions above are essentially the same. By Theorem 1.3, (Q4)
reduces to finding the logarithmic Sobolev constant of {1, . . . , n} equipped
with the uniform measure and the Dirichlet form

E(f, f) =
1
2n

n∑
2

|f(k) − f(k − 1)|2.

This is the Dirichlet form of the simple random walk on an n-point stick
with loops at the ends. It is easily seen that (Q5) amounts to the same
question because Ent(p) = L(

√
np) and J(p) = 4E(

√
np,

√
np). Finding

α for an n-point stick is not an easy problem. However, the n-point stick
Ω = {0, . . . , n− 1} (note the slight change of notation) can be obtained by
collapsing (in the sense of Theorem 1.4) a 2n-cycle via the identification of
x with 2n− x− 1. See Figure 2.
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� � � � � � �

� � � � � � �

✲ ✲ ✲ ✲ ✲ ✲

✲ ✲ ✲ ✲ ✲ ✲✛ ✛ ✛ ✛ ✛ ✛

✛ ✛ ✛ ✛ ✛ ✛

❄✻ ❄✻

� � � � � � �✞
✝

�
✆
✞
✝

�
✆
✞
✝

�
✆
✞
✝

�
✆
✞
✝

�
✆
✞
✝

�
✆✐ ✐✲ ✲ ✲ ✲ ✲ ✲

✛ ✛ ✛ ✛ ✛ ✛ ❄✻

❄

Figure 2. — The 2n cycle collapses to the n-stick with loops at the ends, n = 7.

All edges have weight 1/2.

On the 2n-cycle Ω̃, we have λ̃ = 1−cos(π/n) with eigenfunctions e±πix/n.
This two dimensional eigenspace contains the function f(x) = cos(πn (x+ 1

2 ))
which has the property that f(x) = f(2n − x − 1) and thus passes to the
quotient Ω. It is proved in [10] that

2α̃ = λ̃ = 1 − cos(π/n).

Thus, by Theorem 1.4,

2α = λ = 1 − cos(π/n).

This provides the answers to questions (Q4)-(Q5).

Theorem 1.5. — For a d-dimensional rectangular box

Rb = {x ∈ Z
d : xi ∈ {1, . . . , bi}, 1 � i � d}

with b = (b1, . . . , bd), 1 � b1 � . . . � bd, equipped with the uniform probabil-
ity measure and the Dirichlet form defined at (1.6), we have

α =
1
2d

(
1 − cos

π

bd

)
.

Theorem 1.6. — For any probability vector p = (p1, . . . , pn), we have

log n+
n∑
1

pi log pi � (1 − cos(π/n))−1

(
n∑
2

|√pi −
√
pi−1|2

)
.

that is, Ent(p) � 1
2 (1 − cos(π/n))−1

J(p). This inequality is best possible,
saturated by fε(x) = 1 + ε cos(πn (x+ 1/2)) as ε tends to 0.
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❄1

1

Figure 3. — The n+ 1-stick with reflecting barriers, n = 7.

All edges have weight 1/2 except those marked which have weight 1.

Let us mention that the even cycle can also be collapsed onto the (n+1)-
stick {0, . . . , n} with reflecting barriers (identify x with 2n−x modulo 2n).
See Figure 3. In this case, the eigenfunction x �→ cos(πx/n) passes to the
quotient. Hence for the n+ 1-stick equipped with simple random walk with
reflecting boundary condition and stationary measure µ given by

µ(x) =
{

1/(2n) if x ∈ {0, n}
1/n if x ∈ {1, . . . , n− 1},

we have 2α = λ = 1 − cos(π/n).

We end the introduction by considering two types of collapses of the
even cycle generalizing those from Figures 1-2. Let n > 1 be an integer,
s = (s1, ..., sn) ∈ {0, 1}n and set Ωs =

⋃
i{xi,si , xi,−si}, where xi1,j1 = xi2,j2

if and only if i1 = i2 and j1 = j2. In words, Ωs is made of two copies of
{1, . . . , n} (i.e., + and the − copies) with certain elements in the two copies
being identified (i.e., when si = 0). Let ps : Z2n → Ωs be the projection
defined by

∀1 � i � n, ps(i) = xi,si , ps(2n− i+ 1) = xi,−si .

Let Ks be the Markov chain defined by

∀x, y ∈ Ωs, Ks(x, y) =
1

|p−1
s ({x})|

∑
ps(z)=x
ps(w)=y

K(z, w), (1.7)

where K is the transition matrix of the simple random walk on the 2n cycle.
Thus, starting from xi,j , we first choose a direction, to the right (xi+1,·) or
to the left (xi−1,·), with equal probability, and then, independently and
uniformly, move to a neighboring state in that direction. By convention, the
left neighbors of x1,1, x1,−1 and x1,0 are respectively x1,−1, x1,1 and x1,0.
Similarly, the right neighbors of xn,1, xn,−1 and xn,0 are respectively xn,−1,
xn,1 and xn,0. See Figure 4. When s = (0, 0, 0, 0, 0, 0, 0), the projection ps
is the same as that in Figure 2.
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Figure 4. — The 2n cycle collapses to Ωs through the projection ps

with n = 7 and s = (1, 0, 1, 0, 0, 1, 0).

All single arrows have weight 1/2 and double arrows have weight 1/4

For n > 1 and s ∈ {0, 1}n, the Markov kernel defined in (1.7) has
stationary distribution

πs(x) =
|p−1

s ({x})|
2n

, x ∈ Ωs.

Let E and Es be the Dirichlet forms associated to K and Ks and π be
the uniform probability measure on Z2n. In a few computations, we obtain
E(f ◦ ps, f ◦ ps) = Es(f, f) and π(f ◦ ps) = πs(f) for all f ∈ R

|Ωs|. As a
consequence of Theorem 1.4, we have the following result.

Theorem 1.7. — For n � 2 and s = (s1, ..., sn) ∈ {0, 1}n, let Ωs be as
above and Ks be the Markov kernel on Ωs defined at (1.7). Then the spectral
gap λs and the logarithmic Sobolev constant αs satisfy 2αs = λs ≡ 1−cos π

n .

Proof. — In order to apply Theorem 1.4, we need to investigate whether
K and Ks have the same spectral gap. Consider another projection map
qs : Ωs → Zn defined by

qs(xi,si
) = qs(xi,−si

) = i, 1 � i � n.

See Figure 4. Let K ′ be the simple random walk on the n-stick with loops at
the ends and π′, E ′ and λ′ be its stationary distribution, associated Dirichlet
form and spectral gap. By the discussion after Figure 2, we know that
λ′ = 1 − cos π

n . It is also an easy exercise that Es(f ◦ qs, f ◦ qs) = E ′(f, f)
and πs(f ◦ qs) = π′(f) for any function f . This implies λ′ � λs � λ′ and
hence, by Theorem 1.4, 2αs = λs = 1 − cos π

n . �
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Note that further examples are obtained by a similar construction based
on Figure 3.

2. The Euler-Lagrange equation

In this section, the state space Ω is a finite set and the Dirichlet form E
has the form

E(f, f) =
1
2

∑
x,y∈Ω

|f(x) − f(y)|2K(x, y)µ(x)

where K(x, y) is a Markov kernel with reversible measure µ, i.e., K(x, y) �
0,

∑
y K(x, y) = 1 and µ(x)K(x, y) is symmetric. In this case, the spectral

gap λ is the smallest non-zero eigenvalue of the operator I −K acting on
L2(Ω, µ) (Kf =

∑
y K(·, y)f(y) and I denotes the identity). Of course there

is an associated eigenfunction φ satisfying (I −K)φ = λφ.

Theorem 2.1. — Referring to the reversible finite Markov chain setting
introduced above, let λ, α denote the spectral gap and logarithmic Sobolev
constant.

(i) If ψ is a minimizer for α, i.e.,

α =
E(ψ,ψ)
L(ψ)

.

then ψ is solution of the Euler-Lagrange equation

(I −K)ψ = 2αψ log(ψ/‖ψ‖2). (2.1)

(ii) For any β > 0, any non-constant solution φ of the equation

(I −K)φ = 2βφ log(φ/‖φ‖2) (2.2)

satisfy β = E(φ, φ)/L(φ). In particular, for β ∈ (0, α), (2.2) has no
non-constant solutions.

(iii) If α < λ/2, then α admits a positive non-constant minimizer.

This result is obvious from the perspective of Calculus of variation, and
only the last sentence (existence of minimizers) needs attention in more
general settings where capacity is not obvious. The idea to use the Euler-
Lagrange equation was first emphasized in the work of Rothaus [32, 33,
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34] in the (more difficult) context of diffusion on manifolds. It was used
in [30] to compute the logarithmic Sobolev inequality in Example (E1) of
the introduction (the ultraspherical polynomials). In the context of finite
Markov chains, it appears in [8, 10, 11, 12, 13, 37]. Theorem 2.1 will be one
of the main tools we use to treat specific examples below. Here we illustrate
it with the case of the asymmetric two-point space.

Theorem 2.2 ([13, Theorem A.2]). — Fix p, q ∈ (0, 1), p + q = 1. For
the two-point space Ω = {0, 1} equipped with the chain

K(0, 0) = K(1, 0) = q, K(0, 1) = K(1, 1) = p, π(0) = q, π(1) = p. (2.3)

we have λ = 1 and α = 1/2 if p = q = 1/2 and

α =
p− q

log(p/q)
if p �= q.

Proof. — That λ = 1 is a very easy exercise. We prove the statement
concerning α using Theorem 2.1. Setting ψ(0) = b, ψ(1) = a and normalizing
by qb2 + pa2 = 1, we look for triplets (α, a, b) of positive numbers that are
solutions of (2.1), that is,

p(b− a) = 2αb log b
q(a− b) = 2αa log a
pa2 + qb2 = 1.

Luckily, α can be eliminated by using the first two equations. This yields
the system {

pa log a+ qb log b = 0
p(a2 − 1) + q(b2 − 1) = 0.

Setting aside the solution a = b = 1, we can assume a, b ∈ (0, 1) ∪ (1,+∞)
and write this system as{

pa log a+ qb log b = 0
a−a−1

log a = b−b−1

log b .

Calculus shows that the function x �→ (x−x−1)/ log x is decreasing on (0, 1)
and increasing on (1,∞). As it obviously satisfies f(x) = f(1/x), it follows
that the second equation can only be satisfied if b = 1/a. Reporting in the
first equation yields pa − q/a = 0, that is, a =

√
q/p. It follows that the

solutions of our original system are the triplets (α, 1, 1) (α arbitrary) and,
when p �= q, (

p− q

log(p/q)
,
√
q/p,

√
p/q

)
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As p−q
log(p/q) < 1/2 when p �= q, we conclude from Theorem 2.1 that the

logarithmic Sobolev constant of the asymmetric two-point space at (2.3) is

α =
p− q

log(p/q)
, p �= q

and that, in the symmetric case p = q = 1/2, we have 2α = λ = 1. �

Remark 2.3. — The proof of Theorem 2.2 given above is outlined without
details in [8]. It is much simpler than the two different proofs given in
[13, 37]. Here, we have been careful to treat both the symmetric and the
asymmetric cases at once. In fact, the proof in [37] is incorrect (it can
however be corrected with additional pain but without changing the main
ideas). On the one hand, in the case p = q = 1/2, the proof above consists
in showing that no non-constant minimizers exist, leading to the conclusion
that α = λ/2. This is the main line of reasoning that will be used in this
work to treat other examples. On the other hand, in the case p �= q, we were
able to find a unique normalized non-constant solution of (2.1) with α < λ/2
leading to the explicit computation of α. To the best of our knowledge, this
is the only case with α < λ/2 where α has been computed by solving (2.1).
Our study of other small examples indicates that such a computation is
typically extremely difficult.

The following corollary deals with all Markov kernels on the two-point
space and is an immediate application of Theorem 2.2. The proof is omitted.

Corollary 2.4. — Let K be a Markov kernel on the two-point space
Ω = {0, 1} defined by

K(0, 0) = p1, K(0, 1) = q1, K(1, 0) = q2, K(1, 1) = p2,

where p1 + q1 = p2 + q2 = 1. Assume that q1q2 �= 0. Then λ = q1 + q2 and
α = q1 if q1 = q2, whereas

α =
q2 − q1

log q2 − log q1
if q2 �= q1.

We end this paragraph by recording two elementary lemmas that will
be useful in showing that the Euler-Lagrange equation (2.1) has no non-
constant solutions in some specific cases.

Lemma 2.5. — Consider the continuous function u : [0,∞) → R defined
by

u(s) =
{

0 if s = 0
s log s if s ∈ (0,∞). (2.4)
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The function u has the following properties:

∀ t ∈ [0,∞), u(t) � t− 1. (2.5)

∀ s, t ∈ [0,∞) with s � t, u(t) − u(s) � (t− s)(1 + log((s+ t)/2)). (2.6)

∀ s, t ∈ [0,∞) with s � t and s+ t � 2, u(t) − u(s) � t− s. (2.7)

∀ s, t ∈ [1,∞) with s � t, u(t) − u(s) � t− s. (2.8)

Proof. — The function s �→ s log s − s + 1 has derivative s �→ log s on
(0,∞). Hence it attains its minimum at s = 1. As the value at s = 1 is 0,
(2.5) follows.

To prove (2.6)-(2.7), fix s � 0 and set, for t � s,

g(t) = u(t) − u(s) − (t− s)u′((t+ s)/2)
= t log t− s log s− (t− s)(1 + log((t+ s)/2)).

Compute the derivatives

g′(t) = log
(

2t
t+ s

)
− t− s

t+ s
, g′′(t) =

s(s− t)
t(t+ s)2

.

It follows that g is non-increasing on [s,∞). Hence g(t) � g(s) = 0 on
[s,∞), that is,

u(t) − u(s) � (t− s)(1 + log((t+ s)/2)).

The inequality (2.7) obviously follows when s+ t � 2.

Finally, (2.8) follows from the Mean Value Theorem applied to the func-
tion u since u′ � 1 on [1,∞). �

Lemma 2.6. — Consider the function v : [0,∞)2 → R defined by

v(β, t) =
{

0 if t = 0
t− βt log t if t > 0.

Fix β > 0. For s ∈ [0, βe1/β−1), let 0 � t1(s) < t2(s) be the two reals such
that v(β, t1(s)) = v(β, t2(s)) = s. Then:

(i) t1(s)t2(s) < e2/β−2 for all s ∈ [0, βe1/β−1).

(ii) The map s �→ t1(s) + t2(s) is strictly decreasing on [0, βe1/β−1).
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In particular, for 0 � s < βe1/β−1,

t1(s) + t2(s) > 2e1/β−1, t1(s)2 + t2(s)2 > 2e2/β−2. (2.9)

Proof. — For fixed β > 0, we write v(t) as a shorthand of v(β, t). Note
that v(t) is a concave function attaining its maximum at t = e1/β−1 with
value βe1/β−1. This ensures that t1(s) and t2(s) are well defined. By the
concavity of v, (i) is equivalent to v(e2/β−2/t1(s)) < s, or

v(e2/β−2/t) < v(t), ∀t ∈ (0, e1/β−1).

For t > 0, let f be the difference of both sides, that is,

f(t) = v(e2/β−2/t) − v(t) =
e2/β−2

t
(−1 + 2β + β log t) − t(1 − β log t).

A simple computation gives

f ′(t) =
1 − β − β log t

t2
(e2/β−2 − t2) > 0, ∀t ∈ (0, e1/β−1).

Hence f(t) < f(e1/β−1) = 0.

To prove the monotonicity of g(s) = t1(s) + t2(s), we consider two in-
tervals A = (0, e1/β−1), B = (e1/β−1, e1/β) and the restrictions v|A, v|B of
v on them. It is obvious that t1 ◦ v|A = IA and t2 ◦ v|B = IB , where ID is
the identity map on D. By the inverse function theorem, t1(·) and t2(·) are
differentiable on (0, βe1/β−1) with derivatives

t′1(s) =
1

v′(t1(s))
=

1
1 − β − β log t1(s)

> 0,

and
t′2(s) =

1
v′(t2(s))

=
1

1 − β − β log t2(s)
< 0.

Putting both identities together and then applying part (i) gives

∀s ∈ (0, βe1/β−1), g′(s) =
2 − 2β − β log(t1(s)t2(s))

v′(t1(s))v′(t2(s))
< 0.

Hence, g is strictly decreasing.

The first inequality in (2.9) is obtained by applying part (ii) and observ-
ing that

lim
s→βe1/β−1

t1(s) = lim
s→βe1/β−1

t2(s) = e1/β−1.

The second inequality in (2.9) follows from the first one and part (i). �
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3. The five cycle

This section is devoted to the study of the five cycle Z/5Z equipped
with the uniform probability measure π(x) = 1/5 and the Markov kernel
K(x, y) = 1/2 if |x− y| = 1 modulo 5. The Dirichlet form can be written as

E(f, f) =
1
10

∑
x∈Z/5Z

|f(x) − f(x+ 1)|2 (3.1)

where addition is understood modulo 5. We refer to this chain as the simple
random walk on the 5 cycle. The spectral gap is

λ = 1 − cos(2π/5).

The 5 cycle can be projected to the three point space {0, 1, 2} by identify-
ing x with 5−x (modulo 5). The corresponding chain is the simple random
walk on the 3 stick with a loop at one end. It has kernel K(0, 1) = 1,
K(1, 0) = K(1, 2) = K(2, 1) = K(2, 2) = 1/2, and stationary measure
π(0) = 1/5, π(1) = π(2) = 2/5. See Figure 5.
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Figure 5. — The 5 cycle collapses to the 3-point stick with a loop at one end.

All edges have weight 1/2 except marked otherwise.

In both diagrams the right most point is 0

Theorem 3.1. — The spectral gap and logarithmic Sobolev constant of
the simple random walk on the 5 cycle satisfy

α =
λ

2
=

1
2

(
1 − cos

2π
5

)
.

Theorem 3.2. — The spectral gap and logarithmic Sobolev constant of
the simple random walk on the 3-point stick with a loop at one end satisfy

α =
λ

2
=

1
2

(
1 − cos

2π
5

)
.

Observe that cos(2π ·/5) is an eigenvector of the transition kernel of the
simple random walk on Z/(5Z) and the associated eigenvalue is cos(2π/5).
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Then, by Theorem 1.4, Theorem 3.2 is a corollary of Theorem 3.1. However,
the proof below proceeds differently. We will first show that the logarithmic
constants of the 5 cycle and the 3-point stick with a loop at one end are
equal. Then, we will show that α = λ/2 for the 3-point stick, proving both
Theorem 3.1 and Theorem 3.2 at the same time.

In what follows, we will always consider a positive function ψ on the 5
cycle normalized by ‖ψ‖2 = 1 and which is a potential non-constant solution
of the Euler-Lagrange equation (2.2) for a given β > 0. In this case, (2.2)
reads

∀x ∈ Z/5Z, 2ψ(x) − (ψ(x+ 1) + ψ(x− 1)) = 4βu(ψ(x)) (3.2)

with u as in (2.4). It will be convenient to label the value of ψ around the
cycle as indicated in Figure 6.
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Figure 6. — The values of ψ around the 5 cycle

This notation is justified by the following lemma. Because we use the
letter e as one of the values of ψ, we will use the notation exp for the
exponential function.

Lemma 3.3. — Assume that ψ is a non-constant function such that

E(ψ,ψ)
L(ψ)

= inf
{
E(f, f)
L(f)

: L(f) �= 0
}
.

Let the values taken by ψ be (a, b, c, d, e) as indicated in Figure 6 with a =
‖ψ‖∞ and b � c. Then we must have

a � b � c � d � e.

Proof. — Observe that there is no loss of generality in fixing the position
where the maximum is taken. Without loss of generality, we can also assume
that ‖ψ‖2 = 1. Observe that

E(ψ,ψ)
L(ψ)

=
(a− b)2 + (a− c)2 + (b− d)2 + (c− e)2 + (d− e)2

a2 log a2 + b2 log b2 + c2 log c2 + d2 log d2 + e2 log e2
. (3.3)
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Hence swapping the different values of ψ does not change the denominator.
Suppose that the smallest value taken by ψ is c < e. Then we must have
a � b � d � e > c because the following inequality holds

n−1∑
i=1

(xi − xi+1)2 <
n−1∑
i=1

(xσ(i) − xσ(i+1))2

for any real numbers x1 � x2 � · · · � xn−1 � xn and for all σ ∈ Sn

satisfying σ(1) = 1, σ(n) = n and xσ(i) �= xi for some 1 < i < n. However a
direct computation shows that, in this situation,

(a− c)2 + (d− e)2 � (a− e)2 + (d− c)2

with equality if and only if a = b = d which, by (2.1) would imply that ψ
is constant. It follows that swapping the positions of e and c decreases the
quotient at (3.3), a contradiction. Thus we can assume that the smallest
value taken by ψ is either e or d. As b � c, it follows immediately that we
must have d � e. Hence the smallest value taken by ψ is e and we must
have a � b � d � e and a � c � e. Assume that c < d. By inspection, we
then have

(a− c)2 + (b− d)2 � (b− c)2 + (a− d)2

with equality if and only if a = b. By (2.1), a = b implies c = d which is not
possible. Hence, swapping the positions of c and d decrease the quotient at
(3.3), a contradiction. It follows that

a � b � c � d � e

as desired. �

The equations in the following lemma correspond to the Euler-Lagrange
equations (2.2) for a minimizer on the 5 cycle using the notation of Figure
6.

Lemma 3.4. — Let u be the function defined at (2.4). Let (a, b, c, d, e)
be such that a � b � c � d � e > 0. Assume that

a2 + b2 + c2 + d2 + e2 = 5 (3.4)

and that the equations

2a− (b+ c) = 4βu(a) (3.5)
2b− (a+ d) = 4βu(b) (3.6)
2c− (a+ e) = 4βu(c) (3.7)
2d− (b+ e) = 4βu(d) (3.8)
2e− (c+ d) = 4βu(e) (3.9)

are satisfied for some β, 0 � β < 1
2 (1 − cos 2π

5 ). Then d � 1.
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Proof. — The proof will produce a number of additional conditions on
(a, b, c, d, e). Namely, we claim that under the hypotheses of Lemma 3.4, we
must have

b � 1 with equality only if a = b = c = d = e = 1 (3.10)

and
b+ d < 2 < a+ e < 2c if c > 1. (3.11)

Let us prove that (3.10) and (3.11) imply that d � 1. Indeed, on the one
hand, if c � 1 then d � c � 1. On the other hand, if c > 1 then (3.11) gives
b+d < 2 and (3.10) implies d < 1. Thus we are left with the task of proving
(3.10) and (3.11).

One of the key to the proof given below is to recognize that 1
2 (1−cos 2π

5 )
is the smallest root of the polynomial

g(t) = 16t2 − 20t+ 5 = (2 − 4t)(3 − 4t) − 1. (3.12)

Since the constant β in Lemma 3.4 satisfies β < 1
2 (1−cos 2π

5 ), we must have

g(β) > 0. (3.13)

To prove (3.10), assume that b � 1. Observe that (3.6) and (2.5) give
2(b− 1) − (a+ d− 2) = 2b− (a+ d) � 4β(b− 1), that is,

(2 − 4β)(b− 1) � (a+ d− 2).

Note that the hypothesis β ∈ [0, 1
2 (1− cos 2π

5 )) implies that β < 1/2. Hence
we must have a + d � 2. This also implies c + e � 2. Subtract (3.8) from
(3.5) and apply (2.7) — which is justified since a+ d � 2 — to obtain

2(a− d) − (c− e) � 4β(a− d)

or, equivalently,
(2 − 4β)(a− d) − (c− e) � 0. (3.14)

Similarly, since c + e � 2, subtracting (3.9) from (3.7) and applying (2.7)
produces

(3 − 4β)(c− e) − (a− d) � 0. (3.15)

Multiplying (3.14) by (3 − 4β) and adding (3.15) yields

g(β)(a− d) � 0.

As g(β) > 0 this implies a = b = c = d. Using (3.5) we must have a = b =
d = c = 1. By (3.4), we must have also e = 1. Thus b > 1 or a = b = c =
d = e = 1.
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We now prove (3.11). Assume c > 1. Observe that

a+ b+ c+ d+ e �
√

5(a2 + b2 + c2 + d2 + e2) = 5.

Thus c > 1 implies d+ e < 2. Also, by (3.7), a+ e < 2c. Subtract (3.6) from
(3.5) and apply (2.8) — this is possible since a � b � c > 1 — to obtain

(3 − 4β)(a− b) − (c− d) � 0. (3.16)

Similarly, subtract (3.9) from (3.8) and apply (2.7) — this is justified be-
cause d+ e < 2 — to obtain

(3 − 4β)(e− d) − (c− b) � 0. (3.17)

Adding up (3.16) and (3.17) yields

(2 − 4β)(a+ e− b− d) � 2c− a− e = 4βu(c) > 0.

Hence
a+ e � b+ d. (3.18)

We now claim that a + e > 2. Indeed, assume that a + e � 2. Then, by
(3.18), we also have b+d � 2. Subtracting (3.9) from (3.5), (3.8) from (3.6),
and using (2.7) —which is justified since a + e and b + d are not greater
than 2— we obtain

(2 − 4β)(a− e) − (b− d) � 0, (3.19)

(3 − 4β)(b− d) − (a− e) � 0. (3.20)

Multiplying (3.19) by (3−4β) and subtracting (3.20) yields g(β)(a− e) � 0
which implies a = b = d = c = e = 1, a contradiction since we assume that
c > 1. Thus we must have a+ e > 2. As a+ b+ c+ d+ e � 5, a+ e > 2 and
c > 1 implies b+ d < 2 as desired. �

The next Lemma is one of the crucial step in the proof of Theorem 3.1.

Lemma 3.5. — Referring to the notation and hypotheses of Lemma 3.4,
we must have b = c, d = e, and a ∈ [1, 1.42).

Before we prove this lemma we rephrase its conclusion in different terms.

Lemma 3.6. — The logarithmic Sobolev constants of the 5 cycle and the
3-point stick with a loop at one end are equal. Call it α. If α < 1

2 (1−cos 2π
5 )

then any non-constant positive normalized solution of the corresponding
Euler-Lagrange equation (2.1) on the 3-point stick with a loop at one end
is monotone, attains its maximum a at the loopless end of the stick and
a ∈ (1, 1.42).
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Figure 7. — The minimizers on the 5 cycle and the associated 3-point stick

Proof. — Let λ, α be the spectral gap and logarithmic Sobolev constant
of the 5 cycle. By Theorem 2.1, either α = λ/2 and then, by Theorem 1.4, α
is also the logarithmic Sobolev constant of the 3-point stick with a loop at
one end, or there exists a positive non-constant minimizer ψ satisfying (2.1)
on the 5 cycle. By Lemma 3.3, we can assume that the values (a, b, c, d, e)
of ψ as presented on Figure 6 satisfy a � b � c � d � e. Applying Lemma
3.4 and Lemma 3.5 with β = α < λ/2 = 1

2 (1 − cos 2π/5), we conclude that
the minimizer ψ is symmetric, that is, satisfy b = c, d = e. Hence ψ projects
on the 3-point stick with a loop at one end. See Figure 7. It follows that α
is also the logarithmic Sobolev constant of that chain. The other statement
in the lemma follows from lifting a (potential) minimizer from the 3-point
stick to the 5 cycle. By Lemma 3.3 and Lemma 3.5, the minimizer on the 3
point stick must be monotone with its maximum a at the loopless end with
a ∈ (1, 1.42). �

Proof of Lemma 3.5. — Let λ = 1 − cos 2π
5 . Suppose we have b = c

and d = e. Then, by (3.10) and (3.11), we must have b � 1 and d < 1
which implies, by (3.4), a ∈ (1,

√
3). If a � 1.42, then b = a − 2βa log a �

a − (1 − cos 2π
5 )a log a � 1.0759. Similarly, if d < 1/

√
2, then (3.8) implies

b = d−4βd log d � d−2(1− cos 2π
5 )d log d � 1.0458. Thus, if a � 1.42, then

d � 1/
√

2 and a2 + 2b2 + 2d2 � 1.422 + 2 + 1 > 5, a contradiction. Hence a
must be in [1, 1.42).

We now prove that b = c and d = e. Set v(0) = 0 and

v(s) = 2s− 4βs log s, s > 0.

We will need the following elementary facts about v.

(v1) v′(s) = 2−4β−4β log s, v′′(s) = −4β/s, v′′′(s) = 4β/s2. In particular,
v′′′ > 0, v′′ < 0 and v′ decreasing on (0,∞).

(v2) v is increasing on (0, exp(−1 + 1/2β)), decreasing on (exp(−1 +
1/2β),∞).
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(v3) s �→ v(s) − s as a unique maximum 4β exp(−1 + 1/4β).

(v4) v′(v(s) − s) > 0 when s ∈ (0, exp(1/4β)). Moreover, exp(1/4β) > 2.

The first three assertions are straightforward. By (v2) and (v3), to prove
that v′(v(s) − s) > 0 when s ∈ (0, exp(1/4β)) it suffices to check that
4β exp(−1 + 1/4β) � exp(−1 + 1/2β), that is, 4β log 4β � 1. This is true
because 2λ log 2λ < 1/2 and β � λ/2. The last inequality can also be used
to check that exp(1/4β) > 2.

Observe that the equations (3.5)–(3.9) can be written in a neat form
using the function v. For instance, (3.5) and (3.9) read v(a) = b + c and
v(e) = c+d, respectively. Now, using (3.7) and (3.9) in that form, we obtain

a = v(v(e) − d) − e.

Similarly, (3.6) and (3.8) yields

a = v(v(d) − e) − d.

Thus, we must have

v(v(e) − d) − v(v(d) − e) = e− d.

Set
J = [0, d] ∩ {s : v(s) � d}.

As d � 1 (by Lemma 3.4), this is an interval containing d and contained in
[0, 1]. By (3.9), J also contains the value e of ψ. On J , consider the function

w(s) = v(v(s) − d) − v(v(d) − s).

The idea of the proof is to show that the only solution in J of the equation
w(s) = s−d is d. As e must satisfy this equation, it then follows that e = d.
By (3.8) and (3.9) this also implies that b = c.

Thus we are left with the task of proving that w(s) = s−d implies s = d.
This will follow if we can show:

(1) w′ is decreasing on J ;

(2) w′(d) > 1.
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To this end, we compute 3 derivatives of w.

w′(s) = v′(v(s) − d) × v′(s) + v′(v(d) − s)
w′′(s) = v′(v(s) − d) × v′′(s) + v′′(v(s) − d) × v′(s)2 − v′′(v(d) − s)
w′′′(s) = v′(v(s) − d) × v′′′(s) + v′′(v(s) − d) × v′(s) × v′′(s)

+v′′(v(s) − d) × 2v′(s) × v′′(s) + v′′′(v(s) − d) × v′(s)3

+v′′′(v(d) − s).

Note that, by (v2), v′ is positive on J ⊂ [0, 1]. Moreover, by (v1), v′′ is
negative and v′′′ is positive on J . Observe further that v(s) − d � v(d) − d
and thus, by (v4),

v′(v(s) − d) � v′(v(d) − d) > 0.

It now follows that w′′′ � 0 on J . Hence, to show that w′ is decreasing on
J , it suffices to show that w′′(d) < 0. Set

V (d) = w′′(d) = v′(v(d)− d)× v′′(d) + v′′(v(d)− d)× v′(d)2 − v′′(v(d)− d),

and consider V as a function of d ∈ [0, 1]. An elementary, straightforward
but tedious computation shows that

V ′(s) = [v′(s) − 1]2 × v′′′(v(s) − s) × [v′(s) + 1]
+v′′(v(s) − s) × v′′(s) × [3v′(s) − 1] + v′′′(s) × v′(v(s) − s).

Again, on [0, 1], v′ is positive, v′′ negative, v′′′ positive and v′(v(s)− s) > 0.
So the only terms whose sign is unknown is 3v′(s) − 1. However, on [0, 1],
v′(s) � v′(1) = 2 − 4β > 2 cos 2π/5 and thus one can check that 3v′(s) − 1
is positive. It follows that V is increasing on [0, 1]. With g defined at (3.12),
we have

V (1) = −4β(2 − 4β) − 4β(2 − 4β)2 + 4β
= −4β[(2 − 4β)(3 − 4β) − 1] = −4βg(β) < 0.

Hence, for any d ∈ [0, 1], w′′(d) = V (d) < V (1) < 0. We have proved that
the function w′ is decreasing on J (see item (1) above).

We now need to show that w′(d) > 1 for any d ∈ [0, 1]. Set

W (d) = w′(d) = v′(v(d) − d) × [1 + v′(d)]

and consider W as a function on [0, 1]. Observe that

W (1) = (2 − 4β)(3 − 4β) = 1 + g(β) > 1.
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We have

W ′(s) = v′′(v(s) − s)[v′(s)2 − 1] + v′′(s) × v′(v(s) − s).

If v′(s) � 1, we have W ′(s) < 0. If v′(s) < 1, we use the facts that
v(s) − s � s on [0, 1] and v′′ is increasing to obtain

W ′(s) � v′′(s)[v′(s)2 − 1 + v′(v(s) − s)].

Let W1(s) = v′(s)2 − 1 + v′(v(s) − s). Then W1(1) = g(β) > 0 and

W ′
1(s) = v′′(v(s) − s) × [v′(s) − 1] + 2v′(s)v′′(s)

� v′′(s)[3v′(s) − 1] < 0

because we already checked that 3v′(s) − 1 > 0 and v′′(s) < 0 on [0, 1].
Hence, W1 > 0 and W ′ � 0 on [0, 1]. As W (1) > 1, it follows that W > 1
on [0, 1], that is, for any d ∈ (0, 1], w′(d) > 1 as desired (see item (2)
above). �

The following lemma says that, for β < 1
2 (1− cos 2π/5), the correspond-

ing equation (2.2) on the 3-point stick has no non-constant solutions with
the properties stated in Lemma 3.6. By Lemma 3.6, this finishes the proof
of both Theorem 3.1 and Theorem 3.2: the logarithmic Sobolev constant of
both the 5 cycle and the 3-point stick with a loop at one end must be equal
to 1

2 (1 − cos 2π/5).

Lemma 3.7. — Fix β < λ/2 with λ = 1 − cos 2π/5. If (a, b, d) is such
that a � b � d > 0, a ∈ [1, 1.42) and satisfies

a2 + 2b2 + 2d2 = 5 (3.21)

and

2βa log a = a− b (3.22)
4βb log b = 2b− a− d (3.23)
4βd log d = d− b (3.24)

then we must have a = b = d = 1.

Proof. — For s, η > 0, set

v(s, η) = s− 2ηs log s.

Note that
∀ (s, η) ∈ [1, 1.42) × [0, λ/2], 1 � v(s, η) � s. (3.25)
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Using the equations (3.22)–(3.24), for any β < λ/2, we can compute b and
d in terms of a. Namely,

b = v(a, β), d = 2v(v(a, β), β) − a.

For (s, η) ∈ [1, 1.42) × [0, λ/2], set

w(s, η) = s2 + 2v(s, η)2 + 2(2v(v(s, η), η) − s)2 − 5.

Note that, given that a, b, d satisfy (3.22)–(3.24), (3.21) can be equivalently
stated as

w(a, β) = 0.

Hence, the Lemma will be proved if we can show that

s ∈ [1, 1.42) and w(s, β) = 0 implies s = 1. (3.26)

The key to the proof is in the following two observations.

(1) For each s ∈ [1, 1.42), the function

η �→ w(s, η)

is a non-increasing function of η ∈ (0, λ/2).

(2) The function s �→ w(s, λ/2) is strictly positive on (1, 1.42).

Indeed, if we can prove (1) and (2) above then, obviously, (3.26) follows.

In order to prove item (1) above, we compute

∂w

∂η
(s, η) = 4v(s, η)

∂v

∂η
(s, η)

+8 (2v(v(s, η), η) − s)
(
∂v

∂η
(v(s, η), η) +

∂v

∂s
(v(s, η), η)

∂v

∂η
(s, η)

)
.

For (s, η) ∈ [1, 1.42) × [0, λ/2], we have

v(s, η) � 1, 2v(v(s, η), η) − s � 0.

As ∂v
∂η (s, η) = −2s log s, and s � 1, v(s, η) � 1, one has

∂v

∂η
(s, η) � 0,

∂v

∂η
(v(s, η), η) � 0.

Thus, to see that ∂w
∂η � 0, it suffices to check that ∂v

∂s (v(s, η), η) � 0 for
(s, η) ∈ [1, 1.42) × [0, λ/2]. Now, ∂v

∂s is a decreasing function of s and one
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can check that it is positive on [1, 1.42) for each η ∈ [0, λ/2]. Moreover,
v(s, η) � s for s � 1. Hence we have

∂v

∂s
(v(s, η), η) � ∂v

∂s
(s, η) � 0

for (s, η) ∈ [1, 1, 42) × [0, λ/2]. This proves item (1) above.

We are left to prove item (2), that is, w(s, λ/2) > 0 for s ∈ (1, 1.42). To
simplify notation, we set

w(s) = w(s, λ/2), v(s) = v(s, λ/2).

The first and second derivatives of w are

w′(s) = 2s+ 4v(s)v′(s) + 4(2v(v(s)) − s)(2v′(v(s))v′(s) − 1)
w′′(s) = 2 + 4v′(s)2 + 4v(s)v′′(s) + 4(2v′(v(s))v′(s) − 1)2

+4(2v(v(s)) − s)
(
2v′′(s)v′(v(s)) + 2v′′(v(s))v′(s)2

)
.

When evaluated at s = 1 both are zero. Indeed, using the polynomial g
introduced at (3.12),

w′(1) = 4(1 − 2(λ/2))(3 − 4(λ/2)) − 2 = 2g(λ/2) = 0,

and

w′′(1) = 2 + 4(1 − λ)2 − 4λ+ 4(2(1 − λ)2 − 1)2 − 8λ(1 − λ)(2 − λ)
= 2(2λ2 − 4λ+ 1)g(λ/2) = 0.

The last factorization was obtained by observing that w′′(1) is a polynomial
in λ/2 and that numerical evaluation indicates that this polynomial vanishes
at λ/2 = (1− cos 2π/5)/2. Division by the polynomial g then produced the
desired factorization.

Thus we will have w > 0 on (1, 1.42) (i.e., item (2) above) if we can prove
that the third derivative of w is positive on [1, 1.42). The third derivative is

w′′′(s) = 12v′(s)v′′(s) + 4v(s)v′′′(s) + h(s)

with

h(s) = 12[2v′(v(s))v′(s) − 1][2v′′(v(s))v′(s)2 + 2v′(v(s))v′′(s)]
+4[2v(v(s)) − s]

×[2v′′′(s)v′(v(s)) + 6v′(s)v′′(s)v′′(v(s)) + 2v′′′(v(s))v′(s)3].
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The function v′(s) = 1−λ−λ log s is decreasing on [1, 1.42) and with value
in (0, .31). Moreover, v′′ is negative and v′′′ positive on [1, 1.42). It easily
follows that h is positive on [1, 1.42). To finish the proof that w′′′ is positive
on [1, 1.42), we observe that

3v′(s)v′′(s) + v(s)v′′′(s) = −3λ
s

(1 − λ− λ log s) +
λ

s2
(s− λs log s)

=
λ

s
(−2 + 3λ+ 2λ log s) > 0 �

Remark 3.8. — By itself, Lemma 3.7 is not sufficient to prove Theorem
3.2. Indeed, it is easy to see that a potential minimizer on the 3-point
stick must be monotone (in fact, L. Miclo [29] proved the remarkable result
that monotonicity holds for any birth and death chain with no holding).
However, Lemma 3.7 only treats monotone minimizers with a maximum at
the loop-less end of the stick. This is sufficient because of Lemmas 3.5-3.6
which involve lifting to the 5 cycle. A direct proof of Theorem 3.2 (without
lifting to the 5 cycle) involves the study of the case where the vector (a, b, c)
in Lemma 3.7 satisfies 0 < a � b � d instead and, in particular, a � 1.
This case can be treated by an argument similar to the one given above but
involving additional computations.

4. Some other 3-point chains

By collapsing 4, 5 and 6 cycles, we have obtained in Sections 1.2 and 3
the equality α = λ/2 for the three chains on the 3-point stick described in
Figure 8.
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✻ ❄

✞
✝

�
✆
✞
✝

�
✆

✲ ✲
✛ ✛ � � �✞

✝
�
✆
✞
✝

�
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✲ ✲
✛ ✛

1
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✻

✞
✝

�
✆
✞
✝

�
✆

✲ ✲
✛ ✛

1

Figure 8. — Three chains on the 3-point stick.

All edges have weight 1/2 except when marked otherwise

In all cases α = λ/2

In this section, we focus on some specific Markov chains on the 3-point
stick and the main results are listed in Table 1.

Theorem 4.1. — For 0 � p < 1, let Kp be the Markov kernel on the
3-point space {1, 2, 3} defined by

Kp =

 p 1 − p 0
.5 0 .5
0 1 − p p


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with stationary distribution

µp =
(

1
4 − 2p

,
2 − 2p
4 − 2p

,
1

4 − 2p

)
.

Then αp = λp/2 = (1 − p)/2.

Theorem 4.2. — For 0 � p < 1, let Kp be the Markov kernel on the
3-point space {1, 2, 3} defined by

Kp =

 0 1 0
.5 0 .5
0 1 − p p


with stationary measure

µp =
(

1 − p

4 − 3p
,
2 − 2p
4 − 3p

,
1

4 − 3p

)
.

Then λp = 1
2

(
3 − p−

√
p2 + 1

)
and the log Sobolev constant αp is strictly

decreasing in p and satisfies

αp = λp/2

only when p = 0 or p = 1/2.

Theorem 4.3. — For 0 < p � 1, let Kp : {1, 2, 3} × {1, 2, 3} �→ [0, 1] be
the Markov kernel defined by

Kp =

 0 1 0
p/2 1 − p p/2
0 1 0


with stationary distribution

µp =
(

p

2(1 + p)
,

1
1 + p

,
p

2(1 + p)

)
.

Then λp = 1 for all p ∈ (0, 1] and we have

αp = λp/2

if and only if p ∈ [3/4, 1]. Moreover, the map p �→ αp is strictly increasing
on (0, 3/4).
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Table 1. — The spectral gap λ and the log-Sobolev constant α

of some Markov chains on the 2-point space and the 3-stick

Markov chain λ α λ = 2α

� �✐ ✐✞
✝

�
✆✻ ❄

✲
✛p1 p2

q1

q2
(q1q2>0)

q1 + q2
q2 − q1

log(q2/q1)
q1 = q2

� � �✐ ✐
✻ ❄

✞
✝

�
✆
✞
✝

�
✆

✲ ✲
✛ ✛p p

1−p

1−p

1/2

1/2

(0≤p<1)
1 − p 1 − p

2
0 ≤ p < 1

� � �✐
✻

✞
✝

�
✆
✞
✝

�
✆

✲ ✲
✛ ✛

1

p

1−p

1/2

1/2

(0≤p<1)

3 − p−
√
p2 + 1

2

unknown
except for
p = 0 or
p = 1/2

p ∈ {0, 1/2}

� � �✐✲

✒ ✑✒ ✑
✛ ✲

✲ ✛

1−p

1 1

p/2 p/2

(0<p≤1)
1

unknown
except for
3
4 ≤ p ≤ 1 p ∈ [3/4, 1]

� � �✐ ✐
✻ ❄

✞
✝

�
✆
✞
✝

�
✆

✲ ✲
✛ ✛q p

q

p

q

p

(p+q=1, 0<p<1)
1 −√

pq
p− q

2 log(p/q) p = 1/2

� � �✐✲

✒ ✑✒ ✑
✛ ✲

✲ ✛✻ ❄

1/2

p q

q/2 p/2✐ ✐q p

(p+q=1, 0<p<1)

1
2

p− q

2 log(p/q) p = 1/2

Proof of Theorem 4.1. — First observe that an easy computation gives
λp = 1−p. By Theorem 2.1 it suffices to show that for β < λp/2, the system
(2.2) has no non-constant positive solution. Suppose on the contrary that
(a, b, c) is a non-constant positive solution normalized by

a2 + (2 − 2p)b2 + c2 = 4 − 2p. (4.1)

The system (2.2) is equivalent to (using the function u defined at (2.4))

2β
1 − p

u(a) = a− b (4.2)

4βu(b) = 2b− a− c (4.3)
2β

1 − p
u(c) = c− b. (4.4)
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Assume first that a �= c. By symmetry, we can then assume that a > c.
Subtract (4.4) from (4.2) to obtain

u(a) − u(c) =
1 − p

2β
(a− c) > a− c.

By (2.7), it follows that a+ c > 2. This implies

a2 + c2 > 2 (4.5)

and thus, by (4.1),
b < 1. (4.6)

Now, add (4.2) divided by a to (4.4) divided by c and subtract (4.3) divided
by b to obtain

2β
1 − p

log ac− 4β log b =
a

b
− b

a
+
c

b
− b

c
.

Rearranging the terms yields

4pβ
1 − p

log b =
(
a

b
− b

a
− 2β

1 − p
log

a

b

)
−

(
b

c
− c

b
− 2β

1 − p
log

b

c

)
. (4.7)

Consider the function h(t) = t − t−1 − k log t on (0,∞) and note that
h′(t) = t−2(t− 1)2 + t−1(2− k) is positive on (0,∞) if k < 2. In the present
case, we take k = 2β/(1 − p) which, by hypothesis, is less than 1. Hence
h is increasing. The left-hand side of (4.7) is negative since b < 1 by (4.6).
Hence h(a/b) − h(b/c) < 0 and thus a/b < b/c or, equivalently,

ac < b2 < 1.

By (4.1) and (4.5), we have

4 − 2p = a2 + 2(1 − p)b2 + c2 > a2 + 2(1 − p)ac+ c2

= (a+ c)2 − 2pac > 4 − 2pac > 4 − 2p,

a contradiction (in the case a �= c).

Second, consider the case a = c. Rewrite (4.7) as

g(b) =
4pβ
1 − p

log b+ 2h(b/a) = 0

where h is as above with k = 2β
1−p . Note that g is strictly increasing on

(0,∞). If a = c = 1 then (4.1) contradicts the fact that (a, b, c) is not
constant. If a ∈ (0, 1), then g(1) = 2h(1/a) > 2h(1) = 0 = g(b) and thus
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b < 1. This implies that a, b, c are all less than 1 which contradicts (4.1).
Finally, if a ∈ (1,∞) then g(1) = 2h(1/a) < 2h(1) = 0 = g(b) and thus
b > 1. This implies that a, b, c are all larger than 1 which, again, contradicts
(4.1).

It follows that (2.2) has no non-constant solutions for β < λp/2 and thus
αp = λp/2 = (1 − p)/2. �

Proof of Theorem 4.2. — We first consider the identity αp = λp/2. Re-
ferring to the family of chains in Theorem 4.2, the facts that αp = λp/2
when p = 0 and p = 1/2 are contained respectively in Theorem 4.1 and
in Theorem 3.2. To prove αp < λp/2 when p �= 0, 1/2, we use the criteria
contained in Theorem 1.1. A simple computation yields

λp = 1 − p− 1 +
√

1 + p2

2

with eigenfunction

φ =

(
1,
p− 1 +

√
1 + p2

2
, (p− 1)(p+

√
1 + p2)

)
.

Thus, we compute

µp(φ3) =
p(1 − p)(p− 1/2)[3 − 3p+ 6p2 − 4p3 +

√
1 + p2(−1 + 6p− 4p2)]

4 − 3p
.

Notice p �→ 3 − 3p + 6p2 − 4p3 is decreasing and thus no smaller than 2
on [0, 1]. We have −1 + 6p − 4p2 = −(2p − 3/2)2 + 5/4. It follows that√

1 + p2(−1 + 6p − 4p2) � 0 on [(3 −
√

5)/4, 1] and greater than −
√

2 on
[0, (3 −

√
5)/4]. Combining these observations, we see that

3 − 3p+ 6p2 − 4p3 +
√

1 + p2(−1 + 6p− 4p2) > 0 on (0, 1).

Hence µp(φ3) �= 0 unless p = 0 or p = 1/2. By Theorem 1.1, we must have
αp < λp/2 for p �= 0, 1/2.

We prove the monotonicity of αp in two steps. The first step is to show
that αp is non-increasing in (0, 1). For p ∈ (0, 1), let Ep be the Dirichlet
form associated to Kp and Lp be the quantity defined in (1.3) with respect
to µp. For any non-constant vector ψ = (a, b, c) ∈ [0,∞)3, we compute

Ep(ψ,ψ)
Lp(ψ)

=
(a− b)2 + (b− c)2

a2 log a2 + 2b2 log 2b2 + h(p)
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where

h(p) =
c2 log c2

1 − p
− 4 − 3p

1 − p
n(p) log n(p)

and n(p) = µp(ψ2) = (1−p)a2+(2−2p)b2+c2

4−3p . As

h′(p) =
n(p)

(1 − p)2

(
c2

n(p)
log

c2

n(p)
− c2

n(p)
+ 1

)
� 0, (4.8)

it follows that p �→ αp is non-increasing as desired.

The second step is to show the strict monotonicity. This is equivalent to
the existence, for each q ∈ (0, 1/2) ∪ (1/2, 1), of a positive number ε such
that αp < αq for q < p < q+ ε. We fix q ∈ (0, 1/2)∪ (1/2, 1) and choose, by
Theorem 2.1, a positive non-constant vector ψ = (a, b, c) such that

b = a− 2αqa log a
a+c
2 = b− 2αqb log b

b = c− 2αq

1−q c log c
(1 − q)(a2 + 2b2) + c2 = 4 − 3q

Obviously, the assumption that ψ is non-constant implies c �= 1. Let h be
the function defined above. By (4.8), we have h′(q) = c2 log c2−c2+1

(1−q)2 > 0 and,
hence, we can choose ε > 0 such that

∀q < p < q + ε, αq =
Eq(ψ,ψ)
Lq(ψ)

>
Ep(ψ,ψ)
Lp(ψ)

� αp. �

Proof of Theorem 4.3. — The proof of whether the identity αp = λp/2
holds contains two steps. First, we prove that αp < λp/2 if p ∈ (0, 3/4).
Second, we show that αp = λp = 1/2 when p ∈ [3/4, 1]. For the first step,
we use the following lemma whose straightforward proof is omitted.

Lemma 4.4. — Let µ be a probability measure on a finite set. If f =
1 + εg with µ(g) = 0 and ‖g‖2 � 1 then

L(f)= µ

(
|f |2 log

|f |2
µ(|f |2)

)
= 2‖g‖2

2ε
2+

2
3
µ(g3)ε3−

(
1
2
‖g‖4

2 +
1
6
‖g‖4

4

)
ε4+O(ε5)

where O is uniform overall such functions g.

The chain in Theorem 4.3 has eigenvalues 1, 0,−p with associated eigen-
vectors ψ0 ≡ 1, ψ1 = (1, 0,−1), ψ2 = (1,−p, 1). The vectors ψ1, ψ2 are
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not normalized and ‖ψ1‖2
2 = p/(1 + p), ‖ψ2‖2

2 = p. Set f = 1 + εg with
εg = xψ1 + yψ2,

ε = ‖xψ1 + yψ2‖2 =

√
x2p

1 + p
+ y2p.

Observe that

Ep(f, f) =
x2p

1 + p
+ y2p(1 + p).

Now, Lemma 4.4 yields

Lp(f) = 2
(

x2p

1 + p
+ y2p

)
+

2p
3(1 + p)

(3x2y + (1 − p2)y3)

−1
2

(
x2p

1 + p
+ y2p

)2

− p

6(1 + p)
(x4 + 6x2y2 + (1 + p3)y4)

+O

((
x2p

1 + p
+ y2p

)5/2
)

= 2Ep(f, f) − 2p2y2 +
2px2y

1 + p
−

(
p2

2(1 + p)2
+

p

6(1 + p)

)
x4

+
2p(1 − p)y3

3
− x2y2p−

(
p2

2
+
p(1 + p3)
6(1 + p)

)
y4

+O

((
x2p

1 + p
+ y2p

)5/2
)

= 2Ep(f, f) − 2
(
py − x2

2(1 + p)

)2

+
(3 − 4p)x4

6(1 + p)
+

2p(1 − p)y3

3

−x2y2p−
(
p2

2
+
p(1 + p3)
6(1 + p)

)
y4 +O

((
x2p

1 + p
+ y2p

)5/2
)

Letting y = x2

2p(1+p) gives

Lp(f) = 2Ep(f, f) +
(3 − 4p)x4

6(1 + p)
+O(x5).

Hence, for each p ∈ (0, 3/4), we may choose x so small that

Lp(f) > 2Ep(f, f).

This implies αp � Ep(f, f)/Lp(f) < 1/2 = λp/2.
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The monotonicity of αp is proved as in the case of Theorem 4.2. Namely,
we let Ep be the Dirichlet form associated to Kp and Lp be the quantity
defined in (1.3) with respect to µp. For any non-constant and non-negative
vector ψ = (a, b, c), we have

Ep(ψ,ψ)
Lp(ψ)

=
(a− b)2 + (b− c)2

a2 log a2 + c2 log c2 + h(p)
,

where h : (0, 1) → (0,∞) is defined by

h(p) =
2
p
b2 log b2 − 2 + 2p

p
n(p) log n(p),

and n(p) = µp(ψ2) = p(a2+c2)+2b2

2+2p . We have

h′(p) = −2n(p)
p2

(
b2

n(p)
log

b2

n(p)
− b2

n(p)
+ 1

)
� 0. (4.9)

This implies that, for fixed ψ, Ep(ψ,ψ)/Lp(ψ) is non-decreasing in p and,
by the definition of αp, so is αp.

To prove strict monotonicity on (0, 3/4) we show that for each q ∈
(0, 3/4), there exists ε > 0 such that αp < αq when q − ε < p < q. To see
this, let ψ = (a, b, c) be the non-constant vector solving the Euler-Lagrange
equations (2.1), that is,

2αqa log a = a− b
2αqc log c = c− b
2αqb log b = q(b− (a+ c)/2)
q(a2 + c2) + 2b2 = 2(1 + q).

By Lemma 2.6, if b = 1, then a = c = 1, which contradicts the assumption
that ψ is non-constant. This implies that b �= 1 and hence, by (4.9), h′(q) =
− 2

q2 (b2 log b2 − b2 + 1) < 0. Therefore, we may choose ε > 0 such that

∀q − ε < p < q, αq =
Eq(ψ,ψ)
Lq(ψ)

>
Ep(ψ,ψ)
Lp(ψ)

� αp. �

The second step in the proof of Theorem 4.3 consists in proving Lemma
4.5 and 4.6 below.

Lemma 4.5. — Let Kp, µp be as in Theorem 4.3 and assume that p ∈
[3/4, 1]. Then, for any β � 1/2, the corresponding equation (2.2) has no
non-constant positive solutions.
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Proof. — We let ψ = (a, b, c) be a potential positive non-constant solu-
tion of (2.2) normalized by ‖ψ‖2 = 1. This means that (a, b, c) solves

2βa log a = a− b
2βc log c = c− b
2βb log b = p(b− (a+ c)/2)
p(a2 + c2) + 2b2 = 2(1 + p).

(4.10)

By symmetry, we can assume that a � c. Our first step is to show that we
cannot have a = c. Indeed, assume that a = c. Then

2β log a = 1 − b/a, 2β log b = p(1 − a/b).

Subtracting the second equation from the first yields w(b/a, β, p) = 0 with

w(t, β, p) = 2β log t− t+ pt−1 + 1 − p.

As w(1, β, p) = 0 and

∂w

∂t
(t, β, p) = 2βt−1 − 1 − pt−2 = −(βt−1 − 1)2 + (β2 − p)t−2

is negative if β ∈ (0, 1/2] and p ∈ (1/4, 1], we conclude that we must have
a = b. This contradicts the hypothesis that ψ = (a, b, c) is not constant.

From now on we thus assume that a > c and set s = c/a ∈ (0, 1). From
the first and second equations in (4.10), we deduce

b

c
= 2β

log s
s− 1

.

From the second and third equations in (4.10), we obtain

b

c
− 2β log

b

c
+ (p− 1) − p

2

(
1 +

1
s

)
c

b
= 0.

Using these two equations to eliminate b/c we find that s = c/a is solution
of

V (s, β, p) = 0

where

V (t, β, p) = −2β log(2β) + (p− 1) + 2β
(

log t
t− 1

− log
log t
t− 1

)
+
p(t−1 − t)
4β log t

(4.11)
for t ∈ (0, 1) and, by continuity,

V (1, β, p) = 2β(1 − log 2β) − p

2β
+ p− 1.
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Lemma 4.6 below shows that for p ∈ [3/4, 1] and β ∈ (0, 1/2] the equation

V (s, β, p) = 0

has no solutions in (0, 1). This finishes the proof of Lemma 4.5. �

Lemma 4.6. — The function V : (0,∞)3 → R defined above has the
following properties.

(i) V (t, β, p) = V (1/t, β, p).

(ii) For fixed t, p ∈ (0,∞)2, the function β �→ V (t, β, p) is increasing on
the interval (0, 1/2].

(iii) For (t, β, p) ∈ (0,∞) × (0, 1/2] × [3/4, 1], V (t, β, p) � 0 with equality
only if t = 1 and β = 1/2.

(iv) For (t, p) ∈ (0,∞) × (0, 3/4) and β ∈
(
0,

√
p/3

]
, V (t, β, p) < 0.

Proof. — Part (i) is obvious by a direct computation. Using (i), it suffices
to prove (ii) for t ∈ (0, 1]. The case t = 1 is clear. For t ∈ (0, 1) we have

∂V

∂β
(t, β, p) = −2 log(2β) + 2

(
log t
t− 1

− log
log t
t− 1

− 1
)

+
p(t− t−1)
4β2 log t

.

For (t, β, p) ∈ (0, 1) × (0, 1/2] × (0,∞), the first and last term are clearly
nonnegative. The middle term is positive because the function t �→ (t −
1)−1 log t is decreasing on (0, 1) with value in (1,∞) and the function t �→
t− log t is increasing on (1,∞).

Part (iii) and (iv) are more difficult. A simple computation shows that
for (β, p) ∈ (0, 1/2] × (0,∞) we have

V (1, β, p) � 0

with equality only if β = 1/2. Observe that for any t ∈ (0,∞), the function
p �→ V (t, 1/2, p) is decreasing. Thus, using (i) and (ii), it suffices to prove
(iii) and (iv) simultaneously with p ∈ (0, 3/4], β =

√
p/3 and t ∈ (0, 1].

That is, it remains to show that, for fixed p ∈ (0, 3/4],

V (t) = V (t,
√
p/3, p) = −

√
p/3 log(4p/3) + p− 1

+

√
4p
3

(
log t
t− 1

− log
log t
t− 1

+
3(t−1 − t)

8 log t

)
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satisfies V (t) < 0 on (0, 1). As V (1) � 0 with equality only if p = 3/4, it
suffices to show that V ′(t) > 0 on (0, 1). We compute√

3
4p
V ′(t) =

(
1 − t− 1

log t

) (
t− 1 − t log t
t(t− 1)2

)
+

3
8

(
t2 − 1 − (t2 + 1) log t

(t log t)2

)
=

(1 − t)3

(t log t)2
(W1(t) +W2(t))

with

W1(t) = (1 − t)−3

(
log t
t− 1

− 1
) (

1 − t
log t
t− 1

)
(t log t)

W2(t) =
3
8
(1 − t)−3

(
t2 − 1 − (t2 + 1) log t

)
.

To finish the proof of (iii) and (iv), we will show that all the coefficients
of the Taylor series of W1 + W2 at t = 1 are nonnegative. Namely, observe
that W1(t) + W2(t) =

∑∞
0 ck(1 − t)k where the series converges for each

t ∈ (0, 1) and ck = dk + ek + fk with

dk =
∑

cn,m�0
n+m=k

−1
(n+ 2)(m+ 1)(m+ 2)

ek =
∑

cn,m,��0
n+m+�=k−1

1
(n+ 2)(m+ 1)(m+ 2)(:+ 1)(:+ 2)

fk =
3[(k + 1)(k + 2) + 2]

8(k + 1)(k + 2)(k + 3)
.

Note that for k � 0,

dk+1 − dk =
k∑

m=1

1
(k −m+ 3)(k −m+ 2)(m+ 1)(m+ 2)

� 0.

This implies

ek =
k−1∑
#=0

−dk−#−1

(:+ 1)(:+ 2)
� − k

k + 1
dk.

A simple computation shows that ((k + 1)fk)k�0 is an increasing sequence
and, hence,

fk +
dk

k + 1
=

(k + 1)fk + dk
k + 1

� 1
k + 1

(f0 + d0) = 0.
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Therefore, ck � 0 for k � 0 as desired. �

The following corollary is another useful application of Lemma 2.6 and
4.6 in bounding αp.

Corollary 4.7. — For p ∈ (0, 1], let Kp be the Markov kernel in The-
orem 4.3 with the associated logarithmic Sobolev constant αp. Then αp sat-
isfies (√

p

3
∨ cp

)
� αp �

(
p− 1
log p

∧ 1
2

)
,

where s ∧ t = min{s, t}, s ∨ t = max{s, t} and, for 0 < p � 1, cp is the
unique zero of the identity 2x = pe(1−p)/(2x) with x > 0.

Figure 9. — These curves display in order from above the upper bound,

αp and the lower bound in Corollary 4.7.

The curve for αp shows a numerical approximation

Proof of Corollary 4.7. — By Theorem 4.3, both inequalities are obvi-
ously true for p ∈ [3/4, 1]. In the case p ∈ (0, 3/4), the upper bound of αp

is immediately from Theorem 1.1, Theorem 1.4 and Corollary 2.4, where
Theorem 1.4 uses the projection map p(1) = p(3) = 0 and p(2) = 1.

For the lower bound of αp, since αp < λp/2 = 1/2 for p ∈ (0, 3/4), there
exists a positive non-constant vector ψ = (a, b, c) solving the Euler-Lagrange
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equations in (2.1), that is,
b = a− 2αpa log a = c− 2αpc log c
(a+ c)/2 = b− (2αp/p)b log b
p(a2 + c2) + 2b2 = 2(1 + p).

(4.12)

On one hand, Lemma 4.6 (iv) implies that αp >
√
p/3, otherwise a = b = c.

On the other hand, in the notation of Lemma 2.6 with β = 2αp, it is
clear that a, c ∈ {t1(b), t2(b)}. Observe that t1(b) �= 1. Otherwise, the third
identity in (4.12) implies a = b = c = 1. Hence, t1(b) < 1. As a consequence
of Lemma 2.6, if a �= c, then a + c = t1(b) + t2(b) � 2e1/(2αp)−1. If a = c,
we must have a = t2(b), since the assumption a = t1(b) < 1 and the fact
2αp � 1 give b < 1, which contradicts the third identity of (4.12). In this
case, we have

a+ c = 2t2(b) > t1(b) + t2(b) � 2e1/(2αp)−1.

Note that, for β > 0, the map t �→ t − βt log t with domain (0,∞) has its
maximum βe1/β−1. This gives

b− (2αp/p)b log b � (2αp/p)ep/(2αp)−1.

Using the second identity of (4.12) and the above two inequalities, we get
2αp � pe(1−p)/2αp . Hence, cp � αp since the map t �→ t − pe(1−p)/t is
increasing for t > 0. This proves the lower bound. �

Next, we study one of the most natural chain on a 3-point stick where
transitions are to the left with probability q = 1 − p and to the right with
probability p. For p �= q, we show that αp < λp/2 and compute αp. The
case p �= 1/2 and the asymmetric two-point space are the only cases in this
paper where αp < λp/2 and we are able to compute αp. Indeed, the proof
of the following theorem is rather miraculous as it uses a crude comparison
technique to achieve an exact computation!

Theorem 4.8. — Fix 0 < p < 1 and q = 1 − p. Let Kp : {1, 2, 3} ×
{1, 2, 3} �→ [0, 1] be the Markov kernel defined by

Kp =

 q p 0
q 0 p
0 q p


with stationary distribution

µp =
(
cp, cp(p/q), cp(p/q)2

)
, cp =

(
1 + (p/q) + (p/q)2

)−1
.
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Then λp = 1 −√
pq and

αp =
p− q

2(log p− log q)

with minimizer
ψ = (p/q, 1, q/p).

Proof. — We compare this chain with another 3-point chain,

K̃p =

 q p 0
q/2 1/2 p/2
0 q p

 (4.13)

whose stationary distribution is

µ̃p =
(
c̃p, 2c̃p(p/q), c̃p(p/q)2

)
, c̃p =

(
1 + 2(p/q) + (p/q)2

)−1
.

The Dirichlet form associated with (K̃p, µ̃p) is

Ẽp(u, u) = c̃pp
(
(u1 − u2)2 + (p/q)(u2 − u3)2

)
.

The Dirichlet form associated with (Kp, µp) is

Ep(u, u) = cpp
(
(u1 − u2)2 + (p/q)(u2 − u3)2

)
.

Hence
Ẽp = (c̃p/cp)Ep and (c̃p/cp)µp � µ̃p.

By a classical comparison technique (see, e.g., [13, Lemma 3.4]), it follows
that

αp � α̃p. (4.14)

Next, on {0, 1}2, we consider the product chain (with weights (1/2, 1/2))
of two copies of 2-point asymmetric chains in Theorem 2.2. In details, tran-
sitions in this product chain have probability 0 except

K((0, 0), (0, 0)) = q,K((1, 1), (1, 1)) = p,K((0, 0), (0, 1)) = K((0, 0), (1, 0))
= p/2,

K((1, 0), (1, 1)) = K((0, 1), (1, 1)) = p/2,K((1, 1), (0, 1)) = K((1, 1), (1, 0))
= q/2,

and
K((0, 1), (0, 0)) = K((1, 0), (0, 0)) = q/2,
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K((0, 1), (0, 1)) = K((1, 0), (1, 0)) = 1/2.

By Theorem 1.3 and Theorem 2.2, its logarithmic Sobolev constant is

p− q

2 log(p/q)
.

This chain projects to the 3-point space {1, 2, 3} using the mapping

p : {0, 1}2 → {1, 2, 3}, (x, y) �→ 1 + |x| + |y|

and the projected chain is the chain K̃p considered above. Hence, by Theo-
rem 1.4,

α̃p � p− q

2(log p− log q)
.

Therefore, by (4.14),

αp � p− q

2(log p− log q)
.

To show that this is in fact an equality, it suffices to find a good test function.
Let ψ = (p/q, 1, q/p). Then

Ep(ψ,ψ)
Lp(ψ)

=
p− q

2(log p− log q)
.

Thus,
p− q

2(log p− log q)
� αp � p− q

2(log p− log q)
,

proving Theorem 4.8. �

Remark 4.9. — Note that the proof of Theorem 4.8 also determines the
logarithmic Sobolev constant of the Markov kernel K̃p defined in (4.13),
which is α̃p = p−q

2 log(p/q) .

5. Some 4-point chains

Theorem 1.4 is a useful technique to study the logarithmic Sobolev con-
stant. Markov chains in Figure 8 and Theorem 4.8 are typically examples.
This section concentrates on some 4-point chains. Most of the results use
Theorem 1.4 and the computation done for 3-stick chains in the previous
section. Table 2 lists all results of 4-point chains discussed in this paper.
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Theorem 5.1. — Let p, q ∈ (0, 1] and Kp,q : {1, 2, 3, 4} × {1, 2, 3, 4} �→
[0, 1] be a Markov kernel defined by

Kp,q =


1 − p p/2 0 p/2
q/2 1 − q q/2 0
0 p/2 1 − p p/2
q/2 0 q/2 1 − q


with stationary distribution

µp,q =
(

q

2(p+ q)
,

p

2(p+ q)
,

q

2(p+ q)
,

p

2(p+ q)

)
.

Then 2αp,q = λp,q = min{p, q}.

Remark 5.2. — Theorem 4.1, 4.3 and 5.1 illustrate the fact that α and λ
behave differently under collapse. Observe that if Kp,1 is the Markov kernel
defined in Theorem 5.1, then collapsing states 2 and 4 gives K1−p from
Theorem 4.1 whereas collapsing states 1 and 3 gives Kp from Theorem 4.3.
As a consequence of Theorem 4.1 and 4.3, the identity α = λ/2 is preserved
for all 0 < p � 1 in the former collapse but not for all p in the latter case.
The main reason is that the eigenvector of Kp,1 associated to the spectral
gap is f = (f(1), f(2), f(3), f(4)) = (1, 0,−1, 0). Hence, the collapse of 2
and 4 preserves the spectral gap and, consequently by Theorem 1.4, the
identity α = λ/2. However, the collapse of 1 and 3 enlarges the spectral gap
from p to 1. In this case, the only contribution of Theorem 1.4 is to provide
a lower bound on the logarithmic Sobolev constant for the collapsed chain.

Theorem 5.3. — For p ∈ [0, 1), let Kp be a Markov chain on the set
{1, 2, 3, 4} defined by

Kp =


0 1

2 0 1
2

1
2 0 1

2 0
0 1−p

2 p 1−p
2

1
2 0 1

2 0


with stationary distribution

µp =
(

1 − p

4 − 3p
,

1 − p

4 − 3p
,

1
4 − 3p

,
1 − p

4 − 3p

)
.

Then the spectral gap is equal to

λp = 1 − p− 1 +
√
p2 + 1

2
,

and the logarithmic Sobolev constant satisfies αp = λp/2 if and only if p ∈
{0, 1/2}.
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Table 2. — The spectral gap λ and the log-Sobolev constant α

of some Markov chains on the 4 point space
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Theorem 5.4. — For p, q ∈ (0, 1], consider the Markov kernel Kp,q de-
fined by

Kp,q =


1 − p p/2 0 p/2
q/2 0 q/2 1 − q
0 p/2 1 − p p/2
q/2 1 − q q/2 0


with stationary distribution

µp,q =
(

q

2(p+ q)
,

p

2(p+ q)
,

q

2(p+ q)
,

p

2(p+ q)

)
.

Then λp,q = p and αp,q = λp,q/2 if and only if p/q � 4/3. In particular, if
p/q > 4/3, then αp,q = pαq/p, where αr is the log-Sobolev constant of the
Markov kernel Kr in Theorem 4.3, that is,

Kr =

 0 1 0
r/2 1 − r r/2
0 1 0

 .

Theorem 5.5. — For 0 < p � q � 1, let Kp,q be a Markov kernel
defined by

Kp,q =


1 − q p/2 q − p p/2
1/2 0 1/2 0
q − p p/2 1 − q p/2
1/2 0 1/2 0


with stationary distribution µp,q = 1

2(1+p) (1, p, 1, p). Then λp,q = min{2q −
p, 1} and αp,q = min{αp, λp,q/2}, where αp is the log-Sobolev constant of
Kp in Theorem 4.3.

Furthermore, αp,q = λp,q/2 if and only if (p, q) ∈ D1 ∪D2, where

D1 = {(p, q) : 0 � p < 3/4, p � q � αp + p/2},

and
D2 = {(p, q) : 3/4 � p � 1, p � q � 1}.

Proof of Theorem 5.1. — Due to the symmetry of Kp,q, we may assume
that p � q. It is easy to see that Kp,q is reversible and has eigenvalues
{1, 1 − p, 1 − q, 1 − p− q} with corresponding eigenvectors

1
1
1
1

 ,


1
0
−1
0

 ,


0
1
0
−1

 ,


p
−q
p
−q

 . (5.1)
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This implies that λp,q = p.

For the identity αp,q = λp,q/2, we will prove, by contradiction, the
stronger result that when αp,q � λp,q/2, there is no positive non-constant
solution for the Euler-Lagrange equation

(I −Kp,q)ψ = 2αp,qψ log(ψ/‖ψ‖2). (5.2)

Assume the converse, that is, ψ = (a, b, c, d) is a positive non-constant
solution for this system. Equivalently,

b+ d = 2v(2αp,q/p, a) = 2v(2αp,q/p, c)
a+ c = 2v(2αp,q/q, b) = 2v(2αp,q/q, d)
q(a2 + c2) + p(b2 + d2) = 2(p+ q)

where v(β, t) = t − βt log t. We claim that a = c and b = d. To show this,
observe first that the normalizing equation and the convexity of the map
t �→ t2 imply that a + c < 2 or b + d < 2. When a + c < 2, the first two
equations imply that

b+ d

2
=

v(2αp,q/p, a) + v(2αp,q/p, c)
2

� v

(
2αp,q

p
,
a+ c

2

)
< 1,

where the first inequality applies the concavity of the function v(2αp,q/p, ·)
and the second inequality uses the fact 2αp,q/p � 1. Similarly, we have
a + c < 2 when b + d < 2. Whatever, it is always the case a + c < 2 and
b + d < 2 and, as a consequence of Lemma 2.6, we must have a = c and
b = d.

The above observation implies that Kp,q and the Markov chain in Corol-
lary 2.4 with q1 = p and q2 = q have the same logarithmic Sobolev constant,
that is,

αp,q =
{ p−q

log p−log q if p < q

p if p = q

This, however, contradicts Theorem 1.1, which says αp,q � λp,q/2, since

s− t

log s− log t
> s, ∀ 0 < s < t.

Therefore, no non-constant vector attains αp,q and, by Theorem 2.1, we
must have αp,q = λp,q/2. �
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Proof of Theorem 5.3. — Note that Kp is reversible and has eigenvalues
{1, 0, 1

2 (p− 1 ±
√
p2 + 1)} with corresponding eigenvectors

1
1
1
1

 ,


0
1
0
−1

 ,


p−1(1 − p±

√
p2 + 1)

1
p−1(p− 1)(1 + p±

√
p2 + 1)

1

 ∀p �= 0.

Hence, the spectral gap is equal to 1− 1
2 (p−1+

√
p2 + 1) and the associated

eigenvector is

ψ =


p−1(1 − p+

√
p2 + 1)

1
p−1(p− 1)(1 + p+

√
p2 + 1)

1

 .

To see whether αp = λp/2, observe first that the case p = 0 is the
simple random walk on the 4-cycle and the desired identity is known (see
the introduction and [10]). For p = 1/2, we let K be the Markov kernel of
the simple random walk on the 5-cycle with spectral gap λ and logarithmic
Sobolev constant α. As a consequence of Theorem 3.1, one has

λ1/2 = λ = 2α.

It is a simple exercise to show that EK1/2(f, f) = EK(gf , gf ) and Lµ1/2(f) =
LU (gf ) for all f = (a, b, c, d) and gf = (a, b, c, c, d), where U is the uniform
probability measure on the 5-cycle and Lµ1/2 ,LU are quantities defined
in (1.3) with respect to µ1/2 and U . This implies α � α1/2, and hence
α1/2 = λ1/2/2.

It remains to consider the case p /∈ {0, 1/2}. Note that, for p ∈ [0, 1),
the chain given in Theorem 4.2 is collapsed from Kp through the projection
map p : {1, 2, 3, 4} �→ {1, 2, 3} defined by

p(1) = 1, p(2) = p(4) = 2, p(3) = 3.

Since ψ(2) = ψ(4), both Markov kernels have the same spectral gap and,
by Theorem 1.4 and 4.2, we have αp < λp/2 if p /∈ {0, 1/2}. �

Proof of Theorem 5.4. — It is an easy exercise to show that Kp,q is
reversible and has eigenvalues {1, 1 − p, q − 1, 1 − p − q} with eigenvectors
in (5.1), and hence λp,q = p.

For p/q � 4/3, we prove αp,q = λp,q/2 by contradiction. Assume the
inverse αp,q < λp,q/2 and let, by Theorem 2.1, ψ = (a, b, c, d) be a positive
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non-constant solution of the following equations.
b+ d = 2v(2αp,q/p, a) = 2v(2αp,q/p, c)
b− (1 − q)d− q(a+c

2 ) = 2αp,qb log b
d− (1 − q)b− q(a+c

2 ) = 2αp,qd log d
q(a2 + c2) + p(b2 + d2) = 2(p+ q)

(5.3)

where v(β, t) = t−βt log t. Note that the last equation implies that a+c < 2
or b+ d < 2 and, by the first two identities, we have

b+ d

2
=

v(2αp,q/p, a) + v(2αp,q/p, c)
2

� v

(
2αp,q

p
,
a+ c

2

)
< 1

if a+ c < 2. Combining both cases, one always has b+d < 2. Note also that
the second and third identities in (5.3) implies that

v

(
2αp,q

2 − q
, b

)
= v

(
2αp,q

2 − q
, d

)
> 0.

Then, by Lemma 2.6, the fact 2αp,q/(2 − q) � p/(2 − q) � 1 gives b = d.

Let Kr, K̃r be the Markov kernels in Theorem 4.3 and 4.1 with associated
Dirichlet forms Er, Ẽr and let Lr, L̃r be the quantities defined in (1.3) with
respect to the stationary distributions of Kr and K̃r. Then the conclusion
of the previous paragraph implies that

∀p � q, αp,q = q × inf

{
Ẽ1−p/q(f, f)

L̃1−p/q(f)
: L̃1−p/q(f) > 0

}
=

p

2

and

∀q < p � 4q/3, αp,q = p× inf
{Eq/p(f, f)

Lq/p(f)
: Lq/p(f) > 0

}
=

p

2
.

This contradicts the assumption αp,q < λp,q/2 = p/2 and, hence, we must
have αp,q = λp,q/2.

For the case p/q > 4/3, Theorem 4.3 implies that

αp,q � p× inf
{Eq/p(f, f)

Lq/p(f)
: Lq/p(f) > 0

}
= pαq/p <

p

2
=

λp,q
2

.

Then, by Theorem 2.1, the Euler-Lagrange equations in (5.3) must has a
positive non-constant solution, say ψ = (a, b, c, d), and by the discussion
after (5.3), we have b = d. This means that the first inequality above is an
equality. �
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Proof of Theorem 5.5. — Obviously, Kp,q is reversible and has eigenval-
ues {1, 1 + p− 2q, 0,−p} with associated eigenvectors

1
1
1
1

 ,


1
0
−1
0

 ,


0
1
0
−1

 ,


p
−1
p
−1

 .

Thus, λp,q = min{2q − p, 1}. Let αp be the log-Sobolev constant associated
to Kp as defined in Theorem 4.3. On one hand, if αp,q = λp,q/2, then

αp,q � inf
{
E(f, f)
L(f)

: f = (a, b, a, d)
}

= αp.

This implies that αp,q = min{λp,q/2, αp}. On the other hand, as a conse-
quence of Theorem 2.1, if ψ = (a, b, c, d) is a minimizer for αp,q, then ψ is
positive and non-constant and its entries must satisfy

a+ c = 2v(2αp,q, b) = 2v(2αp,q, d)
qa− (q − p)c− p( b+d

2 ) = 2αp,qa log a
qc− (q − p)a− p( b+d

2 ) = 2αp,qc log c
a2 + c2 + p(b2 + d2) = 2 + 2p

where v(β, t) = t−βt log t. Note that the last equation implies that a+c < 2
or b+ d < 2. By the concavity of v(2αp,q, ·), if b+ d < 2, then

a+ c

2
=

v(2αp,q, b) + v(2αp,q, d)
2

� v

(
2αp,q,

b+ d

2

)
< 1,

where the last inequality also uses the fact 2αp,q � λp,q � 1. Hence, we
always have a + c < 2. Observe that the second and the third equalities
above imply

v

(
2αp,q

2q − p
, a

)
= v

(
2αp,q

2q − p
, c

)
> 0.

Then Lemma 2.6 and the fact 2αp,q/(2q − p) � 2αp,q/λp,q � 1 give a = c.
In this case, the log-Sobolev constant αp,q is just equal to αp. This finishes
the proof of the first part.

The second part is easily proved by considering the two cases p ∈ (0, 3/4)
and p ∈ [3/4, 1]. We omit the details. �
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pour des châınes de Markov finies, In Séminaire de Probabilités XXXI, volume
1655 of Lecture Notes in Math., pages 136–167, Springer, Berlin (1997).
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