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Curvature in image and shape processing

Yonathan AFLALO, Anastasia DUBROVINA, Ron KIMMEL, and Aaron WETZLER

Abstract

The laplacian operator applied to the coordinates of a manifold provides the mean
curvature vector. Manipulating the metric of the manifold or interpreting its coordinates in
various ways provide useful tools for shape and image processing and representation. We will
review some of these tools focusing on scale invariant geometry, curvature flow with respect to
an embedding of the image manifold in a high dimensional space, and object segmentation
by active contours defined via the shape laplacian operator. Such generalizations of the
curvature vector and its numerical approximation as part of an image flow or triangulated
shape representation, demonstrate the omnipresence of this operator and its usefulness in
imaging sciences.

1. INTRODUCTION

The total variation [25] image selective smoothing filter, the Beltrami flow for color image
processing [28, 24, 32] and its close relative the bilateral filter [30, 27], the affine invariant flow for
images [10, 3] are all reincarnations of considering the heat flow defined by second derivative of a
manifold with respect to its associated arc length. Strictly speaking, from a differential geometry
point of view, the laplacian operator does not always defines the curvature, especially when non-
trivial invariants are involved. Yet, this geometric structure has been found to be very practical
in shape and image processing.

At the other end, the laplacian operator can be decomposed into its eigenfunctions and eigenval-
ues, which provide a generalization of the classical Fourier decomposition to non-trivial manifolds
and non-regular parameterizations. Such a bases were introduced into the shape analysis arena in
the last decade, see for example [18, 19]. The resulting eigenfunctions are sometimes referred to as
the natural basis, as it can be shown to be the optimal basis for representing smooth functions on
the given manifold [1]. Here, we will review several applications of the laplace Beltrami operator
(LBO) in which we allow ourself to define the metric according to the problem at hand. The
resulting heat operator or natural basis by decomposition of the LBO would allow us to process
images and shapes with the same framework. In a sense, this paper is more a pedagogical overview
rather than a specific contribution. To that end, let us start with a simple example of how a new
definition of a pseudo-metric could lead to a scale invariant geometry for shapes.

2. ON GEOMETRIES AND NATURAL EIGENBASES

Sochen suggested to plugged invariant metrics into the definition of the laplacian in order to
extract corresponding invariant eigenfunctions and eigenvalues for image processing [29]. Later
on, Raviv et al. [23] used this observation to construct an equi-affine invariant pseudo metric
for surfaces, while two of us and Raviv [2] introduced a scale invariant geometry and produced
a corresponding natural basis for shapes. To exemplify the properties of such a methodology,
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Figure 2.1: From left to right: A horse, Coordinates projected to the first 300
eigenfunctions (regular metric), Coordinates projected to the first 300 eigenfunc-
tions (mixed metric). Coordinates projected to the first 300 eigenfunctions (scale
invariant metric).

here, we start from an arc length construction followed by a metric definition and decompose the
corresponding LBO into a natural basis structure that we then apply to shape representation.

Let S(u,v) : Q C R? — R? be a parametrized surface embedded in R3. Next, let C(p) : [0,1] —
S be a parametrized curve in S, for which we can define the total arc length to be

1 1 1
(Raﬂlgth(()):/o |Cp|dp=/0 |Suup—|-vap\dp=/0 \/\su|2ug+2<su,sv>u,,vp+|sv\2v§,dp.

Denoting the metric coefficients g;; = (S;, S;) where 7,5 € {u,v} we readily have the arc length
on the surface defined by ds* =", _ (w0} > {u,v} 9i7didj. Using Einstein summation convention,
the Laplace-Beltrami operator is given by

_ b
R

where g is the determinant of the metric (g), the inverse metric coefficients are g'/ = ((g)7!)

(2.2) A 9iA/99" 0;,

3,57
and 0; is the derivative with respect to the i*" coordinate, v or v in our case.

The operator A, admits a spectral decomposition with an orthogonal eigenbasis {¢y} and a set
of corresponding eigenvalues {\;} defined by

(23) Ag¢k = )\k(bka <¢k7¢k>g = 17 and <¢k7¢l>g = 07 vk 7é l.

The choice of an invariant metric is obviously important in the context of shape representation,
alignment, and matching. To that end, various distances have been proposed, such as Euclidean
[12, 5], geodesic [16, 21, 17, 20], diffusion [4, 14, 9], and affine invariant versions thereof [23]. A
scale invariant geometry which is also intrinsic (embedding invariant) was introduced in [2] by
which the regular metric is multiplied by the Gaussian curvature,

(2.4) Gij = |K|gi; = | K|(Ss, Sj)-

Fig. 2.1 depicts the effect of representing a shape’s coordinates projected to the natural basis
with a regular metric compared to the scale invariant one. The idea is to use just the first few
eigenfunctions as an approximation for smooth functions on the manifold treating the coordinates
as such. While the regular natural basis captures the global structure of the surface, as expected,
the scale invariant basis concentrates at the fine features with effective curvature. Fig. 2.2 presents
an application of the generalized multidimensional scaling algorithm [8] using the scale invariant
diffusion distance to extract the correspondence between an armadillo and its deformed version
In these examples the LBO produced a proper basis to represent and match shapes subject to a
specific yet general enough deformations. Next we will show how the LBO can be applied as a
non-local heat operator acting as a powerful selective smoothing filter in image denoising.

3. BELTRAMI SELECTIVE SMOOTHING IN PATCH SPACE

An image I(z,y) can be thought of as a two dimensional surface embedded in the hybrid spatial-
intensity space. The laplacian operator of the image manifold can then be used to define a heat
flow applied as a filter to the image as initial condition

(3.1) Iy = Agl,  given I(z,y;0) = Io.

The time ¢ such a flow acts on the image should somehow reflect the amount of noise in the
image, while the metric g could be the image metric. The hope is that such a curvature flow

132



Curvature in Image and Shape Processing

Figure 2.2: Matching an Armadillo and its locally scaled version using GMDS
with the scale invariant metric.

would selectively smooth the image in a desirable fashion. The Beltrami-flow [28] considers a
color image as a mapping between the spatial domain to the spatial-spectral domain, that is
I(z,y) : © € R? — R5. The coordinates in the embedding space are x,y, R, G, B where the last
three coordinates stand for the color space Red, Green, and Blue, respectively. The resulting heat
equation Iy = A,I defined by the metric g is usually derived from an infinitesimal arc length such
as ds? = dx? + dy? + dR? + dG? + dB?.

One non-differential version of the Beltrami flow is known as the bilateral filter [31], in which
the short time kernel of the Beltrami flow is replaced by (s, s')? = 6(z, 2')2+5(y,y')*+ (R, R')*+
5(G,G")? + 6(B, B')?, where §(x,2")? = (z — 2')%. Roughly speaking, instead of convolving with

S, )
the continuous version ef(fs )" in the Beltrami flow, the bilateral filter applies e=9(s:s )?

selective smoothing kernel.

Roussos and Maragos [24] followed by [32] extended the Beltrami flow approach by treating
images as two dimensional manifolds embedded in patch-space. The superior denoising results of
these methods coupled with their computational efficiency indicated that the Beltrami flow in its
general form is well suited for dealing with image denoising. An example of the selective smoothing
property of the Beltrami flow in patch space is depicted by Fig. 3.1.

In order to simplify the construction of such filters consider a height profile I to be a two
dimensional Riemannian manifold embedded in a higher dimensional space. We define the patch-
space mapping P : Q € R2 — § € RM2w+1D*+2 gch that

(3.2) P(a,y) = (z,y,{If;}) .

fori,j = —w,..,w, k=1,..,n ,where w € N is the window size, n is the number of channels we
use, and {Ifj} is the compact form for {I* (z + i,y + j) }. For the case of a single height profile or
a gray level image n = 1, where if we were provided with a set of registered scans of a particular
surface or a color image, n could represent the number of scans or colors. The manifold P is
equipped with a metric g, that defines an arc length

as a

(3.3) ds? = (dz dy) (g)( o )

Specifically, the patch-space metric is given by application of chain rule dlf ;=01 Zk jdz+ ﬁylzgfjdy
from which it follows that

— 1 +Zi,j7k(afﬂ‘l-'ik,j)2 Zi,j,k ax]lk,:jayIlk,J

3.4 = _
(3:4) (9) ( Ei,j,k 89¢Izk,jayjik,j 1+Ei,j,k(8ylik,j)2 )
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Figure 3.1: Examples of Beltrami patch denoising for images. From top to bot-
tom, left to right a) Noisy Barbara, o = 21 b) Denoised image, PSNR = 28.4dB
¢) Noisy Peppers, o = 30 d) Denoised image, PSNR = 28.0dB

This metric allows us to measure distances and areas on the manifold P using the coordinates of
Q. For example, the area of the embedding into a Euclidean space is given by

(3.5) / v/ det(g)dzdy.

We minimize Eq. (3.5) using variational calculus and arrive at the EL equation

1. _
(3.6) AGIf; = ﬁdlv(ﬁ(g) 'VIF;) =o0.
The resulting operator is indeed the LBO, and the image can thus be filtered by the corresponding
Beltrami flow in patch space

(3.7) I, = A,

Point clouds and meshes are often assumed to have noise which is Gaussian and appears as an
offset along the normal direction of the surface. For that kind of noise the mean curvature flow
could produce a reasonable filter. Yet, the noise model for range scanners exhibits offsets in the
direction of the camera’s focal point. Moreover, the noise is seldom Gaussian and usually includes
regions with missing data. This presents a challenge to state of the art denoising algorithms
that are usually tuned for optimal removal of additive white noise. One of the popular denoising
methods is the BM3D [15] to which we compare the Beltrami patch denoising for a depth profile
obtained from a real scanner, as seen in Fig. 3.2. It appears that the method is able to selectively
smooth the data while preserving the important features. The usage of the LBO as a non-local
denoising filter is not our final stop. Next, we show how it can be used to formulate the geodesic
active contour model in a new and novel formulation.

4. AN LBO PERSPECTIVE ON GEODESIC ACTIVE CONTOURS

This section links between the Laplace-Beltrami operator, the associated heat flow towards a
minimal surface, and the Geodesic Active Contours (GAC) model for image segmentation [11].
Related efforts include Bresson’s et al. [7], expressing the GAC flow as a minimizer of the weighted
Polyakov action, and the formulation by Bogdanova et al. [6]. Sochen et al. [26] reviewed the

134



Curvature in Image and Shape Processing

BM3D, sigma=20

Figure 3.2: Far left: Original noisy scan. Top row: BM3D results for ¢ = 5 and
o = 20. Bottom row: Beltrami patch denoising for o = 5 and o = 20.

image filtering problem, exploring the relation between the PDE geometric approaches, derived by
minimizing the Polyakov action with an appropriate metric, and non-linear robust-statistics filters.
We start by reviewing the geodesic active contour model and the evolution towards generalized
minimal surface.

4.1. Geodesic active contours. The geodesic active contour is a geometric-variational model
for boundary detection, integration, and object segmentation in images. In [13] it was shown that
contours extracted by this model are minimal geodesics in a Riemannian space whose metric is
defined by the image intensity I(x,y). We search for curves C(p) : [0,1] — R? that minimize the
following weighted Euclidean arc length

(4.1) / FVI(CE))IC ()| dp = / (VI (C(s)) ds,

in a Riemannian space equipped with the metric tensor f (|VI(C)|)d;;. The function f(z,y)
is an edge indicator function, for example f(z,y) = (1 + |VI|)~!, designed to stop the active
contour when it arrives at the object’s boundary. The Euclidean arc length is denoted by s, where
ds = |C’'(p)|dp. Caselles et al. used a gradient-descent method to minimize the weighted arc length
(4.1), to obtain the following curve evolution equation

where kN = Cys, with k is the curvature of C, and N its unit inward pointing normal.
The level set formulation [22] of the geodesic problem (4.2) is given by

(4.3) % = |Vu|d1v( |§u|) |Vu|d1v(|§ |> +Vf-Vu,

where u(z, y; t) is an implicit representation, often referred to as a level set function, of the evolving
contour C(p;t). That is, C(t) = {(z,y) : u(z,y;t) = 0}, and k = div (IVUI) is the curvature of the
level sets of the function u. The level set evolution formulation in Eq. (4.3) can be interpreted as

a generalized minimal surface flow. To that end, we apply the methodology provided by Sochen
et al. in [28] as described next.

(4.2)

4.2. Generalized minimal surface flow. Let us treat the level set function u(z,y) as a two-
dimensional surface embedded in a 3-dimensional space. It can be defined by the map X : Q €
R? — M € R3, where Q denotes a 2D coordinates manifold (o1,03), and M is the embedding
space. Explicitly, X is written as X = (X'(0',0?), X?(0',0?), X3(c',0?)). Both manifolds 2
and M are equipped with metric tensors, g, (o', 0%) and hij (x', 22, 23), respectively. The map X
and the metric h;; can be used to construct the metric on

(4.4) 9w (0, 0%) = hij(X)0, X0, X7,
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where we used Einstein’s summation convention. Next, the following functional can be associated
with the map X : Q — M,

(45) S [Xi,gm,,hijjl = /dmo\/ﬁg””(‘)MXi&,thij(X),

where g is the inverse of the metric g,,, (that is ¢"7g,, = d,.), and g is the determinant of (g, ).
This functional is known as Polyakov action, and it can be viewed as a generalized area measure.
In fact, we already used a particular instance of the Polyakov action in Section 3, Eq. (3.5).
The minimal map (embedding) X can be obtained by steepest-descent. The gradient of the
Polyakov action with respect to the embedding is
(4.6) L gudS L
2,/g oX' /g

In order to find the minimal embedding, Sochen et al. [28] used the gradient descent flow

, 1 .58 . _ _
(4.7) X! = fﬁh”m =Ny X' +T1%,0,X79,X g

Note, that the gradient (4.6) is obtained by multiplying the Euler-Lagrange equations of (4.5) by
a strictly positive function and a positive definite matrix, that will be referred to as a pre-factor.
It could also be viewed as an indication of the metric of the variational inner product by which
the gradient descent is defined. It provides a geometric parameterization-invariant flow with the
same minimum. The pre-factor required to produce the GAC flow is different, stemming from the
different geometry of the problem. The second term at the right hand side of Eq. (4.6) involves
the Levi-Civita connection coefficients F;k, that depict the geometry of the embedding space.
When M = R3 with Euclidean metric, hij = 0;5, the second term vanishes, and the flow becomes
X: = AyX, as seen in the previous sections.

O (V99" 0, X") +T%,.0, X709, X g

4.3. Back to GAC: level set formulation as a flow toward minimal surface. Next, we
show that the level set formulation for geodesic active contour evolution in Eq. (4.3) is obtained by
minimizing a generalized area measure. First, let us select X that maps the plane (0! = z,0% = ¥)
to a 3D Euclidean space, such that

(4.8) X = (z,y,u(z,y)).

The functional we would like to study is

(4.9) S = //f(|VI(x,y)|)\/1 + | VulPdedy,

This is Polyakov action obtained by choosing the following metric tensors for the parameter and
the embedding spaces 2 and M, respectively

g = f(0*,0%)(0.X -0, X),
(410) hij = f(l‘l, x2)5ij-
Since g, and h;; are legitimate metric tensors, and as (02, 0%) = (z,y) and (2*, 22, 2%) = (z,v, 2),

Eq. (4.4) holds.

The metric tensor g, written in a matrix form becomes

(4.11) (Guv) =f( Ly usty )

Uty 14 u

The metric determinant is g = det (g,,,) = f2 (1 + |Vu|?) and the inverse of the metric is

(112) O G e B )

g — Uz Uy 1+u§

Next, we use Eq. (4.6) to obtain the gradient-descent flow for the level set function component of
X, namely X3 = u(z,y),

(4.13) w =X} = —0, (/99" Oyu) + T%.0,X70, X" g"".

Sl-
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Figure 4.1: Image segmentation using Geodesic Active Contours: the initial con-
tour (left) and the final segmentation (right).

Substituting the expressions for /g and g*” into the first term of the right-hand side of the flow
in Eq. (4.13) produces

(4.14)

1 1 Vu
) wo ) = di .
N (Vog*d,u) VI IVaE <~/1 T |Vu|2>

In order to compute the second term on the r.h.s. of Eq. (4.13) we need to first find an expression
for the Levi-Civita connection coefficients T'% . For the metric h;; defined in Eq. (4.10)

. 1. .

;‘k = ihll (O + Orhji — Othji)
11

= D50 (0 (Fou) + O (F03) = 1 (£,0))

l

11
(4.15) = 37 (k0 f + 6jiOk f — 051 0: f) .
Therefore,
1
(4.16) I3 = of (83105 f + 8530k f)
or, in a matrix form,
V(0 0 g
(4.17) 3 = 7l 00
fo fy O
Finally, the second term of the flow from Eq. (4.13) becomes
- V- -Vu
4.1 .9 X3 Xkgtv — __¥YJ V2%
19 OO = o)

Using Eq. (4.14) and Eq. (4.18) we obtain the level set evolution
Vu > Vf-Vu

1
Up = di .
TR /TTvap V<«A+|vm2 21+ Vul?)

Finally, we use our freedom of parametrization and multiply the above evolution by the pre-factor
of f2(1+ |Vul?), to obtain

(4.20) g = div | ) 1 vl
1+ |[Vul?

Note, that up to the additional constant 1, this formulation aligns with the level set formulation
of the geodesic active contour model given in Eq. (4.3). Since the surface definition in Eq. (4.8)
is arbitrary, we can choose the aspect ratio between du and dz,dy to be as large as we want.
Thus, the constant 1 can be regarded as an € — 0 that vanishes upon the right selection of this
aspect ratio. We thereby demonstrated that the geodesic active contour model in its level set

(4.19)
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formulation, can also be viewed as a surface that minimizes the Polyakov action with a specific
selection of metric tensors for the parametrization and the embedding space. The minimizer is
obtained by application of the LBO, yet again in a gradient descent heat flow fashion.

5. CONCLUSIONS

The Laplace Beltrami operator has been shown to provide a modeling construction approach
which is useful for shape and image selective smoothing, for shape matching, and for object seg-
mentation in images. We allowed ourselves to select the relevant metric and the coordinates upon
which the operator is acting according to the problem at hand. The freedom of these settings
allowed us to link between state of the art solutions for shape and image processing and analysis.
We expect these observations and tool design methodology to pave the way for new solutions of
novel problems in the domain of imaging sciences.
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