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SOME FUNCTORS RELATED TO POLYNOMIAL THEORY,II
by

Andrzej PROSZYNSKI

1. Introduction. We consider the following natural transformation :

™ ¢ PR(X,Y) » Map(X,Y) , T(f) = £

where R denotes a ommutative ring with 1, X,Y - R-modules, and Pg(}(,Y) is the
R-module of all forms of degree m on the pair (X,Y) (in the sense of N.Roby [2]).

An element of Pg(X,Y) is a system f=(f indexed by all commutative R-algebras

2
A, where fA : X® A->Y®A are mappings satisfying the following conditions :
(i) (1 ® u)ofA = fBo(1 ® u) for any R-algebra homomorphism u : A - B,
(ii) fA(_)ga) = fA(g)am for any R-algebra 4, any x € X® A and a € A,

It is proved in [1] +that in the case X =R", Y = R we obtain :

0

n .
™ R[T1""’Tn]m - Map(R ,R), Tm(F)(x1,...,xn) = F(X‘I"“’Xn)°

It is well-known that the above homomorphism is not always injective ; this is the
starting point and the motivation of the following considerations.

It is known from [2] that the functor PHRI(X,—) is represented by the
m-th divided power Tg(x) of the module X. Similarly, it is proved in [1] that

ﬁ‘;{’(x,-) = Ker T" is represented by 'I\“g(x) where :

P(x) - r2(x) / RGP x € 03
The above module is generated by the classes of elements :

e @)
yin1,...,mk XyyeerX ) =X, cee X

which are denoted by T(’ (x1 ,...,xk).

Wyyeees

It is easy to see that FﬂRl is an endo-functor of the category R-Mod.

» my =0, Mybes oL = I, Xgpeee,X € X,

We recall the following results contained in [17 :

om

Lemma 1.1, T commutes with direct limits.

R
Lemma 1.2, I"R(X) is finitely generated if so is X.

Theorem 1.3. There exist the natural isomorphisms :
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(1) 1“";“ (xg) NT‘“F‘:(X)S for any multiplicative set S in R

3
(2) ?g/I(X/IX) ~ i*g(x)/l 'ﬁ;‘(x) for any ideal I in R
(3) Thg (&) ~TRx) xTE, (x) .

Theorem 1.4. For a finitely generated R-module X, the following conditions are

equivalent :
(1) TR(x) =0

(1i) ?Q/P(X/Px) =0 for any P € Max(R)

(iii) For any P € Max(R) : either dimy P(X/PX) <1 or m<|R/P
=0 iff m =<d(R) : inf {|R/P| ; P € Max (R)}.

In particular, rl:g

2. The structure of ?';H(X) We shall give some structural informations on T"g(x)
which generalize results contained in [17. The first step is the following
Lemma 2.1. If P € Spec(R) - Max(R) then ?;I(X)P = 0 for any R-module X.
Moreover, is X is finitely generated then Ann(?g(x)) ¢ P.

Proof : Observe that R/P is an infinite domain (it is not a field!) and hence
a(Rp) = . It follows from Theorem 1.3 and 1.4 that ?;‘(X)P =T} (Xp) = 0. Then
the second part of the lemma follows from Lemma 1.2. P

Corollary 2.2. If dim(R) > 0 then :

(1) ?‘?(X) are torsion modules.

(2) T‘Jg(x) is free iff it is zero.

If dim(RP) >0 for any P € Max(R) then :

(3) IQ?;(X) is projective iff it is zero.

Now we explain the structure of [ (X) over Noetherian rings.

Theorem 2.3. Let R be a Noetherian ring and let X be a finitely generated R-mo-

dule. Then thereexists a natural R-isomorphism :

k
RO~ e M, (x/p 9
PEMax(R) PP
k
induced by X - X/P PX, for all sufficiently large k

-
~m . ~m

Proof : We can assume that A.nn(l"R(X)) # R. Let Ann(FR(X)) =Y N..NQ bea

P,

&

primary decomposition, and let = rad(Qi). Observe that Pi:L [es Qi for all suf-
1 .
ficiently large ki. Denote I:P1 PSS c A.nn(rl:;l(x)) Since P1 ,...,Ps € Max(R)
B k.
by Lemma 2.1, it follows that R/I~ I~ R/Pil and hence :
i=1
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by

> ~m O~} ~ S om ki
R(x) =TR(x) / AR = FR/I(X/IX) ~ & T (x/P.*%).

. R, k.
i=1 /P.l
1
If P € Max(R) - {P1 ,...,Ps} then I + P* =R for each natural X, and hence :

’fg/ k(X/PkX) = ?;‘(x)/Pk T5x) = o.
P

This completes the proof.

Corollary 2.4. If R 1is a Noetherian ring then there exists a natural R-isomorphism

X))~ o I
R(X) PEMax(R) RP(XP)

induced by X - XP.
Proof: : Compare the d ecompositions from Theorem 2.3 for X and XP in the case if
X is finitely generated. Next apply Lemma 1.1.

The same argument prove the following

Corollary 2.5. If R is a local Noetherian ring then there exists a natural R-iso-
morphism :

~m ~ TR A
) rR(x) rR(x ® R)
induced by X - X ® R.
Observe that the above two corollaries reduce the computation of ?’;(x)
for Noetherian R to the case when R is local and complete. Theorem 2.3 reduces
this problem (for finitely generated X) to the case when R is local Artinian.

This case will be studied in the next section.

3. The Artinian case. Let (R,P) be an Artinian local ring. Then Pk = 0 for some

natural k. Observe that r2 =0 for any r € Pk_1 (if k> 1). This is the moti=

vation of the following,
Proposition 3.1.. If r°=0 in R and m S5 then rp(X) = O for any R-module X.

Proof : To start with, we give some general formulas. It follows from [1] that :

~

by v (X, 5000,%x ) =0 for any X,,...,x_ € X.
mi>o m1,...,mn 1 n 1 n
~
Denote /m1,...,mn/ =y (X1"'°’Xn) for mi >0, X m:.L = m, We must prove

Myseee,l)

that r annihilates all this generators. We have :

1) Z‘/m1,...,mn/=0.

Replacing x, by X, and (1+1‘)x1 we get :

(2) rT/1 ,m2,...,mn/ =0
(2v) = (‘l+rm1 )/m1,...,mn/ =0
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since 1° = 0 and (1+r)k = 14kr. In view of (1) and (2) we get from (2') :
m-n+1
3) r = (x-2) 2/k,m2,...,mn/ = 0.
k=3

In particular, it follows that :

(a) /1,...,1/ =0 Dby (1) (n=m)

() r/2,1,...,1/ =0 by (1) and (2) (n=m-1)"
(e) r/3,1,...,1/ =0 by (3) (n=m-2)

(a) r/1,m—1/ =0 by (2) (n=2).

For m <2 there is nothing to prove. For m=3 we utilize (a),(b). For m=4 we get
r/3,1/ = ¢/1,3} = v/2,1,1/ = v/1,2,1/ = ¢/1,1,2/ = v/1,1,1,1/ = 0. Hence also
r/2,2/ =0 by (1). For m=5 we have r/1,4/ =1x/3,1,1/ =2/2,0,1,1/ = x/1,1,1,1,1/
= 0 and analogously for any permutation. Then (2) and (3) get us r/1,2,2/ =
r/3,2/ = 0. This completes the proof.

Remark 3.2. Using the same formulas (when we also replace %, by —x2) we can
prove the above proposition for m =7 with the assumption that 2 is invertible
in R.

Corollary 3.3. Let R be a Noetherian ring and m =<5 (orm <7 and 2 is inver-

tible in R). Then there exists a natural R-isomorphism :

B~ e F’II{I/P(X/PX)
P€Max(R)

induced by X - X/PX.

Proof : It can be assumed that X is finitely generated. In view of Theorem 2.3,
it suffices to prove that ??(x) ~ ?E/P(X/PX) for any Artinian local (R,P).
1t P =o, P £0 and k>1 (i.e. R is not a field) then :

Px) = B0(x) / TR ~ PR (a/P'x)
R R R R
/Pk-1

by Proposition 3.1 and Remark 3.2, Induction on k completes the proof.

Remark 3.4. The assumptions of the above corollary are necessary. In fact, it can
be computed that :

7,
4

Remark 3.5. Since the dimensions of ?m(X) over fields are known (see [17),

oz @z, (@) =202 02 9767,

)=2,®2,02,032, I 5 825 925 92592

Corollary 3.3 solves the problem of computation of ?m(X) over Noetherian rings

for small m. For example, it can be proved that :
~3oon n
1727 = (5) 2,

~hoony o entl n
1“Z(z)_2(3)zzee(2)z3

1]
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?g(zn) =GR +5 (3 (2, 2(n;1)z3

where (E) =0 for n <k. However, the problem is open for large m.
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