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A first order localization/delocalization transition
in charged polymers

Marc Wouts
Abstract

We study a quenched charged-polymer model, introduced by Garel and Orland in 1988,
that reproduces the folding/unfolding transition of biopolymers. We prove that, below the
critical inverse temperature, the polymer is delocalized in the sense that: (1) The rescaled
trajectory of the polymer converges to the Brownian path; and (2) The partition function
remains bounded.

At the critical inverse temperature, we show that the maximum time spent at points
jumps discontinuously from 0 to a positive fraction of the number of monomers, in the limit
as the number of monomers tends to infinity.

Finally, when the critical inverse temperature is large, we prove that the polymer collapses
in the sense that a large fraction of its monomers live on four adjacent positions, and its
diameter grows only logarithmically with the number of the monomers.

Our methods also provide some insight into the annealed phase transition and at the
transition due to a pulling force; both phase transitions are shown to be discontinuous.

We consider a polymer model introduced by Garel and Orland [EPL 1988] for modeling the
trajectory of biological proteins made of hydrophobic monomers. Let {qi}∞i=0 be i.i.d. real variables
and {Si}∞i=0 an independent simple random walk on Zd with S0 = 0. Both stochastic processes
exist on a common probability space (Ω ,F ,P). Given a realization of q and S, we consider

QxN :=
∑

06i<N

qi1{Si=x}, and(0.1)

HN :=
∑
x∈Zd

(QxN )2
.(0.2)

We think of the qi’s as charges, QxN as the total charge at position x ∈ Zd, and HN as the energy
of the polymer.

For all β ∈ R and N > 1 consider the quenched probability measure PβN ,

(0.3) PβN (A) := 1
ZN (β)

E
[

1A exp
(
β

N
HN

)∣∣∣∣ q0, q1, . . . , qN−1

]
,

where ZN (β) is defined so that PβN is indeed a probability measure; that is,

(0.4) ZN (β) := E
[

exp
(
β

N
HN

)∣∣∣∣ q0, q1, . . . , qN−1

]
.

In our model, like charges attract when β > 0 . This accounts for the hydrophobic properties
of monomers immersed in water. And the scaling HN/N makes the energy subadditive.

Unless it is stated to the contrary, we assume that Eq0 = 0, Var q0 = 1, and that the charges
are subgaussian; that is, κ <∞, where

(0.5) κ := inf
{
c ∈ (−∞ ,∞] : Eetq0 6 ect

2/2 for all t ∈ R
}
.
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We have κ > 1 as long as q0 has a finite moment generating function near zero and Eq0 = 0. And
κ = 1 both when the qi’s have the Rademacher distribution [P{q0 = ±1} = 1/2] and when they
have a standard normal distribution.

Now we introduce

(0.6) D :=
{
β ∈ R : ZN (β) P−→ eβ as N →∞

}
,

where “ P−→” denotes convergence in probability. As is customary, we call

(0.7) LxN :=
N−1∑
i=0

1{Si=x} and L?N := max
x∈Zd
LxN ,

respectively, the local time of {Si}N−1
i=0 at x and the maximum local time.

The next theorem tells us that the set D characterizes the region of β for which the trajectory
of the polymer is [asymptotically] indistinguishable from that of a random walk. In other words,
the polymer is delocalized when β ∈ D and N is large.

Theorem 1. If Eq0 = 0, Var q0 = 1, and κ <∞, then:
(1) D is an interval that contains (−∞ , 1/κ).
(2) β ∈ D if and only if for all ε > 0,

(0.8) PβN{L
?
N 6 εN} P−→ 1 as N →∞.

(3) β ∈ D if and only if:

(0.9)
∥∥∥PβN − P [ · |q0 , . . . , qN−1 ]

∥∥∥
TV

P−→ 0 as N →∞,

where ‖µ− ν‖TV := supA |µ(A)− ν(A)| is the total variation distance.

A consequence of Theorem 1 is the following: if SN is defined uniquely as the piecewise-linear
function that takes the values Sk/

√
N at t = k/N for all integers k = 0, . . . , N , then:

Corollary 2. If Eq0 = 0, Var q0 = 1, and κ < ∞, then for all β ∈ D and Φ : C([0 , 1]) → R
bounded and continuous,

EβN [Φ (SN )] P−→
N→∞

E [Φ (B)] ,(0.10)

where B denotes d-dimensional Brownian motion.

As we said earlier, the normalized energy HN/N is subadditive. It follows from that fact that
the free energy z exists:

Proposition 3. If E(q20) <∞, then for all β ∈ R,

z(β) := lim
N→∞

1
N

lnZN (β)(0.11)

exists a.s. and in L1(P), and z(β) is nonrandom. The function R 3 β → z(β) is nonnegative,
nondecreasing, and convex with z(0) = 0.

Define the critical inverse temperature,
(0.12) βc := sup D .

Clearly, z(β) = 0 whenever β 6 βc. Our next theorem shows the converse is true and that a
first-order phase transition occurs at βc.

Theorem 4. If Eq0 = 0, Var q0 = 1, and κ < ∞, then z(βc) = 0, whereas z(β) > 0 for all
β > βc. Moreover, there is a first-order phase transition at βc; i.e.,

(0.13) lim
β↓βc

z(β)
β − βc

∈ (0 ,∞).

Furthermore, if β > βc, then for all ε > 0,

(0.14) PβN
{
L?N
N

>
1− ε
β

max
(

z(β) , 1
2κ

)}
P−→ 1 as N →∞.
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Our work also addresses the behavior of the polymer at low temperatures. We show that, when
d > 2 and when β is large, most of the charges of the polymer are concentrated on the vertices
of a unit square, that the expectation of SN remains bounded while the diameter of the polymer
is of order logN . Most of our results hold as well for the corresponding annealed model ; and we
discuss the influence of a pulling force, that again is able to trigger a first-order phase transition.
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