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SOME FUNCTIONS RELATED TO THE DERIVATIVES OF THE
L-SERIES OF AN ELLIPTIC CURVE AT s= 1.

by M. J. Razar

If E is an elliptic curve defined over the rationals and
having complex multiplication then it is well known that its L-series
may be identified with a Hecke L-series with GrOssencharakter. In
their paper i.l3« Birch and Swinnerton-Dyer state the beautiful conjecture
which now bears their names concerning the relationship between the
arithmetic of the curve and the initial term in the Taylor expansion
of Lp(s) about s = l . Their paper gives extensive evidence for the
correct value of L-(l) in the above named case*

Further evidence ( e . g . L4]« [ 5 j , [ 7 ] ) has accumulated over
the years but certainly the most striking work is due to Coates and
Wiles ^2] who prove that if the group of rational points E ( ( ) is infinite
then L.,(l) = 0. Moreover, they give considerable insight into the (p-adic)&
correctness of the Birch-Swinnerton-Dyer predictions when Lp(l)^0.

Considerably less is known about the first term in the expansion
of L,-(s) about s=l when Lpd) = 0. Stephens ( L ? j ) provides some numerical& &
evidence. Birch (unpublished* to the best of my knowledge) has given a
rather precise prediction in the rank 1 case ( L - ( l ) ^ O ) , by expressing the
canonical height in terms of the Veierstrass sigma function.

One of the major obstacles in the study of L-(s) when L p ( l ) = 0
has been the lack of suitable formulas for proving algebraicity and p-adic
results about, say, L - ( l ) . In my talk I propose to discuss a close relation&
existing between the 'higher terms" of Kronecker's limit formulas
( e . g . the Laurent expansion of ^ | m z " » - n | s about s=0 or s = l ) and the
expansion of L-(s) . Not surprisingly some of the functions arising in this
context are explicable in terms of Bessel functions -but in a case where
they simplify substantially. In addition, we are led to introduce some non
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meroDorphic elliptic functions.

There are some analogies and connection between the above
mentioned functions and the functions associated to the full Taylor
expansions of Hurwitz-type zeta functions at non positive integers* In
the latter situation some rather precise rationality statements can be
proved* Koblitz and Ogus and* independently* Kubert have proved one
such result in a slightly different formulation and I believe Gross
will be discussing the p-adic significance of some of these ideas* For a
fairly general "rationality" statement concerning the first non zero
coefficient in the expansion of certain linear combinations of Dirichlet
L-functions at non positive integers, see L 6 j .
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