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Piecewise linear approximation of smooth
functions of two variables

Joseph H.G. Fu

Abstract
The normal cycle of a singular subset X of a smooth manifold is a basic tool for

understanding and computing the curvature of X. If X is replaced by a singular function on
Rn then there is a natural companion notion called the gradient cycle of f , which has been
introduced by the author and by R. Jerrard. We discuss a few fundamental facts and open
problems about functions f that admit gradient cycles, with particular attention to the first
nontrivial dimension n = 2.

1. Introduction

The Federer-Fleming theory of integral currents (developed in detail in Chapter 4 of [6]) is
a mathematical tool designed to extend certain notions of differential geometry to spaces with
singularities. Typically it is used to study first order problems in the calculus of variations such
as the Plateau problem. However, it also works spectacularly well in the study of curvature
for subspaces with singularities, providing the natural setting for Federer’s theory of curvature
measures and its extensions [5, 16, 9]. The key idea here is that of the normal cycle N(X) of a
singular subspace X embedded in a smooth manifold M . The normal cycle is an integral current
living in the tangent sphere bundle of M that functions as a substitute for the manifold of unit
normals of a smooth submanifold. It has been applied effectively in surface modeling, particularly
in the problem of approximating a given surface, given either formally as a smooth submanifold
or empirically in terms of collections of data points, by a polyhedron [4].

Despite its many advantages, the natural scope of the theory remains murky in the sense that
a clear geometric characterization of the class of sets X admitting a normal cycle is unknown.
This general problem is essentially analytic. In order to study it without getting distracted by
secondary topological questions, it is convenient to consider a closely related problem in which the
singular subset X is replaced by a singular function f : Rn → R. In this case the normal cycle
N(X) is replaced by the gradient cycle D(f), an integral current living in the cotangent bundle
T ∗Rn ' Rn × Rn∗ that serves a substitute for the graph of the gradient of f (or, more correctly,
its differential, although we will conflate the two in the present note). If D(f) exists then f is
said to be a Monge-Ampère function. This class has been studied by the present author and his
collaborator Ryan Scott [8, 10, 11] as well as by R. Jerrard [12, 13]. We describe here some basic
issues and progress in the subject, with particular attention to the case n = 2.

2. The normal cycle and the gradient cycle

For simplicity let us take the ambient smooth manifold M to be Rn, and assume that X ⊂ Rn
is compact. The normal cycle N(X) is an integral current of dimension n− 1 living in Rn × Sn−1

Text presented during the meeting “Discrete curvature: Theory and applications” organized by Laurent Najman
and Pascal Romon. 18-22 novembre 2013, C.I.R.M. (Luminy).
2000 Mathematics Subject Classification. 00X99.
Key words. graph theory, shape recognition, optimal transportation.
Funded by NSF Grant .

11



Joseph H.G. Fu

satisfying a few inevitable conditions. Let x1, . . . , xn be standard coordinates for Rn and y1, . . . , yn
the companion coordinates for the Rn∗ ' Rn that contains the sphere Sn−1. Then

• the support of N(X) must be compact.
• N(X) has boundary zero in the sense of Stokes’ theorem, i.e. evaluation of N(X) against
any exact (n− 1)-form vanishes.

• N(X) is Legendrian, i.e. evaluation of N(X) against any (n − 1)-form expressible as a
wedge product with the canonical 1-form α =

∑
yi dxi vanishes.

• Finally, N(X) yields the expected Morse theory of height functions restricted to X.
The precise form of the last condition is somewhat awkward, so we refrain from stating it here. The
upshot is that these four conditions are enough to determine N(X) uniquely. For truly pathological
subsets X this current will not exist at all. It only exists for certain “tame" subsets X, but when
it does exist it is defined unambiguously.

2.1. Monge-Ampère functions. The companion theory for singular functions may be described
in analogous terms, with the advantage that the last condition is easier to understand. Note that
the geometric and the functional settings are closely related: if f is smooth and X := {(x, t) : x ∈
Rn, t ≤ f(x)} then N(X) is the image of graph(∇f) ⊂ Rn × Rn under the map

(x; ξ) 7→
(
x, f(x); (−ξ; 1)√

1 + ξ2

)
and conversely. Another major conjecture states that this remains true also for singular f .

In order to state the fundamental uniqueness theorem we recall that Rn ×Rn carries a natural
symplectic 2-form

ω :=
n∑
i=1

dxi ∧ dyi.

Theorem 1. [8, 12] Suppose f : Rn → R with ∇f ∈ L1
loc. Then there exists at most one closed

integral current T of dimension n in Rn × Rn such that∫
T

ω ∧ ψ = 0 for all ψ ∈ Ωn−2(Rn × Rn)(2.1)

volume(T ∩ π−1K) <∞ for all compact K ⊂ Rn(2.2)
T ∩ π−1(p) = {(p,∇f(p))} for a.e. p ∈ Rn.(2.3)

Here π : Rn×RnRn is the projection to the first factor. If it exists, the current T of Theorem 1
is the gradient cycle of f , denoted D(f), and f is said to be a Monge-Ampère (MA) function.
We denote this class by MA = MA(Rn).

Condition (2.1) says that T is Lagrangian. The point is that if V ⊂ Rn×Rn is a smooth oriented
submanifold of dimension n then V is Lagrangian in the usual sense iff the current T defined by
integration over V satisfies (2.1).

The models of MA functions are the C2 functions, with D(f) = graph(∇f) (here and elsewhere
we identify the manifold graph(∇f) with the current obtained by integration over it with respect
to the orientation induced by the standard orientation of Rn). In this case∫

D(f)
φ(x, y) dy1 ∧ · · · ∧ dyn =

∫
Rn

φ(x,∇f(x)) detD2f(x) dx.

for φ ∈ Cc(Rn×Rn), thus motivating the name of the class. The Lagrangian condition is equivalent
in this case to the calculus rule ∂2f

∂xi∂xj
= ∂2f

∂xj∂xi
. The area formula yields the approximate relation

(2.4) volume(D(f)) '
∑

#I=#J

∫ ∣∣∣∣∣det
(

∂2f

∂xi∂xj

)
i∈I,j∈J

∣∣∣∣∣ .
In the case n = 1 this class is nothing new: f ∈ MA(R) iff the derivative f ′ has locally

bounded variation. Alternatively, this class may be described as the set of all functions that may
be expressed as f = g − h where g, h are convex. Returning to the analogy with the geometry of
singular subsets of Rn, this corresponds to the fact that a curve in Rn has finite total curvature
iff its unit tangent vector has bounded variation.
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On the other hand, for n ≥ 2 the class MA does not fit neatly into any known analytic category.
For one thing, we know that MA(Rn) is not closed under addition for n ≥ 2 (cf. [10]). While
any f ∈ MA(R2) must be continuous, this is not known for n ≥ 3. While it follows directly from
the definitions that any f ∈ MA(Rn) must have gradient ∇f ∈ BVloc (the class of such functions
is sometimes denoted BV2

loc), it is easy to construct examples of f ∈ BV2
loc(Rn), n ≥ 2, that are

not MA. While D. Pokorný and J. Rataj [14] have recently shown that any function on Rn that
is expressible as the difference of two convex functions must be MA, examples [10] show that not
every MA function of two or more variables is of this type. Other known subclasses of MA include
the Sobolev classW 2,n

loc (Rn) of functions with two derivatives that are locally nth power summable,
and the class of all locally Lipschitz subanalytic functions.

2.2. Strong C2 and PL approximations. As a consequence of Theorem 1 and the Federer-
Fleming compactness theorem for integral currents, if f1, f2, · · · ∈ C2(Rn) converge in L1

loc to f0,
with volume(D(fi) ∩ π−1K) ≤ CK , i = 1, 2, . . . for all compact K ⊂ Rn, then f0 ∈ MA and
D(f) = limD(fi). Such f0 is called C2 strongly approximable. All known examples of MA
functions arise in this way. Thus another fundamental conjecture states:
(2.5) f ∈ MA =⇒ f is C2 strongly approximable.

Since piecewise linear (PL) functions are locally Lipschitz and subanalytic— in fact semialgebraic—
these are always MA (in this case the C2 strong approximability of any p ∈ PL is easy to prove
using the Tarski-Seidenberg theorem). On the other hand it is also easy to construct D(p) directly
in this case [13]. For n = 2 this process goes as follows. Let T be a triangulation of R2 with
triangles τi, edges σj and vertices ρk, such that p is affine on each of these elements. We construct
D(p) as D2 +D1 +D0, where Di is supported over the i-skeleton of T .

(1) Put D2 :=
∑
i τi × {∇(p|τi

)}. This current is Lagrangian, and satisfies (2.3), but has
nonzero boundary supported above the edges σj .

(2) For each edge σj with adjacent faces τ0, τ1, let sj be the line segment in R2 joining
∇(p|τ0

),∇(p|τ1
). Put D1 :=

∑
j σj × sj . Since the affine functions p|τ0

, p|τ1
agree

along σj , we see that σj ⊥ sj , which implies that D1 is Lagrangian. Clearly ∂D1 =∑
j ∂σj × sj − σj × ∂sj ; the latter terms cancel ∂D2.

(3) It remains to cancel the former terms. For each vertex ρk, let Pk ⊂ R2 be the bounded
polygonal region with multiplicities whose boundary is equal to the union of the oriented
segments sj corresponding to edges σj incident to ρk. Put D0 :=

∑
k ρk × Pk, whose

boundary provides the desired cancellation. Note that the addition of D1 +D0 leaves (2.3)
unchanged.

We may think of the mass of D0 (resp. D1) as the integral of the absolute value of the Hessian
of p (resp. the integral of the norm of the Hessian of p), which are in turn closely analogous to the
total absolute Gauss curvature (resp. the integral of the norm of the second fundamental form).

Thus it would also be natural to take PL, instead of C2 as the models for MA functions, and
to say that f0 is PL strongly approximable if the condition above holds with the C2 functions fi
replaced by PL functions pi. Again we conjecture
(2.6) f ∈ MA =⇒ f is PL strongly approximable.

It is difficult (at least for us) to imagine that conjectures (2.5) and (2.6) could possibly fail, but
a proof seems far away (aside from the trivial case n = 1). Finding ourselves in this position we
must ask: are the two conjectures are equivalent? Even this problem seems difficult, although it
is true for n = 2. This is a consequence of the following two facts.

Theorem 2 (Brehm-Kühnel [1]). There is a universal constant C with the following property.
Given p ∈ PL(R2) there exists a sequence C2(R2) 3 f1, f2, · · · → p locally uniformly, with

lim sup area(D(fi|U )) ≤ C area(D(p|U ))
for any relatively compact open set U ⊂ R2.

Brehm and Kühnel state this result in different language, but this is an essentially equivalent
formulation. Clearly this theorem yields: PL strongly approximable =⇒ C2 strongly approx-
imable.
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Theorem 3 (Fu-Scott [11]). Given f ∈ C2(R2) there exists a sequence PL(R2) 3 p1, p2, · · · → f
locally uniformly, with

lim sup area(D(pi|U )) ≤
∫
U

1 + 2
√

2
∥∥D2f

∥∥+
∣∣detD2f

∣∣
for any relatively compact open set U ⊂ R2.

Recall that by (2.4)
area(D(f |U )) '

∫
U

1 +
∥∥D2f

∥∥+ |detD2f |.

Thus Theorem 3 yields: C2 strongly approximable =⇒ PL strongly approximable.

2.3. Sketch of the proof of Theorem 3. The basic strategy is to pick an appropriate sequence
of fat triangulations Ti of the domain of f with mesh size → 0. For each i we set the values of
the PL function pi at the vertices of Ti equal to those of f , then extend to each triangle by linear
interpolation.

The trick lies in giving meaning to the word “appropriate". If we simply take a sequence of
triangulations Ti of the plane with mesh size → 0 and uniformly positive fatness, and let pi be the
PL function obtained by linear interpolation from the values of f at the vertices of Ti, then

(2.7) lim sup area(D(pi|U )) '
∫
U

1 +
∥∥D2f

∥∥+
∥∥D2f

∥∥2
,

the last term replacing the desired term |detD2f |. Although the first two terms are acceptable,
in general the last term is too big, as may be seen in the following simple example. Let f(x, y) =
(x − y)2 and Ti be a subdivided square grid aligned with the coordinate axes. Construct the PL
function pi as we have just described, and consider the gradient cycle D(pi) = D2 +D1 +D0 given
by the procedure above. The polygons Pk making up the summand D0 are all congruent copies of
the figure

of size comparable to the mesh size of Ti. Here the square has multiplicity +1, while the two
triangles have multiplicity −1. Thus the algebraic area of the figure is zero, in accord with the
value detD2f = 0, but the contribution to the mass of D(pi) is twice the area of the square.
Adding these contributions over all the vertices of Ti yields a term on the order of the integral of
the last summand of (2.7). The corresponding term in the estimate we want is zero.

Fortunately, if the subdivided square grid is nearly aligned with the eigenvectors ofD2f then this
bad behavior does not occur. So we construct such grids locally in regions where the eigenvectors
don’t vary too much, keeping the different grids separated by a distance proportional to the mesh
size but together covering most of U :

Then we invoke the guarantee in a mesh interpolation algorithm of Chew [2] to conclude that the
interstices can be filled in by a triangulation of the same mesh size and uniform fatness. Since the
area covered by the interpolated triangles is small, the estimate (2.7) tells us that the price we pay
here is not too great.
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The primary obstacle to extending this argument to n ≥ 3 is the absence of a Chew-type
algorithm in higher dimensions. From our (superficial) knowledge of the relevant literature this
appears to be a fundamental and poorly understood issue in the theory of mesh generation; cf.
e.g. [15].

3. Further remarks and questions

3.1. What do these questions have to do with geometric modeling? Three dimensional
modeling was one of the primary motives in the origins of surface theory in the 18th and 19th
centuries. Physical objects were supposed to look like smooth domains, once irrelevant irregularities
were ignored. The curvature (or the second fundamental form) provided an appealing mathematical
tool with serious practical applications.

In the modern era, when computers are widely available and we no longer expect nature to
behave necessarily in a smooth regular fashion, the assumption that messy natural formations can
be thought of as C2 smooth seems quaint. In this setting it is desirable to possess a more robust but
still natural mathematical model that would nonetheless retain some of the main measurements
such as curvature. The normal/gradient cycle of X or f provides such a tool. To put it another
way, objects and functions that are regular enough to be associated to such cycles provide a model
for what a natural geometric object should look like: the total volume of the cycle gives a gross
numerical measure of “total curvedness" of the object, which may be distributed either smoothly
or else in some irregular fashion. This tool seems uncannily applicable to physical configurations
over a wide range of scales. It is tempting to take the existence of this cycle as a certificate of
citizenship in the country of “geometrically valid” objects.

Conjectures (2.5) and (2.6) may be rephrased colloquially as: can we use classical mathematical
analysis (C2) or quasi-discrete computer models (PL) to survey this country to any arbitrarily
given degree of accuracy? This would be roughly analogous to some basic facts from integration
theory: a given signed Radon measure may be approximated weakly either by discrete or by
absolutely continuous measures of the same mass.

3.2. Towards a proof of (2.5) for n = 2. Can this method be adapted to construct a strong PL
approximation of a general f ∈ MA(R2)?

3.3. Is there a more natural approach to Theorem 2? The proof of Theorem 2 in [1] seems
somewhat ad hoc. A more natural proof might be possible, based on a certain well known and
alluring but almost completely unexplored smoothing strategy.

The basic idea seems to have been mentioned first in [7]: if X ⊂ Rn is a compact set, and r > 0
is a regular value in the sense of Clarke [3] of the distance function δX := dist(·, X), then the
superlevel set Xr := {δX ≥ r} has positive reach. If such r is small then for 1 � r � s > 0 the
set Xr,s := {δXr

≥ s} is a C1,1 domain that is close (with respect to the Hausdorff metric) to X.
Furthermore the mass of the normal cycle of Xr,s is close to that of Xr. It is then easy to find a
C2 (or even C∞) domain close to Xr,s whose normal cycle has almost the same mass.

Supposing X to admit a normal cycle in its own right, it is tempting to carry out this procedure
to try to construct a smooth domain close to X whose normal cycle has mass close to that of
N(X). The missing ingredient is a good estimate for the mass of N(Xr) in terms of the mass of
N(X). In certain tightly circumscribed settings, a weaker kind of estimate is available: if X is
subanalytic (e.g. a polyhedron) then the masses of the N(Xr) are uniformly bounded for small
r > 0 (this is the basis for the discussion of this subject in [9]). However, the known bound is not
geometric in nature, depending instead on the complexity of the description of X as a subanalytic
set. Thus it may behave badly with respect to the mass of N(X).

Therefore (passing from the geometric to the functional realm) at present this approach does
not yield a proof of Theorem 2. Although for each particular PL function p it yields a sequence
of smooth fi with a uniform bound on the D(fi), this bound depends on the complexity of the
description of p. For example, if D(p) is very close to the gradient cycle of a constant function, but
p consists of a great many small affine pieces, the known bound on the masses of the approximating
D(fi) will be very large. No such general bounds in terms of the mass of D(p) or N(X) in any
nontrivial instance have been given in the literature, whether proved or conjectured.
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The simplest case is that of a PL function of two variables. For this it would be enough to
prove such a bound in the neighborhood of a vertex, or in other words for PL functions that are
homogeneous. Since the question is now being phrased in terms of functions, it seems convenient
to replace the tube construction X 7→ Xr above by the functional analogue p 7→ pr, where for each
r > 0 we put

pr(x) := sup
y

p(y)− 1
r
|y − x|2

Note that each pr, r > 0, is semiconvex. Semiconvexity is the functional analogue of the positive
reach condition.

Let p ∈ PL(R2), with p(tx) = tp(x) for t ≥ 0 and x ∈ R2. Is there a universal local bound
on the area of D(pr) in terms of that of D(p), valid for r small? By homogeneity it is enough to
understand the case r = 1.
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