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Discrete complex analysis – the medial graph
approach

Alexander I. Bobenko and Felix Günther

Abstract
We discuss a new formulation of the linear theory of discrete complex analysis on planar

quad-graphs based on their medial graphs. It generalizes the theory on rhombic quad-graphs
developed by Duffin, Mercat, Kenyon, Chelkak and Smirnov and follows the approach on
general quad-graphs proposed by Mercat. We provide discrete counterparts of the most
fundamental objects in complex analysis such as holomorphic functions, differential forms,
derivatives, and the Laplacian. Also, we discuss discrete versions of important fundamental
theorems such as Green’s identities and Cauchy’s integral formulae. For the first time,
Green’s first identity and Cauchy’s integral formula for the derivative of a holomorphic
function are discretized.

1. History

Discrete harmonic functions on the square lattice were studied by a number of authors in the
1920s, including Courant, Friedrichs, and Lewy [5]. Discrete holomorphic functions on the square
lattice were studied by Isaacs [10]. He proposed two different definitions for holomorphicity. One
of them was reintroduced and further investigated by Lelong-Ferrand [8]. She developed the theory
to a level that allowed her to prove the Riemann mapping theorem using discrete methods [13].
Duffin also studied discrete complex analysis on the square grid [6], and he was the first who
extended the theory to rhombic lattices [7]. Kenyon [12], and Chelkak and Smirnov [3] resumed
the investigation of discrete complex analysis on rhombic lattices, or, equivalently, isoradial graphs.

Mercat extended the theory from domains in the complex plane to discrete Riemann surfaces,
first considering cellular decompostions into rhombi [14] and later generalizing the notions to
general quadrilaterals [16]. The motivation for this theory of discrete Riemann surfaces is derived
from statistical physics, in particular, the Ising model. Mercat defined a discrete Dirac operator
and discrete spin structures, and he identifies criticality in the Ising model with rhombic quad-
graphs.

Some two-dimensional discrete models in statistical physics exhibit conformally invariant prop-
erties in the thermodynamical limit. Such conformally invariant properties were established by
Chelkak and Smirnov for the Ising model [4], and by Kenyon for the dimer model on a square
grid [11]. In both cases, linear theories of discrete analytic functions on regular grids were highly
important. Kenyon, Chelkak and Smirnov obtained important analytic results [12, 3], which were
instrumental in the proof that the critical Ising model is universal [4].

Important non-linear discrete theories of complex analysis involve circle packings, or, more
generally, circle patterns. Rodin and Sullivan first proved that the Riemann mapping of a complex
domain to the unit disk can be approximated by circle packings [17]. A similar result for isoradial
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circle patterns, even with irregular combinatorics, is due to Bücking [2]. The first author, Mercat
and Suris showed how the linear theory of discrete holomorphic functions on quad-graphs can
be obtained by linearizing the theory on circle patterns: Discrete holomorphic functions describe
infinitesimal deformations of circle patterns [1].

2. Organization of the paper

Our setup is a strongly regular cellular decompostion of the complex plane into quadrilaterals,
called quad-graph, which we assume to be bipartite. Basic notations for quad-graphs used in this
paper are introduced in Section 3. Of crucial importance for our work is the medial graph of a quad-
graph in Section 4. It provides the connection between the notions of discrete derivatives of Kenyon
[12], Mercat [15], and Chelkak and Smirnov [3], extended from rhombic to general quad-graphs,
and discrete differential forms and discrete exterior calculus. We discuss the discrete derivatives
in Sections 5 and 7. Concerning discrete differential forms in Section 6, we get essentially the
same definitions as Mercat proposed in [16]. However, our notation of discrete exterior calculus
in Sections 8, 9, and 10 is slightly more general and shows its power when considering integral
formulae. In Section 11, we discuss the discrete Laplacian introduced by Mercat [16]. In particular,
we prove discrete Green’s identities and recover the factorization of the discrete Laplacian known
from the rhombic case [12, 15]. We formulate discrete Cauchy’s integral formulae for discrete
holomorphic functions and their discrete derivatives in Section 12.

To keep the paper short, we highlight just the most instructive proofs, and omit the others.
However, the skipped proofs are usually elementary calculations or immediate consequences of
previous statements. The proofs and a more detailed discussion of discrete complex analysis on
planar quad-graphs can be found in the dissertation of the second author [9]. There, we also
investigate discrete Green’s functions, prove their existence and the existence of discrete Cauchy’s
kernels, and provide several results concerning the asymptotics of these functions in the case of
certain parallelogram-graphs.

3. Bipartite quad-graphs

We consider a strongly regular and locally finite cellular decompostion of the complex plane C
into quadrilaterals, described by a bipartite quad-graph Λ. The sets of vertices, edges, and faces,
are denoted by V (Λ), E(Λ), and F (Λ), respectively. We refer to the maximal independent sets of
vertices of Λ as black and white vertices. Let Γ and Γ∗ be the graphs defined on the black and
white vertices where the edges are exactly the diagonals of faces of Λ. It is easy to see that Γ
and Γ∗ are dual to each other. For the ease of notation, we identify the vertices of Λ with their
corresponding complex values, and to oriented edges of Λ,Γ,Γ∗ we assign the complex numbers
determined by the difference of their two endpoints.

To Λ we associate its dual ♦ = Λ∗. In this paper, we look at ♦ in an abstract way, identifying
vertices or faces of ♦ with corresponding faces or vertices of Λ, respectively. However, in the
particular case that all quadrilaterals are parallelograms, it makes sense to place the vertices of ♦
at the centers of the parallelograms [9]. If a vertex v ∈ Λ is a vertex of a quadrilateral Q ∈ ♦, we
write Q ∼ v or v ∼ Q and call v and Q incident to each other. The vertices of Q are denoted by
b−, w−, b+, w+ in counterclockwise order, where b± ∈ Γ and w± ∈ Γ∗.

Definition 1. For a quadrilateral Q ∈ V (♦) ∼= F (Λ) we define

ρ(b−, b+) = ρ(b+, b−) := −iw+ − w−
b+ − b−

=: 1
ρ(w−, w+) = 1

ρ(w+, w−) .

Let ϕQ := arccos (Re (iρ(b−, b+))) be the angle under which the diagonal lines of Q intersect.

Figure 3.1 shows a finite bipartite quad-graph together with the notation for a single quadrilat-
eral Q and the star of a vertex v, i.e., the set of all faces incident to v.

In addition, we denote by ♦0 a connected subset of ♦. It is called simply-connected if the
corresponding set of cells in C is simply-connected. Its vertices induce subgraphs Λ0 of Λ, Γ0 of Γ,
and Γ∗0 of Γ∗. For simplicity, we always assume that the induced subgraphs are connected as well.
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Figure 3.1: Bipartite quad-graph with notations

4. Medial graph

Definition 2. The medial graph X of Λ is defined as follows. Its vertex set is given by all the
midpoints of edges of Λ, and two vertices are adjacent iff the corresponding edges belong to the
same face and have a vertex in common. The set of faces of X is in bijective correspondence with
V (Λ) ∪ V (♦): The vertices of a face Fv corresponding to v ∈ V (Λ) are the midpoints of edges of
Λ incident to v, and the vertices of a quadrilateral face FQ corresponding to Q ∈ V (♦) are the
midpoints of the four edges of Λ belonging to Q.

Any edge e of X is the common edge of two faces FQ and Fv for Q ∼ v, denoted by [Q, v].

Let Q ∈ V (♦) and v0 ∼ Q. Due to Varignon’s theorem, FQ is a parallelogram, and the complex
number assigned to the edge e = [Q, v0] connecting the midpoints of edges v0v

′
− and v0v

′
+ of Λ is

just half of e = v′+ − v′−. In Figure 4.1, showing Λ with its medial graph, the vertices of FQ and
Fv, v ∈ V (Λ), are colored gray.

v

Q

Figure 4.1: Bipartite quad-graph (dashed) with medial graph (solid)

For a subgraph ♦0 ⊆ ♦, we denote by X0 ⊆ X the subgraph of X whose edges are contained in
faces of ♦0. Note that the medial graph X corresponds to a (strongly regular and locally finite)
cellular decompostion of C in a canonical way. In particular, we can talk about a topological disk
in F (X0) and about a (counterclockwise oriented) boundary ∂X0.

Definition 3. For v ∈ V (Λ) and Q ∈ V (♦), let Pv and PQ be the closed paths on X connecting
the midpoints of edges of Λ incident to v and Q, respectively, in counterclockwise direction. In
Figure 4.1, their vertices are colored gray. We call Pv and PQ discrete elementary cycles.

5. Discrete derivatives of functions on the vertices of the quad-graph

In the classical theory, holomorphic functions (with nowhere-vanishing derivative) preserve an-
gles, and at a single point, lengths are uniformly scaled. This motivates the following definition of
discrete holomorphicity [16] that was also used previously in the rhombic setting.
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Definition 4. Let Q ∈ V (♦) and f a complex function on b−, w−, b+, w+. f is called discrete
holomorphic at Q if it satisfies the discrete Cauchy-Riemann equation

f(b+)− f(b−)
b+ − b−

= f(w+)− f(w−)
w+ − w−

.

For discrete holomorphicity, only the differences on Γ and Γ∗ matter. Hence, we should not
consider constants on V (Λ), but biconstants [15] determined by each a value on V (Γ) and V (Γ∗).
We call functions that are constant on V (Γ) and constant on V (Γ∗) biconstant.

Definition 5. Let Q ∈ V (♦), and let f be a complex function on b−, w−, b+, w+. The discrete
derivatives ∂Λf , ∂̄Λf are defined by

∂Λf(Q) :=
exp

(
−i
(
ϕQ − π

2
))

2 sin(ϕQ) · f(b+)− f(b−)
b+ − b−

+
exp

(
i
(
ϕQ − π

2
))

2 sin(ϕQ) · f(w+)− f(w−)
w+ − w−

,

∂̄Λf(Q) :=
exp

(
i
(
ϕQ − π

2
))

2 sin(ϕQ) · f(b+)− f(b−)
b+ − b−

+
exp

(
−i
(
ϕQ − π

2
))

2 sin(ϕQ) · f(w+)− f(w−)
w+ − w−

.

In the case of quadrilaterals whose diagonals intersect orthogonally, ϕQ = π/2, and ∂Λf, ∂̄Λf
are exactly defined as in [3]. They naturally discretize their smooth counterparts (∂x − i∂y) /2
and (∂x + i∂y) /2. In a general quadrilateral Q, we have to take the deviation (ϕz − π/2) from
orthogonality into account, and change the factors appropriately.

Proposition 6. Let ♦0 ⊆ ♦ and f be a discrete holomorphic function on V (Λ0).
(1) If f is purely imaginary or purely real, f is biconstant.
(2) If ∂̄Λf ≡ 0 ≡ ∂Λf , f is biconstant.

6. Discrete differential forms

We mainly consider two type of functions, functions f : V (Λ)→ C and functions h : V (♦)→ C.
An example for a relevant function on the quadrilateral faces is ∂Λf .

A discrete one-form ω is a complex function on the oriented edges of the medial graph X, and
a discrete two-form Ω is a complex function on the faces of X. The evaluations of ω at an oriented
edge e of X and of Ω at a face F of X are denoted by

∫
e
ω and

∫∫
F

Ω, respectively.
If P is a directed path of edges e1, e2, . . . , en of X, the discrete integral along P is defined as∫

P
ω =

∑n
k=1

∫
ek
ω. For closed paths P , we write

∮
P
ω instead. In the case that P is the boundary

of an oriented disk in X, we call it a discrete contour. The discrete integral of Ω over several faces
of X is defined similarly.

Definition 7. The discrete one-forms dz and dz̄ are given by
∫
e
dz = e and

∫
e
dz̄ = ē for any

oriented edge e of X. The discrete two-form Ω0 is defined by∫∫
F

Ω0 = −4iarea(F ).

Remark 8. Ω0 is the straightforward discretization of 2dz ∧ dz̄. It turns out later that several
discrete two-forms we are interested in are just defined on half of the faces of X and zero on the
other elements of F (X). In order to get results comparable to the classical theory after integration,
a factor of two enters in the definitions of Sections 8 and 9. Introducing Ω0 is a technical trick
that allows us to implement this factor of two just in Ω0. In local coordinates, we can perform our
calculations with Ω0 in the discrete setting exactly as we do with dz ∧ dz̄ in the smooth theory,
but integration of Ω0 gives twice the value dz ∧ dz̄ yields.

A discrete one-form ω is said to be of type ♦, if for any Q ∈ V (♦) there exist complex numbers
p, q, such that ω = pdz + qdz̄ on all edges e = [Q, vs], vs ∼ Q.

Definition 9. Let f : V (Λ)→ C, h : V (♦)→ C, ω a discrete one-form, and Ω a discrete two-form.
For any edge e = [Q, v] and any faces Fv, FQ of X corresponding to the vertex star of v ∈ V (Λ) or
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the Varignon parallelogram inside Q ∈ V (♦), we define the products fω, hω, fΩ, and hΩ by∫
e

fω : = f(v)
∫
e

ω and
∫∫
Fv

fΩ := f(v)
∫∫
Fv

Ω,
∫∫
FQ

fΩ := 0;

∫
e

hω : = h(Q)
∫
e

ω and
∫∫
Fv

hΩ := 0,
∫∫
FQ

hΩ := h(Q)
∫∫
FQ

Ω.

Lemma 10. Let Q ∈ V (♦) and f be a complex function on the vertices of Q. Then,

∂Λf(Q) = −1
4iarea(FQ)

∮
PQ

fdz̄ and ∂̄Λf(Q) = 1
4iarea(FQ)

∮
PQ

fdz.

Remark 11. The additional factor of 1/2 is due to the fact that in analogy to the smooth
setup, we should not multiply f(v) with dz (or dz̄), but by the arithmetic mean of f(v) and some
intermediate value f(Q) instead. Integrating fdz would then eliminate f(Q), so the choice of the
intermediate value does not matter.

7. Discrete derivatives of functions on the faces of the quad-graph

Inspired by Lemma 10, we can now define the discrete derivatives for complex functions on
V (♦). The reason for the additional factor of 1/2 remains the same.

Definition 12. Let v ∈ V (Λ) and h be a complex function defined on all quadrilaterals Qs ∼ v.
Then, the discrete derivatives ∂♦h, ∂̄♦h at v are defined by

∂♦h(v) := −1
4iarea(Fv)

∮
Pv

hdz̄ and ∂̄♦h(v) := 1
4iarea(Fv)

∮
Pv

hdz.

h is called discrete holomorphic at v if ∂̄♦h(v) = 0.

Note that in the rhombic case, our definition coincides with the one in [3]. As an immediate
consequence of the definition, we obtain a discrete Morera’s theorem.

Proposition 13. f : V (Λ)→ C or h : V (♦)→ C is discrete holomorphic if and only if
∮
P
fdz = 0

or
∮
P
hdz = 0, respectively, for all discrete contours P .

Definition 14. Let f1, f2 : V (Λ) → C and h1, h2 : V (♦) → C. Their discrete scalar products are
defined as

〈f1, f2〉 := − 1
2i

∫∫
F (X)

f1f̄2Ω0 and 〈h1, h2〉 := − 1
2i

∫∫
F (X)

h1h̄2Ω0,

whenever the right hand side converges absolutely.

Note that both discrete two-forms f1f̄2Ω0 and h1h̄2Ω0 are zero on half of the faces of X, making
the factor of two incorporated in Ω0 necessary.

Proposition 15. −∂♦ and −∂̄♦ are the formal adjoints of ∂̄Λ and ∂Λ, respectively. That is, if
f : V (Λ)→ C or h : V (♦)→ C is compactly supported,

〈∂Λf, h〉+ 〈f, ∂̄♦h〉 = 0 = 〈∂̄Λf, h〉+ 〈f, ∂♦h〉.

Proof. Using Lemma 10 and ∂♦h̄ = ∂̄♦h, we get

−2i〈∂Λf, h〉 − 2i〈f, ∂̄♦h〉 =
∑

Q∈V (♦)

h(Q)
∮
PQ

fdz̄ +
∑

v∈V (Λ)

f(v)
∮
Pv

h̄dz̄ =
∮
P

fh̄dz̄ = 0,

where P is a large contour such that fh̄ vanishes in a neighborhood of P . The second equation is
shown in the same way. �

Remark 16. In the work of Kenyon [12] and Mercat [15] on discrete complex analysis on rhombic
quad-graphs, the discrete differentials for functions on the vertices and the faces were constructed
in such a way that they are formal adjoints to each other.
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As in the rhombic setup [3], the discrete differentials commute in the following way:

Proposition 17. Let f : V (Λ) → C. Then, ∂♦∂̄Λf ≡ ∂̄♦∂Λf. In particular, ∂Λf is discrete
holomorphic if f is discrete holomorphic.

Remark 18. Note that even in the rhombic case, ∂Λ∂̄♦h 6= ∂̄Λ∂♦h for generic h : V (♦)→ C [3].

Proposition 19. Let ♦0 ⊆ ♦ be simply-connected. Then, for any discrete holomorphic function
h on V (♦0), there is a discrete primitive f :=

∫
h on V (Λ0), i.e., f is discrete holomorphic and

∂Λf = h. f is unique up to two additive constants on Γ0 and Γ∗0.

Proof. Since h is discrete holomorphic,
∮
P
hdz = 0 for any discrete contour P . Thus, hdz can

be integrated to a well-defined function fX on V (X) that is unique up to an additive constant.
Using that hdz is a discrete one-form of type ♦, we can construct a function f on V (Λ) such
that fX ((v + w) /2) = (f(v) + f(w)) /2 for any edge (v, w) of Λ. Given fX , f is unique up to an
additive constant.

In summary, f is unique up to two additive constants that can be chosen independently on Γ0
and Γ∗0. By construction, f satisfies

f(b+)− f(b−)
b+ − b−

= h(Q) = f(w+)− f(w−)
w+ − w−

on any quadrilateral Q. It follows that f is discrete holomorphic and ∂Λf = h. �

8. Discrete exterior derivative

Our notation of discrete exterior calculus is similar to the approach of Mercat in [14, 15, 16], but
differs in some aspects. The main differences are due to our different notation of multiplication of
functions with discrete one-forms, which allows us to define a discrete exterior derivative on a larger
class of discrete one-forms. It coincides with Mercat’s discrete exterior derivative in the case of
discrete one-forms of type ♦. In contrast, our definitions are based on a coordinate representation.

Definition 20. Let f : V (Λ)→ C and h : V (♦)→ C. We define the discrete exterior derivatives
df and dh as follows:

df := ∂Λfdz + ∂̄Λfdz̄ and dh := ∂♦hdz + ∂̄♦hdz̄.

Let ω be a discrete one-form. Around faces Fv and FQ of X corresponding to vertices v ∈ V (Λ)
and Q ∈ V (♦), respectively, we write ω = pdz+ qdz̄ with functions p, q defined on faces Qs ∼ v or
vertices b±, w± ∼ Q, respectively. The discrete exterior derivative dω is given by

dω|Fv
:=
(
∂♦q − ∂̄♦p

)
Ω0 and dω|FQ

:=
(
∂Λq − ∂̄Λp

)
Ω0.

The reason why we add a factor of two in the definition of dω (hidden in Ω0) is the same as
the factor of 1/2 in the definition of ∂♦, ∂̄♦: For the definition of dω, p and q are defined on the
vertices of Λ or ♦, but ω lives halfway between two incident vertices of Λ and ♦, resulting in the
factor of 2.

The representation of ω as pdz + qdz̄ (p, q defined on edges of X) is non-unique, since we
represent one complex number as the linear combination of two other complex numbers. However,
dω is well-defined by discrete Stokes’ theorem, which also justifies our definition of df and dh.

Lemma 21. Let f : V (Λ) → C, and let ω be a discrete one-form. Then, for any directed edge e
of X starting in the midpoint of the edge vv′− and ending in the midpoint of the edge vv′+ of Λ,
and for any face F of X with counterclockwise oriented boundary ∂F we have:∫

e

df =
f(v) + f(v′+)

2 −
f(v) + f(v′−)

2 and
∫∫
F

dω =
∮
∂F

ω.

An easy consequence of the definition of the discrete exterior derivative is that
∫∫
F
dω = 0 on

any face F corresponding to a vertex of Λ, when ω is a discrete one-form of type ♦. We call a
discrete one-form ω closed, if dω ≡ 0. For example, df is closed if f is a complex function on V (Λ).

Proposition 22. Let f : V (Λ)→ C. Then, ddf = 0.
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Proof. By discrete Stokes’ theorem, ddf = 0 if
∮
P
df = 0 for any discrete elementary cycle P .

Since df is of type ♦, the statement is trivially true if P = PQ for Q ∈ V (♦). So let P = Pv for
v ∈ V (Λ). Using discrete Stokes’ theorem again,∮

Pv

df =
∑
Qs∼v

f(v′s)− f(v′s−1)
2 = 0.

�

Remark 23. An analogous statement for functions h : V (♦) → C is not true in general, even if
h is discrete holomorphic and Λ is a rhombic quad-graph.

Note that Proposition 22 immediately implies Proposition 17 by ddf =
(
∂♦∂̄Λf − ∂̄♦∂Λf

)
Ω0.

Corollary 24. Let f : V (Λ) → C. Then, f is discrete holomorphic if and only if df = pdz is
closed for some p : V (♦)→ C. In this case, p is discrete holomorphic.
Corollary 25. Let f, g : V (Λ)→ C and h : V (♦)→ C.

(1) fdg + gdf is a closed discrete one-form.
(2) If f and h are discrete holomorphic, fhdz is a closed discrete one-form.

Proof. (1) Let ω := fdg + gdf . By Proposition 22, df and dg are closed. Thus,
∮
∂F
ω = 0 for any

face F corresponding to V (Λ). Using Lemma 10, a direct calculation shows
∮
∂F
ω = 0 for any face

F corresponding to V (♦). It follows by discrete Stokes’ theorem that dω = 0.
(2) By discrete Morera’s theorem,

∮
∂F
fhdz = 0 for any face F of X, so fhdz is closed. �

Remark 26. In particular, a product f · g : V (X)→ C can be defined by integration, and f · g is
defined up to an additive constant. Furthermore, f · h : E(X)→ C can be defined by “pointwise”
multiplication. If all these functions are holomorphic, fdg + gdf = pdz is closed (p : E(X) → C)
and so to say a discrete holomorphic one-form, meaning that f · g is discrete holomorphic in this
sense. Similarly, fhdz is closed, so f · h is kind of discrete holomorphic by a discrete Morera’s
theorem. However, f · g and f · h are generally not discrete holomorphic everywhere according to
the classical quad-based definition of discrete holomorphicity on the dual of a bipartite quad-graph
[9].

9. Discrete wedge product

Following Whitney [19], Mercat defined in [14] a discrete wedge product for discrete one-forms
living on the edges of Λ. Then, the discrete exterior derivative defined by a discretization of Stokes’
theorem is a derivation for the discrete wedge product. However, a discrete Hodge star cannot be
defined on Λ. To circumvent this problem, Mercat used an averaging map to relate discrete one-
forms on the edges of Λ with discrete one-forms on the edges of Γ and Γ∗, i.e., discrete one-forms
of type ♦. Then, he could define a discrete Hodge star; however, the discrete exterior derivative
was not a derivation for the now heteregoneous discrete wedge product anymore.

We propose a different interpretation of the discrete wedge product. It the end, we somehow
recover the definitions Mercat proposed in [14, 15, 16], but our derivation is different. Starting
with discrete one-forms of type ♦ that are defined on the edges of X, we obtain a discrete wedge
product on the faces of X that vanishes on half of the faces. This definition is different from
Whitney’s [19] and has the advantage that both a discrete wedge product and a discrete Hodge
star can be defined on the same structure. In contrast to Mercat’s work, we now can make sense
out of the statement that the discrete exterior derivative is a derivation for the discrete wedge
product, see Proposition 29. This proposition is of crucial importance to deduce discrete integral
formulae such as discrete Green’s identities.
Lemma 27. Let ω be a discrete one-form of type ♦. Then, there is a unique representation
ω = pdz+ qdz̄ with functions p, q : V (♦)→ C. On a quadrilateral Q ∈ V (♦), p and q are given by

p(Q) = 1
2 sin(ϕQ)

(
exp

(
−i
(
ϕQ −

π

2

)) ∫
e
ω

e
+ exp

(
i
(
ϕQ −

π

2

)) ∫
e∗ ω

e∗

)
,

q(Q) = 1
2 sin(ϕQ)

(
exp

(
i
(
ϕQ −

π

2

)) ∫
e
ω

ē
+ exp

(
−i
(
ϕQ −

π

2

)) ∫
e∗ ω

ē∗

)
.
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Here, e is an edge of X parallel to a (black) edge of Γ, and e∗ corresponds to an (white) edge of
Γ∗.

Definition 28. Let ω = pdz + qdz̄ and ω′ = p′dz + q′dz̄ be two discrete one-forms of type ♦,
p, p′, q, q′ : V (♦) → C given by Lemma 27. Then, the discrete wedge product ω ∧ ω′ is defined as
the discrete two-form being 0 on faces of X corresponding to vertices of Λ that equals

(pq′ − qp′) Ω0

on faces corresponding to V (♦).

By definition, the discrete wedge product vanishes on faces of X corresponding to V (Λ). Since
the faces of X corresponding to V (♦) cover exactly half of the area of the quadrilaterals, the factor
of two in the definition of Ω0 compared to dz∧dz̄ incorporates the vanishing regions of the discrete
wedge product.

Proposition 29. If f : V (Λ)→ C and ω is a discrete one-form of type ♦, d(fω) = df ∧ω+ fdω.

Proof. Let ω = pdz+ qdz̄ with p, q : V (♦)→ C given by Lemma 27. For v ∈ V (Λ) and Q ∈ V (♦),

d(fω)|Fv =
(
f(v) (∂♦q) (v)− f(v)

(
∂̄♦p

)
(v)
)

Ω0 = fdω|Fv ,

d(fω)|FQ
=
(
q(Q) (∂Λf) (Q)− p(Q)

(
∂̄Λf

)
(Q)
)

Ω0 = (df ∧ ω))|FQ
.

But (df ∧ ω)|Fv = 0 and fdω|FQ
= 0, so d(fω) = df ∧ ω + fdω. �

10. Discrete Hodge star

Definition 30. Let f : F (Λ) → C, h : V (♦) → C, ω = pdz + qdz̄ a discrete one-form of type
♦ with complex functions p, q : V (♦) → C given by Lemma 27, and Ω a discrete two-form. The
discrete Hodge star is given by

?f := − 1
2ifΩ0; ?h := − 1

2ihΩ0; ?ω := −ipdz + iqdz̄; ?Ω := −2i Ω
Ω0
.

If ω and ω′ are both discrete one-forms of type ♦, we define their discrete scalar product

〈ω, ω′〉 :=
∫∫
F (X)

ω ∧ ?ω̄′,

whenever the right hand side converges absolutely. Similarly, a discrete scalar product for discrete
two-forms is defined.

Note that ?Ω is a priori a function on F (X). However, the discrete two-forms to that we will
apply the discrete Hodge star vanish on all faces of X corresponding to faces of Λ or on all faces
corresponding to vertices of Λ. In these cases, ?Ω is a function on V (Λ) or on V (♦), respectively.

Corollary 31. (1) ?2 = Id on complex functions on V (Λ) or V (♦) and discrete two-forms.
(2) ?2 = −Id on discrete one-forms of type ♦.
(3) 〈f1, f2〉 =

∫∫
F (X) f1?f2 and 〈h1, h2〉 =

∫∫
F (X) h1?h2 for functions f1, f2 : V (Λ) → C and

h1, h2 : V (♦)→ C.
(4) f : V (Λ)→ C is discrete holomorphic if and only if ?df = −idf .

Remark 32. It can be easily checked that our definition of a discrete Hodge star on discrete
one-forms coincides with Mercat’s definition given in [16]. But on discrete two-forms and complex
functions, our definition of the discrete Hodge star includes an additional factor of the area of the
corresponding face of X. As before, the additional factor of two encoded in Ω0 reflects the fact
that the corresponding two-forms vanish on half of the faces of X.

Proposition 33. δ := − ? d? is the formal adjoint of the discrete exterior derivative d: Let
f : V (Λ) → C, ω a discrete one-form of type ♦, and Ω a discrete two-form being 0 on all faces
corresponding to vertices of ♦. Assume that all of them are compactly supported. Then,

〈df, ω〉 = 〈f, δω〉 and 〈dω,Ω〉 = 〈ω, δΩ〉.
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Proof. Using discrete Stokes’ theorem, Proposition 29, and Corollary 31 (i), we obtain

0 =
∫∫
F (X)

d(f ? ω̄) =
∫∫
F (X)

df ∧ ?ω̄ +
∫∫
F (X)

fd ? ω̄ = 〈df, ω〉+ 〈f, ?d ? ω〉.

The second equation is shown in the same manner. �

11. Discrete Laplacian

The discrete Laplacian and the discrete Dirichlet energy on general quad-graphs were first
introduced by Mercat in [16]. Later, Skopenkov reintroduced these definitions in [18], taking the
same definition in a different notation.

Definition 34. The discrete Laplacian on discrete differential forms is defined as the operator
4 := −δd− dδ = ?d ? d+ d ? d ? .

A function f : V (Λ)→ C is called discrete harmonic at v ∈ V (Λ) if 4f(v) = 0.

The following factorization of the discrete Laplacian in terms of discrete derivatives generalizes
the corresponding results given in [3] to general quad-graphs. The local representation of 4f at
v ∈ V (Λ) is, up to a factor involving the area of the face Fv, the same as in [16].

Corollary 35. Let f : V (Λ)→ C. Then, 4f = 4∂♦∂̄Λf = 4∂̄♦∂Λf . At a vertex v of Λ,

4f(v) = 1
4area(Fv)

∑
Qs∼v

1
Re (ρ(v, vs))

(
|ρ(v, vs)|2 (f(vs)− f(v)) + Im (ρ(v, vs))

(
f(v′s)− f(v′s−1)

))
.

Remark 36. In the case that the diagonals of the quadrilaterals are orthogonal to each other, ρ
is always real. Then, the discrete Laplacian splits into two discrete Laplacians on Γ and Γ∗.

Corollary 37. Let f : V (Λ)→ C.
(1) If f is discrete harmonic, ∂Λf is discrete holomorphic.
(2) If f is discrete holomorphic, f , Re f , and Im f are discrete harmonic.

For a finite subset ♦0 ⊂ ♦ and two functions f, g : V (Λ0)→ C, we denote by

〈f, g〉♦0 := − 1
2i

∫∫
F (X0)

fḡΩ0

the discrete scalar product of f and g restricted to ♦0. Similarly, the restriction of the discrete
scalar product of two discrete one-forms is defined.

In the rhombic setup, discrete versions of Green’s second identity were already stated by Mer-
cat [14], whose integrals were not well defined separately, and Chelkak and Smirnov [3], whose
boundary integral was an explicit sum involving boundary angles. We are able to provide a dis-
crete Green’s first identity out of which discrete Green’s second identity immediately follows. The
formulation and the proof is a complete analog to the smooth setting.

Theorem 38. Let ♦0 ⊂ ♦ be finite, and let f, g : V (Λ0)→ C.
(1) 〈f,4g〉♦0 + 〈df, dg〉♦0 =

∮
∂X0

f ? dḡ.

(2) 〈4f, g〉♦0 − 〈f,4g〉♦0 =
∮
∂X0

(f ? dḡ − ḡ ? df) .

Proof. By Proposition 29, d (f ? dḡ) = df ∧ ?dḡ + f ? (?d ? dḡ). Now, discrete Stokes’ theorem
yields the desired result. For the second part, just apply twice discrete Green’s first identity. �

12. Discrete Cauchy’s integral formulae

Definition 39. Functions KQ0 : V (Λ) → C and Kv0 : V (♦) → C are called discrete Cauchy’s
kernels (with respect to Q0 ∈ V (♦) or v0 ∈ V (Λ), respectively), if for all Q ∈ V (♦), v ∈ V (Λ) there
holds:

∂̄ΛKQ0(Q) = δQQ0

π

2area(FQ) and ∂̄♦Kv0(v) = δvv0

π

2area(Fv)
.
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Remark 40. In the general case, it seems to be practically impossible to speak about any as-
ymptotic behavior of certain functions, as Kenyon did for discrete Green’s functions and discrete
Cauchy’s kernels on rhombic quad-graphs [12]. For this reason, we do not require any asymptotic
behavior of discrete Cauchy’s kernels. However, we can construct discrete Cauchy’s kernels on
parallelogram graphs with appropriate asymptotics and can prove at least existence of discrete
Cauchy’s kernels with respect to Q0 ∈ V (♦) or v0 ∈ V (Λ) in the general case [9].

Theorem 41. Let f and h be discrete holomorphic functions on V (Λ) and V (♦), respectively. Let
v0 ∈ V (Λ) and Q0 ∈ V (♦), and let Kv0 : V (♦) → C and KQ0 : V (Λ) → C be discrete Cauchy’s
kernels with respect to v0 and Q0, respectively.

Then, for any discrete contours Cv0 and CQ0 on X surrounding v0 and Q0 once in counter-
clockwise order, respectively, discrete Cauchy’s integral formulae are true:

f(v0) = 1
2πi

∮
Cv0

fKv0dz and h(Q0) = 1
2πi

∮
CQ0

hKQ0dz.

Remark 42. In the case of rhombic quad-graphs, Mercat formulated a discrete Cauchy’s integral
formula for the average of a discrete holomorphic function on V (Λ) along an edge of Λ. In
[3], Chelkak and Smirnov provided a discrete Cauchy’s integral formula for discrete holomorphic
functions on V (♦) using two integrals along cycles on Γ and Γ∗.

Theorem 43. Let f : V (Λ) → C be discrete holomorphic, Q0 ∈ V (♦), and let KQ0 : V (Λ) → C
be a discrete Cauchy’s kernel with respect to Q0.

Then, for any discrete contour CQ0 in X surrounding Q0 once in counterclockwise order that
does not contain any edge inside Q0, the discrete Cauchy’s integral formula is true:

∂Λf(Q0) = − 1
2πi

∮
CQ0

f∂ΛKQ0dz.

Proof. Let D be the discrete domain in X bounded by CQ0 . Since no edge of CQ0 passes through
Q0, the discrete one-form ∂̄KQ0dz̄ vanishes on CQ0 . Therefore,∮

CQ0

f∂ΛKQ0dz =
∮
CQ0

fdKQ0 =
∫∫
D

d(fdKQ0) =
∫∫
D

df ∧ dKQ0

due to discrete Stokes’ theorem, and Propositions 22 and 29. Now, f is discrete holomorphic, so
df ∧ dKQ0 = ∂Λf∂̄ΛKQ0Ω0. But ∂̄ΛKQ0 vanishes on all vertices of ♦ but Q0. Finally,

− 1
2πi

∮
CQ0

f∂ΛKQ0dz = − 1
2πi

∫∫
FQ0

∂Λf∂̄ΛKQ0Ω0 = ∂Λf(Q0).

�
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