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ON THE ORDERS OF ZERO OF CERTAIN FUNCTIONS

W. Dale BRWNAWEIL’

I. INTRODUCTION

This is a report on joint work with D. W. Masser into the possible
order of vanishing of a certain class of analytic functions. A complete exposi-
tion of our most general result and its relation to the previous work of
Ju. Nesterenko [4] is given in [1] . That paper was written expressly for the
use of fellow practitioners, of transcendence theory.

For this conference it seemed appropriate to present a variant of
the proof of the main theorem of [1] , this time assuming familiarity with
commutative algebra from the outset. The major change is the use here of the
Hilbert characteristic function Ba(a,t) for inhomogeneous ideals Q. In this
way we avoid the technicalities involved in keeping track of the order of
vanishing while homogenizing and dehomogenizing ideals. (These technicalities
seem indispensable however for handling denominators in some of Masser's most
recent work). Since we have not found a reference for the properties of Ha(&"t)
in the literature (see [2,p. 157] however), we discuss them in a short appendix
following the body of the proof.

We are concerned here with solutions of a fixed system of differential
equations

¢ Research supported in part by the National Science Foundation.
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(1) f:;.-Fi(fl""'fn) (1€ i< n)

where Fl....,l-‘n are non-zero polynomials of total degree at most d. For a given
set of initial values 0 = ( 91,..., en) ,» we denote by f(z;9) the corresponding
solution of (1) analytic at the origin, i.e. the coordinates fl(z;G) ,...,fn(Z;O)
satisfy (1) and £(0.9) = © . In this paper we will deal with M+ 1 fixed such
initial conditions given by eo’ 01.---, GH-

Let & be an ideal of R = C[xl,...,xn] . For O < m € M we define

ord &= min ord P(f-(z;em)),
m PeEQ
P#£0
where ord on the zigﬁt hand side denotes the order of zero at the origin with the
usual proviso that ord O = @ . Say & is generated by 1-"1 poe .,Ps. Then clearly
or:dm a= mniord Pi(f(z;em)) .

If @ has rank r (we avoid the term "height" because of other associations in
transcendence theory), we can suppose that the indices are chosen in such a way

that Pl"”'Pr have total degrees at most Dl> ces P Dr' respectively, whereas

Pr+1""'ps have total degrees at most D!. Let T = D1 Dr, and recall that
d < maxideg F i Then we can state our main result.
Theorem : Assume that ordma- is finite for O<K m< M. Then if r< nandd> 1,
we_have
M Pl 2n—r—1
z ora a <@n + M(4T) 5
m=0
while if r < n and d = 1, we have
M n-r, - n-r-1
I ord A< (n-r+1)D1 T + (n—r:)MI'D1 .
m=0 n
Finally if r'= n, then
M
T oxdma <T.
m=0
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II. UNMIXING

Because we can estimate the degree of an ideal of the principal class
(rank = minimal number of generators) throuch Proposition 4A, we would be very happy
if r = s. Since that is not always the case, we show that for our purposes, it is
always possible to replace & by an ideal G; of rank r and generated by r polynomials
of degrees at most Dl""’Dr' respectively, such that

ord & =ord & (0<m< M.
m r m

For that the following general remark is useful.

Lemma 1 : Let Pl"”'Ps be polynomials and let .91,..., ‘9k be ideals such that for

each 1 € ¢ < k, not all of Piseee Py lie in 19!(' Then for some integer, 1 € A € ks,

k

s-1

P1+>\p2 4o+ A P I'4 U19k .
k=1

1
then by the Box Principle, at least s of the QX lie in the same 9. Inverting the

Proof : 1If each of the Q)\ = P+ APZ +...4 )‘s—lp_s (1< A < ks) lies in some v,

corresponding Vandermonde determinant shows then that pl""'Ps all lie in that same Vv
as well. This contradiction establishes the lemma.

For a vector @ = “’1""'9 n) of ¢" we denote by M(O) the correspon-
ding maximal ideal (xl- 91,..., x - en) . For brevity we write 7}(!8),,77(" instead
of M 0g) re-- M ©,)+ respectively. For 0O< m <M we write ®

extension

for the contracted

a® _ &g,
m

where a/ denotes the ex&ension of L to the localization of R = ¢ [Xl.... ,Xxg at
”Lm Further we write Q for the contracted extension with respect: to the multipli-
cative set S = R\ U 77‘() , i.e. ﬂ, = (QQ R ) N R. We see that a is also obtained
by deleting from a primary decomposition of & components not lying in any 7)&

(0O €m < M), just as a‘“” is obtained on deleting components not in "{,, Therefore

* M
() Q& - ma,(m)

m=o
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(m)

Since every element of & is the quotient of an element of &

by an element outside 7f., ve see that ord @ ord & . Therefore from
a c@’c @™ ve deduce that

* (m)
(3) ord & = ordmd, - ordma'v (0O< m< M)

Proposition 2. : If in addition to the hypotheses of the Main Theorem we have

o<ozdme. (O<Sm< M ,

then there are polynomials Ql""'Qr in Q@ with deg Ql< Dl,...,deg Qr < Dx such
that the ideal Otr =- (Ql,._..,Qr) satisfies

rank & =1r ,
r

ord O = ord & Oo<m< M,
m r m

*
deg ar< Dy...D =T .
Proof : Since ox'dma is assumed to be finite for each m, the polynomials P such
that orde > otdma form an ideal which we denote ﬁm. By Lemma 1 we can select
A € Z such that

Q =P + 2P, +...4 2" p ¢ u s .
m=0
Set @ = (Q,). Then rank & =1 and ord & = ord & O<m <M. Now Q‘- is princi-
pal with generator obtained from Q1 by deleting all factors not in any m O<m< M.
Since ord al - ord & >0, Ql is not constant and rank % = 1. We deduce from
Proposition 4A of the appendix that

*
deg a1 <D

1 ’

which is what was claimed for.r = 1.
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For r > 1 we choose polynomials 92""'91' inductively of the form

, .
. Q =By FA Pyt Ay Lps

such that the ideals Ui - (Ql'“"Qi) satisfy

-
rank Qi = i, deg °’1 < D,...D, .

Moreover the form of selection given in (4) guarantees that for 1< i< r
ordm &i = ord,‘n a (0O<m< M

The selection has already been made for i = 1, and now we show how to find Qi+1 with
the desired properties once ai has been obtained (i < r).

Fix a prime component P ot 31 of rank i' (necessarily so by the
Cohen-Macauley Theorem [5-II ,p310] ). If P1+1""'Ps all lay in /5, Then we see
inductively from (4) that so do Pi' Pi—-l""'Pl' Thus @ would be contained in P
and rank @ <i, contrary to our assumption that rank &= r. Thus at least one of

Pi+1""'Ps does not lie in ®. So by Lemma 1, there is a Qi+l of the form (4) not

in any prime component of ai' i.e. ai H Qi+1 - ai Therefore by Proposition 4A
of the appendix, for aiﬂ - (Qi, Q,,1) we have rank am = i+1 and

< 2.
deg &1 4 < (deg Qi) Dyyyr which establishes Proposition

III. THE CASE n = r.

To deal with this case we require a fundamental result concerning
exponents of ideals.

Lemma 3 : If q is a primary ideal of length £ and exponent e, then e < £ .
Proof : Say that ? is 1a-primary. Then TDeG 9 and e is the least positive

power of Plyinq in "? .1f e=1, then P= ? and there is nothing to show. If

e > 2, the ideals ?i = 7 ? (0< i < e) are P -primary [5-I, p.154]. Since
-1

pe p= ?e c g1 , T”c 7e—1' and so T’ ? e-1° Thus we obtain e primary ideals

9= 9 ch = S9e



W.D. BROWNAWELL

If we can show that these inclusions are strict, then the lemma will
follow. But Pf,,, € ¥, (0 <k < e-1). So if some § = sy s then

1
P¥k+2 < yk-l'l = ?k' Therefore Pk+ ?k+2 :pk?k c§anaq o< Fesy: Comse-
quently ?k = ?kﬁ = ?k +2° Repeating the argument shows that
Tr= Furr = = Femr -

Thus P= ? : Pk and pkﬂgq. By the definition of e, e S k+1 . But k+1< e-1

by assumption. This contradiction shows that the inclusions are strict and establishes

the lemma.
Proposition 4 : Let ? be primary of rank n such that ordm ?’ is positive but

finite for some O < m € M. Then hm is the associated prime ideal of ?md

ord q < deg ?

Proof : Since ord q> 0, we have ?C% Because rank 7- n, ’Zn is the associated
prime. Let e be the exponent of ? . Then

e
< <.
MacJH
Since for any ideals k,f
Ordm(& nl) < ordm(EL) = ordm R+ ordmL,
we see that
ord 7 < e ord '”lm.
From Proposition 2A of the appendix and Lemma 4 we see that
e < length ?< deg ?

1f @ = (8;,...,0 ), then ord M = min ord (£ (z;Q) - 8,), and so

if ora "zm > 1, then each fi(z; ©,) vanishes at the origin. Now differentiation of
(1) leads to the relations

10
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n 31?
£%(z; 0 ) = ¢ £fi(z; e) (1< i< n).
i m j_l'é— f(z 9 )j

Thus

ord a0 i(z Op ) > min]ord fi(z; em) > 0 (1 i< n).

) . - = : s
This implies that ordzgof i(z, em) w, 1< i< n. Then ordm mm ®, a contradiction
which completes the proof of the proposition.

Proof of the case n = r.

We may clearly assume that ordm & > 0 (0 m< M) simply by renumbering
and taking M smaller if necessary. For if the analogous bound holds on the sum of the
remaining ord & , then the des1red bound will hold on the full sum. We apply Proposi-
tion 2 to € to obtain & . 1f Q qo Ne..n q}l is the primary decomposition of
Q: , then by the first half of Proposition 4, N = M, and we may take ?m to be
? m-primary (0< m< M). By the second half of Propositions 3A and 4A of the appen-

dix and by Proposition 4,

* M
T >deg&n = m£°deg$m

M M
> I orqums I ora &,
m=0 m=0

since ord & = ord & = ord @™ = ora q (O< m< M). This proves the assertion of
m m n m n m Jm

the theorem for r = n.

IV. INCREASING THE LOCAL RANK

In this section we develop a procedure which allows us to cope with
ideals of rank less than n. We inductively produce polynomials Q:‘_“,...,Qn of pre-
dictably bounded degrees Dnl""'Dn’ respectively, through differentiation of the
generators of Qr such that for r € i € n the ideals

(7 ‘éi = (a!,Qrﬂ,-.-.Qi)

satisfy

1



W.D. BROWNANELL

(8) rlnkéin) -3 ©Oo<m<mnM ,
% B < D
(9) deg. N Dl"' N
and
(10) ord X-wW,_ . < ord B # = (0< m< M
where

k J_q 53

a¥ %, ifa> 1
=0
W = X
T I D, ifa=1.
j=o

(Recall that d is our upper bound on the degree of the polynomials Fl""'Fn in (1)
and Dl bounds the degree of all the generators of ). As we shall see, "1-:—1 is
a bound on the number of derivatives we may have to take to obtain Q 1’ "’Qi'
Because of its importance for the Main Theorem, we state the result for i = n as

2
‘

a proposition. Set
21-:—1
(ar) ’ ifd»1
oy -{

D ifa=1

11

Proposition 5 : Given &r of Proposition 2 with

wn-r-l < ordm a.r ¥ (O<m< M,

there are then polynomials Qrc-l""'Qn with deg Qi< I)i (r < i € n) such that the
following holds for -@n = (®R,Q  1,eei@) ¢

rank-@‘m)-n, ord & -w < ord 4@ (0O<m<M
n m r n-r-1 m n

*
deq-&n < D,...D_.

12
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Proof : As mentioned above, the construction of the '6;-4»1"""611 with the
properties (8), (9), (10) is inductive. If we set W_ = O, we may consida:-é.r -a
to start it off. For the inductive step assume that (8), (9), (10) hold for some
éi of the form (7), r € i < n. Consider the derivation

n
A= F -3-—-
3=t 3 3%

defined on R = €[x,,...,x ] . Clearly if P € R has total degree G, then AP has )
total degree at most G + 4 - 1. Also if f= (f1,...,fn) is an analytic solution of (1)
then for any polynomial P € R,

- a -
AP(f) = < P(f).

So if orde > 1, then oxdm AP = orde -1 (C<m<M). Since the 1deals-éim) have
rank i and '&i is generated by i elements, ¥ ) 1(") is unmixed by the Cohen-nac:ulcy
Theorem [5-II, p.310] . Therefore in particular all primary components of 8 i have
rank i. For the next few paragraphs we consider one fixed such component. QAnd its
associated prime 10.

From Lemma 3, Propositions 2A and 3A of the appendix, and our induction
assumption, we deduce that )
(11 <dega’<p,...n

e <deg &, <D,...D,

for the exponent e of ?’ . We claim that
(12) ¢p, ¢ P
B R

* *
Since ‘61 c Pec ”{n for some 0 < m < M, ord P is positive but bounded by ordm-bi.
Choose a polynomial P € P with orde = ordm 7. since

ord AP = ord P-1 < ord P,
m m m
AP does not lie in P. Let Q be a polynomial lying in every primary component
*
'y ? of ‘@ i and not lying in P _ for example the product of elements from
each Q'\ T . From the definition of exponent we know that P® lies in ? so P%Q lies

*
in ‘éi . Moreover since P lies in ’P,

2%(P%) = e1(a P (mod P).

13
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Since neither Q nor AP is in 72, this establishes (12), a crucial step in our
proof.
tpo*
Now let t be the least positive integer such that A5 N ¢ 7.
From (11) and (12) we see that

«eeD, .

t‘.<e(<D1 5

We claim that
t r
(13) rb ¢ P

* t . *
For there is a B in 61 such that A B is not in 7. From the defimition of éi'

there is an A outside [V} mm such that C = AB lies in éi' From the minimality of
m=0

t we see that each ATB lies in P for 0 < T < t and thus that

aYc = a ' _ (mod P).

Since A is not in any 774”, it is not in P either, for, as we noted above, Pg ”(m
for some O € m € M. We deduce that Atc is not in A, which verifies (13).
Sinee for O vt < t

< 58P,

the integer t is also minimal with respect to the property (13). Write

C=AQ +...+ AQ

with A_,...,A

1 1 in R. Then by the minimality of ¢,

t t t
A7C = A AQ 4.+ A AQ (mod P ).

Hence AtQ:l is not in P for some 1 < j <.i . By (11), since t < e, AtQj has total
degree at most

w(Dl’Di) + (d-1)1)1...13i < D1+1

Moreover

14
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t
ordm A Qj > ordmlﬁ:l -t

>ord & -
m

r "1—:-1 -t

>ord & -w, .
m r i-r

When we carry out this construction for each of the prime components

P

1

most Di+1 such that

s++.,L of degrees at

;...,‘F;{ of each ﬁim) (0 < m< M), we obtain polynomials L, X

ord & - W, <ordL, #o (1<j<k,0<m<M.
m r i-r m j

Through Lemma 1 we can choose integers >‘1'”" >‘k such that

Q441 = MLy *eeot A Iy

does not lie in any P,..., 7ok' and moreover deg Q:|.+l<

1 Disr

a -
ordIII * wi-r < <'.urdei_'_1 ¥ o (O<m< M.

Thus ‘@iﬂ = (Ql""'Qi-H) satisfies (10) with i replaced by i+l1. We must now check

(8) and (9). The construction of Qi+1 guarantees that

(14) .6;”" 10 .. = aéi""’ (0O<m<M.

i+l

So we conclude from (8) and Krull's Principal Ideal Theorem [5-I, p.238] that

(m) R
rank '6“1 = i+1,

: *
which verifies (8) for i+l. By (14) we also have '&1 : Q +1 --gi . So by Proposition

i
4A of the appendix we have

deq~8 * < deg(é:

1+1 IQi+l) < (Dl...oi)oi'#l ’

which verifies (9) for i+l. Therefore Proposition 5 follows.

15
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V. PROOF FOR I < n.

Without affecting the validity of the assertion, we may, as in the
proof of the case n = r, reindex 90,..., en and decrease M if necessary to insure
that each

1,n-x-i
(ar) if 4a>1
ordnﬁ) . (0< m< NM).
0o Tl araat,

*
Consider the primary decomposition of the ideal &n produced by
Propositions 3 and 5 :

*

Y] n" yon...n7“.

*

Since rank 5:; = n and ordm %> 0 for each 0<m < M, it follows from Proposition
4 that N = M and, after renumbering if necessary, the associated primes can be
taken to be precisely % ,...,7)44. By (3),

b . ' -
o:dlll n ordnén tm:llll ?n (0O<m< M.

By Proposition 4 we know that

ordn n < deg ?n'

From Proposition 3A of the appendix we see that

M *
m-Zodcg ?m-deg‘én .

Finally Proposition 5 furnishes the inequalities
*
deg.én < D...D
and

ord Qr < ord @n tW

Putting this all together with Proposition 3 gives

16
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M M . M
T ord @ =3 ord @< I ord & + (M)W
m m r m n n-r-1
m=0 m=0 m=0 »
M

< I ord § ¢+ W _
m=0

1

M
< I deg ?m + (MW

r-1
m=0

*
< aegd + mmnw

< D,...D + (MW _

r-1

This establishes the theorem after some straightforward computations.

We remark that the theorem applies to formal power series solutions of

(1) over any field of characteristic zero.

APPENDIX.

Inhomogeneous Hilbert Functions

Recall that for a homogeneous ideal 5 in K [xo

an infinite field, the associated volume function V(t, 6)counts the number of

,...,xn], where K is

K-linearly independent forms of degree t in 5[2,pp.154-162] . The Hilbert

characteristic function of 5 is given by
+t
B, B = Y - v, ).

H(t, a)counts the number of K- linearly independent forms of degree t modulo 5

Similarly for an arbitrary ideal Q of K[xl,...,xn] , the associated
affine volume function Va(t, Q) counts the number of K-linearly independent poly-
nomials in & of degree at most t [2,p.157] . The affine characteristic function
of (X, Ha(t,d) , counts the number of K-linearly independent polynomials modulo

Q@ of degree at most t in K [x .,xn], and so

100

n+t
H(t,&)=( )-V(t.a).
a n a

17
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The parallel with the usual characteristic function is obviously strong, but still
one cannot carry over the standard proofs to the affine case in a straightforward way.

The following basic property of V(t, 6) comes from the fact that the
dimensions of the sum and intersection of a pair of vector subspaces add up to the
sum of the dimensions of the original subspaces : for homogeneous ideals ‘6 , £

vie, ) + Vit k) = vie, Sr k) + i b0 k).
However for affine ideals & ,& one has merely
v (e, @) +v_ (£, 8 <v_(t, B +v_(£,2n8).
a a a a
For example, when we set (= (x2 +1), b= (xz) in K [x] , then a+b - K[x]
ana @nd= ' + x%). so for £ =2, v_(2,8) =v, (2,8 =1, v, (2,2+8) =3,
and V_(2, And) =o.
In spite of this divergence of behavior, one can still deduce from
many of the properties of H(t, 5') the corresponding ones for na(t,Q). Now the map
£(x X ) s X £ (x /% coX_[x)
1°°°°""n o "1/ %" """ "n'"0
is a K-vector space isomorphism between the subspace of polynomials of degree at
most t lying in an ideal & and the subspace of the corresponding graded ideal
‘”GL consisting of forms of degree t. Since grd is made up of all forms of the
corresponding homogeneous ideal hQ , we see that

(15) v =ve,"e), B (e =ael .

In particular we have the following result

THEOREM 1A : The characteristic function of an ideal &t i_ﬂl([xl,...,xn] of rank
. r has the following representation for large enough values of t in terms of binomial
coefficients :
t t
Ha(t'a) = hO(n-r) + hl(n-r—l) AERRA hn-x'
with ho""'hr in 2 and ho > 0.

18
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We call ho the degree of & and write also hO(Q). The theorem follows from (15)
and the corresponding representation for H(t,ha,) [2,p.161])

Recall that if &= 91 wh ? is an irredundant primary decomposi-
tion with associated prime ideals fl,.. . PN' respectively, then
h a-= 71 n... ?N is also an irredundant primary decomposition with associa-
ted primes ?1,...,}1?}[ [5-11, p. 181] . Note also that the homogeneous ideals
which are equivalent to their dehomogenized ideals are those whose prime components
do not contain x, [5-11, p.184] .

Proposition 2A : The degree of a p-primary ideal ? of length £ satisfies

ho(?) = ho(P)-A

Proof : Since the map & - h&‘t is injective [5-1I,p.182] , the homogenization
of a maximal chain of -primary ideals

AL AU AR

is a maximal chain of hp -primary ideals lying above h«?. Now the claim follows from
the corresponding propérty for homogeneous ideals [2, p.166] .

The following result is obtained similarly :

Proposition 3A : let &= §n...nP n§ . Nn...nQ be an irredundant primary
decomposition where rank & = z:ank?'1 = ... = rank &, but rank gsﬂ....,rmk?t are
larger. Then

ho (€0) ho(\_fl) + oo+ ho(‘{s)

Proposition 4A : Let & be unmixed, rank S ¢n-1 and let £ be a polynomial of
degree D > 1 such that & :(f)= & and &+ (f) # “["x"""‘n]' Then

rank U+ (f) = 1 + rank &,
hy(f) =D,

ho(d+ (£) < pny(&)

19
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Proof : The first assertion follows from Krull's Principal Ideal Theorem
[3,p.37], [5-1, p.238] . The second assertion holds for any non-zero polynamial
and follows from the corresponding property for homogeneous polynomials [2,p.167] .
For the final assertion note that & : (f) = & is equivalent to
saying that f does not lie in any prime ideals associated with & . This property
remains true under homogenization. Since h Q+ (hf) [ l"( @+ (£f)), we find

B (t, @+ (D) < B, A+ ®eny. -

So when we apply the Bezout theorem for homogeneous ideals [3, p.64] or [2,p.167] ,
we obtain the desired inequality. Let us finally note that every time we use
Proposition 4.A, the positivity of the orders of ¥ and f enables us to verify the
condition that @+ (f) #'G[xl,’...,xn].
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