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THE PERIODS OF ABELIAN VARIETIES WITH COMPLEX
MULTIPLICATION AND THE SPECIAL VALUES

OF CERTAIN ZETA FUNCTIONS

Goro SEIMURA

Let K be a CM-field of degree 2n and IK the free Z-module generated by

: n
all embeddings of K into €. Given a CM-type ¢ = [ Ti
i=1
abelian variety of type (K,@ ) and a J-rational holomorphic 1-form w; on A such
T,
that wea=a o W for all a € K. As shown in [2, p.383], there is a non-zero

of K, take a {-rational

complex number pK(Ti,cp ) depending only on K,¢ , and Ty such that

-1
[n.pK(Ti,w )] J w €
c

for every c € Hl(A,E. The quantity p'((-ri,cp) can actually be chosen to be a
positive real number; it is also given as the value of a certain a-rational
(meromorphic) Hilbert modular form at a CM-point (see [2] ). Now denote by p the

complex conjugation, and put pK(tio,w ) = pK(Ti,w )-1. Then we have
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Theorem 1 : If € seees @ are CM-types of K and T is an embedding of K into €,
m s

the product II px(‘l' ’ wi) i with s N € Z , up to algebraic factors, depends only
i=1

m

on T and z s tpi. Moreover, if L is a CM-field containing K and ¥ is a CM-type
i=1 m

of L whose restriction to K is L ;i 3 then the above product equals, up to

- — i=m

algebraic factors, to I pL(U,\D ), where 0 runs over all embeddings of L into C ,
—_— = _

which coincide with T on K.

The proof is given in [3] . To express this theorem in a different

way, we consider two linear maps

s ResL/K H IL._yIK . InfL/K H IK —_ IL.

Here ResL/K(a) is the sum of all restrictions of 0 to K; InfL l<(‘r) is the sum

/

of all extensions of T to L.

Theorem 2 : The above Py can be extended to a bilinear map of IKX IK into

l.‘x/ﬁx with the following properties :

1) p(@p,B) = p (@,80) = p (a,B) " for a,8 €I, ;

2) pgla,Res; .B) = p (Inf, . a ,B), p (Res B ,0) =p (B,Inf @) fora € I,

L/
8€IL,andK clL;

3) pM(Ya.YB) = px(u,B) if v is an isomorphism of M onto K.

Theorem 3 : If (L,y) is the reflex of (K,y), we have pK(o,w) = pL(\Do,idL) for

every embedding 0 of K into €.

These theorems imply various algebraic relations among the periods. For

example, we have :
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Theorem 4 : For uEIK, let t(a) denote the rank of the module I zay,
YEG
n

where G is the Galois group over ® of the Galois closure of K. ££
1=

T is a

1

CM-type of K, then for every B € IK' the module

n e,
{teyscare) €27 | 131 Py (1,8 a1

has rank at least n-t(g -gp).

If g is a CM-type, we have t(g-Bp) = t(8 ) - 1 . Theorems 2, 3 and 4 will
be proved in [4].

The quantities py occur as the values of an L-function of a CM-field
with an algebraic valued Hecke character of infinite order (see [1, Theorem 2).

As a new example of a zeta function whose values are given by Pyr we consider

(s€C).

D(s) = : u (Tr

Ofxsa(A)

Pvyo® Ty K, T =28
K/Q(yxx MxT(xT) TxT|

Here \ is a lattice in K and a € K; O <k € Z ; 1 is an embedding of K into € ; u

21ib
denotes the Fourier coefficients of an elliptic modular form g(z) = Tu(ble mibz i

Y is a real element of K such that yT is its only positive conjugate; ¢ is an

element of IK with non-negative coefficients.

Theorem 5 : The series D is convergent for sufficiently large Re(s) and can

be continued to a meromorphic function on the whole plane.

Theorem 6 : Suppose that g is a cusp form of weight e, u(b) are all algebraic,

and 1 and tp occur in ¢ with the same multiplicity, say g. Let m be an integer

such that
(2n -1 -k +¥+ deg(¢ ))/2<mgq .

Then D(m) is nkpx(k-f -¢,27 ) times an algebraic number.
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A more general result holds for a series of a similar type with a
Hilbert modular form (which is not necessarily a cusp form) in place of g. The

details will be given in [4].
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