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SOME UNSOLVED PROBLEMS

^y,
W. NARKIEWICZ

In this paper, which is a slightly extended version of my talk at the Bordeaux

Number Theory Colloquium, I shall present some unsolved problems in number theo-

ry. The first group of those concerns the theory of factorization in algebraic

number fields, whereas the second deals with some questions from other branches of
the number theory.

1. Let K be an algebraic number field. An integer in K is called irreduc-

ible, if it cannot be decomposed into two factors, neither of them a unit in K .
Clearly every integer generating a prime ideal is irreducible, but the converse

holds only if the class-number h ( K ) of "(he field in question equals unity. Denote
by A(x) the number of non-associated irreducible integers of K with their norms
not exceeding x in absolute value.

P. Remond ([l4] ) proved the following asymptotics for A(x) :

A(x) ^ c(K)x(loglog x^dog x)~1

where t S 1 is a constant, depending only on the class-group H ( K ) of the field

K . It is easy to see that t is the maximal number of prime ideals occuring in

the decomposition of an irreducible integer in K , and so t equals the minimal

number s with the propery that every system of s elements from H(K) has a

subsystem whose product equals 1 . H. Davenport proposed the following

PROBLEM 1. Evaluate t = t ( H ( K ) ) .

It has been conjectured by J.E. Olson ([13]) that if the group H is a product

of cyclic groups C ,. . . ,C with n-, |n/J ... |n , then t (H) = 1 + J, (n.-l) .
n! ^ 1 " k 1=1 1

This conjecture is trivial for H cyclic, and for abelian p-groups was established

by J.E. Olson ([13]). Professor Wirsing kindly informed me that the same result was

obtained independently by S. Schanuel (unpublished).

Although this problem has also a meaning for non-abelian groups, it seems that

this case is entirely untouched.

2. Now let B(x) be the number of non-associ-ated integers in K with their

norms not exceeding x in absolute value, which have unique factorization in K .
-i /?

E. Fogels considered in [3] the field K = Q((-5) ) with h = 2 and proved that
in this case B(x) = o (x ) . I proved later in [U] that a similar result holds for
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all fields with h ^ 1 (in the case h = 1 obviously B(x)ft/ex) , more precisely,

one hase

B(x) = 0(x(loglog x)^^ x)^)

with some positive b , and. nonnegative a • It can be shown, although it was never

published, that the best possible value of b equals 1 -h""

PROBLEM 2. Prove that
B(x) ^ d(K)x(loglog x^dog x)^ "1

where d(K) is a positive constant, and the exponent t is the seme as in pro-

blem 1 .

Similarly we may consider the number C(x) of positive rational integers not
1 /?

exceeding x , having unique factorization in K . For the field K = Q((-5) )

E. Fogels [3] obtained

C(x) = 0(x(loglog x^dog x)"175)

and a similar result (with exponents depending on the field) I proved in [4 3

for all normal fields (with h ^ l). It can be shown that the best possible value

of the exponent of log x equals (h-l)/hn with n = LK:Q].

PROBLEM 3. Prove that for all fields with h ^ 1 (not necessarily normal)

one has C(x) = o(x) , and find the precise asymptotics.

The precise asymptotics is known only in the case of K quadratic. (See [8] ).

In [8] it was shown that the natural numbers with unique factorization in a

given quadratic field are evenly distributed among the relatively prime residue

classes mod N , provided that N is relatively prime to the discriminant of the

field. The restriction on N was later ([9] ) removed.

PROBLEM k. Prove the same result for arbitrary normal extensions of Q •

3. L. Carlitz proved in [1] that the class-number of K does not exceed 2 if

and only if all factorizations of any given integer in K are of the same length

(i.e. have the same number of factors). Evaluations for the number of nonassociatQd-

integers in a field with h ^ 1,2 which have all factorizations of the same

length, and also of natural numbers with the same property, whose norms do not

exceed x in absolute value, were given in [4] and [5] • IK [8] it was proved that

if D has all its factorizations of the same length, and K is a quadratic field

with h ^ 1,2 , then the number of positive rational integer*lying in a given re-

sidue class m(mod n) with (m,n) = D , having all factorizations of the same
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length and not exceeding x equals asymptotically

c(n,D,K)x(loglog x)^^ x)^

with b = (h-l-c(D))/2h, where O ^ c ( D ) ^ g , and g is the number of even inva-

riants of the class-group. For D = 1 we have c(D) = g and I conjectured that

c(D) = g always. This was shown to be false by A. Schinzel and later I showed

[ 10] that c(D) = g holds for all D and a fixed field K if and only if either

h(K) is odd or H(K) = Cp x C x ... x C .

PROBLEM 5. Determine the precise value of c(D) for all quadratic fields.

Carlitz^ proof uses the fact that every ideal class contains prime ideals,

which may be not true in other Dedekind domains. In fact, from one result of

L. Claborn ([2]) one can obtain an example of a Dedekind domain in which every

element has factorizations of the same length, but the class-group has the form

C- x Cp . It is easy to see that every such example must have its class-group of

the form Cp x ... x Cp (provided it is finite), but the converse does not obvious-

ly hold. Thus we have.

PROBLEM 6. Characterize Dedekind domains in which every element has all its

factorizations of the same length.

h. The following problem is due to P. Turan :

PROBLEM T. Let K be any algebraic number field with h ^ 1 , and let f(n)

be the number of factorizations of n in K . Is it possible to find a nondecrea-

sing normal order for f(n) , i.e. a non-decreasing function F(n) such that to

every positive e and almost all n the inequality | f(n) - F(n)|< eF(n)

holds ?

I proved in [ 12] that if K is quadratic with h = 2 then such a function

F(n) does not exist. The general case is still open. A similar problem may be

posed for the function g(n) counting the number of factorizations of different

length of n . In the same paper I showed that for quadratic fields with h = 2

and for quartic fields with H = Cp x Cp such a function F(n) exists and equals

c loglog n with c = 1/9 in the first case and c = 1/8 in the second.

5. Now some problems which are not connected with factorizations :

PROBLEM 8. (J. Browkin, unpublished). Let K be an algebraic number field such

that one can find a sequence of integers in K , say a-,,a ... such-thai for every

ll
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ideal I in the ring of integers of K all re -idue classes (mod. I) are represen-

ted by the sequence

^•••^(I) •

Prove that K is the field of rational numbers.

It is easy to see that such a sequence cannot exist in an imaginary quadratic

field with a discriminant large enough in absolute value. An elementary solution of

this problem for all quadratic fields was recently obtained by B. Wantua:a in his

M.A. thesis at Wroclaw University (unpublished). The general case seems to be quite

difficult.

One can ask also for a sequence a-,,ap,... which has the property stated in

problem 8 for all prime ideals of the field. In this case nothing seems to be

known.

6. The next two problems concern transformations by polynomials.

PROBLEM 9. Let A be a closed curve in the complex plane, and let P(z) be

a polynomial with the property P(A) = A . Prove that either A is a circle, or

P(z) = a z .

Now let K be any field. We shall say that K has the property (P) if for

every infinite subset A of K and for every polynomial P(t) over K the

equality P(A) = A implies the linearity of P(^) . I proved in [ 6 ] that every

finitely generated extension of the rationals has property (P) .

PROBLEM 10. (i) Let K be an algebraic number field of infinite degree gene-

rated by a subset with all its elements of bounded degree. Prove that K has the

property (P).

Cii) Let K a function field in finite number of variables over

a finite field. Prove that K has the property (P) .

T. We conclude with two elementary problems.

PROBLEM 11. For which N the values of the function cr (n) , giving the sum.

of divisors of n , are equally distributed among the residue classes (mod N ),

relatively prime to N ?

A similar question concerning the number of divisors and the Euler^ function

was answered in [ll] where also a more general necessary and sufficient condition

was obtained, which is however very hard to apply in the case of a(n) .
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In [T] I proved, the following result concerning the unitary convolution'of
arithmetical functions :

00

If ^ | f ( n ) | converges, and. g denotes the inverse of f under the unitary

convolution (if it exists), then the series ^ |g (n) | is also convergent.
n=l

We recall that the unitary convolution of two functions a(n) and b ( n ) is
defined by

^ a(d) b(n/d)
d|n

(d,n/d)=l

and the unit element of the ring so obtained equals the function e (n ) -which is

= 0 for n + 1 and e(l) = 1 .

The proof of the mentioned result is non-elementary, as it uses the theory of
normed rings.

PROBLEM 12. Find an elementary, direct proof of the result quoted.
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