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THE EULER CHARACTERISTIC OF VECTOR FIELDS

ON BANACH MANIFOLDS AND THE PROBLEM OF PLATEAU

par Antony TROMBA

In this note we outline a theory of characteristics for vector fields on Banach
manifolds, and then give an application to simply connected minimal surfaces. The
theory provides a framework to study the question of how the number of simply con-
nected minimal surfaces spanning a simple closed curve r C R changes as the curve
changes.

I. THE THEORY.
n

Let M be a smooth Banach manifold and K : T M -> TM a connection map [ 3 ] . In [ 1 3 ]
the author defines a smooth vector field X : M -> TM to be Fredholm with respect to
K if for each p £ M the covariant derivative of X with respect to K, V X ( p ) , which
is a linear map of T M to itself is linear Fredholm [ 9 ] . By the index of X we mean
the dim ker VX(p) - dim coker V X ( p ) . If M is connected this index does not depend
on p. If M est not connected, the index is constant on components and we shall re-
quire it to be the same for all components. A Fredholm vector field is Palais-Smale
if VX(p) is of the form I+C, where C is a compact linear map. Palais-Smale vector
fields have index zero.

Let X be a Palais-Smale vector field on M with finitely many isolated zeros in the
interior of M. Then using the degree theory developed in [ 4 ] one can define the de-
gree of X at a zero p , which we denote by (deg X ) ( p ) . The Euler characteristic X ( X )
is defined to be

X ( X ) = 2 (deg X ) ( p ) .
p G zeros(X)

If X has no zeros, then X (X) = 0 . By using elementary transversality techniques the
Euler characteristic can be defined for Palais-Smale vector fields with a compact
set o-f zeros in the interior of M.

DEFINITION. - Suppose M is a smooth Banach manifold with X : M -> TM a smooth vector
field. A zero m G M is non-degenerate if the Frechet derivative X (m) : T M <-> is an* m
isomorphism. (At a zero the Frechet derivative agrees uith the covariant derivative
of X uith respect to any connection on M^.
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As a trivial consequence of this definition it follows that non-degenerate zeros
are isolated.

Recall form [ 4 ] that the Lie subgroup GL (E) of the general linear group GL(E)
for a Banach space E is defined as the set of invertible linear maps on E of the
form I+C, C compact. In [ 4 ] it is shown that GL (E) has two components GL^E) and
GL ( E ) . Using these ideas we can give a particularly simple description of the Eu-
ler-characteristic of a vector field X with non-degenerate zeros. At a zero p of X ,
define

+1 if VX(p) G GL^T M)
sgn VX(p) =

-1 if VX(p) G GL (T M) .

Then

( 1 ) X(X) = 2 sgn VX(p)
p G zeros(X)

DEFINITION. — Let TT : M -> [ 0 , 1 ] be a smooth fibre bundle over the unit interval

uith IT (t) = M a smooth Banach manifold. Suppose there is a family of maps K

with each K a connection for M . Two smooth Palais-Smate vector fields

xo '' ^o ^ Tt^) and' x! : M! ^ ™1 ape ec^:uri'oa^en'b (x ~ X ) if there is a smooth vec-
tor field X : M -> T such that

i ) X = X|J^. : M -> T^., z.e.., X is a vertical family on M ;

ii) X is Fatals-Smate u.r.t. K ;

Hi) the zeros of X are compact in the interior of M.

THEOREM 1 . (Euler-Hopf Theorem). - If X^ ~ X^ then X (X ) and X (X ) are both defi-

ned and equal,

Proof (A Sketch). - Using transversality theorems which go back to Thorn and Abraham

we can assume

(a) X and X. have non-degenerate zeros ;

and (b) X is transverse to the zero section of the vertical subbundle

v(TJ^) = U TJ^ .
m E M ^

Conditions (a) and (b) imply that X(^) n M is a compact one-dimensional submani-

fold of the interior of M with boundary the union of the zeros of X and the zeroso
of X.. Then X(y^) n M establishes a cobordism between the set {p.,...,p .} and

{q , . . . ,q} . One then shows that if p. and p. (similarly q. and q.) bound the same

component of X(^) n ^, then sgn VX(p.) = - sgn VX(p.) (similarly
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^X(q . ) = - sgn V X ( q . ) ) . If p. and q. bound the same component, then

sgn V X ( p . ) = sgn V X ( q . ) . Using these facts along with formula (1) and pairing off

the { p . } and the { q . } we see immediately that X(X ) = X ( X ) .

By applying the Morse theory as developed in [ l 4 ] , [ l 7 ] , one can show that if X

and Y are two vector fields on a manifold M, with 3M = <^, X ~ Y, Y a gradient-like

vector field, then the Euler characteristic of M is defined and X ( X ) = x (M) . If

9M ^ (() and both X and Y point outward along 9M the same result holds.

There are conditions which insure that the zeros of a family of vector fields pa-

rametrized by some manifold will be generically isolated.

Let s^ be a smooth Hilbert manifold, IT : M ->• ^ a smooth Banach Fibre bundle

over ^ (the fibre TT (a) = M2' is a smooth Banach manifold). Let X : M -> TM be a

smooth vector field such that X = XJ^ is a Fredholm vector field on M with

respect to a connection K where { K } ^ is a family of connecti'ons. We shall- a a a G jy
say that such an X represents a vertical family of Fredholm vector fields., ij)ith
respect to the family {K }.

For each zero m £ ^ of X the Frechet derivative X (m) can be viewed as a map of

T ^ into itself. It follows that if TT (m) = a, then X . ( m ) G T ^a.m * m

We shall say that a vertical family of Fredholm vector fields X is Vertically
transverse to the zero section of T^ if X (m) : T M -> T M9' is surjective for* m m
each zero m of X. In this case, we write X ^ z(T^). We can interpret this geometri-

cally as meaning that X(^) is transverse to the zero section of the vertical sub-

bundle of TJ^.

Assume now that Y is a vector field on a Banach Finsler manifold M. Therefore we

have a norm II II : T M ->- R on each fibre of TM which varies continuously over Mm m
[e .g . , see [ l 3 ] ] . We shall say that a vector field Y on a Banach Finsler manifold

is properf or satisfies condition (CV), if whenever II Y ( p . ) II converges to zero, then

{ p . } has a convergent subsequence.

Suppose IT : ^ -> ^ is a fibre bundle as above with || || : v(T.ii^) -> R is a Finsler

on the vertical subbundle of T^. A vertical family X is proper if whenever | |X(p.)||

converges to zero and IT (p . ) converges, then { p . } has a convergent subsequence.

THEOREM 2. - Suppose X ifl z(T,y^)., uhere X represents a proper vertical family of
index zero vector fields. Then there exists an open dense set i^ c ^ with the pro-
perty that for a e ^ X8 : ̂ a ->• T./^3 has only non-degenerate zeros.
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II. APPLICATIONS TO THE PLATEAU PROBLEM.

Since its formulation by PLATEAU in the 19th century, little (see [2] , [ 10 ] ) has

been known about the number of simply connected minimal surfaces spanning a simple

closed curve r C R . Existence was proved in the thirties by J. DOUGLAS [ l ] and

T. RADO [ l l ] , and most contemporary research has been directed toward regularity

results for such minimal surfaces.

Examples of r are known which seem to indicate that it is possible to have as

many simply connected minimal surfaces spanning a curve (including infinitely many)

as one would like. Nothing was known about how the number changed as the curve

changed. In the paragraphs below we state theorems which partially answer these

questions in terms of our topological theory. They follow from modified versions of

Theorem 1 and 2 in Section 1.

Let H^ (S ,Rn) be the Sobelev Hilbert space of H^2 maps of the unit circle S1

into R11, with r > 5. Let ^ = Emb (S\R3) be the open submanifold of H^^S^R3)
1 3which consists of embeddings of S into R . Let r be the image of such an embedding

a G ^. Set n" to be the component of H (S ,r) { the C1' Hilbert manifold of H2 maps

from S to r} determined by the embedding a. Let M^ be the open submanifold of n01

consisting of the diffeomorphisms. For every u G H^S^r) C H^S^R3) we can ex-

tend u = (up . . . ,u^) harmonically to the disc ^ . D e f i n e the smooth Dirichlet energy
functional E : n" ->• R by

a
i 3 <- 9u. 2 8u. 2

(2) E^(u) 4 ^ (̂ ) . (̂ ) dxdy.
1=1 ' 9

We can write the Dirichlet functional as an integral over S = 9^ as follows.

Let 6 -> T~(9) represent the partial derivative with respect to the polar coordinate

r of the harmonic extension of u to Q evaluated at r= l . This agrees with the normal

derivative on S of the harmonic extension. Let < , > denote the IR inner product.

Then applying Green's theorem to (2) we find that

V^ 4 | ^ < ^ , " > d e .

Denote by ~y' the closure of M^ in n01.

J. DOUGLAS showed in his pioneering work [ l ] that the harmonic extensions of the

critical points of E in M are the simply connected minimal surfaces spanning r.

For a somewhat simpler proof see [16] .
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THEOREM 3. - There exists a smooth connection K on the second tangent bundle T •n01

and a smooth vector field ^ : r^ ->- Tn01 which is Calais-Smote with respect to the
connection K and whose zeros are precisely all the critical points of E . Moreoverj

X^CE^) = dE^uXX^u)) > 0.

Proof (A Sketch). - Let h, k G T n01. Define the weak Riemannian structure
« , » : Tr^ x T^ ^ R by setting

« h,k » = f < 1̂ , k > d6 .J^ 9r

By definition n01 C H (S ,IR ) = H is a submanifold. For each u G n0'

(3) H = T^ C (T^n01)1

where (T n01) is the weak orthogonal complement of T n01 in H. In a standard way,r\ ) is the weak orthogonal complement of T r^
one can use the splitting ( 3 ) to define the connection K on n " .

The vector field X01 is the "gradient" of E with respect to « , ^>. It is neces-
sary to check that this weak gradient gives a smooth vector field on n01 and we use
regularity theorems from the theory of elliptic partial differential equations to
accomplish this. The connection K and the vector field X01 are both defined natural-
ly in terms of the weak Riemannian structure. By a direct computation we show that
X01 is Palais-Smale with respect to K .

DEFINITION. - Let \i E r\0' be a minimal surface. A branch point p e Q) of u is a point
where the map u : Q -> IR fails to be an immersion. An embedding a e s^ is fine if
all minimal surfaces spanning T = a( S ) are free of branch points.

In [10] RADO showed that if a is not "too complicated", then a is fine. In parti-
cular, he showed that a is fine if there existed no point q £ IR such that every
hyperplane through q intersected r in at least four points.

THEOREM 4. - Let . ^ C ̂  be the set of fine embeddings. Then . f is open in j^j and
hence open in H1"1'2^1 , R 3 ) .

Conjecture. - ^ is dense in J^, or perhaps the open set of curves which admit only
minimal surfaces without boundary branch points is dense in s^'.

Let G be the three dimensional non-compact Lie group of bijective holomorphic
maps of the disc onto itself. The functional E and the vector field X of Theorem
3 will be equivariant with respect to the action of G. Therefore, there is no hope
that the critical points of E in M will be isolated or non-degenerate in the
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sense described earlier since the orbits of any critical point will consist of cri-

tical points. Let u € M be a zero of X , and let (f) p(u) denote the orbit of u un-

der G. Then ^(u) is an immersed three-dimensional submanifold of r\ consisting ofLr
critical points of E . We call ^(u) a critical submanifold of n01. The covarianta (j
derivative of X at u induces a homomorphism of the normal bundle of 0^(u) into(j
itself. A critical point u, or more precisely (9 » (u) , is non-degenerate if this in-(j
duced homomorphism is an isomorphism.

Applying a modified version of Theorem 2 and some regularity theorems of HILDE-

BRANDT [5] and NITSCHE [7] and others we obtain

THEOREM 5. - For an open dense set of embeddings i^ C ^ the zeros of X"., a e ^

•in M are non-degenerate (and therefore isolated) three-dimensional submanifolds

of n . Moreover^ for such a £ 1^ there are only finitely many such critical subma-

nifo Ids.

In general minimal surfaces on the same orbit are identified. Doing this we obtain

THEOREM 6. - If a e V and y E y ,̂ y = a+p, is sufficiently close to a^ then the

nrin'tmat surfaces spanning y are smooth functions of the parameter p.

COROLLARY. - If a G V and y G ̂  is sufficiently close to a then the geometric

number of minimal surfaces spanning y is equal to the number spanning a.

Let r = a(S ) , a G .̂ , be a plane curve. The Riemann-Osgood mapping theorem im-

plies that there is a unique minimal surface'spanning r. This will be the confonnal

map of the disc onto the bounded component of C determined by F.

THEOREM 7. - If V is a plane ourve^ then the unique minimal surface which spans it

is non-degenerate.

COROLLARY. - Any curve sufficiently close to a plane curve has a unique minimal sur-

face spanning it.

Let Y belong to ,^. We can define the Euler characteristic of the corresponding

vector field X , and we take this to be the definition of the algebraic number of

minimal surfaces spanning the image y(S ).

We conclude with an application of a modified version of Theorem 1.

THEOREM 8. - Let y and y. be fine embeddings. Suppose further that y is isotopic

to y. through a family y j 0 < t ^ 1 of fine embeddings. Then the algebraic number

surfaces spanning y is equal to the number spanning y..
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