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Colloque Anal. fonctionn.[1971, Bordeaux]
Bull. Soc. math. Frances,
Memoire 31-32, 1972, p. 2^9-256.

REPRESENTATION THEORY OF LOCALLY m-CONVEX TOPOLOGICAL ALGEBRAS

by
Anastasios MALLIOS

INTRODUCTION.

The purpose of this paper is to point out the intimate relation between

representations of "generalized group algebras", as it has been considered by

A. Hausner in [3], and the general theory of topological tensor product algebras,
in particular, locally m-convex ones [12], [7]. More specifically, the present ma-

terial may be considered as another application of the basic formula relating the

spectrum of a topological tensor product algebra to the spectra of the factor al-
gebras.

Proofs of the results reported herein, as well as further details along
the lines of this paper will appear elsewhere.

1. Preliminaries.

All vector spaces and algebras considered in the following are over the

field of complex numbers. All topological spaces are assumed to be Hausdorff. For

the terminology applied concerning locally m-convex topological algebras, we refer

to [12]. On the other hand, we shall also use the terminology and previous results

of this author regarding topological tensor products of topological algebras without

further discussion, (in this respect, cf. for instance [.7] or [11]).

Now, if E is a locally m-convex (topological) algebra, then by defini-

tion there exists a local basis in E consisting of m-barrels (balanced, convex,

closed, absorbing and idempotent subsets of E [9]). On the other hand, if every
m-barrel is a neighborhood of the zero element in E , then E is called an

m-barreled (locally m-convex) algebra (ibid.). Besides this class of topological

algebras, we also consider in the following those locally m-convex algebras, the

topology of which coincides with that of the uniform convergence on the (closed)

equicontinuous subsets of their spectra (Michael algebras, cf. for instance, [10]

p. ^75). In this respect, we remark that a Michael algebra E is also an m-barreled

one if, and only if, every (weakly) bounded subset of its spectrum w(E) is also

e qui cont inuous•

Finally, we shall also consider below on a locally m-convex algebra E

the inverse image (locally m-convex algebra) topology -f defined, on E by the
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respective Gerfand map g : E ->- ^( ̂ (E)) (: the algebra of continuous complex-

valued maps on 2J!(E) in the (locally m-convex algebra) topology of compact conver-

gence in 3)l(E)). We shall denote the corresponding topological algebra by E^^].

In particular, one has the preceding situation by considering certain

locally m-convex algebras equipped with an involut ion, i.e. a hermitian involutive

(algebra) anti-homomorphism, x ^ x^ , of E into itself (^-algebras).

Thus, let E be a locally m-convex (topological) algebra equipped with

an identity element and an involution such that the following condition is satis-

fied.

(1 -1 ) There exists a family F = (p^ ̂  of submultip lie alive seminorms de-

fining the topology of E [12] such that p^x^x) = (p^(x))2, for every x g E a^d,

for every index a € I .

The preceding condition implies, in particular, that the algebra E is

(functionally) semi-simple, in the sense that the respective Gel'fandmap is injec-

tive. Thus, we may consider E as a subalgebra of C. ( 3 D T ( ( E ) ) , which is, in parti-

cular, commutative, (in this respect, cf. also [10] , p. 1+74, Scholium).

Under the preceding circumstances, E carries now the Michael topology,

so that in case it is also m-barreled, its topology coincides with that of the uni-

form convergence on the compact subsets of 3[J?(E), i.e. one has in this case the
re lat ion

(1.2) E [/] ̂  <^(aJc(E)) ,

within a topological algebraic (into) isomorphism.

In particular, one concludes that the involution in E is continuous

and moreover a functional one, in the sense that one has, for every x € E , the re-

lation :

(1.3) g?^) =ii^y,
where g denotes the respective Gel'fand map of E and the "bar", complex conju-
gation.

Thus, one concludes, in particular, that the algebra E is selfadjoint

with a continuous involution. Hence, by a direct application of the Stone-Weirstrass

theorem, one has the relation :

(1.4) E"['̂ "] = C^WE)) ,

so that if E is, moreover, complete, one obtains :

(1.5) E [-/] = ^(W(E)) ,
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within a topological algebraic (onto) isomorphism (defined by the corresponding

Gel* fand map g).

2. Representation theory*

Let E be a topological algebra and let H be a topological vector

space. By a continuous representation of E on H , we mean a continuous (algebra)

homomorphism of E into <£ ( H ) , the algebra of continuous linear endomorphisms of

H equipped with a topology T making it a topological algebra.

In particular, if H is a (complex) Hilbert space, a continuous repre-

sentation of a topological algebra E in ^-h^) "will "be called a uniformly conti-

nuous representation of E on H , where now the topology b ( : bounded conver-

gence on H) coincides with the "uniform operator topology" u on the space < £ ( H ) .

On the other hand, a ^-repre sent at ion of (a ^-algebra) E on (the Hilbert

space) H is one, which preserves the involution of the corresponding algebras E

and £ ( H ) .

Now, suppose that T is a completely regular (Hausdorff) space and let

C. (T) be the algebra of complex-valued continuous functions on T equipped with
the topology of compact convergence, so that (3(T) thus topologized becomes a lo-

cally m-convex (topological) algebra.

On the other hand, the topological dual of the respective locally convex

space (3(T) can be realized as the space of regular Borel measures on T with

compact support (cf. for instance [1] p. 203, theorem 1 (ii i)) . Based on this re-

sult and the relevant considerations in [6], one gets the following.

THEOREM 2.1. - Let T be a completely regular space and let C. (T) be the (locally

m-convex topological) algebra of complex-valued continuous functions on T endowed

with the topology of compact convergence in T . Moreover, let H be a reflexive

' locally convex (topological vector) space and let :

(2.1) A : <^(T) -^ ^(H) ,

with T> s ( : uniform topology of simple convergence in H ) , be a continuous repre-

sentation of C. (T) on H . Then, there exists a uniquely defined idempotent £ (H)-

valued measure on T , in such a way that one has :

(2.2) &(A^ $) = L x ( t ) d & ( P ^ ( $ ) ) ,

for any ^ € H and A ^ ^ , with x^ (3(T). In particular, if H is a Hilbert space

and A denotes a uniformly continuous representation of (3 (T) on H , one obtains
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(2.3) .(A^ $. y ) = ;̂  x ( t ) d(P^ $, ^) .

for every pair (^>, y) of elements of H , with x € 0(T), where P^ now denotes a

projection-valued measure on T .

Concerning the preceding result, we also remark that there is actually

a bisection between continuous representations given by (2.1) above and idempotent

£(H)-valued measures on T , in such a way that the relation (2.2) holds true.

Now, applying the preceding theorem to the particular completely regular

space defined by the spectrum TO(E) ( : Gel'fand space [10]) of a locally m-convex

algebra E , one obtains the following result.

THEOREM 2.2. - L^_ E be a commutative semi-simple locally m-convex (topological)

algebra endowed with a continuous involution for which it is also self-adjoint, and

moreover suppose that (l.U) above holds true. Then. to every continuous ^-represen-
tation A : ^T# ^ ^ •VH) of the algebra E[r^ ] on a Hilbert space H , there

corresponds a uniquely defined project ion-valued measure PA on the spectrum W(E)

2L E in such a way that the following relation holds true :

(2.U) (A $, V ) = / x(f) d (P^ $. ^) ,
SD? (E) I

vith x^ E (x denotes the Gel'fand transform of x [10] ), and for every pair

^' ^ of elements of H , this correspondence being, moreover, a bijection between
the respective classes of objects.

By what has been said in the preceding section, we conclude that the

above theorem is valid if, in particular. E is a commutative semi-simple m-barre-

led locally m-convex (topological) algebra with an identity element and an involu-
tion satisfying the relation (l.l) above.

3. Tensor products.

We specialize in the sequel to the case of tensor product algebras, which

are endowed with suitable "compatible" topologies [II], and seek out representations

of such algebras in the sense of the preceding section. In this respect, one obtains

the following general result, which we shall also use in the next section. That is,
we have.

THEOREM 3.1. - ^b_ E, F, G be topological algebras with (jointly) continuous mul-

tiplication in such a way that all of them have approximate identities and the al-

^ebra G is complete. Moreover, let E^ F be the completion of the tensor product
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algebra E<2> F under an "admissible" topology T [8] making it a topological al-

gebra with continuous multiplication. Then, for e very element h€^om(E <8> F , oC (G))
T S

such that :

(3.1) Im(h) .G = G

(the "bar" means topological closure), there exist, uniquely defined, elements

f € Mom(E, £ ( G ) ) and g € Mom(F, S, ( G ) ) such that :s - s - ' • - ~ -

(3.2) h = f 0 g , with h ( x ® y ) = ( f ® g ) (x(g»y) = f (x) g(y) = g(y) f (x) ,

for any elements x € E and y 6 F .

The preceding theorem generalizes the situation one has in the case that

the algebras considered have identity elements (cf. for instance [11] p. 80, theo-

rem 3.1).

On the other hand, if Mom (E <§> F , £ (G)) denotes the- subset of
0 T S

Mom(E <S> F , £ (G)) ( : the set of continuous (algebra) homomorphisms between the

respective topological algebras) determined by the "^elation (3.l) above, then one

obtains a continuous injection

(3.3) $ : Mom^(E J> F , £g(G)) - Mom(E, £g(G)) x Mom(F, £g(G)) ,

whose range are those (f,g) as above, for which one has f(x) g(y) = g(y) f(x) ,

for every pair ( x , y ) € E x F , in such a way that the corresponding (cont inuous) ho-

momorphism h = f<8>g satisfies the relation (3.l) above.

We finally remark that one can also conclude the bicontinuity of the pre-

ceding map ^ under suitable restrictions for the topological algebras involved,

in analogy with the situation one has in the case the algebras considered have iden-

tity elements (cf. also [II], p. 79, § 3).

We conclude by citting a similar result, in this respect, of A. Guichar-

det, concerning a tensor product of C"-algebras (cf. [2], p. 193, proposition l),

"which has also contributed to the present setting.

U. Generalized group algebras.

As an application of the results referred to in the foregoing, we spe-

cialize below to the case of "generalized group algebras", which are a particular

instance of topological tensor product algebras (cf. for instance [7]).

Thus, by applying to the case under consideration the results of the pre-

ceding section, we first obtain the following theorem.
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THEOREM U.I. - Let E be a commutative complete locally m-convex (topological) al-

gebra with an identity element (de notedby l) and a continuous involution for which

it is also self-adjoint. Moreover, let G be a locally compact abelian group and

let L (G, E) be the corresponding "generalized^group algebra" [7]• Finally, let

A : L (G, E) ->• «£ (H) be a uniformly continuous ^-representation of the algebra

L (G, E) on a (complex) Hilbert space H such that :

(U.I) Ad^G^l) = H

(the "bar" means topological closure). Then, there exists a uniformly continuous

repre sent at ion T : E ->• c£ (H) of the algebra E _on_ H and a weakly continuous

unitary representation (U ) gj* G j^ H commuting with (T ), in such a way that

one has the relation :

( U . 2 ) (A^. $, ^) = ^ (T^.^ U^ $, f ) da ,

where da denotes the Haar measure on G , for every f ^ L (G, E) and for all ele-

ments $,. ^ JL^ H .

On the other hand, one obtains the following converse to the preceding

result. That is, we have :

THEOREM U.S. - Let E be a commutative complete locally m-convex algebra with an

identity element and a continuous involution. Moreover, let G be a locally compact

abelian group and let L (G, E) be the respective generalized group algebra of G .

Finally, let (T ) be a uniformly continuous representation of E on a Hilbert space

H , and (U ) a weakly continuous unitary representation of G in H , wh i ch^ com-

mutes with (T ) . Then, there exists a uniformly continuous representation (A, ) of

the algebra L (G, E) ̂  H in such a way that, for^ every $ ^ H , the element

A - $ € H is given by the Pettis integral

(h.3) \ $ = ̂  ^(a) "a » da -

Moreover, if the algebra E is self-adjoint and fT ) is a ^-representation of E

JLS. ^ ̂  » then the same holds true for the representations (A^) as above.

By applying the preceding results, we are now in a position to state the

following theorem, which also motivated the present study. It also constitutes an

extension of a previous result of A. Hausner obtained into the context of the theory

of Banach algebras by using different techniques (cf. [3], p. U, theorem 2). Besides

it is a form of a generalized SNAG ( : Stone-Naimark-Ambrose-Godement) Theorem

(cf. also [3J, p. 5, in particular, the comments following the proof of theorem 2).

Thus, we have :
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THEOREM U.3. - Let E "be a commutative complete semi-simple locally m-convex (to-

pological) algebra with an identity element and. a locally equicontinuous spectrum

[9] i equipped with a continuous involution for which it is also self-adjoint. More-

over a let H "be a (complex) Hilbert space and (T ) a uniformly continuous ^-repre-
f x

sent at ion of E[T ] in <£ (H). Finally, let G be a locally compact abelian group,

and let (U ) be a weakly continuous unitary representation of G in H commuting

with (T ). Then, there exists a projection-valued measure P(h, S) ori !U?(E)x G ,

where !D?(E) denotes the spectrum of E and G the dual group of G , in such a

way that one has the following relation :

( U . U ) (T U $, y) = J ^ x(h) (a, S) d(P(h, S) d>, ^) ,
CT(E)x G

for any x ^ E , a €G and all elements $, ^ o^_ H .

Concerning the representation (T ) in the preceding theorem, -we remark

that we simply hypothesize the respective map T : E -^ <£ (H) to be continuous when

E is equipped with the topology T 9 i.e., the initial (locally m-convex algebra)

topology defined on E by the Gel'fand map g : E -^ <3 (^(E)) . This implies, in
n c

particular, that the map T o g " : g(E) -^ .£ (H) is a continuous representation of

the algebra g(E) on H , where the algebra g(E) = E ( : Gel'fand transform of

the algebra E) is a dense subalgebra of C. ( 3 C R ( E ) ) , as it is concluded by the hypo-

thesis on E (cf. also section 1 in the preceding), so that one may apply theorem

2.1 above. On the other hand, regarding the topological algebras considered in the

preceding theorem, we also refer to the comments following theorem 2.2 in the fore-

going.

By concluding the present discussion, we finally remark that an extension

to the case of "non-unitary representations" concerning, in particular, the results

in this section is possible. In this respect, some relevant recent considerations

by R. A. Hirschfeld seems to provide a suitable framework thereof (cf. for instance

[5] or [U]). Regarding this point of view however, we intend to be more specific in

some other place.

Remark : The topological algebra E considered in theorem U.3 above should more-

over satisfy the condition : E is m-barrelled [9] in such a way that the respective

Gel'fand transform algebra E = g(E) is contained in the Banach algebra (3 (9D f f (E ) )

of complex-valued continuous functions on 3EJKE), which "vanish at infinity", the

topology of the latter algebra being that of the uniform convergence in DOR(E) .

In this respect, we note that since g(E) ^ <3 (3 [ f f (E) ) , as above, the

algebra E is bounded [10 ; p. UTO] , so that, since it is also m-barrelled, its

spectrum !ni(E) is an equi continuous subset of the respective weak dual space E*
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[ibid. ; p. ^71, corollary] and hence a locally compact (Hausdorff) space [9 ; p.

302, theorem 2.1]. Besides, the presence of the identity element in E is not es-

sential.

A detailed proof of the preceding theorem, as well as an abstract ver-

sion of it, in terms of general topological tensor algebras, which gives a better

insight into the situation described by theorem ^.3, are given in a subsequent pu-

blication.
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