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Resume. Soil F un corps p-adique de characteristique differente de 2. On
caracterise la reducibilite des representations de GSp{2, F) et 5p(2, F) qui
sont induites paraboliquement par des representations irreductibles. On
donne aussi une classification (modulo les representations cuspidales) de
differentes classes de representations irreductibles de ces groupes. Un cas
special est la classification des representations irreductibles unitaires.

Abstract. Let F1 be a p-adic field whose characteristic is different -from 2.
The reducibilities of the representations of G5p(2,F) and 5p(2, F) which
are parabolically induced by the irreducible representations are described.
We obtain also classifications (modulo cuspidal representations) of various
classes of irreducible representations of these groups. In particular, the
classification of the irreducible unitary representations is obtained.
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Introduction

Let F be a p-adic field. We shall assume that the characteristic of F is
different from two. Denote by R the direct sum of the Grothendieck groups
of the categories of all smooth representations of finite length of the groups
GL{n^ Fys. The functor of the parabolic induction defines a multiplication
x on R. In this way R becomes a ring ([Zl]). Obviously, one can define an
additive mapping

m :R®R-^ R

which satisfies m(r*i 0 r ' z ) = r-i x 7-2. A comultiplication

m* : R -> R ® R.

is defined in [Zl]. The definition of the comultiplication involves the Jacquet
modules for the maximal parabolic subgroups. In this way R becomes a
Hopf algebra ([Zl]). This structure can be very helpful in the representation
theory of the groups GL{n, F). Some examples of the use of this structure
can be found in [Z2] and [T2]. The crucial property of this structure is that
the mapping m* : R —> R^R is multiplicative. In the other words, we have
a simple formula for the composition

772 0 772.

Let R(S) (resp. R{G)) be the sum of the Grothendieck groups of
the categories of the smooth representations of finite length of the groups
5p(n, F)^ (resp. G5p(n, Fys). Using the functor of the parabolic induction
one can define a structure of R- modules on R(S) and R{G) (see the first
section). These multiplications are denoted by X. They induce biadditive
mappings

^ : R ^ R ( S ) - ^ R(S)

and

/^:R0R(G)-^ R(G).
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Using the Jacquet modules for the maximal parabolic subgroups, one can
define a comodule structures

^ : R{S) ̂  R 0 R(S)

and
^:R(G)-^R0R(G)

(see the first section). The first question may be what is the formula for

/2*0^ .

Formulas for these compositions were obtained in [T6]. A usefulness of such
formulas could be seen from the paper [To] where some results about the
square integrable representations and the irreducibility of the parabolically
induced representations were announced. An essentially new situations was
treated there. We have obtained that results using the formulas for ^ o /^ .
Examples of the use of such formulas, and outlines of proofs of some of
the results announced in [To] can be found in [T7]. A complete proofs will
appear in the forthcoming papers.

In this paper we apply this type of approach to the representation the-
ory of the groups GSp(2,F) and 5p(2,F). We study first the questions
of the reducibility of the representations parabolically induced by the ir-
reducible representations. Then we get the classification of various classes
of irreducible representations, in particular, the classification of the irre-
ducible unitary representations. Such questions were settled for the unram-
ified representations by F. Rodier in [R2]. Because of that, our attention
in this paper is directed more to the remaining irreducible representations
and this paper completes F. Rodier's investigation. For the representations
supported in the two intermediate parabolic subgroups, such questions were
solved by F. Shahidi and J.-L. Waldspurger. We do not use in this paper
arguments specific for the spherical representations. Also, we give very of-
ten alternative proofs to the Rodiers proofs. The main part of the paper
is the analysis of the parabolically induced representations. The case cor-
responding to the regular characters is relatively easy. It was settled in a
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general setting by F. Rodier in [Rl]. In the analysis of the irregular case,
F. Rodier uses the explicit knowledge of the spherical functions and the
connection between the matrix coefficients and the Jacquet modules. Our
method uses only analysis of the composition series of the Jacquet modules.
This method is able to cover all characters except one spherical case which
was settled by F. Rodier (see Lemma 3.9).

The methods used in this papers were developed essentially for higher
GSp(TiYs and Sp(n)'s. This is an introduction to the use of them in a rel-
atively simpler setting. It seems that they are even more powerful for the
higher ranks. The reason is simple, we have there more parabolic subgroups
and we have more possibilities to compare informations coming from the
Jacquet modules of various parabolic subgroups. The following example is
suggestive. Let SI.G and IG denotes the Steinberg and the trivial represen-
tation of some reductive group G. Look at G S p ( l ^ F ) . Then the question
of the reducibility of \ X Stcsp(o,F) ( or X >^ IG^(O,F)) ^or a character ^
of ^x, is the question of the reducibility of the non-unitary principal series
representations of GSp(l,F) == GL(2,F). As it is well known, the compo-
sition series of the Jacquet modules for the minimal parabolic subgroups
imply that the reducibilities can appear only for y == | |^,a G H (| \F
denotes the modulus character of F). No further information on a can be
obtained by these considerations (we have reducibility for a == ±1 for the
obvious reasons). Thus, a whole line still remains to be analyzed. The
following case is the case of GSp{2, F). We have. already noted that we can
describe the reducibilities of y X] Stcs(i,F) (or X >^ ^.SpO.F)) by the above
methods, excluding one point. Clearly, we use the knowledge of GSp(l,F)
case. Now, using the knowledge of \ Xl StG5;i(i), one can describe com-
pletely the reducibilities of \' XlSt.G-.<7p(n) for ^ >. 2 (see [To]).

This paper follows the ideas of [T4] and notation is the same as there.
We give now a more detailed account of this paper.

In tlie first section we recall of the main notation which was introduced
in [T4]. One should consult [T4] for more details concerning the notation.
In the second section we present formulas for /z* o // in the case of the group
GSp(2, F). These formulas are a special case of the formula obtained for
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^ o /z for any GSp(n,F) in [T6]. In the third section we consider the
representations of GSp(2, F) parabolically induced by the irreducible rep-
resentations of the Levi factors of proper parabolic subgroups, which are
supported by the minimal parabolic subgroups. Note that such representa-
tions for GSp(2^F) are either generalized principal series representations,
or non-unitary principal series representations, or non-unitary degenerate
principal series representations. We have determined in this section when
these representations are irreducible. If they reduce, we find the Langlands^
parameters of all irreducible subquotients. That irreducible subquotients
are always of multiplicity one. A part of these results is either explicit or
implicit in F. Rodier^s paper [R2] where he considered the unramified case.
R. Gustafson has determined the reducibility points and the length of re-
ducible representations of the unramified non-unitary degenerate principal
series of Sp(JZ,F) for the maximal parabolic subgroup of GL-type ([Gu]).
He has used a Hecke algebra method. C. Jantzen studied in [J] reducibility
points of the non-unitary degenerate principal series of 5p(n, F) and he has
determined them for 5p(2,F) and 5p(3,-F). He has used both the Hecke
algebra and our method.

In the fourth section we apply the calculations which were done in the
preceding section. We write classifications of square integrable, of tempered
and of unitarizable irreducible representations of G5p(2, F) which are sup-
ported in the minimal parabolic subgroups. We give Langlands5 parameters
of unitarizable representations. Such classifications were done by F. Rodier
in the unramified case in [R2]. The ideas used in the classification in the
unramified case are sufficient also for the treatment of the general case.
One needs to have only the results of the proceeding section. For the sake
of completeness, we include here also an analysis of representations sup-
ported in other two parabolic subgroups. These cases were settled by J.-L.
Waldspurger and F. Shahidi. F. Shahidi's methods are sufficient for both
cases. We want to thank F. Shahidi for computing explicitly for us in a
letter the reducibility points in one of these two cases. Let us mention that
A. May classified irreducible representations of GSp{2^ F) using the Hecke
algebra isomorphisms ([Mo]). Analogous results for 5p(2, F) are considered
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in the fifth section. We also consider the problems of the third section for
5p(2, F). Note that in this case there appear representations except gener-
alized principal series, non-unitary principal series and degenerate principal
series representations.

Let us mention the following interesting situation. Take a square inte-
grable representation of Sp(2, F) supported in the minimal parabolic sub-
groups which is different from the Steinberg representation. Such repre-
sentation always exists. Then it is a subquotient of a non-unitary princi-
pal series representation which corresponds to an irregular character. This
non-unitary principal series representation has five different irreducible sub-
quotients. Two of them are square integrable. One irreducible subquotient
has multiplicity two and it is not square integrable. Other multiplicities are
one. All irreducible subquotients are unitarizable. At the end, this non-
unitary principal series representation is at the end of a very interesting
complementary series.

The second author is thankful to the Mathematical Department of the
University of Utah where this paper has got almost the final form, and
where it has been typed. This paper is based on an earlier preprint "On
representations of p-adic G5p(2)". The former preprint was profoundly
revised. The case of 5p(2) got a complete treatment in this new paper.
Some impreciseness concerning Sp(2) existing in the previous preprint, were
removed in this paper. Also, the misprints that we noticed in the earlier
preprint have been deleted in this paper.
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1. Notation
We shall first recall of some of the notation related to the general linear

groups, which was introduced in [BZ] and [Zl]. For more details about this
notation, one should consult that papers.

A local non-archimedean field will be denoted by F. The topological
modulus of F will be denoted by | [p. As a homomorphism of F^, this
character will be denoted by

„ : px _, R X .

For a two smooth representations 71-1 of GL(n\^ F) and TT^ of GL{n^^F\

we denote by

TTi X 7T2

the smooth representation of GL^n^+n'z, F) parabolically induced by 71-1^2
from the standard parabolic subgroup (with respect to the upper triangular
matrices)

-P(m,n2) == ̂ ni^^n^ns)

whose Levi factor ^(m,n2) ls naturally isomorphic to GL(n^^ F)xGL(n'2^ F)
(see [BZ]). The induction that we consider is normalized.

The Grothendieck group of the category of all smooth representations
of finite length of G^(n,F), will be denoted by Rn. Their sum will be
denoted by

R= 0 Rn.
n>0

Then x lifts to a multiplication in R which will be denoted by x again.
For a smooth representation TT of GL{n^ -4- n-^,F) of finite length, we

denote by

^(n^ns^ni+n^^71')

the Jacquet module with respect to ^(m^s)' The action of M(^^) that we
consider is the quotient action twisted by the modular character of P(m^m^
to -1/2.
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Let TT be a smooth representation of GL(n,F) of finite length. Denote
by

m*(7r)

the sum of all semi simplifications of r^p^n-p)^^)^ 0 <: P <: n' One may
consider m*(7r) G R 0 R. One lifts 771* to an additive mapping of R into
R 0 7?. In this way J? becomes a Hopf algebra ([Zl]).

Let Jn be the following n x n matrix

Jn

ro o • • • o i
o o — i o

i o o o
The group of all (2?i) x (2?2) matrices over F which satisfy

0
-Jn

Jn

0
ts= S = 0(5) 0

-Jn

Jn

0

for some ^{S) C -^1><, is denoted by GSp(n^F) (^S denotes the transposed
matrix of S). We define formally GSp(0,F) to be Fx. The symplectic
group is defined by

Sp(n,F) = {S € GSp(n,F); ^(S) = 1} .

We take formally 5'p(0, F) to be a trivial group.
A more detailed introduction into the notation which we shall introduce

now, can be found in [T4].
We fix in Sp(n^F) (resp. GSp(n^F)) the minimal parabolic sub-

group P3 (resp. P?) which consists of all upper triangular matrices in
the group. Let M^resp.M^) be the subgroup of all diagonal matrices in
Sp(n, F) (resp.G5p(n, F)). Then M^resp.M^) is a Levi factor of the stan-
dard minimal parabolic subgroup. It is also a maximal torus in Sp(n^F)
(resp.G5p(n,jF)). We call them standard maximal tori.

Denote by diag(a:i,... ,a:m) ^-he diagonal matrix which has on the di-
agonal entries .TI , . . . , x^. For x\,..., Xn € Fx set

a ( x ^ , . . . , X n ) = dmg(x^,...,x i • • • ^lx/ n ? "" n i ' " ' ) 1.-i .-i'
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This is a parametrization of the standard maximal torus in Sp(n,F). For
x ^ , . . . , X n , x C Fx set

a(xi,...,Xn,x) = ( x • i , X ' 2 , . . . , X n , X X ^ l , X X ^ , . . . , X X ^ l ) .

This is a parametrization of the standard maximal torus in GSp{n^F\
Let ^i , . . . ,\n->X be characters of F^. We define the character ^i ®

... ® ^n ® 1 of A^ by

(Xl ® • • • ® Xn ® 1)K^1, . . . , Xn)) = Xl(^l) . . . Xn(.Tn).

The character Xi ® • • • ® Xn ® ,Y of M^ is defined by

(,Yl, 0 . . . ® ̂  0 X)(<3(^1, . . . , Xn, X)) = ̂ i(:ri )\2{X^} . . . XnOn)x(^)-

Note that in the case of GSp{l,F) == GL(2,F) this parametrization of
characters of the standard maximal torus differs from the usual one.

For a smooth representation TT of GL(n^F) and a of 5p(m,jF) we de-
note by

TT X](T

the parabolically induced representation of Sp(n + m, I7') by TT ® cr from the
parabolic subgroup

f ' < / * * ' )
Pfn) = { 0 h * € 5p(n + m, F); ̂  C GL(n, F), /z e 5p(m, F)} .

[ _ 0 0 r^-1 J

Here r^ denotes the transposed matrix of g with respect to the second
diagonal. The representation TT 0 a maps

g * *
0 h *
0 0 r(7-l

to 7r(g)^a(h).
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For a representation p of Sp{n + m, J71) of finite length, we denote by

W^)

the Jacquet module of p with respect to the parabolic subgroup Pp^\- The
action of the Levi factor

<7 0 0 • }
O h 0 ; g C GL(n, F), h (= 5p(m, F) ^
0 0 Y-\ }

is again the quotient action twisted by the modular character to -1/2. Note
that the Levi factor is naturally isomorphic to

GL{n,F)xSp{m,FY

We denote the Grothendieck group of the category of all smooth rep-
resentations of Sp{n^F) (resp. GSp(n,F)) of finite length by Rn(S) (resp.
Rn(G)). Set

R(S)= © Rn(S),
n>0

R(G)= C Rn(G).
n^O

One lifts Xl to a mapping

>o : R x R(S) -^ R(S).

For a smooth representation a of S p ( n ^ F ) of finite length, we denote
by

f^(a)

the sum of semi simplifications of .s^)^)? 0 <: k <: n. Then we can consider
^*(cr) G -R 0 R(S). We lift [i* to an additive mapping form R{S) into
R ® R(S).

For an integer 0 <: k ^ n set

pG
^(fc) =

^ *
0 A
0 0 ^(hYgr/,-!

C GSp{n, F); ̂  € GL(A-, F), A € G5p(72 - k, F)
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Then P^\-> 1 <^ k <^ n^ are all the standard maximal proper parabolic
subgroups. Note that P° = GSp{n^F). The image of the homomorphism

' g 0 0
{g,h)^ Q h 0

0 0 W<T1

of G(k,F) x G^n - A-,F) will be denote by M0 The Levi factor M°
of P0 C GSp(n^ F) is naturally isomorphic to

GL(k,F)xGSp(n-k,F).

Therefore, one can define in the same way the multiplication ><l of repre-
sentations of GL(n^F) with representations of G5p(m,-F). One lifts it to
a biadditive mapping

X : R x R(G) -^ R(G).

The symbols x and Xl will denote in further operations among rep-
resentations, except if it is stated that they are considered as operations
between Grothendieck groups. For more informations about the operation
Xl one should consult [T4] (see also [T6] and [T7]).

One defines analogously

^ : R(G) -^ R ® -R(G).

There are the obvious cones of positive elements in R^R(S) and -R(G).
Therefore, we have partial orders on these groups.

Let TT be a representation of GL(n^F) (resp. G5p(n, F)), and let \ be
a character of i^. Then \TT denotes the representation g »—> \(g)^(g)' One
remark is necessary in the above definition, regarding the characters. The
characters of I^ are considered also as characters of GL(?7-, F) in a standard
way, using the determinant homomorphism. We consider characters of J^^
as characters of GSp(n^F\ using the composition with ^.
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For a representation TT of GL(n^ F\ TT denotes the smooth contragre-
dient of TT, while r7^~l denotes the representation g ^ 7^(r^'~l). If TT is an
irreducible smooth representation of GL(n^ F) and if a is a similar repre-
sentation of G5p(m, F) (resp. 5p(m, F1)), then the following equality

(1.1) TT Xa = TT Xa;^<7 (resp. TT X cr = TT Xa)

holds in -R(G) (resp. -R(S)). Here o^ denotes the central character of TT,
which is considered as a character of F^ (the center of GL{n, F) is identified
with -F^ in a standard way). If \ is a character of Fx, then we have

(1.2) ^7r>^a)^7rx(^)

when a is a representation of GSp{m^ F).
We denote by D the set of all equivalence classes of the irreducible

essentially square integrable representations of GL(n^FYs when n >, 1.
The essentially square integrable representations are representations which
become square integrable representations modulo center, after a twist with
a suitable character of the group. For 8 G -D, there exists a unique real
number e(6) and there exists a unique ^u C D which is unitarizable, such
that

^Idetl^^.

Set
D+ =={6eD',e{6)>0}

Denote by T(S) the set of all equivalence classes of the irreducible tempered
smooth representations of 5p(n, Fys for all n >_ 0.

Take t == ( (^i , . . . ^n),r) € M(D+) x T(S) where M(jD+) denotes
the set of all finite multisets in D+. Choose a permutation p of the set
{ l , 2 , . . . , n} such that

e(^( i))^e(^(2))^.- .^e(^(n))-

Then the representation

<^(1) X6p(2) X ... X (^)X7
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has a unique irreducible quotient which will be dented by L(t). This is the
Langlands5 classification for the symplectic groups. The mapping

t h-> L(t)

is a one-to-one parameterization of all irreducible representations by M(D^.)
xT(S).

Denote by T(G) the set of all equivalence classes of the irreducible
essentially tempered smooth representations of GSp{n^ jP)^, n >_ 0. Then
one defines in the same way L{t) for t 6 M(£4) x r(G'). This is the
Langlands5 classification for GSp-groups.

For a reductive group G over F, G will denote the set of all equivalence
classes of the irreducible smooth representations of G. The subset of all
unitarizable classes will be denoted by G. The set of all cuspidal classes in
G is denoted by C{G). Let (^(G) be the set of all unitarizable classes in
C(G). The trivial representation of G on a one dimensional vector space
will be denoted by IG-
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2. Jacquet modules of induced representations of GSp(2)

In this section we shall present the formulas for /^*(7r) where TT is a
parabolically induced representation of <?5p(2, F).

We shall first recall of the case of G5p(l,F) == GL(2,F). Take an
admissible representations TT of GL(1,F) = Fx and a of C?5'p(0,F) = F^
which are of finite length. They must be finite dimensional in this case.
Suppose that TT has a central character, say u}jr. Then

m*(7r) ==l07r4-7r0l

and
^*(cr) = 1 0or.

Now we have the following formula

(2.1) ^*(7T ><3Cr)==l07r><]Cr-h [7r0<74-7T0 ^7r<7].

Note that 7r0<7 is a quotient and Tr^ujjrO- is a subrepresentation of .S(i)(7r >o cr).
In the above formulas on the right hand side, we are actually taking the
semi simplifications of that representations.

We pass now to the case of (55p(2, F). The following formulas follow
from Theorem 5.2. of [T6], or they can be obtained, after some explicit
calculations, from the Geometric Lemma from [BZ], or from [C].

We fix an admissible representations TT of GL(2, -F) and a similar rep-
resentation a of (75p(0,.F). We suppose that the both representations are
of finite length. We shall assume also that TT has a central character. It will
be denoted by uj^. Write

jn*(7T) == 1 ® 7T 4- V 7T^ 0 7T,2 + 7T 0 1

i

and
^(a) = 1 0 a

where y 7r] 0 TT^ is a decomposition into a sum of irreducible representa-
2

lions. Now we have

(2.2) /^(TrXicr) = 1 07rX(74-
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^ 7I4 ® 7T2 XI 0- + ̂  7T2 0 7I-J Xl^2(7 +

i z -I

7 r 0 a + 7T (g)^7r<7+ ^ 7T,1 X 7T,2 0CJ^2(7 .

Fix admissible representations TT of GL(\, F) and a of G5p(l, jF), which
are of finite length. Suppose that TT has a central character, say L?^.. Write

77^!(c(7^) = l07 r4 -7T® l ,

^*(<7)=10(7+^ (7,1 0<7,2

!'

We have

(2.3) ^*(7TXa) =1®7T>3(7+

TT ® (7 4- TT 0 0.̂ (7 4- y^ <7,1 ® 7T XI (72 4-

1^ TT X CT,1 ® (72 4- ̂  (7^ X 7T ® a;7r(72 .

- i i J

Analogous formulas can be written easily for 5p(2, F)^ using [T6]. Such
formulas can be obtained also directly, by "restriction" of the above formu-
las for G5p(2, F).



3. Induced representations of GSp(2)

Let P = MN be a proper parabolic subgroup of G5p(2, F) and let a be
an irreducible smooth representation of M. If a is a cuspidal representation
and if P is not a minimal parabolic subgroup, then J.-L. Waldspurger and
F. Shahidi have determined when Ind^(a) reduces (see the fourth section).
If this is not the case, then cr is an irreducible subquotient of a principal
series representations of M. In this section we shall see when Ind^(a) re-
duces in this case, what are the Langlands5 parameters of the irreducible
subquotients and what are the multiplicities. The analysis of the induced
representations which we make in this section, was done in the unrami-
fied case by F. Rodier ([R2]). Therefore, these calculations complete the
Rodier's investigations in [R2]. We shall get the answer by a detailed study
of the principal series representations of GSp{2^ F) and their Jacquet mod-
ules for intermediate parabolic subgroups.

First we have a direct consequence of Theorem 7.5. of [T4].

Lemma 3.1. If Xi^X2 C (FXY and a G (^x)^ then ^i x ^2X10' "
irreducible. In particular ^ the unitary principal series representations of
GSp(2^ F) are irreducible. Q

For a proof, one may consult [T4]. The proof in [T4] uses the Key^
result in [Ke] which applies to 5p(n,F). Then one gets the information
about the irreducibility using the Clifford theory for the reductive j9-adic
groups, which was developed in [GeKn].

We have now a special case of Theorem 7.9. of [T4] which describes
a necessary and sufficient conditions for the reducibility of the non-unitary
principal series representations.

Lemma 3.2. Let ^1,^2^ € (F^^Y- The representation \^ x \2>^<y is
irreducible if and only if \^ ^ i/^, ^2 7^ l/±l an(^ Xi 7^ ^ ^ X i z - D

Let us say a few words about the proof in [T4]. If ^i = ̂ ±1 or ^2 == y±l

or ^i = ̂ x^ i ^en the induction in the stages and the reducibilities for
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G£(2, F) or OSp(l, F) == GL(2, F), imply the reducibilities of xi x Xi X <7.
In the case when ^i ^ ^±l,^2 + ̂ ±1 and ^i ^ i^1^ it is enough to
consider the case when ^i or ^2 .is not unitary. Then the properties of the
Langlands' classification imply the irreducibility.

Suppose that ^i x ^3 X cr is irreducible. Then using the fact that
R(G) is .R-module, and the relation (1.1), one gets that ^i x ^Xio- is
equivalent to a non-unitary principal series representation \[ x x^Xo'
where e(:\^) ^ e^) ^ 0. Take

f O if e(^)=0
z = < 1 if e ( ^ ) > 0 a n d e ( ^ ) = 0

[2 if e(^)>0.

Let T be the product of \'^j > i , and of a. Then

\'l X . V ^ > < 3 < 7 = = ^(( \ ' i , . . . , . \^7 ' ) ) .

In the rest of this section we shall study the non-unitary principal
series representations \i x \'^ Xia when they reduce. The cases when this
situation occurs are known from Lemma 3.2.

We shall consider first the case when ^i ^^2 0°' is a regular character.
This case will be treated in the following four lemmas. One can prove
directly that ^i ® ^2 0 a is regular if and only if ^i 7^ Ipx, ^2 7^ Ipx and
Xi 7" X^ ([T4], Proposition 8.1., (b)).

F. Rodier attached to any regular character y of a maximal split torus
in a split reductive group over F^ a non-negative integer s(y) (for the defi-
nition of the function 5, one can consult [Rl] or [T4]). The number .s(^) is
less than or equal to the semi-simple rank of the group. The length of the
non-unitary principal series representation determined by y is 2^^.

Let ^i 0 ^2 ® ̂  be a regular character of M0 Since we consider the
case when ^i x ^2 Xcr is reducible, we assume that s(^ ® \^ 0 a) ^ 1
(if 6(^1 ® ^2 ® 0') = 0, then obviously ^i and ^2 satisfy the conditions of
Lemma 3.2.). If ^(^i ® ^2 ® a) = 1, then ^i ® ̂ 2 ® 0' is associate either to
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a character of the form z/1/2^ ® v~^^\ 0 c^ where ^ ^ {^, i/^/2^ z^3/2}
for any $ C (F^" such that ^ = l^x, or it is associate to a character of
the form ^ 0 i/ 0 ̂  where ,y ^ {l^x , ̂ ±1 ̂ ±2} (see [T4]). In the following
two lemmas we deal with these two cases, when 5(^1 0 ̂  0 cr) == 1. They
are F. Rodier^s results.

For a connected reductive group G{F) over F, the Steinberg represen-
tation of G will be denoted by Stc. In the rest of this paper we shall often
write G instead of (?(F).

Lemma 3.3. Let ̂ ^a C (FX)^. Suppose that ^ ^ {^^±l/2^^±3/2}

for any ^ such that ^2 = l^x. Then xStcL(2) X<7 and \\GL{2} X^o- are
irreducible representations. We have

V^\ X V-112^ X ̂  = X^GL(2) X ̂  + XStGL(2) X ̂

?7i R(G). For the Langlands9 parameters we have

^SIG^XIO- ==^((xStGL(2),<7)) if e(x) > 0,

XStGL(2) XI 0- ̂  ^((xStGL(2) X Cr)) if e(,Y) == 0,

XlGL(2) X ̂  == L((v^2^ ^~1/2X, cr)) if e(^) > 1/2,

XlG^)^^^^172^"172^^^)) it e(^)=l/2

fln^

XlGL(2)X^=^((^ l / 2 .Y^ l / 2X~ l^~ l / 2^)) it l / 2 > e ( x - ) ^ 0 .

A/^o

a?ij

XStGL(2) XO" ̂  ̂  ^tc^) X^2^

X/lGL(2) X(7 ̂  X~llG^2)>^X2Cr'
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Proof. Suppose that \ satisfies the assumption of the lemma. Assume that
e(^) >. 0. First, z/1/2^!/"1/2^^ is regular and ^(i/1/2^®^-1/2^^^) = 1
by Proposition 8.2 of [T4]. The length of i/1/2^ x i/-1/2^ Xa is two ([Rl]).
We have

^1/2^ X Z/-172^ X(T = xStcL(2) X(7 + X^GL(2) Xl 0-

in R(G). Thus, both constituents are irreducible. The Langlands^ parame-
ter of ^StGL(2) X <r is evident. Note that we have an epimorphism of

v^\ x y-^\ Xl a ̂  ̂ '\ x ^/\-1 ̂  v-^\a

onto ^:lGL(2) X1^- From this we can read easily the Langlands5 parameter
°^ X^-GL(2) X^cr. This proves the lemma. Q

Lemma 3.4. Let \,a ^ {F^. Suppose that ̂  ̂  {1^ ̂ ±l^±2}. Then

X >^crStGSp(i) a71^ X ><<7lGS'J^(l) are irreducible representations. We have

\ X v Xl z/-1/2^ = ̂  X aStG5p(l) 4- X X cric^^l)

m -R(C?). ^or ^e Langlands9 parameters we have

^X<7StGSp(i) =^((x^Stc5p(i))) it e(x) > 0,

XXaStG^i) ==^((^XcrStG5p(i))) if e(^) == 0,

XX(7lG5p(l)=^((^^^~l/2<7)) if e(^)>0

and

XXcrlG5p(i) =^((^XX^"•1/2(7)) if e(^)=0.

1^6 fc<zve a/^o

XXaStG5p(i) ^ X~1 X^aSt,G5p(i),

,VXcrlG5p(i) ^X~ 1 X^lG5-p(i).
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Proof. We prove the lemma in the same way as we proved Lemma 3.3.,
because \ 0 v 0 i/"1/2^ is regular and s(\ 0 i/ 0 i/"1/2^') = 1 when ^
satisfies the assumptions of the lemma. Q

We are going now to study regular \i0\2^o' with .s(^i 0^2 0^) = 2.
Recall that by the eight section of [T4], ^i 0^2 00- is associated to ̂ ^i/^cr1

or i/<^ 0 <^o 0 cr' where (o G (^x)'1 is of order two and a1 e (I^)"". This
situation is the subject of the following two lemmas.

First we have a very well known situation in the following lemma ([C]).

Lemma 3.5. For a 6 {FX)^ the following equalities hold in R(G)

v2 x v X i/""172 a = z^Stci^) X t/"172^ + ̂ IGZ^) >l ̂ ~l/2<7 =

i/2 ><]crStG5p(i) 4- ^2 X(7lGSp(i)

and

I/2 XaStG5p(l) = ̂ StG5^(2) + ̂ ((^^Stc^l))),

^Xl(7lG5p(l) = ̂ lG^(2) +^((^3/2StGL(2)^~l/2^)),

^^StG^) X^"172^ = ̂ StG5p(2) 4-^((^3/2StGL(2)^~l/2^)),

^3/2lGL(2)X'^~ l/2C^ = ̂ lG.S'p(2) ^-^((^^StGS^l)))-

AZ^o
^^O-IG^) = ^((^2^^-l/2a)).

Proo/. Note that v2 x I/XICT ^ (r(i/2 x i/Xl^x) and the structure of the

representation •u1 x v x i/~~3^2 is well known. The length of the representation
v 1 x v >31/""1/2^ is four and it is a multiplicity one representation.

Representations

^StG5p(2), ^lGSp(2)^ U^^Stcspd))) and ^((^Stc^)^"172^))
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are clearly subquotients of v1 x z/Xiz/-1/2^. Note that L^.aStcsp^)))
is a quotient of v1 X^Stc^i) and ^((^Stci^)^"172^)) is a quotient of
i^Stci^) Xl ̂ "^cr. Also wStGSp(2) is not a subquotient of z/2 X] alcsp^i),
and it is also not a subquotient of ^^IGZ^) Xi^"1/2^. Also we have an
epimorphism from v2 X v X i/"1/2^ onto

ÎGÎ ) X^"172^ and ^2 XlcrlG^(i).

Therefore, both representations contain L((z/2, i/, i/"1/2^)) = ^^'lG5p(2) as
quotients.

We can conclude now that in R(G) we have

^Stcsp(2) +^(02^StG^(l))) ^ ^2 Xo-StGSp(i),

^lc5p(2) < ^2 XI^IG^I),

^StG^(2) +^((^/2StGL(2)^~l/2<T)) ^ ̂ Stc^) X^-172^

and
^^lGSp(2) ^ ^3/2lGL(2) X^"172^

If we know that the second and the fourth inequalities are strict, we have
the complete proof. We conclude it from the fact that the Jacquet modules
for a minimal parabolic subgroup of the left hand sides are irreducible, while
the Jacquet modules of the right hand sides are of lengths four (one can
obtain it from (2.1), (2.2) and (2.3)). Q

Lemma 3.6. Let ̂  C (FXY be of order two and let a- C (F^)". Then the

representation v(,o x <Co X^ contains a unique essentially square integrable
subquotient. This subquotient will be denoted by c([^o^^o]iCr)' We have in
R(G)

r^o X ^oXl<7 = ̂ ^oStGI^^^+I/^^olGI^^ff =

^^oStG^z) XI ̂ 0- + Î ÎG )̂ X^
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and

^oStGL(2) X ̂  = ̂ , ̂ ], a) + ̂ ((^oSt^)^)),

^olG^) >^ = ̂ ((^oSt^),^)) + 2.((^, ̂  >3 (7)).

Proof. Note that the length of ^o x ^ Xi a is four and that ̂  x ,̂ X cr
has a unique essentially square integrable subquotient by [Rl]. Also

S([^^CT\ L{^l/2^StGL(2)^)\ L^^^GLW^)

and L({^a^o X' o-)) are subquotients of ̂  x^o Xi (T and ̂ ((^^oSfci^), o-))
is a quotient of ^^oStGm) ><]^'•

Note that we have an epimorphism from i/^o x^o X a- onto ^1^2^o^-GL(2} X <7-
Thus L((^o,^ Xi^)) is a quotient of ^^olc/^) X'^'-

We also see that we have an epimorphism

^ x ^o X^o<7 -^ ^((^^oSfci^)^)).

Thus we have

^((^^StG^)^"1^)) ̂  ^0 x z/-1^ X^or ^ ̂  x ̂  Xi^-1^.

First, we see from the Frobenius reciprocity that the Jacquet module of
the representation ^((^^oSfci^)^)) for the standard minimal parabolic
subgroup contains ^ 0 ̂ ~1^ © ̂  and < ,̂ ® i/^o ® ^ocr as subquotients.

In the same way one concludes that the other three irreducible subquo-
tients of ^o x ^o Xi a have at least two different subquotients in the Jacquet
module. Note that the length of the Jacquet module of v^o x <^o X cr is eight.
Therefore, all Jacquet modules of irreducible constituents have the lengths
two.

At the end we compute the Jacquet module of ^^olci^) Xi^ using
(2.2). We obtain that the semi simplification is

^o 0 (o 0 0- + <?o ® ^"^o ® V(T + l/^o ̂  ^o 0 ^o<7 + ̂  ® ^o ® ^(7.



102 P.J. SALLY JR., M. TADIC

This implies that L^^^^oStcL^)^)) is asubquotient of i/1/2 $olGL(2) X^
since i/^o 0 $o 0 <7 is regular.

From the above facts one completes directly the proof. Q

F. Rodier considered representations ^([^o,^o]»cr) in [Rl].

Up to now we have analyzed the situation when ^i 0 ^2 0 cr is reg-
ular. Suppose that \\ 0 ̂  0 a is not regular and that \\ x \^ Xa is
not irreducible. Then ^i 0 )C2 ̂  °' ls associate to a character of the form
^<g)lpx 0(7^ or z/0i/0 a', or i/1/2^^"1/2^^ where ^cr' G (F^)" and
$2 == l^x (see the beginning of this section or the seventh section of [T4]).
In the rest of this section we shall analyze these irregular cases.

Lemma 3.7. Suppose that ^ e (FXY satisfies ^2 = l^x. Let a G (F^)".

Then we have

^1/2^ X ^~ l / 2^X!<7=^StGL(2)X'0 ^+^GL(2)X'C^

in H(G). Both representations on the right hand side are irreducible and

we have

^StGL(2) X^ = L(^SiGW) Xcr)),

^lGL(2) X o = L((^2^ ̂ /2^ ̂ 1/2^)).

Proof. It is enough to prove that the above two representations are irre-
ducible. From (2.2) we obtain

^StGL(2) X! CT) = 1 0 ̂ StGL(2) X ̂ +

p/^ 0 v-^^ X a + ̂ 2^ 0 ̂  X ̂ 1/2^] +

[<?StGL(2) ® <^ + ^StGL(2) ® ̂  4- ^l/2<? X ^/2^ 0 ̂ -1/2^] .
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We see that the semi simplification of the Jacquet module for the standard
minimal parabolic subgroup is

2(^l/2 0 ̂ 1/2 0 a + i^ 0 ̂ 1/2^ 0 ̂ 1/2^).

Let TT be an irreducible subquotient of (^StGL(2)X(T which has i/1/2^ 0
i/1/2^ 0 i/""1/2^ for a subquotient of the Jacquet module. Since v1!2^ x
i/1/2^^"1/2^ is irreducible, we obtain that ^l/2^0l/l/2$0^'"'l/2^c^ appears
with the multiplicity at least two in the Jacquet module of TT. Note that
the Jacquet modules of i/1/2^ 0 z^^Xo- and i/1/2^ 0 ̂ /^Xz/-1/2^
are the same and they are

^ 0 ̂ -1/2^ 0 (7 + ̂  0 ̂  0 ̂ -1/2^.

(more precisely, these are semi simplifications). Since i/1/2^ 0 ̂ "^^Xia
and i/1/2^ 0 ^ l/2$X^~ l/2^c^ are irreducible, we obtain that the Jacquet
module of TT has the length at least three, while for any other subquo-
tient, the length is at lest two. Since the length of the Jacquet module of
^StcL(2) Xcr is four, we see that (iStcL(2) Xl<7 is irreducible.

In the same way we prove that <^lGL(2) >^cr is irreducible. Q

The following lemma was proved by F. Rodier.

Lemma 3.8. For a- € {FX)" we have in R(G)

v x Ipx Xi ̂ -l/2a = ^^StcLW X ^~l/2o^ + ̂ IGZ^) X ̂ 1/2^ =

I p x X ^X^"1^2^ = I p x X(7StG5^(l) + lFX X(7lG•5'^(l)•

The representations Ipx X(rStG5p(i) a71^ ^^Stci^) X^"1/2^ ^re.sp.
i/1/2!^^/^) x^"1^2^^ Aave exactly one irreducible subquotient in common.
Thai subquotient is essentially tempered and it will be denoted by r(5', i/"1/2^))
(resp. T^r,^"1/2^)). r/ie^e <wo essentially tempered representations are
not equivalent. We have in R(G)

v^iGW) X v~"^ = r(S, v-^a) + L^StaLW, i/-172^)),
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^^GLW X ^~l/2c^ = r(T, i.-1/2^ + I.((^ Ipx XI ̂ -l/2a)),

Ipx X(7StG5p(l) = T^^/^+TCZ^-1/2^)

an^

l^x Xl<7lG5p(l) =^((^ l /2StGL(2)^~ l /20^))4-^((^lFX X Z/-1/2^)).

Proof. Denote the above four representations on the left hand sides by
7r((2),5),7r((2),T), 7r((l),5) and 7r((l),T) respectively.

Observe that -^((^^Sici^h ^-1^2^")) is a subquotient of z^^Sfci^)
Xli/"1/2^ and that 7r((l),5) and 7r((l),T) are completely reducible repre-
sentations (they are essentially unitary). Using formulas (2.2) and (2.3) we
obtain

^K(2),5))=l®7r((2),5)+

v ® Ipx XI v^^a + Ijrx ® crSt.csp(i) + Ipx ® o"lGSp(i) +

|2 • (i^Stc^) ® i/-1/2^) + v-^^taLW ® ̂ l^a + ̂ '^lospd) ® i/-172^ ,

^(7r((2),r))==l®^((2),T)+

Ipx ® 0-StG5p(l) + IFX ® <7lGSp(l) + V~1 ® Ipx XI I/172!?- +

P^IG^) ® l/-172^ + 2 • (l/^^lGLO) ® t/172^) + ̂ -^Stc^) ® l/172^] ,

^((1),5))=1®7T((1),5)+

2 - (l^x ®<7StGsp( i ) )+y®lFx Xi i/"1^^ +
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2 • p^St^) ® ^-l/2<7 + l̂ 2!̂ ) ® ̂ ^al

and

^(7r((l),r))=l®7r((l),T)+

2 • (ipx ® ^lG5p(l)) 4- ^"1 ® Ipx XI I/172 a] +

2 • \^I^GLW ® ̂ cr + ̂ ^IGLW ® ^1/2<T] .

From the Frobenius reciprocity and the last two formulas one obtains
that the intertwining algebras of 7r((l), 5), and of 7r((l), T) are at most two
dimensional. Since 7r((l),5') and 7r((l),T) are completely reducible, the
lengths of 7r((l),5') and 7r((l),r) are at most two. These representations
are of multiplicity one.

The above formulas imply the following relations in the Grothendieck
groups

W^((2),5))4^(2)(7r((l),5)) ^ s^ x Ipx ̂ -^a),

6(2)(7r((2),r))4-6(2)(7r((l),5)) ̂  s^ x Ipx Xz/-1/2^).

Also

•S(2)(7Tl) ^ -S(2)(7r2)

for TTI,^ € H(2),5), 7r((2),r), 7r((l),5), 7r((l),r))}, when ^ ^ ̂
Thus, representations 7r((2),5') and 7r((l),5') have exactly one irreducible
subquotient in common. Both representations are of length two. The same
conclusion holds for 7r((2),T) and 7r((l),5). Since £((i/,lpx Xiz/-1/2^)) is
a quotient of v x Ipx X z/'"1/2^, it is easy to conclude that the lemma holds.
D

The following unramified situation was settled by F. Rodier in [R2].

Lemma 3.9. Let a € (^?><)". Then we have

v X z/ X ̂ "^cr = v X o-StG5^(l) + ̂  X crlG^(l).
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in R(G). Both representations on the right hand side are irreducible and
we have

z/XlcrStG5p(l) =^((^o'StG5'p(l))),

^Xl<7lG5p(l) = ̂ ((^^^"1/2^)).

Proof. First note that ^((i/)^,!/'"1/2^')) is a unique irreducible quotient of
v x i/X^"'1/2^ and thus a unique irreducible quotient of ̂ Xalc^i). ̂
has multiplicity one in v x v X z/"'1/2^. Also -L((z/, o"StG5p(i))) is a quotient
of ^XcrStG5n(i)? and it has multiplicity one in z/X<7StG5p(l)- Since the
length of y x v ><] i/'"1/2^ is two by 6.3. of [R2], the lemma follows directly
(actually, it is enough to prove that ^ XIO'IG.SP(I) or ^>^^StcSp(i) ls an

irreducible representation). Q

From the preceding lemmas one concludes

Corollary 3.10. Let ^a,^ e (F^.
(i) r^e representation ^StGL(2) X0' ̂  irreducible if and only ifx^-GL(2)

Xi <7 2^ irreducible and this is the case if and only if\ ̂  {v±l ^ i/-3/2}
for any ^ such that $2 = l^x . J/we have a reducibilityy then we have
a multiplicity one representation of length two.

(ii) The representation XXcrStG5;»(i) is irreducible if and only if
^XcrlGSn(i) ^ irreducible and this is the case if and only i f x ^ -

{^FX-^l/±2}' ff we ^alve a reducibilityf then we have a multiplicity
one representation of length two. Q



4. Classifications for GSp(2)

The classifications formulated in this section were obtained in the un-
ramified case already by F. Rodier in [R2].

For a reductive group G over P, the relation among parabolic sub-
groups of being associate in an equivalence relation. If TT e G, then we
shall say that it is supported in a class P^ if there exists P 6 V such that
TT is a composition factor of a parabolically induced representation from P
by an irreducible cuspidal representation of a Levi factor of P. This is the
notion that W. Casselman called the type of a representation ([C]). Each
TT is supported-exactly in one class. In G5p(2, F) (resp. 5p(2, -F)) there
are exactly four classes. They are represented by P^P^^P0 and P°
(resp. P0S,PS,P5 and P(^)). Therefore, we shall say that TT is supported
for example in P(I). For representations supported in P^ we shall say that
they are supported in the minimal parabolic subgroups.

Now we can summarize from the last section the following

Theorem 4.1.
(i) The representation v 1 X i/X^"3/2^, a € (I^)^, has a unique irre-

ducible subrepresentation, which will be denoted by crSiQgp^. This

subrepresentation is square integrable. For different a^s we get sub-

representations which are not equivalent.
(ii) For each character (o G (FXY of order two and each a G (F^Y,

the representation r^o x ^o X^"'1^2^ has a unique irreducible sub-

representation. Denote it by S([^o^iio}^~1^2^)' This representation
is square integrable. The only non-trivial equivalences among such

representations are

6([^ ̂  ̂ "1/2^ ̂  ̂  ̂ o], ̂ -1/2^).

The square integrable representations defined in (i) and in (it) are

disjoint groups a/representations. They exhaust all square integrable repre-

sentations ofGSp(2^F) which are supported in the minimal parabolic sub-

groups. Q
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Theorem 4.2.
(i) Representations \\ x ^2 X<7, Xi»^'2)<7 C (-F^)", are irreducible and

Xi XX2 Xl cr ̂  ̂ i X X 2 ̂ ^ ?/ana on/?/ ifxi^X2^o- and •)([0\^0a1

are associate.

(h) Representations \ Xlo-Stc^i), X»(7 ^ (^><)^ X 7^ ^-px, are t'rre-
ducible and the only non-trivial equivalences among them are

^XaStcs^i) = X~1 X X^tcsp^) •

(hi) Ze< <7 G (jF^)^. r^e representation lj7x XlcrSt^5p(i) %5 a multiplicity
one representation of length two. One irreducible constituent may be

characterized as the common composition factor with ̂ ^StcL^) X

i/"1/2^ (resp. ^^IGL^) X ^~1^2)- r^^s representation is denoted
by
T(S',^~l/2a) (resp. r(T, z/"1/2^)^. Among these representations there

are no non-trivial equivalences.

(iv) For ^,cr 6 (F^ ^e representation \StcL{2) ><la' ^ irreducible. The
only non-trivial equivalences are

XStGL(2) X^ ^ X - lStGL(2) X1 X2^

rAe irreducible representations considered in (i)-(iv) are tempered

and they are not square integrable. They form four disjoint groups of repre-
sentations. Each irreducible tempered representation supported in the min-
imal parabolic subgroups either belongs to one of the groups in (i)-(iv), or

it is square integrable. Q

By "Tf we denote the complex conjugate representation to a repre-
sentation TT. An irreducible smooth representation TT is called Hermitian if
TT ^ TT. The formula for the contragredient representation in the Langlands^
classification is

£(((?!, ...,<()n,T)^=£((^l,...,^,^...^T)),
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6i 6 D+, r G r(G) (0:5. denotes the central character of ^). Now we have
directly the following

Lemma 4.3. Let \,a^ G (F^)' such that (2 == l^x. 2/e< ^fti,^ >
0. r^e following seven groups of representations are Hermitian and they
exhaust all irreducible Hermitian representations of GSp(2,F) which are
supported in the minimal parabolic subgroups:

(i) irreducible tempered representations supported in the minimal parabo-
lic subgroups,

(ii) ^((^X,^-1,!/-^)), x2 + IF. (for x2 = Ipx see (iv)),
(hi) £((!/f,.^ Xi/-^)), ̂  ̂  Ipx (for ^ = Ipx see (v)),
(iv) £((^^, ̂ ,^/-^+^V2<7)),
(v) L((^,^X^-^o)),

(vi) ^(^^-^aStcspd))),
(vii) ^(^St^),^-^)).

r^e above groups of representations are disjoint, n

In a similar way as F. Rodier classified the unitarizable unramified
representations in [R2], we get the following theorem. Clearly, the unrami-
fied part of the theorem was proved by him.

Theorem 4.4. Denote by ^,<^cr unitary characters of F^ such that (2 =
Ipx. Let /^/?i,/92 > 0. The following groups of representations are unita-
nzable and they exhaust all the irreducible unitarizable representations of
G5p(2, F) supported in the minimal parabolic subgroups:

(i) irreducible tempered representations ofGSp(2^ F) which are supported
in the minimal parabolic subgroups,

(ii) La^z^-3/^))^!^^),

(iii) L((^^v^-\y-^a)), /3 ^ 1/2, ^ ^ l^x (for ^ = l^x see

(v)).
(iv) ^((z^vX^-^)),- Q <, 1,,Y ^ Ipx (for \2 = l^x see (vi)),

(v) L((^^,^^,^.-^+^)/•2a)), A + ^ ^ l , A ^ / ? 2 ,
(vi) Z((^,^xz.-^^)), ^ ^ l ,
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(Vii) I.((^StGL(2),^^)), /?^1 /2 .

The above seven groups a/representations are disjoint

Remarks ^.5. With the notation as in the above theorem we have
(i) L^x^X"\^X^} = [X(^ x ^)]X(7, /3 < 1/2,
(ii) L((^, x X z^^)) = x x K(^ X ̂ /2)] , /? < 1,
(iii) L((^+l/2^-^+l/2^-l/2a)) = ̂ lcL(2) X^<r, 0 ̂  <

1/2,
(iv) 2.((^StGL(2), ̂ ^) = ̂ StGL(2) X ̂ -^ , ^ < 1/2.

Proof. We shall now repeat essentially the Rodier^s proof from [R2].
The representations in the groups (i) and (ii) are obviously unitariz-

able.
We have the complementary series representations v^\ x v~^\^ 0 <

/3 < 1/2, of GL(2,F). Thus v^\ x ^"^^Xcr is unitarizable. The last
representation is irreducible by Lemma 3.2. Thus

v^\ x v~^\'X(j ^ Vs5 \ x v13^1 Xii/'^^cr.

This implies ^\ x z/ '^^Xcr == L({y^\, ̂ X~1, ̂ ~^X^))- Also z/1/2^ x
^1/2^-1 -^^1/2^ ^ ^1/2^ x ^""^^Xlcr and ^lGL(2) Xlo' is a quotient of
the former representation. Since \\GL{2} Xicr is irreducible by Corollary
3.10., we have ^((i/172^, ̂ l/2;<-l) ^~1/2X«7)) = X1GL(2) X1^ Obviously this
representation is unitarizable. Thus (iii) provides the unitarizable repre-
sentations. Note that the other subquotient of v^^\ x ^"^^Xicr is the
tempered representation ^StGL(2) >^cr-

Now we repeat the similar construction starting from the comple-
mentary series of C?5p(l,F) = GL(2, F) which are ̂  X^-^or, f3 < 1.
Therefore \x i/^ Xi^^cr is unitarizable. Since ^ x i/^ Xiz/"^/2^ is irre-
ducible for /3 < 1 by Lemma 3.2., we have

X x ^ >a ̂ -^a ^ ̂  x x X ̂ ^/2.

Therefore 2.((^,X x z/"^/2^)) is unitarizable for /3 < 1. If /? = 1, then we
have in R{G)

^ x i/Xi/^^o = \ x aStcsp(l) +X x ^GSpW'
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All subquotients are unitarizable. In particular, L((i/^^\ ̂ ^""^^cr)) is
unitarizable. So, we have seen that (iv) provides also the unitarizable rep-
resentations.

We shall show now that the representations in the group (v) are
unitarizable. This is a standard way how one constructs complementary
series representations and we shall only outline the construction. Let us
recall of some well-known intertwining operators. Define an operator

[(^0^0^i^2^3))(/)](<7)= / f{J^ng)dn
JNf

on
Ind6^2^^!^ ®?/2^0^3^) ="i<? x u^Xu^a.

' 0

The operator takes values in Ind pc (J4(^i^ ® u^ ® u^o-)) =
' < < >

Ind0^2'^^1^®^1^®^!^^^) = u^'1^ x u^^X^u^u-iU^cr.
4'

Here u 1 ,^2 ,'^3 denotes the unramined characters of -F^. The unramined
characters carry a structure of a complex algebraic variety in a natural

way. The above integral is defined initially only on an non-empty open

subset of unramined characters of M° where the above integral converges.
In that region, it defines a non-trivial intertwining. Since by Lemma 3.2.
the representation u\(^ x u^ Xzi^cr is irreducible when u^ ® u-z 0 u^ is out

of a proper subvariety, the operators A(ii ® <^ 0 cr.^i ® u^ <g) ^3} extends
meromorphically to all unramined characters (actually, one can prove that

it is a rational function by a method of J. Bernstein).
We consider now the unramified characters V011 ® iv^2 ® ^-(^^^s)/^

where ai,a2 C R such that |ai| 4- 1 ^ 2 1 < 1- Note that in that case

^ x i/^X^-^1-^2^

is irreducible by Lemma 3.2. Therefore, one can twist A((, ® ^ 0 cr, ui 0
U2 0 u^ with a rational function such that for z/01 ® v^ (g) ^-(^-^Vz ^g
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above, the intertwining operators depend algebraically, and that they do
not vanish at any above point.

Recall that we have

(i/01^ x ^^Xii/-^14-02)/2^)- == z^-01^ x ̂ -^X^14'02^

A non-degenerate GSp(2^ F)-invariant Hermitian form on the pair of rep-
resentations i/^ x v^^ X v-^^^^a and v~011 $ x v"^^ Xl i/^+^/^o-
is given by the formula

(/lj2)= / flWJ^dk
J K .

where Ko is a good maximal compact subgroup of GSp(2^F) (for example,
GSp{2, F) H GL{2, Op) where Op is the ring of the integers {x e F^\X\F <:
1} of F). Now the formula

</lJ2>=(/l^(^^0^^1^^20^-(al+Q2/2))/2)

defines a non-degenerate G 5p( 2, -F) -invariant Hermitian form on ^Q'1^ x
i/0'2^ Xi/'"^0'14'02)/2. This form depends continuously on a'i and a^. For
Q^ = Q^ === 0 this form is proportional to the G5'p(2, i^)-invariant in-
ner product which exists on ^ x ^ X cr. Thus, it is positive definite at
this point. Therefore, it is positive definite everywhere on the considered
set. From this one gets that v01^ x z/°'2^ X ^-(al+a2V2c^ is unitarizable
(ai,^ e H.lo'i! 4- 1^21 < 1)- In particular, this proves the unitarizability
of the representations in the group (v) for /^i, /?2 > 0 ancl 0\ + /?2 < 1- For
/3i -h/?2 = 1 one gets the unitarizability by a D. Mili^s result from [Mi] since
the corresponding representations are in the limits of the complementary
series (see also Theorem 2.7. and Lemma 2.8. of [Tl]). Similarly, the rep-
resentations in (vi) are in the ends of the complementary series from (v).
Therefore, they are unitarizable. Note that we have in R{G)

^StGL(2) Xz^a ^ ̂ /^x^/^x^a = z^-^x^/2-^ X^172^.
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Since each irreducible subquotient of the representation is in the limit of
the complementary series from (v) must be unitarizable, the group (vii)
provides the unitarizable representations.

One can check directly using the preceding section that all irreducible
composition factors of i/^ x v^^ Xii/-^1-1-^/2^, |/9i| 4- \^\ < 1, are of
the types listed in (i)-(vii).

Let TT be a non-tempered unitarizable representation of C75p(2, F) in
the sequel. Suppose that it is supported in the minimal parabolic subgroups.
First of all, TT is Hermitian. Therefore, TT belongs to (ii)-(vii) of Lemma 4.3.

Suppose that TT belongs to the group (ii) of Lemma 4.3.. Then

7T=L((^^-1^-^))

with \,a € (^x)', /3 > 0 and x2 ^ l^x. Now for /3 > 1/2

L{(^X, ̂ X~1 ̂ t/-/3cr)) = ̂ X x ^Y"1 X1 ̂ "^ = ̂ X x ^~^X ̂  X^

forms a continuous family of irreducible Hermitian representations (behind
this fact are intertwining operators again). Thus, either all elements of the
family are unitarizable, or no one element is unitarizable. Since the matrix
coefficients of the representations in the family are not bounded for ft large
enough, we see that all representations in the family are not unitarizable.
This proves that TT belongs to the group (iii) of the theorem.

Suppose that TT = L((^, ,y Xlz/'^a)), ft > 0, ^,cr e (^T. For
/? > 1 we have

L((^, x X v~^2^) = ̂  x x X v-^12^

This is a continuous family of Hermitian representations. We see that they
are not unitarizable in the same way as it was obtained in the previous case.
In particular, if TT belongs to the group (iii) of Lemma 4.3., then TT belongs
to the group (iv) of the theorem.

Suppose that TT is not one of the two previously considered types.
Then by Lemma 4.3, TT is a subquotient of ^l^ x i/^xii/"'^1'^2)/2^,
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<^a 6 (^x)^ with ^2 == l^x and /^i^ € R. We may suppose also Pi >. ^2 >.
0. Denote

7r(/9i,/?2) = ̂  x ̂ Xi.-^+^/Y

Suppose that ^ ^ Ij^x. We look at the following families of repre-
sentations

I = {7r(/3i,/?2); 1 > A - '^ > -l^i + 02 > 1},

IIta^^'^i - /?2 > l^i 4- 02 > 1},

A == {7T(/?i^2); 1 = A - 02^2 > 0}.

The following drawing illustrates the situation:

Figure 1.
Representations 7r(/?i, ^2) which belong to I form a continuous family

of irreducible Hermitian representations. They cannot be unitarizable by
the argument which we have already used. Similarly, the region I I corre-
sponds to the non unitarizable representations. Now look at A. For /3 > 0
we have

TT(I 4- /3,/3) = ^-^IGW) X^-17^ + z^^St^) X^-172.

in R{G). Both representations on the right hand side are irreducible by
Corollary 3.10. They are Hermitian representations. In this way we ob-
tain two continuous families. Both of them consist of the non-unitarizable
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representations by the already used arguments. Thus TT is a subquotient of
^(/^i»/^^h /?i +/?2 ^ 1- We have already noted that all such subquotients
are listed in the theorem.

In the end we should consider the case of ^ = l^x .This case is already
settled in [R2], so we omit the analysis of this case. The analysis is similar
to the previous case expect that one need to use a Casselman^s result that
if a subquotient of z/2 x z/ X z/~3/2 is unitarizable, then it is either the trivial
or the Steinberg representation (see for example [HMr]). Here one has the
following drawing:

7t(0.1)

K(0.0) "(l.°)

Figure 2.

a

We shall describe now the representations which are supported in the
other parabolic subgroups. These representations were classified completely
by F. Shahidi in [Sl] (Proposition 8.4.) and [S2] (Theorem 6.1.). One case
may be concluded easily from the earlier J.-L. Waldspurger's Proposition
5.1. of [Wd]. For the sake of completeness, we include these descriptions.

We shall consider first the case of the representations which are sup-
ported in P^y Let p € C™(GL(2,F)) and a G (F^T. The formula (2.2)
gives that p X] a is irreducible if p ̂  P or ujp ^=- l^x . Let j3 G H^. If z/^/9 ><] a
is reducible for Q ̂  0, then it is a multiplicity one representation of length
two. One factor is essentially square integrable (see the seventh section of
[C]). This implies p ^ p and i j j p = Ipx.
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Let /3 C R, p € (^(G^F)) and a G C^T). By F. Shahidi

(Proposition 6.1 of [S2]), the representation i/^p^cr is reducible if and

only if

/3 = ±1/2, p ̂  p and a;p = l^x .

We have now the following two propositions belonging F. Shahidi. Note that

they are a direct consequences of the above description of the reducibilities.

Proposition 4.6.
(i) Representations pXia^ p C CU(GL(2,F)), a G (FXYf o-re irreducible

tempered representations. The only non-trivial equivalences among

them are

^Xcr ^ p><iujp(7.

These representations exhaust all irreducible tempered representa-

tions of the group GSp(2^F) supported in P^x which are not square

integrable.

(ii) Let p G ^(CSp^l^F)) and a- € (^T. Suppose that p == p and
Up == I px . Then v1^2? X ̂ ~l/2o• has a unique irreducible subrepre-
sentation. That subrepresentation is square integrable. For different

pairs (p^ a) we obtain subrepresentations which are not equivalent.

These subrepresentations exhaust all irreducible square integrable rep-

resentations ofGSp{2^F) which are supported in P^y n

Proposition 4.7. An irreducible unitarizable representation ofGSp(2^F)

supported in P^"7 is either tempered, or it is one from the following series

of unitarizable representations

L((^,a)),

where p e ^(GL^^F)) such that p = /9,a;p = l^x and Q < /3 ^ 1/2, a- e

(^r- a
We shall consider now the case of the representation supported in

P°. Let \ e (F><)~ and p e C{GSp(l,F)). Then xX^p is reducible in

the following two cases
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(1) ^ == l j7X,

(h) ^ = z^^o where ^o G (^71><)^ is a character of order two such that
^oP ̂  P.

These are the only points of the reducibility. This was proved by J.-
L. Waldspurger in [Wd] and F. Shahidi proved that also in [Sl] by different
methods. We have now the following two propositions belonging to them.
Note that they follows easily from the above description of the reducibilities.

Proposition 4.8.
(i) The representation Ipx Xlyo, p € C'^GSj^l, F)), splits into a sum of

two tempered irreducible subrepresentations which are not equivalent.
For different p's^ these subrepresentations are not equivalent

(h) Representations \ Xi (E {F^}\ \ ̂  l^x, p € CU(GSp(l,F)), are
irreducible tempered. The only non-trivial equivalences among them

are

X>^P^ X'1 >^XP'

(iii) The irreducible representations listed in (i) and (ii) are disjoint groups

of representations and they exhaust all irreducible tempered repre-
sentations of GSp(2^F) supported in P0 which are not square inte-

grable.

(iv) Let p G CU(GSp{l,F)) and suppose that ̂  € (FXY is a character of

order two which satisfies ^op = P- Then r/^o X^"1^2/? has a unique
irreducible subrepresentation. This subrepresentation is square inte-

grable. For different pairs (^0',?) we obtain subrepresentaiions which
aruivalent. These subrepresentations exhaust all irreducible square

integrable representations of GSp{2^F) which are supported in P^y

D

Proposition 4.9. The following two disjoint groups of representation ex-

haust all irreducible unitarizable representations ofGSp{2^F) which are

supported in P^y'
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(i) irreducible tempered representations ofGSp(2, F) which are supported
in P^

(ii) Z((^^-^2/9)) where 0 < f3 ^ 1, ̂  e (F")', /? € ̂ (G^l,^))

which satisfy ^ == l^x, ̂  ̂  l^x an<f ^/? ̂  /?. D



5. Consequences for Sp(2)

Analyzing the restriction of irreducible representations of G5p(2, F)
to «?p(2, F), we shall derive in this section various results for 5'p(2, F) from
the previous investigations of the case of C75p(2,F). The properties of this
restricting process that we need, can be find in [GeKn] and [T3]. The case
of the symplectic groups was studied in [T4].

We shall recall briefly of the main properties of the restricting process.
Let TT G GSp(ii^Fy. Then for the restriction 7r|5p(n,F) we have

7r|5p(77,F)^(7i © — © a j b

for some o~i G S p ( n ^ F ) " . If TT is unitary (resp. tempered, square integrable,
cuspidal), then each a{ is also unitary (resp. tempered, square integrable,
cuspidal). Further

(5.1) dime End^(n,F) (7r|5p(n,F)) = card {x € (F^^TT ̂  7r}.

Take L ( ( < ? i , . . . , ̂ ,, r)) e G5p(77, F)', where ^ C ^4-, and T G T(G)
is a representation of GSp{rn^F). Then for ^ 6 (FXY

^( (^ , . . . , ^ ,T) )=L((^ , . . . , ^ ,^T) ) .

Write further
r|5'p(777,,F)=rie...e^

where T, are irreducible representations. Then

(5.2) L((^,...,^,r))|5p(77,F)^e Z.((^,...,^,TO).
1=1

Let a G Sp(n^ FY. Then a is isomorphic to a subrepresentation of
7r|5'p(77,F) for some TT G GSp(n^ F)". Moreover, if cr is unitary (resp. tem-
pered, square integrable, cuspidal), then one may choose TT to be unitary
(resp. tempered, square integrable, cuspidal).
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Let ^ G (F^r ^d Ef=i ̂ W G ^n(G) where TT, <E GSp(n,FY and
rii € Z. Define

^ ^
^(^ni7Ti)=^n,(^7r,).

i=l i'=i

For a € Rn(G) set

^^(^(^^{xeCF^r;^^^}.

Theorern 5.1.

(i) For each (o € (Fxy of order two, the representation vi^o x ^o Xl 1 has

exactly two irreducible subrepresentations. They are square integrable

and thquivalent. If we denote them by o'(^o) a^d ^"(^o^ then we have

6, ̂  ̂ -l/2a)|5p(2, F) = 61^) C ̂ (^o).

(h) If 8 is an irreducible square integrable representation of 5p(2, F)
which is supported in the minimal parabolic subgroups, then 6 is ei-
ther the Steinberg representation or it is a representation considered
in (i). We have

^StG^(2)|5p(2,F)^St^(2).

Proof.

(i) Consider ^o x ^o X^"1^2^" € R(G). Suppose that

X^Xsp(2)W[^^}^~l/2^

Then V^Q x ^o Xi^"1/2^ and

X(^o x <fo X^"172^) = ^o X (o Xi/"372^
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are equal in R(G). Thus, \ 6 Xsp^^^o x <Co X l/~1^2c^). Conversely, if
X ^ ^(2)(^o x ^o X^"172^), then

xex^)^^,^]^-17^))

since ^([^o? ̂ oL ^"~1^2o^) is a unique square integrable subquotient of i/^o x
(o Xiz/-1/2^. Let ^ € ^(2)(^o x ^o X^172^). Then z/$o ® ^o 0 ̂ "'^cr
and ^o 0 ^ o 0 ^~ l/2^<7 are associate (i.e., in the same orbit of the ac-
tion of the Weyl group). This implies \ 6 {Ipx.^o}- Since 1̂ 0 X^"1/2^ =
^o X i/"1/2^)^ in the Grothendieck group, we have Xsp^) (S( [^o, ̂ o]? ^/-1^2(T))
= { I p x , ̂ o}- This implies that ^([$05 ^$o]» z/-1^2<7)|5'p(2,J7) splits into a sum
of two non-equivalent irreducible square integrable representations. The
(normalized) Jacquet module for the standard minimal parabolic subgroup
of each of these representations is i/^o 0 ^o ® 1. The Frobenius reciprocity
implies that these two irreducible representations are the only irreducible
subrepresentation of i^^o x ^Q Xl 1.

(ii) In the same way as above one gets Xsp^(aStGsp(2)) = { Ipx} -
Theorem 4.1. implies the statement that the above representations exhaust
all the irreducible square integrable representations supported in the mini-
mal parabolic subgroups. Q

Theorem 5.2. Lei x s X i ^ X - 2 ^ {FXY, ̂  ^et ^<Ci^2 be characters of F^
of order two.

(0 Xl x X2 X 1 ls irreducible if neither \\, nor \^ is of order two. We

have ^i x ^2 X11 ^ X'i x X'2 X 1 if and only if ̂ i 0 ^2 ® 1 and

X'l 0 X^ 0 1 are associate.
(ii) Write f, X 1 = T1 + T2 as a sum of irreducible representations. Sup-

pose cither \ = $ or \ is not of order two. Then \ X T1 and \ X T2

are irreducible representations which are not equivalent. The only

non-trivial equivalences among them are

^xr^^xT^ and X Xlf^ ;<~1 XT^2.
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(hi) J/^i ^ ̂  then ^e representation ̂  x ̂  Xl 1 ^ a multiplicity one

representation of length four. The irreducible constituents may be

characterized as common subrepreseniations of^ X T1 and ̂  XT^ ,
zje{l ,2}.

(iv) Suppose that \ is not of order two and suppose that also \ ̂  Ipx

(i.e., \2 ̂  Ipx/ Then ^XSt^i) is irreducible. The only non-

trivial equivalences among these representations are

X X Stsp(i) = X"1 X St.sp(i).

(v) Suppose that \2 = Ipx. Then XXSt^i) is a sum of twie subrep-

resentations which are not equivalent. If \ •^ I p x , then one repre-

sentation is a common factor with i/>^T1 and the other one with

z/xT2 If \ = Ipx^ then one representation is a common factor

with ̂ ^St^^) X 1 and the other one with t/^lGJ^) Xl.
(vi) Representations ^St^(2) X 1 are irreducible. The only non-trivial

equivalences among such representations are

XStcL(2) X 1 ^ X^Stoi^) X 1-

The groups of representations ( i ) - (v i ) are disjoint. They consist of

the irreducible tempered representations of Sp(2^F) which are supported in
the minimal parabolic subgroups. Each irreducible tem.pered representation

of 5p(2, F) which is supported in the m-inimol parabolic subgroups, either

belongs to one of the groups (i)-(vi), or it is square integrable.

Proof.
(i) We know that ^i x ^2 Xipx is an irreducible representation of

C?5p(2, F) by Lemma 3.1. A direct computation gives that

Xsp(2)(\l X X2 X Ipx) = {ipx}

if neither ^i, nor ^2 ls °t order two. This implies (i).
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(ii) We know that ^ x ^ X l^x is irreducible. A simple analysis gives

^Sp(2){X X ^Xl^x) = {IFX,$}.

This gives the first part of (ii). We know also ^XT1 ^ \~1 XT1 for
z = 1,2. Suppose further that ^XT^' ^ ^X7^ where ^ and ^ satisfy
the assumptions of (ii). Since \ 0 <^ ® 1 and ^/ 0 ̂  0 1 are associate, we get
first <^ = <f and then ^ == ^/ or ^-1 = ^ /. Suppose that ^ == ^'. Then i = j
since \ x ^ Xi 1 is a multiplicity one representation. Suppose now \~1 = ̂ ' .
Then x x T^ ^-1 x T^ ^ ^ x T^ what implies i = j.

(hi) One gets directly A^(2)(^x ^2 >^ 1 FX ) = {1^1,6^1^2}. Recall
that ^i x ^2 X Ipx is irreducible. By [Ke], ̂  x ̂  Xl 1 is a multiplicity one
representation. Looking at the Jacquet modules of ^ X T' and ^ Xi T3

^or ^i)^ one S6^ ̂ ^ ^ese representations are of length less then or equal
to two. This implies that both representations are of length two. Look-
ing at the Jacquet modules for P 3 , one gets that ^ XT' and ^ X^T3

have a non-trivial intersection, and that there is no inclusions among these
representations.

(iv) Since \2 -^ I p x , X X3 Stc?.s>(i) is irreducible by (ii) of Corollary
3.10., as well as \ X ^ c s p ( i ) ' The first representation is tempered, while the
other is not tempered. Thus Xsp(2)(x XStG5p(i)) = Xsp(2)(x^^ X ̂ -1/2).
A simple computation gives Xsp(2)(x x ^X^"172) = {l^x}. This implies
that

/YXSt^(i)^xX(Stc^(i)|5p(l))^(x-xStG^(i))|G5p(2)

is irreducible. The relation ;YXSt^(i) = \/-l XSt.sp(i) is clear. That this
is the only non-trivial equivalence among such representations follows in
the same way as in the proof of (ii).

(v) Suppose that \ is of order two. Then ;Y X Stc^i) is irreducible
(Corollary 3.10) Then the some calculation as in the proof of (iv) gives
^Sp{2){\ XSt,G5p(i)) = { I p x ^ } - Therefore :\:XSt^(i) is a sum of two
non-equivalent irreducible representations. From the Jacquet modules one
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concludes that XX'St5'p(i) and v ><lT^(resp. i/xT^) have a non-trivial
subquotient in common. The reducibility of Ijrx XSt5,,(i) follows from the
reducibility of I p x XStG5p(i). Let a be an irreducible subrepresentation of
I p x XiStG5p(i). As before, we can conclude that Xsp{2}{^) c ^5p(2)(lpx x
^X^"1/2). Since Xsp(2){^F^ x ^Xi^'"1^2) = { Ipx} , we have Xsp(2){^) =
{ipx}. Thus I p x XlStG5ji(i) is of length two. From the Jacquet modules
one can see that it is a multiplicity one representation. Characterization of
irreducible subrepre.sentations one concludes in the same way as in the first
part of proof of (v).

(vi) By Corollary 3.10., X^GL(2) Xipx is irreducible. Further

^(2)(xSt,GL(2) X IPX ) C Xsp^^^X X ^"1/2 X IPX ).

Since

Xsp^^X x ^^x^lpx) = { l^x} ,

have the irreducibility. The statement about equivalences follows in the
ndard way. Q

we
standard way. Q

Theorem 4.4. and (5.2) imply the following theorem.

Theorem 5.3. Lei\^ (E {Fxy. Suppose that ^2 = I p x , and let/3,^,^ >
0. The following groups of irreducible representations are unitarizable and

they are supported in the minim.al parabolic subgroups. They exhaust all the

irreducible unitarizable representations of Sp{'2,F) which are supported in

the minimal parabolic subgroups.
(i) Irreducible tempered representations described in Theorem 5.2.

(ii) £((^,i/,l))=lsp(2).
(iii) ^(i/^,^-1,!)), /3 ̂  1/2, ^ ¥- IPX (for y2 = Ipx see (vi)).
(iv) L((i/'3, \ >y 1)), jS <_ 1, \ is not of order two.

(v) £((^,2?), ^Ipx, ^^1 , ^ € { 1 , 2 } .
(vi) £((^,^,1)), /3i +/?z ^ 1, A ^ A.
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(vii) L((^,7?), /3^1, ^l^x, z G { l , 2 } .
(viii) L((^StGL(2),l)), /^l/2.a

Proposition 5.4. Ze< ̂  e {FX)^.
(i) ^StGL(2) X'l u reducible if and only if \lcL(2) X11- ls reducible. It

happens if and only if\ 6 {^±1/2^, ̂ ±3/2} for some ^ such that ^2 =

Ipx. For \ C {^ ' , z / /2}, ^e above representations are of length
two. For \ = v^f2^ with ^ of order two, the above representations

are of length three. All above representations are of multiplicity one.

(ii) The representation \X^Stsp(i} if and only ifx^^Sp^) %s reducible.
It happens if and only if \ G {^ l/±2} for some ^ which satisfies

^2 = I p x . If we have reducibility, then we always have a multiplicity

one representation of length two.

(iii) Let ^ be of order two. Now \ xr1 is irreducible if and only if\ XT2

is irreducible and it happens if and only if \ ̂  [1/±1-> ̂ y±l-, ̂ '} for
any character ^f of order two which is different from ^. If y is a

character of order two different from ^ or if \ == z^^1, then the
above representations are of length two while for y = v^^y the above
representations are of length three.

Proof.
(i) Let TT 6 GSp(2^FY be an irreducible subquotient of ^St^^^) Xl

l^x or x l G L ( 2 ) X l F x . Then Xsp(2){^) C Xsp^^^X x t/"172^ X Ipx).
A direct computation tells that X^pcz}^1 X x ̂ ~1 X X I p x ) is non-trivial
when \ = zy^1/2^' where ^ is a character of order two. Then the above group
of characters is equal to { I p x , <^}. In all other cases we have the trivial above
group. Therefore, if \ ^ {^±1^2^ ^±3^2} for any $ which satisfies $2 = I p x ,
then YlGL(2) X11 ana X /StGL(2) X 1 are irreducible. If \ 6 {^±3//2}, then
both ,"\:lGL(2) X 1 and X'StGL(2)Xl reduce. We have representations of
length two. From Lemma 3.5. and (5.2) we see that in the case of \ == i/^3/2

the above representations are of multiplicity one. Lemma 3.6. and (5.2)
imply that for \ = v^f2 we have again multiplicity one representations.
The same arguments give that in the case of \ = ^±ly/2^ where ^ is a
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character of order two, we have multiplicity one representations of length
three.

(ii) Let TT C GSp(2, F)" be a subquotient of \ X] Stcsp^i) or ^ Xi lcsp(i)'
Then

XspwW c ̂ ^(xx^x^"172).
If ^ is a character of order two, then Xsp(2)(x><lz/ X^"~1^2) = {l?x}-
In all the other cases, the above group is trivial. Therefore, XXSt^i)
and ^X 15^(1) are irreducible if \ ^ ^±2 and if \2 -^ I p x . If X = l/±2

we have representations of length two. By Lemma 3.5. and (5.2) one
obtains that they are multiplicity one representations. For \ = l^x we
have a representations of length two. From Lemma 3.5. and (5.2) we
see that I p x Xl^i) is a multiplicity one representation. The Jacquet
module of I p x XSt^(i) for P^ tells that I p x XiSt^(i) is a multiplicity
one representation. Suppose that \ is a character of order two. Then
\ XlStGSp(i) and \ X lc5p(i) are irreducible. Since the first representation
is tempered, while the other one is not, we have

^S^^XXStG.S'^l)) = ^^(2)(XX'lG\S;)(l))

= Xsp(2)(X X ^X^"172) = { IFX,X}.

This -finishes the proof of (ii).
(iii) Let <f be a character of order two. Then ( , ' X T^ is a multiplic-

ity one representation of length two by (iii) of Theorem 5.2. We know
that X^(2)($XStG^(i)) = ^(2)(^lGSp(i)) = { I F X , ^ } . Therefore
^X]St5p(i) and <^><]l5p(i) are multiplicity one representations of length
two. NotethatinJ?(G)wehave^x$X]z/~1 /2 = ^xi/Xl^"^2 = CxSto^i)
4-L(^,^Xiz/"~1/2). Therefore we have in R(S) the equality v x ^ X 1 =
^XStG5j,(i) + L(^T^) + L(i^T^). Thus z/ x $X3l is a multiplicity one
representation of length four. Looking at Jacquet modules it is now easy to
get that v^ Xl T1 are multiplicity one representations of length two. We
have in R{G) the equality vf, x ^ Xcr =

<^ ̂ L ̂ )+^ ((^ /2eStGL(2)^)) +^ ((^Stcw), ̂ )) +^ ((^ ( X ̂ )) •
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Therefore in R(S) holds ̂  x <^ >o 1 ==

^(0 + ̂ (0 + 2L ((^StGL(2), 1)) + L (K, 7^)) + L (K, ̂ 2)) .

Consider ^xT^'. From the Jacquet modules one sees that 8'{^) or 8'\^)

is a subquotient of ̂  X T '̂. Further, L [(z/^, T^')) is a quotient of ̂  Xi T1

From the Jacquet module of v^ X T1 for P5 one cdes that v^ X] TJ is a
multiplicity one representation. From this one can conclude that \ X T1

are multiplicity one representations of length three. Suppose that \ ^
{^±1,^±1^1} for any <f of order two, different from (. Then \ X ^ X Ipx
is irreducible by Lemma 3.2. Now Xsp(2)(x X1^ X I p x ) = { I F X , < ^ } . This
implies the irreducibility of \ xT,j. Q

Remark 5.5. Note that ^o x ̂  X 1, ̂  = l^x, (o ^ I p x , has five different
irreducible subquotients, ^((^^oStc^^l)) is of multiplicity two while
all other factors are of multiplicity one. Recall that for GSp(2, F), all non-
unitary principal series were of multiplicity one.

One can write down easily similar classifications for various classes
of the irreducible representations which are supported in other parabolic
subgroups (see [S2] and [S3]). One can get these classifications also by the
"restriction" of the corresponding classifications for G^ST^, F). For the sake
of completeness, we shall write these classifications now.

Let p be an irreducible unitarizable cuspidal representation of GL(2, F)
and /3 C H. Then v^ p X 1 is reducible in the following two cases

(i) p = p, ^ ̂  I p x and /? = 0,
(ii) p = p, ^p == 1^ and /3 = ±1/2.

These are the only points of the reducibility of ^/9Xl. This is the
ShahidFs result.

We shall sketch here how the above reducibilities for 5p(2, F) follow
from the corresponding reducibilities for GSp(2, F). Since {y^ p X Ipx )|5'p(2, F)
^/?Xl, we have reducibility of ^/9Xl, which is a representation of
5p(2, F), when p == p , ^ p == I p x and /3 = ±1/2. In the other cases, the rep-
resentation v ^ p X I p x of G5p(2, F) is irreducible. If we have a reducibility
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of ̂ p Xi 1, then p = p. Further Xsp{2}{^P Xi Ipx) ̂  {l^x } implies /3 = 0

and ci;p ̂  Ij^x. Then -^^^^Xl^x) = {Ipx^p}. Therefore, cases (i)
and (ii) above, describe the reducibilities of i/^ p ><] 1.

The following two propositions hold now. Clearly, they belong to F.
Shahidi.

Proposition 5.6.
(i) Let p G ^(GL^F)) satisfies p ^ p and Up ^ Ipx. Then pX^l

decomposes into a sum of two irreducible tempered representations.

They are not equivalent For different representation p as above, the
irreducible tempered representations are not isomorphic.

(ii) Let? C G^G^.F)). If p ^ p or if^p is not a character of the order

two, then p^xilp-x. is irreducible. The only non trivial equivalences
among such representations are

y9Xll^x ^ p X ^ l p x .

These representations are tempered
(hi) If a- is an irreducible tempered representation of G5p(2, F) which is

not square integrable and which is supported in Pf^\, then a- belong

two one of the. disjoint groups of representation described (i) and (ii).

(iv) Let p G 6^(0^(2, jF)). Suppose that p ^ p and ujp == l^x. Then

z/1/2 p x Ipx contains a unique irreducible subrepresentation. This
subrepresentation is square integrable. For different p as above^ we

get square inresentations which are not isomorphic. Each irreducible

square integrable representation which is supported in -P/5-? is iso-
morphic to a square integrable representation as above. Q

Proposition 5.7. An irreducible unitarizable representation of Sp(2^F)
which is supported in P5 is either tempered, or it belongs the following set

of the unitarizable representations

£.((^,1))

where p <E C"(G£(2, F)) such that p S p.ujp = 1^-x and 0 < ft <, 1/2. Q
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From the Waldspurger^s and the Shahidi^s result for G5p(2, .F), we
can write the reducibilities for P3 in the following way. Let \ be a uni-
tary character of Fx^ let a be an irreducible cuspidal representation of
5p(l, F) = SL(2, F) and let f3 C R. For a C F^ denote by TT^ the represen-
tation

(\a 01 fa-1 Ol\
^——Uo iMo ij j -

Put
^{aeF^^}.

For each y G (FX / F ^ ) " we have (y^2 = I p x . Now in the following cases we
have reducibilities:

(i) ^ =- Ipx an(^ /^ == 0 (i.e. l^x Xl a is reducible),
(ii) \ is of order two, \ ^ (F^/F^)' and j3 = 0,

(iii) ^ is of order two, \ C { F X / F ^ y and f3 = ±1.
These are the only cases of the reducibility of v^\ Xa.
For more information about the groups (jF^/jF^)" see [T3]. That

group is denoted there by (GI^, F)/GZ(2, F)o.)" and it corresponds to
the group which is denoted by X§j^^ F)(^) in [T3], for TT an irreducible
cuspidal representation of (5L(2,F), such that 7r|5'L(2,F) contains a sub-
representation isomorphic to a.

We shall outline now how corresponding reducibilities in the case
of G5p(2, F) imply the above reducibilities. Take a cuspidal representa-
tion < J ' G GSp(l^FY such that a is isomorphic to a subrepre.sentation of
o^l.Sj^l, F). We have a decomposition into a sum of irreducible represen-
tations c r ' \ S p ( l L , F ) = (TI (B • • • (B crjk. Representations cr, are cuspidal and
o-i ^ aj if z 7^ j. From the Jacquet modules one gets that

(^^xa^l^^^.^^^x-x^l^i.F))^ e ^xx^
z=l

is a multiplicity one representation. Therefore, if TT is an irreducible subquo-
tient of v^\ >^<j1\ then Xsp^{7r) = ^Sp(2)(zy'3X/ Xlc^^). Reducibility implies
\2 = l^x. We shall assume that in the further analysis.
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Suppose that ft ^ 0. Then Xsp^^X^^'} = Xsp(i){cr1). There-
fore, in this case if y^\><\a' is irreducible, since the length of
(z/^XKT^I^^F) is equal to the length of (^[^(I.F), we have that all
i/^-^Xa-i are irreducible. If f^\>^a1 is reducible, then it is of length 2.
Now the representation (v^\ Xl a')\Sp{2, F) is of length 2k. Since a1 |5p(l, F)
is of length k and v^\ Xlcri splits into no more then two irreducible repre-
sentations, we have that if v^\ ><\cr' reduces, then all v^\ Xia, reduce.

Suppose now that f3 = 0. Then Xsp(2)(x X^) = ^Sp(i)^1) U {77 G
(F^)';^ ^ </}. Note that {77 € (F^)';^ ^ c/} C Xsp^(a1) if and
only if \ G X5p(l)(<7/). If ^ € X5p(l)(c^/), then \ X^cr1 reduces if and only
if \ X <T reduces. The reasons is same as had above. Thus, l^x Xa,
reduces and this is the only reducibility if '\' G Xsp(i){^')- Suppose now
that \ ^ Xsp^(a1). The same arguments as above give that all ^Xo-i
reduces.

Description of Xsp^(cr') in terms of a one may found in [T3].
We can conclude the following two propositions now. They belong

to J.-L. Waldspnrger and F. Shahidi.

Proposition 5.8.
(i) Let a G (^(^J^9,!^)). Then Ipx Xia reduces into a sum of two irre-

ducible tempered representations. They are not isomorphic. For dif-

ferent representations cr one gets irreducible subrepresentations which

are not isomorphic.

(ii) Let a € C'̂ .S'J^F)) and let ^ € (F")" be a character of order
two such that \ ̂  (FX/F^y. Then \>^o~ decomposes into a di-

rect sum of two irreducible tempered representations. They are not
isomorphic. For different pairs (cr, ̂ ) as above, one gets irreducible

subrepresentations which are not isomorphic.

(iii) If a is an irreducible tempered representation of 5p(2,F) which is

supported in P/^p and which is not square integrate, then a belongs

to one of the two disjoint groups of the representations described in

( i ) and (ii).

(iv) Let <72,F)) and let \ he a character of Fx of order two which belongs
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to (FX/F^Y. Then ^Xcr contains a unique irreducible subrepre-

sentation. This subrepresentaiion is irreducible. For different pairs
(<T,^) as above, one gets square integrable subrepresentations which
are not isomorphic. Each irreducible square integrable representation
of 5p(2, F) supported in P3 is isomorphic to some square integrable
representation as above.^

Proposition 5.9. Let TT be an irreducible unitarizable representation of

5p(2,jF) which is supported in -P/^\. Then TT is either tempered or it belongs
to the following series of the unitarizable representations

I<(zA^))

where a- G (^(5^(2^)), 0 < f3 <: 1, and \ is a character of Fx of order

two which belongs to (F^ /F^Y. Q
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