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NONCONVEX DUALITY

Ivar EKELAND

§. 1 THE LEGENDRE TRANSFORM.

Let X "be a reflexive Banach space, and X its dual. Typically, an element of
X -will be denoted by x and an element of X by x* . The Legendre transform
for X is the mapping £ ̂  from X x X x ]R into X x X x ]R defined by :

P / ^ \ / ^ ^^ ( x , x , a ) = (x , x , <x,x > - a) .

Applying this definition to the Banach space X* , with dual X** = X , we get the
map £ ̂  from X* x x x ]R into X x x* x ]R defined by :

X
^ ^(x , x , b ) = ( x , x , <x,x > - b)
X

It is obvious that £ and £ are. C maps ( i . e . indefinitely differentiable).
A simple calculation shows that they are inverse to each other :

£ X ° £ » = Id ̂A X X x X x B

•£ * ° £ = Id »X X X x x x ]R

This implies that they are non-linear diffeomorphisms, so that they map closed
smooth subsets onto closed smooth subsets. I vill now define what I mean by "ex-
tremizing" a subset of X x x* x ]R , and study the effect of the Legendre trans-
form on such problems. This might seem unnatural (although very simple) for the
time being, but will be fully justified in the next section.

DEFINITION 1 . Let C be a subset of X x x* x ]R . A point ( x , x * , a ) e C is ex-
tremal in C iff x = 0 .
The problem of finding such points is denoted by :

(^ ) ext C

The set of solutions to ( P) is :

{ext( P) } = C H ( X x {0} x ]R ) -

We now consider another reflexive Banach space Y , and a subset K of

(X x Y) x (x* x y^) x]R .

For any y^Y there is a slice K ^ of K , which is a subset of X x x* X]R:
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K = {(x,x*,a) | 3 y*€Y* : (x.y.x^y^a) E K }
" "o 0

and. there is a corresponding extremization problem :

((c^) ext K
y=yo

If we have been careful to get K - C for y = 0 , then we have set up the ori-

ginal problem ( P) in a family of problems ( a ) , parametrized by y € Y . In

convex analysis, this is the standard situation for obtaining a duality result ;

this is what we get here too. A new notation is needed ; for any (x,x*,a)eK

the (non-empty) set of y*& Y* such that (x,y^;x*,y*;a) €K is denoted by^0

L (x,x*.a) -
-o

PROPOSITION 2. The extremization problems :

( ^ ) ext K „y=o
and

(P*) ext(£^ K) „
x =0

are dual to each other in the following way :

(P^) = ( P )

(x,0,a)(- {ext( P)}==» L (x,0,a) x {0} x {-a} C {ext( P*) }.

Proof : Problem ( P**) is stated as

( ̂  ext( \» , ,« S . Y ^y = 0 .

which boils down to ( P) since the two Legendre transforms are inverse to each
other.

Consider a point (x,0,a) which is extremal in K , and any y C L (x,0,a).

By definition of these sets, we have : °

(x,0;0,y*;a) <" K .

Applying the Legendre transform, we get an equivalent statement :

(0,y*;x,0; <x,0> + <0,y*> - a)^- £ „ „ K
A x I

(0,y*;x,0;-a) £ £ K .
A ^ 1

(y ,0,-a) e ^ x x Y ^ O
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The latter means of course that (y ,0,-a) solves problem ( P*) Q .
Here we have taken the Legendre transform -C with respect to both variables• X X j[
x and y . We can also take the Legendre transform <£ , , with respect to the varia-
ble y only ; this leads us to the set £ K (which should really be (id x £ ) K )

•i- X i
defined by :

£yK = { ( x , y ;x , y ; <y,y > - a) [ ( x , y ; x ,y ; a ) e i c } -
In this way, we get a statement which encompasses both ( P ) and ( P*) :

PROPOSITION 3. Consider the extremization problem :
( P ' ) ext £^ K .

Then (x , y ; 0 , 0 ; a ) solves problem ( P ' ) if and only if ( x , 0 , - a ) solves pro-
blem ( P ) and y €L ( x , 0 , - a ) (which implies that (y , 0 , a ) solves problem

x ~( P*)) .
Proof : Suppose ( x , y ; 0 , 0 ; a ) €. S. K . Going back to the definition of £ K , this
means that :

( x,0;0,y*;-a)& K
and the result follows immediately Q

§.II - INTERPRETATION AND EXAMPLES.

We are quite used to associating subsets of X x B with functions from X '' to B .
For instance, if f is a function from X to K , its graph

{ ( x , a ) [ x € X , a = f (x )} = graph f

and its epigraph

{(x,a) | x€.X , a ^ f (x)} = epi f

*are subsets of X x3R . Conversely, conditions can be stated for a subset of
X x ]R to be the graph (or the epigraph) of some function f : X ̂  ]R .
If the function f is locally Lipschitzian, it has at every point x€ X a genera-
lized derivative 9 f ( x ) (see Clarke [7] , [8] ) , which is a non-empty, closed,
convex, subset of X . This enables us to associate with f a subset of Xxx* x 3R
its hypergraph ,

{ ( x , x * , a ) | x£X , x*£ 3f(x) , a = f ( x ) } = hyper f .
In the particular case where f is C33 (p times continuously different table), its
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hypergraph is described by the equations :

x* = f ' (x) , a = f(x)

and it is a closed submanifold of X x X x ]R , c33 -diffeomorphic to X .

It is to this hypergraph that we now apply the results of the preceding section.

In this context, definition 1 becomes clear. The extremization problem

ext hyper f

simply consists in solving the equation 3f(x)30 (or f ' (x) = 0) , i.e. in loo-

king for stationary points of f in X .

Let us try to figure out what happens to the Legendre transform. From the defini-

tions, it follows that :

£ (hyper f) = {(x*,x, <x.x*> - f(x))| x f c X , x*£ 3f(x)}

and the question immediately arises : is that the hypergraph of some function

g : X* -^K ? If so, g will legitimately be denoted by£g, and called the Legen-

dre transform of f . Here are two important cases .

PROPOSITION 4.

Assume f : X -> E is convex and continuous. Define f* : X x ]R U(+°°} by

f^x*) = sup { <x,x > - f(x) | x£X}

and set :

hyper f* = {(x*, 3f*(x*) .f^x*))] f*(x*) < + 00}

where 3f (x ) denotes the subgradient of f at x (which coincides with the

generalized derivative wherever f is locally Lipschitzian, i.e. on the interior

of dom f ). Then

£ (hyper f) = hyper f •

Proof : This follows from classical results in convex analysis. If (x ,x,a) €

£ (hyper f), then x* 9f(x) and a = <x,x*> —f(x) . This implies that xCS^x^)

and a = f (x*) , so that (x ,x,a)€hyper f . Conversely, if (x ;x,a)€ hyper f*,

then x^Sf^x*) and a = f*(x*). This implies that x^ 3f(x) and a ^x.x^-^x).

so that (x ,x,a) €. °C (hyper f ) Q .
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PROPOSITION ^. Assume f : X ^K is C2 , and the linear operator f"(x): X -> X*

is always invertible, with ||f"(x)-'1 |[ uniformly bounded. If f ' : X - » - X is

proper (*), then it is a C -diffeomorphism, so that the equations :

g(x*) = <x,f '(x)> - f(x) , with f ' (x) = x*

define a C function g : X ->-]R . Moreover :

of(hyper f) = hyper g .

proof : Let us agree for the time being that f* is a C diffeomorphism. Then

g is defined "by :

g(x)l<) = < (f ')~' '(x*) . x* > -^(f')"^)

and is clearly well-defined and C . Writing g(x ) = <x,x > - f(x) and diffe-

rentiating this expression with respect to x , we get :

<g'(x*),^> = <x,^* > + <f"(x^1^.x* - f(x) > .

Taking into account the relation x = f ' (x) , the last term vahishes, and we

are left with g'(x*) = x . The hypergraph of g is exactly £ (hyper f).

We now prove the assertion about f * . By the implicit function theorem, since

f"(x) is invertible, f is a C -diffeomorphism of some neighbourhood of x

onto some neighbourhood of f ' (x) . Moreover, I claim f ^ ' . X - ^ X * is surjective,

so that it is a covering. Since X is simply connected, f must be one-to-one,

and a global diffeomorphism .

To see that f is onto, take any x G X , and consider the function h : X -> E

defined by h(x) = f(x) - <x,x* > . Clearly, h"(x) = f"(x) , so that there is

some c > 0 with :

|| h"(x)~1 || < c , all x € X .

I claim that there is some x e X with h ' (x) = 0 .

To see this, consider the function V(x) = [ |g ' ( x ) [ [ » which is continuous and

bounded from below, and apply P| , corollary 2.3. ; there exists a sequence (x^)

such that, for every nCB (see f 2 ] ) :

V x C X , l lh^x) ! ! * - llh-tx^ll*^ ||x-xj| >. 0 .

(*) i.e., the inverse image of a compact set must be compact.
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By the implicit function theorem, the equation h^x^ = (l-t)h'(x ) defines a

C curve t ̂  x^ starting at x^ = x^ and extending over some time interval

[0^) , with \ > ° ' The previous inequality then becomes :

- t l|h-MI*^||x^JI >.0 .

Dividing "by t , and letting t ->• 0 , we get :

-ll^ll^llft^ ^|| ^0

- ll11'^"*^ ll-11'^)'1 ^(^ll >-0 •

If h'(x^) ?t 0 , then y^ = h'(x^) / ||h-(x^) I]* is a unit vector, and the prece-

ding inequality yields :

l|h"(x^)-1 y^|| ^ n

which contradicts the assumption that the ||f"(x^)~1 || are uniformly bounded

(remember that f" = h") .

Finally, we have the important special case when the function f splits as a sum

I ̂ ^j^ » the x. being independent variables.

PROPOSITION 6. Assume the X^ , 1 ^ i <, n , are Banach spaces, and the

î : î ->' ̂  are continuous functions.
n n

Define X = ^ X^ and f : X - ^ B by f (x) = ^ f . (x . )
1=1 i==1 1 1

If, for each i , either prop. h or prop.5 applies to f. : X.-^ B , so that all

the f^ have a veil defined Legendre transform £ f^ : xT ^ ]R , then so does f
and

£f (x* ) = ^ £f.(x") .
i=1 1 z

Proof : Call K^ the hypergraph of f^ , and K the hypergraph of f . Clearly

K = { ( x ^ . . . . x ^ ; x^.. . . .x^ ; ^ a^) | ( x ^ x T , a ^ ) e ^ }

so that :

v v - 1 1 * * ? ^ x «
£ K = { ( x^ . . . . , x ^ ; x ^ , . . . , x ^ ; ^ a^ - ^ < x ^ , x T > | (x^xT . a^)€K^
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= { ( x * , . . . , x ^ ; x ^ , . . . , x ^ ; ^ aT | ( x T . x^, aT)€ £ K^ } .

n
The latter means that £. K is the hypergraph of the function ^ -£f. : JIX. -»-]R .
This is the desired result f] ' i=1

For a detailed study of the case when the Legendre transform £f cannnot be in-
terpreted as a function, the reader is referred to pi •

§ . 2 . APPLICATIONS

We will show how various duality results follow from proposition 2. First, of
course, we get the classical convex case. But we also get various non-convex ones,
which are brought together for the first time.

A - THE CONVEX CASE.

PROPOSITION 7. Let f : X ->-B and g : Y •> K be two convex continuous functio-
nals, and A : X -̂  Y a linear continuous mapping between Banach spaces X and Y.
Then the optimization problems

( ? ) inf{f(x) + g(Ax) | x€X}

and

(Q) sup { - g*(-y*) - f^y*) | y ' 6 Y" }

are dual to each other in the following way : 3C solves (^ ) if and only if any
y € 3g(Ax) solves ( Q ) . If such is the case, we have

min(^) = max(Q) .

Proof : Define the function $ : X x Y -»• K by :

<Hx,y) = f ( x ) + g(Ax-y).

Clearly $ is convex and continuous. Problem ( " P ) can be written as :

( ( T ) ext $ ( . , 0 )

We then apply proposition 2 with K the hypergraph of $ . By proposition 5 , the
set./C K is simply the hypergraph of $ , so that the dual problem becomes

(^*) ext $* ( 0 , . )
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Computing 0 (x ,y ) , we get :

$ (x ,y )= sup { <x,x > + <y,y* > - f ( x ) - g(Ax-y)}
x,y |

Setting Ax-y = z€Y , we get :

. » , » ». .. « « « . » , v , ,<MX ,y ) = sup { <x,x + A y > + <z,-y > - f ( x ) - g ( z ) }
x , z
-»/ » * *> *, ».= f (x + A y ) + g (-y ) .

Proposition 2 now tells us that ~x. solves problem ( ( T ) (yielding f(x)+g(Ax)=a)
if and only if any y* such that (0,^) € 3^(^,0) solves problem ( ( J ° * ) (yiel-
ding g (-y ) + f (A y ) = - a ) . This is the desired result Q .
B - TOLAND'S CASE
PROPOSITION 7. Let f : X -̂  B and g : Y -̂  ]R be two convex continuous functio-
nals, and A : X -> Y a linear continuous mapping between Banach spaces X and Y.
Then the extremization problems

(^) ext{f(x) - g(Ax) | xCX)

and
(^) ext{g*(y*) - f*(AV) | y ^ c Y* }

are dual to each other in the following sense : x solves (3*) if and only if any
y €. 3g(Ax) solves (Q.). If such is the case, we have :

f(x) - g(Ax) = g*(y^) - f*(A7)

Proof : Define the function $ : X x Y -»• ]R by :

$(x,y) = f (x ) - g(Ax-y) .

Clearly, (<^) can be written as :

(^) ext <Hx,0) .

We then apply proposition 2 with K the hypergraph of $ . We now compute its Le-
gendre transform

< £ K = { ( x ,y ; x,y; <x,x*> + <y,y*> - f (x ) + g(Ax-y))

|x*C 8- f(x)-A* y* , y*<r. 3g(Ax-y)}



Setting Ax-y = z this "becomes :

£K = {(x*,y*; x,Ax-z ; <x, x*> + <Ax-z, y*> - f (x ) + g (z ) )

[x^ + A*y*c 8f(x), y*c 8g(z)}

The set <£K is easily seen to "be the hypergraph of the Legendre transform of the
function

(x*,y*) H. £f(x* + A*y*) + £ (-g)(-y*) .

By proposition 5 9 we have «£ f = f . W e readily compute <C(-g) :

a*€ £ (-gHz^^aye.X : (y,z*, <y,z*> - a*) C hyper (-g)

< ^ a y € X : (y,-z*, a*- <y,z*>) £ hyper (g)

^ a y C X : (-z*,y, -a*) £ hyper ( £ g )

^ a* = - £g(-z*) = - g^-z*) .

Finally we get the dual problem

(^ ext £$(0,y*)

(y*) ext {f*(AV) - gV)} .
«

y
Proposition 2 now tells us that x solves problem ( ( T ) (yielding f(x)-g(Ax)=a)
if and only if any y £ 9g(Ax) solves ( ( T ) (yielding f (A y )-g (y ) = -a)if and only if any y £ 9g(Ax) solves ( ( T ) (yielding f (A y )-g (y ) = -a)
changing signs from ((T ) to ( q . ) , we get the desired result FI

C. CALCULUS OF VARIATIONS.
Let us consider a classical (Bolza) problem in the calculus of variations :

fT
ext f ( x ( t ) , x ( t ) ) d t

(<T) J o

x(0) = ̂ , x ( T ) = ̂  .

The function ( ^ , n ) H- f(^»n) is assumed to have a well-defined Legendre trans-
form «£f ; i . e . some of the results of §.II apply to* f : ]R11 x E11 -^E .
A solution x of problem (?) is an absolutely continuous curve t «-̂  x ( t ) ,



54

satisfying the boundary conditions, and such that there exists another absolutely

continuous curve t i-»- p(t) with :

(x(t),x(t) ; p(t), p(t) ; f(x(t), x ( t ) ) ) e hyper (f) a.e.,

If for instance f is C- , this condition boils down to ^ f (x(t),x(t)) =

f 'c(x( t ) ,x( t ) ) , the usual Euler-Lagrange equation. We now have the result :

PROPOSITION 8. The problem

fT
(Q) ext { - £ f (p ( t ) .p ( t ) )d t + p(T)^ - p(0) ^ }

is dual to (T) in the following sense : x^ j_s a solution to (T) if and

only if any' P satisfying hyper (f) 9 (x(t). ̂  (t), p(t) , •d •p{~f)

f(x(t), — ( t ) ) ) for almost every t€ [o,Tj is a solution to (Q). Moreover, x^

and p assign the same value to ( ^) and (Q).

Proof' The equation relating x and p can be written as :

( f . P ^ . H ^IhpH - f ( ; , f ) )6hyper ( f )

(to be understood for almost every t). But this simply means that ~p is an extre-

mal of (Q). The value is computed to be :

rT
J - £f( ^ .P)dt + p(T) ^-p(0) ^ =
0

= f f^ f)^ - f {^ |1 + P I { ^ + (P(T) ^-P(0)^)
0 0

The last two terms cancel, yielding the desired result.

D. CONCLUSION.

Of course, this is bu;c a very rough outline of what can be done. The reader is re-

fered to the original papers for the three preceding cases ([®J , [2'} for A ;

[4] . Pj for B ; I3] for C).

Let us also note that proposition 3 yields the Lagrangian formulation. In the con-

vec case (A), problem (T) and its dual (q) are equivalent to the single pro-

blem :

ext^ {f(x) - <Ax,y^ - g^-y*) } .
x,y
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which boils down to the classical saddle-point problem :

inf sup { f ( x ) - < Ax.y* > - g* (-y*)} -
x y*

In Toland's case ( B ) , problem ( T ) and its dual ( q ) are equivalent to the sim-
pie problem :

ext { f ( x ) + <Ax,y*> + g^y*)}
«x,y

Finally, we can easily get a marginal interpretation of the dual variables. Indeed,
consider the subset V C y x y* x B defined by : / '

V = { ( y , y * , a ) | 3 x 6 X : ( x , y ; 0 , y * ; a ) 6 hyper ( $ ) } .

If V is a submanifold, it is easily checked that da = < y*, dy > . This can be
interpreted as y* = |^ , where a ( y ) is a branch of extremal values for

(^ ) ext $ ( x , y ) .
x
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