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THE HOMOLOGICAL THEORY

OF

MAXIMAL COHEN-MACAULAY APPROXIMATIONS

by

Maurice Auslander (Brandeis) and Ragnar-Olaf Buchweitz (Toronto)

Summary. Let R be a commutative noetherian Cohen-Macaulay ring which admits a
dualizing module. We show that for any finitely generated R-module N there exists a
maximal Cohen-Macaulay R-module M which surjects onto N and such that any other
surjection from a maximal Cohen-Macaulay module onto N factors over it. Dually, there
is a finitely generated R-module I of finite injective dimension into which N embeds,
universal for such embeddings. We prove and investigate these results in the broader
context of abelian categories with a suitable subcategory of "maximal Cohen-Macaulay
objects" extracting for this purpose those ingredients of Grothendieck-Serre duality theory
which are needed.

resume: Soit R un anneau commutatif, noetherien et de Cohen-Macaulay, tel que un
module dualisant existe pour R. On demontre que pour chaque R-module N de type fini
il existe un R-module M de profondeur maximale et un homomorphisme surjectif de M
sur N, tel que toute autre surjection d'un tel module sur N s'en factorise. De maniere
duale, il existe aussi un plongement de N dans un R-module 1 de type fini et de
dimension injective finie, universelle pour telles plongements. Nous demontrons et
examinons ces resultats dans Ie cadre des categories abeliennes avec une sous-categorie
convenable des "objets de Cohen-Macaulay maximaux", a cet effet mettant en evidence les
proprietes de la theorie de dualite de Grothendieck-Serre dont on a besoin.

§0. A Commutative Introduction

The aim of this work is to analyze the framework in which the theory of
maximal Cohen-Macaulay approximations can be developed. Instead of outlining right
away the abstract results, we want to start by describing the situation in the classical
case of a commutative local noetherian ring R with maximal ideal m and residue class
field k == R/m.

Assume that R admits a dualizing module u. Then R is Cohen-Macaulay, and
the finitely generated R-modules M which are maximal Cohen-Macaulay in the sense that
depthn»M = dimR can be characterized homologically as those modules for which
Ext^(M,&;) == 0 for i ^ 0.

Our main result can then be paraphrased as saying that R-mod, the category of
finitely generated R-modules, is obtained by glueing together the orthogonal subcategories
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of modules of finite infective dimension over R and the category of maximal Cohen-
Macaulay modules along their common intersection which is spanned by <y.

More precisely, let us recall that u is dualizing for the local ring (R,m,k) if and
only if it satisfies the following three conditions:

(i) a> is finitely generated and of finite injective dimension over R.

(ii) The natural ring homomorphism which is given by multiplication with scalars from R
on (»/, R —*• Hom^(cj,(s}) is an isomorphism.

(iii) For any integer i ̂  0, one has ExtJ^ (u,u) = 0.

Now our main results in this context are

Theorem A: (Existence of the decomposition). Let (R.m.k) be a commutative, local
noetherian ring with dualizing module u. For any finitely generated R-module N there
exist finitely generated R-modules MN and ^ together with an R-linear map

dN:MN ^ ^

such that

(a) The image of dN is isomorphic to N.

(b) MN is maximal Cohen-Macaulay and IN == KerdN is an R-module of finite injective
dimension.

(c) ^ is of finite injective dimension and M^ = CokdN is maximal Cohen-Macaulay.

(d) There exists an integer n ^ 0 such that dN can be factored into an injection
jiMN—^®" and a surjection pici/®"-^ . •

If dN = ^"TTN denotes the factorization of dN over its image N, we can arrange
the data given in the theorem into the following exact commutative diagram of R-
modules:

0 0
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Theorem B: (Essential Uniqueness)
(a) Assume given a second homomorphism d'̂ :M'̂  --*• 'l^ satisfying Theorem A for the

same module N. If the image factorization of d., is given as

M^ -^ N —^ 'IN,

there exist modules P, P' and Q., 'Q. which are each finite direct sums of copies of w,
and R-module isomorphisms /x, /e so that the following diagram commutes:

v ®o '^©o „
M'^SP—^—> N ———> 'I ®Q

.1 || I.
T 7T.,®0 " ^©0 4' ,M^ep'—^—- N ——^"©'Q.

N

(b) If f:M —*• N is any homomorphism from a maximal Cohen-Macaulay R-module M into
N, it factors over TTN. If g:N -*• J is any homomorphism from N into an R-module J
of finite injective dimension, it factors over i^ . m

7TM
These results suggest to call 0 -<• IN -<• MN —> N -» 0 a maximal Cohen-

N
Macaulay approximation of N and 0 -+ N —> l^ -»• M14 -*• 0 a hull of finite injective
dimension for N.

To give a simple illustration, consider the case where N itself is a Cohen-
Macaulay R-module, hence satisfying depthmN = dimN.
Set n = codepthn N = dim R - dim N. Then local duality theory implies:

(i) ExtJ^N.c*;) = 0 for i ^ n.

(ii) N" = Ext^(N,&;) is again Cohen-Macaulay of codepth n.

(Hi) N == Ext^N^.tj) = N".

Using this information, let
0 -. nn(N) -. R^n-i •dn^ ... -^ R^o ——> N" -. 0

be an exact sequence obtained by truncating a free resolution of N\ It follows that
On(N) is maximal Cohen-Macaulay and that dualizing with respect to u results in an exact
sequence

0 ——> u^ ——> ... dn^ (j^n-i ——> HomR(nn(N),&;) ——> N"" = N ——> 0.

Then Mn = HomR(nn(N),(*/) -"-> N is a desired maximal Cohen-Macaulay approximation of
N, and IN = Cok d'n-2 admits a finite resolution "by <*/". which shows that IN is of finite
injective dimension. The hull of finite injective dimension I14 is then simply the cokernel
of the u-dua\ of the next differential in the resolution of N ^ , namely
^ = Cok HomR(dn_i,cj).
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If R is a domain, for example, we get even more precise information:
(i) The rank of MM equals the alternating sum

(̂-l̂ bn.i + (-1)" rk N,

(ii) M^ == HomR(MN,^) = On(N) embeds into R^n-i,

(iii) MN contains no copy of u as a direct summand if and only if On(N), the n-th syzygy
module of N, contains no free summand.

It follows that one can attach new numerical invariants to an R-module N in this way.
The minimum number of copies of u necessarily contained in MN or 1̂  the rank of the
c»;-free summand of either MN or 1̂  their minimum number of generators and so forth.

Here, we are not concerned with these more detailed consequences of the
theory but rather with its general framework.

The first author first proved an essentially equivalent version of Theorem A but
for the category of additive functors on R-mod, see [Ausl], where the result was phrased
by saying that the category of maximal Cohen-Macaulay modules is "coherently (co-)finite".
The essential step then was to establish the representability of the functors involved.

This background illuminates our approach here. Although the primary
applications of the theory might be within the classical theory of rings and algebras, to a
large extent it can be developed in any abelian category C which admits a suitable
subcategory X of "maximal Cohen-Macaulay objects".

Here we establish sufficient conditions on X to guarantee the categorical
analogues of Theorems A and B. Section 1 deals with the decomposition theorem and
section 2 addresses the uniqueness question. Sections 3 and 4 investigate the
circumstances under which - in the terminology of the above example - the category of
modules with "finite (^-resolution" are all the modules of finite injective dimension.
Section 5 assembles a few remarks on finiteness conditions and section 6 contains more
examples, among other purposes highlighting the differences in the theory when applied
to either commutative or non-commutative rings.

§1. The Basic Decomposition Theorem

In this section we prove the basic decomposition theorem on which this paper
rests. Before stating the result, we give some definitions and notations.

Throughout, C will be an abelian category. By a subcategory A of C we will
always mean a full, additive and essential subcategory of C, so that A is closed under
finite direct sums in C and such that any object C in C which is isomorphic to an object
in A is already an object in A.

A subcategory of C is said to be additively closed (or karoubian in the
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terminology of [SGA IV] or [Qu]), if it is closed under direct summands in C, or,
equivalently. if any projector (p = p2) in the subcategory admits an image in that
subcategory. Any subcategory A of C admits an additive closure add A in C, consisting
of ail those objects C in C which are isomorphic to a direct summand (in C) of an object
in A. Clearly A is additively closed in C if and only if A == add A.

More generally, given any collection {CJ,ei of objects in C, there is a unique
smallest additively closed subcategory add {C^i containing each object Q, id. It can
be described by the following "universal mapping property": If F:C -+ D is any
additive functor from C into another additive category D such that F(CJ is a zero-object
in D for each id, then F(add {C^Lei) consists entirely of zero-objects.

In particular, (cf. also [He]), there exists the additive quotient category
TT-.C -^ C/add (C,Li, where C/add {QL<i has the same objects as C and v is a full,
additive functor which is the identity on objects.

The projection functor v is characterized by the property that any additive
functor F as before factors uniquely over v. Of course, even if C is assumed to be
abelian, as here, C/add {C»}^i need not to be so.

If A is an additively closed subcategory of C, the morphism groups in C/A are
given by

________Homc(Ci.C2)
Home/A (Ci.Cz) = ^ci-^l^ factors over an object in A}

Now suppose again that A is any subcategory of C in the sense fixed above.
We say that a sequence of morphisms ... -* Aj+i —«• A{ —»• Ai_i -» ... in A is exact, if when
viewed as a sequence in C it is exact.

Suppose C is an object in C. We define A-resol.dimC, the A-resolution
dimension of C, to be the smallest nonnegative integer n such that there exists an exact
sequence 0 -*- An -*• An-i -^ ... -» Ao -^ C -*• 0, with each A, in A, if such an integer
exists. We say that A-resol.dimC < oo if A-resol.dimC = n for some non-negative
integer n. The subcategory of C consisting of all C in C such that A-resol.dimC < oo
will be denoted A.

Finally, we say a subcategory B of A is a cogenerator for A if for each object A
in A there is an exact sequence 0 — * - A — * - B — * - A ' — » - 0 in A with B in B.

With these notations, we fix throughout the rest of this paper an additively
closed subcategory X of C which is furthermore closed under extensions, i.e. if
0 -» Ci -*• Cz -*• Cs -*• 0 is exact in C with Ci and €3 in X, then also Cz is in X. (In
the terminology of [Qu], for example, X is a karoubian exact subcategory of C.) Also we
assume given an additively closed subcategory u of X which is a cogenerator of X.

The paper is now devoted to studying how the categories X, cj, X and w are
related.



10 M. AUSLANDER, R.O. BUCHWEITZ

All of our results depend on the following

Theorem 1.1. For each C in X there are exact sequences

0 -<• Yc -> Xc -- C -^ 0 and

O ^ C ^ ^ C ^ X C ^ O

with Yc and Y0 in u and Xc and Xc in X.

Proof. The proof proceeds by induction on X-resol.dimC and is based on the following
two easily proven observations.

Lemma 1.2. Suppose given exact sequences 0 - » K - » . X - » C - » ' 0 and 0 -»• K -»
Y1^ -^ X^ -+ 0 with X and X1^ in X and YK in u. Then in the pushout diagram

0 0

_1_1_ _
° _ 1 _ 1 J _ _ °
° T I c °

xr==x1

1 1
0 0

the exact sequence

O - ^ Y ' ^ U - ^ C - . O

has the property that YK is in u and U is in X.

Proof. As Y1^ is in u by assumption, it remains to be seen that U is in X. This follows
from the fact that both X and X^ are in X and X is closed under extensions. •

The other observation we need is the following.

Lemma 1.3. Suppose that we have an exact sequence 0 - » Y c — * - X c — » - C — * - 0 with Yc in
&/ and Xc in X. Let 0 -* Xc -*• W -^ X -+ 0 be exact with X in X and W in u. Then in
the pushout diagram
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0 0

1 In
0 ———- X. ———- W ———- X ———> 0

o — i — L I — o° I ! " °
0 0

the exact sequence
o . - . c - ^z - . x - .o

has the property that Z is in ay and X is in X.

Proof. As again X is in X by assumption, it is only required to prove that Z is in <y. But
in the exact sequence 0 -^ Yc -»• W -* Z -»• 0, we have Yc in u and W in o», so that Z
is in cj by definition of that category. •

The vroof of theorem I.I. follows now easily from these lemmas.

Suppose X-resol.dimC = n and let 0 —»• Xn —*•. . .—*• Xi —> Xo —*• C —«• 0 be
exact with each X, in X. If n = 0, we have that C is already in X. Since u is a
cogenerator for X, there is an exact sequence 0 — » - C — » W — * - X — * - 0 i n X with W in <j
which is one of our desired exact sequences. The other one is 0 -*• 0 -^ C -=-> C -*• 0.
Now suppose that n > 0 and set K = Imdo , so that we have exact sequences
0 -^ K -» Xo -«• C -» 0 and 0 -» Xn -^ ... -*. Xi -^ K — 0 with each Xi in X. By the
inductive hypothesis we know there is an exact sequence 0 - ^ • K — » • Y K — » • X K — * • 0 with
YK in u and XK in X. Therefore, by Lemma 1.2, the pushout diagram

0 ———> K ———- X. ———- C ———r 0i f I
0 ———> Y1^ ———r U ———> C ———> 0

has the property that U is in X. Hence we may choose 0 - * Y K - » • U - - » C - ^ • O a s one
of our desired sequences for C. From the existence of this exact sequence, it follows by
Lemma 1.3 that we also have an exact sequence 0 — * • C — » • Y C — ^ • X C — » • 0 with Y0 in u
and Xc in X. This finishes the proof of theorem 1.1. •

^cFor ease of reference, we call an exact sequence 0 —»• Yc —»• Xc —> C —»• 0
with Xc in X and Yc in w an X- approximation of C. Dually, we call an exact sequence
0 -^ C -^> ̂  -^ xc -^ 0 with Yc in u and Xc in X an u-hull of C.

From now on, we assume that X has the property that if
0 —». Xo -«• Xi —>• Xz --»• 0 is an exact sequence with Xi and Xz in X, then Xo is also in
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X, in addition to X being an additively closed subcategory of C which is closed under
extensions. (In D.Quillen's terminology, (loc. cit.), all epimorphisms from C in X are
admissible.)

It should be noted that in all our examples the categories X satisfy this
additional condition. As a consequence of this further hypothesis on X, we get the
following

Lemma 1.4. Suppose C in C has an ay-hull 0 -»• C -» Y0 -»• X0 -^ 0. Then it also admits
an X-approximation 0 -»• Yc -<• Xc -^ C -»• 0. Furthermore, Yc can be chosen such that
&/-resol.dimYc < cj-resol.dim Y0 if Y0 is not already in u.

Proof. Let 0 -»• Wn -<• Wn_i -»• ... —°> Wo -* Y0 -^ 0 be exact with the Wi in u. Then
we obtain the following pullback diagram

0 0i i
K ====== Ki i .0 ———> L ———> W. ———- Xc ———. 0i i i

0 ———> C ———- Y0 ———> Xc ———- 0i i
0 0

where K = Imdo. Since X0 and Wo are in X, the additional assumption yields that L is
in X too. By definition, K is in w and s o O - » K - * - L - * - C - * - O i s a n X-approximation of
C. Now set Yc == K and Xc == L. •

As a consequence of this lemma, we obtain the following characterization of the
objects in X.

Proposition 1.5. Let X be an additively closed and exact subcategory of C in which every
epimorphism is admissible. If u is a cogenerator of X, the following are equivalent for
an object C in C:
(a) C is in X.
(b) There exists an X-approximation 0 -*• Yc -*• Xc -- C --»• 0 of C.
(c) There is an c^-hull 0 -^ C -^ Y0 -^ Xc -^ 0 of C.

Proof. Since (a) implies (b) and (c) by theorem 1.1, it is only required to show that (b)
implies (a) and (c) implies (b).
(b) =^ (a): Since Yc is in u by assumption, there is an exact sequence
0 -*. Wn -^ ... -» Wo -^ Yc -*• 0 with each Wi in u. Since u is a subcategory of X. it
follows from the exact sequence 0 -> Wn -<•...-*• Wo -+ Xc -^ C -^ 0 that C is in X.
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(c) ==»> (b): This is just a restatement of Lemma 1.4. •

We end this section with three examples, illustrating the theory developed so
far.

Examvie 1. Let X -^ Spec k be a scheme of finite type over a field k. Assume that X
is equidimensional of dimension d and locally Cohen-Macaulay in the sense that Ox.x is a
local Cohen-Macaulay ring for each x in X. Let C be the category of coherent sheaves of
0^-modules and define X to be the subcategory of maximal Cohen-Macaulay coherent
sheaves, where a coherent Ox-module M is said to be maximal Cohen-Macaulay if for
every xcX one has depthn^ K = dim Ox.x ; i»x the unique maximal ideal of Ox.x.

It is then clear that if 0 -»• Mi -<- Mz -» ^3 —• 0 is an exact sequence in C.
then
(a) .Mz is in X if Mi and ^3 are in X, and
(b) Mi is in X if Mz and ^3 are in X.
Remark also that, by hypothesis, the structure sheaf Ox is in X and that consequently X
contains all locally free sheaves of Ox-modules. Conversely, a maximal Cohen-Macaulay
Ox-module is locally free on the regular locus Xreg C X. Moreover, C = X. and if C ^ 0
is in C, then X-resol.dimC - n if and only if n is the largest integer such that
£xt^(C.u^ ^ 0, where &;x is a dualizing sheaf for X.

Now assume that either X admits a very ample invertible sheaf X. or that X is
affine (in which case L = Ox in the following). Then X can be embedded into a
projective space over k, say i:X -» P^. with L = i*OjpN(l).

Denoting by ^ the smallest additively closed subcategory which contains the
family of objects {^^^"IncZ • u ^^s easily from Grothendieck-Serre duality theory
that <j^ is a cogenerator for X.

Proposition 1.6. For each coherent sheaf C of Ox-modules we have both an X-
approximation with respect to u^ of the form 0 - ^ Y c - ^ X c - r C - ^ O and an
&^-hull O^C-^-^-^O. •

Remark that in this example the category X depends only on the scheme X
whereas its cogenerator depends on the choice of both a dualizing module c^x and a
very ample sheaf L. Also the X-approximations and o^-hulls will vary with these
choices.

Next consider the following modified version of Example 1.

Examule 2. As in Example 1, we let X -*• Speck be an equidimensional Cohen-Macaulay
scheme over a field k. Let X'cX be the Corenstein locus of X, which is the set of all
points x in X for which Ox,x is a Corenstein local ring. Let X' be the subcategory of C,
the category of coherent sheaves of Ox-modules, consisting of those Cohen-Macaulay
sheaves .M such that Mx is Ox, x-free for all x in X'. It is clear again that X* is an exact
subcategory of C in which every epimorphism is admissible. Also X' consists of all those
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M in C for which .Mx is of finite projective dimension over Ox,x for each x in X'. This
implies that an exact sequence 0 -+ A -+• B -» C -*• 0 in C is in X' if any two of A,B or
C are in X'.

Again, any invertible sheaf of Ox—nodules is in X', and in particular for any
dualizing sheaf (^ and each very ample invertible sheaf jL on X, the category w^ defined
above is a cogenerator of X'. We leave it to the reader to give in this case the analogue
of Proposition 1.6.

Our final example in this section treats a not necessarily commutative version of
Gorenstein rings of finite Krull dimension.

Example 3. Let R be a ring with unit which is noetherian on both sides and such that
the infective dimension of R as a right module over itself is finite, say equal to d.

Take C == R-mod, the category of finitely generated left R-modules, and let X be
the subcategory consisting of all modules M in R-mod which satisfy Ext{^(M,R) = 0 for
i ^ 0.

Then X is certainly additively closed and has the property that an exact
sequence 0 -»• Mi -r Mz -»• Ms -*• 0 is in X as soon as either Mi and Ma or Mz and Ms
are in X. Hence X satisfies our general assumptions.

For u, take the subcategory of all finitely generated projective left R-modules.
Then u is by definition a subcategory of X which is additively closed.

For our theory to apply, we have hence to show that u constitutes a

cogenerator for X. To obtain this result we need our assumption on R. Namely, let
dj do

... —> Pj —> ... —> Pi —> Po —> M —> 0 be a projective resolution of a module
M in X. By definition of X, the dualized complex

0 —> M* —> Po -^> P*, —> ... —> P; -^ ...

is acyclic. But then our hypothesis furnishes the following more precise information.

Lemma 1.7. With notations and assumptions as above, for every module M in X one has

(a) For all integers j >_ 0, the right R-modules Kj = Ker dj satisfy Ext^(Kj,R) = 0 for
i ^ 0.

(b) M is reflexive, that is, the natural morphism of left R-modules M —*• M** is .an
isomorphism.

(c) If 0 —> L —> Q. --p-> M* —> 0 is an exact sequence of right R-modules with Q.
finitely generated projective. then L* satisfies Extj^(L*,R) = 0 for i ^ 0.

Proof, (a) As all the modules P* are finitely generated projective right R-modules, they
satisfy necessarily Ext{^(P*,R) = 0 for i -^ 0. But this implies that for any integer n ^ 0
one has natural isomorphisms Ext^(Kj_n,R) —> Ext^Kj.R) for any i > 0. Since by
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assumption Ext{[(-,R) = 0 as soon as k > d, it suffices to take n ^ d above to conclude
Extj^Kj.R) = 0 for all i > 0 and j ^ 0.
(b) This is a consequence of (a). By [A-B; 2.1.], for any left R-module M the natural
morphism M -^ M** fits into an exact sequence

0 ——> Ext^(D(M),R) ——> M ——> M** ——> Ext^(D(M).R) ——> 0,

where D(M) = Cok dg. But if M is in X. we have Cok d^ = Ker d^ and (a) shows that
the extreme terms of this exact sequence vanish, establishing (b).
(c) As M* = KO, part (a) implies that the sequence

(*) 0 ——> M" -^ Q* ——> L* ——> 0
is exact. From (b) we have M 's= M** and as M is in X, it follows already that
Ext}^(L*,R) = 0 for.i > 1. It hence only remains to be seen that Ext^(L*,R) = 0, or,
equivalently, that the dual sequence of (*):

0 ——> L" ——> (T -^ M*" ——> 0

is again exact. But this is obvious as both Q. and M* are reflexive right R-modules and
P" = P. •

Combining (b) and (c) of this lemma, we have now that any module M in X
embeds into the finitely generated protective module HomR(CLR) and that the cokernel,
isomorphic to L*, is again in X. This shows that <y is indeed a cogenerator for X.

Finally observe that X consists of all left R-modules N in C satisfying
ExtJJN.R) = 0 for all sufficiently large i, and that u is the category of all finitely
generated left R-modules of finite projective dimension.

Now Theorem 1.1 yields in this context the following.

Theorem 1.8. Let R be a ring which is noetherian on both sides and of finite injective
dimension as a right module over itself. Then for any finitely generated left R-module N
satisfying Ext^(N.R) == 0 for all sufficiently large i. there are modules YN andY1^ in
R-mod of finite projective dimension and modules XN and X^ in R-mod with
EXIJ^XN.R) == ExtJ^X^R) = 0 for i ^ 0 which fit into exact sequences

0 ——> YN ——> XN ——> N ——> 0 and

0 ——> N ——> Y1^ ——>X^ ——> 0. u

§2. Injective Cogenerators

Having established the existence of X-approximations and ay-hulls for a pair (X,u)
of subcategories as in the preceding section, the important question which remains is
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their uniqueness.
To see which conditions ought to be imposed, assume given two

X-approximations for the same object C in X, say 0 - r Y c - » - X c - * C - - » - 0 and
O — - Y C - - X C - » € : - * • 0. Then the least one should ask for is that these
X-approximations can be compared in the sense that there exists a morphism
<f> : Xc -*• X^ making the following diagram commutative

0———> Y- ———- X ———- C ———> 0i i'_i_
Apparently, the existence of such a comparison morphism is guaranteed as soon

as Ext^(Xc.Y'c) = 0.
Hence, for comparisons to exist and to yield an equivalence relation, it certainly

suffices to have that Ext^(X.Y) = 0 for all X in X and Y in <y. This section is devoted to
a study of this condition and its consequences. First, once again, some general remarks
and notations.

Let A and C be objects in C. As C is supposed to be abelian, the groups
Extc(A,C) are denned for all i ̂  0. If there is an integer n such that Ext^(A.C) = 0 for
all i > n, then the smallest nonnegative such integer n is called the A-injective dimension
of C, (notation: A-inj.dimC), or the C-projective dimension of A, (notation: C-proj.dimA).

Otherwise we set A-inj.dimC = 0 0 = C-proj.dimA . If B is a subcategory of C,
for each A in C we define A-inj.dimB to be the maximum (in Z u (oo)) of A-inj.dimB for
all B in B. Dually, for each C in C, we define C-proj.dimB to be the maximum of
C-proj.dimB for all B in B.

Clearly A-inj.dimB = B-proj.dimA.
Suppose now that A and B are subcategories of C. Then define A-proj.dimB to

be the maximum of A-proj.dimB for all A in A and B in B. We define dually A-inj.dimB
to be the maximum of A-inj.dimB for all A in A and B in B. Again, one has clearly
A-inj.dimB == B-proj.dimA.

If for two such subcategories A-inj.dimB = 0 = B-proj.dimA, we follow J.L.
Verdier. [SGA AYz. C.D.; 1.2.6.1.], and say that A is left orthogonal to B and B is right
orthogonal to A - with respect to the "augmented" bilinear Z-graded pairing induced by
(Ext ̂  (-. -)h>o on the monoid of isomorphism classes of objects of C.

Consequently, if A consists precisely of those objects A in C for which
A-inj.dimB = 0. we call A the left orthogonal complement of B in C, denoted A = -4^
Dually again, A1, the right orthogonal complement of A in C, is the subcategory-B
consisting of all objects B in C for which A-inj.dimB = 0.

One has obviously A C -KA1) and A C (^A)^ but not necessarily J<A -̂) = (-IA)-L.
If B' is a subcategory of B in C, then -^ is contained in -41' and similary for right
orthogonal complements. Remark also that by definition -̂ C, the left radical of C with
respect to the pairing (Ext};(—,—))i>o, consists precisely of all projective objects of C,



MAXIMAL COHEN-MACAULAY APPROXIMATIONS 17

whereas C1 the right radical of C, is given by all injective objects of C.
Furthermore, it is obvious that orthogonal complements are additively closed

and exact subcategories of C and that in a left orthogonal complement -41 all
epimorphisms are admissible, whereas in a right orthogonal complement A-1- all
monomorphisms are admissible.

Returning to our subcategories X and a; of C from the previous section, we say
that cj is an infective cogenerator for X if X-inj.dimi*/ == 0, that is. u C X-L. If there is a
cogenerator for X in X n X-L, we say also that the exact category X has enough relatively
injective objects.

Unless stated to the contrary, we assume from now on that u is an injective
cogenerator for X. Our next aim is to explore some important properties of X-
approximations and tj-hulls implied by this additional assumption.

We begin with the following relations between some of the dimensions we have
just introduced for an object C in X. These relations do not require that any
epimorphism in X is admissible.

Proposition 2.1. Given an object C in X, where X is an additively closed exact subcategory
of C and u is an injective cogenerator for X, the following are equivalent for any integer
n ^ 0.
(a) X-resol.dimC = n,
(b) C-inj.dim&j == n,
(c) C-inj.dimo? = n,
(d) Ext^C.Y) = 0 for all Y in u.

Proof'. Proceed by induction on n = X-resol.dimC, the case n = 0 being settled as
follows.
(a) =» (b) is true because cj is contained in X-L by assumption.
(b) ==> (c) follows from the usual dimension shift argument.
(c) ==» (d) is the definition of C-inj.dimoy.
(d) =»• (a): Since C is in X by the general hypothesis, there is an
X-approximation 0 -^ Yc —» Xc -^ C -. 0 which splits by (d). Hence C is a direct
summand of Xc in X and so C is in X.

The proof of the inductive step follows easily from what we have just shown
and is left to the reader. •

As an obvious consequence of this proposition we have

Corollary 2.2. X-inj.dinw =0. •

This corollary yields the following important properties of X-approximations and ay-hulls.
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Theorem 2.3. Let 0 -^ Yc -^ Xc -^ C -^ 0 be an X-approximation for C in X. Then
for each X in X we have
(a) 0 -^ Homc(X,Yc) -<• Homc(X.Xc) -^ Homc(X.C) -» 0 is exact,
(b) TTC induces isomorphisms Ext^(X.Xc) -* Ext^(X,C) for all i > 0.

Proof: As X-inj.dimoy == 0, one has Ext{;(X,Yc) = 0 for all i > 0. •

The exact sequence 0 -<• Yc -»• Xc -»• C -» 0 is called an X-approximation
precisely because Hom<:(X,Xc) -»• Homc(X,C) -<• 0 is exact for all X in X. This property
of X-approximations of C gives rise to a weak sort of uniqueness for such
approximations as we now explain.

Let us call two morphisms f:B -c C and f':B' -» C in C equivalent if there are
morphisms g:B -» B' and h:B' -*• B such that f = f'g and f = fh. Also, we say that two
exact sequences 0 -+ A -»• B —^C and 0 -*• A -»• B'-̂ C are (right) equivalent, if f
and f are equivalent, which amounts to the same as saying that there is a commutative
diagram

0 ———> A' ———- B' —^ Ci i1
0———> A ———- B —^C

I !•i ig r II
0 ———- A' ———^ B' ——^ C

In particular, ide-hg factors over A and ide—gh factors over A', so that h.g become
inverse isomorphisms in C/^^^r^ ^\ .

As an immediate consequence of theorem 2.3 we obtain the following
uniqueness result.

Corollary 2.4. X-approximations for an object C in X are unique up to equivalence, that is,
any two X-approximations for C are (right) equivalent exact sequences. •

There are also similar results for ay-hulls of an object C in X as we now point
out.

Theorem 2.5. Let 0 -^ C —> Y0 -^ Xc -^ 0 be an <y-hull for C in X. Then for each Y
in <y we have the following
(a) 0 -^ Homc^X^Y) -^ Hom^Y^Y) -» Homc(C.Y) -<• 0 is exact,
(b) ^ induces isomorphisms Ext^Y^Y) -^ Ext^(C.Y) for all i > 0.

Proof: This follows again from the fact that X-inj.dimoy =0. •

The exact sequence 0 -»• C —> Y0 -*• Xc -^ 0 is called an ay-hull precisely
because Hom^Y^Y) -*• Homc(C.Y) -» 0 is exact for all Y in u. Again, this property
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gives rise to a weak sort of uniqueness for c^-hulls, similar to that already discussed for
X-approximations, as we now explain.

Dually to the above, we say two morphisms f:C —»• D and f:C —»• D' are
equivalent if there are morphisms g:D -*• D' and h:D' -*• D such that f == gf and f = hf.

f fAlso, we say that two exact sequences C ——>D —*• E —»• 0 and C—>D' —*• E' —» 0 are
(left) equivalent if f and f are equivalent, which is the same thing as saying that there is
a commutative diagram

C —^D ———- E ———> 0\\ , [ • i
C ———.D' ———> E' ———. 0i ^ i
C -——^D -——r E ———- 0

In particular, idp-hg factors over E and idp—gh factors over E', so that h and g
become inverse isomorphisms in C/^rffE E'l •

As an immediate consequence of theorem 2.5 we have the following uniqueness
theorem.

Corollary 2.6. ay-hulls for an object C in X are unique up to equivalence, that is, any two
cj-hulls are (left) equivalent exact sequences. •

We may reformulate and sharpen these uniqueness results slightly by
considering the situation "modulo u". This depends on the following simple observation.

Lemma 2.7. Let f:X -<- C be a morphism in C with X in X and C in X. Then the following
conditions on f are equivalenL
(a) f factors through an object in <y.
(b) f factors through an object in or.

Proof: As (b) is a priori a special case of (a), we need only to show that in fact (a)
implies (b). Hence assume that f == gh where h:X -». Y and g:Y -». C are morphisms in C
and Y is in u. By definition of u. there is an exact sequence 0 - ^ K - c W — Y - r O with
W in u and K again in u. By corollary 2.2, X-inj.dim u == 0 and so Ext^(X.K) = 0. This
shows that h, and then also f, factor over W in cj. •

Now choose for any object C in X an X-approximation
0 -. Yc -^ Xc -^> C -. 0 and an cj-hull 0 -^ C -lc-> Y0 ^ Xc -o 0, as well as for- any
morphism f:C -^ D in X liftings f*:Xc -^ XD and f^Y0 -<• Y° which exist by the above.

By the uniqueness results just established, it follows that given a second
morphism g:D -+ E in X, the differences g*f* - (gf)* and g*f* - (gf)* factor over objects
in or, hence become zero-morphisms in XA*/, the full subcategory spanned by X in C/w.
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From this we obtain immediately the following

Theorem 2.8. Denote i: u -<• X and j:X —• X the natural inclusion functors. Then
(a) The induced functor }\\X/u -«. X/u is fully faithful and admits a right adjoint

f:X/u -*• X/(j which associates to an object C in X the chosen X-approximation Xc.
The adjunction morphism jij 'C -» C is given by the class of 7rc:Xc -» C in
Homx/^Xc.C).

(b) The induced functor i*: u/u -». X/u is fully faithful and admits a left adjoint
i*: X/u -c u/dj which associates to an object C in X the chosen cj-hull Y0. The
adjunction morphism C -+ i*i*C is given by the class of ^'.C -<• Y0 in Homx/^C.Y^.

(c) One has j'i* = 0 and FJ| = 0.

(d) The composition of the adjunction morphisms

J,J' -^>id^—>i.r

is zero in X/u.

Proof: The remarks preceding the theorem show that X_ and Y~ define functors from X
into XAj and u/u respectively. By the universal property of quotient categories these
functors factor over XAj, yielding j, and i*. To prove that ji is indeed right adjoint to
the inclusion functor f'.X/u -*• X/u, it suffices to give the natural isomorphisms
^x,c^Homx/(^(XJiC) —^ Homx/^O'X.C). Now composition with 7rc^Xc=jiC -<• C defines the
natural map Homx(X.Xc) — Hom»(X,C) which is surjective by theorem 2.3.(a). Let ^x.c be
the induced map on the quotient groups, which is hence still surjective. To prove that it
is injective, let f in Homx(X.Xc) be a morphism such that a-c^X -» C factors over some
object W in u. This means that there is a commutative diagram in C

0———<-Y^———^ —^C ———^ 0

rf t.
X —r-* Wh

As W is a priori in X and Yc is in u, corollary 2.2 applies once again to yield
Ext^(W,Yc) = 0 and hence to establish the existence of a morphism g':W -^ Xc such that
?rcg' = g. But then f-g'h satisfies ^(f-g'h) = ?i-c f-frc g')h = gh-gh = 0, so that f-g'h
factors over Yc. Then lemma 2.7 shows that f-g'h factors already over some object W
in u and hence the class of f-g'h in Homx/cj(X,Xc) is the zero-morphism. As g'h
factors over W in (j, its class is zero as well, which shows that f and f-g'h define the
same morphism in Homx/o/X.Xc) = Homx/o/XJi C). Hence already the class of f is the
zero-morphism and ^x.c is injective as claimed.

The definition of ^x,c ls natural in both arguments, so that the adjointness of ji
and j' is established. Furthermore, the construction of ^x.c shows that vc induces the
adjunction morphism j'jiC -+ C.
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This proves (a).
As the proof of (b) is completely analogous, it is left to the reader.
For (c), just remark again that by definition of <y, any object Y in u appears in an exact
sequence 0 - f K - * - W - - » . Y - » . 0 with W in u and K in &?. But this sequence serves as
an X-approximation for Y whence j'i*Y, the chosen X-approximation of Y, is isomorphic
to W in X/u. i.e. it is a zero object. This shows j'i* = 0 and i*ji == 0 follows then by
adjunction.
(d) follows now from (c), as one has by naturality the commutative diagram of morphisms
of functors

V^'^
t*0|J') [ [<•

iAl'T-^t(1.1*)*')T 1<1

in which the lower left corner is zero by (c). (In more concrete terms, (d) says that for
any object C in X there is a commutative diagram

7T.

"c —'-c

4 1.:
W ———-Y0

with W in u, and we have seen indeed in lemma 1.3 and the proof of theorem 1.1 that
^ can be obtained as the push-out of such a morphism j along n-c.) This finishes the
proof of theorem 2.8. •

The reader puzzled by the notations used in the preceding theorem should
compare it with the treatment of the "glueing of categories" in [BED; 1.4]. It shows that
in our situation one should think of X as being obtained by "glueing together the open
subcategory X and the closed subcategory <y along u ". What is missing for a complete
glueing in the sense of (loc. cit.) is the existence of the other adjoints j* and i'.

The statements (c) and (d) in theorem 2.8 also explain why we think of theorem
1.1 as a "decomposition theorem": an object C in X is decomposed • at least in X/cj -
into its X-approximation Xc and its ay-hull Y^ which belong to "orthogonal" subcategories
of X/u.

The property which is desirable but missing yet is that X and u should have u
as their common intersection. This will be addressed later on in Proposition 3.6.

For now, we return to the examples 1 and 2 of the previous section. As soon
as X -» Spec k is projective, u^ is not an injective generator in either X or X', as
Ext^Ox.^^X.0") == H^X,^®^") does not vanish for all integers n. None the less,
the following analogues of the results for injective cogenerators are valid for these
examples if one substitutes Cxt^A^E) for ExtJ^(A,fi).



22 M. AUSLANDER, R.O. BUCHWEITZ

Lemma 2.9. With notations as in examples 1 and 2, the following are equivalent for a
sheaf .M in C.
(a) M is in X.
(b) €xt^(M.(^) = 0 for all i > 0.
(c) ^t^(M,<yx<g)L®") == 0 for all i > 0 and all n in Z.
(d) £xt'^(M,Y) = 0 for all i > 0 and Y in ^.

Proof: Easy consequence of the fact that the corresponding statements hold for Cohen-
Macaulay local rings with a dualizing module. •

Proposition 2.10. With the same assumptions and notations as above, let
0 -*• Yc -» Xc — C -*• 0 be an X-approximation for C in C.
Then we have for any M, in X:
(a) 0 -. HowoxCM.rc) -- Hom^(M.Xc) -^ Homo^M.Q -. 0 is exact.
(b) The induced morphisms €xt^{M.Xc) -^ €xt^{M,C) are isomorphisms for i > 0.

Proof: Immediate consequence of lemma 2.7. •

Remark that in Example 3 the category u is in fact an injective cogenerator as
by definition there X = 1^. Furthermore, in that example X/u is the category of left
maximal Cohen-Macaulay R-modules - in the sense that Ext^(M.R) = 0 for i ^ 0 - modulo
stable equivalence: two modules M and M' from X become isomorphic in X/w if and only
if there are finitely generated projective left R-modules P and P' such that M © F is
isomorphic to M' © P in R-mod.

We end this section with two more illustrations of situations where <u is an
injective cogenerator for X.

Example 4. Suppose R is a commutative noetherian Cohen-Macaulay ring in the sense that
all its localizations Rp at primes p are local Cohen-Macaulay rings. We say that a finitely
generated R-module M is maximal Cohen-Macaulay (MCM for short), if Mp satisfies depth
Mp = dim Rp for all primes p.

Now suppose that R is a Corenstein ring and that S is a commutative R-algebra
which is MCM as an R-module. Let C = S-mod be the category of finitely generated S-
modules and let X be the subcategory of C consisting of those S-modules M which are
maximal Cohen-Macaulay as R-modules. Then X satisfies the usual properties. Set
(JS/R = HompCS.R), which is a relative dualizing module for the algebra R -4. S. Then
&/ = add(c»;s/R} consists of all S-modules of the form HomR(P.R) with P finitely generated
projective over S. It is easily seen - and well-known - that u is an injective cogenerator
for X. Also, if the Krull dimension of R is finite, then X = C.

To acknowledge the scope of this example and to emphasize its relevance for
Crothendieck duality theory, we quote the following from [FGR; Cor. 5.9.].
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Theorem. Suppose S is a commutative ring with finite Krull dimension and with
connected prime spectrum. Then S admits a canonical module if and only if S is a
homomorphic image of a Gorenstein ring R such that S is maximal Cohen-Macaulay as an
R-module. •

Our final illustration of this section is the following variant of Examples 4 and

Example 5. Maintain the hypotheses on S and R from Example 4. Let X c Spec R have
the property that if p is in X, then Sp is a Gorenstein ring. or equivalently, (d/s/p)? is
Sp-free.

Set again C = S-mod and let X' consist of those S-modules M which are MCM
over R and satisfy furthermore that Mp is Sp-projective for all p in X. Then X' satisfies
the usual properties and contains cj == add^s/p). Again, u is an injective cogenerator for
X' and X' consists of all S-modules C such that proj.dims Cp < oo for all p in X.

§3. Exactness properties ofX and u.

We maintain our general assumption that X is an additively closed and exact
subcategory of C in which every epimorphism is admissible, and that &/ is an injective
cogenerator for X.

In this situation, we show that X is an additively closed subcategory of C which
has the property that an exact sequence 0 - - » - A — » - B — » - C — » - O i s i n X whenever two of
A, B and C are in X. This result is then used to prove that cj is an additively closed
subcategory of C having the property that an exact sequence 0 — * - A - » B - * - C — * - O i n C
is already in u if either A and C are in w or A and B are in &». Hence w is seen to be an
additively closed exact subcategory of C in which every monomorphism is admissible.

We begin with the following

Lemma 3.1. The category X is closed under extensions.

Proof: Suppose 0 - o A - c B - c C - f O i s a n exact sequence in C with A and C in X.
Proceed by induction on n = X-resol.dimC. Suppose n = 0, which means that C is in X.
As A is in X, there is an X-approximation 0 -*• YA -*- XA -^ A -»• 0 of A. Since C is in X,
we know by theorem 2.3, that the induced map Ext^(C.XA) -»• Ext^(C.A) is an
isomorphism. Hence there exists an exact commutative diagram
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0 0i i
Y ==== YA *A

o-J-J——c^o

o 0 — ' 1 — ! 1 — 0
° I i <: 0

0 0

Since XA and C are in X, the object Z is also in X. as that category is closed
under extensions. Now YA is in cj. hence in X, and it follows that B is in X as required.

Suppose now that n > 0 and let 0 —• L -+ Xo -<• C -^ 0 be exact with
X-resol.dimL = n-1. Since Xo is in X, we have that EXI^(XO.XA) -«• Ext^(Xo.A) is an
isomorphism by theorem 2.3, and so there exists an exact commutative diagram in C

0 0 0

o^'—LLoi" I i1 °
0———X,——— V — — — X . — — — 0

o—.Ll——.Lo
° 1 I I °

0 0 0

This shows that B is in X since V is necessarily in X and U is in X by the inductive
hypothesis, g

We now use the fact that X is closed under extensions to prove the following

Lemma 3.2. Let 0 -+• K --*. X -»• C -<• 0 be an exact sequence in C with X in X. Then C
is in X if and only if K is in X.

Proof: By definition, if K is in X then also C is in X. Hence assume that C is in X and let
0 -<• Yc -^ Xc -*• C -*• 0 be an X-approximation of C. Since X is in X, we have by
theorem 2.3 that Homc(X.Xc) -<• Homc(X.C) is surjective. Therefore we obtain a
commutative exact diagram
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°ZdZC
Since Yc is in df, we know there is an epimorphism W —»• Yc with W in u. Adding this
epimorphism to the foregoing diagram, we obtain the following commutative exact
diagram

0 0[ i
V ===== Vi i

0 ——4C®W——-X®W——> C ——> 0i i i
0 ———> Y^ ———- X^ ———- C ———- 0

0 0

where K©W -^ X©W is the sum of K -«• X and the identity on W. Since W and X are
both in X, we have that V is in X, as any epimorphism of C in X is admissible by
assumption. Therefore K®W is in X, since Yc and V are in X and X is closed under
extensions. We now show that this implies that K is in X. Since K©W is in X, we obtain
the following exact commutative diagram from an X-approximation of K®W

0 0i i
0 ———^KOW———1> z

\QW\QVf

[ [
0 ———- W ——i-KOW——- K ———> 0i i

0 0

Hence we have the exact sequence 0 —*• YK®W -+ Z —»• W —»• 0. Since W and
YK®W are in X, (in fact already in u), and X is closed under extensions, we have that Z is
in X as well. This implies that K is in X since XK®W is in X. This completes the proof of
the lemma. •
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We now apply the foregoing lemma to prove

Proposition 3.3. Suppose C is an object in X. Then the following are equivalent for any
integer n ^ 0:
(a) X-resol.dimC <, n,

(b) If 0 -<• U -<• Xn-i -^ ... -<• Xo -«• C -^ 0 is exact with Xi in X for i = 0,...,n-l, then U
is in X.

Proof: For n = 0 there is nothing to prove. So suppose n > 0. Assuming (a), repeated
application of lemma 3.2 shows that U is in X. Also we have
Ext^(U.W) = Ext^C.W) = 0 for all W in u since X-inj.dim(*/ = 0 and
X-resol.dimC <, n. Therefore by proposition 2.1, it follows that U is in X proving that
(a) implies (b). As (a) follows from (b) by definition of X-resol.dimC, we are done. •

As a first application of this proposition we prove the following

Proposition 3.4. X is an additively closed subcategory of C, that is X = add X.

Proof: Suppose Ci^Cz is in X for two objects Ci and Cz in C. Proceed by induction on
n = X-resol.dim (Ci®Cz). If n = 0, the summands Ci and Cz are in X as X is an
additively closed subcategory of C. Suppose n > 0. Since Ci®Cz is in X, there is an
epimorphism X -»• Ci^Cz -»• 0 with X in X. Therefore we obtain exact sequences
0 -». Li -4- X -»• Ci -»• 0 for i = 1,2 which yield the exact sequence
0 -c LiCLz -» XeX -»• CiCCz -+ 0. Now by Lemma 3.2, we know that LiCLz is in X
and proposition 3.3 shows that X-resol.dim (LiOLz) <, n-1. By the inductive hypothesis
Li and Lz are in X and another application of lemma 3.2 shows that then also Ci and Cz
are in X. •

We are now in position to establish one of the results promised in the
beginning of this section.

Proposition 3.5. An exact sequence 0 - » - A - » - B - » - C - » - 0 from C is in X if any two of A,
B and C are in X.

Proof: Since we already know that X is closed under extensions by lemma 3.1, it suffices
to show that if B is in X then A is in X if and only if C is in X. We first show that if A
and B are in X then C is in X. Choose an X-approximation O - + - Y B — » - X B - » B — » - O for
B. It gives rise to an exact commutative diagram
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0 0

(*) 0 ———r Yg ———- L

XB==XB

i i
0———- A ———- B ———»• C ———> 0i i

0 0

from which we get an exact sequence 0 -«. YB -^ L -^ A -* 0. It follows that L is in X
since YB and A are in X and X is closed under extensions. Therefore C is in X since Xs
is in X.

Suppose now that B and C are in X. Using lemma 3.2, the exact sequence
O — ' L - ^ X B - ^ - C - ^ O from (*) shows that L is in X. Applying the just established
result to the exact sequence 0 -^ YB -^ L ^ A -^ 0, it follows that A is in X. This
completes the proof of the proposition. •

We now turn our attention to u. We begin with the characterization of u as a
subcategory of X, proving that w = X-L n X in C.

Proposition 3.6. The following statements are equivalent for an object C in X.
(a) C is in u.
(b) X-inj.dim C = 0, that is: C is in X-i- n X.
(c) If 0 -»• Yc -<• Xc -» C -*• 0 is any X-approximation of C, then Xc is in &;.

Proof: That (a) implies (b) was seen in corollary 2.2, and it is obvious that (c) implies (a).
Hence we only need to show that (b) implies (c).
Since X-inj.dim C = 0 == X-inj.dim Yc. it follows that X-inj.dim Xc == 0. Our desired result
is therefore a trivial consequence of the following, which proves u = X n u.

Lemma 3.7. The following are equivalent for an object X in X.
(a) X is in u.
(b) X is in u.
(c) X-inj.dim X = 0.

Proof: Again it is obvious that (a) implies (b), and Corollary 2.2 shows that (b) implies
(c). It remains to prove
(c) ==»• (a): Let 0 -*• X -<• W -^ X' -» 0 be an exact sequence in X with W in u which
exists as u is a cogenerator for X. Then by (c) this sequence splits. Therefore X is a
direct summand of W which implies that X is in w as that category is assumed to be
additively closed.
This establishes lemma 3.7 and finishes the proof of proposition 3.6. •
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These results prove the following fact, already announced in the introduction to this
section.

Proposition 3.8. u is an additively closed and exact subcategory of C in which any
monomorphism is admissible. In more detail, let 0 —»• A —*• B -+• C —»• 0 be an exact
sequence in C. Then
(a) B is in a? if A and C are in u, and
(b) C is in u if A and B are in cj.

Proof: We know by now that cj == X^ n X in C. But the statements hold for X by
propositions 3.4 and 3.5, and as X-1- is a right orthogonal complement, it also is an
additively closed and exact subcategory of C in which every monomorphism is admissible.
As all these properties are stable under intersection in C, the result for u follows. •

We sum up the foregoing results as

Theorem 3.9. Let X be an additively closed and exact subcategory of an abelian category
C. Assume that
(i) all epimorphisms from C in X are admissible, and
(ii) X has enough relatively injective objects.

Let &j be an injective cogenerator for X. Then there results a diagram of
additively closed and exact subcategories of C

X ———> X ———- C

t J t(j ———>. dj ———> X-1-

such that
(a) each square is cartesian, i.e.: u = X n X-1- and (j = X n X-1,
(b) in X all mono- or epimorphisms from C are admissible,
(c) in X1 and <y all monomorphisms from C are admissible.

In particular, there is a unique injective cogenerator u for X in C, namely
u = x n X1. •

To reformulate it once again modulo u = X n X-1-, let us say that a sequence
0 —». A —»• B P> C —» 0 of additive functors between additive categories is exact if and
only if A is a full, essential and additively closed subcategory of B and p is equivalent
to the projection functor w : B -+ B/A.

With the notations of theorem 2.8 we have then the following



MAXIMAL COHEN-MACAULAY APPROXIMATIONS 29

Corollary 3.10. The adjoint pairs of functors (i*,i*) and (ji,j1) fit into the commutative
diagram of exact sequences of additive categories

0 ——>u/u-^-^ X/u -^—oX/cj ——r 0i , .11 , i
0 -——(J/&; <--—X/u -t-J—X/(j -—— 0

§4. The category u.

Our aim in this section is to describe under which assumptions u has the
further property that an exact sequence 0 - » - A - + - B - ^ C - + O i s i n < y i f B and C are in
07.

To investigate this problem, we first define d> to be the subcategory of C
consisting of all objects C in C which appear in an exact sequence
0 -»• C -*• Yo -^ ... ̂  Yn —• 0 with each Yi in u. Clearly such an object C is in X since
the Yj are in u C X and the kernel of an epimorphism in X is again in X by proposition
3.5. Also it is obvious that u is a subcategory of o>.

Lemma 4.1. The following statements are equivalent:
(a) An exact sequence 0 - « - A - » - B - < - C - + O i s i n ( j i f B and C are in <y.
(b) w = d>.
The proof is trivial. •

This simple observation explains the relevance of the category <J to our
problem about u. The following description of u is basic to the results in this
paragraph.

Proposition 4.2. For an object C in X the following are equivalent:
(a) C is in u,
(b) X-inj.dim C < oo.

Proof: (a) =» (b). Let 0 -» C -<• Yo -^ ... -^ Yn -^ 0 be exact with each Yi in &?. Since
X-inj.dim <y == 0, it follows by induction on n that X-inj.dim C <, n < oo.
(b) =»• (a): Since C is in X, it admits an cj-hull 0 -*• C -- Y0 -*• X° -<• 0. The assumption
that X-inj.dim C < oo and the fact that X-inj.dim Y0 = 0 imply that X-inj.dim X0 < oo.
Therefore if we show that an object X from X which satisfies X-inj.dim X < oo is '
necessarily in u, we will be done. Indeed we have the following more specific result.

Lemma 4.3. Let X be an object in X, n a nonnegative integer. Then X-inj.dim X ^ n if
and only if there is an exact sequence 0 -«• X -*• Wo -- Wi -^ ... -^ Wn -*• 0 with Wi in
&; for i = 0,...,n.
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Proof: The if-part follows as before from X-inj.dim &» = 0. Hence suppose that X-inj.dim
X == n. Since u is a cogenerator for X, we can construct an exact sequence
0 -, X -^ Wo — ... -«• Wn-i -^ X' -^ 0 in X such that each Wi is in u for i = 0,...,n-l.
As X-inj.dim cj = 0 and X-inj.dim X ^ n by assumption, it follows that for any integer i >
0 and all objects Z in X one has Ext^(Z.X') ^ Ext^Z.X) = 0. But by lemma 3.7 this
shows that X' is already in u as desired.
This concludes the proof of lemma 4.3 and proposition 4.2. •

As a first application we get the following.

Corollary 4.4. u is an additively closed subcategory of C with the property that an exact
sequence 0 - ^ • A - - » • B — * • C — * • O i s i n ( » > i f any two of A, B and C are in <•>.

Proof: Since X is additively closed, it contains with &> also add u. It then follows from
proposition 4.2 that d> - add €j. Also i f O - + • A — * • B — * • C - - * > O i s a n exact sequence in
C with two of A, B and C in u, then all of A, B and C are in X by Proposition 3.5. It
then follows from proposition 4.2 that they are all in u. •

As another immediate consequence of proposition 4.2 we get the following.

Corollary 4.5. The following are equivalent:

(a) <y == d>,

(b) If C is an object in X with X-inj.dim C < oo, then X-inj.dim C = 0.

Proof: Let C be in X. By proposition 4.2 we have that C is in &> if and only if
X-inj.dim C < oo. By Proposition 3.6 we have that C is in &» if and only if
X-inj.dim C = 0.
Hence the equivalence of (a) and (b). •

We now give criteria for the property u = u in terms of the categories u and X
themselves.

Proposition 4.6. The following are equivalent:

(a) df = &>.
(b) If 0 -<• C ̂  Wo -^ Wi -*. 0 is exact in C with Wo and Wi in u, then C is in u.
(c) If 0 ^ C -> Wo -*• Wi -<• ... -^ Wn -. 0 is exact with each Wi in u for i = 0,....n.

then C is in u.
(d) If X is in X and X-inj.dim X < oo, then X is in u.

Proof: (a) =» (b). Since Wo and Wi are objects in &/, they are in X, so C is in X. Clearly
C is in d> which means by the assumption that it is in u. Therefore C is in X n u
which category equals u by Lemma 3.7.
(b) ==» (c) by induction on n.
(c) =» (d). Suppose X is in X with X-inj.dim X < oo. Then by Lemma 4.3, we know there
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is an exact sequence 0 -»• X -*• Wo -<•...-«• Wn -*• 0 with Wi in u for i == O.....n.
Therefore by (c) we have that X is in u.
(d) =>• (a). Let C be an object in (*>. Then we can choose an X-approximation
0 -^ Yc -^ Xc -«• C -» 0 for C and proposition 4.2 shows that X-inj.dim C < oo. But
X-inj.dim Yc == 0 so that X-inj.dim Xc < oo. Therefore Xc is in u by the hypothesis (d),
which shows that C is in cj. •

Now we establish the following.

Proposition 4.7. Let C be an object in d>. Then (^-inj.dim C == X-inj.dim C.

Proof: Since u is a subcategory of X, we have that always cj-inj.dim C <, X-inj.dim C . So
it suffices to show that (j-inj.dim C ^ X-inj.dim C. As C is in u by assumption, we also
know from proposition 4.2 that X-inj.dim C is finite.

To begin with. we prove the proposition when C = X is an object in X n <•>. By
lemma 4.3, we have that then there is an exact sequence 0 -»• X -<• Wo -*•...-»• Wn -» 0
with each Wi in u for i = 0,...,n. Assume that (j-inj.dim X = 0. Since u-inj.dim u = 0, it
follows by induction on n that the exact sequence 0 -^ X -» Wo —• ... -»• Wn —• 0 splits.
Hence X is already in u which implies X-inj.dim X = 0. This result Shows furthermore
that oj-inj.dim X <, n if and only if there is an exact sequence
0 -*• X -*• Wo -*• ... -»• Wn -» 0 with each Wi in <y. But we have seen in lemma 4.3 that
the existence of such an exact sequence is equivalent to X-inj.dim X <, n. Hence we
have shown that u-inj.dim C = X-inj.dim C when C is in X n u.

Assume now that C is an arbitrary object in d>. Let 0 -+ C -^ Y0 — X0 -*. 0 be
an ay-hull of C. Since C and Y0 are in w by assumption, we get that Xc is in &) by
corollary 4.4. Suppose now cj-inj.dim C = 0. Then also u-inj.dim X0 = 0 which implies
that X0 is in u by our previous result. But our current hypothesis then implies that
Ext^X^C) == 0, which means that the chosen ay-hull of C splits. So C is a direct
summand of Y0 in w and is hence itself in &?. as u is additively closed by proposition 3.8.
Therefore X-inj.dim C = 0 by corollary 2.2 and we are done in this case.

Finally suppose c^-inj.dim C = n > 0. Since c^-inj.dim Y0 = 0, it follows that
cj-inj.dim Xc = n-L Therefore X-inj.dim Xc = n~l by our first result, which implies
that X-inj.dim C <, n. Hence (j-inj.dim C ^ X-inj.dim C for all C in (•>, which completes
the proof of the proposition. •

The following is an immediate consequence of our earlier results and
summarizes sufficient conditions for u = u to hold.

Corollary 4.8. Consider the following conditions:
(a) (j-inj.dim X = 0.
(b) cj-inj.dim X = 0,
(c) <»;-inj.dim u = 0,
(d) Every epimorphism W -» W -»• 0 in C with W and W in u admits a section.
(e) u == w.
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Then one has (a) <=>• (b) =»• (c) =^ (d) =»• (e).

Proof. As X and &) are subcategories of X, the implications (b) =»> (a) and (b) ==»• (c) are
trivial. That (a) ==>• (b) follows from the existence of an X-approximation
0 -» Yc -^ Xc -*• C -<• 0 for any object C in X and the fact that u-inj.dim u = X-inj.dim
u = 0. That (c) =»• (d) follows from the fact that the kernel K of any epimorphism W -^'
W —*• 0 between objects from u is by definition an object in <*>. But (c) implies
Ext^(W.K) = 0, whence the exact sequence 0 - » - K - » - W ' - » . W - » 0 splits. The remaining
implication (d) =^ (e) is a special case of proposition 4.2. •

Example 6. A special case in which u = u holds, has been investigated already by
A.Heller [He]. Following him let us say that X in C is a Frobenius category if it satisfies
our usual assumptions of being additively closed and exact in C with every epimorphism
from C in X being admissible and if furthermore u = X n X-L is also a projective
generator for X, which is equivalent to (^P being an injective cogenerator of X09.
This means hence that
(i) X-inj.dim u = X-proj.dim (j = 0 and

(ii) for every object X in X there exists both a monomorphism i : X -*• W as well as an
epimorphism p : W* -*• X with W, W in u such that the objects Kerp and Coki.
calculated in C, are again objects in X.

A.Heller himself gave already some examples of such categories and further such
categories are discussed in [Ha]. Also, it is clear from the definitions that in Example 3
the category X of maximal Cohen-Macaulay R-modules is Frobenius.

§5. Some remarks on the X-resolution dimension of X.

We define X-resol.dim X to be the maximum (including oo) of X-resol.dimC for all
objects C in X. This paragraph is devoted to interpreting some of our previous results
when X-resol.dim X is finite. So for the remainder of this section we assume
X-resol.dim X = d < oo.

Our remarks are based on the following observation.

Lemma 5.1. The following statements are equivalent for an object C in C.
(a) X-inj.dim C < oo,
(b) X-inj.dim C < oo.
Moreover, if X-inj.dim C = m < oo, then X-inj.dim C <, d+m .

Proof: Usual dimension shift argument. •

This lemma implies immediately the following.
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Proposition 5.2. Suppose C is an object in X.
(a) X-inj.dimC < oo if and only if C is in u.
(b) If C is an object in <y, then X-inj.dimC <, d .

Proof: (a): By lemma 5.1, we know that X-inj.dimC < oo if and only if X-inj.dimC < oo.
But by proposition 4.2, we know that X-inj.dimC < oo if and only if C is in &>.
(b): Since X-inj.dim u = 0 by corollary 2.2, the result follows from lemma 5.1. •

As a special case we obtain the following consequence.

Corollary 5.3. If X = C, then we have:
(a) C is in w if and only if inj.dimC < oo.
(b) If C is in u, then inj.dimC <, d. •

Remark that the injective dimension of an object C in C is defined here in terms of
vanishing of the functors Ext^(-.C). As soon as C itself has enough injective objects it
coincides with the notion obtained from the length of a shortest injective resolution.

Applying the foregoing result to our decomposition into X-approximations and
cj-hulls we have the following.

Corollary 5.4. Suppose again X = C and let 0 -»• Yc —• Xc -»• C -c 0 and
0 -* C -*• Y0 -»• X0 -» 0 be an X-approximation and an (j-hull of an object C in C
respectively. Then inj.dim Yc < inj.dim Y0 <, d or both Yc and Y0 are already
injective. •

Finally, consider the case where u = u. Then we have first the following
consequence of lemma 5.1.

Proposition 5.5. Suppose u ==(.). Then the following statements are equivalent for an
object C in X.
(a) C is in u.
(b) X-inj.dim C <, d.
(c) X-inj.dim C < oo.

Proof: (a) =» (b) by proposition 5.2.
(b) => (c) is trivial.
(c) ==> (a): Since X-inj.dim C < oo, we have that X-inj.dim C < oo.
Therefore C is in <•> by proposition 4.2. Hence C is in u since &> = u by assumption. •

As an obvious consequence of this proposition we have the following.
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Corollary 5.6. Suppose X = C and u = <y. Then the following conditions are equivalent
for an object C in C.
(a) C is in u,
(b) inj.dim C ^ d.
(c) inj.dim C < oo. •

§6. More Examples

In this section we describe various situations where the theory we have
developed is applicable.

First we consider a generalization of Example 4.

Example 7. Let R be a commutative noetherian Gorenstein ring of finite dimension d. Let
A be an R-algebra, not necessarily commutative, which is a maximal Cohen-Macaulay R-
module. Set C = mod-A, the category of finitely generated right A-modules, and let X be
the full subcategory of C whose objects are the A-modules which are MCM if considered
as R-modules. Then X is again additively closed, exact and has all its epimorphisms
admissible. Also we have that X = mod-A and that X-resol.dim X = d < oo.

As in Example 4, we let u consist of all A-modules isomorphic to HomR(P.R) for
some finitely generated projective A°P-module P. Again, u is just the additive closure of
<^A/R = HomR(A.R), and it is an injective cogenerator for X.

Applying the results in section 5. we have the following.

Proposition 6.1. Let C be in mod-A.
(a) inj.dim C < oo if and only if C is in <*>.
(b) If C is in ay then inj.dim C <, d.

Proof: See Corollary 5.3. •

As a consequence of this we obtain hence the following.

Corollary 6.2. Let C be in mod-A. Then 0 — Yc -^ Xc -»• C -^ 0, the X-approximation
of C, and 0 -^ C -^ Y0 -»• Xc -*• 0, the <y-hull of C, have the property that Xc and X0

are maximal Cohen-Macaulay R-modules and that inj.dim Yc <. d-1 and inj.dim Y0 <_ d. •

We now turn our attention to the question of when u = u in this context.

Proposition 6.3. The following statements are equivalent for A.
(a) (j = &>.
(b) If X is a A°P-module which is MCM as an R-module and such that

proj.dimAopX < oo, then X is a projective A°P-module.
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Proof: We know by Proposition 4.6 that d> = <y if and only if an exact sequence
0 -<. C -*• Wo -^ ... -^ Wn -^ 0 is in cj as soon as each Wi is in u for i == 0,...n.
(a) =4- (b): Suppose 0 -»• Pm -»•...-» Po -*• X -»• 0 is a projective resolution for a given
A011-module X which is MCM over R. Then

0 -»• HomR(X,R) -r HomR(Po.R) -^ ... -^ HoniR(Pn»,R) ^ 0

is exact in mod-A with each Hemp (Pi, R) in cj for i = 0,...,m. By (a) we have that
Homn(X,R) is necessarily in u. Therefore HoniR(X,R) s: HomR(P.R) for some protective
A01*-module P. which then yields X '== P.
(b) =»• (a): Suppose that X in mod-A is MCM over R and that
0 -^ X -^ Wo -<• ... -»• Wm -<• 0 is an exact sequence with Wi in u for all i = 0,....m.
Then 0 -»• HomR(Wm.R) -» ... -»• HomR(Wo.R) -» HomR(X.R) -^ 0 is exact and Hon^Wi.R)
is a projective A0"-module for each i. The A0"-module HomR(X.R) is still MCM as an R-
module and hence HomR(X.R) '5= P for some projective A011-module by our assumption.
As MCM's are reflexive, X '= HomR(P,R) and X is therefore in w. •

This proposition gives the following generalization of a result of
R. Sharp [Sh].

Corollary 6.4. Suppose A is a commutative ring. Then the following are equivalent for a
finitely generated A-module M.
(a) inj.dimA M < oo.
(b) There is an exact sequence 0 -<• Wm -+ ... -^ Wo -- M -*• 0 with Wi in u for all

i = 0,...,m.

Proof: The equivalence of (a) and (b) is nothing more than the statement that u == u.
But this follows from Proposition 6.3 since it is well-known for commutative rings, that a
maximal Cohen-Macaulay module of finite projective dimension is projective. •

However, if A is not commutative, it is not necessarily true that a A011-module
which is MCM over R and of finite projective dimension over A011 is necessarily
projective. For example, let R be a regular local ring of dimension d > 0 and let A be
the algebra of lower triangular nxn matrices over R with n ^ 2. Then A is a free and
finitely generated R-module and gl.dim A011 = d+1. Let

0 -. p^i -. Pd -....-. Po -» M -. 0

be a projective A011-resolution of a A0"-module M with proj.dinriAop M = d+1. Then
Im(Pd-»-Pd-i) is an MCM over R which is of projective dimension one over A011 and is
hence not A011-projective.

Example 8. Let k be a field and P == k[xo,...,Xn] a polynomial ring over k in n+1 variables
which we grade by assigning arbitrary positive integral weights to the variables. Let I be
a homogeneous ideal in P and set S == P/I which is hence a positively graded k-algebra.
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We assume that S is a Cohen-Macaulay ring. It is known then that there exists a
sequence yi,...,ym of homogeneous elements of strictly positive degrees in I which is a
regular k[xo,...,Xn]-sequence, and such that R = P/(yi,...,ym) has the same dimension as S.
As R is a complete intersection, it is a Corenstein ring and by construction the natural
surjection R —»• S —»• 0 is a degree-preserving homomorphism of rings. Let C = S-grmod
be the category of finitely generated graded S-modules with degree zero graded maps as
morphisms. Also let X be the subcategory of C consisting of all maximal Cohen-Macaulay
modules. In addition to the usual properties, X also satisfies X = C and
X-resol.dim X = n+l-m = d, the dimension of S.

Set <»7s/R == HomR(S.R), which is a dualizing module of S over R, and define u to
be the subcategory of C consisting of all (»/s/R(n) for n in Z. Then u is an injective
cogenerator for X. Moreover we know that X in X is of finite projective dimension if
and only if it is isomorphic to a direct sum ® S(ai).

As in the previous example, this implies cj s= u. We leave it to the reader to
write down in detail what this means for X-approximations. cj-hulls and modules of finite
injective dimension.

We now give our last example.

Examvie 9. Let A -» r be a ring homomorphism with A both left and right noetherian
and r a finitely generated projective A-module on both left and right. Let C == r-mod be
the category of all finitely generated left r-modules and let X consist of all M in C such
that M is a projective A-module. In addition to the usual properties, we have that X
consists of all N in C such that proj.dimA N < oo.

Define u to be the category of all modules isomorphic to HomA(P.A) for some
finitely generated projective r01'-module P. Then u is an injective cogenerator for X. In
general u ^ u, but if all the modules in u are projective r-modules, then we do have
u = u by Corollary 4.8 and in fact X becomes a Frobenius category, see Example 6.
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