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REMARKS ON RANDOM WALKS ON SEMI SIMPLE LIE GROUPS

by Jonathan ROSENBERG*
Department of Mathematics

University of Pennsylvania
Philadephia, Pennsylvania 19174 ( U . S . A . )

The purpose of this note is to discuss two problems concerning random walks and
harmonic functions on Lie groups, and there-by to complete and enlarge upon the
results of A.RAUGI announced in [ 6 ] and proved in detail in [ 7 ] . Both problems
have their origin in the work of H.FURSTENBERG [ 2 , 3 ] as further extended by
R.AZENCOTT [ 1 ] and A.VIRTSER [ 8 ] . For the sake of convenience in notation and
bookkeeping, the results of this paper are stated for connected semi simple
groups , which are clearly the most important case , but one could easily extend
them as in [ 7 ] to general almost connected Lie groups [those with only finitely
many connected components] .

1 . p-PDSITIVE AND p-NEGATIVE COCYCLES
1 . 1 . - Let G be a connected semisimple Lie group with finite center and with
Iwasawa decomposition KAN . Let a denote the Lie algebra of A , let a, be its
real dual , and let c*„ be the complexification of a* . In the discussion thatIL
follows , the term root will always refer to an element of a. which is a res-
tricted root of the pair [ G , A ] . The weyl group is the finite group w of auto-
morphisms of a, or a. induced by the conjugation action of the normalizer of A
in K ', w permutes the roots . An ordering of the roots is canonically determined
by the choice of N . For x G G , write x = kan with k € K , a € A , and
n e N , and let H ( x ) = log ( a ] G o . . Then the functions <^ on GxK of the form

( 1 ] ( ( ) ( x , k ) = X ( H ( x k n ,
where X G a* , x £ G , and k G K , are called A-cocycles (on K ) . (See
[3 , § 6 ] -the present definition is not quite the same as Furstenberg's but is
essentially equivalent) . Every such function is associated with an elementary
spherical function '? on G defined by
( 2 ) y ( x ) = exp ( 4 ) ( x . k ] ) dk .

- ' K
(Here dk' denotes normalized Haar measure on the compact group K ] . In fact ,
all elementary spherical functions arise this way if we allow A to be chosen from
CL . For further discussion of spherical functions (about which there is an exten-(L

* Partially supported by the National Science Foundation.



120

sive literature) , the reader can consult [ 4 ] .
Now suppose p is a probability measure on G . If f is a function on G ,

x £ G , and X , X , . . . are independant G-valued random variables each with
distribution p , it is of interest to determine the asymptotic behavior of
f[X . . . X X x ) - as n ——> oo . This , of course , is the subject of "laws of
large numbers" and "central limit theorems" for the left p-walk on G . (One
could analogously consider f [ x X . X . . . X ) and the right p -walk on G ) .
The function f is at our disposal here , and it is convenient to have f rela-
ted to the group-theoretic structure at hand . Furstenberg showed in [3 , $7]
that if f is of the form' <H. , k ) with <(> an A-cocycle as above and ke K ,—ithen n f [ X . . . X X x ) converges with probability 1 to a limit a [ < t > ) inde-
pendent of x and k , provided that p is regular enough . CFurstenberg takes
p of class B -absolutely continuous with a first moment-but it is clear from
[ 1 ] that absolute continuity of p can be weakened to the condition that p be
" e t a l e " ) . what is remarkable is that for certain choices of <t> , this limit is
strictly positive [or strictly negative) for all choices of p . This was first
.shown by Furstenberg [3 , Theorem 7 . 6 ] under the additional restriction that pibe of class B [determined by a bounded L function of compact support) and
then extended by RAUGI [7 , Cor. [ 7 . 1 5 ) ] to the conclusion that a ( < ^ ) > 0

Kfor all etale p with a first moment , whenever the X €a that determines <(> is
a positive root . [The apparent change of sign from RAUGI's statement is due to
the fact that RAUGI puts K on the right in the Iwasawa decomposition , whereas
we are following Furstenberg and putting K on the left) . The purpose of this
section is to point out that , with p restricted to being of class B , one
can deduce this fact directly from [3 , Theorem 7 . 4 ] and elementary facts about
semisimple groups . This provides another proof of the conjecture on p . 417 of
[ 3 ] .

1 . 2 . Proposition. - With notation as above 3 i-f A G a. is a positive root and ^
is the t\-oooyo'Le defined by ('[) s then a [ < ( > ) > 0 for alt probability measures
p of class B

Proof. - By [3 , Theorem 7 . 4 ] , we will have a [ 4 > ) < 0 whenever the elementa-
ry spherical function ^ defined by [ 2 ) satisfies 11^11 oo, , ^ 1 . By the easyL [ G J
direction of the Helgason-Johnson Theorem [4 , p . 6 6 ] , this will be the case if
\ = i\) - p with p half the sum of the positive roots and \) € OL + 1C , where
C is the [closed) convex hull of the orbit of p under the weyl group W . ThisP
is equivalent [since X is real-valued) to having \ € - [ p + C ) . But if
s E 1/J is the element taking every positive root to a negative root , if a is a
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simple root ("with multiplicity") , and if s e w is the reflection in the

hyperplane normal to a , then s s p= s (-p) = a - p , and thus

a = p + ( a - p ) € E p + C . This shows that each A-cocycle associated to the nega-

tive of a simple root is p-negative for all p of class B . Since the p-posi-

tive and p-negative cocycles constitute convex cones which are 'negatives of one

another , and since each positive root is a sum of simple roots (possibly with

repetitions) , the conclusion of the proposition follows .

1 . 3 . Remark. - It is interesting to observe that the convex cone generated by

p + C is exactly the same as that generated by the positive roots (since for

s G w , p + s p = p + (ss ) (s p ) = p - (s3,-^ P is a sum of positive roots by

dominance of p ) . Furthermore , the tielgason-Johnson Theorem also shows that

ll'yil, oo .p., ^ 1 only when \ e ±0. - ( p + Cp ) . Thus the present method produces

no more cocycles positive for all p than does RAUGI' s .If G is of real rank

1 , every non zero A-cocyle is either p-positive for all p or p-negative for

all p , since every element of a. is a scalar multiple of a root . But when

the real rank of G is > 1 , it is possible for a A G O to be neither in the
+ _

cone C generated by the positive roots nor in the cone C generated by the ne-

gative roots . It seems likely that in this case the corresponding A-cocycle ^

would be p-positive for certain p and p-negative for certain other p

When p is the class B probability measure defined by a K-biinvariant posi-

tive continuous function g of total mass 1 , it is easy to chech that

a ( ( { > ) = g (x ) f (f)(x , k)dk dx
p - 'G J K

= [ ^ g(exp X ) \ ( T ( X ) ) A ( X ) d x ,

where a. = {X e 0. : a ( X ) > 0 for all positive roots a.} . A is a certain
+

positive continuous function on a * dx is Lebesgue measure , and T : a. —> a.

is given by

(3) T ( X ) = H( (exp X ) k ) d k .
-'K

Since §).,+ '^an have support in an arbitrarily small neighborhood of a given point

X £ 0. , Proposition 1 . 2 . implies that a ( T ( X ) ) > Q for all positive roots a .

In other words , we have the following (purely group-theoretic) result ;

1 . 4 . Corollary. - Wzth T defined as in ( 3 ) , T^) c ^ . If one could show

that in fact T(a ) = a. , then for A ? ( C U C ) , A o T would change sign
in a , and one could choose g so that a ( <^} was either positive or nega-
tive .
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2. SEMISIHPLE GROUPS WITH INFINITE CENTER

2 . 1 . The purpose of this section is to examine random walks on semisimple Lie
groups with infinite center , and in particular to extend some of the results of
[8] . Our principal result , Theorem 2.10 , is exactly what is needed to make it
possible to drop the condition on the center of G /R in the proof of theorem
[ 6 . 4 ) of [7] . Although semisimple groups with infinite center may not often ari-
se in practice,, it is nice to have a unified treatment of random walks and harmo-
nic functions valid-for all connected Lie groups [without side conditions on the
center) .

Let G be a connected semisimple Lie group with center Z , let p be an etale
probability measure on G , and let •n be the Poisson space of p . Then if Z
is infinite , it may happen [ 5 ] that G is not transitive on TT . More preci-
sely , let T be the closed semigroup generated by the support of p and let
S be the open semigroup of [ 1 , Definition IV.2 ] . Then by [ 1 , Proposition
I V . 5 ] , G is transitive on TT if and only if [Z ; Z n S S ~ 1] < o° . Since TTp - p p p
depends only on T by [ 1 , Theoreme 11.4] , one expects to be able to phrase
this condition in terms of T , and in fact . Z n S S ' ^ Z n T T " 1 :V P p M M

2 . 2 . Lemma. - Let G be a group uith center Z j and let S and T be non-
empty sub-semigroups of G satisfying S CT and TS c S . Then
z n ss~1 = z n TT~1

Proof. - Since S ̂  T , Z n SS~1 C_ Z n TT~1 . But if z € Z 0 TT~1 , we can write
z = t^ with t^ , t^ € T . Let s e S . Then z = [ t s)"^! s ) [since z is
central) = s" 1! ~^t t "^ s = [ t s ) " 1 ^ s) e [TSl'^TS) C S'^S , so

-1 -i -l —Z U T T c z n s s = z n ss

Corollary. - In the setting of 2 . 1 above 3 Z n S S -1 = Z n T T ~ 1 .——————•- ° " - p p M P

Proof. - By [ 1 , p . 7 6 ] , we can take S = S and T = T in the lemma .———— M M

2 . 3 . - Let KAN be an Iwasawa decomposition of G and let M be the centralizer
of A in K . We begin by analyzing the asymptotic behavior of the left p-walk
on G/AN = K [equivalently , we could deal with the right p-walk on AN\G) in
the case where G is transitive on TT . The results are basically as in the fi-
nite center case , except for the fact that since K is no longer assumed compact
it is necessary to consider infinite measures .
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2.4. Lemma. - Let G ,= KAN and M be as in 2.3 ., ana Z-e^ M. Z?e an open si^-
<\,

group of finite index in M. Then MAN leaves fixed on G/AN = K exactly one Radon'

measure m (up to scalar multiples) ., namely , the image in K of a Haar measure
<\,

on M . M AN leaves fixed on G/AN = K exactly (up to scalar multiples) the con-

vex combinations of the restrictions of this measure to the right M -cosets in

M . In particular 3 the cone of N.AN- invariant (positive) Radon measures on G/AN

is generated by its extremal rays y and there are exactly [M ; M ] of these .

Proof. - G/ZAN = K/Z is compact , so every Radon measure on it is a multiple of

a probability measure . B y [3 , Theorem 2.6] , there is exactly one probability

measure A on G/ZAN which is MAN/Z-invariant , and \ is obviously normalized

Haar measure on the image of N/Z .
^

Let m be an MAN-invariant Radon measure on G/AN = K . Since Z C M , m is

Z-invariant and projects to an MAN/Z-invariant measure on K/lt . Hence m is of

the form

f dm = f [ zk )dz dA(?J
^ K - 'K )!

for some Haar measure dz on Z , and this proves the first assertion .

Now if y G M , (M AN) (M y AN) = AN(M y AN) (since M normalizes AN) =

M y AN [since M y normalizes AN) , so the restrictions of m to right M -

cosets in N (or rather , their images in G/AN) are M AN-invariant . Converse-

ly , suppose o is an n,AN-invariant measure on G/AN . Let r = [M : M ] and

choose representatives y , ... , y for M/M. in M. Then Ey. . o is MAN-

invariant , hence is a multiple of m , and is therefore supported on MAN . It

follows that a is supported on MAN , or on M if we identify G/AN with K .

But an M -invariant measure on M is a sum of translates of Haar measure on M .

This proves the lemma .

2.5. Lemma . - Let G = KAN and M be as in 2.3 . Let p be an etale probabi-

lity measure on G such that G is transitive on TT . Ve take TT = G/M AN

with M an open subgroup of M j since TT is compact y [M : M ] < 00 . Let \)

denote the Poisson 'kernel for \i on TT j and let X be a locally compact (left)

G-space . Then if \ is an ^L ̂ -invariant Radon measure on X ., i^e can define

a p -stationary measure \) * \ on X by
! f d(^ « X ) = f f f C x y ) dv (x ) d X ( y )Jx J x Jrr^

(the integral converges since \> has compact support). Conversely ., every ^-sta-

tionary Radon measure on X is of the form \> * X ^>ith \ as above .

Proof. - This follows from trivial modifications in the proof of [3 , Lemma 2 . 1 ] .
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2.6. Theorem. - Assume the hypotheses of 2 .5 . . Then G/AN = K admits (up to

scalar multiples) exactly [M : H ] ergodic -^-stationary Radon measures j and

every ^-stationary measure on K is (up to scalar multiples) a convex combina-

tion of these . With probability 1 j any element of K enters the support of one

of the ergodic measures after finitely many steps of the left }i^)atk on G/AN ,

and then stays there thereafter .

Proof. - Note that ergodic p-stationary measures on K , considered up to scalar

multiples , are the same as extremal rays in the cone of p-stationary measures on

K . By Lemmas 2.4 and 2.5 , this cone is generated by its extremal rays , and

there are exactly [M : M ] of these . Also , we see that the ergodic measures

have disjoint supports whose union E is the inverse image in K (under the natu-

ral map p : K —> K/M ] of the support of v . Hence , if k e K and

X , .. . , X , ... are independent G-valued random variables with distributioni n ^
p , X . . . X KAN eventually lands in E if and only if X ... X p C k ) A N even-

tually lands in p Csupp v ) , where p denotes projection onto K/M . But we

know that this last assertion is true either by the ergodic theorem

(cf . [3 , p. 397] ) or else by the Doeblin condition [6 , Lemma 1 ] applied to
f\,

the unique stationary p-process on the maximal boundary G/MAN = K/M of G .

Now we go on to the general case (in which G is not necessarily transitive on

% ) •
2.7. Lemma. - Let G be a connected semisimple Lie group with (not necessarily

finite) center Z j and let S be a non-empty open sub-semigroup of G . Then

one can choose an luasai^a decomposition KAN of G so that S intersects ZA

and so that the projection of S nZA onto A contains a set of the form C nB0 .,.,

inhere C is an open subcone of the (open) positive Weyl chamber in A and . B is

the complement of some relatively compact neighborhood B of the identity element

Proof. - Since the set of regular elements in G is dense , and since S is non-
empty and open , S meets some Cartan subgroup H of G . Choose a Cartan decom-
position ^ + -QC of the Lie algebra of G so that H = H . H^ , where H lies
in the connected subgroup K of G with Lie algebra -ft , and where \\M is a
vector group contained in exp [Sf } . We have Z c H , and 1~L/Z is compact .

V • —— i\ ' -
(For all this , see [ 9 , $ 1 . 4 ] ) . Hence the projection onto H.//Z of the imagel\
in H/Z of S H H is a non-empty sub-semigroup of a compact group , and is there-
fore [ 1 0 ] a group . In particular , the identity element of H.//Z lies in thel\
image of S ̂  H , which means that S meets ZH . Now we can choose an Iwasawa
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decomposition KAN of G with K as above and with H , _C A , so S meets ZA .
<7

Since S n ZA is open , it must contain an element of the form za with z e Z

and with a regular [that is , with a contained in one of the open weyl chambers of

A ] , and assuming a suitable ordering of the roots (and thus a suitable choice of

N) , a will be in the positive Weyl chamber . The last statement now follows from

the structure of open sub-semigroups of vector groups .

2.8. Lemma. - Let G a Z , and S he as in the hypotheses of 2 .7 j and let

K , A , and N be chosen as in that lemma . Let M be the centralizer of A -in
_-i

K 3 and let Z ' be a subgroup of Z such that Z ' n s S = { e } . Let

p : G ——> G/Z' be the canonical map . Then for any m e M , p is infective on

SmAN .

Proof. - Assume this is false . Then for some m £ M , z ^ e , in Z ' , a and

a in A , n and n in N , and s and s in S , we have
-1 -1 - 1 - 1 - 1zs ma n = s ma n ; or s s = (zma n 3 (ma n ) = zm(a n n a )m , and

zan G S'^S for suitable a G A , n e N (recall M normalizes AN) . Let C and

B0 be as in Lemma 2.7 , and choose h e C n B0 . Also choose z e Z with

z h £ S (this is possible by the conclusion of 2 .7] . Then for any integer q ,

we have z "^h "q e S~1 and z 3^ q e S , so that

(z^h^] (zan) Cz^h^) = zah^nh^ e S^S .

(Note that z, z , and a commute with h ) . But as q ——> w , h '^nh q ——> e

(cf. [1 , Lemme III.1]) , so za e S S. One can now choose h e C 0 B° so

that h- = ah- e C n B0 , and if z- , z- e Z are such that z h , z h e S , ' w e
3 -i2 -1 2 _° z z ° d

get Czgh^] (za] (z h^) = z^ z^z G S - S . In fact , it is easy to see that we

can take z_, = z_ if h^ is chosen far enough away from the identity element of

A , so z € S^S . This actually implies that z e S S , for we can choose a

neighborhood U of e in G and an element s e S with Us c_ S (since S is
-1 -1open) and with zu £ S S for some u G U , and then

z £ z(s~ 1 U~ 1 uUs) = (LIs^^zu) (Us) C S S . But this is a contradiction , since
_-i

we assumed z V e and Z' H S S = {e} .

2.9. Theorem. - Let G • be a connected semisimpte Lie group with possibly infinite

center Z y and let \i be an elate probability measure on G . Then we can

choose an Iuasau)a decomposition KAN of G such that v)ith respect to the left

\i-ii)atk on G/AN = K 3 K decomposes into a transient set and a countable disjoint

union of ergo die invariant sets . With probability 1 ., any element of K enters

one. of the ergodic sets after finitely many steps of the left p -v)alk on G/AN .
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Proof. -If [ Z : Z n S S ] < o o , Theorem 2 . 6 applies . If not , it follows
from the structure theorem for finitely generated abelian groups [as applied to
Z) that we can choose a subgroup Z' of Z with Z' n S S = { e } and
[Z : Z ' . (Z n S3 ) ] < oo . Apply 2 . 7 with S = S to get an Iwasawa decom-
position of G , and let H be the centralizer of A in K . The set S MAN is

^ p
open and invariant for the left p-walk on G/AN = K , and with probability 1 ,
any element of K enters S MAN after finitely many steps of the p-walk on
G/AN. because of the ergodicity of the p-walk on G/MAN (the maximal boundary of
G ] . (The p-walk on G/MAN may be viewed as a walk for the image of p in G/Z
on the same space , so [8 , p . 6 7 1 ] and [3] apply . ] Hence it is enough
to decompose S MAN into a transient set and countably many ergodic sets . Let
m , m , . . . be a sequence dense in M.Then S MAN is the (not necessarily dis-
joint) union of the invariant sets S m . A N . Let p : G ——> G/Z' be the cano-
nical map . Then p is clearly equivariant for the p-walk on G/AN and the
p ( p ) -walk on G/Z'AN , and by 2 . 8 , p is injective on each S m . A N . But by
construction of Z' , the p(p]-walk on G/Z'AN satisfies the hypotheses of
Theorem 2 . 6 . Therefore each S m . A N decomposes into a transient set and finitely
many ergodic sets . Since ergodic sets (up to sets of measure zero] either coincide
or are disjoint , we conclude that S MAN can be decomposed into a transient set
(the union of the transient parts of the S m . A N ] and countably many ergodic sets.
This proves the theorem .

2 . 1 0 . Theorem. - Let G be a connected semisimple Lie group ij)ith Ivjasaua decom-
position KAN and with possibly infinite center Z y and let p be an elate pro-
bability measure on G . Then with respect to the left \i-^)alk on G/AN = K , K
decomposes into a transient set and a countable disjoint union of ergodic invariant
sets . With probability 1 j any element of K enters one of the ergodic sets
after finitely many steps of the left ^-^alk on G/AN .

Proof-. - (kindly suggested by A.RAUGI] . The only difference between this theorem
and 2 . 9 is that here our Iwasawa decomposition is specified in advance . Let
G = K A N be a decomposition as provided by 2 . 9 . Then for some k £ K ,
A^N = kANk . Let G/AN = T U E . be a decomposition of G/A IM into a tran-
sient set T and countably many ergodic sets E . . Then Tk and the E . k are
evidently invariant for the left p-walk and give a partition of G/AN ; they
are also clearly transient and ergodic , respectively . Finally , if x € K , and
if X , , X , . . . are independent G-valued random variables each with distribution
p , then by 2 . 9 we know that with probability 1 , X . . . X (xk'^A N € E . for
some i and some n . This says that X . . . X xAN € E . k , so that x enters one



of the ergodic sets for the p-walk on G/AN after finitely many steps .
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