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TIGHT CLOSURE AND STRONG F-REGXJLARITY

by Melvin HOCHSTERi and Craig HUNEKEl

This paper is written in celebration of the contributions of Pierre Samuel to commutative
algebra.

1. Introduction.

Throughout this paper all rings are commutative, with identity, and Noetherian, unless
otherwise specified. In [HH1] and [HH2] the authors introduced the notion of the tight closure of
an ideal and the tight closure of a submodule of a finitely generated module for Noetherian rings
which are either of positive prime characteristic p or else are algebras essentially of finite type
over a field of characteristic 0. This notion enabled us to give new proofs, which are especially
simple in characteristic p , of a number of results (not all of which were perceived to be
particularly related) : that rings of invariants of linearly reductive groups acting on regular rings
are Cohen—Macaulay, that the integral closure of the n^ power of an n generator ideal of a
regular ring is contained in the ideal (the Briancon—Skoda theorem), of the monomial conjecture,
and of the syzygy theorem. The new proofs yield much more general theorems. For example, we
can show by these methods that if S is any Noetherian regular ring containing a field and R is
a direct summand of S as an R-module (we shall sometimes say, briefly, that R is a
summand of S to describe this situation : we always mean R —» S is A-split) then R is
Cohen-Macaulay. This result was not previously known in this generality. Moreover, this
illustrates the general principle that results proved using tight closure techniques but which do
not refer specifically to tight closure can be extended to the general equicharacteristic case by
using Artin approximation to reduce to a situation in which tight closure is defined.

1 jBoth authors were supported in part by grants from the TVational Science Foundation.
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One of the most important characteristics of tight closure is that in a regular ring every
ideal is tightly closed. We call the Noetherian rings all of whose localizations have this property
"F—regular". (The "F" in "F-regular stands for "Frobenius" : the reason for this usage will
become clear later). This is an important class of rings which includes the rings of invariants of
linearly reductive groups acting on regular rings. A key point is that if S is F—regular and R
is a direct summand of S as an R—module then R is F-regular. It turns out that, under mild
conditions (like being a homomorphic image of a Cohen—Macaulay ring or a weakening of the
requirements for excellence), F—regular rings, which are always normal, are Cohen—Macaulay as
well. This is the basis for our new proof that direct summands of regular rings are
Cohen-Macaulay in the equicharacteristic case.

Our objectives in this paper are, first, to recap briefly some of the features of tight closure,
and then to focus on the notion of a "strongly F—regular" ring. It turns out that rings of
invariants of reductive groups have, in fact, this stronger property, and that the stronger
property has numerous apparent advantages over F-regularity. We should point out right away
that we do not know whether the notions of F—regularity and strong F—regularity are really
different in good cases. It would be very worthwhile if it could be proved that the two notions
coincide.

2. A survey of tight closure.

Unless otherwise specified A , R, and S denote Noetherian commutative rings with 1. By
a "local ring" we always mean a Noetherian ring with a unique maximal ideal. RP denotes the
complement of the union of the minimal primes of R. I and J always denote ideals. Unless
otherwise specified given modules M and N are assumed to be finitely generated.

We make the following notational conventions for discussing "characteristic p". We shall
always use p to denote a positive prime integer. We shall use e for a variable element of IN ,
the set of nonnegative integers, and q for a variable element of the set { p ® : e € IN }.

If R is reduced of characteristic p we write R / ^ for the ring obtained by adjoining all
0th roots of elements of R: the inclusion map RC R 1^ is isomorphic with the map
F8: R —»• R, where q = pe^ F is the Frobenius endomorphism of R and F3 is the 6th

iteration of F, i.e. F^r) == r9 . When R is reduced we write R00 for the R—algebra Uq R lq.
Note that R00 is an exception to the rule that the rings we consider be Noetherian.

If 1C R and a ^ p 6 then T^l denotes (z'Q: ie 7) = F?(7)J?. If S generates / then
{i^:ieS} generates 71^.

We are now ready to define tight closure for ideals in the characteristic p case.
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DEFINITION. Let I C R of characteristic p be given. We say that a; 6 /*, the tight closure of /,
if there exists c€ R° such that cxfl € 71^ for all q^ 0 , i.e. for all sufficiently large q of the
form p6. If 1= I* we say that I is tightly closed.

Remarks. Note that if R is a domain, which is the most important case, the condition that
c€ R° is simply the condition that c^ 0 . Note also that if R is reduced then CXQG T1^1 iff
c^^e 7^1/^. Thus, if xe I* then for some c6 RQ we have that c^^e IR» for all q (this
condition gets stronger as q gets larger). This gives a heuristic argument for regarding x as
being "nearly" in I or, at least, IR00: it is multiplied into IR00 by elements which, in a formal
sense, are getting "closer and closer" to 1 (since 1/^—»0 as q—^oo).

We also note that if R is reduced or if I has positive height it is not hard to show that
xe. I* iff there exists c€ R° such that cx^e. 71^ for all q .

We extend this notion to finitely generated algebras over a field of characteristic 0 as
follows :

DEFINITION. Let R be a finitely generated algebra over a field K of characteristic 0 , ZC R, and
x 6 R. We say that x is in the tight closure I* of I if there exist an element c 6 R°^ a finitely
generated 1—subalgebra D of K , a finitely generated D—subalgebra R of R containing x

and c , and an ideal I of R such that I and RJI^ are D-free^ the canonical map

K® R —+ R induced by the inclusions of K and R in R is a K—algebra isomorphism^

I = I^R , and for every maximal ideal m of D , if K = D/m and p denotes the characteristic

of K , then <^x^e 1^ in R^ R^/mR^ for every q= p^ 0 , where the subscript K denotes

images after applying /c®p . // I== J* we say that I is tightly closed.

It is not even completely clear from this definition that I* is an ideal, although it is not
difficult to establish. Our attitude in this survey is as follows : we give a number of proofs in
characteristic p to illustrate how easy many arguments are while in characteristic 0 we state
results but omit discussion of the proofs (generally speaking, the arguments are rather technical
but hold few surprises).

We also note that if R is an algebra essentially of finite type over a field K of
characteristic 0, and 1C R, we can define the tight closure. Z*, of I as U (In B)*, where the

union is extended over all finitely generated T^ubalgebras B of R such that R is a
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localization of B. However, we shall not discuss the situation for algebras essentially of finite
type over a field in any detail in this paper.

The next result shows, among other things, how one uses tight closure to prove that direct
summands of regular rings are Cohen—Macaulay (C-M).

2.1. THEOREM. Let R, S denote Noetherian rings which are either of characteristic p or else
essentially of finite type over a field.

&) If R is regular, every ideal of R is tightly closed.
b) If RC S are domains and J is tightly closed in S then JD R is tightly closed in R.

(When R and S are not necessarily domains we may assume instead that R° C 5°).
c) Let RC S be domains such that every ideal of R is contracted from S (this holds, in

particular, if R is a direct summand of S as an R—module). If every ideal of S is tightly
closed then every ideal of R is tightly closed.

d) The tight closure of an ideal I of R is contained in the integral closure I~ of I .
e) If R is a locally unmixed homomorphic image of a C-M ring and x\,...,Xu 6 R have

the property that any t of the x's generate an ideal of height> t , then
(xi,...,Xn-i): ^nRC (xi,...,Xn-i)R*, where I : ̂ J= {r6 R: rJc I}.

Sketch of the proof in characteristic p . a) Suppose that 1C R, that R is regular, and that
XG I * — I . By localizing at a prime containing I : xR we may assume that (R^m) is local as

well. If c^ ^ for all q> q' then CCH (^:x^)=n (I:x)^ (the flatness of the

Frobenius endomorphism for regular rings implies that (r-^'.x^) = (Lx)^1) C n ,m<? = (0), so

that c = 0 .
b) is immediate from the definition of tight closure and c) is immediate from b).
d) (The reader may want to look at the discussion of integral closure given in (2.8) below

before going through this argument). We may use a). Suppose xe. /* and ce R° is such that
cx^ 6 /1<?J for all ^» 0 . Let h: R —^ V with ker h a minimal prime of R , where 7 is a
DVR.Then A(c)/i(a;)<?6 (IV)^l for all q^ 0 and A ( c ) ^ 0 , a n d s o h{x) 6 (IV)* = IV (since V
is regular), and we are done. On the other hand, we may argue directly as follows : Let
7= (;ci,...,a?h). Applying the discrete valuation v to the equation ca^ = St=i rqi x^ yields
v(c) 4- qv(x) > q rmn{v(xb):t}. Dividing by q and taking the limite as ^—»oo yields the result.

e) We shall not prove the result stated in full generality here : we refer the reader to [HH2].
However, we shall give the argument in the special case where the xi are contained in a regular
ring AC R and R is module-finite over A . In many good cases it is possible to reduce to this
case by localizing and completing R and then choosing A properly. In the interesting case
(where the xi do not generate the unit ideal) we may reduce to the situation where A is local,
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the Xi are part of a system of parameters for A , and R is module-finite over A . The
unmixedness hypothesis then translates into the condition that R be torsion—free as an
A-module. The result stated then follows from Lemma 2.2 below. QED.

2.2. LEMMA. Let R be a Noetherian ring of characteristic p module-finite and torsion-free over
regular domain A. Let /, J be ideals of A. Then IR: ^JRC {(I:^J)R)* and

mn JRC ((zn J)R)*.

Proof: Let F1^ At be an A—free submodule of R whose rank t is equal to the torsion—free
rank of R is an A—module. Then R/F is a torsion A-module, and we can choose a nonzero
element ce A such that cRC F . Let x^ IR: JR (resp. IRH JR). Then, for all q ,

3<i(.^R:^R (resp. MRFI A), whence ca^e ^F:J^ (resp. T^Fn J^F). Since F1L A

is A-free, we see cx^e (P-^'.^^F (resp. T^n J1^)^ and ̂  the flatness of the Frobenius
endomorphism of A we then have ca^e (Z^J)^FC ((J:^J)^)^1 (resp.

(Jn J)^IFC ((/n J)^)^l) for all q , which yields the desired result. QED

This also completes the proof of (2. Ie).

We next give a number of corollaries of (2.1) as well as some remarks about how it is used.

We first recall that a ring for which tight closure is defined is called weakly F-regular if
every ideal is tightly closed and F-regular if this is true in all localizations as well. The authors
do not know at present whether every weakly F—regular ring is F-regular. With this
terminology we have the following corollaries of Theorem 2.1.

2.3. COROLLARY. Every regular ring is F-regular.

2.4. COROLLARY. // R C S is a direct summand as an R-module and S is F-regular then R is
F-regular.

2.5. COROLLARY. A weakly F-regular ring which is a homomorphic image of a C—M ring is
C-M.

2.6. THEOREM. In the equicha.racteristic case, a direct summand of a regular ring (as in 2.3) is
C-M.
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2.3 is immediate from 2.1a and 2.4 from 2.1c. 2.5 is then clear from 2.1e. 2.6 is obvious
from 2.4 and 2.5 in the case where tight closure is defined. In the general case one reduces to the
case of complete local rings and then uses Artin approximation to prove a subtle generalization
of 2.1e which yields the result. We refer to [HH2] for details.

2.6 includes the result that rings of invariants of linearly reductive groups G over a field
K acting J^-rationally on a regular J<-algebra R have rings of invariants RG which are
C-M. See [HR1], [K], and [B], as well as the discussion of rational singularities following the
statement of the Briancon—Skoda theorem below. It is worth noting that in many cases in
characteristic p where the group is reductive but not linearly reductive and where, in fact, RG

is not a direct summand of R, it is nonetheless true that pC is F-regular : for example, the
rings defined by the vanishing of the minors of a given size of a matrix of indeterminates are
F-regular. See [HH2].

Itemark. The theory of tight closure permits a very substantial generalization of 2.1e. Under the
same hypothesis one may perform a sequence of operations including sum, product, colon, and
intersection on ideals generated by monomials in the Xi . If the ring is C-M (or, more
generally, if the x'i form a permutable regular sequence) then it is easy to compute the result of
these iterated operations : the Xi behave as though they were indeterminates. It turns out to be
extremely useful to be able to restrict the possibilitities for the answer in the general case, when
the xi are parameters but not necessarily a regular sequence. The key point is that the actual
ideal resulting from the iterated operations is in the tight closure of what one gets when the Xi
form a permutable regular sequence. We should note that there are some restrictions on the use
of colon in doing iterated operations : we are not giving the precise statement here. One very
special case of this is that (rf,...,^):^!...^)^ (a;i,...,a;n)*, which implies the monomial
conjecture (and, hence, the direct summand, canonical element, and new improved intersection
conjectures, all of which are equivalent: see [H3]).

Rfimark. If 1C R, tight closure is defined in R, and RC S , where S is regular and, for
simplicity, a domain, then I*S = I S . This is a remarkable consequence of the theory of tight
closure. For example, it implies in the situation of 2.1e that (xi,...,Xn.i)R: XnRC (a;i,...,a?n-i)5',

and similar remarks apply to the iterated operations discussed in the preceding remark.
Moreover, one can prove extremely powerful theorems parallel to this one in a somewhat
different direction as follows :

2.7. THEOREM (Vanishing theorem). Let AC R-L.S be excellent equicharacteristic rings such
that A, S are regular domains, f is injective, and R is module-finite over A . Let M be a
finitely generated A-module. Then the map
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To4(M,A) -^ To4(M,5)

is 0 for all i> 1 .

More general statements are given in [HH2], but (2.7) is already quite strong : the case
where M= A/(a;i,...,a;j), where the x^, are s.o.p. in A , and R is a direct summand of S
implies that summands of regular rings are Cohen-Macaulay, while the case where M= A / J
and S is a DVR dominating the local ring R implies the canonical element conjecture [H3].
The proof of 2.7 uses the notion of the tight closure of a submodule of a module : one shows that
certain cycles are in the tight closure of the boundaries and hence are boundaries once one passes
to the regular ring S , where every submodule is tightly closed. (In char. j?, if NC M we say
y6 M is in N* if there exists c6 R° such that for all ee IN , c(l®y) maps to 0 in J^(M/^V),
where F is the Peskine-Szpiro functor [PS, p. 330, Def. 1.2].)

To prove 2.7 in characteristic 0 a statement is needed which can be preserved while
applying Artin approximation: in consequence, we prove a more general result in which the
condition that / be injective is weakened to the condition that the image of Spec(5) in
Spec(R) meet the Cohen—Macaulay locus in Spec(^).

2.8. Discussion. We recall that an element a; of a ring R is integral over an ideal I provided
that there is an integer k > 0 and an equation xk + zi^-1 +...+ ijXJ +...+ ik-ix + ik = 0
where ij 6 I] for 1 < j< k . This is easily seen to be equivalent to the assertion that there is an
integer k> 1 such that ^ e I(I+Rx)k-^ and this holds iff (I+Rx)k = I(I+Rx)^ . From this it
is trivial to prove by induction on m that

(#) (I+Rx)k^ = I^(I-{-Rx)^

for every integer w6 IN . Thus, x is integral over / iff there exists a positive integer k such
that (#) holds for all me IN .

The integral closure I- of I is simply the set of elements integral over /, and is an ideal.
Another characterization of integral closure for ideals is given by valuations : let R be a

ring with finitely many minimal prime ideals (this is, of course, automatic when R is
Noetherian) and 1C R. Then x is integral over I iff for every homomorphism h of R into a
valuation domain V such that Ker A is a minimal prime of R, hxe IV. If R is Noetherian
the same result holds with V restricted to be a discrete valuation ring (by which we always
mean a rank one discrete valuation ring).

It is instructive to compare integral closure of ideals with tight closure. If x and y are
any two elements of a ring R then (a;",^")'? (a;11,̂ "1 .̂..,̂ -^2,...,̂ 11-!,̂ ") = (a:,!/)" since the
monomial x11'^1 satisfies 2ft - (a;")"-^")^ = 0 . On the other hand, if R is regular or
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F-regular, e.g. if R == I<[x,y] where K is a field, then (re", y0)* = (a;", y0), since every ideal is
tightly closed. Thus, the tight closure is, in general, much smaller than the integral closure. The
tight closure is a "tight fit" for the original ideal, which is the reason for the choice of the term.

Suppose we define the regular closure /eg of an ideal / in a Noetherian ring R as
follows : x € /e^ precisely if for every homomorphism h: R —*• S with S regular such that
Ker h is a minimal prime of R, h(x) e h(I)S . Roughly speaking, /eg is the largest ideal which
cannot be distinguished from / by maps to regular rings whose kernel is a minimal prime, just
as /" plays this role for maps to valuation rings.

A crucial observation is that /* C /eg whenever tight closure is defined : this is immediate
from the definition of tight closure and the fact that every ideal in a regular ring is tightly
closed. This explains much of the usefulness of I*. The trouble with working with /e^ itself is
that it appears to be very difficult to prove anything interesting about its behavior directly. We
have many useful results about /eg all of which are proved by studying /*. While f^ is
defined in mixed characteristic (where /* is not), we cannot prove anything really useful about
it. So far as we know it is possible that 7* = f^ when I* is defined : this appears to be a
difficult question.

We next note that the theory of tight closure provides an easy proof of the Briancon—Skoda
theorem, and, in fact, generalizes it. The theorem was first proved by analytic methods ([BrS])
and later by algebraic techniques ([LT], [LS]), but the argument below is simpler, and, in a
certain direction, improves the result.

2.9. THEOREM (generalized Briancon—Skoda theorem). Let R be a Noetherian ring for which tight
closure is defined and let I be an ideal of positive height generated by n elements. Then
(/")- C /* .

Hence, if R is weakly F—regular and, in particular, if R is regular, then (J^'C /.

Sketch of the proof in characteristic p . Let a = J" . If a is contained in the union of I* and
the minimal primes of R it must be contained in I* . If not choose y in a not in any minimal
prime of R. From (#) in Discussion 2.8 concerning definitions of integral closure we have
yk+me a^^(a+yR)k+lC am for a certain integer k> 1 and all me IN . Let c = y^, m = q = p6

and note that aft = /"<? C 71^ (since / has n generators), i.e. cy^ 6 P•ql for all q . QED

It is easy to deduce the result for arbitrary equicharacteristic regular rings from the
characteristic p case using Artin approximation.
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We have already observed that direct summands of regular rings are F—regular and so
C-M. This was the basis for our new proof that rings of invariants of linearly reductive groups
acting rationally on regular J^-algebras are C-M: see [HR1], [K], and [B]. The result of [B] is
actually that in the case of algebras finitely generated over a field of characteristic 0 and in the
analytic case, direct summands of rings with rational singularities have rational singularities.
This suggests a connection between F-regularity and rational singularity. We observe :

2.10. THEOREM. Suppose that R is of finite type over a field K of char. 0 and that 1= I* for
aU 1C R. If either: a) R has isolated singularities or b) R is ^-graded with RQ= K ,
m = .® Ri, and R has rational singularities except possibly at m, then R has rational

singularities.

In particular, F-regular surfaces have rational singularities. The authors conjecture that
all F-regular rings of finite type over a field of char. 0 have rational singularities. The converse
is not true : an example of [W] shows that a surface in char. 0 may have rational singularities
without even being of F-pure type in the sense of [HR2]. The proof of part a) depends on the
fact 2.9 that the conclusion of the Briancon-Skoda theorem is valid in a weakly F-regular ring.
A key point in the proof of 2.10a is that an ro-dimensional isolated singularity of a local ring
(R,m) of an algebra of finite type over a field of char. 0 is rational iff for every m-primary
ideal 1, 7""C I . (One may replace I by an ideal generated by a system of parameters on which
it is integrally dependent). An alternative equivalent condition for the isolated singularity to be
rational is that for some s.o.p. a?i,...,a;n whose normalized blow-up is regular,

(rf",...^")^,.,^) for all t.

Remark. As we shall see in the next section, a Gorenstein local ring has the property that I== I*
for all I iff the ideal generated by a single s.o.p. is tightly closed. If a Gorenstein local ring has
an isolated nonrational singularity it follows that the ideal generated by any s.o.p. is not tightly
closed. E.g. in I<[[X, Y,Z\]/(X^+ ys+ZQ = I<[[x,y,z]] the ideal generated by any two of the
elements j, y, z fails to be tightly closed: x^ (y,z)*-(y,z), y2^ (x,z)*-(x,z), and
^e(^)*-(a;,y).

3. Strongly jF-regular rings.

The notion of weak F-regularify for a ring R, that every ideal be tightly closed, is
clearly a valuable one, but has annoying technical drawbacks. One of the worst of these is that
we have not been able to prove that it passes, in general, to localizations. The situation is as
follows: the property of weak F-regularity passes to localizations at maximal ideals, and, in
the case of algebras of finite type over a field, to localizations at an element. In the Gorenstein
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case it passes to all localizations. However we have not, in general, been able to obtain the result
for localizations at an arbitrary prime, even for algebras of finite type over a field. For this
reason, we made the property of passing to localizations part of the definition of F-regularity.

In this section we shall study an a priori stronger property in characteristic p that may be
equivalent to F—regularity or even to weak F—regularity : we simply do not know. It is only
defined for reduced rings R such that R ^ is module—finite over R: however, this class
contains finitely generated algebras over a perfect field K and complete local rings R with
perfect residue class field K (one only needs that K / p be finite over J<), and so is not too
restrictive.

Throughout the rest of this section R denotes a reduced Noetherian ring of positive prime
characteristic p such that R ^ is module—finite over R (although we often reiterate this
hypothesis in stating theorems). Of course, R / ^ is then module—finite over R for all q = p6.

In this note we shall restrict attention to the domain case : very little is lost in doing so,
since, in general, a strongly F—regular ring is a finite product of strongly F—regular domains.

DEFINITION. We say that a domain R as above is strongly F-reaular if for every c G R° there
exists q such that the R-linear map R —^ R / ^ which sends 1 to c / ^ splits as a map of
R-modules, i.e. iff Rc1^^ B^l^ splits over R.

Remarks, a) The issue of whether a homomorphism of finitely generated modules over a
Noetherian ring splits is local and is unaffected by a faithfully flat extension of the base ring
(since the question can be translated into whether a certain map of Hom^s is onto : see [HI]).

b) If R C S and / : R —^ M is split by g , where M is an 5-module, then R C S
splits : send s to g{sf{l)).

c) In the definition above, if a splitting exists for one choice of c 6 R° and q then
RC R1/^ splits for every ^. (It suffices to split RC R1^ and hence RC R^-^: now useb)).

d) Note also that if R — ^ R 1 ^ sending 1 to c / ^ splits for one choice of q, the
map RC R 1^ sending 1 to c ' ^ splits for every q' > q: the map R—^ B~1^ described is
isomorphic to the map R^^ — ^ R 1 ^ sending 1 to c ' ^ and so that map splits over 7?^,
and this splitting may be composed with the ^-splitting RC R^l^ .whose existence we showed
in c).

The following result exhibits a number of the good properties of strong F—regularity.
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3.1. THEOREM. Let R be a Noetherian domain of positive prime characteristic p such that R1^
is module-finite over R.

a) R is strongly F-regular iff Rp is strongly F-regular for every prime (respectively,
for every maximal) ideal P of R. Hence, if R is strongly F-regular, so is S^R for every
multiplicative system S .

b) If S is faithfully flat over R and strongly F-regular then so is R .
c) If R is regular, then R is strongly F-regular.
d) If R is strongly F-regular, then R is F-regular.
e) If R' is strongly F-regular and R is a direct summand of R' as an R-module, then

R is strongly F-regular. In particular, a direct summand (as a module over itself) of a regular
ring is strongly F-regular.

f) If R is weakly F-regular and Gorenstein, then R is strongly F-regular.

Proof: a) First suppose that R is strongly F-regular. We show that ^R is strongly
F-regular for every S . Let a nonzero element c = c ' / s in ^R be given, where c' e R° and
56 S . Choose q such that h: R—^ ^1/^ sending 1 to c^^ has a splitting g . Then
(1/5 /^(^h) has as a splitting the map which sends x to (5^)(51/^). (Note that
(S-m^^^S-^l^ canonically).

On the other hand, suppose that R^ is strongly F-regular for every maximal ideal m
and let ce R° be given. For each maximal ideal m choose q(m) such that the map
^n -^ B^l^ ^ (R^^^m which sends 1 to c1/^) splits. One then gets a splitting for
the same q(m) on a Zariski open neighborhood. Taking a finite subcover and the supremum q
of the finite set of values of q(m) used in constructing it, we obtain a splitting of hm , where h
is the map R—^R^ sending 1 to c I q , for every maximal ideal m of R, and this implies
that h has a splitting.

b) Suppose ce R°. Choose q such that Sc^^C S1^ splits over S . Since S is faithfully
flat over R, Re lq^ R l q splits iff it splits after applying S® . But we get a splitting by

composing S®^^-^ S1^ with the map •S1/̂  5'c1/^ which splits the inclusion
sclfqcsl/q.

c) Suppose that R is regular. To prove F-regularity, it suffices to do so locally, by a). We
may assume without loss of generality that (R,m) is local. Since R is regular, R1^ is free
over R. Let ce R° be given and choose q so large that cf. m<?. Then c1/^ m(Rl/q) and
so is part of a free basis for R1^ over R. The existence of the required map is then obvious.

d) Suppose a? 6 /* and that ce RQ is such that ca^e 7̂ 1 for all q> ^.'Then
c /^e IR / q and we can choose q so large that there is an ^-linear map Rl/q^R
sending c l q to 1. Applying this map yields that xe I . Thus, /* = I for every ideal /.
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Let c€ R0 and an A'-splitting of the map R ' — ^ R ^ I ^ which sends c1^ to 1 be
given. Simply compose with an A-linear map splitting RC R/ and restrict the composition to
R / q to obtain the desired splitting.

f) The issue is local on the maximal ideals of R. Thus, it suffices to prove that if (A,m)
is a local Gorenstein domain which is weakly F-regular and R ^ is module—finite over R
then for every c6 R° , Re / q ^ R 1^ splits for sufficiently large q. Let a;i,...,a?d be a system of
parameters for R and let the image of ue R generate the socle in R/(xi,...,xd). By [HI,
Remark 2, pp. 30 and 31], since R is Gorenstein the map R—*M sending 1 to m splits iff-
[x[...xy)umf. {x[^,...,x^)M for all nonnegative integers t , and when M has depth d this
simply is the condition that urnf (xi,...,Xd)M. We see that it will suffice to choose q such that
uc ^f. {x{,...,xd)R / q , i.e. such that cu^f. ((.ri,...,^)^)1^- It is possible to do this, since
ut (xi,...,Xd)R = I and I is tightly closed. QED

Remark. The argument for part f) actually shows that a Gorenstein local ring is strongly
F-regular provided the ideal generated by a single system of parameters is tightly closed. We
remark that, quite generally, a Gorenstein local ring is F—regular (not just weakly F—regular)
if the ideal generated by one system of parameters is tightly dosed : it is not necessary that
F^^ be module-finite over R. See [HH2].

Remark. When R / p is module—finite over the domain R we can always choose c6 R° such
that (R /^c ^ (Re) / p is free over Re : for such a c , Re is regular and, hence, strongly
F-regular.

Remark 3.2. Suppose that R l p is module-finite over the domain R and that ce R° is such
that Re is strongly F-regular. Then for every d^ R° there is an integer q = ^e, an integer
00 and an ^-linear map Rl/q—^R which sends d1^ to c6. To see this, choose q
sufficiently large that there is an Ac-linear map g : (A^^c —^ Re such that g^^) = 1 .
Since ^1/^ is module-finite over R, ctg(Rl/q)C R for sufficiently large t , and then c^g
restricted to R / ,̂ has the required property. Notice that we may replace t by any larger
integer : in particular, we may assume that it is a power of p .

3.3. THEOREM. Let R be a Noefherian domain of positive prime characteristic p such that R l p

is module-finite over R.
a) Let c be any element of R° such that Re is strongly F-regular (such elements always

exist). Then R is strongly F-regular if and only if there exists q=pe such that
R^/^C R1/^ splits over R.

b) The set {Pe Spec R: Rp is strongly F-regular} is Zariski open in Spec R.
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Proof: a) The existence of such a c is proved in the first of the two remarks just preceding the
Theorem. Let d€ R° be given. Since Re is strongly F-regular, by Remark 3.2 we can choose
an ^-linear map R1/^ to R taking d1/^ to c^. The inverse of the iterated Frobenius
endomorphism gives an isomorphism of the map R C R I ^ with the map R / ̂  C R I ̂  q

and it follows that there is an ^/^-linear map of f^l^^ to J21/^ which sends
^./qq^q" ^ c^/^" == c1/^, taking (qq")^ roots. We may compose this with an ^^-linear
map of I^l^ to R1^ which sends 1 to 1 (and. hence, c1^ to c1/^), and then with the
Tt-linear map from R1^ to R which sends c1/^ to 1 guaranteed by the hypothesis. This
establishes part a).
b) Choose c 6 R° such that Re is strongly F-regular. Suppose J?p is strongly F-regular for

a certain prime P. Then we can choose q and a splitting of R c ^C (R ) / ^ or,

equivalently, of (Re "C R / q ) , and this splitting extends to a Zariski neighborhood, so that

for a certain df. P , we have a splitting of (Re "C R /^ , and it then follows from part a)
that R is strongly ^-regular for all primes Q with df. Q.QED

One of the apparently mysterious aspects of tight closure is the nature of the element c
such that csft e 71^ for all sufficiently large q. In the definition c is allowed to vary with both
x and /. As mentioned earlier, if R is reduced or if / has positive height one can replace the
condition "for all sufficiently large cf by the condition "for all q11.

It is natural to ask whether, for "good" choices of R, there is an element ce R° such that
for every ideal /C R and every element a; 6 R, xe. I* iff cxQ 6 71^ for all q. We refer to such
an element as a test element It is proved in [HH2, §6] that if R is module-finite, torsion—free
and generically smooth over a regular domain A then R has a test element, as does every
localization of R. We note that, in particular, every algebra essentially of finite type over a field
has a test element.

The constructions of test elements given in [HH2] provide only a very limited class. One of
the pleasant consequences of the theory of strong F-regularity is that one can use it to show
that every R such that R " is module-finite over R has a test element and, in fact, an
abundance of test elements : every element in the ideal which defines the locus of primes P
where R is not strongly F—regular has a power which is a test element. In particular, in the

case of an isolated singularity, there is a power of the maximal ideal defining the singular point
all of whose elements not in R° are test elements. This follows from :

3.4. THEOREM. Let R be a Noetherian domain of positive prime characteristic p such that R ' ^
is module-finite over R. Then every element c' of R° such that R , is strongly F-regularc
has a power which is a test element.
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More precisely, c' has a power c such that there is an R-linear map h of R ^ to R
which sends 1 to c , and for c 6 R° with this property such that Re is strongly F-regular, c3

is a test element

Proof: The existence of h follows from Remark 3.2 applied with d = 1 . We next observe that
the existence of h implies that for all q, there is an ^-linear map R l q —^ R which sends 1
to c2: ch works if ( ? = = ? , while given such a map g ' . R ^ — ^ R we get a map
g. ; p ^ / P Q ^ p 1 / ? by taking p^ roots which is jR^-linear and sends 1 to c2/^.
Multiplying by c^ ) 1 ^ yields a map which sends 1 to c and we may then apply h, for
h(c) = c2.

Now suppose XE I* . Then there is a ^6 R° such that dx^ e r-^ for all q. We must
show that c3 has the same property. As in Remark 3.2 we may choose q' and q" such that
there is an ^-linear map of R l q to R sending d ^ to c^ .Let q be a varying power
of p . Taking qq"^ roots we obtain an ^/^-linear map / of R1/^^ to ^1/^"
sending rf1/^^ to c1/^. Since dx^f qlt^ ^qq'T! takine q^q^h roots yields that
d1!^^ x^ I B ^ I ^ ^ . Applying the map / we find that c^^e IR1/^11 . From the first
paragraph we know that there is an ^-linear map g : R1^ —^ R sending 1 to c2 and hence
c to c3. It follows that there is an ^/^-linear map R1/^ -^ J?1/^ sending c1/^ to
(c3) / q . Applying this map we see that (c3)1/^ IR1^, and taking q^ powers yields exactly
the fact we need. QED
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