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INTERSECTION KINGS OF SPACES OF TRIANGLES

Alberto COLLINO and William FULTON

In 1880 Schubert [12] described a space which compactifies the set of (ordered) plane
triangles, and described its intersection ring — giving a basis for the cycles in each dimension,
and giving algorithms for computing products. In 1954 Semple [13] gave a modern construction
of this space, which we denote X, as an algebraic submanifold of a product of projective and
Grassmann manifolds. Tyrrell [15] verified Schubert's prescription of the cycles and their
relations in codimension one, and calculated a few other intersection products. The aim of this
note is to complete this analysis. We give a formula for the Chow ring (or cohomology ring) of
this space: it is generated by seven classes in codimension one, with an ideal of relations
generated by twelve classes. In particular we verify that Schubert's basis is correct in all
dimensions, and the intersections are as he specified. It is interesting, however, that one of the
defining relations for the intersection ring is independent of those given by Schubert before he
lists the basis.

The proof is remarkably easy. Since the torus of diagonal matrices in SL(3) acts on X
with finitely many (72) fixed points, it follows from the work of Bialynicki-Birula [I], [2] that
the total Chow group A\X) of X is free on 72 generators. We define, purely algebraically, a
graded ring A* with seven generators and certain relations, and verify that A' has 72
generators - the same basis as given by Schubert. It is easy to verify that there is a
homomorphism from the ring A* to the Chow ring A'(X). Since the generator of A6 maps to
the generator of A6^, Poincare duality implies that this homomorphism is an isomorphism.

Because the algorithms for writing any classes in terms of the basic classes are given
explicitly, it becomes a simple algebraic exercise to compute any intersection products, and in
particular any enumerative formula, involving the basic 72 generators.

* Research partially supported by NSF Grant DMS-84-02209.
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Although modern machinery has often been used to give rigorous proofs of classical
formulas in enumerative geometry, this appears to us to be one of the rare instances where a
modern framework actually simplifies the classical calculations. Only part of the first few pages
of Schubert's calculations appear in this approach. Perhaps the most obscure part of Schubert's
paper (pp. 167—181), which may be regarded as a calculation of the Kunneth components of the
class of the diagonal on X^X, can be dispensed with, since this is equivalent to knowing the
intersection products of all pairs of generators in complementary dimensions.

In this paper we also compute the Chow ring of the space of triangles in a projective bundle
over a given variety. This includes the space of triangles in IP0 ; for n=3 a few equations were
included at the end of Schubert's paper [Sch]. As he implies, there are few new ideas needed for
this generalization ; the present framework makes it quite automatic.

Another approach to the computation of intersections on the space X of plane triangles
has been developed by Roberts and Speiser [9], [10]. They show how X can be constructed by
starting with P2 x (p2 x (p2 ^ and forming two blowups, followed by one blowdown. This allows
one to work out, although with some difficulty, any intersection products one may wish. That
approach requires delving considerably deeper into the geometry of the space X, which is of
independent interest. Our approach, on the other hand, gives the whole intersection theory on X
all at once, with minimal knowledge needed about its geometry, and no need to verify
intersection multiplicities of any but the simplest intersection products.

We were led to this idea by reading the preprint of Ellingsrud and Str0mme [5], who used
the Bialynicki—Birula theorem to compute the Chow groups of the Hilbert schemes of points in
the plane. The simple observation of the present note is that the same theorem will yield the
Chow ring of a variety, provided one can guess (say with the help of Schubert!) what the ring
should be, and one can produce a suitable homomorphism from this abstract ring to the actual
ring.

Le Barz [8] has used Hilbert scheme methods to construct a space of triangles in any
non-singular variety. We comment on this in §5.

Schubert gives many applications, of which we discuss only one : to calculate the number of
triangles which are simultaneously inscribed in a given plane curve C , and circumscribed about
a given plane curve D , assuming C and D are suitably general. Here Schubert makes an error
and gives an incorrect formula. This is remarkable not only because of the rarity of any errors in
Schubert's formulas, but also because the correct formula had been given a decade earlier by
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Caylay [3] ! Schubert's error was not in his discussion of the intersection theory of the space of
triangles. Rather, he ignored the fact that the dual of a smooth curve of degree greater than two
has singularities. When this is taken into account, the correct formula comes out.

The first section discusses the space X of complete triangles, reviewing that part of the
work of Schubert and Semple that we need. The second section is pure algebra, describing the
ring A' and giving algorithms for writing any element of A' as a linear combination of 72 basic
classes. The proof that A is the intersection ring of X is given in §3, and the application to
inscribed and circumscribed triangles in §4. The extension to higher dimensions, with a few
complementary remarks occupies §5. Appendix A contains some algebraic manipulations needed
for §2 (and for [12], but Schubert assumed the reader could supply them). Appendix B contains
the tables of intersection products of classes of complementary dimensions. In Appendix C we
prove a simple "Leray Hirsh" theorem for Chow groups of fibre bundles whose fibre is a variety
such as the variety of plane triangles, or any smooth project! ve variety with <C* action with
finitely many fixed points.

We thank Joe Harris for useful advice about the influence of plane curve singularities on
enumerative formulas, and Steven Kleiman for pointing us to Cay ley's paper.
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Section 1. The compactified space of triangles.

We follow Schubert's notation for ordered triangles in the plane. We sketch a typical
member of each type, according to dimension of the loci of such triangles.

A general triangle has vertices a, 6, c, with the opposite sides being lines a, /?, 7:

Dimension 6

Five—dimensional families:

e : the three lines coincide in one line denoted g , on which there are three vertices
a, 6, c.

r : dually, the three vertices coincide in a point s , through which pass three lines
Q.A7.

0a. : the two lines /? and 7 coincide in a line g , the two points b and c coincide in
a point s on g ; a is another point on g , while a is another line through s .

0b and Qc are defined similarly, by permuting the vertices and edges.

Dimension 5

^g • c t • ^ l ' • \^s.a.b.c

Aa b c ' /\ ^.b.c '.•3-

Type € Type r Type ̂
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Four—dimensional families:

a/a : one line g , with the two vertices b and c coinciding in one point s on g , with
a another point on g . Similarly for o/b and o/c .

^ : the dual specialization of type r , with /? = 7 = ^ ; similarly for ^ and o^ .

if) '. the three sides coincide in one line g , and the three vertices coincide in one point
s on g . In addition, a net of conies is specified, which contains the pencil of conies consisting of
g and an arbitrary line through s , and is contained in the web of conies consisting of all conics
which are tangent to g at s . (This net is therefore a plane in the P5 of conics, containing a
certain IP1 and contained in a certain P3).

Dimension 4

g • a - p . y

s - b - c

Type a/a

„ curvature

^ ^ \

\ s - a . b - c
T-^———

g • a -p « y

Type ip

Three-dimensional families :

The two special nets described in the following types TJ and C should be regarded as
exceptions from type ^.

T) : one line g , one point s on g ; the net of conics consists of those conics which contain
g as a component, i.e. consist of g and an arbitrary line.

^ : one line g , one point 5 , and the net of conics consists of those which are singular at
5 , i.e. consist of two lines through s .
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Dimension 3
curvature = 0 curvature = oo

/ s - a - b - c

g - <x -p - y

/s • a " b " c

1———•——————g - <x -p - r

Type rj Type C

The set X of complete triangles is the union of the set of 'general triangles and the special
triangles described in the above list. Schubert also described the topology of X, in the sense
that he specified which triangles are to be regarded as specializations of which other types :

uja. is a specialization of e and ^a »
^ is a specialization of r and 63.;

^ is a specialization of ffa., 0^ and Qc , but not a specialization of e or r ;
TJ is a specialization of type ^a , ^b and u)c and if), but not of 0^,0:3 or ^ ;

C is a specialization of type ^ , o/p and o/^ and ^, but not of Ua., ̂  or o/c .

Each complete triangle has an associated net of conies ; except for types ^ , rj and C ^ is
determined by the vertices and edges.

For a general triangle, the net is the net of conies passing through the three vertices a, 6, c
of the triangle.

For a triangle of type e or a/a , the net consists of all conics which contain the triple
line g.

For type r or 0)3., the net consists of conics which are singular at the point s.
For a triangle of type Oa., the net consists of all conics which are tangent to a at the

point s , and which pass through the point a.

Over the real numbers a net of conics contains a unique circle - the conic which passes
through the two circular points (1: ±i: 0) at infinity. With this interpretation the net of conics
corresponds to a radius of curvature ; if the three vertices of a triangle lie on a curve, and
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approach a non-singular point of the curve, the limiting circle will be the osculating circle to the
curve.

Semple [13] defined the space X to be the closure in the space

P2 x IP.2 x P2 x jp2 x P2 x p2 x Q ^

where G is the Grassmannian of planes in the IP5 of conies, of the locus consisting of all
(a, 6, c, a, ft 7, A) for which a, 6, c are the vertices, and a, A 7 the sides of a general triangle
as above, and A is the net of conies passing through the three vertices a, 6, c . He showed, by
straight—forward calculations in local coordinates, that X is a non-singular six-dimensional
subvariety of this product variety, and that the points of X are precisely of the types described
above, with the prescribed nets of conies and specialization relations. Each of the types makes up
a locally closed algebraic subvariety of X, of the dimension specified with its description.

The main goal of this note is to describe the intersection ring A\X) of X. Following
Schubert and Semple, we use the notations e , r , 0^ » ^c » ^ » etc. to denote the classes in
A'(X) determined by the closures in X of the corresponding loci of special triangles.

There are also classes in A^X) determined by subvarieties of X consisting of triangles in
special positions :

a : the vertex " a" is required to lie on a given line. This condition defines a hypersurface
in X, whose class is independent of the choice of line. In fact, a is the pull-back of the
generator of A1^2) via the projection to the first factor in the above product.

b and c are defined similarly, and are pull-backs from the second and third factors.
a: the side "a" is required to pass through a given point. This is the pull-back of the

generator of A^) via the projection to the fourth factor in the product. Similarly for 0
and 7.

d : the net of conies is required to meet a given net of conies. This is the pull-back of the
standard generator of A^G) via the projection to the last factor.

Tyrrell [15] proved that the relations among these divisor classes were as stated by
Schubert. To do this he has to compute some intersection products ; we give direct proofs of
these relations in §5. Among these relations are :
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(1) 6+c~a=r+^a
c+a-l3= ?4A
a+&-7= r+^c

(2) /?+7-o = e+^a
7+0-6 = e-t-^b
a+^-c = e+^c

(3) d = a+/?+7+r = a+6+c+e .

Some other relations are obvious from the definition, or the fact that the classes are pull-backs
from divisors on surfaces :

(4) fl3 = 63 = C3 = 03 = ̂  = ̂  = 0 .

From the fact that the vertex a is always contained in the side P , i.e. that the projection of X
to the product of the first and fourth factors IP2 x IP2 lies in the incidence variety gives the first
of the following relations :

(5) a/3 = a^ffi , 07 = a2+72 , 67 = &2+72 ,
ba = b^a2 , ca = c2+a2 , 07 = c2+72 .

Since the points b and c (and sides /? and 7) coincide on a triangle of type ^a , we have
equations

(6) Qa.b= &c, 0bC== Oba, Oca= Ocb,
Oa.0 = ̂ 7 , ^b7 = ̂  , 6c0i = ^c^ .

All the above, with the exception of the trivial equations (4), are among those given by
Schubert. A final equation which we shall need, however,

(7) 6 T = 0
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is not among those in Schubert*. It follows immediately from the definitions that the geometric
loci describing the types e and r have disjoint closures, because the nets of conies can never
coincide : those of type e have curvature 0, while those of type r have curvature oo .

* We cannot help commenting on the fact that Schubert omits such useful equations. It is now
universally agreed that what Schubert was doing is exactly equivalent to the modern calculation
of intersection products of cycles on manifolds, and we do not pretend to deny this. But to
anyone now calculating intersection products, the first relations written down would be that
products of classes determined by disjoint subvarieties are zero. In fact, Schubert only explicitly
writes down products of classes where at most one of the factors describes figures of a special
type ; all the other factors describe figures in special position with regard to given but variable
objects. Of course several classes invoking special type are more likely to meet improperly, and
perhaps, in the absence of foundations, he wanted to avoid such dangers.

It should also be pointed out that Schubert's equations given in the beginning of his paper
do not generate all equations in codimension > 2 ; the equation er = 0 is independent of the
equations he lists.
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Section 2. The algebraic intersection ring.

The ring A' is defined to be the polynomial ring in seven variables, subject to certain
relations. That is

A- =Z[a,6,c,a,/?,7^)AT

where / is the ideal generated by the polynomials listed in (1) - (4) :

(1) a3 , &3 , c3 , o3 , ft , ̂  ;

(2) a^-a2-^ , 07-02-72 , b-y-b2-!2,
ba-b^a2 , 00-02-0-2, c/^-c2-^ \

(3) (64-c+/?+7-o)(&-c), (o+c4-o4-7-c0(c-fl), (fl+M-a+/?-o)(a-6) ;
(M-c-4-/?+7-rf)(^--7), (a+c+o4-r-c0(r-^), (a+6+a+^-fi?)(o-^) ;

(4) (o--a-&--c)(o-o--/?-7) .

Remark. This list of generators for / is not minimal. In. fact, modulo relations (2), the six
equations in (3) are equivalent (see equation (A. 8) of the appendix) to the four equations

2a2^-ao^-a2-ad = 2b2+bft-|^2-bd = 2c2+c7-72-ca ,
2a24-aa-o2-^ = ̂ y^P-b2-^ = 272+07-72-70;

so two generators, say the first and fourth of (3), could be omitted. In addition, the six
generators in (1) can be replaced by any one of them (e.g., to see fl3= /^, combine a2?^ cft+af^
with a/?2= /?34-a2/?). When this is done one has 12 generators for / which are a minimal set of
generators. In fact, relations (2), (3), and (4) put 11 relations on the 28 monomials of degree 2,
so all of these equations are needed to get dim A2 = 17 . One may check that a relation (1) must
be added to cut the dimension of A3 from 23 to 22, or even to cut A' down to a
0-dimensional ring.

Note that the group G = (83 x ($2 acts on A* ; the symmetric group ($3 on three letters
permutes a, b and c and simultaneously a , 0 and 7; the group ($2 acts via the ".duality"
operation which interchanges a and a, b and /?, c and 7; all elements of G' fix d . The
generators of / are chosen so that / is clearly taken into itself by thic action of G .

For simplicity as well as to clarify the relations with geometry we define polynomials
e , r , Oa., Ob and 0c and express some of the generators of I in terms of them ; we set
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(i) e = d—a—b-c
r = d—a-ft-j
Q^ = b+c+0+^d
Ob = fl+c+a+7-rf
^ == a+b+a-}-/3-d.

The generators (3) and (4) for / can be written :

(37) ft^c), ^o), 0a{a-b) ;
^7), ^a), Oc(^-P) ;

(4-)

The same notation will be used for the corresponding elements a, 6, c, a, A 7, rf, e, r, ^a, Qbi 0ci
in A*. It follows immediately from the definitions that any of the elements e, r, fc» Ob Q1 0c
could have been used instead of d as the seventh generator of A', and that we have the
equations :

(ii) Oa. = b+c-oc-r = P+^-a-e
Ob = C+0—0-T = 74-Qt-&-C

6c == a+b-^y-r = a+P-c-e.

In addition, since 0a.b = 0a.c in A' by (3'), we denote this common element of A' by 0a.s ;
similarly ^ denotes Qa.0 = ^a7, and the same is done for ^ and ^c • That is, we define :

(iii) 0a.s = Q^ = :̂c , 0a.g = ^/? = ^7
^b5 = ^bC= ^b0 , Gb9= 0b7 = ^0'
^s = ffca = Ocb , 0cg = ^ca = 0 c 0 '

From equation (A.3) of Appendix A follow the equations ea = eff = 07, which we denote by
eg , and dually for r ; that is, we define :

(iv) eg = ea = e/3 = 67
r5 = ra = r6 = re .

Similarly (see (A.10)) ^2 = ^c2 = ̂ c is denoted ^a52, with analogous formulae for ^ and
^c • Likewise ra2 = r62 = ra6 = ..., denoted rs2, and dually for eg2:
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(v) ffa.s2 = ffa.b2 = 0a.c2 = 0a.bc
0bS2 = ffbC2 = ^2 = ^bCfl

QcS2 = 0ca2 = ^2 = Ocab
rs2 = ro2 = rb2 ==• re2 = rab = r6c = rca
eg2 = ea2 = e/?2 = 072 = ea/? = e/?7 = e7a.

Another simple calculation (A.5) shows that 0a.0b == QbOc = ^c^a , and this element is
denoted ^:

and we have (A.19) the formula ^a2 = ^b2 = ^06 =... which is denoted ^52, and similarly for
^2:

(Vii) ^2 = ^fl2 = ^2 = ^2 = ̂  = ^c = ^Cd

^2 = ̂ 2 == ̂  = ^<y2 = ̂ ^ = ̂ /y = ̂ ^ .

Finally note (A.27) that (^s2)a= (^2)/?= (^2)7, which is denoted ^s2^, and similarly
(A.19) for (^2)/?=(^2)7:

(vii) ^ = (^?2)a = (^s2)/? = (^2)/y
^^ =(^2)/? =(^2)7
^bS2^ = (^s2)a = (^52)7
^c52^ =(ffcS2)a == (^cS2)/L

For convenience we set

(viii) [*] = aU^2

in A6. We will see shortly that [*] is also equal to c^T2.

PROPOSITION. The ring A' is generated as an additive group over 1 by the 72 elements:

1 in AO

a, 6, c, a, A 7, rf in A1

a2, 62, c2, a2, /?2, 72, aa, 6/?, 07, r5, eg, ^s, ^s,
^c5, ^a^, 0b9, Oc9 m A2
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o2/?, 027, &2^ ^a, c2a, c2?, abc, a/?7, ea2, e&2, ec2,
ra2, T/?2, T72, <^2, T52, ^2, ̂ 2, ̂ 2,̂ 2, ̂ 2, ̂ 2

&2c2, c2a2, aU2, ^272, T^ (y2^ T.̂  ^S2^ TS2^,

eg2^ e^b, e^c, Q^g, Q^g, 9^g, p2, ̂ 2

C&2c2, 6C2a2, ea2&2^ 7-^2^2^ ^2^2^ ̂ 2^ ^2^

N

in A3

m A4

m A5

in A6 .

In fact, we give recipes to write any monomials in a,6,c,a,/?,7,rf in A' as integral linear
combinations of these 72 basic classes. Most of these rules are formulas of Schubert; the point is
simply to verify that they all follow algebraically from the basic relations (1) -- (4). We list and
verify those of Schubert's formulas which we need in Appendix A.

Because of the action of G = (83 x (82 on A', each relation that is proved to hold in A'
may give rise to up to 12 relations by applying the symmetries in G to it.

In this regard note that e and r are dual and fixed under (£'3 , that ^a, ^b, and Qc are
self-dual, and are permuted as the subscripts indicate by (83 ; ^ is self-dual; 9a.s and Oa.9 are
dual, as are rs and eg , 0o,s2 and 0a.g2, rs2 and e^, and ^52 and ipg2; we will see that O^g
and ^g are self—dual.

We note also that the set of proposed generators of each A* is closed under the action of
G . Except in degrees 3 and 6, this follows immediately from the previous paragraph. For degree
3 one needs to add the equation

(5) a/?2==(a2+/?2)/?=fl2/?,

which follows from (2) and (1). For degree 6, to show that 02/3272 = aU'^c2 , note first that

(6) a2^ = a(a^2) = a(a2/?) = 0 ,
(7) 0672 = (a2^2)^2^2) = aU2 ,
(8) abaft = (fl2+/?2)(62+a2) = aH^a^aW^b2^ .

Multiplying (8) by 72 and applying (6) and (7) it follows that

(9) a2/?272 == abap-f = Waft .

Now aWap = aha2/^ by (5), and by the duals of the preceding steps, this is a^c2, as
required.
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To show how the indicated elements generate in a given degree k , it suffices to show first
how to write monomials of degree k of the form ST, where S is a monomial in a, 6, c, and T
is a monomial in a, /?, 7, as a linear combination of the given elements. Using the action of G ,
one need only check one monomial in each C?-orbit; for example, by duality, it suffices to
consider deg(*S) > deg(T). Next, for each ST as above, but of degree k-1, one must show how
to write the product of ST with any one of the elements rf, e, r, &, ^b, or ^c» as a linear
combination of the given elements. To see this one uses the equations (i). Because of (4) we have

(10) d2 = (a+6+c+a+/?+7)fi? + (a4-b+c)(a+/?+7),

so we never have to consider products of any of these last elements. The details of these
computations are included in Appendix A. D

This makes the calculation of any product in A" a simple algebra exercise. In particular
one computes easily that the 7x7 , 17x17, and 22x22 matrices obtained by multiplying the
basic classes in A1 and A5, A2 and A4, A3 and A3, respectively and picking off coefficients of [*],
are all unimodular (see Appendix B).

In the next section we will construct a homomorphism from the ring A" to the Chow ring
A'(X). We will apply the following simple lemma to this homomorphism, to deduce that this
homomorphism is an isomorphism, and that the above classes form a basis for A' and A\X).

DEFINITION. A graded ring A' == A°© A1®...® A" will be called an n-dimensionsX Poincare
duality ring if A° has one generator [*] over 1, and each A1 has a finite number of

generators a^ ; in addition, for each i there should be integers a^ such that

api).a^)=^)[^

and the matrices (flp^) arc unimodular. We will call such a ring a strong Poincare duality ring

if, in addition, the generator [*] is not a torsion element (or zero) ; it follows that the elements

a^ form a basis for A1 over 1, and the product A 2 ® A"'2 -^ A" ^ 1 is a perfect pairing

over 1.

LEMMA. Let A' and R be n-dimensional Poincare duality rings, with B' assumed'strong.
Suppose ip' : A' —•> B' is a homomorphism of graded rings, and that y?" maps [*] onto [*] .

Then A' is also strong. Suppose that the total number of generators of A' is the same as the
number of generators of B'. Then (?' is an isomorphism.
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Proof: The first assertion is obvious, since a torsion element of A" could not map to a
torsion-free element of 5° . For the second, to see that (?' is injective, suppose a? 6 A1 and
^{x) = 0 ; choose ye A""2 with x.y = [*] . Then

MB = ̂ (MA) = ̂ W^'W = 0 ,

a contradiction. Since A' and R have the same ranks, each y?2 must map A2 onto a lattice
in B1. Consider the commutative diagram

Ai ® An-2 —»• A"
^U i^"-2 i(^

BI ® Ba-i —^ BO .

Since the bottom pairing is perfect over 1, the index of ^'(A2) in B1 must divide the
determinant of the matrix which describes the upper pairing. But this determinant is assumed to
be 1, so ^'(A2) = B1, as required. D
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Section 3. The Chow ring for plane triangles.

Let A' be the graded ring constructed in Section 2, and let A'(X) be the Chow ring of
the space X of complete triangles.

PROPOSITION. The Chow ring A'(X) is a free abelian group on 72 generators, and the canonical
map from A\X) to the homology ring ff{X) is an isomorphism.

Proof: This follows from the theorem of Bialynicki-Birula [I], [2], once we prove that a torus T
acts on X, with 72 fixed points ; this uses the fact that X is a non-singular projective variety.
The torus T is the group of diagonal matrices in •S'L(3), which acts on the projective plane by
linear transformations, and hence acts on X. The fixed points of this action are easy to list,
since the only fixed points of this action are the three points (1:0:0), (0:1:0), and (0:0:1), and
the only fixed lines are the axes joining them. There are 6 honest (ordered) triangles, obtained by
ordering these three points as vertices. There are 18 of type 63., 18 of type a/a , 18 of type ^ ,

6 of type T] , and 6 of type ^ . n

THEOREM. There is an isomorphism from A' to A'(X) which takes the elements a, 6, c, a, /?, 7,
and d to the classes described by Schubert (which are the pullbacks of the positive generators of
divisor classes via the projections to the six factors). In addition, the elements 6, r, <?&, Ob-> Oc in
A' map to the classes in A\X) of the closures of the corresponding loci in X . The classes
listed in the proposition of §2 map to a basis for A{X).

Proof: Map 1[ 0,6, c,o,/?,7,^ to A'(X)y with generators going to the pullbacks of the designated
hyperplane classes. To obtain a homomorphism from A' to A{X) it must be verified that the
generators of the ideal I map to zero, which was already proved in Section 1, the essential point
being the formulae relating the divisors e, r, ^a, ^b, Oc to the divisors a, 6, c, a, A 7, d proved
in [15] or §5 below. We proved in Section 2 that A is a Poincare duality ring with 72
generators. Since X is a smooth projective variety whose Chow ring is isomprphic to its
cohomology ring, A'{X) is a strong Poincare duality ring, and we know it has 72 generators. The
class [*] = aU'^c2 maps to the class of a point in X, namely that representing the unique
triangle with three given general vertices. By the lemma of §2, it follows that the map from A'
to A'(X) is an isomorphism. D

Remark. The classes of the closures of the loci described in Section 1 by the notations ^, a/a, ^b,
(JG, ^w ̂  ^r 7?' an(^ C ^^ correspond to the elements in A specified by Schubert. These

can be deduced from the formulae
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^ = Mb , ^a = e^a , ̂  = r^ , 77 = e^ , < == r^ ,

by the algorithms of Appendix A. To verify these formulae, it suffices to show that, at a generic
point of a locus on the left side of the equation, the two loci on the right meet transversally ; this
can be done in local coordinates, as in [13], [15], or [8].
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Section 4. Inscribed and circumscribed triangles

Among Schubert's applications is a calculation of the number of triangles which are
simultaneously inscribed in one curve C and circumscribed about another curve D, i.e., the
vertices lie on C and the sides are tangent to D. In this section we carry out this application,
while correcting an error of Schubert's.

Let V be the subvariety of the space of complete triangles consisting of those which are

inscribed in C. More precisely, V is the closure in X of the set of triangles with

non-collinear vertices which lie on C. As the image of a rational map from (7x <7x C to X,
V is an irreducible three-dimensional subvariety. Let v= v denote the class of [ V ] in

A^X). To compute the coefficients for v of the 22 basic generators, it will suffice to compute
the intersection of v with 22 independent elements of A^X).

LEMMA 4.1. If C is an irreducible curve of degree n with 8 ordinary nodes, and K ordinary
cusps as its only singularities, then

(i) the intersection numbers of v with the following classes are 0 : aU , a2/?, a^a ,
Oa.s2 , 0a.a2 , ea2 , rs2 , &,a2 , ra2 .

(ii) v.a2? = n( n-1)2 , v.aa2 == n^n-l) , v.eg2 = n(n-l)(n-2), v.abc = n3 ,
v.0a.sa = n2, v.0a.g2 = n(n-l).

(iii) i/.ra/?=2(?+3/c.

Proof: (i) all conditions but the last two require one of the vertices to be a fixed general point,
which would not be on C. For the intersection with 0a.a2 , a degenerate triangle of the form Oa.
is in V only if the line a is tangent to C at the point b=c. Since in this condition a is

fixed and general, so transversal to C , the intersection is empty. A similar argument works for
ra2.

(ii) For the first, the general line a meets C transversally, giving n{n-l) choices for the
points b and c; for each of these, the line ft is determined, and there are n—1 choices for the
point a on this line. The other cases in (ii) are similar.

(iii) For a triangle of type r to be in V it is necessary that the point 5 of r is the

limit of three non-collinear points of C. If 5 is a smooth point of C, the three lines must
come together in the tangent line to C at s . Two general points are fixed for the lines a and
0 to pass through. The only possibility for intersection therefore comes from the singular points
of C. We analyze these locally. Assume (0,0) = (0:0:1) is a node of C, that C has affme
equation of the form y2 = x2 + higher terms, and that a must pass through (0:1:0) and P
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must pass through (1:0:0). To get a triangle of type r as a limit of honest triangles with
vertices on C , two of the three vertices must move on one branch, one on the other ; the
limiting triangle has sides a: x== 0 ; /3 : y = 0 , and 7 : either y = x or y == —x . We must
show that each of these counts for 1 in the intersection product. It suffices to consider the first
case. Let y = x-\-g{x)^ y = —x+h(x) define the two branches, with g and h power series
vanishing to order at least two at the origin.

The four—dimensional variety Y of triangles with a passing through (0:1:0) and 0
passing through (1:0:0) can be parametrized by coordinates 5, t, n, v, where x = s , y = t are
equations for a and /? respectively, c=(s,Q, a==(s-v,t), b = (s,t+(l+^)v), and 7 has
equation y = (l+^)(a—s+v) + t . The intersection of Y with V is described by equations

t = s-v-^-g(s-v)
t-}-(l+u)v = s+g{s)
t == -s+h(s)

(the point b is on the first branch)
(the point a is on the first branch)
(the point c is on the second branch).

This curve is parametrized by 5 ; t = -s + higher terms, v = 25 + higher terms, and
u= (g(s)—g(s—v))/v=... . The hypersurface of triangles of type r is defined in Y by the
equation t;=0 . Since the order of v as a function of s is 1, the intersection multiplicity is 1, as
required.

Similarly for a cusp of C at the origin, say defined by y2 = sft + higher terms. Let Z be
the locus in X of triangles such that a passes through (l:p:(t), and /? passes through (l:y0),
for p and q general constants. The point P in Zfir will have sides a: Y=pX,
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l3:Y==qX^ 7 : y = 0 . We will parametrize the curve ^n7-, and intersect with theL>

hypersurface r.
Parametrize C near the origin by ^i-—» c^ = (i2^...). The point 6t is the other point

on CTl a , which has the parametrization

^-^=(^-J^3+,.^3+.,).

Similarly for oc , replacing p by ^. One verifies easily1 that the hypersurface rn Z is defined
near P by the equality of the a-coordinates of the points a and b . Pulling this hypersurface
back to the it-disk, one has the equation

^-j<3)-(^^j<3)+,.=(J-j)^+....

Since the order of vanishing in t is three, the intersection number is three2, as required, n

PROPOSITION. If C is an irreducible plane curve of degree n with only 8 ordinary nodes and K,
ordinary cusps as singularities^ then

[7J == 7i(7i-l)(ra2+7-/32+r72) + 2n(n-l)(̂  + hf- + 0cg2)

+ Tirs2 + (37i2-2ra)e^2 + n(n-l)(n-2)abc ,

where n = (n—1) — 26— 3/t is the class of C .

Proof: It suffices to check that both sides have the same intersection numbers with the 22 basis
elements of A^{X). For [l^], all but the intersection with a/?7 are listed in the lemma, up to

permutations. From Appendix A one can write raft in terms of the basic elements :

ra0 == c^a + c2/? + 2eg2 + 27-52 + efl2 + ^2 + ^52 + Q^ + 2^2 + ̂ 2 - a07 .

!Z has local coordinates (u,v,g,h\ where the sides have equations a: Y'=pX^-u\
/?: 7= qX+v , 7: Y= gX+h. One solves for the points a, b and c in terms of these
coordinates and checks that an equation for r is (v-h)(g-p) = (u-h)(g-q), which is
equivalent to equating the a-coordinates of a and b .

2 This follows from the projection formula for the parametrization from the disk to the curve.
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From the lemma, we derive

2^4-3/t = 2n(7i-l)(n-2) + n{n-l) - [V^.a^ .

One then checks the table (Appendix B) to see that the coefficients agree. D

By duality we have :

PROPOSTION. If D is an irreducible plane curve of degree m with only r ordinary bitangents
and i ordinary inflections (as singularities on the dual curve), and W is the locus of triangles

circumscribed about D , then

[W^ = m(w-l)(ea24-e62+cc2) + 2m(m-l)(0^-}-0^+0cS2)

+ meg2 + (3m2-2m)r52 + w(m-l)(m-2)a/?7,

where m is the class of D . Note that m = m(m-l)-2r—3^.

COROLLARY. With C and D as in the propositions, and in general position in the plane, the
number of triangles simultaneously inscribed in C and circumscribed about D is one-sixth of

2n{n-l)(n-2)m(m-l)(ih-2) + n(n-l)(n-2)m 4- m{m-l){m-2)h.

Proof: The fact that [^].[H^] is equal to the displayed number follows from the two

propositions and the tables for intersecting basic 3-cycles with each other. One must also verify
that V meets W transversally at points which correspond to honest triangles ; this follows

as usual from the transitive action of the projective linear group. One must use the actual
description of X to see that there are no others. For example, a triangle of type Oa. is in V ifc
the line a is tangent to the curve at the point b= c , and the point a is another point on C.
Dually, this triangle will belong to W if a is on D and the line /?=7 is tangent do D at

a , and a is another tangent to D . Thus, if 63. is in V» n W , a is one of the mn .points on

Cn D, a is one of the mn common tangents to C and D, and the tangent to D at a
meets a at its point of tangency to C ; this does not happen if C and D are in general
position. Similar arguments apply to other types of degenerate triangles, a



96 A. COLLINO, W. FULTON

Remarks. (1) Schubert's formula n(n-l)m(m-l)(2nm-3n-3ih+4) differs from the correct
answer by the quantity

(2<?+3/()w(m-l)(w-2) + {2r+3t)n(n-l)(n-2) .

If C is smooth — which Schubert presumably assumed — the first term can be ignored, but the
second term is non-zero when D is a smooth curve of degree > 3 (if degree C>. 3). Schubert
gives the intersection of [V^] with rap as zero, which is only correct if C is smooth ; the dual

formula for [F^].eo6==0 is false when D has flexes and bitangents, even if D is smooth.

(2) The formula of the corollary depends only on the degrees and classes of the two curves.
From this one might expect that the same formula is valid for curves with arbitrary singularities,
as is the case in the contact formula [7]. However, this is not the case. A singularity of the form
yP = x^ , with p < q coprime, contributes q(p-l)2 to the intersection product v.ra/3, while
its contribution to the class number formula - intersecting the curve with a polar curve — is only
$(p~l). For a discussion of variations of numerical invariants of singularities in families see the
article of Diaz and Harris [4].
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Section 5. Triangles in a projective bundle.

Let E be a vector bundle on a smooth quasiprojective variety S . Let
V= G^(E) = G^{E)) be the Grassmann bundle of 2-planes in the projective bundle ^(E) of
lines in E . Let U be the universal 3—plane bundle on Y , and P( U) the bundle of projective
planes. The space of triangles of ^{E) is defined to be the fiber bundle X over Y whose fiber
over a plane is the space of (complete) triangles in that plane. In this section we determine the
Chow ring A'(X) as an algebra over A'( Y), and hence as an algebra over A'(<S).

Take three copies of 1P(£/), with tautological sub-line bundles of U denoted A, B, and
C. Take three copies of (%(£/), with tautological sub-plane bundles of U denoted ,̂ ^ and
^. We can construct X globally as the closure in

P(^x/(^XYP(^XY%(^XYC?2(^Y%(^Y%(Sym2(^

of the set of honest triangles. Over any open set Y° of Y where U is trivial, X is the product
of y° by the triangle space discussed in §1. In particular we have the loci of triangles of special
type ^a, c, r, etc., and we denote the classes in A'(X) of such subvarieties by the same Greek
letters.

On X we have inclusions of vector bundles (denotes by the same letters)

A C ^ C U , A C ^ C U , B C ^ C U , B C ^ C U , C C ^ C U , C C ^ C U ,

corresponding to the inclusions of points in lines. We define classes in A^X) by :

^ = ci(£T)
a = ci(A'), 6==ci(B"), c==ci((7),
a = ci(^), 13 = ci(JZT), 7 = ci(r),

and define ^ = C2([T) € A2(^), ̂  == c^lT) e A3(^).

When 5' is a point, so Y is a Grassmann variety, /^i is represented by the condition that
the plane of the triangle meet a given linear space of codimension three, /Z2 the condition that
the plane meets a given codimension two space in at least a line, and ^3 the condition for the
plane to be contained in a given hyperplane. For Y= !P3 ^ we have //j = p.1, with ' p , the
condition for the plane to pass through a point; this is the notation used by Schubert [12], §11.
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The class a is represented by the condition for the vertex "a" to lie on a given hyperplane,
while a by the condition that the side "a" meet a given space of codimension two. The
notations for special triangles 0^ e, r, ^, have the same meaning as before.

LEMMA. The following equations are valid in A ' ( X ) :
(i) Oc = a+fr-r-7'
(ii) Oc = a+P-c-e—p,}.
(iii) a3 = ̂ la2-/^-^
(iv) ofi = 2^ia2-^<^-^a+^i^2-^3
(v) aft = (fi+l^-^0+fi2 •

Proof: For (i), we look at the locus where the points "a" and "6" coincide. This is given by
the vanishing of the composite map of line bundles

A-^ ̂ -. ^/B.

Thus this locus represents the class Ci(^/B) - ci(A) = -7+6+0 . On the other hand, the locus
where these two points coincide consists of all triangles of type Qc or type r (or the closure of
these two types) ; one checks easily, say in local coordinates (cf. [13]), that the map of line
bundles vanishes to order 1 along each of these divisors, which proves (i).

The proof of (ii) is similar, the locus where " a" and "/?" coincide being the zero scheme
of the composite

^/C-^ U/C-^ U / ^ .

This locus, which is Qc-\-e , therefore represents the class

ci(C//^> - ci(^/C) = (-p.i+0) - (-a+c) = a+P-c-fii.

Equation (iii) is just the universal equation for the tautological bundle A on the first copy
of IP(£/) ; i.e., U ® A" has a nowhere vanishing section. Likewise (iv) is from the universal line
bundle U/^ on the first copy of (%(£/) = IP(£T) ; i.e., IT ® ( U / ^ ) has a nowhere vanishing
section. Finally A c S gives a nowhere vanishing section of S ® A", which gives

C2(^)-^fl+ fl2==0 .

Since 0 = C2( U/ ^) = ̂  - ̂  + ffi - C2( ̂ ), (v) follows, n
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From (i) and (ii) we may set

d = a+/?+7+r = a+5+c+e+^i.

Hence

(vi) r = d—Of-ft-^ , and e = d—a—b-c-p,i,

and from the lemma, ^c = a+b-^-^d-a-ft-'y)^ or

(vii) ^c = a+6+a+/?-cL

Although we do not need this, in fact one has d= ci(iT), where D is the universal
subbundle on the Grassmann bundle G^Sym^U)). To see this, note that the canonical map of
rank three bundles

A02®^2®^82^

(which determines the map to the Grassmann bundle over the locus of honest triangles) vanishes
on the loci ^a, ^b, ^c, and r , the latter to order two. Hence

ci{D) - (2ci(A)+2ci(B)+2ci(C)) = fc+^+^c+2r ,

so Ci{D") = ^a+^+^c+2r-2a-2&-2c , which, by (i) and (vi), is d .

There is a duality map from X to X' = space of triangles in IP (£T). A. triangle A in X
determines a triangle A2 in X2. In terms of bundles, given A, B, (7, ̂  S, ^C U , the dual is
determined by A6, B6, C6, ̂  j^^c IT , where

A2 = Ker(£T -» ̂ ) , ^2 = Ker(£T --̂  ̂ ) , etc.

It follows that the duality map acts as follows on the classes :

a5 = &-p., o^= a-p., e^= T , T ^ = e , 0a^= Oa,,
^ = -/A , p,i = /z2, /4 = -̂ 3 , and d4 = CM/A .
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THEOREM. We have

A-(^)=A'(y)[a,6,c,a,A7,d]/J,

where I is the ideal generated by the polynomials listed in (1)-(4) below ; for each polynomial
listed, it is to be understood that the polynomials obtained by the action of the symmetric group
^3 on a, b, c and simultaneously a, 0, 7 are included:

(1) a3-/^2-!-/^-/^,
a3-2^la2+^a+/i2Q>-^l^2+/A3 ;

(2) aff-a^+^ff-^

(3) (b+c+0+-r-d)(b-c),
(6+c+/?+r^)(/?-7) ;

(4) (d-a-b-c-fii)(d-a-0-i).

Proof: Let B' = A'(Y), and define A' to be the graded algebra over B' with generators
fl,6,c,a,/?,7,d, and relations specified in the theorem. We have a canonical homomorphism of
graded fi'-algebras from A' to A'(X). Indeed, the lemma shows that relations (1) and (2)
map to zero ; by equation (vii), (3) follows from the fact that a=b and a=0 on the locus Oc .
Relation (4) follows from (vi), as before, and the fact that the loci e and r are disjoint.

Define elements r, e, ^a, ^b» Oc in A' by formulas (vi) and (vii). The formulas (iii)-(viii)
of §2 can be used to construct classes ^a5,...,^,...,^c52^, [*] in A* contains the 72 elements
named in the Proposition of §2. We call these 72 elements the basic classes. While completing
the proof of the theorem, we prove :

PROPOSITION. A'(X) is a free module over A'( Y) on the 72 basic classes.

Proof: If Ci»-»C72 are the basic classes in A'(^), the proposition follows from the
"Leray-Hirsh" theorem proved in Appendix C : the map

©2 A.(Y) -. A.(^) , © ai.--. S On /*(ai),

is an isomorphism, where / : X—^ Y is the projection. D



INTERSECTION RINGS OF SPACES OF TRIANGLES 101

The theorem now follows. Indeed, from Appendix A it follows that the 72 basic classes
generate the algebra A' as a module over the ring B\ From the proposition we have a
surjection A' —^ A'{X) of R-modules, and the second is free over B' on the images of these
72 generators. Hence the map is an isomorphism. D

Remarks. (1) Note that if E has rank e over 5, and Y= (%(£), then
A'(Y) = A'(5)[^i,/i2,/A3]/J where J is the ideal generated by three universal homogeneous
polynomials P\(^'i^c\(E),...,Ce(E}) of degrees i= e-2,e-l , and e , which express the
vanishing of a(E/U) for these indices, as Grothendieck showed (cf. [6], Ex. 14.6.6). Therefore
A'(X) is a polynomial ring in ten variables a,6,c,a,/?,7,^i,^2,/i3 over A'(5), modulo the ideal
generated by these three polynomials Pi together with the nineteen polynomials specified in the
theorem.

If S is allowed to be a singular variety, similar arguments show that the Chow group
A.{X) is a direct sum of 12e(e-l)(e-2) copies of A.(5).

The same results hold when A' and A. are replaced by cohomology H' and
(Borel—Moore) homology H. ; this version of the theorem follows from the standard
Leray—Hirsch theorem for fibre bundles.

(2) The full working out of intersection products in higher dimensions can be tedious, but
Appendix A contains a complete recipe for computing all such products. For a simple application
to triangles in three space, one can verify that the number of triangles each of whose sides meets
three given space curves is 8 times the product of the degrees of the nine given curves. To see
this ; note that the condition for the side a to meet a curve of degree n is the class na. We
are reduced to showing that oS/^T3 = 8 . But oft = ^fio^fjfta , so

ofl^ = 8/A3a/?7(o-/i)(/?-^)(r-^) = Wa2^2 = 8 .

(3) The method of this paper can be used in other situations where the intersection rings
are rather simple. For example, it can be applied to the space ^ of "infinitely small triangles",
which is the four-dimensional locus in the triangle space X whose class is denoted ^ above.
The pull-backs of divisors on X give the basic divisors on ^ : if i is the inclusion of ^ in
X, and we define

5=2*(fl)==^(6)=i*(c),
g=i^a)= !*(/?)=;*( 7),
7?==t*(e),
C-^r),
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while the pull-back of d is still denoted d . Equation (3) of §1 pulls back to the equation

35+??=3^+C= d .

PROPOSITION. (1) A'W == l[s,g^/K, where K is the ideal generated by sg-s2^2, (d-3s)(d-3g),
53, and (fi.

(2) The ranks of its cycles are 1, 3, 4, 3, 1 ; a basis for A'(^) is

1 ; 5 , g ; 52 , g2 , rfg , GS ; r)g2 , ^2 , ̂  ; ararf ri^ .

The intersection tables are

Products of A1 and A3 Products of A2 and A2

ng

cs

s2^

1

1

1

2s

.2

ng

cs

s

1

8

1

ng
l

cs

l

Proof: The relations in K pull back from basic equations on X , so one has a homomorphism
from l[s,g^/K to A'(^). Since ^ has twelve fixed points by the torus action, and the stated
classes clearly generate l[s,g^/K, and ds^g maps to the class of a point, the map is an
isomorphism. D

More generally, for the space ^ of infinitely small triangles in a varying plane 1P(£/), with
U as at the beginning of this section,

A'W==A\Y)[s^d\/K,

where K is generated by sg-s^-g^^g-^, (d-3s-p)(d-3g), 53-^52+^25-^3, and
^-2/^+/^+/Z2^l//2+^3 .
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(4) The results of this paper extend to arbitrary charateristic, avoiding only characteristics
2 and 3 for the discussion of inscribed and circumscribed triangles (§4). The theorem of
Bialynicki-Birula is still valid for the Chow groups, as discussed in [14].

(5) Le Barz [8] has given another construction of the space of plane triangles which
generalizes to give a space of triples of points in any smooth variety V . This space is the closure
of the space of honest triangles in the product of three copies of V , three copies of the Hilbert
scheme Hi^V of length two subschemes of 7, and one copy of HilbaV. Le Barz shows by
calculations in local coordinates that this closure is smooth.

In fact the variety constructed by Le Barz represents a natural functor. From this fact the
smoothness of the variety follows from a simpler calculation of its deformations. To use notation
which agrees with Schubert, the data given by a family of triangles in V parametrized by a
scheme S is a collection of subschemes o,6,c,a,/?,7,c? of Vx S , finite and flat over S of
degrees 1, 1, 1, 2, 2, 2, 3, with inclusions ac /3c d , ac 70 r f , and similarly for the
permutations by ©3 . The key condition of Le Barz is that the corresponding ideal sheaves
satisfy :

^(a).^(a)c I(d)

for each "vertex" a and its opposite "side" a.
This construction can be used for plane triangles in place of that of Semple, and can be

generalized to smooth families. It would be interesting to describe the cohomology of this space
in terms of the cohomology of V .
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Appendix A. Algebra

In this appendix we use the relations (1)-(4) of the main theorem of §5 to deduce formulas
that are valid in the ring A', and use these to give recipes to write any element of A' as a
^'-linear combination of the 72 basic elements. When R = 1 this specializes to the assertions
needed in §2. We put the terms involving the classes ^ in braces { } ; these terms are to be
ignored for the case of plane triangles. For formulae in low degree that are used frequently, we
have written out the term in braces : the recipes we give determine them in all degrees, but the
expressions become rather long to write out.

The equations labelled with a star •*• have all terms (outside braces) on the right appearing
in the proposed list of 72 generators ; they are also, modulo the terms in braces, equations which
appear in Schubert [12]. They give an effective algorithm for computing all products in these
intersection rings ; note that the terms in braces involved only elements of A' of lower degree.

Recall that the ring A' is defined as a polynomial ring in variables a, 6, c, a, /?, 7, d over
B' modulo relations (1)—(4). We sometimes denote the element ^\ of B' by p. for brevity.

We use freely the symmetry under the group ^3, and usually write only one equation to
represent the 1, 2, 3, or 6 equations resulting from the action of (83 . In fact B' has an
involution which takes

^i—^ -^ ^ ̂ i—^ ^ and ^3'—>-^ •

Then G = (83 x (Sa acts on A', compatibly with this involution ; the dual of an equation is
obtained by the substitutions :

ai—> a-fj,, ai—> a—^ , d\—> d-Ap..

It is easy to verify that the defining equations / are preserved by this duality operation, so G
acts as automorphisms of A*. We include a few of the most useful dual equations, labelled with a
prime / ; since dual statements follow formally, proofs will be omitted.

In the ring A' we have defined
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T = d-os-P-^r
e = d—a—b-c-fi
Qc = a+b+a+0-d.

These are preserved by the duality map : e\—> r , ri—> e , Qo.\—^ ^a •
By equation (3) we have O^a = Ocb, which we call QcS , and similarly OcOt = OcP is

called 9cg . All the equations (i)-(vii) in and after the Lemma in §5 are valid in the ring A*.

We shall need one more equation in degree one :

(A.I)* e+r+^b+^c = a+a+{-^} .

Proof: By (i) and (ii), (^c+r) + (^b+e) = (a+r-&) + (a+^-T-^) = a+a-p,.

We turn to degree two :

(A.2)* bc= a2+rs+&5+{-^a+/A2} .
(A.2-) /?7 = a2+€^+^^+{^} .

Proof: By (i) and (v), Oa.s+rs = (b-\-c-a)b = b'^+b^o^+b^-fjia+fJ.'i) = bc-a'^+fio^fi'i -

(A.3) ea = c^.
(A.37) ra==Tb.

Proof: By (ii), e = Q-{-0-c-p-0c , so ea= a2-{-ap-ca-p,a-0c0t= a2+a/?-(c24-a2-/Aa+/A2)-^(^-
(?c» = aft-c'^—^—ffc a. Interchanging the roles of a and /?, e/? = pQ-c2—?^-^? ' The equality
of ea and e/? then follows from the equation Oca = ^c/? •

By symmetry we therefore have ea = 6/? = 07 and ra = r6 = re ; these elements are
denoted eg and rs respectively.

(A.4)* ea = a^+aa-rs-ObS-OcS+t-^a} .
(A.4') ra= a^flQ-e^-^^-^c^+^a} .

Proof: ea+rs+0t,s+0cS = (e+r+^+^c)a = a^+aoi-^a by (A6).
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We now have more that enough equations to write any element of degree 2 in A' as a
linear combination of the 17 basic elements of A2 of degree two, following the discussion of
Section 2. For monomials S in a, b and c , use (A.2). For products ST of linear monomials
use the defining equation (2). For products Se use (A.4). As shown in Section 2, this finishes
the proof for degree 2.

It will be useful to make a few more calculations in degree two :

(A.5) Mb = Me .

Proof: 0^-Qc = (a+a-ft-r) - (a+^-T-r) = c-b+r-P ' The result follows by multiplying by ^a
and using the equations M = 0a.c and Q^ == ^a7 •

The element Mb = Me = Me is denoted ^. We list the equation for ^ which follows
from the preceding rules, although this is not needed here; the equation (4), that €T = 0 , is
needed :

(A.6)*
^ = ^a^+^^4-^^4-^a5+^b5+^c^a^^^C7+2r5+26^+{-^Q-/A/?-^7+^ri+2/A2}

(A.7)* M = /?24-72-fla+^5+^5+T5+{-^/?-/z7+2^2} .
(A.7') 69.0 = b2-}-c2-aa•}-^g-{•0cg+€9-{•{-p,a+2p,2} .

Proof: M = (l3+j-a-€-p)a = (a^/?2-^^) + (a^+i^-^+p^-a^-ea-fia =
^4.^24-a2-^+{-^^^2^2} by (ii) and (2). Substituting for ea from (A.4) finishes the
proof.

(A.8) w+bl^-fft-bd+W} = 2c2+C7-72-crf+{^7} .

Proof: 9^= (6+c+/?+7-c06= 62+6c+6/?+(&24-72-^7+^2)-^, so (A.8) is equivalent to the
equation Og,b = 0a.c .

Next we deduce some equations of degree three :

(A.9) a/?2 = a^P + {^^-^_^} .

Proof: at^ = /?(fl2+/?2-/^2) = a2/? 4- (2^/?2-^^-^+^-^)_^+^ ,
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(A.10) Oa.b2 = 0a.c2 = Oa.bc , ra2 = r&2 = rab .
(A.107) 6^ = Q^2 = fc/?7, ea2 = e^ = ea/?.

Proof: fc^ = ff&cb by (3), from which the first formula follows. The second is similar, using
(A.3) in place of (3).

These elements are denoted 0a.s2 , rs2 , 0a.g2 and eg2 respectively.

(A.ll)* b^ = 62a+r52+^52+{-^2+^&-^3} .

(A.11-) ^ = fl2^24-^24.{^} .

Proof. Multiply (A.2) by 5 , getting l^c = bo^+Tsb+ffa.sb-^ab+^b , and by (A.9) this is
(62A+{^a2-^2a+^2-^3})+7"52+^aS2-/z(62+a2-^a4-^2)+^2&.

(A.12)* a2a = rs2+€02+^52+^5244^-^3}) •
(A.12^) aa2 = e^2+ra2+^^2+^^+{-^2+^2 0+^20-^2+^3} .

Proof: Multiply (A.I) by a2 .

(A. 13)* Oa.sa= ab^eg^-TS^Ta^Obg^Ocg^^a^p.ao^^o^^a-^a+p.^-p'^ .

Proof: Multiply the equation Ga. = b+c-ci-r by ab , getting
Oa,sa = ab^abc-aba-rab = ab'^+abc-a^b^a^—tjia+fJ^-rs2 = a6c-aa2—rs2+{^ac^-/Z2fl} •
Applying (A. 12^) to replace aa2 in the right side of this equation gives (A. 13).

(A. 14)* O^a2 = a2/?+fl2^-ea2+{-2^fl2+^fl-^} .

Proof. Multiply 63. = 0+j-a-e-p. by a2, and use (iii) of the lemma.

(A.15)* Q^aa = ̂ -{-c^Ts^eg^Q^QcS^Q^Qcg2

+ {-^(62+c2+aa+e^+^+^) + /^(2a+2a+&+c+^+7-rf)-^2-^3} •

Proof: Multiply (A.7) by a, yielding
0a.aa = a/?2+a72-aa2+^sa+^c5a+rsa+{-^a^-^a7+2^2a} . The first two terms on the right of
this equation are known by (A.ll7), the third by (A.127). For the fourth and fifth terms we have
by (v), Obsa= 0bCQ= Q^c^O^ Q2-^0!+^ = ^52+^2-^^4-^^ ^ and similarly for the
sixth, rsoc = rca = rs2+7-02-^7-0+^2 r . (A15) follows by substituting these six expressions.
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(A.16) a&7= a^+b^+TS^ffcS^-^oft-^+f^a+^b^^} .

Proof: From (v) we have 067== 0(624-72-^74^2). Using (A.ll), (A.9), and (v) this becomes
(&27+r52+^cS2-/l^»2+^2^3)+(fl27+/A72-^2<y4-^2-^3) - ̂ ( o2+<y2-^+^) + ^o, ^ which simplifies
as required.

These formulae suffice to write any element of A3 in terms of the 22 basic elements of
degree three. Indeed, from (A.ll) and (1) we obtain any monomial S . From (A.16) and (A.12)
come all products ST. To obtain the products SQa., one has Qa.b2 = 9a.bc .== 0a.s2 , 0a.a2 by
(A.14), 0!,ab = 03.sa by (A.13). Finally, to obtain STffa., one has O^aa by (A.15),
0^b0 = 0a.c/3 = Al/?2-/^a/?+/^a from (v), and the remaining follow similarly using (v).

We also have

(A.17) ^a = ̂  .
(A.17') ^a==^.

Proof: ^a = McO = ^^c6 = ^6 by (3).

These elements are denoted ^s and ipg .

For later use we record another equation of degree 3, which follows from the preceding
prescription. The notation {...} indicates an expression involving /i^s and lower degree terms
in the basic classes. In the proofs we write = to denote that two expressions differ by a class of
the form {...}.

(A.18)* il)s = a6c-ra2-r/?2-r72-2r52-^:̂ --^2-^^2-^c^2+{.•.} •

Now for equations of degree four :

(A. 19) ff^P = 0^ , ipa2 = i)ab = ^2 ^ and ipa2 = t^ap = ^2.

Proof: The first equation follows immediately from the equation ffa.0 = ^a7 • The others follow
from the first, and the definition of ^.

These elements are denoted Q^g , ips2 and ^2 . Note that from (v) we have
Wb = O^c = O^g + {...} . Similarly ego2 = efa + {...} , and rsa2 = rs2^ + {...} .
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(A.20)* o2^2 = €g2a•}•TS2Q-^ObS2g+OcS2g+{...} .

Proof: Multiply (A.I) by (fta, getting cfta2^ (a+a)a2a= €a2Q+TS2a+0t)S2g•}-0cS2g , which
suffices, since ea2a= eg2a.

(A.21)* ^a2 = /?272-^2fl+{...} .

Proof: Multiply (A.14) by /?, getting ^2= a^+fl^r-^2 • But a2/?2= 0 and
fl2/?7= y^2 , as in equations (6) and (7) of §2, and the result follows.

(A.22)* aUc = /?272+^52^+^s2^+r52a+TS2^+rs27+^s2+{...} .

Proof: By (A.18),
^s ^sa = a^(>-Tsa2-Tsy-Tsil-Q-€g2a•-'0a.92a---0bg2cl-0c92a=
a2^»(?-r52Q-T52^-rs27-e^2a-^a2-^b52^-fc52^. Subtituting ^272 for Q^ffi+eg^a by (A.21),
one obtains (A.22).

(A.23)* fc52a = ^a52^+rs2/?+T527+^s2+{...} .

Proof: Multiplying (A.13) by b , one has
^&s2a= (03.sd)b= ayo-eg^b-^-rsa^-Obg^ffcg^E ab2(>-eg2b-TS2a-Obgb2-ffcS'ig , and one
concludes by substituting from (A.22) and (A.21).

The next three sets of equations are essentially equations (6), (7) and (8) of §2; the
equalities there become congruences here :

(A.24) a2^2 ={.,}.

(A.25) 0672 = a252+{..j ^ c^aft = a2/?2+{...} .

(A.26) abaft = aW+Q^+aW+b2^ .

To verify that the 17 basic elements generate in degree 4, one has all monomials S by
(A.22) and (1). For monomials ST we have 02^2 by (A.20), aHa^ aU^cfia2 by (v),
abca= abc^+aba2, which one has by duals of preceding equations ; using (A.12) one has

aUpE ab(a2+|^)= a{ eg2-}- ̂ +^24-^ g2) ̂  ^gia^s^Q^+Q^g ,
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and therefore also a2a/?= aa(fl2+/?2)= aaft ; likewise, using (A.24), 0257= aU^a2^2^ a^b2,
and similarly fl2^= ^2 ^ o6a/?= 02^2+62/52, and 0607= aH^a2^2 . It remains to show how
to obtain the product of each ST times one of the elements ffa., Ob or ^c • For o^b or o&c
use (A.23) ; for a2? use (A.21) ; one then has 067= 0^2+072 ; for (fta one has O^c^a = ^52^ ,
which completes the proof.

Among the equations in degree 5 we need

(A.27) ^ = ̂  .

Proof: This follows from (A. 17).

We denote this class by ^g . Note that ^a = ̂ b = ^2^+{...} .

(A.28)* QbS^2 = ra272+^-}-{...} .

Proof: By (A.23), (O^sH^a^ ebSlga'\•Tsla2•}-TS2a^l^)s2•Oi=. ra2^2-}-^ by (A.24) and (A.25).
And (^26)a= G^cba2^ ^c2&2== O^b2.

(A.29)* b^ = 662c2+ra2/?2+^2^+{...} .

Proof: By (A.9) and (A.20), W^ (&2/?2)c= egUc+ffcS^g . Now ^26c= 6^2 by (A.25), and,
by (A.23), ^cs2^= (^g+rs'^a+rs^+^aE Ta^+^g , using (A.24) and (A.25) again.

(A.30)* ab^2 = e62c2+7-a272+ra2/?2+2^2^+{...} .

Proof: By (vii), ab^E 62c2(e+r+^+^c-a)= cb'^c^ObS^+OcS'^c2, and one concludes by
(A.28).

To verify that A5 is generated by the required 7 classes, consider first products ST. Note
that we have a^c and fl2^ by (A.30) and (A.29), and aU2^ 02^2=0, aUcalE
a2&2c+a2ca2= a262c+a2c2<^ and similarly aHcp^ aHc^aH2?. This gives any product where
deg(5) = 5 or 4. When S is a cubic, the use of equation (2) and the resulting ap2 = a2? and
a2^2=o reduce to the previous cases: aU^2 =. aH21}, (flbp^ 0 , (fiba2^ a^a, aU^E
a2^4-a2^y2s a2^^ a2^/ys 02620+02^72= a2&2^ ^ 0^00=. aH^+c^a2^ aH^+aa2^,
abca2^ abc^a, and abca0=. abc^-^aba2?. Finally consider STr for 5' and T as above. This
is zero if deg(5) ^ 3 , and if deg(5) = 2 , it is r^r; for T= a0, one gets rc2a/?= ra2/?2 by
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(A.25); for r= a0 , one gets rc^ss ra2/?2 by (A.25); for r== a2 one similarly gets zero ;
this completes the proof in degree 5.

To see that [*] = o^c2 generates A6, we have a2b2cQ= a2b2c2-}-a2b2Q2^ [*], and
similarly aH2^^ 0 . For ST with deg(5) = 4 , for S= aU2, the products are zero if r= a2,
P or 72. Equation (A.26) yields o^a^E [*], and 02^7= aHa^E 0 . For 5'= a^c, the
product: with a2 is a^cas [*] ; with /?2 is= 0 ; with a/? is a^cp-^cfica2^ [*] ; with 0j
is= [*] by (A.24), (A.25) and (A.26). For products ST of cubic monomials, consider first
S = aU. The product with T is = 0 if T contains f51 or 72 , the product with 027 is
flZ^+fl^TZE 0 , with a2/? is a^a^s [*], and with 0^7 is a^c^+^a/^s M. Finally,
the product of a6c with a/?7 is (a2+/?2)(62+72)(c2+a2)s a2&2c2+a2/?272E 2[*]. Lastly, we
must consider products of ST with either e or r. If deg(5) > 3 , the product with r is = 0 ,
while if deg(T) > 3 , the product with e is = 0 .

Remark. This includes proofs of many of the formulas in Schubert [12], pp. 153—164. Most of
those not listed above are obtained by symmetry, i.e. the action of G. The two remaining
equations involving the above classes.

(A.31)* fcsa2 = /?272-^2fl+r52/?+rs27+^52+{...} ,

(A.32)* 7-5^7 = 72A2-e^264-r52a+^s2/^-^2+{•••} »

are obtained from the others by using the above prescription. In addition, these pages of
Schubert contain formulae for the classes u^a., ^b? ^c» ^a'^8' ^r ^ an(^ ^ • ^ese follow
similarly, starting from

a/a = effa. , ^a = ^a ' 7? = €^ ' C = ̂  •

For example, one deduces easily the formula

(A.33)* 3^H-?7 = 3^+C+{-^} ,

used for infinitely small triangles. In fact 3^5+77 = ^(a+6+c+e) = ^(d—p) =
^(a+/?+7+r)-/^ = 3^+C-/^^.
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Appendix B. Intersection tables of basic classes

By the preceding appendix, all products in the ring A' of §2 can be derived. In particular,
given two elements of complementary dimension we may compute an integer such that the
product of these elements is that integer times [*]. (The uniqueness of this coefficient then
follows from the theorem in §2).

Each entry in a table denotes the coefficient of [*] in the product of the entry labelling the
row and column.

Table for products of A1 and A5

oc p y d

eb^2

ec^2

2 2TP y

T^a2"

2 2Tap

4»s g
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Table for products of A2 and A4

b"
c^2

^b2

2 2p r
2 2r <x

a2?2

TS^t

TS^

TS^

e»2.

eg^

e^c

^s^

^

^

+s2

+g2

,2

1

b2

1

c2

1

2oc

1

32

1

r2

1

aa

1

bp

1

cy

1

TS

1

eg

1

^

1

-1

^

1

-1

^

1

-1

^8

1

-1

^e

1

-i

^e

i

-i
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Table for products of A3 and A3

^

c2r
b^y

b^oc

Ac

c2p
abc

<xpy
ea2

eb2

EC2

T0<2

Tp2

ry2

eg2
TS2

^2

^2

e,s2
e,g2

^2

e,g2

a2p

1

a2y

1

±?y

l

l̂ a

1

c2a

1

c^

1

.abo

1

2

1

<aP<

2
1

1

ea2

-1

-1

1

Eb^

-l

-l

l

£c2

-1

-1

1

TO?

-1

-1

1

TP2

-1

-1

1

ry2

-1

-1

1

^

1

jrs2

1

f^

1

^

1

^

1

^

1

V2

1

^

1
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Appendix C. A Leray—Hirsh theorem for Chow groups

We consider a smooth proper morphism /: X —^ Y which is locally trivial in the Zariski
topology, with fibre F . As in topology, we will assume that there are elements in the Chow ring
of the total space X which restrict to a basis for the Chow ring of the fibre, and we want to
conclude that these elements give a basis for A'X over A* Y , at least when Y is non-singular.
Unlike the situation in topology, however, there is no Kunneth theorem for Chow groups, so we
need to make rather strong assumptions on the fibre. We will assume that F has a filtration by
closed subschemes

F= Fo3 FI:)...D FT = 0

such that each Fj-\ Fi+i is a disjoint union of affine spaces. This assumption guarantees that
A'F is a free abelian group generated by the closures of these affine spaces (cf. [6] and [11]). We
will also assume that satisfies Poincari duality, i.e., the degree map from AoF to 1 is an
isomorphism, and, if d = dim(F), the intersection pairings

A^'F® AcH'F-f AdF^ AoF^ 1

are perfect pairings for all i. Any smooth projective variety with a action by the multiplicative
group C m with a finite number of fixed points satisfies these conditions ([I], [2], [14]). If the
ground field k has characteristic zero, Poincare duality is automatic from the existence of a
filtration, since, when k = C , the map from A'F to cohomology ffF is an isomorphism. In
positive characteristic one may use ^-adic homology and cohomology to prove analogous
statements, although one may need to take coefficients in a field. At any rate, these assumptions
are verified for many varieties which occur in enumerative geometry.

It follows easily from the definitions that if F is a variety over k which satisfies the
above conditions, then F^ = F®k K is a variety over K which also satisfies the conditions.

Let / : X—^ Y be a proper smqoth morphism of relative dimension d , locally trivial in
the Zariski topology, with fibre F satisfying the above conditions. We assume that for. all fibres
Xy , the restriction map from A'(X) to A'(Xy) is surjective ; this will be true for all fibres if it
holds for one point y in each component of 7, for example the generic point of each irreducible
component.
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PROPOSITION. Let ^i...^m be homogeneous elements of A'X whose restrictions to fibres form a
basis over 1. Then every element in A.X has a unique expression of the form

y OH/^i , <^e A.Y.

Equivalently, the homomorphism

y'.S^A.Y^A.X , ^(©ai)=£Cin/*ai,

is an isomorphism.
When Y is non-singular, this says that the Ci form a free basis for A'X as a module

over A' Y.

Proof: The proof of surjectivity of (p is the standard argument by Noetherian induction on the
dimension of Y . One can assume Y is a variety, with function field K; regard the generic
fibre X ^ F^k K as a variety over K . Since A.(X) is generated by the images of the (^ ,

one need only consider classes in A. X whose restriction to the generic fibre are zero. Such
classes will restrict to zero in A.^U) for some open U in V, hence will be in the image of
A.(/"1^), where Z is the complement of U in Y. By-induction one knows the result for
/-iZ—» Z , and the proof concludes as usual (cf. [6], §1.9).

For the injectivity of ip , let [*] € A^ be the generator corresponding to 1 6 1 by the
degree isomorphism. We may assume Y is connected. We first verify that if T] is any element
of A^X , and the restriction of 77 to a fibre is n[-k} , for some integer n, then /^(^n f*a) = na

for all a e A. Y . This too is standard. To prove it one may assume a = [V] , with V a variety,
then replace Y by V , in which case /^(^n f*a) must be n'[V\ for some integer n ' , one sees

that n' equals n by restricting to a fibre. Similarly one sees that f^(r}H f*a) = 0 if 776 APX

with p < d .
We relabel the elements ^- with double subscripts, so that ^pj are the elements which

are in A^X'. Since the restriction from A'X to fibres is assumed to be surjective, we may
choose elements ujpj in A^PX whose restrictions to fibres give the dual basis of the
restrictions of fpj , i.e., the restriction of t^pjCpk to a fibre is <?jjcM. Now if
Sij^ij-n /*aij = 0 , consider the maximum p for which some Qpk f 0 . By the previous
assertions

0 = A(o/pk(S Cij n /*aij)) = Uujpk^pk n f*apk) + 0 == apk ,

which concludes the proof. D
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