LAURENT GRUSON

MARIUS VAN DER PUT
Banach spaces

Mémoires de la S. M. F., tome 39-40 (1974), p. 55-100
<http://www.numdam.org/item?id=MSMF_1974__39-40__55_0>

© Mémoires de 1la S. M. F., 1974, tous droits réservés.

L’acces aux archives de la revue « Mémoires de la S. M. F. » (http://smf.
emath.fr/Publications/Memoires/Presentation.html) implique 1’accord avec les
conditions générales d’utilisation (http:/www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit contenir
la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=MSMF_1974__39-40__55_0
http://smf.emath.fr/Publications/Memoires/Presentation.html
http://smf.emath.fr/Publications/Memoires/Presentation.html
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Table Ronde Anal. non archim. (1972, Paris) 55
Bull. Soc. Math. France,
Mémoire 39-40, 1974, p. 55-100

BANACH SPACES

L. GRUSON and M. van der PUT

Introduction.

Although this paper is meant as a survey on Banach spaces it co.tains some 'new'
results and many new proofs of old results. An example of the latter is (3.6) and
(3.10) where one proves that every closed subspace of a free Banach space is itself
free.

Most of section 7, Differential equations, is new. In this section one cons-
tructs primitive functions for continuous functions and rediscovers a formula of D.
Treiber. Subsequently differential equations are solved. A more detailed study of
primitive functions shows that any function which is the pointwise limit of a se=

quence of continuous functions and whose image is relatively compact has a primitive
fur +ion.
Section 5 makes the well known connection betwenn Banach 'space and modules over

a valuation ring explicit. Some problems and results of earlier sections are phrased
in terms of modules. The first five sections contain standard material enriched

with a set of open problems.

This survey together with A.F. Monna's contribution to the proceedings of this
conference gives a fairly complete summary of the theory of ultrametric Banach

spaces.



56 L. GRUSON - M. VAN DER PUT

§.1. Examples of Banach spaces and notations.

The field K we are working with is supposed to be complete with respect to a
non-trivial, non-archimedian valuation. Its valuation ring J1€K || € 1} is
denoted by V, the maximal ideal of V by m = },/\' €K [ [,‘L] < 1} its residue field
V/m by k. The value group of K will be denoted by |[K*| . For constructionsetc.
we often choose T € K with O < J7|< 1, If the valuation of K is discrete we suppose
that || generates |K* i.e. |K¥| = 2]!\' | L z}.

(1.1) Let I be a set and por I tre R|r> 0} . Then 1% (I,p ,K) = I“(I,P)
will denote the Banach space of all functions f : I =K satisfying sup [f(i)|p(i)<o .
The norm is given by ||fl| = sup|f(i) | B (i). For any i € I, e, stands for the
element of l"(I,P,) given by ei(j) =0if j # 1, ei(i) = 1.

The closed subspe.ce_co(I,,,,K) = co(I, |~) of lw(I, p) is defined by :
f : I =K belongs to cO(I, k) if lim | £(i) | ¢ (i) = 0. It is clear that 1”(1,}&) is
isomorphic to lw(I,y,') ir (1) }4.'(i)_1 €|K¥| for all i. The same holds for
co(I,|~). So we can normalize o such that 0 ¢ inf l,,(i) & sup P,(i)( « . For
normelized p one defines the subspace e(I,p,K) =c(I,w) by : £f: I >K belongs
to e(I, ) if lim £(i) exists. So e (I,)C o(I, p) C 1T, k). If g has the
property p(I) = {1; then we abbreviate 1M(I,H) (resp. c(I, |¢L) and co(I,p.)) by
1%(1) (resp. ¢ (I) and cO(I)).

(1.2) Let E be a Banach space (or just a topological space) and X a topological
space then C(X = E) denotes the set of all continuous functions of X +E. If E
is a Banach space and X is compact then C(X = E) is a Banach space under the norm

el = sup fUeGI| x € x}

For the space C(X = K) we sometines use the abbrevation C(X).

(1.3) Let E and F be Banach spaces then £ (E,F) = ,l : E=F | 1 is K-linear
and continuous} is a Banach space under the norm |1/l = sup { I alx)n HxlT1{ X€EE,
x # o% . The dual o« (E,K) of E is denoted by E'.

(1.4) Let {EY; ¢
are defined as follows :

be a family of Banach spaces. The Banach spaces TrEi and ZEi

= €
TE; E(ei)ie I i)€(I E% sup. llei‘l < mg

S, = {le); ¢ € LB el of
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Both vector spaces are normed by |l (ei)iCI [ = sup lfei" .

(1.5) Let E be a Banach space and F a closed subspace of E. Then the vector space

E/F is again a Banach space under the quotient—-norm given by
it) = inf illeu | e€CE, F(e) = t} , where P denotes the canonical map p: E > E/F.

X . . .
Let E » G be a continuous map between Banach spaces. We will say that & induces the

norm on G if the induced map E/ker(o() 2 G is bijective and isometric.

(1.6) For a Banach space E we denote the sphere {x €E| Ix-al| <o &by B(a,f)).
\

§.2. Injective Banach spaces.

(2.1) Définition. A Banach space E (over K) is called injective if for every
. & . . . ! .
diagram O » A > Bywith X 1sometric and ‘)O bounded, there exists ¢) : B 2 E such
0

E
that Q) = |l 4)0" and po = ¢, -

(2.2) Theorem. The following conditions are equivalent :

(1) E is injective,
(é) Every 4)0 : co((N,y») + E has an extension § : c(N,p) »E mW)I{ = ”d)oll .

(3) E is maximally complete (i.e. every set zBi{ of spheres in E, with the

property Bi n Bj # @ for all i and j, has a non-empty intersection).

Proof. (1) => (2) is clear ; (2)=> (3). Let {Bi‘ be a set of spheres such that
Bi,ﬁ Bj # @ for every i # j. The strong triangle inequality yields that B, <-B, or

B. C B. . Hence we can find a countable subset of spheres B(a ,,0 ) with : a_ =0
J= "1 n’fn o

b

Bla ,p )2 B(anﬂ,,ﬂnﬂ) for all m, £, > Py > [, > ... such that

(\Bi = ﬁB(an. pn).

Define },; : N 3R by pE) = lla, -

50 3 ~ @50 (i > 1) and define

q)o : co(N, p) +E by bd(ei) =a; —a;_, (i 1). There is a map

QO : ¢(ll, u) » E extending ¢v0 such that “4)" = |l ¢O|l = 1. The element
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a=0(1,1,1,...) belongs to every B(a_, F ) since
\ n n

la=a | I 0€0,.0.0,1,1,100 I € 11(0,...0,1,1,..0)f1 =

sup (i) € o
i>n

(3)  (1). Using Zorn's lemma one sees that it suffices to consider the situation
g

A & B, where B = A+Kx for some x € B.
N

E

Every extension ¢ of ¢O is determined by e = ¢(x). The condition ||| = I q)OH is
equivalent to : for all a € A, \@(x—a)] = le-—¢0(a)| < \I¢OI l[x-a ]| , and also to

e 2, B0,(a), Iyl fx=al) = ¥.

For any a,a'( A we have B(@O(a), M)o ix-a]) N B(‘Po(a'),“ 430“ Ix=a'l]) # ¢
since || Lpo(a) - ¢O(a’)\\$ll 1)0" lla—a'| s max(]| @Oll lx-al , |l (f)o\l [[x-a'll). Since E is

supposed to be maximally complete it follows that Y # @ and e and q) can be chosen
such that 4] = 1o, .

(2.3) Corollary., The field K is an injective Banach space if and only if K is

maximally complete in the sense of Krull ([3}).

{2.4) Proposition. Every guotient of an injective Banach space is injective. Every

product of injective Banach spaces is injective.

Proof. Let E be injective and F a quotient of E, Jr : E —F the canonical map.

Consider a sequence of spheres B(a.n, pn) = Bn in F with the property Bn ? Bn+1

for all n. By induction one constructs a sequence %bnf in F such that

= . i M - =TT
B(bn, f’n—1) D B(an, _pn) and ‘n'(bn) a for all n (Induction step & 178 (e)

i - £ . = +
for some ¢ € E, since |zamn_'_1 anl < lon one can suppose |c | Pn—1 Put bn+1 bn c)

Any e € ﬂB(bn, /)n—1) has the property W (e) € N B . The second statement of (2.4)

has analogous proof.

(2.5) Proposition. Let iEn} be a sequence of Banach spaces. The Banach space

TE

oy is injective.
cE, ———
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Proof. Analogous to (2.L4), See [5]

Notation. If E = E for all n, we write 1% (E) for TR » e (B) for ZE_ and c(E) for
the subspace of ™ (E) of all sequences having a limit in E. The map E = 1% (E)

given by e » (e,e,...) induces an isometry AE : Ep 1Y (E)/c

. And we find for
olE)

(E

every E a canonical injective resolution

1% (g)
/cO(E) - /cﬁE) 20

A
0 sp —-E 1¥(x)

(2.6) Theorem. E is injective if and only if the map 'lim' : c(E) » E has an

extension with norm 1 gg.Lw (E) > E.

(4]
Proof, E is injective if and only if AE has a left-inverse P : 1 (E)/c (E) - E of
: 0
norm 1 ; this follows from (2.2), (2.4) and (2.5). The existence of P means the
existence of a map ¢ : 1% (E) 5 E with § = 1, ¢ |c(E) = "lim" .
nown

(2.7) Definition. E is called weakly injective if for every diagram O ﬂ¢ A % B
o
with of isometry, ”¢O“ 4 o , there exists a ¢ : B » E such that ¢ = QO and Jdl< oo

(2.8) Corollary. If E is weakly injective there exists a constant C » 1 and for

every diagram 0 » A % g with o isometry and "0 ll<eo a _map ¢ B + E satisfying
9 &
6]

pox = by ana 01 < cncvoll

Proof. A has a left inverse P with "PH C < w . The map P induces a norm

on E whlch mekes E injective and has the property | ” e clh 1*
(2.9) Definitions. A K-linear isometry E S F is called essential (or F an essential
extension of E) if for all f € F there exists e € E with |[f-ell < /£ . A K-linear

isometry EC F is a maximal completion if F is injective and EG F is essential.

P . . v
(2.10) Proposition. Every Banach space E has a maximal completion (denoted by E)

which is unigue up to (non-canonical) isomorphism.

Proof. Take for ﬁ a maximal essential exten31on of 4 (E) in the B%gach space

lW(E)/ By definiti : #
(E) * y definition AE)' Ec is essentlal and since /c (E)
O o]
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maximally complete also E is maximally complete. The unicity follows easily from
(2.2).

(2.11) In the last proof there was a choice of a maximal essential extension of a

subspace F inside an injective space G. The next lemma clarifies this situation.

Lemma. Let F be a closed subspace of an injective space G and let Fi = (i=1,2)

denote maximal essential extensions of F inside G. Then

(1) F, end F, are injective and there exists a K-linear bijective isometric

o: GG such O|F =id and O’(F.‘) =F2 .

(ii) If F G G is not essential and F is not injective then F has many different

maximal extensions in G.

Proof.(i) If Fi is not injective then there exists a set of spheres zB(an’f’n)f in
G with anC F, for all n and such that n B(an,()n) # @ and N B(an,[)n)n F, = @.

Choose e €0B(an,ﬂ n). Then,as one easily sees,Fi + Ke is an essential extension,

contrary to the assumption that Fi is maximal. Hence Fi is injective. Let H be a

subspace of G which is maximal with respect to the property Nf+hil = max(lif,|hll)
for all £ € F, h € H. (We express this sometimes by H 1 F). Then it is easily seen
that H is injective, H ® F1
map T : F1 > F

H® F, = E. By (2.10) there is a bijective isometric

5 with < |E = id, Then 0 = id H @7t has the required properties.

/

1 1/F and an
element y € G with Ky L F1, ¥y #0,llyh < inf {”x—f“, f e F} . Then F CF + Kz, where

(ii) Let a maximal extension F, of F inside G be given. Choose x € F

z = x+y, is an essential extension contained in a maximal extension F2 . Clearly

F1 # F2 since y € F1 .

(2.12) Remark. Let the complete field L D K be an essential field extension in the
sense of Kaplansky ([3)).

Then'L as K-Banach space is an essential extension of K and by (2.10) isomorphic
to a subspace of %. Hence card(L) ¢ card(i) and the class of all essential field
extensions of K is in fact a set, The lemma of Zorn applied to this set yields the
existence of a maximal complete field L O K which is an essential extension of K.
Again (2.10) yields L is isomorphic to ¥ as a Banach space. Kaplansky has shown that
K might have non isomorphic maximal complete field extensions L1 s L., . As Banach

2

spaces L1 and L2 are isomorphic.
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Examples.

(2.13) cO(I, t) is not injeetive if p (I) contains a sequence 8> 8y > a5 > ...

with a; > 0.

Proof. Let N ¥ J C I be the subset correspbndihg to the given sequence. Since

cO(J,}&‘J) is a direct summand of cO(I,]* ) an application of (2.4) shows that it is
enough to consider the' case co(lN,}&) and p(1) > p(2)»..y limp(n) » 0. If Co('N,H)
were injective then there exists a map ¢ telN,p) » co(lN, p) with Il b =1 eanda

b ] eo, ) = id.

Then x = (X1 ,).2 sees) = 0(1,1,1,..0) € g

fx = (1,.0.51,0,0,0,...)| = ||q)(o,...,o,1,1,1,...)||s
<1(0,.00,0,1,1,1,000)) }&ﬁ(nﬂ). Hence Iln—T l <1 for all n ; this contra-
dicts lim )‘n = 0.

(v, i.«) has the property

(2.14) Let E be a Banach space such that every strictly decreasing sequence in E-

has limit zero. Then E is injective.

(Note that the existence of such E # O implies that the valuation of K is discrete).

Proof. Let iBnt be a sequence of spheres in E such that Bn3 Bn+1 for all n. We

may suppose that all radii /On lie in " E and that lﬂn >4 for all n. Then

lim = 0 and the completeness of E implies (OB_ # @.
(Jn n

(2.16) Let I be an infinite set and p amap : I >R, .. The Banach space CO(N,'L )

is injective if and only if the valuation of K is discrete and every strictly

decreasing sequence in ‘L(I) has limit zero.

Proof. If the valuation of K is dense then co((N,p,) < co(!N, '), where @' can be
chosen such that h'(I). contains a strictly decreasing sequence with positive limit.
Hence the condition is necessary., Also sufficient because |K*| discrete and every
strictly decreasing sequence in h(I) has limit O implies that every strictly

decreasing sequence in !|co(I, K )| has limit zero. Apply now (2.1L).

(2.16) If K is maximally complete then 1% (I, h) is injective for every I and I

Proof. (2.L4)
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(2.17) Suppose that the valuation of K is discrete and p: >R >0 satisfies

l"(” > rt(2) > ... lim p(i) > O. Then 1% (w, l’”) is the maximal completion of
e, (0, 1),
o

Proof. By (2.15) all we have to show is that for any f = (f1,f2,...) € 1% (w, r
there exists e € cO(IN, p) with lf-efl < If)\ . The discreteness of lK*l and the
properties of | imply that the set {n EWN , el = Ifn ||4(n)} is non-empty and
finite. Tet ng be the last integer with ||f|l =,fn “t(no). Then
(6]
e = (f,,...,f‘n 50,0,...) has the required property.
6]

(2.18) An extension of (2.17) is the following :

Suppose that the valuation of K is discrete and consider E = cO(I, p), where [

is normalized by |T| < k(i) &1 for all i. A subset J of I will be called

decreasing if every sequence ,j1,j2,... in J such that

PGy s p G, € P'(j3)§ .o+ 1is finite.

¥y oL \ .
Then E 1s the subspace of 1“o (I»V‘) given by

v . . . .
E = if € 100(1,}«)} for every € > O the set iJ €1 (f(:j)l),&ﬁ is decreasing .

Proof. We note that a finite union of decreasing sets is again decreasing. It

follows that the subspace 1% (I, }«) given in the statement is equal to

F=U ilw(J,V-'J) \ J C I decreasing } . As in (2.17), for any

decreasing set J the inclusion cO(J, p/3)c 1® (J,V)J) is essential. Hence F is an
essential extension of cO(I, }b ). Consider an extension FC F + Ke with e € F. In
order to show that F is injective, we have to show that this extension is not es-
sential. Put d(e,F) = inf {He—f" |f€ F} > 0. Choose a sequence ol >, ... inR
with lim of = d(e,F). For any n 31 the set J_ = {i c1f feld)] g (D)3 ax fis

decreasing and one easily sees that also J = UJn is decreasing. Let £ € F be the
element given by f(i) = 0 if i € J and £(i) if i € J. Then d(e,F) = lle-fl| and
for any f'€ F we have [(e-f)-f'| $ ||e-f|l . Hence FC F + Ke is not essential.

(2.19) Suppose that the valuation of K is discrete. Let n be a positive integer.

For any Banach space E over K there exists a norm || |*on E such that
1/n * m/.
Lol 20 sl e Jrana wepteT=fiml ™ mGZ} U fo}.

Proof. Take ||x[|* = sup S(te T']t ¢ Jix [|} .
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(2.20) Suppose that the valuation of K is discrete. Then any Banach space E over K

is weakly injective and moreover inf [C €R ] AE has a left-inverse of norm €C}=1.

Proof. (2.19) and (2.14),

(2.21) Problems.

(i) Do there exist weakly injective Banach spaces E such that inf{C € R \AE

has a left-inverse of norm Z,C} >1 2

(ii) Let K be a maximally complete field, with dense valuation. Can one give

an explicit description of a maximal completion of ce(N,K) inside 1% (N,K)?

(iii) Suppose ghat K is not maximally complete ; can one describe K explicitly
as a subspace of 1 (N’K)/CO(N,K) 7

§3. Projective Banach spaces.

(3.1) Définitions. A (bounded linear) map ¢ : E > F is called a strict surjection

if for any f € F we have "f|i= min ille" !e € E, ¢(e) = ff. (i.e. the surjective
map ¢ induces the norm on F and for every f € F there exists e € ¢—I(f) with

el = el

A Banach space E is called projective (resp. weakly-projective) if for every
d .
jiagram B = C - 0 with & a strict surjection and “¢o“ { W , there exists a § : E =B

To

E "©

such tant [l = 19 |l (resp. |l < w).

A Banach space E is called free (or is said to have an orthogonal base) if
~ . .
E = cO(I,l».) (isometric) for some I and bt IR >o ¢

Remarks.

(3.2) If the condition " ¢ is a strict surjection" in the definition of projective

is replaced by " X is surjective and induces the norm on F" then the field K is not
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projective.
(3.3) Every free Banach space is projective.

(3.4) Let E be a Banach space. Put I = E/ {0% and define p: I 3 R>‘O by

k(x) = Ixll . Then the map W _ : co(I, p) + E, given by 7TE(f) = Z f(x)x, is

B xel

a strict surjection.

(3.5) Proposition. A Banach space E is projective if and only if E is a direct

summand of a free Banach space.

Proof. EC F is called a direct summand if there exists a projection P : F > E
with lip| = 1.

" 3 " Since E is projective L cO(I, f) > E has a right-inverse F of norm 1.
Hence E is isomorphic to the direct summand f(E) of cO(I, P).

"& " Let E be a direct summand of the free space F ; P: F 3 E a projection of
norm 1 ; BQ; C a strict surjection ; ¢O : E % C a bounded map. Then ¢OP : F »C can
be lifted V¥ : F 3 B with (¥l = | bp I = ¢ and ¢ = V/E : E > B has the

required property.

(3.6) Proposition. Every closed subspace of a projective space is projective.

ol
Proof. Let a diagram B 3 C 3 0,  strict,| ¢OH < ® be given.

1o
E 0
We complete this diagram to a commutative one in the following way :
B ol
O>A » B>C=2>0
11 1)’ § 0
g X
02>A » ﬁ > Dgé 0 E
e Ly
" \\\'\5 i£
¥
“\F

v
A =ker x ; B is a maximal completion of B with canonical map

£ y

Y: B> % 38 = YopB ;D= /s with canonical projection X : B 2D ;
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the map X o Y : B+ D has kernel A and induces an isometry §:C~»>D.
By (2.4), D is injective. Let DOC D be a maximal essential extension of 5¢0(E). :

Then by is maximally complete, (since D is maximally complete) and there exists a

map Y, : F 3Dy with HVO I = “¢0" and gq)o = ‘I’Oi.
We claim that for any d € D, there exists B € ]‘é with x(l‘g) = d, end l{‘;u = lld0|| .
Indeed, there exists ¢ € C with I3 (c)—d0 I|<||do I and b € B, with

X(b) =c, [bll = [lcl = lldoﬂ . Hence |[XY(b) - dol(< lldoll and there exists

b' € { witn o' < lla and Y (b') = 4y - AY(p).

oll
Now {» = b+b' has the required properties.

By (3.5) F may be supposed to be free, and the existeénce of amap V: F > £ witn
“ ‘V I = I ‘Vo" , XY = ‘yo now follows.

The map i maps E in .fact into Y (B). Indeed, for any e € E and b € B with
A(b) = by(e) we nave A Vile) = ¥ ile) = 8¢ (e) = Sa(v) = XY (v).

So X,(¥ i(e)-Y(v)) =0 anda VY i(e) - Y(b) € ker X = A C (B).

8o there exists amap ¢ : E 9 Bwith [0f =I¥il =1l ana Y¢ = Yi. Also

oA = 4)0 and the proof is finished.

(3.7) Before giving the proof that every projective Banach space is in fact free, we

turn to Banach spaces of countable type.

Definition. A Banachspace E is of countable type if it has a countable subset which

generates a dense linear subspace of E.

Remarks.

The definition above is the analogous of'separable Banach space over R or ¢".
The condition E is separable would be too restrictive since the base field K need
.
not be separable. Further we note that subspaces and quotient spaces of an E of

countable type are also of countable type.
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Definition. Let E be a Banach space over K, A a subset of E and  €ER, 0 < X & 1.
The set A is called & —orthogomal if for every finite (or convergent) linear
combination % A, 8 the inequality IIZ Ra. a || 3 & max ]?\,a’ lall nolds.

aC A

A is said to be an & -orthogonal base of E if moreover every x € E can be written
as a convergent sum x = Zla a.

Remark.

E has an  -orthogonal base if and only if there exists a bijective linear
mep  : E ->co(I, p) (For some I andywith | ol < 1, |l 4)_1" < o
E has an orthogonal base (i.e. an 1-orthogonal base) if and only if E is free.

. In particular,

(3.8) Theorem. (Existence of bases)

1) If E is a Banach space of countable type then E has for every o, 0 £<X<1,

an o 4orthogonal base.

" 2) If E is a Banach space of countable type and K is maximally complete then E

has an orthogonal base.

3) I_E is a subspace of c, (N, k) then E has an orthogonal base.

4) If every strictly decreasing sequence in |El has limit zero then E has an

orthogonal base.

4) If the valuation of K is discrete and E isa Banachspace over K then for every
oy, 0« X £ 1, E has an X —orthogonal base.

Proof. 1) Assume for notational convenience that dim E = ¥ . Choose a sequence {Eng

of subspace of E such that E CE UTEn = E, dim E_ = n. Choose further a
0

) n+1’
sequence 1o(ng CR, 0X O(n <1, with T Ky > X
n=1

Take an element Yu € En\ En_1 and z, € En—1 with

vz lls o

n1 inf 1 || yn-—zll l z € En_d . Put x =y-z .WVe claim that {xnf is

an o -orthogonal base of E.

(a) x, has the property I?txn+y“ > o ma.x(l’AXn I, hyll) for y € E _q-

Proof of (a). We may suppose A = - 1, If | x -y ¢ & o max( Il x I sIlyll) then
vzl Qo g Hy 2 W<ing iy -2 [z¢€ En_1§ . This is a contradiction.
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n n
(b) For every n > 1, “ 2 lixi“ > 17 oy max(" lixiﬂ).
i=1 i=1

Proof of (b). The formula is correct for n = 1. If n > 1 then by

n n-1
(a) we have || 12_:_1 lixi Il > O(n max (i 'Lnxnll S |l E A%, || ) ands by induction hypo-

n
thesis again,>» TT &, max(f A 2% ).
i=1

Hence we did prove that ixni is & -orthogenal. It is an A -orthogonal base

of the closed subspace F generated by the set {xn} . But F contains every En and

must be equal to E.
3
2) and 3). One has to show that the construction in part 1) can be carried out

with o = 1 for all n. For this it suffices to show that for subspaces

F1 C F2 C E with dim F_, = dim F]+1 < ® there exists a projectionp : F, » F

2 2 1

with norm 1.

¥

Case 2) We prove a more general result :'"Every finite-dimensional F over a maxi-

mally complete K is free (and hence injective by 2.4))"

If dim F = 1 this is clear. If dim F > 1, F has a subspace F1 with
0 < dim F1 ¢ dim F. By induction F‘1 is free-and hence by (2.4) a direct summand of

F. Write F = F1@ F2 . Again by induction F2 is free and so F is free.

Case 3) Suppose F1 C cm cO(N, ), dim F2 = dim F1+1< o,

Take x €-F1, x # O and let n, € IN be such that h(no)l xnol = | x|.
We may assume that xno = 1, The map A : CO(N, w) > co(l\I,y,) given by A(ei) =e;
if i # n, and A(en ) = x is bijective and isometric. So after applying A we may
(6]
. A~ ~ ~
assume enoe F1. Then Fi = Keno ® ?‘i(l—1,2), F1 [ F2 where

ﬁ‘li = Fi N Ey € co(d\l, IA,) | v, = O}. By induction on the dimension there exists a

projection p : F, > F_ with |lp| = 1 given by ple_ ) = e .
2 1 n, ny

4) Take a maximal orthogonal subset A of E and let F C E be the closed'subspace
spanned by it. Then F is free and F is injective according to (2.13). There exists
a projection p : E > F with “p" =1, If E # F then (1—p)E # 0 and for any

b# 0, b€ (1-p)(E) the set tbi U A is also orthogonal. This contradicts the

maximality of A.
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5) For every &, 0 < o& & 1, E has a norm || Il* with o)l I < i W< o
such that (E, | |%) is free. (Apply (2.17) and (2.13)).
Remark

The property familiar for complex Hilbert-spaces : "Every maximal orthogonal
subset is an orthogonal base" is in general not true for free Banach spaces over K
as will be shown in the next proposition. Criteria for maximal orthogonal subsets

to be an orthogonal base are provided in

(3.9) Proposition. Let E be a Banach space over K. The following conditions are

equivalent. ¢

.(1) Every maximal orthogonal subset of E is an orthogonal base

(2) E satisfies one of the following two conditions

a) dim E < % and E has an orthogonal base.

b) every strictly decreasing sequence in ||E| has limit zero.

Proof. (2) = (7) Case a). Let F, be the linear subspace of E = co(I,lA )(card I< /vo)
spanned by a maximal orthogonal subset A of E. If F1 # E then there there exists

F2 with F, C;E F2 C E, dim F2 = dim F1+1. According to case 3) of (3.8) a projection

p: F, > F, with norm 1 exists. For any b # 0, b € (1-p)F, the set A U {bg is

orthogonal. Contradiction.

Case b). This is in fact proved in part 4) of (3.8).

(1) 3 (2). E ch(I,yV) for some I and p . If E does not satisfy (2) then I is
infinite and we can choose { such that the set (I) contains a strictly decrea-
sing sequence with positive limit.
So it suffices to give a maximal orthogonal subset ofbco(N, }«,), where
(1) > \~(2) > «.+ and lim |~(i) > 0, which is not an orthogonal base. Put

£,= e te L, (n >1).

. - H ( i . . :
Since Ifn enll ﬂfn [ [ e, | for all n, the set an( is a maximal orthogonal

subset of co(l\l, P.). It is not an orthogonal base since e, cannot be expanded as a

1
convergent sum “t knfn .
n=1

»
Indeed e, = n; A £ with lim 2 R (n) = 0 would imply
o
- + 2 . = (_\B s s . = 0.
e, A1e1 Zz' (’ln+ n_1)en Hence ln (-1)" contradicting 1lim 'ln f(n) =0
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(3.10) Theorem, Every projective Banach space is free.

Proof. Let E be a projective Banach space. By (3.5) E can be represented by a
direct summand of some cO(I, l‘). Choose a projection p : cO(I, K ) » E with norm 1.
A subset J of I is called stable if the subspace co(J, p/J) of co(I, }A.) is invariant
under p. Consider the collection X of all pairs (J,B) where J is a stable subset

of T and B is an orthogonal base of E(J) = E /) cO(J,[k/J) = p(co(J,}A/J)). The

set X is ordered by (J,B) < (J',B') if J € J' and B <& B'. We will show that this
order is inductive ; indeed, let {(Ji,Bi)I be a totally ordered subset of X.

Then J* = UJi , is again stable and it suffices to prove that B* = UBi is an or-
thogonal base of E(T™)
E(J¥) generated by B¥, clearly FDE(Ji) for all i, Let x € E(J*) and & » O.-
There is y € co(Ji,rt/Ji) for some i such that lx=yll € & . Then also

ix-p(y)ll = llp(x—y)llg& and p(y) € E(Ji) C F, So F = E(J¥) and B* is an ortho-
gonal base of E(J*).

. Clearly BY is orthogonal. Let F be the closed subspace of

Zorn's lemms asserts the existence of a maximal element (J,B) € X. If J # I, choose
ie I\J. The smallest stable set J' containing %1% is at most countable. Then
also J¥=J (U J' is stable. The natural projection T : cO(J*,ft/J*) > co(J,}a/J)
induces a projection p o w , with the norm 1, of E(J*) onto E(J). Hence

E(J*) = E(J) @ F, where F is isomorphic to a subspace of cO(J", f/3),d" = J*\J.

By (3.8) part 3) it follows that F has an orthogonal base B' and that B¥ = B U B'
is an orthogonal base of E(J*’). Contradiction with the maximality of (J,B).

(3.11) Theorem. (Change of base). Let B be a maximal orthogonal subset of cO(I,]n).
There exists a map f : B > cO(I, p) such that I'o(b)ﬂ < bl for all b and

ib+f)(b) ' b€ Bf is an orthogonal base of cO(I,}Af).

Proof. A subset J of I is called stable if B} CO(J’}"/J) is a maximal orthogonal
subset of cO(J,/J). Consider the set X of all pairs (J,p‘) with J stable and

pi B0 co(d,p/T) #cq(, p/3) such that forp )| v €c (3, p/0)} is en
orthogonal base.of co(J,y‘/J). By Zorn's lemma there is a maximal pair (J',p) (in
the obvious ordering of X). Suppose J' # I.
Since B is maximal every e; can be written as e; = Z libb + Ry with 'Ri I < uei I

It follows that every i € I is contained in a stable countable subset of I. By the
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same trick, there exists a stable J*with J'c J*C I and J*\ J' is at most
countable.
But B¥ =B N co(J*,P/J*) and B' = B/ co(J',i&/J ). It suffices to find a map

" .
/f: B*\ B »co(J*,\A,/J*) such that the image of {b+f (b)|b € B¥\B'} under the
canonical projection Tr.: co(J*,r«/J* ) ->cO(J*\J',}.¢/J*\J') is an orthogonal

base of the latter. So we are reduced to the countable case of (3,11) : I = W.

Proof : Since B is a maximal orthogonal set in co(N, ,‘,) every x # O can be written
as x = _A(x,b)b + R(x) where JA(x,b)bl|l is either x| or O and IRGO < x|l -
With this notation we proceed as follows : e =zl(e1,b)b + R(e,l); number the set
of b's such that A(x,b) # O as b1 seves bn and change them into

x - =1 . -
b} = b, +1le;,b,) Rle, |+ Write B, B\ib1,...,bn1}

Then e, € KbT +..0t Kb:; = E,. One easily concludes form (3.8) that there exists

* |
) b, =b, fori=2,...,n

a projection P, with noz1~m 1 of cO(N, ) onto E, .
Now if x = é_ - p.(e.) is non-zero then it equals )___ A(x,b)b + R(x).
2 12 bER

1
Number tb € B, ll(x,b) # 0} as b se-es b 3 change them into

n1+1
)-'1 R(x) and b; = bi for i = n +2,...,n

x -
=0t A(xdy 1

+
n, 1 n,
Then e2€ K‘b"1r +.. .+K'bn* . With induction one easily completes this proof.

2

. .
1 1 2

Definitions. An orthogonal set (resp. -base) is called an orthonormal set (resp.
-base) if all its elements have norm 1. A subring R (containing 1) of
V= ile K| (2] ¢ 1} is called discrete if sup {|r( lr€R, |r| < 1§ < 1.

B.12) Theorem. Let B be & maximal orthonormal subset of c (I).

Put b =Z lb 18 for every b € B. If there exists for every countable subset
b

B' C B a discrete ring R such that R D3A_. .|b € B'{ then B is an orthonormal
b,i ReR B oS BL OFLPonoTme.

base of co(I).

Proof. The method of (3.10) and (3.11) yields that it suffices to show (3.12) in
the case I = N. We will use the following notations : F = the closed subspace of

E =.cO(IN) generated by B ; m is the maximal ideal of V; k = v/m in the residue

field of V. Ro is a discrete ring containing all the coefficients

15 ;3 R =5 Ro with 8 = ia [ Rol 'a.l = 1_§ is also discrete ;W€ V satisfies
t]
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15 |T| > sup ill‘l [r €R, |[r| < 1}. The image of R in V/.“,V; is a field I

which can be identified with a subfield of k by means of the map V4rV —>V/m' =k,

-module .

. v
Consider the [D\'V

x€E| x| € 1]
" /(x el Nxh<mp =09 the

< 1
k-vector space M, = {x €E| Uxll £ 1

/txe I Uxn < 1}

The image of elements t in M1 or V["V will be denoted by t and images in M2 or
v =

/m by t.
v -—
/'H' v

all b and i. And M2 is a vector space over k with base {;ii . The maximality of B

with 2. ., € 1 for

M, is a free b,iei b,i

1 -module with base: iglg and b =>:—i

implies that iﬁ | b€ B} is also a base. Hence there are Fip© 1 with
- £

z P'i,bb =8 for all i. Choose Fi,be R with foi,b = K . Then

i,b
. So in E one has || e, -42 Py bbl\é ITT‘ for all i and that
=l

1

easily implies that F = E, It follows that B is an orthonormal base.

e, = 'ai ,bb holds in M

(3.13) Problem, Can (3.12) be extended to the case co(I,rL) where p (1) SC[K*l ?

Examples, corollaries and problems.

(3.14) For every field K there are non-free.Banach spaces:.and thére are non-injec-

tive Banach-spaces.

et

(3.15) The following conditions are equivalent :

.
4

(a) The valuation of K is discrete. . »

(b) Every Banach space over K is weakly injective.

(c) Every Banach space over K is weakly projective.

Proof. Of course (b) and (c) are equivalent ; (a) == (c) is proved in (2.17). Now
(b) == (a). First of all weakly injective and injective are the same for the
Banach space K. So K is maximally complete. Consider co(N) = E. For some norm || %

on E(&guivalent with the usual norm),E is injective. By (3.8) (E, | “,“)ZCO(N, w)
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for some W . By (2.15) K is discrete.

(3.16) Let 'O'p denote the completion of the algebraic closure of QP , the field
of p-adic integers. Then .O.p is not maximally complete.

Proof. () is a Banach space of countable type over QP, hence by (3.8) is isomor-

P
phic to co([N, lp,QP) and by (2.15) not maximally complete.

v
(3.17) Description of ﬂp :

Let K denote the complete subfield of ‘ﬂp which has the properties :
IK*\ = i\p\ nine€ z} and k=algebraic closure of IFP. Let 0’n denote a sequence

. . s n+1 _ _ e rerrey
of elements in ()_ satisfying 1)‘11+1 = vn and 01 p. Then ﬂp lr{K(l}n) and the

set iv(d) ‘o( € Tk is an orthogonal base of .O.p over K where

(o) n!

T = {OL€Q|0\<0(<1§; #'° = ¢ with n such that nl X € W.

Following (2.18) {YLP consists of all formal expressions f = Z aql?(o() satis-
fying.

(i) a €K 3 suplad\ < o0

(ii) for every & > O the ‘set {o( €T ’ao(]> e,} is decreasing.

v
This describes J()_ as a Banach space. Now the multiplication on
1“1 : for f=z aoLV’ (@) . g=Zb "\?’(/5) we define'fg'iz ( Z agb, +
P f Y o+p=Y I
()

. Then condition (ii) on f and g implies that the sums

bp) V
po(+ﬁz;—'(+1 P p

converge. Further, this multinlication clearly extends the multiplication on _Qp.

Showing that '({p is in fact a field presents no difficulties.

v
(3.18) ‘ﬂp is not of countable type over ﬂp.

v
Proof. Indeed, [lp is not of countable type over K (or QP) according to (3.8) and
(2.15). Since .ﬂp is a Banach space of countable - type over Qp , the assertion
follows, ‘



Banach spaces . 73

(3.19) Suppose that E is not injective and /E is of countable type, then

a) K is maximally complete.

b) If K is not discrete then dim /E< o .

v

(3.20) Proof. Since E/
v

E/E -+ K, 1 # 0. Hence K is (weakly) injective and é/E is isomorphic to co(I,h,K)
with card T & N . By (2.15) the set I is finite if K is not discrete.

is of countable type it has a continuous linear map 1 :

E

. .. . v
(3.20) Suppose that E is an injective Banach space over K and let K be a valued

field which is a maximal completion of K. Then E has a structure of Banach space

over é compatible with itg structure as K-Banach space.

Proof. Let Eo be the closed subspace of E generated by a maximal orthogonal subset.
Then E_ = cO(I,P,K). The %—space E,

AN . s
= co(I’P’K) 1s an essential extension of Eo'
of the k—Banach space E

The maximal completion E
of E .
o

A is again a essential extension

1
So E, and E are both maximal completions of E° , hence K-isomorphic by (2.10).

The isomorphism with the K-Banach space E,. induces a K-Banach space structure on E.

2

(3.21) Proposition. Let X be a compact set. Then C(X - K) has an orthonormal base

consisting of characteristic functions.

Proof. Let P denote a discrete complete subfield of K. By (3.8) part 4 and (3.9) it
follows that C(X - P) has an orthonormal base consisting of characteristic functions
(of necessarily open and closed subsets of X). One easily checks that it remains

an orthonormal base of C(X - K).

(3.22) Problems.
(i) Suppose that E has an o« ~orthogonal base for some X < 1. Does it

follow that E has a (3 -orthogonal base for every B <1 ?

(ii) Let A (i=1,2) be subsets of E and 0 < “.1 <« > € 1 such that A

is maximal cXi-orthogonal. Is card A1 = card A2 ?

(iii) Let the valuation of K be dense and E a Banach space on K. Does E have

an equivalent norm 'I Il*for which ﬂE]]* = IK, ? As a testcase one could try
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E =1°(,K).
(iv) Suppose that E has the property : every e € E lies in an injective
subspace of E. Does E have the structure of a ¥-Banach space ? If E itself is in-

jective the answer is "yes" to (3.20).

(v) Let E be a Banach space over K. Is the center of o (E,E) equal to KidE ?

§.4. Duality.
In this section we study the duals of Banach spaces E and the canonical

map § = ¢E : E —> E". A Banach space E is called reflexive if QE is bijective and

isometric.

(4.1) Proposition. Suppose that K is maximally complete, then for any E, ¢E is

isometric. Further QE is bijective if and only if dim E < o0 .

] B
Proof. If the sequence 0 +E, —E, =By -0 (i.e. o isometric I BI = 1 and A
induces the norm on E3) then by (2.2) and (2.3) the induced sequence

0 - Eé ->E) >E} >0 is also exact. So ¢E is isometric for all E. Further if E

1 2

is reflexive then also E, is reflexive since we have a commutative diagram, with

1
exact rows :

> E3 ——20

0 %—E1 E2
[ b 2 b5
5 M 5 @t Nl
0 E1 E2 E3 0

Since ¢2 is bijective and ¢3 is injective it follows that ¢1 is surjective and

hence E1 is reflexive.

Suppose that there exists a reflexive Banach space E with dim E = o .,
According to (3.8) E has a closed subspace isomorphic to cO(N,P). Hence co(m,k) =F

would be reflexive. But F' = 1% (N,}v) and there exists a bounded K-linear

® . B
b, #0, 0 : 1 (N’PQ/cO(N,|~) - K, contradicting the reflexivity of F.
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In the sequel of this section we suppose that K is not maximally complete.

(k.2) Propesition. If E is a Banach space over K such that every e € E lies in

an injective subspace of E (in particular if E itself is injective) then E' = O.

Proof. If 1 : E - K with 1 # O exists then for some injective F C E we have

(F) = K. So K is weakly injective and hence injective, contrary to our assumption.

(4.3) Theorem. co(N) is reflexive.

)
Proof. l (W) is the dual of c ((N) Let a bounded linear p: 1 (N) - K be given.
Since (1 (IN)/ (\N))' = 0 by (h.2) and (2.5) it -follows that P is determined by

i((e.) ’ ié€ IN}. It suffices to show lim f(ei) = 0 because then

pe 1m(c (N) - <, (N)"). Suppose the contrary, them there is a bounded linear
Pl ®(2) - 1(6) such that Fple;) =1 for all i € Z. Let T : 17(2) — 1™(2) denote
the translation over 1, then £k =fKT on 1 (7) since this holds on c (7).

Consider the element f€& 1°(Z) given by £,=0if i< 0, £, =1ifio0.

Then e = f - TS and (’6"(%) = p[,v(f) - pp’t(f) =AO. This contradicts
Prle,) =

(4.4) Corollary. Let I be a set with non-measurable cardinal number. Then cO(I,ly)

is reflexive.

Proof. The map ¢ : ,k,) - co (1, lw " is clearly 1sometr1c. The method of (4.3)
can be applied in thls case 1f one shows (T, p) /c I,p))" = 0.For this (and

" further information on reflexivity) we refer to |,6J

(4.5) Example. Consider on N the Fréchet filter 310 = {A Cw ['IN\A is finitez .
For any filter 3‘/32 we consider the subspace E(¥) of 1%(N) consisting of all
x € P(N) with li&m x = 0, For notational purposes we allow a filter to contain the

empty set. The filter containing ¢ will be called g

Or equivalently E(‘§) =y il‘”(A) | N\AE€ éf It. follows from (4.3) that
Ef) = B(§*) where $7 is the filter
A -
zAC N|AUBE 5‘0 for all B € &‘j One checks that §+ = X+++, hence E(§)' is



76 L. GRUSON - M. VAN DER PUT

: [ ++ .
reflexive for all f . In general & # { e.g. let f be a free ultrafilter on N

then j:." = §o and §’++ = JT'.

(4.6) Problems.

(1) Is the dual E' of any Banach space E (with card E non-measurable)
reflexive ¢
(ii) Suppose that (bE : E=E" is bijective. Does it follow that ¢E is

isometric ?

A | — v
(1ii) Suppose that E' = 0 and let 1 € & (E,K), 1 # 0. Is'1(E) = K ?
In particular let E be a closed subspace of K, with E # O and E' = 0. Does it
follow that E = K ?

v
iv) A weaker version of (iii) is the question : Does K have non-trivial
topological direct summands ?

§.5. Tensor products.

Let E and F be Banach spaces over K. On E ® F we introduce the semi-norm (I ||

s
given by llall = inf {max Je, || If.ll | a= J_ e ®f, i LPut T=(E® F, Il |).
igigs | T i o i

(5.1) Lemma. T has the following universal property :

For every Banach space G over K and every bounded bilinear map t : EXF -G

the corresponding linear map t': E ® F -G has the property Ilt|| =t .

Proof. First we note that Jt| is defined to be the supremum of
{“ell Uen TV tle,t)l e €E, £ E Fl . Let a =)_ e;,®f, EEQF.

Then lt'(a)ll = ||Zt(ei,fi)l|$m?x l[t(ei;fi)l[ < I|t||m?x|| eill "fill .

Consequently lt'(a)l€lt|l llaf. and so It'li € It} . On the other hand

ftle , £) = Ht'le @ £)1 <Nl lleENHt d Hell E)i. So fth < el

(5.2) Lemma.

1) Take o €R, 0C X & 1. If 1ei| 1414 4s}c E is & —orthogonal then

for all f1”"’fs €F, "1; e, ® fi">’ o max( lei\l \lfi“)'

2) The semi-norm on E @ F is a norm and satisfies e @ £l = lell el .
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(3) For any subspace E1 of E and F, of F the map (E1 ® F1,ll’ﬂ)_-a(E®F,|'[ i) is

isometric.

(4) If every finite dimensional subspace of E has an orthogonal base then

every a € EQ F can be written as a = 3_ e; @ f, vhere fal = max(} eiII "fi I

Proof.(1) Let G be a spherically complete field containing K. Define

t, : Ke, +...+ Ke =G by t,(e.) =1and t,(e,) =0 if j #i.
1 1 < 144 1483

Define t, + Kf; =G by tz(fi) = 1 (we suppose here, as we may, that £, # 0).
Extend both mappings to the whole of E,resp. Fywith values in G and without in-

creasing their norms.

Consider t : Ex F =G, t(e,f) = t1(e)t2(f) and let t' : E® F = G be the cor—

responding K-linear map. Then t'(a) = 1 and

=1 =1 =1
] = = \ ' " N . > . ol o
hth ) Bt h e lis el e So lally o | e;ll "flll
) a
Alternative proof. (after T.A. Springer). Let x = )_ e; ® fi and let
b i=1
x= ) e!®f! be another representation of x. We have to show
=1 J
i > . 1IN
max || eJu llfJ I > & max (] elll Ufl"

Teke 5 € R, 0 < <1, and let g1 0005 B be an W -orthogonal base of the

JVector space Kf; +oo0t Kf.l'). (For every /{ » 0 < /5<1, such a base exists!).

c
U= oy . 3
Then f‘:.| k:=1 legk with
' = | t® £ = . !
||fjll>//3m;x(|ljklllgkli). Further x {] ej‘X)fJ Zk (Ej.le ej)® g -

Since the {gI se e ,gcg are linearly independent we have

a
! = = £
Zj ljk eJ. i§=1 y'kiei and fi §k rki g » for some y’ki £ K.

b
Now mgxx Ii ej i fj = p r;ai(c I ejll ] Ajk‘ il gl 7 fp mix“ /_J ljk ej o gkll
k]

50(/3 max ‘h{i \ "ei" “gkll YdSmax ’leill Ilfill.
1, 1
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Since /'o € R, 0 < /A < 1, was arbitrary, it follows that

" 1 1 B n
maxl| e} pll fj II's x max || eill I fi“ .

(2) Take a EEQ® F, a # 0. Write a =£ei & fi where §e1,...,es¥ is

linearly independent over K, Then for some ¥ ,0 < X < 1, {e1,...,es} is
X —orthogonal. According to (1), ||x| # 0. Hence | | is a norm. The equality

llew £ll = le l I £ follows directly from (1).

(3) The norm on E1® F, will be denoted by | ||1. Clearly llx1l| >lxl| for all
x in E1® F,‘. On the other hand : for x € E1® F for x ¢ 13191‘5'.| and AER, O0<¢ <1,
there are &) aeees € in E and f1 seecy fs in F such that €, srees € is A&=-ortho-
gonal and x = 2_ e; ® fi.
Hence (1) yields [lx Ny x max( | eill I fi” )y x| x1||. Since X €ER, 0 < X < 1,
was arbitrary we may conclude | x| 1'\\' hxi .
s

(4) Take x € E® F. Then x = Z ei@ fi. Choose an orthogonal base
i=1

{ei} of Ke1 +o00+ Kes. Then x can also be expressed as J_ e:{ ® fi (1',’:!L € F).

According to (1) we have [[x)| = max || elll It £

Definition. The completion of E ® F with respect to the norm on the tensor product
P
is denoted by E® F.

(5.3) Proposition. @F is an exact functor for every Banach space F.

3
o (
Proof. Let 0 - E1 - }E:2 - E3 - 0 be an exact sequence of Banach spaces (i.e the
sequence is exact as a sequence of vector spaces over K, X is isometric,n,/;]!= 1

and /{ induces the norm on E3). We have to show the derived sequence

Ay 1 A \J
0 —)E1 ® }“"2(---*}3'.2 OF é—*EB &F =0 is exact. The most difficult part, "x', is

isometric", follows firectly from (5.2) part (3). The rest is left to the rearder.

Remarks and examples.

(5.4) The tensorproduct-norm as defined above corresponds with the "classical"
T -tensorproduct topology. The classical § -topology on E ® F is given by the

(semi~) norm
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fzl, = sup! | 1® m(z)| Il Ty nil Tlo#1e E', 0#m€ F'§ where

z€ E @ F, Of course this is not very meaningful if E' = F' = O, However we will

show :

If E-E" and F - F" are isometric then |l ”F. = i \ln.

Proof. (i) For finite dimensional E and F this follows from the existence of an
X -orthogonal base for every o ,0 < & < 1,

(ii) 1f E1 is a finite-dimensional subspace of E and Va >1 then

there exists a projection p : E 2 E, with lipll <« [

Indeed; since E = E" is isometric we have E1 C E C.lm(I) for some index set I.
So it suffices to make a projection on p : 1w(I) ->E1
such a p exists and easy induction proves the general case.

with Hp“{f. For dim E1 =1

(iii) For finite-dimensional E C E and F‘1C F the

maLp(E1 ® F],Il "i )= (E@F, 1l 1l,) is isometric.
(=

This follows frem (ii) since l1 € E; » m € F; with I|l1|| < 1, | n, | < 1

can be extended to 1 €E', m € E' with 1) < 1 and Imi<1 .
(iv) The assertion now follows since also (E‘l ® Fj,“ "rr) -+ (E@® F, Il “Tl) is

isometric.

Corollary. For locally convex spaces E and F over a maximally complete field the

&€ —topology and r —topology on E @ F coincide. Every locally convex space over

a maximally complete fields is nuclear.

(5.5) For compact sets X,Y and complete locally convex E over K we have
. ~ A "~
C(X=2E) = C(X=K)® Eand C(X X Y=K) = C(X>K) & C(Y »K).
And for sets I and J we have cO(I) 3 co(J) < co(I x J).
(5.6) Problem.
Does there exist another complete tensor product, say &5 , of Banach spaces

which has the property 1¥(1) & 1¥(3) 217 (1 x J) 2

(5.7) Related with tensor products is the theory of nuclear maps and the Fredholm -
theory. We will only sketch this and refer to [1) for more details.
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Let E be a locally convex space over K and A C E a V-submodule.
(Vv = {l € K| Ials 1} ). Then A is called precompact if there exists for every
open V-module B of E a finite V-submodule of E/B which contains A/B N A.

Let E and F be Banach spaces, then the canonical map .
A
E'® F~ Z(E,F) = {1: E—-F | 1is K-linear and continuous} is isometric as one
easily deduces from (5.2) and (5.3). The image € (E,f) 1s called the space of

nuclear maps.
For any t © & (E,F) the following conditions are equivalent :
(i) t ¢ ‘e (E,F)
(ii) t is the uniform limit of eleménts in ¥ (E,F) of finite rank.

(ii1)  t(ix CE\ YIRS 1}) is a precompact subset of F,

Proof. See [1] ; We will call elements of € (E,F) completely continuous maps.

(5.8) The notion of a precdmpact set seems to be an useful one. For Banach

spaces E we will show the connection with ordinary compactness :

Let E be a Banach space and A a V-submodule of E. Then A is precompact if
and only if there exists a compact set T C E such that A C conv(T) = the closed

convex hull.

Proof. "&" is trivial "s". For every n > 1 there exists a finite set say

( (n) (n) 1
seen b such that A C Vb,™ +...+ VbSn +{xe Elnxu(ag .

Hence A lies in the closed subspace of countable type generated by

%bgn)(n >1 53 1¢<1i¢ sn§ . So we may suppose that E = cO(N). We choose a sequence
oqsXp ees in K such that, in case the valuation is dense 0 < lo‘il < 1 and

i [-’)li [>|T[>0 for some W € K and, in case the valuation is discrete we take

®; =1 for all i. Choose a, € A with Ia, n>,lo(1] sup |Al| and let

a, = I &, ;e with}iaT\|= |a Then «

A CVa_  + A where
1 11 1 1

RIE 1

=
]
=
>
3
™
[e]
[}
=2
®
]
®
-
o
-
—~
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We proceed in the same way with Aqs then o, A1 - Va2

' + A2 where
A_=ADN %x cec )| x= > x.e.! and a, € A, . By induction one finds a
[¢) i= 171 2 1

2
sequence ja.} C A which is orthogonal by construction. Since Va. C A is also
q 1 i

precompact it follows that lim \!aiﬂ = 0, lim sup HAiU = 0 and

AC conv(in;1ai g U {Oj).

Problem. Let E be a locally éonvex space and A precompact subset. Does there exist
a compact set T with A C conv(T) ? (For locally convex spaces with a countable base

for the neighbourhoods of O the proof given above works).

Remark. Suppose that VC K is compact and let A be a V-submodule of a complete

locally convex space, Then A is precompact if and only if X is compact.

(5.9) Another property of precompact sets is given in [1] :

Suppose that K is maximally complete and let A be a V-submodule of a separated

locally convex space. Then A is precompact if and only if A is bounded and linearly

compact in its induced topology. The module A is called linearly compact if every

filter 3; generated by translates of open submodules of A has the property
f\jf# @. This property is also called c-tompact by some authors.

(5.10) A curious result of J. Hily is the following :

Let K be a maximally complete field with dense valuation. Then any K-linear

bounded ¢ : 1%(1) > c (N) is completely continuous.

Proof. (See [2] section 3 for more general results). As in the proof of (5.8)

one can show that A = H)(x) | x €1%1), Ixl £ 1} has the property :.

There is an orthogonal sequence a, s 8 in A with

5 9

TAC {inai |1iev, lim X, = o} C A.

If 1im naill = 0 then § is completely continuous. If for some & > O the set
%i €N | uaill >, gi is infinite then one can find a map E cO(N) —écOYN)

such that el (1) —Aco(m) is surjective.

But this would imply that cO(N) is weakly injective which is false according
to (3.8) part2) and (2.15).
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§.6. Categorical aspects of Banach spaces.

(6.1) There are two natural categories of Banach spaces over K namely

(i) M =01/K; the objects are the Banach spaces over K and

Hom(E,F) = X (E,F) = { 1: E=F|1 is K-linear and )1l ¢ m}.

(ii) J51 = d31/K ; the objects are the Banach spaces over K and
Hom1(E,F) = }'1: ESF |1 is K-linear and |21 < 1} .

Neither éategory is abelian. Using a method of A. Heller [8] one gi\_res the
categories a structure of exact category by a choice of a suitable set of short

exact sequences. Natural choices are :

£ 3
The set of all sequences 0 > A —>B -~ C >0 satisfying
(A) X, ﬂe[} and the sequence is exact as a sequence of linear spaces over K.

(B) X ,ﬂeﬂ ; & isometric ; /3 induces the norm on C and the sequence is exact

as a sequence of linear spaces over K.

(c) X 5(3€ /31 ; x isometric 3 3 induces the norm on C ; for all ¢ € C there is
a b€ Bwith f(b) = ¢y and )bl = Jcll ; and the sequence

is exact as a sequence of linear spaces over K.

An objet E is called projective (resp. injective) if the functor
Hom(E,.) (resp. Hom(.,E)) is exact on the given class of exact sequences. In

sections 2 and 3 we found :

category projective injective
objets - objets
Avwith (A) weakly projective weakly injective has injective and
) . projective resolutions
1 . E . . > . .
0Sw1th (B) none injective has only injective
| resolutions
1. . .
MAwith (C) | - projective ? has only projective
resolutions

The resolutions are of course those considered in (2.5) and (3.4).

We will denote them by O - E -«>qu —>q1E =20 and 0 = p1E —)poE - E =0,
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For left— (or right-) exact, co- (or contra-) variant functors T of B/K or jg/K
into any abelian category one defines left- or right derived functors I*r or

R%T, n> O as usual. It follows of course that L'T = R"T = 0 for n » 1.

Examples of derived functors.

(6.2) The functor Hom(E,.) : 43 with (A) = (Vector spaces over K) is covariant ard
( ,.) and we have for every FER
(E,F) = 0. As

left-exact. Its derived functor is denoted by ExtA

the exact sequence O - Hom(E,F) -bHom(E,qu) -+Hom(E,q1F) - Ext,
usual Ex'tA(E,F) can be interpreted as the set of isomorphy classes of extensions of

E with F.

(6.3) The functor Hom(.,F) : ¢3 with (A) — (Vector spaces over K) is contravariant
and right-exact. its derived functor applied to E € 43 is equal to ExtA(E,F) as
defined in (6.2). So we are justified in denoting the left-derived functor of

Hom(.,F) by Ext,(.,F). Further one has the exact sequence

A

0 - Hom(E,F) —)Hom(pOE,F) -> Hom(p,E,F) = Ext(E,F) - 0.

1
(6.4) The right—derivate of Hom1(E,.) : 431 with (B) - (Modules over V) is denoted
by ExtB(E,.). The left-derivate of Hom1(.,F) : /31 with (C) -»Modules over V) is

denoted by Extc( F).

(6.5) Lemma. There exists for any E,F € ®' & canonical injective map

o : Ext (E,F) > Ext

o (E,F) with coker of is a vectorspace over k.

B

~ )
Further ExtC(E,F) ® K= ExtB(E,F) ® K= ExtA(E,F).

Proof. The sequence O »p E—p E —>E =0 (in class (C) hence also-in class (B)

and (A)) induces exact sequences
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(a) —>Hom(poE,F) - Hom(p,E,F) = Ext, (E,F) =0

1 A
(v) ~>H0m1(poE,F‘) —>Hom1(p1E,F) —»ExtB(E,F) -rExtB(poE,F) > ...

(c) —>Hom1(poE,F) —)Hom1(p1E,F) > Bxt (E,F) =0.

This implies the existence of a canonical injective map

[ 3N Extc
with (a) one finds ExtC(E,F) ;}VKg Ext

(E,F) —‘ExtB(E,F). After applying O VK to the sequence (c) and comparing
A(E,F). So the proof will be finished as

we have shown that ExtB(poE,F) is a vector-space over k. Let P be a projective

B . .
Banach space then — Hom1(p,qOF‘) = Hom1(P,q1F) - Ex*qB(P,F) 20 is exact. Using the
ortohonormal base of P one finds im R 2 {1 : P —» q1F{ H1(x)) < |l xjfor all xf .

Hence im /4 >m Hom'! (P,q.F) and Ext_(P,F) is a vector-space over k.
O 28 171

B

2
(6.6) For every Banach space E we form gr(E) = 2 ix CELN x||<.9

J€ER, 2150 {x € E\llxll{:}
Ele

This is a graded module over gr(K).

The graded ring gr(K) can be described as follows : Let G be the value group
of K written as an additive group and let 1) : G 3 K* be a map satisfying
|¢)(g)| = e & for all g € G. The map O induces a symmetric 2-cocycle
J:GXxG > k* (where G acts trivially on k* ) by the formula ¥(g,h) = the
residue class of §(g) O(h) (Ip(g+h)_1 in k¥. Then gr(K) is isomorphic to k [G,§]= the
group algebra of G over k twisted by ¥ . In particular if the valuation of K is

discrete then gr(K) = k [2] ¥ k Te,e7 '] .

Let Gr(K) = Gr denote the category of all graded gr(K)-modules whose morphisms
are the homogeneous gr(K)-linear maps of degree O. Then Gr is an abelian category.
We remark that X € .’731 is isometric (resp. essential) if and only if gr(x) is in-
jective (resp. bijective). The functor gr : 451 with (B) »Gr is left-exact and

covariant and its derived functor will be denoted by R'(gr).

(6.7) Let E be a Banach space over K. A hole in E is free filter ¥ on E generated
by spheres. The diameter of 91 is the infimum over all radii of spheres belonging

to fﬁ . Two holes ¥ and J{*are said to be equivalent if there exists e € E with
*
e +.‘5 = 3'5 .
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Proposition. There is a bijective correspondence between the homogeneous elements
(# 0) of R‘(gr) E of degree /3(/) €R, ()'> 0) and the equivalence classes of holes
of diameter P in E.

T P
Proof. The injective resolution 0 = E -d 1 (E)/ ( ) —_— 1 (E)/ =0

c(E)

0

w
of E induces the exact sequence 0 = gr(E) —’gr(l (E)/C (£) —)gr(l (E)/c(E)) ->

-’R1(gr)(E) > 0.

Let 3 be a homogeneous element (#0) of degree P in R} (gr)E. Then ¥ has a

€ L (E)/ ( with |lx) = ,0 . Choose x, € 1 (E)/

representative x o(E) 5

such
co(E)

= s S H - 1. 1 1
that TT(xO) x. The collection of spheres |y CE|IiA(y) xils f }(F >p )
generates a hole :ﬁ of diaméter /) . Another choice of x does not affect :ﬁ and

another choice of X translates fﬁ . So we have assigned to ; a class of holes

of diameter £

For a hole (ﬁ in E of diameter o generated by { B(a ’fn} a1 one choose
x € ﬂ B(A (a ),Ian). The element x =TT (x ) has norm p and gives rise to a
homogenéous 75’ (#0) of degree p in R (gr)E. It is easily seen that the two maps

described above are each other's inverses.

Relations with the category Mod(V) of all V-modules.

(6.8) First we shall recall some properties of modules over a valuation ring.

Lemma., (Fleischer) A module M over V is injective if and only if M is divisible

and every filter (F on M generated by sets of the type mo +im [ M,?Tm = O% (- an

element of V)» has a non-empty intersection.

Proof. & M is injective if Hom(V,M - Hom(I,M) is surjective for every ideal I of V.
Let § : I »M be given, I is generated by a sequence of elements

| for all i.

Y3 Ap sees With R I P

The map Q can be extended to V =»M if there exists x € M with A;x = ¢(xi)
for all i. Since M is divisible there are elements x; satisfying AVET ¢(a i)°
Hence x must be an element in N (xi + im eMl A ;B = 0!). By assumption this inter-
section is non-empty.

2 Analogous.
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(6.9) Corollary. If M is an injective V-module and N a divisible submodule of M
then M/N is injective,

Proof. It is clear that M/N is also divisible and inherits the filter property

from M,

(6.10) Corollary. Every module M has inj. dim M € 2. If M is divisible then inf.

dim M € 1. The global homological dimension of Mod(V) is < 2 and = 1 if and only
if the valuation ring V is discrete. Further inj. dim V = 1 if and only if K is

maximally complete.

Proof. For any module N let &(N) denote the injective envelope of N . For N we
meke the exact sequence O =M - & (M) ->M1 -0 and O -->M1 -> £(M1) =M, ->0.

2
The module M, is divisible and by (6.8) this yields that M2 is injective. So inj.

dim M ¢ 2. If M is already divisible then M, is injective and inj. dim < 1.

For discrete V it is well known that global dim(Mod(V)) = 1. If V is non-discrete
- . I ’

then inj. dim V(m) = 2. (A( )

0$VM)ﬂKm)éKNm)

means the direct sum of I copies of A). Indeed,

= 0 is exact, K(m)

that K/V(N) = M is not injective. Choose a sequence 31, k2,... in K with

is not injective, and we have to show

]}1\ > Z,|> --- > 1 and consider the subsets

(11,12,..., in_1,0,0...) + Sm €M|X;1M = 0‘: of M. (here ). means the image of

L
2 in K/V). The filter'generated by them has an empty intersection. According to
(6.8) we see that K/V(N) is not injective.
Further, inj. dim V = 1 if and only if K/V has the "filter property". This
filter property is easily seen to be equivalent with maximally completeness.

(6.11) The counterpart for projective dimensions is :

Proposition. Every module has projective dimension & 2. If M is flat (equivalent to

torsion free) then proj. dim M € 1. Every projective module is free.

Proof. The . last statement is a special case of Kaplansky's "big projectives are
free". The proposition will be proved is we can show : any full submodule M of a
free modulée P (i.e., P/M has no torsion) is itself projective. For this one can imi-

tate the proof of 3.6).

We will exclude in the sequel of this section the trivial case of a discrete

valuation ring.
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(6.12) The relation between Banach spaces over K and modules over V can be expressed

by various functors e.g.

B:431-5~Mod(V) givén by B(e) = {xCE|l|x]| < 1}

Q: P ! - Mod(V) given by Q(E) = E/B(E).

Proposition..(i) B and Q are exact w.r.t. both (B) and (C) ;
(ii) Hom' (E,F) & Hom, (BE,BF) £ Hom (QE,QF) ;
(iii) E is_injective if and only if QFE is injective ;
(iv) Bxt(B,F) & Ext](BE,BF) ¥ Ext,(QE,QF).

Proof. (1) is obvious and (iii) follows from (6.8). To prove (ii) we use a

lemma : Let M be a torsion-free V-module. Then M is complete (i.e.

M= ]‘._im M/ 1w ™M for some 1 € V, 0 ¢« |T] ¢ 1) if and only if M is a cotorsion- -
module (i.e. Hom(K,M) = Ext](K,M) = 0).

Proof : "a" If M is complete then (WM = O and so Hom(K,M) = O.

& A
For K we have a free resolution O —>V(N) —éV('N) —>K =0,
i

given by /5(/\.1,)\2, 13,...) =£7ti71’_ and
'X(A1s ;\.2, }\¢3a"~)=(1312 _“11,1 ‘“lz,-..).

3
¥
(N)), M it Hom(V(N)

1

Ext&(K,M) is the cokernel of the induced map Hom(V
(N)

M.

Let & : V
given by ¥ (52

- M be given by §( Vs dgs A ) =21 ;M; then the map ¥

griee
2,...) =Z\i(n: Trnmi-!-m) satisfies X *(}) = ¢.

Hence Ext:,(K,M) = 0. "&" Analogous.

Proof of (ii). Hom1(E,F) é’Homv(BE.BF) and the injectivity of

Hom1(E,F) —)Homv(QE,QF) are obvious. Take t € HomV(QE,Q,F) and let s be the map
E =>QE t —>'QF. We have to show that s can be lifted to a map E 2 F or that
Homv(E,F) —')Homv(E,QF) is surjective. The cokernel of the latter is Ext:’(E,BF).
Since E is a direct sum of copies of K and BF is complete the lemma yields
Ext&(E,BF) =0. '

Proof of (iv). The injective resolution O = F - qu - q_1F - 0 yields exact sequences:

> Hom' (E,q F) —>Hom1(E,q1F) > Ext y(B,F) >0
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- Hom(BE,Bq_F) = Hom(BE,Bq,F) = Ext!(BE,BF) — Ext. (BE,Bq F) = ...
0 1 \'s v o}

- on(QE,QgF) = Hom(QE,Qp,F) = Ext|(QB,QF) - Ext,(QE,QaF) = ...

By (ii) it suffices to show that ExtJ,(BE,quF) =0 = Ext;(QE,quF).

The last statement follows from (iii) and the first one from the exact

Y . 1 2 v o1 _
sequence 0 = ExtV(E,quF) - Ext (BE,BqOF) *ExtV(QE,quF) X Extv(QEquoF) = 0.

\4

(6.13) Proposition. Let M be a V-module.

(i) M & B(E) for some Banach space E if and only if M 'is a torsion-free,

cotorsion module and mM = M,

(ii) M X Q(E) for some Banach space E if and only if M is a divisible

torsion module such that Ann(x) = E?L ¢ Vitx = 0' is non-principal for any x < M.

Proof.
(i) "$" follows from the lemma in (6.12). "&". Choose for E = M® K OM with
norm given by |x | = inf {|x|A €K and xl:)M} .

(ii) "3" clear. "€" Take W € K, 0 < | |<1, and let m € M, m # O be given.

There are elements m=m , m , m in M such that wm., K = mi(i > 0).

yene
Hence there is a V-linear ma;) ¢ :2]( - M satisfying ¢("T—n) :-;n for all n > O,

As a consequence there exists a surjective & : L — M where L is a vector space
over K. The kernel Lo of & may be supposed to have no divisible submodule.

On L we introduce s norm by |lxli = inf {{1||2€K and x € X Lok . Let L denote
the completion of L with respect to this norm and Lo the closure of Lo in L.

Then M £ L/Lo' The extra condition Ann(x) is non-principal for every x € M implies

that L_ = BL. Hence M £qL.

.(6.14) Consequences. Using (6.12) and (6.13) one can translate properties, cons-

tructions etc. of Banach spaces into properties etc. of V-modules. Examples.

(i) Let 0 = E, 2E, - E, - 0 be an exact sequence of Banach spaces of type (B)

and let E and F denote Banach spaces. Then O = BE1 g BE2 -)BE3 - 0 is exact and

since BF1 is flat also O = BE1 ® v BF —’BE2 @v BF = BE3 ® v F -0 is exact.

Further as one easily sees {x CEQ® F( I xi) < 1& = BE § BF. This yields
A

A

(5.3) : O —»E1®F »Eeé F ->E3@ F =0 is an exact sequence of type (B).
(ii) (6.12) part(iii) combined with (6.9) proves that the quotient of an in-
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jective Banach space is again injective.

(iii) (6.11) is the counterpart of (3.6) : every closed subspace of a projective
Banach space is projective. Further Kaplansky's theorem "Projective modules over
a local ring are free" is the counterpart of (3.10) : every projective Banach

space is free.

(iv) Let E be a Banach space and &(QE) the injective envelope of QE. By
(6.13) part (ii), & (QE) £ QF for some F and as one easily sees F is a maximal

completion (see (2.10)) of E.

(v) The problem on reflexive Banach spaces (L4.6) part (i) is equivalent.to the
following problem : Let K be a non-maximally complete field. Is the dual

M¥ (= Hom(M,V)) of any V-module reflexive (i.e. M* - p*™ bijective)?

Or, using the functor Q instead of B the problem is equivalent with : Let M'
denote Hdmv(M,K/V) for any V-module M. Is M' = M"'bijective for any divisible

torsion module M?
Remark. In comparing &' with Mod(V) as we did, one often has the disregard

modules over k. So it seems more appropriate to compare J3 ' with Mod(V)/Mod(k) =

the quotient of Mod(V) the Serre-subcategory of Mod(k), all modules over k.

§.7. Differential Equations.

The first step in solving differential equations is the construction of a
primitive function for every continuous function. This is done by approximating
a continuous function, say f : K =K, by locally constant functions. Any locally
constant has a primitive function. A good choice for a primitive function of the
characteristic function ¥ of a sphere B(a,f)(: K is F(t) = (t-a) ¥ (t). The function
F has the additional property |F(t+h) - F(t) - h¥(t)|< |h| for all t and h.

To show this processin detail we consider first a simple case :

(7.1) Proposition. Let X be a compact suvset of K which has no isolated points and

let E be a Banach space over K. There exists (for every & > O) a bounded linear
P : C(X 2E) »C(X = E) (with VPl € ¢ ) satisfyin

(a) P(£)' = £ and Lim (y-x)7 (B(£)(y) = P(£)(x)) = £(x) unifornly on X.

(b) For any f € C(X = E) and any x,y € X the following inequality holds :
Ie(e)(y) - P(E)(x) = (y=x) £(x)[| s |y-x| UL .
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(c) If dim E <w then P is completely continuous.

N .
Proof, Since X is compact we have C(X »E) & C(X - K) ¢ E. It suffices to construct

P : C(X > K) »2C(X >K) with the required properties because

P& ]E : C(X = E) =C(X 2 K) has an orthonormal base {§i | iy 0} consisting of
characteristic functions }' of spheres B(a ,/’ C X, Defipe P by

P( Ei)(t) = (t—ai) Ei(t) and extend P by linearity and continuity to

P : C(X—=~K)=>C(X=K). Clearly |[P{ = supl P(E i)” = sup :{:’1]1 > O} . So for

given £> O the base i‘ilg can be chosen such that [IP| s . Further P is com-

pletely continuous (i.e. the uniform limit of bounded linear maps with finite-

dimensional range) since lim HPeiH = lim P =
Let £ € C(X = K) have the expansion f =1 I.Ei, lim 1. = 0., Then

[B(£)(y) = B(£)(x) = (y=x)e(x)[ = 122, P(Y () - B(§ )(x) -

- (y—x)§i(x)| § | y=x imax {Hill Py <|x-y|§ . Hence (a) and (b) follow.

(7.2) Example. Let X = zp = ix € Qp[ |x| < 1}, K a field containing Qp , the field

of p-adic numbers. The characteristic function of ?t €21 |t-n| < :—1§ will be
denoted by d)n(n > 1) and po = 1. The set N)nln > O; is an orthonormal base of
C(zp ->K). Indeed, as one easily sees icbnlo ¢ n« pk7§ is an orthonormal base of

tf € c(zp = K)| f is constant on spheres of radii p—k§ and further the space of

locally constant functions is dense in C(Z_ = K). So every f € C(Z_ - K) has an
P P
expansion f =Zln4)n (R n€ K, lim A = 0).
The coefficients An can be calculated in the following way :
On N U EO{ we introduce a partial ordering n ¢ m as follows

(i) 0 \pm for all m.
(ii) ifn#0, n = ata,pt...+ a.kpk 3 0¢ a.i< P ;e # 0 then n ¥m

1
1 = 1 >, = i =
‘1f m bo+b1p+...+ 'blp withl 2 k and ai bi for all 1 Oy ke
This ordering satlsfles nW¥W m if and only if ¢ (m) = 1. For

n#O,n—e.+ap+ +a.kp O‘ai< o ak#OVeputn_=n—akpkorinother

words n_ is the largest integer satisfying n_ ¥ n and n_¥ n.

o
Then for any continuous function f we have f = (£(n) - £(n_)) ¢n + f(O)Q)o.
n=
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IJ): is enough to check this formula for integral valuesl :

D (£n) - £(n))g (1) + £ (1) = ) (£(n) - £(n])) + £(0) = £(1).

= : “ 0#n &1
Further P(£)(t) = ) (t=n)(£(n) = £(n_))p_(t) + £(0)t. Let
2 . - @ k .
t = Z_ a.p ; 0€ a, < p ; then P(f)(t) = Z akﬂpkﬂf(z a.p ).
i=o * * k=0 i=o *

00
Another implication of the expansion f =Z (f(n) - f‘(n_))q)n + f(O)(bo = Zln¢n is
n=0

the following : lim £ly) = £(x) = O uniformly on Zp(f' = 0 uniformly, for short)

Y+Xx yx
is equivalent with 1lim nla nl = 0. Of course a sequence &, € K with lim anp_n =0
and lim |anP_2nl = 00 ; define f : 2, Kby £(x) = a if Ix-p™1 ¢ p2®  and

k 2k

k
f(x) = O for all other values of x. Then f' = O and £ *+p ;k— £(p ) |=|8.k| P_2k

is unbounded. So f' = O not uniformly.

(7.3) A more general case. Let X be a subset of K which has no isolated points

and let E be a Banach space over K (or if necessary a locally convex space over
K). We want to construct a (continuous) linear P : C(X = E) = C(X = E) which
satisfies P(f)' = f for all £ € C(X = E).

We will show that it suffices to give a primitive function of just one conti-
nuous map, namely the map : X - M(X). Here ‘M(X) denotes the vectorspace over K
of all measures on W with compact support. (i.e. PC‘M(X) if there exists a compact

T C X and a bounded linear 1 : C(T = K) =K with g : C(X = K) = C(T »K) Lk

and where F i’S the restriction map). The topology on M(X) is the locally convex
topology generated by the sets {O(f1 pre ey fs)\ s 21

£, 5000y £ € C(X = K)}. in which O(f, heeus £) ={|~c.){(x)l ||p(fi)| < 1 for
all i} . The continuous map§: X — (M (X) is given by § (x)(f) = f(x) for all

x € X, £ € C(X>K).

(7T.4) Lemma. There exists 4 : X = LM(X) with o' = §.
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Proof. In order to approximate § by locally constant functions on X we introduce
some terminology. Let ™ € K, 0 < |7 | < 1, and let & denote the equivalence
relation on X given by x 5V if \x—y!élrrln. Choose x € X and for every n 71

amap P X/?{ - X such that X/'ﬁ By —DX/K = id and (On(xo) = x for all n.
Define b; (x) = §x and let R : X =2 X/ ﬁ‘» X for all n > O
Po Y Po i og n ° o o0

Let Sn : X -*J{(X) be given by Sn(x) =g (Rnx). Then § = 1lim sn and each ;n

»

is locally constant. Hence § = 80 + ] (s ). Each g, = Sn— Sn_ is cons-

n ‘n-1 1

tant on spheres of radii |T|™ and has an obvious primitive function G, eiven

by Gn(x) = (x-Rn(x))gn(x).

Define 4 : X 2 M(X) by A (x) = (x-x_) 8 +ch(x). Clearly 4 (x) € M(X)and has
support in the compact set lijF{ xln > }. Further }%;(A(y)—'a(x)— §{x) =

= Z —‘-’—_;-(Gn(y) G (x))—g (x)). In order to show that lim of this expression is zero
yIx

1t sufflces to prove for any f € C(X = K) that
lim Z (;;;(Gn(y) -G (x)) - (5 (x) - Sn_ (x)))(f) =
¥yox n=1 _
Choose € > O and n_ such that [£(x) - £(y)| € & whenever |x-y|g¢lw[" T

Then for n > n,

3 _.n n _

(50,0 -6 (x) = (5 () =8 __ )] (1) = . (£(R x) - £(R__,x)) +
y—Rn(y) ) . ng-1 ;
—_—T - - . —x 1<

+ o (f(Rny) f(Rnx) + f(Rn_1) f(Rn_1y) Hence if [y-x || this

expression has absolute value ¢ & and "lim" 1is equal to zero.

NE2d

This completes the proof.

(7.5) Remarks. (i) A compact subset T of X is called full if Rn(T) C T for all
n % O. Any compact set T lies in a full compact set. For a full compact set T
we have support (A(x)) C T for all x € T. So we can restrict § and Ato t ;
§/r: 1 >c(T~K)' and Z =0 /T : T=C(T=K)'. With the usual norm on
c(T »K)' we have & (y) - & (x) - (y-x) 8 ()l = &(x,y) ly=x| with &(x,y) <1

for all x,y € T and 1lim &(x,y) = O for all x.
yx

(ii) The map A can be written in a slightly different form :
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) ' 0
a(x) = (xx) §(x )+ (=R ())(B (x) =8 _ (x)).= ) (R xR x) 8(Rnx).

o
n= n=0

(7.6) Proposition.(Treiber)Let X be asubset of K which has no isolated points and

let E be a Banach space over K. Let & S 0. There exists a linear

P : C(X >E) = C(X 2E) satisfying :

(i) (Pf)' = f and on any compact set lim -&’_'_—X(P(f)(y) - P(f(x)) = f(x)

uniformly. ¥ax
(ii) For every full compact set T, the restriction of P to T has norm <&
and | P(£)(y) - P(£)(x) - (y=x)£0)U € hy—x | £l p for all x,y €T ; f € C(X » E).

(iii) If dim E ¢ @ then P restricted to any compact full T is completely

continuous.

Proof. Every p C(M(X) induces a map ‘:’, : C(X »E) 2E. Indeed ; let T CX be a

compact set such that p : C(X =K) L c(T -~ K) -—lﬂ{, then t‘: is defined by
p " A _34E
c(X >E) =>Cc(T »E)= c(T>XK)® E——> K@ E = E. Define P by the formula
~ X * [
P(f)(x) = A(x)(f). A change of A into A (x) = Y (Ron-Rnx) 8 (Rnx) changes P

n=k
. . * . .
into P* with |IP|| o € lnlk . The other properties of P (or P¥* ) follow directly

from the corresponding properties of A (or A*).

(7.7) Proposition. (Treiber). Let X be a subset of a Banach space E such that for
every x € X and h © E the element O is non-isolated in {t € K l x+th € X . Let F

be_another Banach space and @ : X = & (E,F) = (L 1: E —lFi is K-linear and con-
tinuous}a continuous map. Then there exists N1 : X = F with dQ = .

Proof. First we solve the "universal problem" § : X 3 (E,‘M (X)® E).
Here \M (X) ® E is the completion of M(X) ® E which has the topology derived from
the semi-norms on M (X), the norm on E and the tensor product (semi)-norm cons-

truction of §.5. As in (7.4) one defines maps Rn : XX (n» 0) with the properties:

i = p/ i
(i) Ro(x) %xok and Rn(xo) x, for alln 7 1 3

- ()
(ii) R (x) = R _(y) if and only if Il x=y i< iw{®. Then § =§RO + nZ= (R - R _.).

1
One defines A : X = lM(X)& E by "term by term integration" of this infinite sum :
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o
Ax) =8 (Rox) ® (x-x + ) ( SRnx— SRn_1x) ® (x—Rnx).

-

(x)-Rn(x) ).

n

®
It is easily seen that dA = § and A(x) = ) B(R (x)) ® (R
i 5= n n+1

» )
Further, to return to W, any T eJ"(X) ® E induces a map % s

%:C(X)—) X (E,F)) »F in an obvious way. Then a solution Q of 4l = is
Fan d
Q(x) = A(x) (W)

Remarks.
(i) The solution Qin (7.7) can also be written in the form

Z W(R x 1x-—Rn;ac). The case X = {x € EI Nxl £ 1§ (or X = E) is
n=0

considered by D. Treiber [7] . The choice of the Rn's is done as follows : Let A

be a set of representations (containing 0) of X/f{x € E| x| IITR . Then every

. . . (] .
element x 1n X has a unilque expansion x = ZO T\'nan with &, € A for all n. Put
n=
n-1 k
R (x) = a (n >1) and Ro(x) = 0. Then our formula for () reduces to the

n =0 k

one given by Treiber [7] section 10.

(ii) As a corollary of (7.7) one finds that every continuous k—form (closed

or not) is exact. In particular there is a function

2 . _ af _ of _ of ?f
f.Zp——'Qp with 4f = ydx. So.ox =y, 3y -Oadaxay#axby

An explicit formula for f is given by the following :

L w . "
f(f_ aip1 s D b.p')) = > ai‘b.p:l J , where OSai<p ; O%Db. <p.
i=o j=0 4 isjzo 9 J

(iii) The exa.mple (7 2) gives a primitive functlon for which one has derived

@ k1,
the formula P( 1r;()akp Z a4 1P :é a;p ).

This operator P could also be obtained from (7.6) where Rn : ZP - Zp is

. . _ L - Do iy o=t 10
defined by (i) RO(ZP) = {O} ; Rn(O) 0 for all n ; (ii) Rn(taip ) i:_oaip with

Osai(pforallp.
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(iv) Solving differential equations is an exercice after (7.6). To be

complete we will solve the exercise.

(7.8) Pr02031t10n Let X be a subset of K which has no isolated points, E a Banach
space over K and L a (not necessarily linear) map : C(X »E) = C(X = E) which
satisfies the Llpschltz—condltlon : There exists a constant f’ such that for asny
compact full TC X, any f,g € C(X > E) the inequality IL(f) - L(%)“Tﬁfﬂf—g "T

holds., Then there exists a bijective and,for every | “T’ with T full compact,
isometric map ¥ :{h € C(X > E) | n' = of> {fec(x »E)| £ = L(r)}

Proof. Let k be such that lrﬁ P< 1. The map P given by the formula
7_ (R -'R (t))f(R t) has the property (Pf)' = f and"
n—k n n
IIP(f)IIT £ l1r1 ||f||'T for every full compact T C X. Take h € C(X - E) with h' = 0.

The map f ¥ h+PL(f) of C(X - E) into itself is a strict contraction with respect

to every I | Hence there exists a unique f = T (h) satisfying f = h+PL(f).

T
Clearly T is isometric with respect to |l “T and also surjective since

f' = L(f) implies P(f') = PL(f) and h = f-p(f') has derivate zero.

(7.9) Corollary. (Linear eguations) Let X be a subset of K which has no isolated
points, E a Banach space over K and A : X = i(E,E) a_continuous and bounded map.
Then there exists a continuous B : X - (E,E) such that B : ih €c(x»E)|n' = Qf#

- {f € C(X »E) |f' = Af§ is linear bijective and isometric.

Proof. Consider L : C(X = & (E,E)) » C(X »ZL(E,E)) given by L(B) = AB. Then as

n (7.8) there exists a solution B of B'(t) = A(t)B(t) with [[B(t) - Il € P<1 for
all t € X. Clearly if h € C(X — E) satisfies h' = O then (Bh)' = A(Bh). Further if
f satisfies f£' = AT then (B 'f)' = O

(n)

(=1 4y +...

(7.10) Example. For any differential equation f ' (t) + an_1(t)f

boot ao(t)f(t) = g(t), g.a; : K=2K continuous and bounded,there are functions
Yoxg ¢ K >K (i=1,...,n) such that every solution of the differential equation has

n
. Ve o=t o= o s .
the unique form y + é=1 hixi » Where h1 ‘e hn O. This 1s a special case of

(7.9).
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(7.11) Remarks. (i) It is likely that a more detailed study of the "primitivation"
P will show that the Lipschitz-conditions in (7.8) and (7.9) can be weakened.

(ii) Another interesting question is : which functions f : X C K = K are the
derivative of other functions. An obvious necessary condition is that f is the
pointwise 1limit of a sequence of continuous functions. In the last part of this
section we will show that this condition is also sufficient, provided that m

is a compact subset of K.

We introduce the following notations : let X be any topological space, then
C_(X 5 K) is the Banach algebra of all continuous functions f : X =K such that

f(X) is compact. Further X_ denotes the set X provided with the discrete topology.

d

(7.12) Propos1t10n. Let X be & subset of K which has no isolated points and let

f : X > K be a function such that £(X) is compact. The following conditions are

equivalent :

(i) There exists F : X 2K with F' = f,

(ii) There exists a sequence {Fnic C(X = K) such that for every x € X,
lim Fn(x) = f(x).

Proof. (1) = (2) is trivial. The implication (2) =% (1) will be proved using

some lemma.

(7.13) Lemma. The algebra R = {f < Cp(xd —’K)lf is pointswise-limit of continuous
functio-ns} is a closed subalgebra of Cp(Xd =K).

Proof. It suffices to show that for any sequence {fn‘ CR with 1lim |Ifn|(= 0 , the
sum F =z:fn belongs to R.
Write fn = p-lim f K where "p-lim" means point-wise-limit and all

f ¢ C(X >KX). We may assume that [If S ||fn|| for all k. Then

a0,k

n,k
w . . . .
= ) f C(X - K) since the sum is uniformly convergent on X. We claim
= nak ©
F = p~lim F, . Indeed take x € X, &>0, N(&) € N such that llf I € & whenever

N(&) and.take ko(x,E) € N such that for all k >,ko(x,£) the inequality
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£ (x) -t k(xll_sa; n=1,...,8() holds. Then for k 3 ko(x,&) s

n
‘ ) N(e)
76 - R 0] =T (5,00 - £, k(0] ¢ max(e, O RENCHIER

(7.14) Lemma. Let Z be a topological space and A a closed subalgebra (containing 1)

of CP(Z = K). Then there is a compact O-dimensional Y such that A ¥C(Y = K).

In particular A has an orthonormal base consisting of characteristic functions.

Proof. Let ¢ : A 3K be a K-algebra-homomorphism. Then ¢(f) € f(Z). Indeed

if (P(f) ¢ £(Z) then one can normalize f such that 9(£) = 1 and sup |£(2)]= P < 1.
Hence f-1 is invertible in R contradicting ¢(f—1) = 0. We take for Y the set of all
K-algebra-homomorphisms ¢) : A 2K . The canonical map : Y = fERf(X)’ given by
(‘\7(@))f = ¢(f), is injective and has a closed image. We identify Y with its
compact image T (Y) and regard R as a subalgebra of C(Y - K). This subalgebra

closed, separates the points of Y and contains 1.

According to the Stone-Weierstrass theorem (see [4] ) R £ C(Y = K).

Remarks. Combining (7.13) and (T.14) we see that R as defined in (7.13) has an

orthonormal base {)(l§ consisting of characteristic functions. Our next step

i€l
will be to characterize sets T € X for which the characteristic function XT belongs

-to R and to find a suitable primitive function for XT'

(7.15) Lemma. The characteristic function of a subset T of X C K belongs to R if

and only if T is both the countable union of closed sets ans the countable inter-—

section of open sets.

0 [
nen : = = : . -
Proof. "€". Write T n\_}1Fn n/=|10n with all Fn closed and all on open. We may sup

pose OnD On+ and Fn CF for all n. Let Cn be a closed and open subset such

1
that On o) Cn DFn and let 7Ln be the characteristic function of Cn' Then X n is

n+1

continuous and }{T = p-lim )(n belongs to R.

"3, Suppose that X’I‘ = p-lim £ with {fn}CC(X - K). Let Xn denote the.
characteristic function of it € x| Ifn(t) | = 1§ = C, then C_ is both closed and
open. Further Y, = p-lim X, Put On =UJC and F_= ) C, - Then

o » k;n‘k k7n
N o, =UF =T
n=1 n=1
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(7.16) Example. X =2 5 T =Nand K 5Q . Then X, ¢ R

xR
Proof. Suppose that N = ﬂ On with On_ open for all n. We may assume that
n=1
© (n) (n) (n+1)
o) nL=j1 B(m,r °7) and r > r for all n and m.
(n) ] [ @D : .
Put s = r "', Then N On >N U B(m,sm) = T, In order to establish a

n=1 n=1 m=n

contradiction we will show that T is ungountable. We may assume that Sm > S et

and 1,...,m-1 ¢ B(m,sm) for all m, The map, which assigns to x €T the subset

{n EN|x € B(n,sn)} , 1s injective since this subset is infinite and lim s, = 0.

Further we note that every sphere B(m,sm) contains infinitely many spheres
B(n,sn) with n > m. For each m we choose a bijection ¢m of N onto fn €lN,n > m and

B(n,sn) C B(m,sm)f . Now we are ready to make an injective map T : W —> T. Given
f : N >N we make a sequence of spheres B(mk,smk) as follows :

m = £(1), my =p (£(2)),.0, m = ®mk(f(k))
1

Define 7T (f) = f\B(mk,smk). It follows easily that T is injective and hence T

is uncountable.

(7.17) Lemma. Let T be a subset of X such that X € R. There exists
F: XK vwith F' = X‘T and |F(y) - F(x) - (y-x)xT(x)( € |y-x| for all x,y €X

and l[F(I < 1.

Proof.. As in (7.15) we put X’T = p-lim XC where {Cn} is a collection of open and
n
U c ,F =N ¢ X = On\Fn open and bXn denotes its

£ ]
k»n § P xyp KB

No = UF_and NX_ = §.
n n n

closed sets. Put On

boundary. Further T

[ xR
Th = + Y e - ) = + ( - )
° X'T xc1 2;1 Cn+1 ch xcl n}; X Cn-H\ cn ch\ Cn+1

=3

For each term in this infinite sum we construct a primitive function. Write C1 as

a disjoint union of spheres B(ai, /oi) and define a primitive function

FC o.‘f'xC1 by F, (t) = (t-—ai) ift € B(ai,Fi) for some index i, and FC (t) =0

1 C_l 1

otherwise.
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Write Cnﬂ\cn ‘as a disjoint union of spheres B(bj,rj) such that for each j,

(r )1/2

j < min(% , distance of bj to ‘()Xn). This is meaningful since the set

\C is contained in Xn. Define a primitive function F

~ of
n+1 Cn+1\cn X Cn+1\ cn

c

F (¢) =0if t €C ., \NC and F
a1\ wtltn n+1

\Cn(t) = (t-bj) if t € B(b 507 ).
. c .
We construct in the same way Fcn\cn+1 , here also Cn\ Cn+1 Xn . We claim that
L]
F=F, + Z (F - F ) has the required properties.
Cr &S Caei\ Gy C\Cpu

First of all this sum is uniformly convergent since

I +1\C “ 2 and " C \C \]< r112 . The inequality

|F(y) - F(x) - (y—x))('T(x)lsly—-xl follows directly from the inequality
l(y—a)iB(y) - (x—a)xB(x) - (y—x)lB(x)l\< 'y—xl where B = B(a,(’) is any sphere.
We want to show F'(t) = X'T(t)' Let t QXk then this is equivalent to

G = Z (F ¢ FC \ ¢ ) satisfies G'(t) = 0. We consider two cases :
n>k n+1\ n n n+1

[Fe

(a) t & Xn . Then t & it for some k and,for smaell h also,t+h & Xk .

=]
[0

Since G has support in X, one has G(t+h) = G(t) = O.

k

[ - .
(b) t€ ;x , thente N DX, andt¢xk for some k.
— 'n
n>k
Choose h with t+h € X. Then % (G(t+h) - G(t)) = %G(t+h)jince G has support
in Xk If for some n > k the term F‘C \ Cn('t:+h) # 0 then t+h €Cn+1\ Cn and so

t+h € B(bi,ri with rf £ d(b , Dx )& [ n).

Hence [F t+h)' 2. The same reasoning holds for F (t+h) and
c \c e \c
n+1 n n+1

we find 2G(t+h)| & |h| . Hence 1lim iG(t+h) =

h h-0 h

Conclusion of the proof of (7.12). Let £ € R then f = Z 1 X .w1uh lim Ay
iel

and {Xi'i € I} an orthonormal base of R consisting of characteristic functions.

For each )(’i there exists according to (7.16) a primitive function Fi such that
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lFi(y) - Fi(x) - (Y—x)x_i(x)f$ |y—x| . Then F =2:1iFi satisfies F'(x) = f(x)

for all x € X. Indeed , take & > O and put I(£) = {i € I]l lil > 6} . Since I(¢)
is finite there exists & > O such that for all ly-x| ¢ § and i € I(E) the

inequality Ili(-&{; (F, (y) - Fi(x)) - xi(x))ls & holds.

Then ( ;%;(F(y) - F(x - - f(x)|¢& for Iy—xl < 4§,

Problem. Does (7.12) remain valid if the condition f(X) is compact is omitted ?
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