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THE NON-ARCHIMEDEAN CORONA PROBLEM

Marius van der PUT

§.1. Introduction and Summary.

Let K denote a complete, non archimedean valued field. The central problem of

this work is the Corona problem (see (3.1) (3.3)).

Let K be algebraically closed, K < X1 seeey Xn > the Banach algebra of all
bounded analytic functions on the "open" polydisc [}(K)n = {(11 ,...,1,n) € Knnli\<1

for all ii . Suppose that f_,..., fs € K < X1 seees Xn > have the property

7

max lfi(L)l'_l € A(K)n} > 0. Are there g, ,.-+» & CK <Xy penns X > such

inf%
1£i¢s

that p_ f. g, =17

The cases (n = 1 and all s) and (n > 1 and s = 2) are proved. The proof
consists of two steps : (3.4) : A reduction of the corona statement to a problem on
polynomials (2.1). (2.4) and (2.6) : Solution of this problem on pelynomials for
{n=1, all s) and (n> 1, s = 2).

Section 2 confains further alternative problems related to the Corona-conjec-—

ture and a discription of §(I) in terms of complete ideals (see (2.8)).

In section U4 a detailed study of the ring K < X> (i.e. n = 1) is made. In
particular a theorem of M. Lazard on zero's of analytic functions is generalized.
As an application of this one gives in section 5 a complete descriptién of the clo-
sed subspaces of co(l\Io —> K) which are invariant under the anti-shift operator :
T : co(ﬁ‘lo — K) — co((No —~— K) defined by

T(ao > 8,5 8, el) = (a1 s 8y 5 By yeeo)

In the sequel we will use the following notations

N = the set of positive integers ; No=uy { O}; for any set X, b(X — K) is the
Banach space of all bounded maps f : X —> K, normed by el = supl£(x)] 3
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cO(X —>K) and c(X — K) are the closed subspaces of b(X —= K) consisting of

all f : X —3 K satisfying 1lim f(x) = O,resp. 1lim f(x) exists.
x> X =00

For any Banach space E,E' denotes its dual., For a bounded K-linear map

p: E1 —*E2 , the dual map : Eé ——*E; is denoted by p'. For operations on

Banach spaces like direct sum (2 ), direct product () and terms as o —orthogonal,

orthonormal, weak Hahn-Banach theorem, spaces of countable type we refer to [5_] .

Let X1 senes Xn be indeterminates, then K{X1 seens Xng denotes the affinoid
algebra in n-indeterminates over K. That is, Ki){1 seees Xni consists of all power
series Z ay x*  such that lim | adl = 0. For affinoid algebras we refer to [_1,7] .

§.2. - An inequality for ideals in V[X1 seees Xn]

Let K be an algebraically closed field and V a (rank 1) valuation ring with
quotient field K. The maximal ideal of V will be denoted by m = m(V) and the residue
field of V by k. For ideals I € V[X1 sy Xn] having the property I NV # 0 we
define : o (I) sup{\c{”o& eInNn V§ and

6 (1) e A A L€ v}.

inf§ sup | £(A

£eT !

Clearly <O {IX&(I). If'I is generated by £l oseees fs then 6§ (I) equals

inf? max | fi(L seees ln) | | l1,...,l,n € V}. Let c(I) denote the positive real
1¢i¢s

number satisfying ol(I) = S(I)C(I). Put c(n,s) = sup ic(I)lI ideal in

1

v [X1 seens Xn] , generated by s elements and I N V # Of. So c¢(n,s) € tRU{oug and
c(n,s) > 1.

(2.1) Conjecture:c(n,s) ¢ ® for all n and s.

In this section we will show c(1,s) = 2 for all s{(>» 2) and c(n,2) = 2 for
all n. In section 3 it is shown that "e(n,s) « © for all s and fixed n" implies

the Corona statement for dimension n. We start by considering the case n = 1.

(2.2) Main lemma. Let I be a finitely generated ideal in V[X] such that I N V # o.
There exists & p ¢ V, £ # 0, such that /0"11 c V[X]. and /J_1I ¢ n(v)[x].
Let 4 = d(I) denote the degree of a generator of the ideal ¢(f_11) c K[X_] where ¢
is the canonical map V[X] —>K[X]. Then : 502 ¢ x(1)? or equivalenty
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Conversely for every d > 1 there exists an ideal J € V[X] with JO V # 0 and

-J is generated by two monic polynomials of degree d such that d = d(J) and

Proof. The proof is done by induction on d. For convenience we introduce on V[X]

the valuation || | , extending | l on V, and gi*}en by" 2 8, Xt || = max |a.j
Since I is finitely -génerated, there exists an element f € I such that
el = sup{\lgl!i g € I}. Take P € V with If?l = |Ifll , then p_1IcV[X] and

p;11 ¢ m(V)[X]. If one has shown the inequality c( F_1I) & % then it follows
-1

2_
that c(I) ¢ 2—'(—11 since o ( ,0_11) =4IF’_10<(I) end §(p 1) = Ipl - F(I). So

without loss of generality we may assume that f= 1. First a lemma :

2.3. Lemma. Let f € I satisfy ||fll = 1 then there exists a monic polynomial g € I
such that e gV[X].

Proof. The element f can be written as f = k(X—e.1)...(X—a;)(1—b1X)...(1—th) where

[pl =13 8, see0s 85 €V 3D ., b, € m(V). We want to show that

1000 By
g = (X—a1) (X—as) belongs to I. Put (1—b1X)...(1—th) = 1-h where h ¢ V [X]
satisfies {lhll < 1, For some m » 1, h™ € T because IN V # 0. Hence
g =t e(1+h+. . o+ B%1) 4 1M belongs to I.

Continuation of the proof of (2.2) : According to (2.3) there exists a monic

polynomial foe I of degree d = d4(I)., After a translation of X we may suppose that
i - I. Wri . =q. £ +r,
0 is a root of f . Let §g1 seees gS( generate I. Write g, = q; fo r; , vhere

a 5 1, € V[x] and degree ('ri) < d. Then Hri Il > 1 for all i, since (f)(r:’.L) € k(]

must be zero. Put f, = f + r, fori = 1,..., s, then ?f -, T .y T t generates
i o i o s

R
I and ¢(fi) = ¢(fo) for all i = 1,..., s.

In case d = 1 this gives that I is generated by {l ,X{ for some A € m(V).
Clearly this implies of (I) = 6 (I) and ¢(I) = 1. Now we proceed by induction and
suppose 4 = 4(I) > 1.

case (1) : "q)(fo) =xte k[XJ". Let p €V satisfy |p|= ma.xz |a|| a €V is root

of some f‘i(i = 0,000 s); . By construction also gb(fi) =x% for all i > 1 and so
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| Fl < 1. We consider now the ideal I C V[X] generated by the monic polynomials

if'_d £(p%) [i=0,..., s} . By definition

§(1) = int i max |'l—d fi(i)ll Aev,[r]¢ lf“ which is also equal to

0¢iss

IP'd|inf } max |fi(1)|l A€ V} because all the roots of £ ,..., f_ have
0¢igs

absolute value ¢ |f| . So § (1) = lp'd | §(1).

If X €INVthen x= 2 QX p d £.(pX) for somne
i=0
Q seees Q€ V[X]. After euclidean division with remainderof all Qi(i =1,..., s)
by the monic polynomial fa_d fo(f)x) one finds an expression

S
*= 7 P.(X)p d f.(/OX) such that deg(P,) < d (i = 0,1,..., s). Hence
i=0 1 1 1

2d-1 S -1,y d-1 .
= 2;~ Pi( P X)P fi(X) and for all i = 0, 1,..., s one has

1=0

*p

Fd-1 Pi(ﬂ —1X) € V(X] since deg P, < d. So ve have shown that

02971 o (T3 ¢ a(1).

~

Clearly d(I) ¢ 4. If a(I) < & then by induction hypothesis c(I) < 2—% and
it follows that also c(I) < 2—& . If d(f) = d, then the generators

Fi(X) = ﬁ—d fi(P X) (i =0,..., s? of I’have the property ¢0Ti) = ¢(Fo) for all

i=1,..., s and ¢(FO) # Xd . So we are reduced to

Case (2) : "I = (f , £y »uouey £) 5 O(F,) ='¢(f0) for all i ; f_(0) = 0 and

¢(fi) = ¢(fo) for all i, and ¢(fo) is a polynomial of degree d, unequal to xdn,

Here we proceed as follows : write é(fo) = Xd_(Xd+ +...+ 2 ) with

- + - .
@ >0,d 30, €k, A#O. Put £, = f] f'i' (i =0,..., s) such that

a- a+

- + . . . +
¢(f.) =X  and ¢(fi ) = (X +...+ A ). Consider the ideals I =(f: seens f; ) and

s f;). Then we have § (I) = min(6(I ), 8(I+)) since §(I) equals
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. P - + : . - + _
min [ dinf io??:s | fi,(l) fi(l) ||| 2l < 1} » inf 20122.:;3 ‘f'i(l) fi(l)lll 2| = 1f]
and for A €V, | 2] < 1,we have lf;(l)‘ = 1{all i) and for A €V, |2]|=1,

we have |~f;(l)| =1 (all i).

. - + . . -
Mso o (I) » minX(I ), x (I )) or in other words : if X € I AV and

X €I" NV then. &€ INV. Indeed :

s s
HEE + _+ -
o = P f; and o = J P} f, witi P, P ¢v[x].
. h 171 i 1
1=0 i=0
+ + - -
Hence of ..... f and of ... f_ belong to I. The polynomials ¢(f+ f+)
o s o S (o] S

and ¢(’f; f;) in k[XJ are relatively prime. So there are P,Q € V[X] with

+ + - - .
1= d)(Pf0 fs + Qfo e fs). Consequently I contains the element
+ + - - : : Y
oLPfo fs + o(QfO fs =. o (1-h) where |lhl[< 1. As in the lemma (2.3) it

follows that o € I.

+ - 4 - + -
dd d . - d . .
Now we have o (I) d > min(x (I )dd d , X (I+) dd ) which is. by

induction hypothesis (d~ = a(I ) < d and at = d(I+) < d) greater or equal to

+, - +
min(s (17)4¢ (2a -1) , & (I+)dd_(2d "‘)). One checks easily that
aat(2a™-1) ¢ (2a-1)a*a” and aa (2a*-1) ¢ (2a-1)a*a”
Consequently o (I)d > min(S(I_)gd_1 , S(I+)2d—1-) = 8(I)2d_1

This finishes the proof of the first part of (2.2).

Té& show that the bound c(I) & 2-—% is best possible wt construct an example :

2d-1 _ 1 = Q.G where Q and G are monic polynomials of degrees d-1,resp. d.

Write X
Put £(x) = P2 R ,o”x) and g(X) = ,Ddc(,o_1x) where £ € V, and 0 < | Pl

Then f and g are also monic polynomials belonging to V[X]. Take J = (f,g). Using

~ ~
the notation of case (1) above we clearly have J = (F,G) and §(J) = 1. Hence
§(3) = llod]. Further let 0 # X €J N V. Then & = p(X)£(X) + q(X)g(X), where

P,q € V(_X] and where one may suppose deg p (d and deg q < d. Hence
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& ’o-d = P(,ox)-,o'd f(f’X)g(fX). Now F(x) = p ¢ £(£X) and G(x) = P'd g(Px).

Using the fact that the equation 1 =P

1 1
only .the solution P = xd'1 and (',),1 = Q,one finds that p(P X) = & °

—2d+1xd-1

F + Q1G'with deg P, < 4 , deg Q1< d has

-d Xd—1

Hence p(X)' = & p@ . But p(X) € V[X] yields |u‘s]€2'd-1| . So one finds

-1

*(3) = [Pl 27" ana e(a) = 2 .

(2.4.) Corollary. Let I be & finitely generated ideal in V[X] such that I NV # O.
Form the ideal J = il(l)ll € v}, where I(1) denotes the image of I under the

V-algebra homomorphism V[X] —>V which sends X to A . Then :

Jz:(;'IF\VCJand §(1)% ¢ (1) ¢ 6(1).

Further c(1,s) = 2 for all s( » 2).

Proof : From the definitions it follows that S(I)' = sup 1"’(' | €T } s

§(1)° = swp {Io(l lx € JZS and & (I) = sup {'lo(l lae1n V}. So the first two
statements of (2.4) are quivalent. The second and third statement of (2.4) follow
immediately from (2.2).

Remarks. Corollary (2.4) will suffice us in proving the Corona conjecture for
dimension 1. In the rest of this section we discuss some more detailed results

which might be useful for dimension > 1.

(2.5) Lemma. Let I be an ideal in V[X] generated by £, ..., f_ such that

I-NV # 0. Let Z denote the set of all roots of f‘l fs which belong to V. .Then :
(i) J = ﬂzl(l)ll € Vf is egﬁal to N l‘ I X € Z}. In particular J is a
principal ideal.

(ii) IN Vis a principal ideal.

(iii) Suppose that s = 2, ”f1" ="f2"= 1 and deg ¢(fi) =d;. Let p, , D, ¢ v[x]
be given such that max(“p1u, “p2") =13 p, f1 + 1, f2 =o €V, # 0 and
deg §(p,) < 4, » d4¢€ §(p,) < a4, « Then || = « (I).
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Proof. (i) Put §™(I) = min { max I'fi(z)] lz e Z}. Clearly 6™ (1) 2 & (1).
1€i¢s8

The statement in (i) is equivalent to &§(I) = §%(I). We prove this by induction

on i deg(fi).o If A € V satisfies [A-z|»pP for all z € Z where
i=1

P=m,a.x“z1 i zzeZ} then for any z € Z one has
max I'fi(x)l Yy max |fi(z)(. The set ’4\6V | lA-zl<p for some z € 2} is

1¢i¢s 1¢i¢s’
equal to a disjoint union B1 v...Uu Bt (t 9 1) of "open" spheres with raddi P

t
Each fi can be written as z f.

i3 such that for all i and j, the roots of fij
j=1 :

belonging to V also belong to Bj .

Then §(I) = min (inf ( max lf{(k)l)). For any i € {1,..., s} and
14j¢t Aij 1¢igs

je {l,... ,t} there exists a constant Pij such that | fi(A)' = Pijl fij(l)l for
S S

all A& }3j . Since 2 deg(fij) < 2 deg(fi) for all j, the induction hypothesis
i=1 i=1

gives inf (max lfi()‘)l) = min (max lfi(z)l). Hence d(I) = min (max |fi(z)\).
I\ij 1¢i¢s zeZﬂBj 1€i¢s z €2 1€igs

(ii) Let [ € V be such that Po = ma.x{"f!l It € I}. (Here we use of course

that I is finitely generated). Let fo € I denote an element in I which has minimal
degree under all elements f € I with lfll= | pol . As in (2.3) one finds that

-1 1

Po fo is a monic polynomial of degree 4. For f € I we write f; foq + R(f),

where q,R(f) € V[X] and deg(R(f))< d, . The ideal I, generated by

1
{Po R(f) lf €I } is again finitely generated and clearly I1 NV =INYV and
d(I1) {ad = d(I). Induction on d(I) (the cases a(I) = O or 1 being trivial)
completes the proof,

(iii) If l&l ¢ & (I) then for some pev, Igl>lxl and 9 5 9, € v(x]

-1

we have [} = q, f1 +. a4, f2 - It follows that p, = ap q + rf2 and
p, = o }—1 9, - 'rf1 for some r € V[X]. Since max( ||p1|| . )]p2|| ) = 1 one has

frll= 1 ana ¢(pﬂ1) = §(r) ¢(f2), $(p,) = d(r) ¢(-f1). This contradicts the assumption
deg &(p,) < 4, and deg d(p,)< 4, .
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(2.6) Corollary. Let IC V]:X1 seces an be an ideal generated by two elements and

satisfying T NV # O. Then c(I) ¢ 2. Moreover c(n,2) = 2 for all n > 1.

Proof. Let 0 € V satisfy hol = max(llf1 s |\_f2\l)-where 51‘1
The. inequality c¢(I) < 2 would follow from c(© 'I)< 2. So without -loss of gene-

N fef generates I.

rality we may assume = 1, So we can suppose = 7 . < 1 . we
lit p=1.8 1 llf1| >\If2 If |t 1

can replace f_ by £ + f2 . So without loss of generality we can suppose

2 1

Hf]l] = ||f2“ = 1. After a linear change of Xy seves X Ve have that 4)(1‘1) and
¢(f2) are monic polynomials in X with coefficients in k[X1 yeees Xn_1'_l. Using
Weierstrass-i)reparation and division for the affinoid alggbra. K%X1 seces Xni ke

o) V[X1 seees Xn] (see [1] satz 1,2 of Kap. I) one finds : Fof any f CV[}(1 sees Xn]

and any W€ V, 0< i < 1 there are q,r,s € V(_.X1 secey Xn]satisfying

f = qf

;¥ T+ s and deg r < d1 = degxn(Q)(fi)).

Given an expression A& = 4, f1 + a, f2 » B#0, /3,6 V. Then a, is not

divisible by f, in K{X secns Xn( . Hence for suitable v+ € V, (l‘!T‘ small enough)

1 1

one has

a, = qf1'+ r + ‘- s with q,r,s € V[X1 seees Xn];“r" > |‘rr| and

deg, (r)< a
Xn- 1
Substituting this and possibly dividing by an element (# O) in V one finds
o =p, T, + P, f2 ;) X €V, & #0, max(“p1 N p2|l) =1 and

degy ¢(P2) <4, , degy P(p1) < d, = degy ¢)(f2). In this we substitute for
n n n

X, 5eees Xn-l elements l‘l seses An_1€V. Put A = (}\1 seersy A n—1) then one

«=p(2, X (ALK )+ py (XX )E,(A,X ) and (2.5) part (iii)
yvields Jo| = & ((£,(2,X ), £,(1,X ))) € X(I). Further
5 ((f1(l,Xn),f2(l,Xn))) > § ((f1(7t ,Xn).fz(l.xn)))2 . § (1)° has as consequence

o (1) > § (I)2 . Moreover c(n,2) >, c(1,2) = 2. So ¢(n,2) = 2.
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Remark. In the next proposition and corollary we will give an algebraic inter-
pretation of 6'(1) using complete ideals and integral closures of ideals. We
will use tacitely the exposition on complete ideals given in [8] appendices 2,
3 and k.

(2.7) Proposition. Let V be a (rank 1) valuation ring with field K (not necessa-

rily algebraic closed) and I a finitely generated ideal in V[X1 serey Xn] with

IN V # 0. Let I' be the integral closure of I in K()(1 yeees Xn) and a an element

of V\I'(\ V. Then there exists a finite field extension L of K and a valuation-

ring W with quotient field L, WN K =V and a V-algebra homomorphism

[ V[X1 seoes Xn] —> W such that ¢(a) ¢ ¢$(I)W (or eguivalently

let=18(a)] o > sup|9(D)] ).

Proof. Since a £ I' there exists a valuationring w¥ or K(X, seees Xﬁ) such that

1
W' v[x1 yerns xn] and a € IW* . Choose b € I with IW® = bW" . The rank of W* is
finite (in fact & n+1). Hence there are prime ideals pPOg in w¥ with

p = 1+hgt q and b/a € p\q. Now U = W;/qw;' is a valuationring of rank 1 and we have

a canonical map V¥ : V[X1 seres Xn] —> W —> U satisfying

|\|J(a)|U= !a]v > max |\U('fu)'U where {f1 seees £ denotes a set of

1$i€s

generators for the ideal I. Let ® denote complet:ion with respect to the given

valuation in particular k denotes the completion of K. Then Y extends to a

L) . A
K-algebra homomorphism, also denoted by ¥ KZ)(1 seees Xn} ——DQt(Uf. Here Qt(U)
is the quotient field of U. This map ¥ extends further to a K-algebra homomorphism

v, :'féjx1 seees X0 Ty aenes Ts} —> Qt(U) * vhere ¥ (x,) = ¥ (X,) and

‘V1(Tj) = w1 ! 4 (fj). Here T €V, 0 < | 7[(< 1, is chosen such that

|7(’-'1 a_l“{/ (fj)| g $ 1 for all j=1,.0.,t. The kernel of ‘V.‘ clearly contains

the ideal J of K{X, ,oo.p X Ty yerey Ty} genevated by {mwar; - £,

1 s s s8

So J # (1). Let M be a maximal ideal of ?c[x1 yeers X s Ty suevy T_] which contains

J. As is well known ([7] Theorem "4.5)' M is the kernel of
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A
a map )( : Kix1 seees Xos Ty aenny Tsi —3 F, where F is a finite field extension

A .
of K. Let W' denote the valuationring of F, then X induces a V-algebra homomorphism
X2 V(X seeey X ) —5 W such that [X(a)| , = laW)»,T?fs'X(fi)l -

Choose elements ©& g ey € W' algebraic over K such that ma.x[n/i—x(xi)l' - is

1€iss

small enough to ensure that ¢ : V[X] senesy Xn] —> W' given by

O(X,) = o, (i=1,...,n) has still the property la) > max |§(£.)|., . Let L be
1 1 v 141 <s i''w
NN

the quotient field of im ¢ and W = W' ) L. Then L is a finite extension of K

and ¢ : V[}(1 seers xn] —> W has the required properties.

Defipition. To formulate the hext corollary easily we define & (I) for ideals
IC V[X1 sesesy Xn] with V NI # 0 and XK = Qt(V) not (necessarily) algebraically

closed as follows : 4 (I) = inff sup If(l1 seeey 7Ln) | wlw DV any valuationring
fel

such that Qt(W) is a finite extepsion of K and 11 se s ln any elements € W} .

(2.8) Corollary. With the notations of (2.7). The following ideals are equal -:

a) I'NV

b) I3 = ’V n ¢'_1(¢(I)W)|W OV any rank 1 valuationring and

b= V[X1 sesns XnJ —> W any V-algebra homomorphigg_}

e) I, N [v 2 0"(¢(I)w)|w DV any valuationring such that Qt(W) is a finite

2
extension of X and ¢ : V[X1 seees X-n] —> W any V-algebra homomorph;sm} .

1n particular §(I) = sup l[ql |l €1'n V}a.nd for any-rank 1 valuationring W OV,
WNK=1V, ye have §(I) = S(Iw[x1 seoen xn]).

Proof. Clearly I, DI, and (2.7) yields I'N'V DI, . Take a €I' O\ V. Then as is
integral over I. Hence for any WOV and any § : V[X1 seves Xn] —> W the element
p(a) is integral over ¢(I)W. Since W is a valuationring this means ¢(a) € Q(I)W.
This shows I'N V CI.. .

Further the formula for §(I) follows at once from the definitions and

(1) = §(wi [X, ,..., X]) follows from I, = I, .
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Remarks. The conjecture c(n,s) £ W can now be restated in the following way :
There exists an integer A, only depending on n and the number of generators of I
such that (I' N V) ¢1 nv.

In this form one does not need the condition that V is a valuationring. More

general we conjecture the following :

Let R be a normal domain, I a finitely generated ideal in R[X} such that

INR # 0. Then there exists an integer A, onlydepending on R and the number of
generators of I, such that (I' N R)A C(IAR)Y, vhere I' is the integral closure
of I in R(X] and (I NR)* is the integral closure of I N R in R.

As we have seen this conjecture is true if R is a valuationring (then A = 2).
Also if R is a Dedekind domain the conjecture is true with A = 2. Further one sees
that this conjecture would imply c(n,s) < W (all n,s) and consequently it would

solve the Corona problems for any dimension.

In the following proposition we give still another formulation of the conjec-

ture c(n,s) < © for all n and s.

(2.9) Proposition. Let V' be a rank t valuationring with algebraically closed

quotient field K and let f € V[X1 goevy Xn] define a nonsingular hyperplane of

K[X1 seees Xn} . Suppose that there exists an integer A only depending on n such

that the ideal IC V(X ,..., an generated by f and % (i=1,...,n) satisfies
i

(r'n 2 c 1 cv. Then c(n,s) ¢ w for all n and s.

Remark. Note that the condition I NV # O is equivalent to saying that f defines
a non-singular hyperplane over K. Further both I OV (or « (I)) and I'N V (or
§(I)) are measures (or if one wants multiplicities)for the singularities of the

hyperplane over V associated with f.

Proof of (2.9). Let an ideal J = (g1 sevas gs) C V[X1 seees Xm] which satisfies

+o..t e X, . The ideal

JN V #0 be given. Put n = m+s and consider f = g, X s

m+1

? . .
I in V[X1 »e++» X 1 generated by f and @£ (i=1,...,m) is also generated by

K.
h h_ where h, = i 1-')—g-i-x Since I D JV[X X )
81,,..., gs > By seees B where j = — DXj SR c EEIRERID SN

it is clear that X(I) > o (J) and S(I) > & (J). The proposition will be

proved if we show o (I) = » (J). Take ov € I NV, Then o =Zpi g; .+qu hj
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with p. , a; € 'V[X1 seens Xn:] - After substituting X ., =-...= X, =...= 0 in this

equation one obtains XE€J NV. S0 INV=J N V.

§.3 Bounded analytic functions on an open polydisc.

Let K be a non-archimedean valued complete field and X1 see s Xn indeterminates.

K< )(1 se vy Xn> denotes the algebra of all formal power series

al A .. . ,
f = Za & Xy ves X with coefficients in K such that
i 0(1 30 ,O(n n
sup [a(x o |<s0. It is a Banach algebra w.r.t. the multiplicative norm
NETEEEY. N
if) = sup)a | - The "free" affinoid algebra K{X «e., X | consisting of all
1900 90(n o x 1° > n
. 1 n . .
expressions Za“w‘""’(n X'I e Xn such that llmlao/1,.~..,4>(nl =0, is a closed

subalgebra of K ¢ X1 seeesy Xn > .

Let V denote the valuationring of K and S the multiplicative set V\EO} .then

K< Xy eens X5 = s (v [[x1 seees xn]]). In particular it follows that

K < X1 seens Xn> is noetherean if the valuation V is discrete. (The converse is also
true).

An aznalytic interpretation of K <X, ,..., Xn> is the following : If the

1

valuation V is non-discrete then K < X1 se

.y Xn > is the algebra of all bounded
analytic functions defined on the "open" polydisc A (x)* = {(11 yeees An) € Knl
all Ilil < 1} . The norm as defined above, coincides with the supremumnorm on
4(K)™ . (Proofs and more details can be found in (6] ). So K < Xy seees X >
is the non-archimedean analogue of the Hardy space i (A) of an open polydisc
acc®,
The Corona conjecture is :

Let Ka denote the algebraic closure of K which is given the unique valuation

1g
extending the valuation of K. Then the image of A(Ka.lg)n in the maximal ideal

space of K < X, ,..., X > (which is given the Gelfand topology) is a dense subset.

A more explicit formulation (see [2] pg. 163, for the proof of the equivalence

of the two statements) is :
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(3.1) The elements f1 seens fs € K < X1 seses Xn > generate the unit ideal if and
only if § = inf i max | £f.(A)\|ae A(K )ni > O.
- 16i¢s * ale

One implication in this statement is trivial, namely : if f1 seaes fs generate

ey s s =
the unit ideal then EE% gi fi 1 for some g1 se s ey gs € K< X1 sevas Xn >

It follows that 5> (ma.x”gi\))—1 > 0. The other implication will be proved in

this paper for n = 1 and for n > 1, s = 2 in a more precise form :

(3.2) Theorem. (Coroma statement for dimension 1). For any f. ,...

) fs €K <X>»
satisfying HfiH < 1 (i=1,...,s) and 0 = inf { max \fi(h)\lx e A(Kalg{l s> 0

s 1€i¢s -
there are 8y ses B € K<X> with Z; gifi = 1 and max Hgil\< o7c. -
i=1 1¢i¢s

(3.3) Conjecture (Cn S). There exists a constant A 2 1 such that for any
,

£, 5.0y T €K <X, 5uee, X > satisfying "fi" <1 (i=1,...,s) and &> O

s
. , -A
there are gy ses Bg € K¢ X1 seaes Xn>- with 2 g f; = 1 and max HgiN< $ .
i=1

Remarks. (1) Of course (3.2) is the special case (C s) of (3.3).
k]

1

(NLﬁf1vn,%€KZX1“”,%>2§L3Kammkaﬂwdﬁdm‘
Then & as defined in (3.1) is equal to inf z max | fi(x)\\l GMLalg)n{

1€1ss

In other words & does not depend on the field K.

Proof. We may of course suppose Hfi“ < 1 for all i and § > 0. It suffices to
] < = 1 . A AED nz
show for any p € Kalg , 0 lfl <1, that 51 inf }max | fl(P M (Kalg) |
1¢iss
. _ [ £ e A n}
is equal to 82 inf a max | fl(ﬁz)ll A (Lalg)
1$i8s

Since 51 > § > 0 and f1(pj(), s fs(PX) c Kalg{x1 s , Xn} and every
residue field of this affinoid algebra is equal to Kalg we find that
. s : T o>
&ﬁﬁxh'”’féfxu generate the unit ideal. Hence &% 52>o.
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. % .
Write fi =Zfi <X (f ¢ Kand i = 1,...,s) and put g. = oor, x% 3
y

i, i xi¢n 1,
all this in the well known shorthand X = (X1 seensy Xn) ;3 X = (0«‘1 yeee s X n) and
X ¥ X pn e . . \
X0 = X1 Xn . For fixed p there exists N such that for all i, fi(px)-gi(px,

considered as an element of sz seees Xnk has norm < 52 . It follows that, with

1
the notation hi(X) = gi(PX) and I = (h

§

P o hs) V[X1 Yoo Xn] , one has

inf{ mex h; ()12 = (A, ,...y 2 )€ K, all [2;1 ¢ 1} = §(1) ana

! 15i<s ! ale

XZ = § (WX, ,..\, Kn]) where W denotes the valuationring of L. So the
equality 81 = 82 follows from (2.8).
(3) Let £ooseees T €KX, souey X > satisfy “fill < 1 for all i and let L DK

be a complete field. Suppose that there exists a constant A and

s
seees X > satisfying max I(hl\\ < Aand h,g, =1

h, ,..., h €L <¢X
s r
1=1

1 1

Then there are 8y seres B €K <X, 5000y Xn» with max ugi” < A and

1

Proof. Let E the closed subspace of the K-Banach space L generated by 1 and all the
coefficients of all h; . Choose an & > 0 such that (1+ & )max ”hi“ < A. Since E
is a Banach space over K of countable type there exists a K-linear map 1! E —» K with
1(1) = 1and W < 1A4¢ . Let E ¢ )(1 s Xn) denote the closed subspace of

L < X] seens Xn> consisting of the power series with all coefficients in E. Of
course E < )(,I yeoes Xn > is a K < )(1 sheey Xn s -module and the extension

seves X_ > of 1, defined by L(Z ey x*) =Z,1(eq)§(

L:EgX ,'...,Xn'> —3>K < X

1 1

is K¢ Xy aeees X0 -linear and |ILfj £ 1+ & . Hence g = L(hi) (i=1,...,s) have

the required properties.

(k) The two preceeding remarks imply for the purpose of (3.2) or (3.3) we may
replace K by any complete valued field L D K. In particular we may suppose that K
is algebraically closed and maximally complete.

(3.4) Theorem. c(n,s+1) < ® implies (Cn s).
. i
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Proof. We consider first the following statement :

(Tn s) : Let K be an algebraically closed, maximally complete field K. There exists
’

a constant A > 1 such that for any f1 seaey fs € K{X1 seees Xn} with

el < 1 (i=1,...,s) and £ = inf | max |fi(l

1¢i¢s

1 ,...,;1n)|[7\1 ,...,.\nCK .

‘l\""’
[

oo
n

all [A; | ¢ 1§ > 0 there are 81 st gSCK){.X1 yeaes Xn% such that

-A i=1
and-max(]gi i< é ¢
The theorem will now follow from the following two lemmas.
(3.5) Lemma. (Tn,s) implies (Cn,s).‘
(3.6) Lemma. c(n,s+1) < & implies (Tn s)'
£
( (rc, oL, € K with O | I
Proof of (3.5). Choose a sequence ‘r\’t £=1 K with <| Trt <1, Tl't|< lTrt+1|
and lim l“’tlt = 1. Put f';(x) = fi(h‘tX) fér i = 1,...,s. Clearly
t t . . .
£ seees TOEK 1)(1 seens xn} . Using (Tn,s) it follows that there are
t t . t ot t -A
e, ,...,gSCK{X] ,...,Xn} with Zgi fi-1andmax|1gi\\<§ .
L% —la|
Put gf’ = Z(gt) X , where (gt.') € K, and put h' = L (gt.') s xX
1 o« 1’ 1'x 1 ]o(|<2t l'o¢ t
s
- - X .
Then we have \\h? ||<|7\‘ 2t| 1Y A and Z_ hi:' f. =1+ Z a. X for suitable
i t = i7i 1,0
_ i=1 lo¢] %t
a € K

i,

Unfortunately 1lim hz does not exist in general and we have to construct our
t —%

"
solutions By se0vs B out of {htift=1 by a Banach limit process.Let b(N — K)

denote the Banach space of all bounded sequences in K, provided with the supremum-
norm. By c(N —> K) we denote the closed subspace of b(N —>K) consisting of all
sequences a = (an) for which lim 8, exists. Since K is maximally complete there

exists a K-linear map ¢ : b(N —>K) extending "lim" on c(N — X) with |Ip|| = 1.

* = ((uE) ). £ B — K).

t_ st t
Put by = 2 (n)y X , (ni) € K and put H e

&
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. [>3 -A .
= w
Define 8 o (])(Hi’u) and g, Zgl « X - Clearly ]Igi I <§ ° for all i. We

will have finished after showing Zgi £, = 1. Now

. S
ol
o= D O(H. )f. )X~ . For fixed &« we have
é;|_ i &~ i; /5*_%“ 1,0 1,Y

S

S
2 o, f =0 RN
f; ﬁ+v=o<q) 1.4 ’ 1; pr (= E AL T

S S

too Y . . -
?:-_ hy f,= 1+ > %y X it follows that lim ; Jf ,/S(h v
i=1 Il > t t 250 1=1 4+Y =

or O according to A =0 or « # O.

Since (\) extends "lim" we are done.

Proof of (3.6). Choose polynomials Py seevs By €KX 5orns Xn] such that

§ %5 1) por 11 . Since § > 0 and Ix e K A= (Aneeesn ),y

“Pl - fi " < n

all Ili | < 1} is the set of all maximal ideals of Kz)(1 seeny Xn( there are

hy seees B € KEX

1 s+ees X | with maxjhg )l ¢ 1 and X b, = p with

9

p € K, 0 < |p | & 1. Consider the igeal I= (po,p1,..., ps) in v[x1 seees xn].

Clearly INV # 0 and §(I) > § . Hence for some

s
ko,k1 ,...,kseV[X1 ,...,Xn] one has Z kipi=o(,0(€Va.nd
o 5, § e (mst)
‘ - -1 s o
Then ) o kfit o k) R =1+ 3 Xk (f-p) . By
i=1 i=1 t i=1
s : s _,
construction || 0( ki(f.—p.) Il < 1 and consequently u = 1 + th ki(fi—pi) is
i=1 1 .
et e -1 -1
ces . .t . . =
a unit in K{X1 R . Xng Hence flnally Z U (x kl [ ko hl):f‘1 1 and

i=1

T - +
for every i, |lu 1(01 1ki +ol 1kO hi)\|$ 13 ~e(n,s 1)..

Remarks. (1) Unfortunately it seems in general impossible to choose the

Py seees D in tne proof above such that (p1 seee ,ps) N V. # 0, So we can not prove

c(n,s) (W = (Tn s). However by a trick, similar to the one used in (2.6) we can
i

prove "c(1,2)¢< W =3 (Tn 2) for all n"
’
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Proof. We may suppose using Weierstrass-—preparation, that f1 and f2 are monic poly-

pomials in X, of degrees d, and d,. In any equation g1f1 + g0, =T, W €V, T# 0;
51 s 32 € K'{X1 3oy Xn} s max(“g1
division,reduce g, and g, such that degy (31) < d, and deg, (32) < d - Further one
can assume that max(|| gl s “82 I) = 1. Bnoose r¢ (11 veedd A’n—1) € v 1 such

that max(|| 51(1.,xn)u ,Ilgz(l.,xn)“) = 1. Then

||,||82l|) = 1;one can, using Weierstrass-

g1(;\, ,Xn)f1( A,xn) + 32( by ,xn)fz(/\,,xn) = T, and gi( ),,xn), fi(x ,xn) are
polynomials in X, . From (2.5) part (iii) it follows that

|“|'=0‘((f1(.l X, (2,X ) 3 ol ((£,£,)). Hence [Tl = o« ((£,,£,)n8((f, ,f N~

2
by c(1,2) = 2.

-(2) It seems likely that Corona-conjecture for dimension n implies c(n,s)< oo
for all s.

(3.7) Corollary. (cn,2) is true for all n » 1 and with A = 2,

§4. Interpolation and zero's.

In this section we study the ring K< X3 in more detail. First of all we
generalize a theorem of Lazard ([3] ; théor&me 2) to the case of bounded analytic

functions. We use approximately the same notations as in [3] H

A divisor D defined (or rational) over K is a map D :A(K . ) =+ 2 satisfying :

for apy’ ﬂ, 0 < f < 1, there exists a rational function overaig(i.e. an element
of K(X)) which has a divisor (in classical sense) E satisfying E() = O if
| & > P,'E(l) =D(X) if |x| ¢ p . The divisor D is said to be positive if
D(A) > O for all A (or D > 0 in the obvious ordering of divisors). Further the
set JBK of all divisors which are rational over K is.considered to be a susbet of
08’L for every complete valued field L DK.

Let Jt(K) denote the algebra of all power series over K with radius of
convergence > 1. For any f €44(K) we denote by (f) its divisor. To show that
(f)e éﬂK we remark that for any @ , 0 < P < 1, any ideal in K iX,F}'is principal
and generated by a polynomial € K[X]. In particular thereexists a polynomial
P € K[X] with PK {X,Pi = fK {x,loi . Hence (£) € 9.
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There is a convenient way to represent & positive divisor over K ([3]; (4.3)):
The set ill“k € A(Kalg) 3 D(A) # 0} is at most countable and can be written as
i“’i}.im with [, < By <.vo o Let Q € K[X] be a polynomiat with (Q;)(1) = D(A)
. . . P . . - _ -1
if | Mg g end (@)(3) = 0if [a] > w ;- Let Py =Q and P, = Q. (q ) for

i % 1. and normalize the P.'s by the condition P.(O) =1if k;>0Oand P, = x¢

if }v = 0, Now we write (formally or with the interpretation of [3] (4.3))
D= TTP. .
i

(4.1) Lemma. Let £€ot(K) and () = TP,. Put 1= (fP1-1)(O). Let L DK be any
complete valued field. Then for A €L, |a|< 1, ve have [f(1)] = chTI'IPi(A.)[.

For any P, 0 < p <1, we have "f“P = iclTl'llPi“{J.

n
Proof. Take (a »0< P < 1. Then f=c TT Pi.u,where n is such that for i > n one

has By > 'o Since u has no zero's wit!‘m=ébsolute value (J , u is an invertible
element of K X } w1th constant absolute value 1. Hence for A € L, |1l< e we
have |[f£(a)] = lcl ” [P, (2)] ana ety = |c| ||P il p - Ve note further that for

i>n, IP;(x)] =1 and llPillP =1,

Definition. }our a positive divisor D = TI'Pi defined over K and O < f’ £ 1 we put
IDll, = .l (which is finite if £ < 1 and can be wif P= 1).
f ip

(4.2) Corollary. An element f € J(K) belongs to K < X> if and only if ll(f)ﬂ1 <o .
In particular if f is normalized by "f = ng, gf0) = 1", then lfll= “(f)

(4.3) Theorem. Let D be a positive divisor which is rational over XK. For every & >0

there exists an element.f € JA(K) such that (f) » D and f is normalized by
"f o= ng, g(0) = 1" and such that for every Psr0O< P < 1

IDll/o s l\f\lp ¢ Ian/o (1+¢).

If L DK is a maximally complete extension of K then there exists g € A(L)
((Dﬂp for all p , 0< p € 1.

with (g) = D and hence if g is normalized “g“f

Proof. Leaving out trivial cases, we may assume D T Pi’ Pi(O) = 1 for all i,
® i 2 (3),i i
Put > a .X =P, ...P and S a .9'x* =P, ...

P n,1 1 n i=0 Ml 1

o>
<.

e . F
Pn or any /? N
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0< P <1, ve have Iairl"ilf:'1 < llP1 Pnll‘p < |IDIF and '&f,fﬁ‘P‘ < lIDlr,

(J) oo
Let A resp. A i € b(N = K) denote the bounded sequences (a.n i)n=1 resp.

( r(xal).)nﬂ . Let E be *he closed subspace of b(N -» K) generated by c(N -»K),
(J)

all A and all A (We use here the notations of the proof of (3.5)). Then E

is a Banach space of countable type over K and hence for every ¢ >0 there exists

a K—linear map ¢ : EK with |¢| 1+ & , which extends "1im" : c(N = K) - K.
Let £= 5 pla; )x* ana £3) = Z_ ¢(a (J))x . Clearly f(0) = 1 and f € A (K) since
i=0 1=0
i i
for all P , 0 < p<1 ve have !If||F= mng(Ai)l ,01 € (1+&) mz.xllAillf; <

€ (1+¢) ||DIIF . Analogous ed) e K (k) for all ji.

Let P, = (b +b1X+..+bX) Thenpf”) Z ] ZblAk

k=0 1=0
(3) 3 i & oLoald) 2
But, using PJ éo an’l X = iéo an,i X" for all n, one finds 1%0 blAk— Ak
(3) 2 ¢ ana (£) » ».

for all k. Consequently Pj'f

Finally (4.1) shows that "fll'p= ”(f)ﬂpbﬁDIIP for all. p.

Now assume that L DK is given and L is maximally complete. We follow the
construction above. Since L is maximally complete there exists an L-linear
¢ : E&KL —+L with llQll = 1, which extends "lim" : c¢(N = L) = c(N -)K)OKL =1L,

Applying this ¢ we find a g € A(L) with (g) > D, g normalized and ||g\|f,= HDIIP
for all p, 0 < pet.

If (g) » D then g =Pg*, P €L [X], P(0) =1, (g¥ > D. For p<1, close
to 1 one has IPll _ > 1. This gives the contradiction llg||P= “P“P \Ig‘uf> wei >,NDI|f, .
|
So (g) = P
Remarks. (1) In the first part of (4.3) we found an element § € E' with llq < 1+€
and ¢ extends "lim". In general it is not possible to find an extension ¥ with

& -
||¥1Il = 1. The following example (due to Lazard) illustrates this :
If K is not maximally complete one can find a sequence of spheres B(Xn’ F..)
. n
in K such that B(X,, £) DBX 1o Pry) 5 Py > Poy 31%, = Xl = £y
[

Lim p =1, n1 B(X , P ) =@ eand Wp < ® ., The last condition can alvays be

obtained by deleting out of a given sequence sufficiently many elements.
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-1 -1 - -
Pt ¥, = (G, - %), then Iy | = p_" and the aivisor 0 = Ty %)
satisfies ]IDII =Tf(’ £ 0 , Suppose that there exists fé& JH(K) with (f) = D,
Thenf€K<X>andwr1tei‘=1+ZaX.Foranyn 1 we can write :
i=1
f= T' (1-y X)(1+h ) where h = i h ix1 and 1+h € K < X>has no zero's
i=1 i=1 ?

of absolute value < lynl = P;‘ It follows that "“hn"‘o _q =1 and in particular
. n

lhn’ﬂ € Pn
n-1
n-1 1 n-1 1
Further a, = - S~ =+ h and ‘=—=x_ - x_. So we obtain
VoEn o m &myy e
|(x1—a1)—xnl = l a, 1[‘{2 for all n and x, - a,€ ;Q1 B(X ’Pn) = (. Contradiction.

(2) Let a positive divisor Deaa( be given. A criterium for the existence of
£ € K (K) with (f) = D is the following;

There exists a closed subspace F of E such that F Qc (N >K) and F é Ke =

where e = (1,1,...) and Q denotes the direct orthogonal =sum.

(3) If the valuation of K is discrete then the divisor of any f € K < X > is
finite. This follows at once from [6] (2.5). But it follows also from f = T\'Pi .
Zhen T”IPiM = ||(t’)|l1 {Q, For i > 1, IPi I > 1. Hence the divisor must be finite.

be a sequence of relatively prime po-

. oo
(4.4) Theorem. (Interpolation). Let (P1)1 1

lynomials in K < X> , normalized by IIP. Il =1 and P. has only roots with absolute

value < 1. For any i a.nd n, 1 £ 1€ n we denote by Q the unique polynomial of
degree dej(Pl) satisfying Ql,n e P ces B mod(Pi). :

Associated with this sequence we have a canonical map

T:KLX> —Trix <Xx> /(Pi).

(1) v is surjective if and only if‘l\=5up{|\Qi nllln »1, 1¢ i(n}<oo.
E ]

.o . . . . * ’

(ii) If 7 is surjective then the inverse of ¥': K < X > /ker'\'v' -> T‘i'K<K>(Pi)

has norm A.

(iii) In particular, 1f D is a positive d1v1sorkratlona.1 over K, which is

decomposed ag D = ]TP., then llDIl S A& “DII and
T :K<Xs > MKLX> /(P ) is surJectlve if and only if IIDll <o,

'D
The kernel of T is equal to I- {f €Exe¢e X>|( q So ker ‘C’D #0

D
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if and onmly if IIDII1<m .

(4.5) Lemma, Let P€ K < X> be a polynomial, normalized by Pl = 1 and P has

only roots of absolute value ¢ 1. Let v : K< X>» 2K <X> /(P) be.the cano-
nical map, ol ; K < X>= co(v}l0 ~K)' the bijective isometric map given by

% ®
n
o) igo a;b., where S a X € K ¢ X»and

.0
n
oA (3 & X')(b ,by,b P

»e
n=0 2

(bov,b1,...) € cQ(NO -_-)K).

Let (3 FtK<CX D> /(P) -+ (K <X > /(P" " denote the canonical bijective iso-.

metry. Then there exists a unique K-linear map p: (K< X > /(P))' —)co(No >K)
such that the following diagram is commutative

: v
K <XD> —————)‘K<X>/(P)
o [

co(t‘lO S>K)! ———— (KX D> /(P))"

Moreover W is an isometry.

s=~1 .
Proof. Any F€ K ¢ X> can uniquély be written as F = qP.+ 3_ ai(F)X1 where
. i=0
s = deg(P), € K ¢ X>and a,{F) € K. Moreover max lai(F)| SIFY . It follows
- . .0¢i<s
that the images T,Y,....?q of 1,)(,...,)(3_1 in K <X % /(P) form there an ortho-
s-1 .
normal base and that T (F) = ¥_ a. (F)X'. Let £ : K< X> /oy 2K <X >/
= (P) (P)

denote the K-linear map given by A(f) = Xf for all £ € K <X > /(P). Then HA®| < 1

and for all n > O we have’

s-1 .
AYT) = e (XX
- i=0 o
Hence lim || ¥_ a.(X")X'l = 0 and for F = J_ b X" and all i=0,...,s-1 we have
) ) n»®  izo ! n=0 °
- 1 . " s ,
a.i(F) n=obnai(x ). The map p is now defined by : if 1€ (K< X > /(P)) then
o, nyvziy @
L 8 (XX)) € c (N K). It is clear now that this W is the

1=0

unique map which makes the diagram commutative and that [ is isometriec.

k(1) = (1(
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Proof of (4.4). Part (i). Let v ; denote the canonical map K < X>—=K<X 5/(P y?
i
. . n
pi the canonical map K < X.> /(Pi) > (K <X> /(Pi)v) and
: <X > ' . i i .5).
Wi (K <X /(Pi)) -»co(No - K) the map obtained with the help of (k4.5)

Then T = MT. .. Pt p=Zp : S(K<X> /(Pi))' > c (N >K) and

B= \Tﬁi : TK<X»> /(Pi) > T(kexs /(Pi)" = (3(K <X >/(Pi))')'.

Then again 3 o T = *4,' o ™ and p ,o are bijective 'and isometric. So we may
consider ' instead of 7T . Using the weak from of Hahn-Banach which is avai-
lable for the spaces co(iNO ->K) and S (K <X > /(P ))' since they are both of

countable type over K, one sees that R' is surject%ve if and only if
. e () .
¢ = inf{ e Z(xex >/(p.y)' » 1 #0} > 0. Moercover if
[l i :
-1

¢ » 0 then ||‘U*_1|I =c .

Further | W (1)l = sup l(F) (2 )'|F €EK<X>,F#0} . After writing
‘~

IFy w
1= Zli’ 1, €(k<x> /(P ))' one has O (F)(p (1)) = Z_li('UiF). It suffices in
i : i=1
N
the computation of ¢ to consider finite sums J_ 1, =1
i=1

s.-1
i

Assume now A ¢ W . Choose bo +b.X +...+ bs X

1 -1
i
(with s; = deg Pi) satisfying “‘i(bo +b.X +o.0 )= hi“ ||sb91+ b X +... I . The
element FE€ K< XY given by F = Q N(bo + Db X +...+ D X ) satisfies :
,

1 s.-1
i

TP (WD = f2g(p + b.X +..0 = o, + X+

=1

» A7 17| lllill. Consequently “r/(l)ll > A™! ) 1)l and ¢ A" > 0. Hence T

is surjective.
Assume now that T is surjective;then Il’tr"1ll <o ac'corging to the closed

graph theorem. Hence the inverse p:K<X> /(P . P) 2> J7T K<£X> /(P ) has
1°'" "n i=1 i

norm £ ll‘c"-” . The element —1(0,...,0,1,0...0) can be written as Q, P ...ﬁ...P .
F i,n 1 i n

Hence [Q; nllélli*—Ill for all i and n. So A ¢ | "l ¢ w,
k]
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. - . *- -1 - - .
(ii) A =llT* 1II since A ¢l 1|| and II%" 1“ ' c Yy A ! are both derived
in the proof of (i).
(iii) For convenience we suppose that D(0) = 0. In the decomposition

] .
D = ‘{TPi we meke the normalisation : Pi is a monic polynomial of degree s(i), such

i=1
that all roots of Pi have absolute value P’i' Further By < Po < oo o It
[ -
follows that [D|l, = IT \Pi(O)l T,
i=1
. . . . A
The polynomial 'Qi,n is defined by Qi,n P1 e Pi e Pn = 1 mod (P1) and
.o i . eee Pooae + R. . =
deg Qi,n < s1 Equivalently Ql,n P1 ?1 Pn Rl,n P1 1,
n
deg Qi,n< s; » deg Ri,n < ( j‘;] sj) - s;. According to (2.5) and the definitions
of o (I) and §(I) for the idesl I = (P;, P, ... B, ... P ) ve find
_ _ -1
max( || Q s IRy ) = fi Qi’n" = ol(I)" and
A
8 (1) = min min[max“ Pi(z)| , IP1 cee Pooaen Pn(z)” | z zero of Pj } . An easy
celeulation yields |P1(O)\ IPn(O)l ¢ F(mep, (0 ... an(o)l .

Further, using (2.4)

F(1)? € &(I) € §(1) one finds (DN, & A S D)3 . The rest of (iii) follows
at once from (k4.2).
w . . .
(4.6) Corollary. A sequence iln1n=1 c El €Kl Ial < 1} is called an interpolation
sequence if the map T : K < X> = Db(N = K), given by T(f) = (f(ln)):=1 , is

. o0
surjective. One has Y 1is surjective if and only if inf TV~ lkn - lil =c >0.
i n=1

Further -if 7 1is surjective then the inverse of the induced map ¥
K<EX>/ > b(N 3 K) has norm ¢ ..

ker T

Proof. Apply (4.4) part(i) and (ii) with P, = X- li .

o0
(L.7) Corollary. Let {lna n=q be 8n interpolation sequence and let I C K < X>be the

ideal sf € K<X> lf()i) = 0 for all i} . Then the maximal ideals M D I corres—

pond 1-1 with ultrafilters U on W, where the correspondance is given by

Ue frex <x>pinl 22 )] =0} =M ck <x>
u‘, 1
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Moreover for every maximal ideal M DI the residue field K< X > /M provided

with the quotient norm is a valued field. If X is non-trivial then K ¢ X > /M%EL
a‘"big" field extension of X.

Proof. Since K <X> /, &bl - k), everything follows from L[4} (4.1) and (4.4).

Problems., It is not clear and probably not true that every maximal ideal M of
K ¢ X >, even if K is algebraically closed and maximally complete, is obtained

as in (4.7) from an interpolation sequence. However, one has a weaker result:

Let £ €M, £ # 0 and let (f) = "'Pi be the canonical decomposition of the
divisor of f. Then according to (L4.4)

K <X>» /( 27K < x> /( and M corresponds to a maximal ideal of

£ P,)

MK <X /(p.y" A study of algebras R of the type R = T Ry, where dim R, < e
i . i=1

for each i,.is needed to obtain further results on maximal ideals of K < X> .

We remark that the special case s?p dim Ri < o0 reduces easily to the case

b =K) (i.e. dim R, = 1 for all i) which is treated in {h] . The case

sup dim Ri = ©00 seems far more complica#ed. Interesting questions about those

algebras are (i) Is R/M, provided with the quotient norm, a valued field for

every maximal ideal M?

(ii) Does R contain closed prime ideals which are non-zero and non-

maximal ?
(iii) 1Is the set of "trivial" maximal ideals a dense subset of the set

of all maximal ideals of R ?

(iv) Can one give a filter-description for the maximal ideals of R ?

. v o

(4.8) Corollary. Let f € K < X> satisfy : the set of all zero's {A } of f
o i'i=1

belongs to K and every zero is a simple zero of f. Then iki}i=1 is an interpo-—

. lation sequence if and only if (f,f£Y) = (1).

Proof. Suppose (f,f') = (1). Then §(£,£') > 0 and consequently inf|f'(ln) I > o.

Write £ = (X- A )g with g € K < X> then it follows that |f'(A )| = |&(d )|=
0

=T l li - 1nl . Hence according to (4.7) the sequence is an interpolation sequence.
i=1

i#p



Corona problen 311

Suppose that the sequence is an interpolation sequence. Then as before
i%f , f‘(ln)I)O. For &very maximal ideal M > fK < X > there exists, according to
(4.7), an ultrafilter UL on N such that M= fg € K< X5 [Lip le(x )l =0} .
Clearly f' does not belong to any of those maximal ideals and hence (f,f') = (1),
Problems. (i) Does there exist a maximal ideal M of K< X > with the property :
Fo every f € M, also f' € M ?

(ii) Suppose that K is algebraically closed and maximally complete ; let
MC K £ X> be a maximal ideal, f € M such that f' € M, Is M obtainable from an

interpolation sequence as in (4.7) ?

(4.9) Corollary. Let V be a non-discrete (rank 1) valuation ring. Then the Krull-
dimension of V[ X:ﬂ is infinite.

Proof. If Krulldim V{[X]] ¢ ® then also Krulldim K < X >< ® and
Krulldim b(N - K)o since for a suitable interpolation sequence one obtains b(N - K)

as a residue ring of K ¢ X > . The proof of (4.9) will be completed by using the

next lemma, which shows that b(N - K) contains infinite chains of prime ideals.

(4,10) Lemma. (i) Let U be a fixed non-trivial ultrafilter on N and let

c = (c1,02,03 ,+..) be a sequence of real numbers satisfying O < g <1 for all i

and lim c; = 0. Then the ideal Ic of b(N - K) given by

BN =

fe I if for some k €N and D € R the set $n enNt |f(n) gc D} belongs

toW,is a prime ideal.

s _ 2 3 k4
(ii) Let d denote the sequence d.= (c1,c2,c3,c)4 s+e+) then I %Ic

Proof. (i) (a) Ic is an ideal since for f1,f2 5} Ic’ g € b(N - K) we have
—_— . K

kg . .
v, = {n en | fi(n)|\( e, Dig € W (i=1,2) and with D = max(D1,D2), k = max(k,,k )

2
we have . 1

gnC vl f1(n) + g(n)f‘2(:~'\| < c:D ||g||}5 V1ﬂ V, and belongs to n .

+ .
Hence f  + gf, € I,

(b) I, is a prime ideal. Indeed let f ,f, € I, then for all
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1
k €N, D€ R the complements W, of 1n EN “fi(n)l < Dci; f (i=1,2) belong to WU .
2
Hence for all k € N, D € R, the set {n emwl ]f‘}(n)fz(n)l > D2c§f belongs to 1 .

Consequently f‘1f2¢ Ic.

(ii) Take £ € T_ with % c. ¢ I £(n)| ¢ ¢, for all n. Tf £ would belong
to id then for some k € N, D ¢ R one has

n
1

{n €N|lf(n)|$c};3}€u,. But [f(n)] > Ecn)c

5 wfs

D for all but finitely many

integers n. Hence f € Id .

Remark. The question whether Krulldim R = 1 (R non-noetherean) implies
Krulldim R[[X]] < © is recently, for more general rings than valuationrings as
in (4.10), answered in the negative by J.T. Arnold (On Krulldimensions in power

series rings ; to appear).
Problem, Although we proved that b(lN = K) contains infinite chains of prime ideals

one can easily see that every non-zero closed prime ideal is maximal. Does the same

hold for K <X>» ?

§5. Application to invariant subspaces.

. . ®
The Banach space E = co(No - K) is given the orthonormal base {eif j=q Wvhere

e; denotes (0,...,0,1,0,...). We consider on E the antishift operator T : E 3 E
defined by T(ei) =e (i > 1) and Te = 0. As shown in [6] , (3.4), the algebra
of all bounded operators on E which commute with T is isomorphic to K < X > ; the .

isomorphism o : K< X > oL (E) is given by

] o) i
n _ n _ n
F(n—ZO a XVe, = ngo a T(e;) = n§=0 a (e, ).

Let Tl'ne E' (n > 0) denote the map given by Wn(ei) =0 if i # n and 1 if
i = n. The composed map Tl'o o p K < X> > E' has obviously the property

) ©
n _ . - .
T e f)(%oanx )(bo’b1"") = ],Z-_-o aibi . Hence T P X where o/ is

the map considered in lemma (L.5).
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In this section we investigate the set of all closed subspaces of E which are

invariant under T.

(5.1) Lemma. Let F C E be a closed subspace which is invariant under T. Then :

(i) For all f€ K<X>, p(f)FCF,

A\l
(i1)  Let ia(F) = {fe K <X > | p(£)F = 0} . Then id(F) is a closed
ideal of K < X »
T P r .
The kernel of the map K < X> ———> E' =>F!, vwhere r denotes the dbvious

<7,

restriction map, is also equal to id(F). Further K < X > /id(F)

(iil) L'_et F1 % F2 denote clased invari@nt subspaces of E. Then
id(F D id(F .

(iv) For any ideal I C K < X > one defines n(I) =:N {ker P(f) | £€ I}.

Then n(I) is a closed invariant subspace of E. Further n(id(F)) = F.

0N
Proof. (i) Let f= ) aX €K< X> andx €FCec (W —>K) =E. Then
v n=0
P(£)(x) = lim Z a_T%(x). Since F is closed and invariant under T, we find
N-»® n=0

p(f)(x) € F. Hence p(f)FC F for all f €EK <X > .

(ii) It is clear that id(F) is a closed ideal of K < X > . Further let
f€ K< X >. Then ™o p(f)(F) = 0 if and only if T, e p(an)(F) = 0 for all
. n .
n 0. But T o /)(X f) = oo (D(f)' Hence ~_ o f’(f)F = 0 if and only
if P (f)F = 0. So id(F) is the kernel of r o T, o p +« Themapr :E' >F'
is surjective since a weak form of Hahn-Banach is available for the Banach spaces
F and E which are of countable type over K. Hence F' & K ¢ X > /id(F)'
(iii)  The map F5) 2 F{ 1is surjective and has a nontrivial kervel. So
using (ii) one finds id(FT) :; id(Ee).

(iv)  Apply (iii) with F1 = F and F2 = n(id(F)).

(5:2) Lemma. Let PE€ K < X> be a polynomial of degrees, normalized by the

condition : all the roots of P have absolute value < 1. As in (L4.5) there exists

3 commutative aiagram
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K<X> K<X>/(P)

& B
co(bl\lO +EK) ————— (K<X> /(P))"

The map W is an isomorphism of (K< X > /(P))' into n(PK < X s ). Further

(a) id(n(PK <« X %)) = PR ¢ X >,

(b) For every closed invariant subspace F of E with dim F = s < o

there exists a polynomial P € K < X> of degree s which has-only roots of absolute
value < 1 such that F = n(PK < X > ).

s=1
Proof. We show first dim n(PK ¢ X > ) = s. Write P = x° +°(5_1X ooty » all

,dil < 1 by assumption and write x : Z x;e; € Co(No > K).

The equation F(P)(x) = 0 then reads :

+... .= r i =
Xipg + ds—1xi+s—1 - ¢>(ox:L 0 for all 1 0,1,2,
. . - . . . L .
So with given x0 se 00y xs_1 there exists a unique solution (xi)i=0 of this set of
equations and moreover lim ‘xil = 0 since all |°(i| < 1, Hence dim n(PK < X'>)=s.

In showing im W= n(PK < X %) it suffices to prove im p cn(PK < X %) since
fv is already known to be isometric and dim(K < X >/P)' = s = dim n(PK< X >).
Take 1 € (K< X 5 /(P))'. Then for all n >0, o (X'P)(k(1)) = p'ea(X"P)(1) =

= [5 o T(X™P)(1) = 0. Hence, since K(X"P) = Trn ° {’(P) for all n » 0, we find

P(P)(h(l)) = 0, This means im R C ker () (P) = n(PK <X > ).
a) id(n(PK < X > )) = QK < X > where Q is. a pdlynomial dividing P.
Applying "n" again and (5.1) part (iv) one finds n(PK < X > ) = n(QK € X > ). Since
dim n(QK < X > ) = degree Q,one obtains P = Q.

b) Let T¥* denote the restriction of T to F. The characteristic polyno-
mial P € K [X] of T* satisfies P(T*) = 0 or P(T) € id(F). Hence for some poly-
nomial Q € K [X] which divides P we have id(F) = QK <'X > . After applying "n" one
obtains F = n(id(F)) = n(QK < X > ). So deg Q = dim F = s and Q = P, Clearly all
the roots of P have absolute value < 1, otherwise P = uP¥ where u is a unit in

K < X > and degree P¥ ¢ s which is impossible.



Corona problem 315

(5.3) Lemma. Let D be a positive divisor over K and such that ||D|\1 < o . Let

D= TTPi denote its canonical decomposition. As in the proof of (4,4) one has a
commutative diagram

T
K<X> ———— K(X>/(P)
i

« B

b
cO(No SK) ————— (Z(K <X > /(Pi))')'.

Let ID denote the closed ideal gf € K< X >|(f) > D} . ThenID is the kernel
). Further the subspaces M((K <X > /(P )‘) =
i

of T and im p= n(Ip

a(PK <X >) (i=1,2,...) are \IDI’;2—orthogonal and their (closed) sum 3 n(P.K<X>)
is equal to im W . Moreover id(im '&) = ID.

Proof. As in the proof of (k4.4) part(iii) one finds :IH(X)I' »lb“;zﬂxh for all
x € J(K<CX D> /(P.)>' . It follows immediately that tne suuspace
1
n(PiK {X> )= p((K<X > /(P.))') are “D“;e -orthogonal and that their closed
sum is equal to im b ’
Clearly ID = ker V =vker o7 = ker ' o o ., Hence f € ID if and only if
o (X7f)(im p) = 0 for all n > 0. Again’ «(X'f) =T o p(f) yields £ € I if

and only if F(f)(im h) = 0 or equivalently f € id(im [ ). So ID = id(im ‘A).

I_. . Using

Also clearly n(I b

D) 2 im p, hence IDC id(n(ID) C id(im = )

(5.1) part (iv) one sees that n(ID) =im .

(5.4) Theorem. Let ﬁéB; denote the set of all positive divisors D which are rational

. + . .
over K and satisfy |D||1 < . The map ¢: 6°3K (the set of all closed invariant
subspaces of CO(NO - X)) given by 9(D) = n(ID) is bijective. Further id(¢(D)) = I

Suppose in addition that K is maximally complete,then ¢ induces a bijection

between the set of principal ideals of K < X > and the set of all closed invariant

Y
subspaces of co(No K).

Proof. In view of (5.3) and (4.3) all wve have to show is that ¢ is surjective. Let F
be a closed invariant subspace of co(No 2 K)and f €K <X >, f#0, f€id(F).
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Let (f) = 'TTPi be the canonical decomposition of the diviser of f, Then
a(fK< X >) = ZxﬁPiK <X >)DF and the set of subspaces {n(PiK <X > )}i is

e qg—orthogonal. -

Let x = Sx, € F with x; € n(P,K <X >) for all i. Then lix || )U(f)u;2max(uxiu)

be the polynomial of degree < deg(P.) satisfying

and lim |Ix.l| = 0. Let Q. .
i . i,n i

A
Q. P1 wee P.oLoo P01 mod(Pi).

Ja)
vee Pi ves Pn)(xj)'

ce Pn“ ¢ @ according to (4.4), we obtain after taking

Then ?(Qi,np1 ce ﬁi ves Pn)(x) = x; + 555 f(Qi,npl
Since sup "Qi nP1 e ﬁi
: ]

the limit of n > ® , x5 € F, So we have shown that F = S F N n(PiK < X >) and

this sum of subspaces is e ;2—orthogonal. Each F N n(PiK <X >) is finite
dimensional and equals n(PzK {X > ) for some P; dividing Pi , according to (5.2).
Let D be the divisor which has the decomposition D = TI-Pi . Then it is clear from
(5.3) that F = n(Ip).

Remarks. (1) This theorem resembles of course the following theorem in the complex
2
(

case: [2] page 66, "every closed subspace S of the Hardy space H°(A), invariant

under multiplication by z, has the form S = FH2, where F is an inner function".
2
(

However, the multiplication by z, defines a shift-operator in H°(A) whereas

our concern has been the anti-shift operator T : ¢ No - K) —>co(No - K).

o(

The non-archimedean case of a shift operator U : co(l\Io - K) ~+co(N0 - K) is
quite simple. Identify cd(No - K) with K %X] by means of the map

. n n
: nd = = el
Y: K SLXE —>co(l\10 K) given by Y(Zanx ) ZanU (eo) (ao.a1,a2,. )

Closed invariant subspaces of co(lNO —K) correspond then 1-1 with ideals of K {X}
As is well known every ideal in K [X} has the form PK {X} where P is a polynomial

which has only roots of absolute value £ 1.

(2) If the valuation of K is discrete then the non-trivial, closed subspaces

of ¢ No - K) which are invariant under the anti-shift operator T have finite

o(
dimension. This follows from (5.4) and the remark that every ideal in K ¢ X > is

principal and generated by a polynomial.
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