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GROUPPHEORETICAL INVESTIGATIONS ON COMPUTERS

by
Leonhard Gerhards

Many problems in the theory of finite groups depend on the knowledge of the
structure of the lettice V ( G ) of subgroups of a finite group G and its auto-
morphism group Aut G. Especially for solving problems in the theory of factori-
zation of G and in the theory of group extensions the structure of V ( G ) and
Aut G is fundamental. Therefore, a program for computational determination of
V ( G ) and Aut G has been developed for the computer system IBM 7090/1h10 at
IIM/GMD*^ Bonn [6] , [^] , [4-] .
The aim of this paper is to give a systematical, survey about the program, the
ideas and the mostly detailed theoretical concepts of which are considered in
many other papers [/(] , [5'J , [?] . In 6 sections the present paper mainly vritten
under computational aspects contains a complete description of the principal
methods and algorithms of the program in a most effective form.as they are
implemented in the computer.
Under the point of view that in general computational algorithms in group theory
are based on time-saving methods.for the representation and multiplication of
elements of G, we develop in section 1 . by using parts of the group table T ( G )
of G a most effective multiplication algorithm for elements of G represented
by a "normal form" of abstract generators and defining relations. In section 2.
methods for the generating of groups by a system of generating elements of G
are discussed [4-]. In section 3. the representation of subgroups of G by
"characteristic numbers" [11] and the use of Boolean operations are intro-
duced.
In the main section 1+. the fundamental princips for determining V(G)^namely
the "method of filters" [^] and the "algorithm of composition" Pf-l] are
discussed. We notice that the developed method is of combinatorial type and
does not require group theoretical ussumptions of G as in f'f2],
The central section $. contains a complete description of the determination
of .Aut G for the general case that G contains a "Hall system" H , , . . . , Hl r
of subgroups IL ( i = 1 , . . . , r ) of G [l] . Taking the theory of factorization as a
basis [/l] . [^] the automorphisms of G are obtained by "composition of allow-
able automorphisms" of the subgroups H . ( i = 1 , 2 ) and special inner automorphisms.
This algorithm-different from the concept of [5]-has been developed for sol-
vable groups by E. Geller [fl.

IIM Institut fur Instrumentelle Mathematik, Univ. Bonn
GMD Gesellschaft fur Mathematik und Datenverarbeitung, Bonn
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Finally in section 6 the representation of automorphisms as permutations or as
words of abstract generators are briefly discussed.

^ * ̂ ethods f-̂ f the representation of frroup elements in a computer ^0'] , M ^ B1

1 « 1 Computational algorithms in finite group theory in general are "based on
effective methods for representing and multiplying the elements of a
finite group G in a computer M.

1 . 1 . 1 A 1-1-mapping (? : G -»- S of G in a structure S is called a represen-
tation of G in M , if S can be realized in M and if

( 1 . 1 ) ^ ( a . a . ) = y ( a . ) - ] T ( a . ) for all pairs ( a . , a . ) £ G.-̂ J -̂ J 1 <3

1 . 1 . 2 The realization of S, however, means that the following conditions for f
are satisfied:

( 1 . 2 ) Every element a c G can uniquely be represented by the
"normal form" ^(a) in M .

( 1 . 3 ) There exists a most effective unique algorithm for the
determination of the normal form y ( . o . . , o . . } of the product1 J
a. . a . using the normal forms f{ a. ) and^(a..) of the factors
a . , a . for all pairs ( a . , a . ) & G.•- J i J

1 . 1 . 3 The group table T ( G ) of G as a special representation

Knowing the group table T ( G ) of G we can regard the columns of T ( G ) as
a relation system of the greatest generating system of G with pairwise
different elements or as the right regular representation of G by
permutations of degree | G | . These representations satisfy the conditions
( 1 . 3 ) and ( 1 . U ) .
Both interpretations of T ( G ) are extreme cases for representing G in M
by abstract generators with a system of defining relations or by permuta-
tions.

1 . 2 Representation of G by permutations

1 * 2 . 1 If y^: G -* S is an isomorphic map of G in the symmetric group S of
degree r , then to every element a e G there corresponds as a normal
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form a permutation^(a) = ( . * ' * * ' ' . ) of S stored in M as a product ofVy**1/ r
veil defined cycles. Such a representation of G satisfies the conditions
( 1 . 2 ) and ( 1 . 3 ) . But only if the degree r of the permutations is rela-
tively small (r < 10) the representation of the elements of G "by permu-
tations is useful, because multiplication of two permutations of high
degree is a time-consuming process in M.
Therefore, if the degree of the smallest permutation subgroup of S
isomorphic with G is relatively high, it seems to be necessary to repre-
sent the elements of G by abstract generators and defining relations.

1 . 3 Representation of G by abstract generators and defining relations ' H - j , P0]

1 . 3 . 1 Special generaling^ systems of G

If G is a finite group with a chain <e> = H ^..cH = G of subgroups

H.(i=1,...,n) of G such that

"i = ̂ i-r^' "x = "i-î i- î '••••^ "i-̂ I1 • a? c "i-i

the system {a ,...,a } is a generating system of G satisfying the

defining relations: .̂ .

^ ^a^'1....^^'1-1 (i°1,...,n)

(I.1*)

î = ^•B• i'1••"•^k•f?>i•k , |k=2. ...,n. i=1....,k-^
[8=1,...,^-1 j

Every element g c G can uniquely be written as a word of the generators

^•••'v
x x

g = a^••...•a^n (0 ^\^ < r^ , i = 1,....n) ,

and the representation J :̂ G -> S is defined by

K ^(g) = ( X ^ , . . . . X ^ )
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We call a generating system of G satisfying ( 1 . U ) a special generating
system of G.

1.3.2 Special generating systems for solvable groups

If G is solvable, one can always fi-nd a chain of subnormal subgroups

of G:

<e> == N ^ N, < . . < 3 N = Go 1 n

with cyclic factor groups i/N., (i=1,...,n) such that

"i-1 = ^••••''W . "i ° '"i-r^ •

Then the system {a.,...,a } is a special generating system of G with

the following system of defining relations:

r.
a^ e N^ (i=1,...,n)

( 1 . 5 )

V^1 £ V-1 (k=2»-->n » 1 = 1,...,k-l)

1 . 3 . 3 If the elements of G are represented as words of the elements of &

special generating system of G with defining relations ( 1 . U ) or ( 1 .5 ) .

the computing time for the normal formj^g.g ) of a product g-'g^ in G

using the normal forms ^°(g ) andj^g ) of the factors g ,g mainly

depends on the number of the generating elements of G and on the form

of the defining relations ( 1 . ^ + ) or ( 1 . 5 ) . But by changing the represen-

tation of G and storing parts of the group tab3.e T(G) we are able to

make multiplication in M more effective.

1 .3 .^ Change of the representation of G by storing parts of T(G)

Let be

(1.6) <e> = H cH,c...CH = Go 1 n

any chain of subgroups of G with index r. := [H'^'^i^ ( i=1,«. .»n).

Further let R. := (a'0 / j = 0,...,r.-1) be a system of representatives
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of a right coset decomposition of H. by H. ( i=1,...,n), a[0^ = e.

Then every element g c G has a unique representation in the form:

...;>')..^).....^).1 2 n

But if the relations

(\,) (^) (?,) (P . )
^ ' "i. = "1 • • • • • ^ J ; ̂  = f^.j.^^^)^--1.....j)

( 1 . 8 )

( j =1 , . . . . n , i-l,...,.], A , = 0 . . . . , r _ , X.=0....,r. J
J j i i i" i

n
are known the system ̂ .= ^J R^ is a generating system of G.and using

( 1 . 8 ) a product g = g •g of two elements g. =: a 1 •....a n

' €- 1 1 n '
( P ^ ) (l^)

^2 = "I *'"' "n of G in normal form can he reduced in a finite

number of steps on normal form.

(^) (^.)
To prove this we denote by W. a word a •...• a. J of length j

generated in normal form by elements of 01 .̂ Further let

(o) ^i5 ^n-i)
^-1 " "I'"^"n-l • Then usin6 the defining relations:

(^ ^ (D ^m5
"n "1 ° W^j ^ n.1

«(x"^^^ w^^-^n 2 n-1 n

^n.n-lY"n)^(n)^,)
n n n-1 n
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we reduce the product of two words of length n in n steps to the calcu-

lation of n products W^ = W^ 1 " 1 V3^1 ^ (i = 1,. . . ,n),

W^ := V / 0 1 .
n-1 n-1

According to this result for the number E of effective entries in the

relation table • ( 1 . 8 ) by the computer ve obtain the estimation:

S < n ! * e (e eulerian number)

_Rcpresentation .a^d multiplication of the elements of G by syllables ir. the e x ' s

Let

(1 .9 ) <e> = I^CH^C.. .CH\ = G » *̂ = H^ (k = 1 .. .. ,m*. 1 ^ m* < n)
m ^ k

be a chain of subgroups of G, -which is coarser than the chain ( 1 . 6 ) . Then

any representative ^ ' ^ of the right coset decomposition of H* by

.̂.j (k = 1 , . . . ,m ) can be written as a word of the a 's in normal torn:

<.>>.-^-")......^'"•"" V" -\-:« • • • • • \
and every element g c G can Ie uniquely represented as a vord in the
syllables /J^ :

(v,) (v *)
g = A , 1 .....A^

The corresponding relation tables:

( ^ , ) 0,) (p.) (u.)
^^i ^1 • • • • • ^ J (J ii)

can be determined by using the multiplication for the a 's .

1 . 3 . 6 Extension of s-pecial feneratinf; systems

If W -~ (a ,...,& } is a special generating system of G satisfying the

relations ( 1 . U ) , then the groups II of the chain ( 1 . 6 ) and the representa-

tives a^ are given by H == <a ,...,a > ) a ' = 0° and for multiplying
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elements of G represented in normal form described, in 1 , 3 . ^ we still use

the tables T . for the words of the right sides of the following extended
kX

relation system:

0 . 1 1 ) ^=<^)(v•••<[^:::^:; ; k > i

It can easily 'be shown that it is possible to determine the tables T^

(i«1 ,... »k--l) if the multiplication of elements of G of length j ^k - 1

can be executed by the computer. The latter, however, can be done, because

the complete tables T.^ (j > i, j = 2,...,k-1. i = 1,...,J-l) have

already previously been determined and stored.

1 .3 .7 Decision of the multiplication j^orm
———- — — — - . - . . _ _ _ ( X . ) " " ( X )

Assuming that every g = o^ ' • - • • "n € G ^P^^^ as ln 1 ' 3 ' 4 can

be stored by a normal form as an-tupel^(g) = ( X ^ , . . . , X ^ ) in only one

cell, the place using by the computer for storing the relation tables ( 1 . 8 )

amounts to

n p n
( 1 . 1 2 ) R = i / r + ^ r • r. cells.

i=1 1 i.k=1 K

k>i

In the case that the number of generators of G is greater than 2 the

computer proves,if the sequence of the relative orders r^ of the genera-

tors a. allows a multiplication in form of syllables in the sense of

1 . 3 . 5 . Thereby a splitting of the words represented in the cc 's is

selected by the computer in such a way that using the indices

i,k r * * 1
S ^TT r. = H. : H . J of the chain (1 .9) of G

^k-l^ J

* *
m m

the number S := T S, + ^ S.S. of cells for storing the
k=1 k i,k=1 K 1

k>i ^
multiplication tables is minimal. Empirically we get n =2,3 ,^ .
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2, Methods for generating groups "by a system of generating elements M

2.1 Let G be a group generated, by the generating system {a,,...a }. Then if
—— 1 n

we develop a method, which allow us to construct H = <H . i81^ f1'0^1
k k."" • k

H , < and a^ (k = 1 , . . . ,n )» H = <e>, G can "be generated in n steps. If

vc denote by H a subgroup of G and by a an element of G with a ^ H,

then H = <H,a> can be obtained by determining appropriate cosets of H.

For in the case that U := ^Hb. is the union of all cosets of H determined

in the process of generation and ah e U for every h e U we obtain H = U.

2.2 Computational method
2 . 2 . 1 Fundamental princip of the method

Let H be a subgroup of G, a e G, a { H and let U denote the list for
storing the group H = <H,a> in the computer.
Starting with U := H every element g £ U may be multiplied from the
left side by a. If there exists an element b = a g with g e U , b ^ U ^
the list U must be extended by the coset H*b and U := <H,a> is completely
determined if a"g e U for all g e U. Finding a new representative b ,
together with Hb all cosets Hb ( j = 2 , . . . , r - 1 ) can be stored in U ,
where r is the smallest"integer with b e H.

2 . 2 . 2 Rationalization of the method
Because the generating process of a group is an often repeated procedure
in group theoretical program systems, it seems to be profitable to
abbreviate the method described i n . 2 . 2 . 1 .
First of all it is easy to see that having determined the system
^, = {b , . . . , b } of all such representations of the coset decomposition1 1 s
of H by H with b. e all only additional representatives c'an be found
among the products b . c , , where c, c ̂  is the set of all representatives

1 A K f. ' ^ ̂
constructed up to now by the generating process. By this procedure we
reduce the number of left multiplications with the element a , which
must be executed by the method of 2 . 2 . 1 .
Now, if the number of generators of G is greater than 2 we additionally
can suppress further left multiplications. '
Therefore, let -̂  = (a , . . . , a } be a generating system of G with1 n
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H^ = <a^,.,,,a^>, H^ = <^> , (i = l,,.,.n; n > 2) and b^d = 1,...,n;

v = o,,,,,r^) may denote a representative of the coset decomposition of

H^ by H^. Further,set U as in 2 .2 .1 . Then according to ( 1 . 7 ) every element

g e G can be written as^hormal form in the b - ^ s :
i

, , (^) (^ )
( 2 < D 6 = b 1 ..... b n

1 n

with the defining relations

, , (^) (^,) (p,) (u,)
(2<2) \ ^i ^i •-•• ^ . Ckli).

- (i) (r - 1 ) , ^ ^v-i-1)
If nov^ = {b^ ^....b^ »—'Vl»--'Vl } is such a generating

system of representatives for H without the representatives b^°^ == e
" i

(i = 1 , . . . ,k~1)^every representativeb of all cosets H b vith

^ -̂.1 H ^-i^ ^ ^ can be determined in the following way:

Storing \^^u \-.^\ in v^ a := \ is the first element of Ss-..

Next we form the products g = b^ of all b e A of the increasing system

^ and all elements b^ e ^. If ^ ^ U we store g in ̂ . and H g in U.
o

Then ̂  is completely determined^if the described procedure cannot be countinued.
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3. Representation of groups by characteristic nunbers F^l •» F^1

3.1 Characteristic numbers

Let G be a finite group, {U} the set of all subgroups U ̂ . G of G and

(S(U)} the set of all systems S(u) consisting of all cyclic subgroups

of G with prime power order contained in U, Then if is easy to prove

that there exists a 1-1-correspondence {U} ^-> {S(u)} bet-ween {U} and

{S(U)} :

(3 .1) G =? U <-^ S (U) = [<z> £ G / <z> s- U, [ < z > ! = p^a ^ 1, p prime)

Therefore, a system

(3.2) E ( U ) = { z ^ , . . . , 2 ^ } (U s G, m = | s ( U ) | )

of generating elements of all cyclic subgroups of S(U) form a unic îely

determined generating system, of U of a special form.

First of all we list the elements of E(G) in the computer. Then, if U c G

and if E(U) = (z. ,...,z. } <= E(G) ({i ,...,!} ^ { 1 , . . . . | E ( G ) | } ) is a
\ ~1 ' 1

complete generating system E(U) of U,by

1 i,-1
(3.3) K[U] = ]: 2 1

J=1

a dual number is defined, vhich uniquely corresponds to the subgroup

U of G: K[UJ <->• U. This number K[u] shall be called the ''characteristic

number"of U c G^and every U c G may be stored in the computer by its

characteristic number K[u]. •

3.2 Boolean operations for characteristic numbers

The Boolean operations of intersection "A" and disjunction "v" are useful

for time-saving calculations with characteristic numbers:

K['UJ A K[V] = K[UnV]

U E V ^ K[U] A K[V"J = K[U] (U,V,W c G)

(3.^ K[<U,V>] ^ K[U] v K[V]

<U,V> c W ^ (K[u]vK[y]) AK[w] == ^[uJ^K^J
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u* Determination of the lattice V(G) of all subgroups of C F ], [~ ]

4. 1 « Fundamental princip for determining V(G)

4 . 1 . 1 ^t (f» be the set of all dual numbers with k digits, where k = |E(G)! ,

E(G) as in 3.1 . ,

Then for any dual number

1 i.-1 ,
( 4 . 1 ) M(H) == ^ 2 <5 c ^ ( { i .1} £ { 1 . . . . , k } )

j=1 ' 1

the corresponding subset H = (z^ ,...,z^ } c E(G) determines a subgroup

U := <H> <= G of G. It is obvious that different dual numbers

M(H), M(H') c <^ , M(H) ^ M C H 1 ) may generate the same subgroup <H> = < E f >
of G.

Theoretically ve obtain the set {U} of all subgroups U <s G of G in the
following vay:

^ ' 1 -?- Going forwards in the natural order of <^ we seccessive3.y determine the

generating sets ^^ =;U for all M(H) c (^k. Then for every calculated U

the generating system E(U) may be determined and the corresponding

characteristic number K[u].- so far as different from the already listed -

shall be stored in the list of characteristic numbers.

^ • 1 • 3 But "^s basic idea cannot be realized by the computer, because the

number of dual numbers successively to be proved is 2^ and the generating

process of groups is a time-consuming procedure.

Therefore this considerations require the development of a more effective

method selecting only such dual numbers M(H) e ^, the corresponding

.subsets <H> of which in general are subgroups of G not yet generated.

^»2 Combinatorial method for the determination of V(G)

^.2.1 The filter method [6]

Starting with the dual number 0 and using the method mentioned in 4 . 1 . 2

we reach an uniquely determined dual number F := M(H • ) e ^ - called

a filter of <(> ~ such that
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^ • ^ = G, < H ' > ^ C- for all M ( H ' ) < M d T 1 ^ ) .

By the filter F the set ^[F J = (M(H^) c ^ / M ( H ^ ) A F = F }

is defined and ^O^il again defines a system

(U.2) i[F^= (/^l / r^ = 1,...,H:F^|}

of ordered subsets ^ 1 [F'1 of (^, where ^ [F ] ( 1 1 J 1 I^O^. . ] ! ) consists

of the 21--! following dual numbers I ' K H - ^ ^ o f the element Mdl^ ) e ^1]

and where i is the exponent of the smallest power of 2 in F, being not 0.

For all Mdr1"3^) we get < H - " 3 > =; G and only a dual number M(H)cQ[F^"] ;=

:=• <^ \5'|F. | can lead to a proper subgroup U := <H> C G of G. This, howover,

means that having determined F the first dual number to be proved by the

computer is F. -(• 2 lying in the number sequence B[F<] of all dual

numbers between ^ [ F - [ and ((> [F "].

Proving M(H ) e B[F^ we obtain either:

(a) M(H ) determines a subgroup U := <H > of G, the characteristic number

K[u] of which is stored or not. If not^K[u] roust be stored and in

both cases M(H ) + 1 is the next dual number to be proved.

or: •

(e) M(H ) determines G = <H >.

If there does not exist a M(H ) c B[F ] such that <H > = G, we reach

the first dual nuber of <f> [F ~\ and by deleting all following 2 -1

dual numbers, we are comming to the first dual number of BJJ'' J to be

proved. But if we obtain G = <H > by a generating process.F := M(H )

determines a new filter of <f> •

Assuming now that we have already found j filters F ,...,F. of ^
' J

similar to the case of F the filter F. defines the set

^[F.l = {Mdl") c (^ / Mdr^AF. = F.} and the set systems
<) O J

Generally we denote in the following by B^F,] the set of all dual

numbers between ^L1^"! and ^^ Iĵ l ( 1 I1* 11+1 i ̂  both defined by
a filter F similar as for F .
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^jl ̂  "^"1- ^e system E [rj consists of the dual number sequences
r.

<t> J^ ^j = ^•-'l^&jllL the elements of vhich arc the 21-!
(r.,T) . (r.)

following dual numbers M(H J ) (r = 1 ,... ̂ -l) of the element M(H ° ) of

^IF.I and vhere i is determined by F..
" J

If F. has been constructed, only the M(ll*) e B^.l141 (i = 1 ,... . |^ |F.'T |-l)
J i ^

must be proved:

(a ' ) If <H*> =: U c G, we store K[u] if K[uJ ?< K|U*J for all K^'J

already been stored.

( B 1 ) If M(H*) A F^ = F^ for 0 < f < j, we get <H*> ^ G and M(H*) + 21

is the next dual number of ^ to prove by the computer, vhere i

is the exponent of the smallest pover of 2 of F being not 0.

( Y * ) If <H > =-. G by a generating process, F. := M(H*) of ^ is a

new filter of <(> .

In the case that neither ( & ' ) nor ( y * ) is valid for M(H*) e ErF.]14'1
3 i >

we are comsiing to the first dual number of (f)1'1'1 jj1.'] and using F. to
J J

the first dual number of B[F.]1 , vhich must be proved.
J i+1

^.2.2 The algorithm of filters can be completed by introducing "filters of
maximal subgroups" and "filter sequences". Using these supplementary

conceptions developed in detail in [^] the program of determining
V ( G ) can seccessfully be applied to finite groups G vith relatively
small order | G | and less complicated lattice structure.

Therefore, it seems to be profitable to supplement the program by an
additional "algorithm of composition" |Jl^] described briefly in the
following section.
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^^'S The basic concepts of the algorithm of composition f̂ M"|

Generating G successively by a ,...,a we obtai-n a chain <e> =1 n
=r Goc °1 c * * * CGn = G of subgroups G^ = <a^ ,. . . ,a .> ( i==1 ,. .. ,n) of G.

The generating systems E ( G ^ ) (see 5. A ) may satisfy:

E(G^)n E(G^) = E(G^) (k ^ i. i.k = 1,...,n) .

Dividing the elements of E(G^) into sectionsC.(i=1,...,s) of length

1 <_ |E(G^)| and one further section C of length r ( J E ( G )| = s-l+r,
r < 1» c^ = 0 if r = 0), the filter method described in U.2.1 can be

applied on each C. obtaining a set T. of subgroups of G. Any two of these

T^ will not ne cess art ly be disjoint, but by eleminating those correspon-

ding characteristic numbers^ve obtain the disjoint sets T*. But in general
i i * 1

UT^ is not yet the wanted set {U} of all subgroups U c G.

We make the following definitions:

The determination of K[K], H = <U,V>,by K^\J~[ and K[v] is called

"composition" and K|}Q will also denoted by K[K[u], K^V]].

A set o of characteristic numbers is said to be closed by composition,

if K[K^,K^| e^ for arbitrary elements of K ,K e^g and C^g) is called

'the closure of ^6 .

We denote by:

E^ = {K[JJl/ U e T^}

E ^ . . . . , ^ = C ( E ^ . . . u E ^ )

i= E^...,^(E^-...UE^) , (i = 1, . . . ,s + 1 )^,...,^= E^...,^(E^-...uE^) , (i = 1, . . . ,s + 1 )

D,-<K[K^K^ t ^.E^^^^/K^ cE^ K,cE^....^)

Then clearly we obtain:

(U.3) K[K[K^K^. K'^,K^] = K^CK^K^. K[K^K^]

(U.U) E^ = C(E^) (i = 1,. . . ,s + 1 )

By (U.3) and (U.U) we easily get for the elements of D.:
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If K, c D. ( X = 1 ,2 ; 2 < i < s + 1 ) , then there always exists K, e E.A 1 —> — 1 ^

and K^ c E^ ^ such. that KJK^ ,K-1[ = K[K* . K^] .

From this result it follows immediately

( U . $ ) C ( E U . . . I / E . ) = D . \ ^ E . ^ E . _ ( i = 2 , . . . , s + D
, - 1 . X 1 1. 1 , . . . , 2 . |

and by F^.5) ve obtain an inductive algorithm for determining the
set of all subgroups of G:

In the first step ve have E = C(E ) . Suppose C(E U . . . ^ E . ) =
= D, .^/E V . . . U E . has already been determined. Then by successivei , . . . , 1 i i
composition of all K e E. , K ^ D . with all K' E E . ve get thei+l 1 , . . . , i l , . . . , 1
closure C(E ^. . . u E . ^ , ) This method must be repeated until finally
ve obtain C(E L / . . . ̂ E ) .

^.3 Output of the program for determining V ( G )
^ . 3 . 1 Operating on the ,1'ist of characteristic numbers by using a special

sorting program and going downwards from C to <e> by determining the
respective layer of maximal subgroups ve get the following output of
the program system:

A) Table of all subgroups of G devided in conjugation series and
represented in the form of abstract generators and defining
relations

B) Lattic V ( G ) in a special number code

^.3'. 2 Using special properties of group theory additionaly ve obtain:
C) List of normalizators and centralizators of all subgroups of G
D) List of charachteristic subgroups of G and characteristic series:

Centrum, Frattini group. Fitting group, commutator group, descending
central series, commutator series, o- and CJ-series a . o . .
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5. Determination of the automorphism group Aut G of G [5]^ M, M^ R]

5 . 1 Range of the program system

5 . 1 . 1 Hall systems of a finite group G [̂ l] , M

The determination of Aut G by the program described in this section is

possible, if the finite group G contains a system 3?.:= (H ,...,H } of

subgroups H. ( i=1,.. .»r) of G - called a Hall system of G - such that

the following conditions are satisfied:

a) G = H • . . . • H

(5.1) H^ = H^ (i,k = 1 , . . . , r ; i ^ k)

(|Hj,|Hj) = 1

b) Every tvo Hall systems of G are conjugate in G.

5 . 1 . 2 Sylov basis of a solvable group G [VI
a, a

If G is a finite solvable group with |G[ = p •...•p r it is veil knovn

that G contains a complete Sylov system P,,...,P of p.-Sylov subgroups

of G (1=1,. . .^) - called a Sylov basis of G - satisfying ( 5 . 1 ) . Having

constructed the lattice V(G) of G the computational determination of a

Sylov basis P,,...,P easily follovs from the determination of thei r /Y •. . r i
P.-Sylov complements K ,...,K of G, j K . [ = n P » anc^ ^^ corresponding

,. r * 1 J131

characteristic numbers KJK.] (i=1,...,r). ^x

r
Since P. = /^\ K. (i=1,...,r) defines a Sylov basis of G, ve obtain:

J^i

(5.2) P ^K[P]=A K[K] (i=1,...,r)
1 1 J-l 1

J^i

5 . 1 . 3 Groups containing a chain of normal Hall groups L?3

If there exists a chain of normal Hall groups for G, i.e. a chain

G = G y . . . s s » G f f » G = < e > vith G.<G, ( |G. | , [G : G.]) = 1 (i==1 ,... ,r) ,
r 1 o i 1 1

then G alvays contains a Hall system H^,.;.,H^ satisfying ( 5 . 1 ) (0]»

Theorem 2 . 1 ) . Beyond that it can be proved that if k is the only index

with °k/G not solvable; for every i i- k there exists a Sylov basis

P. ,...,P. of H. such that
^ i,n,
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(5•3)p1.1••••'p1^••••>V1.1.•••^-1.n^.Hk•p^.1.•••'p^.n^,-•

••••Fr.l--'1^
is a "complete Hall system" of G satisfying ( 5 . 1 ) ( [^1, Theorem U . 1 ) . r

Considering the proof of [7], Theorem ^ .1 it is possible to determin a

complete Hall system(5.3) of G if V(G) is constructed.

^.2 Decomposition of Aut G of a finite group G containing a Hall system l^l

^ t 2 > 1 ^t G = H ^ « . . .*H^ be a factorization of G - b y a Hall system %:= {H , . . . , H }.

If A c- Aut G, H £- G ve denote by:

T^(H) = (y c A / vH = H} the fix group of K related to A

N (H) the normal!zer of H in G

PWJ = ( ] N (H.) the system normalize!' of'<fC in G
i==1
r

r(:a = Q ̂  ^(H^) the fixgroup of ̂

i(g) the inner automorphism of G induced by g c G

According to these definitions ve obtain the following fundamental result

of the decomposition of Aut G:

If G = F(%)g^+...+F(K)gg, then Aut G = ^g^rCSO-t-.. .+T(^)r(KJ

. |Aut G|=|r(3e)[. |G:F(30] .

^'2.2 By this decomposition of Aut G it is obvious that every y c Aut G can be

represented as a product T(g.)ey of an element y e rC50 and a special

inner automorphism -r(g. ) of G. Therefore the determination of r%.) plays

the fundamental role in the development of the program system.

^*3 Characteristic mappings and special subgroups of a factorization of G [-it [51

^ « 3 « 1 Characteristic mappings

Let G = H ^ * H ^ = H ^ - H ^ , H ^ n H^ = <e> be a factorization of G by H ,H . Then

to every h_ e H. ( i==1,2) there corresponds a map h.k : H ^ K defined by:
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(5 .^ ) ^^s = "l^^^l for a11 ̂  c "2

h^ih = h^H OH for all h^ e H^

It is easy to verify that these Trappings are equivalent with

(5.5) • h^ = h^h^ • h^

and. by ( 5 * 5 ) multiplication in G is completely determined. Therefore.

the mappings h.k (i=1,2) together with the defining relations of the

components H.(i=1,2) of G determine the structure of G. From the

theory of factorization ve get further that the mappings h.k form a

permutation subgroup of the symmetric group S j u j of degree [K , | .

5.3.2 Special subgroups *of the factorizated group G m

There exists a homomorphism T . , : H. -> Ii. of H. onto II. withi,k i i ,k i i ,k
cernel

(5.6) N. = { h . e H. / h.kh, = h, for all h, e H , } .
1 X X l . K . K . A, K

N. is the maximal normal subgroup of G contained in H. ( i=1,2) . An

other group important for the determination of Aut G is the fix group

F! of Yr

(5.7) F. = . { h . t H. / h in. ^ h. for all h c H } ,

which can be represented by

(5.8) F^ = N^(H^)oH^ (i,k=1,2; iA) .

If G = H • • • • • H .then according to these investigations for every

subgroup G. := H.H = K H . (i ,k=1 ,... ,r, i^k) v.e can form thei )K i k K, i
k kgroups n. ,N/ ,F.^the determination of which may be described in the

X fK. 3. 1

following section.
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5.^ Computational determination of IT. ,F. ,N.
——— - i i——————————————• • •————————————~"— 1 ^K. 1 1

5 .^ .1 Determination of n.,
'~———— ——'—————————————— lk

The elements of the components H. ( i==1,...,r) of G = H • • • • • H may "be

numbered in the same sequence as they are generated by the generating

program of H. Then, generating the-subgroups G. , = H.H = K,H.
1 5 K 1 K. iL i

(i,k == J». . . ,r; i ̂  K) on the onehand .as a product of H. ,H on the other

hand as a product of H ̂ . we obtain by comparing the products:

/ - „ ji)js)' ^vY^-jiw^h^w1) [^•••••'"k^l
(5.9) \ \ = \ \ -^i ^\ '\ 1 \ (KI^ |Hj)h

From these relations we obtain the permutation h. k of IL related to the

element h^c H .̂ : h^1^ h^^ = (I ) If 1 runs from 1 to |H. | we get

n. ,. Fixing s ( 1 < s < [H [ ) we similary can determine for variable 1i. )K ~~ k.

(1 == 1 , . . . , [ H . [ ) the permutation h si== (1 ) related to h^ ) e H, and ifi k —p K- *̂
s runs from 1 to | IL | we get n ..

k 'Ttt?.h.2 Determination of F. and N.

E(H. ) may be refined as in 5.-1 , Then by (5.8) resp. by the result after
1 y k( 5 * 6 ) F.1' resp. N. can be determined by a generating process:

F1? = < z . > with z. c E(H.) , z.z z71 e H.for all z £ E(lL)1 1 D. i i k i k k k

^k == < z . > with z. e E(H.) , z ,z .z~ 1 e H. for. all z, e E(lL) .
1 1 1 1 K 1 K 1 K. K.

5.5 Determination of r(3C)

5 .5 .1 The.monomorphism of rQC) in Aut H.x...xAut H

For Y e r($) let Y).. e Aut H. be the automorphism of H. obtained by the
' i ' 1 1

restriction of Y o" H. and A. the group containing all Y | T T •
1 1 l"i

Then the map ^. : r(<S?) -> A. defined by y ~^ 01- ^ Y ju defines a

homomorphism of rflO onto A., and it can easily be shown that

^ : r(30 -*' n := Aut H . X . . . X Aut H
(5.7) 1 r

Y -*• a := (a ,...,a^) ; a^ = ^,y
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is a monomorphism of r(^) in the direct product Aut H x.«.xAut H .

^^2
Necessary and sufficient conditions for a e IT to be an automorphism of G [5"|

Let be a = (a ,...»oi ) e n, a. e Aut H.. Then a is an automorphism of G, if

and only if for all h. e H. and all i,k = 1,...,r; i i- k the following

relations applied on all h c H are satisfied:
K.

(5.8) ' a, o h .Ko a"1 = ( a .h . )k
K. ± K. JL 1.

The relations ( 5 . 8 ) > however)are valid if and only. if they are valid for

all elements h^ of a generating system {h^} of H. applied on all elements

^ £ V '

Further, because o^ = F^ and a^ = N^ (i,k = 1,...,r; i ̂  k) vith Y c rOC),

^(v) = (a - , . . . ,a ) » a. e Aut H.,it follovs that only such automorphisms

a. c Aut H. (i = 1,.. . ,r) can lead to an automorphism y of G which are elements

of

(5.9) A^^QC^H^^^utH^)-

k^i

Before ve describe the computational determination of the automorphism group
A . , A. S A . $ Aut H . , we shall give an algorithm for determining r(^) in the
fo3.1owing section.

^^3

Construction of r(JC) by composition of allovable automorphisms of the A. [_4.] , [•̂ "j

Let G,,G^,K be finite groups and p. : G. -> K (i = 1 ,2 ) epimorphisms of G.

on K, then G^ G^ := {(g^.g^) / g^ e G^, p^= V^} forms a subgroup of G ^ x G^,

called the direct product of G ,G^ with united factor group K.

From [7] it follows:

If G = U ^ . U ^ , U ^ n U ^ = <e> , A^ S Aut G, r^ = T^ ( U ^ ) n T ^ (U^) and if ^:r^ -<-
G G

-> Aut U^ x Aut U^ is defined by ^ y = ( a ^ , a ^ ) , Y e F^, a^ = ^^^r= Y ] T J »

a^ e A^ := r,y (i = 1 ,2), then

A := V = ̂ ^2 = { ( a1• a2 ) / ^ e A^, u ^ a ^ = ̂
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vith u^ : A. -^ K := A/Y , cern \i. = Y .̂ (i = 1 , 2 ) and where Y = Y- x Y

is the maximal normal subgroup of A, vhich can be represented as a direct

product of the components Y. c A. .

Using these results we can give an inductive algorithm for determining

r(3?) by composition of allowable automorphisms of A. , A. c A. c Aut H.

(i = 1 , . . . , r ) :

If G = H • • • • • H is a factorization of G by the Hall system ̂  ={H, . . . ,H }

it-is obvious that^ :={H ,.:. . ,H ,}is a Hall system for G :.= H • . . . •H ,

and r(t) is isomorphic with a subgroup S S. Aut H x....xAut R,. '

If ve set A^ := S, U (A*x. . .xA*) , A^ := A* the group A^^ rW can
K. 1 K- '

(k)inductively be determined in (r-l)-steps by calculating the groups A

from A^"1^ and A* (k = 2,...,r).

Using the results mentioned above by setting U := G » U := K ve get

Y^ = { a ^ , . . . > a ^ _ ^ ) C A / (a^ , . . . ,a^_^,c^) e A , c^ 7S id| },

* f k ^
^ = ^k c \ / ( e ^ » • • • » € k ' a k ) c A ' ^i = idi[^. (i =s ' ' ' • • -^^ and the

computational test is given by proving a system of much sinplerrelations

than (5 .8) :

(5 .9) ( a , . . . , a ) e Y <-> a ^ o h j o a^1 = h ^ -1 K l ' J K ^ K ( j = = 1 , . . . ,k-l)
h.k = ( a . h . ) k

J J J
for all h e H » h. c H. applied to all h. c H., h e K , respectively.k k j j J J K K

(5.10) ^ e Yg -. a^ o h^k o a,;1 » hjk ^^ ^ ^^

h^=(a^)j

for all h. c H., I-L e K applied to all h, e ^»h. e H., respectively.

If C. is the automorphism group obtained by the restriction of the wanted

group A^. on U^ (i = 1 ,2 ) and if K := A ^ Y = Y ^ x Y^ it follows A^^ C^ ^ C^
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A representative P := (a ,...,a ,) of the decomposition of A by Y,
I K. \ I

can be composed with a representative a of the decomposition of A^ by Y

(k)to an element (a »... ,a a ) c A , if and only if all pairs (a.,a )

(i = 1,...,k-l) satisfy the relations (5.8). Since K^°i/y. (i=1.2),ve get

for every representative B at most one representative a,, which can be
K.

composed to (P,a ) c A^. Therefore, if (8,0^) c A^, then (@?» \\^ c A

vith & = (^,...,S^) c Y^ and o^ c Y^.

5.6. Determination of A [l] , ft/-]

The method briefly described in the following has been developped in [jt]

and used for a Sylow basis of solvable groups in [4-] .

5.6.1 Homotypic and isotypic sets

Let A ' be the automorphism group defined by (5.9) tor any group H e 3C of

the Hall system ^ of G.

If /oi. s= {a ,...,a } is' a generating system of H satisfying the defining

relations R W == ... = R W = e, then a 1-1-mapping a : H -*- H is an

automorphism of H if and only if H == <aa.,...,aa > and R.(aOi) = e ( j=1, . . . ,s) .

The group A we want to construct determines a subset l(h) = (ah/a e A } of H,

for every h e H and it is obvious that by the sets l(h) the set of elements

of H is devided in disjoint classes.

The fundamental idea of the developped method is to determine for every

h e H a subset S(h) S H as small as possible such that l(h) £ S(h); h^ e S(h) -^

-^ S(h^) = S(h^).

Two elements h ,h e H are called "isotypic", if l(h^) = 1^^ "homotypic",

if S(h.) = S(h^). Two subgroups U,V of H are called isotypic, homotypic, if the

elements {u.} ,{v.} (i = 1,...,r) of U,V can be ordered totally {u. ,...,u. },
1 i ^ î .

(v. ,...,v. } such that l(u. ) = l(v. ), S(U. ) == S(.v. )(k = 1,...,r), respectively.
'•I \ \ \ \ ' \

JY

Then it is evident that every system ̂  = a-g-, b^ = ab^ (i = 1,...,m), a eA
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of a minimal generating systems ^ == {b,,,..,b ) of H can be found among

the systems A1 = {b;,...,b1} with b? = S ( b . ) » These generating

systems are also called homotypic.

.6.2 The correspondence h -» S(h), h e H

The correspondence h ->• S(h)<. e H can be obtained by using a decomposi-

tion of the lattice V(ll) of H in disjoint classes developped by the

method [5] • .

The group A induces an equivalence relation r * on V(H) satisfying:

a) U r^V —» |U| = M

b) U r < V ===:^ U and V contain (are contained) the same number
(in the same number) of subgroups of any class of

( 5 . 1 1 ) A*

c) U r »r. V A U cyclic, abelian, normal =a=^ V cyclic, abelian,
normal, respectively.

d) Fix groups U rel. A generate classes consisting of only
one el/sment.

It can be verfied that to every equivalence relation r on V(H) there

corresponds an uniquely-defined equivalence relation n(r), which is the

supremum of all relations r <_r satisfying ( 5 . 1 1 ) a,b)[L3?, D6J.

Further^if r is the coarsest relation on V(H) satisfying ( 5 . 1 1 ) , a ) , c ) , d )

then h, >h^ e H; U,V e V(H) are homotypic if and only if <h, > n(r ) "^n^*

U n(r )V, respectively. Then it is possible to develop an algorithm for

' *) r^ <_r^ <"> Ur^V =:=^ U r V for all U,V e V(H). By the relation i the

system of all equivalence relations on V(H) forms a lattice, if infimum

and supremum of r.,r^ are defined by:

U (r 4»r ) V<==> Ur VvUr V

U (r \^r ) V ^==> There exists a chain U = U ,..,,U = V
' c- I n

of subgroupf of H such that

^1 "i^i^"^1' i....."-D
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constructing n(r ) starting with an equivalence relation r satisfying ( 5 . 1 1 ) , a ) .

Jn case of a Sylow basis for a solvable group G see [4-] .

If d(h) is the number of homotypic elements of h in H, then for any system

f = {h,,...h } of elements of H the number d(f) of homotypic systems of f
1 n n

in H is given by d(f) = n d(h.).
i=1 1

^.6.3 Optimal generating systems

There exists an algorithm [3] to determine an "optimal" generating system

for H, i.e. a generating systems = {b,,...b } such that d(b) is minimal.1 m
Optimal generating systems of H are minimal systems, but in general optimal

generating systems are not appropriate generating systems of H for multipli-

cation and generating procedures. Practically this means that beside an

optimal generating system-6-= {b,,...b } we use a situable generating1 m
system ̂  = {a ,...,a } of H with defining relations 'RM) = e.

If we know a representation of the elements of <5t-as vords in the b's and

conversely'-^^ V(b) , %• = W(-0l).then we can prove the homotypy of a system -&-'

in the following way.

If <^«> = H, -a.' = V(4-'), -&" = W(A*) ^A-* , R(-Of) = e, then there exists an

automorphism a e Aut H such that '&' = a&. For if R^-Ol*) = e, then a :-Ot-».^L'

defines an endomorphisn of H in H. Since '&•" = W^/OL-') = W(a<^) == aW^) = ay

and ̂ " = ̂  it follows -&' s wo- and according to <fe-*> = H a is an auto-

morphism.

If H: = P is a p-Sylow subgroup of a solvable group^in [4-] is deduced that

if ^r = {b,,...b } is a optimal generating system of P and if ^= {c, , .« . ,c }i m i s
is a special generating system of the commutator subgroup P* » then the

system ^t- = ̂ ^^ = {c,,...c , b,,...b } is a special generating system of P.1 s 1 m

^.7 Representation of automorphisms in the computer

5 » 7 » 1 Representation of automorphisrr.jas permutations

Let ̂  = {b,,.».,b } be an optimal generating system of H with a minimal
1 m

number d(-fr-) of homotypic systems and M: =^/S(b.), then the complex

M = {hA ; == b. ,... ,h : = b , h ,.. .h } is A -invariant. If a e A , then
i I ' m m m+1 m+t

Jl(a) may denote the permutation induced by a on M:
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• n(a) = ^ i ^ = ^ i ^ ( i = i , . . , , m+t ). Since b^ M it follows immediatelyy^i v\/
that A is isomorphic to the permutation^group on M induced by A*. By this

permutation group A is represented in the computer.

? » 7 » 2 Representation of autoT.ornhisms of r(%)

• The fix group rQO is. isomorphic to a subgroup of D = A*)(...^A*. If

C : y -^ a = (a^, . . . ,a ) is the hoiLOinorphism of. r(H) in D, the automorphism

Y £ r(3C) shall be represented by ^ ( y ) = (a ,...,a ). Multiplying y ,V e F

the images ^ ( y ^ ) and i;(y ) must multiplied componentwise. Using the

representation as permutations for the components finally it is -possible

to represent the elements of A. uniquely as normal words in abstract generators

with defining relations. This importantly accelerates the process of multi-

plication for elements of r(3C).
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