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Societe Mathematique de France
2e Serie. Memoire n° 23, 1986, p. 33-60

THE COHOMOLOGY OF MONSKY AND WASHNITZER
Dedicated to B . Dwork on the occasion

of his 60th anniversary
by

Marius van der Put

The Zeta-function of an algebraic variety over a finite field can be expressed
in terms of a Frobenius operator acting on p-adic cohomology groups of this
variety. Those cohomology groups, based on work of B. Dwork, are called the
Monsky-Washnitzer cohomology. The first four sections of this paper give a
survey of the papers of Monsky and Washnitzer. Their work is simplified and
slightly extended by the use af Artin-approximation and some rigid analysis. In
section 5 the connection with Dwork*s work is indicated, Adolphson's index
theorem is given in a different form in section 6 . Dwork*s remarkable formula
for the unit root of an elliptic curve and properties of the solutions of the
hypergeometric differential equation with parameters -=•, •=•, 1 are proved in detail
in section 7.

Resume

La fonction zeta d'une variete algebrique sur un corps fini peut s'exprimer a
1'aide des operateurs de Frobenius sur des groupes de cohomologie p-adique de
cette variete. Ces groupes de cohomologie, qui sont inspires par des travaux de
Dwork, s*appelent la cohomologie de Monsky et Washnitzer. Les quatre premiers
paragraphes developpent cette theorie. L'expose simplifie les papiers de Monsky
et Washnitzer grace a une approximation d'Artin et un peu d'analyse rigide. Le
paragraphe 5 indique le rapport avec les travaux de Dwork. Un theoreme d'indice
due a Adolphson est donne dans une forme plus generate dans le paragraphe 6 . La
fonnule remarquable de Dwork pour le "unit root" d'une courbe elliptique ainsi
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Marl us VAN DER PUT

que des proprietes de 1'equation hypergeometrique a parametres •«, —, 1 sont

montres en detail dans Ie paragraphe 7.

5 1 - Introduction.

The aim of the Monsky-Washnitzer cohomology, .based on and inspired by the work

of B. Dwork, is to find and explicit expression for the Zeta-function of an

algebraic variety X over a finite field k • IF .

N
( 1 . 1 ) Z(X|k;t) «exp( £ -s t ) is this Zeta-function and N denotes the number

s^ l 8 s s

of points of X with valus in r s.

Let R denote a complete discrete valuation ring with R/TTR"k and K«Qt(R) °f

characteristic 0. (e.g. R«W(k)). One tries to find cohomology groups H^X^)

(vectorspaces over K) with an induced action F^ on it, coming from the Frobenius

map x t—> x^ on X, such that:

(1.2) N • K-I^TrKq1^1)8!!!3^^)) (Lefschetz* fixed point formula)

(1.3) Z(X k;t) " H P.(t) n P.(t)"1 where P.(t) -det(1 - tq^^ IH^X^)) .
iodd i ieven

The papers of MW [ 1 1 , 12 ] are mainly concerned with the case: X an affine,

regular variety of dimension n. As we will see, this implies that

H^X^-O for i>n. If one knows that dim H^X^) <» for all i, then (1.3) is

an easy consequence of (1.2). Moreover Z is clearly a rational function in this

case. However, the authors MW have not shown that the H (X;K) are finite dimen-

sional. They work instead with nuclear operators L on avectorspace M over K.

The definition can be given as follows: An eigenvalue of L is a \€K " the

algebraic closure of K, such that the minimum polynomial g of X has the property

ker(g(L)) +0.
A K-linear map L: M—^ M is called nuclear if:

(i) For every eigenvalue \^0 there exists a decomposition M - A O B with A,B

vectorspaces invariant under L; B " U ker(g(L) ) is finite-dimensional
n^l

and g(L) is bijective on A.

(ii) The nonzero eigenvalues of L, form a finite set or a sequence with

limit 0.

B above is the generalized eigenspace by X and A equals H im(g(L) )• For
n > 1
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n € » we denote by M the sum of the generalized eigenspaces of L with

eigenvalues X, ] x | > M11. Then dim M <oo. Define now Tr(L8) « lim Trd^lM ) and""" n nn—»-<»
det(1- tL)« lim det(1-tL|M ). The limits exist and det(l-tL) is an entire, n

function on K. Moreover

(1.4) det(1-tL)«exp(- £ Il̂ I-it8)
s> 1 s

MW prove that q^ is nuclear. So (1.2) implies (1.3) and Z(X|k;t) is a

meromorphic function on all of K. The power series Z(X|k;t) is also convergent

w.r.t. the archimedian valuation on Q. A criterium of Dwork-Borel then shows that

Z(X|k;t) is actually a rational function.

We note the following property of nuclear operators: Let L.: M. —>• M.

( 1 s 1 , 2 ) be nuclear, let the linear map a: M. —>• M« satisfy aL. "L^a, then the

induces maps L,. on ker a and L« on cokerex are nuclear. Moreover:

3 ,,)i 3
(1.5) n detO-tL.r 1 / « 1 and £ Tr(L.)«0.

i«0 1 i«0 1

§ 2. Definition of the Monsky-Washnitzer cohomology.

Let X be a smooth affine variety over k sr r with coordinate ring A.

According to a result of n Elkik [15 ] there exists a R-algebra B, finitely

generated and smooth over R such that B/'n'B'̂  A.

Write B «R[t^,...,t^]/(f ,...,f ). One replaces B by the ring

-L .̂

A«R<t,,. . . , t > /(f,...,f ), where R<t,,..., t > consists of the power• n i m I n

series £a t01 such that all a €R and for some C >0 and P,0<P < 1 , one has

la^ l^Cpi 0 1 ! for all a.

The elements of R<t.,..,t >+are called overconvergent power series. Every

element converges in a polydisc { ( t ^ , . . . , t )€K n | | t ^ [<P . , . . . , | t | < P } with< n 1 — 1 n — n
all P. > 1 .

The ring A satisfies A/'nA«A and A is complete in some weak sense. For our

purposes we make the following simplifying definition.

(2.1) Definition. A weakly complete finitely generated (w.c.f.g) algebra over R

is a homomorphic image of some R <x,,.. . ,x > +.1 n
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(2.2) Proposition. R<x^,...,x > satisfies Weierstrass* preparation and division.

The proof of (2.2) contains no surprises. Among the consequences are:

R < X ,... ,X > + noetherean and R[X,,... ,X ] -^ R < X,,... .X > + is flat.1 n l n 1 n

(2.3) For A«R<t,,...,t > /(f.,...,f ) one defines a nodule of differentialsi n i m
D1(A) - Adt,+ ... + Adt / the A-submodule generated by

• n Sf. 3f.

^^••••'sr-^nl1-1—^i n

This module is the universal finite module of differentials of A/R. It does not

depend on the chosen representation of A. It is easily seen that D (A) 9 A"ft__ .
1 - ̂

The module ft_ is projective and its rank is equal to the dimension d of A.
A/k

Using flatness one can conclude that D (A) is also projective of rank d. An easier

argument uses the Jacobian-criterion. Let I be the ideal in A generated by the

(n-d) x (n-d)-minors of (-r-). Then (n,!) •A since A/k is regular of dimension d.
dt

Hence I contains an element of the form (1-na) with a € A . The infinite series

1 + na ^-n^2 + ... converges in A and so 1 € I. This implies that D (A) is a

projective module of rank d over A.

As usual one makes the de Rham-complex D(A):

0-^D°(A) d- D^^D^A)-*-.. with D^A) • A'T)1 (a) and d1 - the exterior

differentiation. The i -cohomology group of the complex D(A) is denoted by

H^R) or H^A/R). Further H^X^): -H^A/iO: •H^A/R) <^ K is the definition of

the Monsky-Washuitzer cohomology. The notations are justified in (2 .4) .

(2.4) Unicity and the lifting of the Frobenius map.

This section contains some new results. In particular the technical assumption

"very smooth" in the MW-papers is removed with the help of a special case of

Artin-approximation.

We write R<t,,...,t > for the ring of power series Z a t" with a € R andi n a a ,
lim a «0. Clearly R<t ,...,t > is the n-adic completion of R<t ....,t > .

For any w.c.f.g. algebra A we write A •lim A/T^A for its TT-adic completion.

(2.4.1) Proposition. R<t-,...,t > has the Artin-approximation property.

The statement means the following: "Let f^....f^ belong to

R<X^...»X^Y^,.. . ,Y^> . let e > 0 and let y^....y €R<X^ , . . . .X > satisfy

f^(X^,...,X ,y^,.. .,y.) • 0 for i-i,...,m. There are y ,... ,y, € R< X.,... ,X >
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with Hy^-yjl ^ e (i'l,...^) and f^(X^,... ,X^,y^,... ,y^) «0 for i«1.....m".

Artin*s proof in [2] for analytic local rings can be adapted to the situation

above. A complete proof in a somewhat more general situation (i.e. R need not be

discrete) is given in [4]. As in l2] there are some nice corollaries.

A
(2.4.2) Corollary. Given a diagram of w.c.f.g. algebra's f|

and a morphism G: A—*" 6 with r * g o u and e > 0, - / T ̂ __ n

there exists a morphism u: A —>"B with f s g o u and

||u-u|[^.

A
(2.4.3) Corollary. Given a diagram of w.c.f.g algebra's ft

and a morphism u: A —»-B with g « u o f and e > 0, C —»• B

there exists a morphism u: A —>-B with g « u o f and

||u-u||£e.
N.B. The norms in (2 .4 .1 ) - ( 2 . 4 .3 ) are induced by some presentation of the algebra's

Definition. A w.c.f.g. algebra A is called a lift of A if A is flat over R and

if A/TTA S=A.

(2.4.4) Theorem. Let A/k be smooth and finitely generated. There exists a lift

A of_ A. Moreover:

(i) Every lift of A ̂  R-isomorphic to A.

(ii) Let C/k be smooth and finitely generated, let C be a lift of C

and let f: A—»-C be a morphism of k-algebra's. There exists an

R-homomorphism F: A—>• C lifting f.

(iii) Let B be a w.c.f .g algebra and F ,F.: A—*• B two homomorphisms

with F « F mod TT. The induced mappings

(F^, (F^ : D(A) 8^ K—<-D(B) 8^ K are homotopic.

Proof, (i) The existence of A. a lift of A, has already been shown. From A/R flat

and A/nA smooth over R/TTR it follows that A/T^A is smooth over R/TT^ for all nS 1 .

Let B denote another lift of A. Using that A/n A is smooth over R / n R one constructs

a projective system of R-homomorphisms h : A/T^A ——^ B / T T B with h « id. The limit

h s lim h can be approximated by an R-homomorphism h: A—^B such that (h mod n)

is an isomorphism. As a consequence of the Weierstrass theorems one finds that h

is surjective. Since B has no n-torsion and (h mod n) is bijective one sees that

h is also injective.

(ii) The same method yields a lift F: A—>• C of f. This F can be approximated by

a lift F: A—>• C according to (2.4.3).
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(iii) Suppose that one has a morphism F: A——»-B<T> such that a oF"F and
A 0 0

a. eF«F. where a ,a.: B<T> —•*-B are the B-algebra homomorphisms given

by a (T) - 0 and a (T) - 1.

Then it suffices to verify that (a ).,(a,).: DCB-cT^) • K—»-D(B) 6 K. o * i *
are homo topic. The space Dq(B<T> • K) is the direct sum of

B < T > + C (Dq(B) 8 K) and B < T > + dT ̂  (D^CB) C K). The homotopy {6 }

between (a )^ and (a-)^ is given by: 6 is zero on the first vectorspace and

5 « integration with respect to T on the second vectorspace.

Now the existence of the map F. Put S « IT T and consider the homomorphism

h: A—*•£ US MS2 -nS) given by

F,(a)-Fo(a)
h(a) «F^(a) +-•——^—— S (equals F^(a) (1 - T) + F^ (a)T) .

Since A/TT A is smooth over R / T T K for every n and since B [ S ] equals

lim B IS Il/OT^CS2 -TiS)11) one obtains a norphism h: A —»-B |S 1 which lifts h.

Note that BiSl c S < T > and that B < T > is the completion of B < T > . So we have

a morphism F: A—>^<1>^)^ with F mod T(1 - T) " (1 - T)F + T F,.
+ °Applying (2.4.2) to A, B<T> and the ideal T (1 -T ) one obtains the required map

F: A — ^ • B < T > + .

(2.4.5.) Corollary. For smooth, finitely generated k-algebra * s A the map

A I—>-H'(A;K) is well defined and functorial.

$3. The map î .

(3.1) Proposition. Let BcA denote a finite ringextension of w.c.f.g. algebra's.

Suppose that B is regular and has no zero-divisors and that B is flat over R.

There exists a "trace map"S . : D(A)—»-D(B).

Proof. The natural map D(B) —»-D(A) extends to an isomorphism

D(B) C Qt(A)——<-D(A) C Qt(A). The trace map is defined by:

S^g: D(A)—-D(A) •̂  Qt(A)—rD(B) ^ Qt(A)—^D(B) Cg Qt(B) where the last map

is ^/g) 8 TrOt(A)/Ot(B)" one has to 8how that ^/B maps D^ into D^B^•

The module D(B) is projective and B is normal. Hence 0 D(B) "D(B)
hgtyl £

and it suffices to show that S^.g(D(A))cD(B) for every prime ideal j> of height 1 .

For D (A) "A this is well known. For D (A) one uses an exact sequence:

0—-D^B) 6 A—-D^A) 8 A —"ft1 . —"0. According to a result of R. Berger (3l
£ £
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1 s

the universal module of differentials ft y- equals .n A /(a^) and Discr (A /B )

"i^ ^i^V

From D^B) • A cD1 (A) • A cD1 (B) C n (a.)"^ and the classical
£ £ i-1 1 £

definition of Discr (A /B ) it follows that S./-(D (A)) lies in D (B) 6 B . The
a £ £ A/B p

case D*(A) is similar.

(3.2.) Definition and Theorem.

Let A be a lift of A/k, which is smooth and finitely generated, let F be a lift

of the Frobenius of A. Define ^: D(A) —»• D(A) bv^

^; D(A) ^^t D(F(A)) -<—:=— D(A). One has the following properties:

(i) ^(F(a)o)) «aip(u)) for a € A and O)€D(A).
(ii) ^(D^A)) cD^A) and ^) commutes with the differentiation d on D(A) .

(iii) 1^ o F s multiplication by q", where q « ^ k and n « dim A.

(iv) F^ is bijective on H*(A;K) and ̂  " q r^ .

proof (i),(ii) and (iii) are obvious if one notes that [A: F(A)]« [A : A^ " q"

with q « § k and n « dim A.

(iv) This is more difficult. Let us assume that Qt(A) is a Galois-extension of

Qt(FA) with group G. Every o € G maps A onto A and o" id(mod n). From (2.4.4) it

follows that o^ on H'(A;K) is also the identity. Let i denote the inclusion

FA<=A. From i o S..,_., ss I o: D(A)—»-D(A) it follows that
A/FA o€G

i* ° ^A/FA^ H'(A5K)—^•(A^) is multiplication by q".

Hence (S / .).. and ^>. are injective. Further 4/. o F. • q" holds according to (iii).A/FA x x x x

Hence î  and F^ are bijective.

If Qt(A) is not a Galois-extension of Qt(FA) then one works with FACACC,

where C is the integral closure of FA in a Galois-extension containing Qt(A). A

variant of the argument above will again show that ^A /pA^x ls injective.

(3.3) Proposition i|/: D(A) 8 K—'•D(A) 6 K is nuclear.

This proposition is a special case of the following lemma.

(3.4) Lemma and Definition. Let A be a w.c.f.g. R-algebra and F a lift of the

Frobenius of A. An additive map 6: M —»• M of a finitely generated A-module M

in itself is called a Dwork operator J f̂ 9 (F (a)m) "a 6 (m) for all a € A and m € M.

Any Dwork operator 6 induces a nuclear nap 6: M • K ——- M • K.
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Proof- One nay suppose that A « R < t^ ,...,t^> +. The module M has a finite free

resolution 0—<- Mg—»-M^ —>... —>H^—>H—>Q and on each M. one can construct
a Dwork operator 6. such that the diagram

O-.M^-.M^——... —.M^—.M—.O

|e |e , |e Ie+ s T s-1 4- o 4-

0—^—>H^—>... —rM^—i-M—>0

is commutative.

Hence we may suppose that M is a free module over A with basis e,....,e .
i m

The Dwork operator 6 is determined by

{e( t ep |i - 1,...,m; a-(c^,.. . ,a ); 0^a.<q for all j).

since 9( £ F(a )t\ ) -Z a. _ eCtY).
a<(q.q,...q) a'1 1 atl l

i-1»...,m

For r > 1 we write A(r) for the subspace of A consisting of the power series

I a^t with lim |a j r1 0 1 « 0. This A(r) is a Banach space with respect to the

norm ||£ a^t01!]- naxlajr1011. Put M(r) - .£ A(r)e^. This is also a Banach space.

For r close enough to 1 one has 9(M(r)) cMCr^ and 6 1 : M(r)—^(r^ is continuous.

The inclusion map MCr11) c—^M(r) is completely continuous, i.e. the uniform limit
of linear maps of finite rank, and so is

^
6^: M(r)———»-M(r ) c——-M(r). It is well known that a completely continuous

endomorphism of a Banach space is nuclear. For all r with 1 < r< r^ the map 6 is
nuclear. The trace of 6y may be calculated w.r.t. any orthogonal basis

(b |n^1) of M(r). If 6 (b ) - ? \ b ( n>1 ) then tr(6 )" ? A .
n r n n-1 n»°1 m — r ^ n,n

The spaces M(r) have a conmon orthogonal basis, namely {t°e. | i " 1,... ,m; aEl^11}.
^ o

Hence tr(e^) for 1 <r^r does not depend on r and similar for tr(e11) and

det (1- t ep. An easy calculation shows that 6 « lim 6 : M" U M(r)—>-M is also
——»• r r>1

nuclear and that det(1 - t6) -det(1 - t6 ) for 1 < r< r .r — o

SA. The Lefschetz theorem.

In this we will prove the formula (1.2). It suffices to do this for s- 1 .

( 4-1) Lefachetz fixed point formula. Le^ A/k be smooth and integral of dimension n.
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Let N(A) denote the number of k-homomorphisms A—^k-P . Then

N(A) • ̂  (-D^qY;1 IH^K)). q

i mr\ "1«0

Proof. We remark that the formula makes sense, since ^-q1^1 is nuclear on each

H (A;K). The righthandside can be rewritten as £ (-1)1 Tr^lD^A) • K). We write
L(A) for this expression.

Choose elements f^,...,? € A such that:

(i) D(f^),...,D(? ) is a covering of Spec (A).

(ii) D(fJ contains at most one k"F -valued point.

(iii) D(f^f.) with i+j contains no k-valued points.

(N.B. For ?€A we denote {^C Spec(A) |?^} by D(f) as usual.)

According to J. Tate, the sheaf D( ) • K is acyclic w.r.t. finite affinoid

coverings. The implies the following exact sequence:

0—^D(A) 9 K—^ D(A<1 ̂  ft K—^ • D(A<———>+) « K—^...
1 'i i<J ^i'j

In particular L(A) « I LCA-y ) - Z L(A- ̂  ) + ...
i ^i i<j t^fj

It suffices to give the proof of (4.1) in two special cases, namely:

(4.1.0) Lemma. _If N(A) «0 then L(A) «0

( 4 . 1 . 1 ) Lemma. If N(A) • 1 then there exists TgA- {0} such that N(A,.) •LCA-p) « 1 .

Proof of (4.10). Let 6: M—»-M be any Dwork operator. For a € A we denote by L
the multiplication on M by a. Consider the commutative diagram

The maps induced by 6 o L^ and L^ o 6 on ker(L ) and coker (L ) are 0. Hence

Tr(eoL^) «Tr(L^o 6) for every a € A . So Tr(6 o Ly , . ^ ) « 0 for every a € A . The

condition N(A) • 0 implies that the ideal 7 in A generated by all "a^a equals A.

Then J, the ideal in A generated by all F(a) - a, is also the unit ideal. Write
s s

1 - I b^(F(a^)-a^). Then 6 • ^ (e ° S^ ° ̂ (a.) • a. and 80 Tr(e) " °- The ^ecial

case e -^ and M'D^A) of the above implies L(A) « 0.
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Proof of (4.1.1) . The proof of MW requires the Gysin exact sequence* Our proof

requires far less since we can localize the problem at a suitable neighbourhood

of the k-valued point of A. We may suppose that A has the form

A-K[X^...,XU/(r^,...,f) such that

(i) (0,...,0) is the only k-rational point of Spec (A).

(ii) f. •X. + order ^ 2.

(iii)det((^)J^).i

Put A-R<X.». . .X .Y^/Cf .»...,f ,g Y - 1 ) and define the complex C by the« m n+l m

exact sequence 0—»-D(A)<K—»-D(A<X > ) 8 K — * - C — * - 0 . There is a well-defined
n ^ ^degree 1 morphism T: D(A/X ) • K—»-C given by (D l——»-the image of u A —— in C,

where ^€D(A) • K has image u in D(A/X ) 9 K. n
n

If one shows that T induces an isomorphism on the cohomology groups then

L(A) -L(A/X^) since L(A^ ) -N(A» ) • 0.
— n n n —

Further N(A) "N(A/X ) - 1 and by induction to the dimension of A formula (4 .1 .1 )

follow.

In a more general situation MW prove that T is a quasi-isomorphism of

complexes. The Gysin exact sequence then follows. Our special case seems easier to

handle. First a lemma.

(4.1.2) Lemma. There exists a residue map Res: A<X~ > 8 K—»-A/X 6 K.———— ———————————————————i- n n
It has the properties: (i) Res o 3/3X "0; (ii) every element of A < X > 0 K can

be written as a X""1 + 3/3X (F) with a € A 9 K and F € A < X ~ 1 > + 8 K.
————————— -i + n "a?— —— n

(iii) JJFG c A < X ' > 8 K and — € A « K then G € A 9 K.
n

Proof. As before A - R < X , , . . . , X , Y > /(f , , . . . , £ ,gY-l) and-——-— i m n+1 ED

A" lim A/(X.,...,X ) 8 « A [ T,,...,T 1AT.-X,,...,T-X ) is easily seen to be<i i m i m l i m m

R [ X,,... ,X I . The derivations -r^ (i " 1,... ,n) on A extend to A « R I X,,... ,X 1i n OA. 1 ni ^«
and they are the obvious derivations of X/R. Let R SX,, . . . ,X ] <X > denote the

-1 acompletion of R EX, ,... ,X 1 [X ] with respect to the TT-adic topology. Again -r^i n n ^ . dx
extends in a unique continuous way. Further A < X > is a subring of n

-1 " a -1 +R|[X,,...,X I <X > and the two derivations ^— coincide on A < X > . LetI n n 3X n
-1 •'- 8C n

us first prove part (iii): G € A < X > with — € A can be expanded asn dA,n
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G » I G^(X^,...,X^)X^ in R l X ^ . . . . , X ^ ]| <X^1 > . Clearly G € R [X^ , . . . ,X^ 1 and

(iii) follows f romA«A<X~ > nR[[X,,...,X I. In the sequel we will write ' for
3 n 1 n

— . We note the following formula for a € A and k^ 1 :
dXn

a a a* a^"0 l a00

-^"- (———^-T^———a———k^---*^———— ) +^———— •X" (k-DX" • (k-DCk^X" - (k-1)!X (k-1)!Xn n n n n

(k) (k)
For a € A also ——-€A since ———c (A 8 K) D R [X ,... ,X 1 «A.

Let G^ I a, X"^ be a general element of A<X~ 1 >+ 8 K, then G s F* +a X"1 where. k n ° n ' n

o° aJ^ °o a,, a, ai^-1)
a = z TT-TTr and F SB - r (————iT-T -*- ————-———T-7 + • • • • • • ft i \ , v ) •

k=1 <k-1)! k=1 (k-1)X^~1 (k-1)(k-2)X^-2 <k-1) !xn

It is an exercise to show that the two infinite sums converge to elements a € A 8 K

and F€A<X"^ 1 >^ 9 K. This proves (ii).

The map Res is defined by Res(G) *a mod X €(A/X )» K. One easily sees that Resn n
is well-defined and has property (i).

Continuartion of the proof of ( 4 . 1 . 1 ) .

One defines Res: C—>-D(A/X ) 8 K» a morphism of complexes by defining the

Res of a q-form of D ( A < X ~ 1 > + ) 9 K;
n

Res( Z a. dx. A ... A d x . + I b.dx. A. .Adx. Adx )8:

i « < . . . < i < n 1 ^ lq i , < . . . < i _ < n x l1 lq-1 n

I Res(b.) dx. A . . . A d x . € D(A/X )q~1 » K.
i < ... < i ^ < n x ^ ^-q-l n

Clearly R e s o T as id. In order to show that T o Res is the identity on the cohomology

groups one must prove: "If ( l ) €D l (A<X > ) 18 K satisfies Res (oo) « 0 and

duiCC^^A) 8 K then (D " dn + T}, with n € D01"1 (A < X"1 > + ) fi K and n € D^A) 6 K."o 1 o n 1

We use the notation as above. Every Res (b.) «0 and so b. 8 B 8 / 3 X (B.) for some
1 + n 1 l i n i

B. € A < X > 8 K. Put n • ( - 1 ) - I B.dx. A ... A d x .
1 n ° i, < ... <i ^ <n 1 ^ lq-^

Then ui - dn has the form I a. dx. A ... A dx. . Since d(o)-dn ) lies in
0 i < ... < i <n x ^ ^ o

D(A)q+1 6 K it follows that all —^€A. Hence all a. € A .
°\ 1
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Remark. We have now established a complete proof of the formula's ( 1 . 2 ) and ( 1 . 3 )
of the introduction. In the following sections we will consider explicit cases of
the M.W. Cohomology and we try to explain the connection with work of B. Dwork,
N. Katz and others which are often written in a different "language". In particular
in $7 we give a proof of B. Dwork's formula for the Zeta function of an elliptic
curve in the terminology of the M.W. Cohomology using ideas from N. Katz [ 9 ] .

§5. Hypersurfaces.

Let XcP" be a non-singular hypersurface of degree d defined over a field K

of characteristic 0. In the calculation of the de Rham cohomology groups

H^dP11^) we follow [8].

According to a theorem of A. Grothendieck we may suppose that K"^ and then

IL.,«H1 (-,t). We will write H1 for H1. (-,<!;) for the singular cohomology groups

and H/ x for the singular cohomology with compact support. We gather some facts
' i iabout H, . and H .

(5.1) The exact sequence of a closed subset (in our case).

... —^j (P11 -X) —.H^1 (P11) ——-H*1'1 (X) —^H^ (P" -X) —^(P11) -^(X)-. ,

(5.2) H3^?11) • ((; if i is even and 0 ̂  i S 2n and H^P") - 0 for the other values of i.

(5.3) Poincare duality (in our case): H211'"^?11 -X) ^ H^ ^(I^-X)

(5.4) Lefschetz* theorem H^P11) —»• H^X) is an isomorphism for q ^ n - 2 and is

injective for q « n - 1 .

(5.5) H^P^X) "0 for q>n because P^X is affine and has dimension n.

(5.6) Proposition. H^ (P" -X) « 0 for q + 0,n.

For even n, the map H" (P^X) —^p1^ is an isomorphism.

For odd n, 0—^H^^(P"-X)—-H^^X)—^—> 0 is exact.

dim H^P11^) .^-((d- 1)"^ (-I)"*1)

Remark. The first three statements are consequences of (5.1)-(5.5). The calculation

of dim H^T.(P ~X) can be done as in [8]. We note that the case n«2 corresponds to:
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the genus g of X is ^"^^"^ and H- (X) has dimension 2g.

(5.7) We return now to X <= p a non-singular hypersurface of degree d, defined

by f, over a the field k SB F . Let A denote the coordinate-ring of the affine open

set U^I^-X.

Let K denote the quotient field of R«W(k). Then U-P^-VCf) is open affine
Iv

and we know its de Rham-cohomology.

W e h a v e A = ( k [ X ,... ,X ]-r) . C>(U) » (K[X ,... ,X D ando n t o n i o

A^d^X , . . . ,X ,Y > ' / ( Y f - 1 ) ) where ( ) means the subring consisting of the

homogeneous elements of degree 0. One observes that 0(U) is a dense subring of

A S K . This induces a morphism of complexes T: ft'(0(U)/K)—>-D(A) 8 K. The first

complex defines the de Rham-cohomology groups IL.-(U;K) and the second one defines
- _ UK

the MW groups H (U;K). The map T is injective and has dense image. From the papers

of N. Katz [8] and P. Monsky [ 1 3 ] one can draw the conclusion that T is an

isomorphism on the cohomology. No easy proof seems to be available. Assuming that

T is a quasi-isomorphism, one has:

(i) l̂ dhK) -0 for i+0,n ; H°(U;K) «K and H^T^K) has dimension

^((d-l)11^-!)11*1)
u

(ii) Z(U/k;t) = (1 -q^detO - q^t/Au;^) M)n+ .

(iii) Since Z(U/k;t)Z(X/k;t) = ZC^/k^) = n d-q1^)'1 one finds an
i=o

expression for Z(X/k;t). 7 .x

In particular N (X) »-3—————^-1 + (-I)11'*'1 I Y® where Y , , . . . .Yo are
s q 5 - ! x 1 &

essentially the eigenvalues of F^ on Î d^K) .

The Zeta function of X/k is so determined by the action of some Frobenius on a

finite-dimensional vectorspace over K. In the work of B. Dwork [ 6 ] also the

Frobenius on a finite-dimensional vectorspace W determines the Zeta-function.

In N. Katz [8] and P. Monsky [ 1 3 ] the connection between the spaces Vs, H" (U)

and H (U;K) is given in more detail.

(5.8) The trace-formula of Dwork and Reich.

The situation differs slightly from the one in (5.7). Let f Ck[X , . . . ,X ], To n
homogeneous of degree d, k = P . One wants to count the number of r -rational

points of U C P n -V(X ...X T). The substitution x = 1 yields q

U^A ^-V(X^.. .X^ T(1.X^.. . . .X^)).
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Let f€w(k) [X , .« . ,X ] be a homogeneous lift of ?. The corresponding w.c.f.g.

algebra B is R<X.,...,X ,———„ ./. „————^r >+• Then• n A« • • •A r \ i y A « , * « . , A )l n i n

s l̂ îsD ( B ) - Z B — — - A . . . A — — - (free B-module) .
^•••^s ^l ^s

The action of F on B is given by F(X.) •X?. We note that

dx- dX, dX. dX^
F(——— A...A ———) «q ——'- A...A -—s and there is similar formula for ^i since

î, x!, ^i ^

* . F - q".

The corresponding zeta-function Z(U/k;t) is equal to

n s ^-n^ n s (gX-l)84'1n det(1-t^/D'CB) B K ) ' '/ « H det(1 - tq^/B 6 K)
s"o s-o

Let H denote the hypersurface V(7) c 3P11 and let H denote the open subset of

H consisting of the points where all coordinates are + 0. Then

zcH^o-za^tr^alp11)^).
With the notation lh(t)] » , ^ \ one then finds the trace formula of Dwork and

Reich: (see [14 ] ) .

Z(H^/k;t) • [det(1^t^/BeK)j(^

$6. De Rham cohomology on affinoid spaces.

The field K is supposed to have characteristic zero. An affinoid space X over

K can in many cases be embedded in the interior of another affinoid space Y, in

notation X c c Y. If X has this property one defines ^(X) e lim 0(U) where U runs

in the set of all affinoid spaces with X c: c U c Y. We call <9(X) an overconvergent

representation of 0(X). The algebra 0(X) has the form K<t.,...,t > /(some ideal)

and OW^ is dense in <9(X) .

In analogy with earlier notations K<c.,...,t > denotes the set of all power

series in t-,...,t , coefficients in K, converging on a polydisk

{(t,»...,t ) € K"! |tj < r,,...,|t | < r } with all r. > 1 . Using 0(X) one definesl n • 1 ' — • . ' n — n x ,
a de Rham complex O^^X)'*" -»- ft ^(X)^ -*-.... and cohomology groups H1 (X) which

are vectorspaces over K. The groups depend only on X (again by Artin-approxination).

For the special case that X is a lift of a non-singular variety X over k"F the
+ i i — q

overconvergent representation 0(X) exists and moreover H^p(X) ^ H (X;K).
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For more complicated regular affinoid spaces X, the groups H_-(X) seem still to
have a nice geometric meaning. One result to illustrate is the following
proposition which is an extension of a theorem of A. Adolphson. [ 1 ] .

( 6 . 1 ) Proposition. Let X be a connected, non-singular, 1-dimensional affinoid space.
Then X can be embedded in a complete non-singular curve C such that C - X is the
disjoint union of open disks B , , . . . , B . Choose points a. € B. (i « 1 , . . . , n ) . Then
H° (X) = K, dim H1 (X) « 2g + (n - 1) where g denotes the genus of C and H^(X) « 0 for
i> 1 .

Moreover IL-(X) coincides with the algebraic de Rham-cohomology group
H ^ ( C - { a , , . . . . a ^ ) .

S7. The Legendre family of elliptic curves.

Let p be a prime number with p4 2. Legendre*s family in characteristic p is:

E"Proj(R[X ,X , X ^ ] / ( X ^ - X ^ ( X ^ - X ^ ) ( X ^ - X X ^ ) ) ) ——-Spec(R)

where R«P [X, , 1 .3 . For every value u(+0.1) of X in a finite field P with
p A \ '~^/ i

q"p the fiber above v is the elliptic curve E over P . We write E »E - {«»)

for the corresponding affine curve **y • x(x -IXx- v)". In this section we aim at

an explicit, calculation of the Zetafunction of E . The obvious formula
^ « r"

Z(E /P ;t) « (1 - t)~ Z(E*/P ; t) shows that we can restrict our attention to theV C[ p q
affine curve E*. To the latter one can apply the Monsky-Washnitzer cohomology.

(7.1) Proposition. Let K denote the quotient field of W(P ). Then H (E*;K) " K and

H (E*;K) is a 2-dimensional vectorspace over K. The images of -^and x— form a

basis of H^E^K).

Proof. Let y € W ( P ) have residue y € P . Put A « A -W(P )<x , y> /(y2-x(x-1) (x-p)).———— ~ q q j^ q ^
Then D1 (A) K A dx- is easily seen and one has to show that d: A B K——^ (A 8 K) —c

has kernel K and cokernel ̂  K2. The dense subring A^-W(P ) [X,Y](y2-x(x-1) (x-j^))

of A has the property:

d"d : A 8 K—^ (A • K) dx has kernel K and a cokernel of dimension 2 representedoo oo oo y

by K "^^K x dx-. This easily follows from the explicit formula for d, namely

d(a^(x)+a,(x)y) "{a^(x)y*a^(x)x(x-1)(x-^)+a^(x)(| x^d+^x+j)} ̂  . In order

to compare this with the situation for A we give A some topology.
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Let p > 1 and put W(T ) <x,y; p ,p > « the ring of all power series £ a X"^
q ^ 2n+3m nta

with all a € W(T ) and lim |a |p -0. The norm of the power seriesn,m q n,m

£ a xV1 is denoted by || £ a xV^Land equals max|a Ip211*3". We defineHyOi n,m p n^m

A "W(T ) <X,Y;P2,P3>/(y2-x(x-1)(x-u)) and || ||. denotes the induced normonA .
p q -w p P

We note that A? and A? 6 K are complete w.r.t. this norm || ||. If p is a rational

power of p then A« • K is an affinoid algebra and || || is its spectral norm. Now

A«lim A « U A is given the direct limit topology. This topology is the

strongest one on A such that all the inclusions A c—». A are continuous. In

particular, a subset F of A is closed if and only if F O A is closed in A for all

p > 1 . This direct limit topology is also used on A 8 K and A • K — .
—1 +

We need still another ring, namely W(T ) [T l<T >' "the union of

W(T )IT]l<T~1 ;p> for all p > 1 . where W(T )ITl<^1;p> consists of all Laurent-
Q Q

series £ a T11 with a € W(T ) for all n and lim |a IP"") 0.
n€2 n n q n—»--co n

On W(F ) I IT ]<T~ 1 ;p> we use the norm || ||* given by
q P

|| £ a T"]! «max( nax|a. |, max|a |p ).
n€2 n P n ^ o n . n < o n

There exists a wellknown embedding A —^W(P XTll- 'cT"1 ;? > given by <p(X) " T~

and ip(Y) "^/(l -T^d -^T2).

(7.2) Lemma. For f € A a n d y > ( f ) « £ c T11 one has ||f|| -||(p(f)||* and moreover———— —— p —— ti ————— p p ———————'———

||y>(f)||*- max(|c Ip'").
P n ̂  o n

Proof, f can uniquely be written as £ a X11 + £ a* X^ with all a »a1 €W(T ).———— n^o n n^o " n n q

Then ||f!| •max(max|a |p n. max|a1 Ip2"'*'3). For tp(f) one finds the formulap n n

<p(f)«£ a T"21^ a* T"211""3 /(I-T2^!-^ T2). The development of /(1-T2) (1-uT2)n n ^ •^

uses only positive, even powers of T. From this the statements follow easily.

(7.3) Lenma. The image of d: A 8 K—^ (A 6 K) dx is closed.

^
Proof. According to the definition of the topology on (A 6 K)—, one has to prove
——— ^ dx
the following statement: "Let oj «d(f ) be a sequence in (A % K)— converging to. m m p y
w € (A 8 K)— w.r.t. the norm || || . Then a) - d(f) for some f € A 6 K".p y p

In proving this we may suppose that (p(f ) € W ( T ) ( T | < T > < K has nom q
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constant term. So <p(f ) s £ f (n)!". Then a) has image (p(u) ) ^dC^pCf )) «m ^o m m ° m m

£nf (n)T11"' dT. Choose a p, with 1 < p, < p. Then ||f || p, «m 1 1 m l
p

« sup |f (n^p"^ sup (|n f (n)| P"11) (—r(—) "n) ^ C||w ||p where the constant C
n < o 1 1 1 ' n<o m | n | P ^ n

depends only on p and p.. In particular f €Ap, fl K and the sequence {f } is a1 m l m
Cauchy-sequence w.r.t. || Up.. The limit f«=lim f lies in Ap, 8 K and satisfies1 m 1
d(f) »u).

End of the proof of (7 .1 ) . The cokemel H (E*;K) of d is given the induced topology.

It is a Hausdorff space for this topology according to (7.3). Let H denote the

cokemel of d : A^ 8 K—> (A^ 6 K)-^ . The obvious map T: H—»-H (E*;K) has dense

image L. The vectorspace L is finite-dimensional. The topology on L induced by the

topology of H (E*;K) is the usual topology on L since it is a Hausdorff-topology.

For this topology L is complete and so L m H (E*;K) and T is surjective. The

remaining steps in the proof of (7 .1) are now rather easy. One has to show that T

is also injective. This means that d(f) *o) with u) € (A 8 K)—^ implies that

f € A ^ 8 K . This follows from the observation that f € A 9 K lies in A^ C K if and

only if (p(f) € (W(T ) [ T 1 < T'1 ̂  B K lies in W(F ) [ T ] [T~1 ] 8 K.
q q

(7.4) Remarks. The action of the Frobenius map F^ on H°(E*;K) is the identity. We

lack an explicit formula for the action of F^ on H^E^K). From duality of H1 (E*;K)

one obtains that the two eigenvalues a, ,a-€ W(1F ) of F on H (E*;K) have the1 2 q * u
property a a^ !B q. The zeta-function must then have the form:

. (l-ait)(l-a9t) 1-at+nf2 T

^i^'—rTO—-2^^ ^P-P'-
Further a " q - N* where N* is the number of points of E in F . In the sequel of

this section we determine first the value of a modulo p. By "varying u" we will

then find the explicit formula of B. Dwork for a,a ,a» as functions of u.

î .-1
(7.5) Proposition. a s ( - 1 ) H(u)H(u^)... H(u^ ) modulo p. where H denotes the

p-^ ip-1v 2

polynomial H(X) « Z ( 2 ] X and where q " p .
r "=0 \ ^ I ——————

Proof. We have chosen for the elementary proof given in [5] . We have already seen

in (7.4) that a »q - N* where N is the number of solutions of y « x ( x - l ) ( x - u )

over IF . One has
q
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^•^{0,0),0.0),(u,0)}+2 dHx€r |x+0,1 ,p and x(x- 1 ) (x -y ) is a square in

r,}•
3^Hence N* « £ (1 + (x (x -1) (x-u)) ) modulo p. Using the elementary formula:

^^q

£ x^-l if (q- 1 |k and kS 1) and - 0 for the other values of k. This gives
x€ IF

q JL-1
a«the coefficient of X^1 in (X(X - 1 ) ( X - u)) 2 modulo p. Write

£ll3^ . S=1S^ £-12 £-1
(X (X -1 ) (X -v ) ) 2 « .£ a. X1. Then a «a , ( u ) « ( - 1 ) 2 £ 2 ^-(-1) H(p)

i»o ^ P""1 P~« r"o r
q-1 p-1 1 +p+p + ... +p

Further (X(X-1) (X-v)) 2 « ((X(X- 1) (X - V)) and this leads

easily to the computation of the coefficient of Xq . Namely

a-l T-I
(-1) - HCuWu1') ... Hdi1' ).

^1
(7.6) Remarks and notations. The polynomial H(X)(-1) represents the 1 x 1-Hasse-

Witt matrix of the elliptic curve. In particular E is supcrsingular if and only if

H(y)«0. ( [ 1 6 p.333]). From (7.5) it follows that a»0 mod p holds for a super-.

singular E . In fact one can show that a • 0 holds for any supersingular curve and

so its zeta-function is known in this case. In the sequel we will exclude the

supersingular values u. If u is not supersingular then the two eigenvalues a.,a« of

F^ have the property a.a^«q and |a. +a«| " 1 . So one of the eigenvalues has absolute

value 1 . This eigenvalue is called the "unit root of E " and denotee by u»(v) . The
«^ ^

other eigenvalue is qu(u) . So

Z(E .^ - (l^dOtKl-qmdO^t)

^ 0-t) (1-qt)

It seems rather hopeless to find an explicit expression for the action of F^ on

H (E*;K). Instead, one considers not a single curve but the whole family of affine

curves excluding the supersingular ones. This family is:

SpecditX.Yl^^X- 1) (X- X) ) )——^Spec (R) where R « T [X. ————1———].p X ( I - X ) I K X )

This family is lifted to characteristic zero in the following way:

S p e c ( B < X , Y > ^ / ( Y 2 - X ( X - 1 ) ( X - X ) ) ) ———^Spec(B) where

^^p < x > Tn îTT^ "the ̂ adic caa^etioTi of 2^. ^^H(X) 1 -
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The algebra B < 0 is the algebra of holomorphic functions on the subset V of Qp

given by the inequalities | x ] $ 1 and |X (1 - X)H(X)| ^ 1 . The affinoid subspace V of

Q is equal to the unit disk where one has deleted (2 +-^—) open disks of radic 1 .
• • T»—1

The deleted disks are: the two singular disks B(0,1 ) ,B(1,1 ) and the i— super-

singular disks B(a.,1 ), ... ,B(a .,1 ). The numbers a.,...,a . in the algebraic

2 £ '̂
closure of Q are the zero's of H(X). Using the remark of Igusa that H(X) satisfies

modulo p the hypergeometric differential equation X(1-X)H"(XMl-2X)H' (X)-tll(X) « 0

(mod p) one can conclude that the residues of a,,...,a . in the algebraic closure

2
of F are distinct. This means that our 2+^— excluded disks are distinct. We

P 2 + 2
write A for the "overconvergent" algebra B < X,Y > /(Y - X ( X - 1 ) (X-X) ) . The module

D(A/B) of continuous differentials of A over B is easily identified with A-^ . The

next main step in our treatment of the Legendre-fanily is a relative version of

(7.1) .

(7.7) Proposition. The kernel of d: A 9 Q —»-A • Q -x is equal to B 6 Q . The

cokemel is a free B 9 Q -module of rank two. The images of —x and x— form a free

basis over B fi Q .—;—————— p

Proof. We follow closely the proof of (7.1). One embeds A into B[[T] j<T > by

4)(x)»T'2 and <p(y) « T^/O - T2) (1 - XT2) . Put A^« B[X.Y]/Y2 - X ( X - 1 ) (X -X) .

An element f € A belongs to A^ if and only if ip(f) €B |[T]1[T~ ]. This shows already

that B 8 Q is the kernel of d. The cokemel of d : A 8 Q —>-A 8 Q -x is easily
P °° OD P °° P y ^

seen to be a free B 8 Q -module of rank two with as generators the images of — and

x—^ . The map (B 6 Q )-x + (B fi Q )x -x ——f-coke^d) is injective and its image L is

dense. As in the lemmata (7.2) and (7.3) one shows that im(d) is a closed B ft Q -
dx p

submodule of A 8 Q — . The induced topology on coker(d) makes coker(d) into a

Hausdorff, topological B < Q -module. On L one finds an induced structure of a

Hausdorff topological B 6 Q -module. It is well known that any finitely generated

module M over an affinoid algebra C carries a unique structure as Hausdorff,

topological C-module. Moreover M is complete w.r.t. this topology. This implies

L» coker(d).

(7.8) Remarks and notations. The use of the direct limit topology in the proof

(7.7) and (7 .1 ) can be avoided.it could be replaced by an estimation of the following

form: "For every n ^ O there are a ,b € Q [X] and z (x) € Q [x ,X] such that
n dx dx n n p n p

x —• (a^+b^x)—+d(y.z^(x)). The Gauss-norms ||a ||.||b || and [ |z (x) || are such

that for every r . 0 < r < 1 . lim ||a Hr^lim ||b Hr^lim ||z (x^lr^O".n n n
A direct proof of this estimate seems rather difficult.
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Let us write H for the cokemel of d: A < Q —»-A • Q dx . Let p € r ,
P P y q

y+0 ,1 ,p not supersingular and let j^CW(r ) have residue p. Substitution of u for

X is a map B ft Q ' Km the quotient field of W(F )• This substitution changes the

exact sequence of (7.7):

O—.B 6 Qp—— A • Qp -^ A • Qp ̂  —— H1 —— 0

into the exact sequence of (7.1):

0——-K——"A BK-^A B K ^ — — - H^E^K)——-0,
Jc Jc -

in which

A «W(P ) < X ,Y> + / (y 2 -x (x -1 ) (x -u ) ) . So H1 CK-H^E*;^.j^ q ~ P

^7"^ The Frobenius map on H .

Let us fix an endomorphism (p of B of the form 4>(^) " ̂ p mod p B. Using that A/B is

smooth one finds an endonorphism F: ^—*^ with ^«B<X,Y ^(Y^XCX- 1 ) (X -X ) ) ;

F/B-<P; F(z) •zp mod p &.

Using (2.4.3), a consequence of Artin-approximation, one sees that F can be chosen

such that F(A)CA. Then F acts on A 8 Q , A 8 Q -x and H . The action F. of F on
^ ~ P P y * ^

H is (p-linear which means that F^(bm) -<p(b)F^(ra) for any b € B • Q and m € H . For

V € IF , p(1 - y)H(y) ^ 0, q"p > there exists a unique choice u€W(F ) with residue u
q T T 1 q Tand such that <P (ĵ ) «j^ . Then F^ on H induces the canonical action of F^ on the

Monsky-Washnitzer cohomology group H 8 K-H (E*;K).

(7.10) The differential equation on H .

Let D (A) denote the module of continuous differentials of A over 7L , The A-module

D (A) is generated by (dx,dy,dX} and these generators satisfy the equation:

( -3x 2 +2(1+X)x-A)dx+2ydy- (x 2 -x )dX-0 (i.e. d(y2 - x(x - 1) (x - X)) « 0) . Let

P,Q€B[X] denote the polynomials of degree 1 and 2 having the property

x (x -1 ) (x -X)P^ 3 x 2 " 2 ( ^ ) X ^Q"1 .

Then dX and T « Py dx + Qdy are free generators of D (A). Indeed dx • VT * Q x" d\
2

and dy"336 "2(1^x)x'*•x ^ - P x(x'1^ dX. One has the usual de Rham complex:

,o , ,1 ,
- " t . n ' / ' A ' Y A n Q . Tv-fc / ' .x • r\ __^n0—-A 8 Q ——-D (A) 9 Q —»-D (A) 9 Q —-O.

P P P
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n
We note that D (A) is a free A-module with generator d\A T; that

D^A/B) ^ D^/AdX ^ A dx ; the image of T in D^A/B) is dx ; that the map
1 2 ^

D (A/B) —>-D (A) given by n I—^dXAn is an isomorphism. From this one obtains a

"connection" D: H —>-H , i.e. D is additive and D(bm) «bD(m) +-;—mfor mf.H and
1 1 A

and b € B 8 Q . We define D first as a mapping: D (A/B) —-D (A/B) « A dx by the

formula D(a -x) ̂ (a)-^ with a, L(a) € A where L(a) is given by the equation

d^a-r) = L ( a ) d X A T .

D maps exact froms to exact forms. So D induces a mapping: H —>-H which is also

denoted by D. We remark that the action of D on D (A/B) depends on the choice of

the basis of D (A) and that the action of D on H does not depend on this choice.

The mapping D: H ——>-H is called the Gauss-Manin connection of the family of curves.

( 7 . 1 1 ) Explicit formula's for D and F^.

Proposition. Let a) € H denote the image of —x in H . Then:

(i) {(*),D(o))} is a free basis of H .

(ii) X ( 1 - ̂ D2^) + (1 - 2X)D((*)) - io) • 0.

(iii) Let C be a ring-extension of B 6 Q which carries an extension of -,-r . Then

n € H 8 C satisfies D(n) "B 0 if and only if n has the form

n s X ( 1 - \) — (D - X ( 1 - A)fD((u) where f € C satisfies the hypergeometric

differential equation (1 - X) ^-(.(l^X) ^--^"O-———————————————— ^ ^

(iv) DF^ sd<pa) F^D holds on H 1 . In particular for any C as in (iii) ,

ker(D,H 8 C) is invariant under F^.

(v) The free B-submodule H of_ H generated by a) and Ddo) is invariant under D and

F*-

(vi) The matrix (a c) of F. with respect to the basis (d3s . x d^} of H has the
———————————— b d —— * —————————-—————————————— y ' y —— ————————

0 ? ,

a c P-1

P^P^Y <b d) ' ̂  (-1) 2 HO^ modu10 p H-

Proof. In principal one could use the definitions in (7 .10) in order to obtain the

formula's above. However, it is easier to replace A by
~ ~1 + 2
A K B < X , Y . Y > /(y - x(x - 1) (x - X ) ) for the calculations. As in (7.7) one shows

that the cokernel of d: X 8 Q ——-D (?/B) 6 Q is a free B » Q -module on the

basis ^? . x dx . dy- . ̂  and -d^- . Let us write tif1 for this cokemel. Also on H1
y y x x~ i X""A
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one has a connection D and a (p-linear endomorphism F^. These two mappings coincide

with D and F^ on the direct suomand H of H . Explicit formula's for D, F on X are:
3 <"w A A

(a) Let -^- denote the derivation on A given by —.- (X) « 1 , Tr(x) " 0 and

•^(y) «:2 l̂ll - ̂ .. Then D(adx) ••^(a)dx holds for a € X • Q

(6) F: 1—>Ti can be given by F(X) -<p(A), F(x) • x? and

F(y) «yP 1 ̂ (x^mxP-^X))^ ^ ̂  expression lies in X since
y p

x p (x p -1)(x p -4)(^)) -y 2 p €pA:.

(i) In D^X/B) one has the formula's

^"y^ '2(x-X) T"2(A-1) "̂  + 2X(^-1) x ̂  + d (X(X-1) ̂

^^-i^iTf-lA-iT-f-^^-

This shows that {(*),D(u)}.form a basis of H since we know that (-x » x -x} is

a basis.

(ii) follows easily from the formula's in (i)

(iii) Easy calculation.

(iv) We verify this again on H1 . There DF^(adx) •—(F(a))p xF^dx and

F^D(a dx) •F(-.r-(a))p x? dx. The required equality is easily verified for

a«X,x ,y . Then it holds also for y and finally for all elements a€?.

(v)(vi) An explicit calculation is possible but rather complicated. It is easier to

remark that H 6 B/pB is the de Rham-cohomology of the family

^V^' in^^HX.Y.Z^-XCX-^X-XZ^——SpecCPplX, ̂ .;̂ ]).

The action of Frobenius on H 8 B/pB is know to have the matrix
0 ?

( I— ) with respect to the basis dy- and x d^- .o (-D 2 H(X) y y
This explains parts (v),(vi). Another possibility would be to evaluate the

matrix at values j^ for \ and to use (7.9),(7.8) and (7.5).
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(7 .12) Proposition. There exists a unique direct summand U of the B-module H with
F^(U)«U. (U is called the unit root part of H)

Proof, Consider the subset V« (a«ah)-X(1 - X)D((*)) |a €B) of H and the map S: V—>V

given by S(a) "-X(1 - X)6 F^(a) where F^ (a) » yi*)+6D ((*»). Then S is a contraction and
has a unique fixed point a « £ (D -X (1 - X)D ((*)). Then U • Bu is the unique direct

summand of H with F^(U) «U.

(7.13) We write F^(u) - Cu with C € B * . Then F^(u) « C4>(0 •. .^^(Ou. For a value
p€ P , with y (1 - p)H(v) +0, we denote by ^€W(T ) the unique element with

T T
(p (ĵ ) «j^ and j^ has residue p. (Again q"p ).
Evaluating at j^ as in (7.8) one finds that the two eigenvalues (*)(v) and qo)(p) of

F^ acting on B^E^K) are given by
" V

a»(u)-etP(0...<PT"'1(0(^).

In order to make this explicit we have to determine the function C* We note that ^
depends on the choice of 4>« In the following theorem we will make the choice
<P(X) - \^.

(7.14) Theorem (B. Dwork)

(i) The function € extends to a holomorphic and invertible function on the
affinoid set U€Q | |x | $ 1 and |H(X) | - 1 } . On the open disc { X € Q | \\\ < 1 }
————————— P ^ p

one has the equality ^ » (-1) 2 a^ where a(X) « F(i,i;1 ;A) isthe
a(xP) ———— ————

hypergeometric function.

(ii) The element n € B given by D(u) • nu extends to a holomorphic function on the
affinoid set ( X € Q | ] x | S 1 and JH(X) | " 1 ) . On the open disc————————— p ——————s.—————

{ X € Q | | X | < 1 } one has the equality n « ~ "T^"'

5-1 a(v) 5-1 a^)11

(iii) Z(Ejr^; t ) « ( 1 - t ) ~ ' ( 1 - q t ) " ' ( 1 - ( - 1 ) 2 ——— t ) ( 1 - ( - 1 ) 2 q ̂ -5- t)

in which u€W(lF ) has residue v;?4"? and ——— denotes the extension of——————^ q ———————— ^ ^——^^q——————————————————

this function to { X € Q | |x | $ 1 and \U(\) \ -I).——————————— p

Proof. Consider the ring-extension BcB m^L 1 ^ ] < X > • the set of all Laurent——— ^ ° o p
series I a X with a € Z and lim a - 0. We note that B is a complete

n€2 n n P n-<—— n o r

discrete valuationring with maximal ideal p B and residue field T ((^)).
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On H^"H 9 B we have again the action of F^ and D.
The element z • X(1 - X)a'(i» - X(1 - X)aD(a)) satisfies D(z) « 0. Moreover

ker(D on H^) «2 z. From DF^«pX^ F^D on concludes that F^(z) « cz for some cCZ*.
Then F^(B^z) « B^z and according to (7.12) (the unicity holds also for B ) z • au.

Then S(X) «c a—)- and n(X) "^/A hold in B . The Mittag-Leffler decomposition
aC^ a(A) °

of the elements C ,n€B show that C.n extend to { X | [ x | < 1 ) . The symmetry of the

differential equation implies that C and n extend also to { X | | x - l [ < 1 } . We still
£?1

have to show that c« (-1) . This follows from an evaluation of F^ and S at X " 0.
£Zl

Finally we remark that (-1) 2 ^(X) has the form ? a X", a € 2 , a « 1 and
n-o n n P o

oo J-^- m
that the infinite product n ((-1) ^(X* )) converges coefficientwise to

m"o
a(X) «F( i .4;1;X).

(7.15) A further study of the hypergeometric differential equation with parameters

LL1.

Theorem (B. Dwork).

In an ordinary disc { X | \\-\ |< 1 } where ^ - \ and |A (1 - X )H(X )| « 1 the
———————————————————— 0 ————— 0 0 0 o 0 ———
differential equation X ( 1 - X) f "+ (1 - 2X)f - if - 0 has two independent convergent

solutions f. ,g . They have the properties:X '"A '^ ^

(i) f^ € 1 + (X-X^)W(3F ) [ X - X ^ ] .

(ii) g^ € K ( X - X^ 1 , where K«Qt(W(P )) has radius of convergence T. The function

g., is unbounded and has logarithmic growth, i.e.

II ̂  II ^ C |[ log— || for some constant C and. all p < 1 .
0 I X - X J S P ^ | ^ - ^ [ ^ p — — — — — — — — — — — — — —————"o' - ' A "o1

(iii) f /f «-n
^o ^o

(iv) -^—'^a^uxn^)....^ ).
f. (X9) 0

Ao

^oo f. We consider the ring extension B c B^ «W(T ) I X - X Q 1 and the corresponding

H^-H »g B^^ with the action of D and F^.
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The element C(X) 'w^'^MU^) ...^p ) € B has development

£ Si^"^11' &r^€v(Tn)'^m} in ̂  • The infinite product a(X) - I? ((A^)n«o n q o AQ oro

converges coefficientswise in B, . Then a(X) - ̂ (^a^) and F^Cau) •w(I )au. FromAQ » o

DF^PA^ F^D it follows that D(au) - 0. Then f . « a satisfies (i),(iii) and (iv).
^o

Let KIX-A^} denote the ring of convergent power series over K. Again we have an

action of D and F^ on H^ »H 8 KU-A^}. Since A is a regular point for the

differential equation we find a 2-dimensional vector space over K of solutions:

ker(D on BL ) «V. This vectorspace is invariant under F^. The eigenvalues of F'1
o

on V are c^ «w(T^) and c^ » qwd^)"1. Let e^ • X ( 1 - X)f^o) - X ( 1 - X)f^D(u)) ( i«1,2)

denote the corresponding eigenvectors. Then f «f and g ^f,. The action of F1

AQ 1 A 2 *
can be given by the matrix

F^(A(1-A)( r i ) «a X(1 -A)o )+b ( -X(1 - X)D(o)))

F^(-X(1 -A)D(O)) ) «c A ( 1 -X)u )+d ( - (1 -X)D(O)))

with a,b,c,d€B . This implies in particular that f^ -c^Cb ^(f1) +d ^(f^))
^o 2 2 2 2

The action of ^ on K { A - X ^ } is given by ^(Z a (A-A^)1 1 ) "I a (^-A )". This

suffices to show that f^ has radius of convergence 1 and that f^ is unbounded.

For the calculation it is easier to make another choice of ip1, namely

<P (A - X^) " (A - X^) . This makes no essential changes in the calculations above.

With the notation t " (X - A^) one has the formula:

f^(t) "q"'1w(IQ)(b(t)f^(tq)+d(t)f^(tq)) where b € pW(P ) It ]

and d( t )€W(]F ) C t ] . Obviously f« has radius of convergence ^ 1 .

Let || || . with p < 1 , denote the spectral norm on the set (X C (fc | | X - X | $ p ) .
|t| ^ P P o

One finds ||f || -qllfjl
| t | $ P 2 Itl^

So f^ is unbounded in the disc { X | | X - X ^ | < 1 ) and f« has the following growth

property: ||f [| ^ constant ||log—|| since the function
| t | $ P o | t | < P

log(—) • -I — (——) satisfies also the growth condition
AO m"1 m XQ

l|log(—)|| .q| | log(—)[|
0 |t| ^ P Ao |t| $ ̂
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(7.16) Remarks.

The family of curves y" « x^x- D^x- X)° can also be treated with the Monsky-

Washnitzer cohonology. They provide hypergeometric differential equations with
other parameters (See [10]) .

In B. Dwork's book [7] one considers liftings (p(X) • ̂ p + pb (b€B and b + 0) of the

Frobenius map on B 9 P . It is shown that the corresponding function
sz^_ p

€ s (-1) F ^ l l ^ i mfx^ can be extended ln ringdomains inside the supersingular

discs. The function n«- .,/FT' ' < however does not extend at all in the super-
11 \2 9 2 » ' > A/

singular disks.
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