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Joumees Geom. analyt. [l972. Poitiers] 53
Bull• Soc• math• France,
Memoire 38, 1974, p. 53-68.

APPROXIMATION THEOREMS AND NASH CONJECTURE

by Alberto TOGNOLI

The purpose of this lecture is to illustrate some applications of Weierstrass'

and T^hitney's approximation theorems in their relative form.

In particular it will be mentioned how from these descends a theorem-which

affirms that the classification of the analytic fiber bundle on a coherent real

analytic space doincides with the topological one.

Then, using Weierstrass' relative approximation theorem, an outline of the

proof of the following fact will be given : every compact differentiable variety

admits a structure of regular algebraic variety.

§ 1 . THE RELATIVE APPROXIMATION THEOREMS

a) Some definitions.

In this article we shall study only entities defined on the real field. Let U

be an open set of H"" , 0 denotes the sheaf of germs of the real analytic func-

tions on U and r(0 ) the ring of (global) sections of 0 .

A function f G r(0 ) is said algebraic if for any point x C U there exists

a neighbourhood U and some polynomials a. : R -*•1R. such that
xo 1

£ (f(x))1 a,(x) = 0 , Vx £ U
i=0 1 ^

Let (3t denote the sheaf of germs of algebraic functions.

Let V be a closed subset of U , V is said an analytic subset of U if the

following condition is satisfied : for every a £ V there exists an open neigh-

oourhood U such that :
a

v n u^ = jx e ujf/x) = ... = f^(x) = o , f^ e r(o^ ) ) .

Let V be an analytic subset of U and 3,, denote the ideal subsheaf of 0 of

germs of the analytic f unctions that ar-e -identically z-ero on. Y .
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Finally we denote 0̂  = O^/ , the sheaf 0 is said the sheaf of germs of

analytic functions on V .
In such a way, to any analytic set V of U , is associated a local ringed

space.
Then a local ringed space ( x , 0 ) is said a real analytic space if :

•A.

I) X is paracompact.
Il) ( X , 0 ) is locally isomorphic to a ringed space associated to an analytic subset

of an open set of R . .

In a similar way we define algebraic set of U any closed set that, locally,
is the set of zeros of algebraic functions, and we associate to any algebraic set
V the sheaf OL. = ̂ Tr/̂  of germs of algebraic functions restricted to V .

Finally a local ringed space ( x , 0 ) is said an algebraic space if it is
paracompact and locally isomorphic to a ringed space associated to an algebraic set.

A-closed set V of E is said an affine variety if there exist some polyno-
mials f^ : IR11 -»R i = 1 , . . . , q such that V = (x £ fî f ( x ) = . . . = f ( x ) = OJ .

Let V be an affine variety, we shall denote B- the sheaf of germs of regu-
lar functions on V . Using affine varieties (V,fL ) as local models one defines
algebraic varieties (see [ 1 ] ) .

If X , Y are real analytic spaces or algebraic spaces or algebraic varieties
we shall use the term morphism (and isomorphism) of X into Y instead of morphism
(and isomorphism) of ringed spaces. If X , Y are analytic spaces a morphism is
usually said an analytic map.

Let U be an open set of 1R , V an analytic set, x £ V and V theo x
germ of V at x .o

We shall say that V is regular in the point x if it is possible to find
q = n -' dim V analytic functions f , , . . . , f , defined on a neighbourhood U

^ 1 q \
of x , such that :o
i) vnu^ = (x e û  | f ^ ( x ) = . . . = f ( x ) = o j

0 0 -
II) ( d f ^ ) ( x ^ ) , . . . , ( d f ) ( x ^ ) are lin-early independent.

Let ( X ' , 0 ) be a real analytic space, we shall say that x £ X is a regu-
lar point if there exists a neighbourhood B of x that is isomorphic to an

o
analytic set containing only regular points. A point that is not regular is called
singular. A similar definition of regular point is given for algebraic spaces and
algebraic varieties,
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Let (X , 0 ) 'be a real analytic space (real algebraic variety) containing onlyA.
regular points then X is called an analytic (algebraic) real manifold. An alge-
braic space that contains only regular points is called a regular algebraic space.

Let U be an open set of R and V an analytic (algebraic) subset of U ;
it is a well known fact, (see [ 2 ] , [ 5 ] - ) » that in general the sheaf ^ (^-) is not
coherent considered as 0 - module (CLy - module).

We shall say that an analytic (algebraic) subset of U is coherent if the
sheaf 3 ( 3 . ) is a coherent 0 - module (<X. - module).

An analytic (algebraic) space is called coherent if any point x £ X has a
neighbourhood isomorphic to an analytic (algebraic) coherent subset of some open set
of B" .

It is known that an algebraic space is coherent if and only if the associated
real analytic space is coherent "'(see [ 5 ] ) . Finally we remember that any real ana-
lytic manifold and any regular algebraic space is coherent.

Let V be an affine variety of R11 , x £ V and ^(v ) , ( l ( V )) the
o o

rings of germs of analytic functions (and of polynomials) that are zero on the germ
V of V at x (on V) .x o * /

o
Let 0 be the ring of germs of analytic functions defined in some neigh-

xo
bourhoods of x in E .o

1/v'e shall say that the point x is an almost regular point of V if 3(V )
is generated, as 0 - module, by l(v ) .

xo xo
An affine variety V is said almost regular if V is almost regular in any

point.
It is easy to prove that x is an almost regular point of V if, and only

if, the intersection of all the germs of complex analytic sets of C that contains
V is the germ of a complex affine variety that contains V (see [ 4 ] ) . As a con-
xo .
sequence we have that any regular point of V (considered as affine variety) is
almost regular.

b) The approximation theorems.
In the suite we will give some applications of the following theorems :

THEOREM 1 . - Let U be open in B11 , V a coherent analytic subset of U and
g £ r(0 ) an analytic function on V . Let JK } be a sequence of compact

nON
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sets in U such that :
K c Kn n+1 U K = U .

n£lN

Let jn j be a sequence of positive integers.
' ION

Finally let (ej be a sequence of positive numbers.
taN

Then for any function f : U -* IR 'of class C°° such that f ] == g\ there exists

an analytic function h : U •— R with the following properties :

I)

II)

a^f - h) (x)
^ "nax^. . . . .ox^

f, =h ,
' V ' V

< e for any x - £ K - K
P-H P

and 0 ^ a < n

THEOREM 2. - Let U be an open set of R , V a compact affine almost regular

variety contained in U . Suppose that V , considered as analytic set, is coherent

and denote by p : JR11 -*-JR a polynomial function.

Let f : U -*• R be a function of class C°° such that f| = p| , H a compact

set of U and e a positive number.

Then, for every positive integrer q , there exists a polynomial h : E -> JR such

that :

B^f - h) (x) < c , for any x C H , 0 ^ a < qI)
, "16x,.. . . . .oxV ' - - n

II) ^ly^lv

THEOREM 5. - Let U be an open set of IR , V a compact, coherent affine almost

regular variety contained in U and p ; U -*• E an algebraic function.

H a compactLet f : U -* ffi be a function of class C such that

set of U and e a positive number,
-p|,

Then, for every positive integer q , there exists an algebraic function h : U -* IR

such that conditions l) and II) of theorem 2 are satisfied.

We shall give a sketch of the proof of theorem 2 .

Let IRJX , . . . ,X j ., JR[[X , . . . ,X ] ] be the ring of convergent power series

and formal power series.

In the following on local rings we shall consider the M-adic topology and we

shall denote by A the completion of A .



57

A ring A is said analytic (or formal) if A = RJX ,...,X } ,.

(A = 1 R [ [ X , ...,X^]]/. ) where ^ is an ideal.

It is known that analytic and formal rings are local noetherian rings and

Hausdorff spaces (with respect to M-adic topology).

From the last assertion the following equality is clear : for any ideal S^ of an

analytic or formal ring A we have

^ . def q ,
3 = A .3 = (x £ A|x = Z a. g_ , a. £ A , g. £ ^ j .

i=1 z 1

A . / . A A A

(A'«/ is dense in 3 , but A-3 is an ideal, then closed, and we have ^7= A - f / ) .

Let U be an. open set of H , 0 the origin and suppose 0 £ U . Let E be

a set contained in U and g a function of class C°° defined in a neighbourhood

of 0 ; we shall say that g has on E , in 0 , a zero of infinite order if for

any p £ if there exists a positive number C and a neighbourhood B of 0
P p

such that on B 0 E we have : |g(x) | < C .Hx^ where

n
x = (x^,.. . ,x^) , ||x|| = Z x^ .

i==i

We rem&rk that if g has a zero of infinite order on E in 0 then any func-

tion h having the same formal development has the same property.

Finally we shall denote by ^(E ) the subset of B[[x ,. . . ,X ]] of the ele-

ments associated to a germ of a C°° - function having a zero of infinite order on

E in 0 .

If E is a germ of analytic set (algebraic variety) we shall denote by

^(E^) (P(E^)) the ring of germs of analytic functions (polynomials) that are zero

on E^ .

It is clear that in the above definitions the choice of the origin as fixed

point is inessential.

Using the above notation we have the following

LEMMA 1 . - Let V be an affine variety of B11 and x £ V be an almost regular

point, then we have

P(V^) = ̂ ) = J(V^)

Proof : The first equality is a consequence of the definition of almost regular

point, the second is proved in [6].
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LEMMA 2. - Let V be an affine variety of R , x £ V be an almost regular point

and suppose that V , considered as an. analytic space, is coherent in x .

Let f : U(x) -* B be a function of C°° class defined on a neighbourhood U(x) _of
,n

x in R

If f l / >, -= 0 there exist some polynomials g , . . . ,g and some C. func-

tions a . » . . . » a » defined on a neighbourhood U ' ( x ) of x , such that :

q
f (y) -- z c^(y) g^(y) , y y £ u * ( x ) and g^ i = 0 .

i=i ' V

Proof : By hypothesis there exists a neighbourhood D(x) of x in V and

some polynomials g,,...,g such that : g. i = 0 , i = 1 ,...,q , for any

y £ D(x) the ring 7(V ) is generated by g ,...,g .

For any y £ J)(x) the germ f of f is, in virtue of lemma 1 , of the form

q
( 1 ) t - Z (a^) (g^) where (a^) £ 1R[[X^ ,..., Xj] .

i=i y y y
By a result of Malgrange (see [8]) from ( 1 ) we deduce that f is a linear combi-

nation of (g. ) "with C coefficients and the lemma is proved.
x

LEMMA 5. - Let V be an affine, compact, almost regular subvariety of 1R and

f : U -»JR, a function of class C00 defined on a. neighbourhood U of V .

Let K be a compact set of U , and suppose f | s 0 , then there exist some

polynomials g , , . . . , g and some functions a . » . . . » a of class C°° defined

on a neighbourhood U^ ^_ K such that :

<1
t(x) = Z a . ( x ) g ( x ) , V x £ U .and. g . = 0 , i = 1 , . . . , q .

i=i -L -L fL -^ ly

Proof : V is almost regular and compact then there exist some polynomials

g ,...,g such that ; g.i = 0 , (g.} generate ^ (V ) ^°r any x £ V
1 •L -"Iv 1 i=1,...,q x

and if x ^ V then there exists i such that g. (x) •f- 0 .

For any x £ U there exists a neighbourhood U and some functions of class

C°° : (a^ such that
1 i=1, . . . ,<l

0) f(y) = z a^y) g . (y) , V y £ u .
-1=1 J J x
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In fact, if x £ V , (t) is a consequence of lemma 2 , if x ^ V then

there exists g. such that g.(x) ^ 0 and we can write f(y) = t(y)/g. (y) . g.(y).

So we have proved that there exists a finite open, (in R ) , covering

{ U I of K and functions ( a t of class C°° , such that we
( i - 1 . .r j=1». . .»q.i~' • • • • • b • Ai=1 , ... ,s

q
have : f(y) = Z (^(y) g.(y) , V y e U. .

j=1 J J

Let ( p . j be a partition of unity of class C relative to the
1 i=1,... ,s

covering [U.}
1 i=1....,s

The we have :

s s q ^
f(x) = f(x) . Z p (x) = Z p.(x) . Z a_(x ) g (x) =

i=1 i=1 j=1 J J

i (! s i
= Z p. (x) a (x)g.(x) = Z g_(x) . Z a (x) p (x) =
i,j J J j=1 J i=1 J

q
= Z a.(x) g.(x)

J=1 J "

s
where a. = £ a. p.

J i=1 J 1

The functions a. are of class C°° and the lemma is proved.
«]

Proof of theorem 2. : We have f - p| =. 0 then it is enough to prove the

theorem for the function g = f - p such that g| = 0 .

Lemma 5 affirms that there exist some polynomials g..,...»g and C°°

functions a » . . . » a defined on a neighbourhood Uy of K such that :1 o K
q

g(x) = Z a.(x) g.(x) , x £ U and g i = 0 , j = 1 , . . . , q .
^ J J K j|^

It is now possible, by the classical Weierstrass approximation theorem, to choose
q A

polynomials a such that the pblynome Z a. g. + P satisfies the conditions
J -^ < J J

of theorem 2.

Remark : The proof of theorem 5 is quite similar.

The proof of theorem 1 is of the same type b;ut more difficult because in gene-

ral we need infinitely many elements of r,,(^ ) to generate ^(V ) , x e V .
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After we use Whitney's approximation theorem instead of Weierstrass theorem.
Theorem 1 is contained in [ 2 0 ] .

§ 2 . APPROXIMATION THEOREMS IN THE CASE OF MANIFOLDS

It is a natural problem to see if it is possible to deduce from theorems 1 , 2 , 5
some results of the following type :

1 ' ) let X , Y be two real analytic spaces and f : X -> Y a continuous map, then f
can be approached by analytic maps f. : X -* Y such that any f. is in the same
homotopy class of f .

2 ' ) let X , Y be two affine, compact varieties and f : X -̂  Y a continuous map,
then f can be approached by a sequence of morphisms.

5 ' ) let X , Y be two compact algebraic spaces and f : X--»• Y a continuous map,
then f can be approached by a sequence of morphisms f : X -*• Y such that any
f is in the same homotopy class of f .

It is also possible to see for "relative problem" of type 1 ' ) , 2 ' ) , 5 ' ) .

In the next proposition we shall give a partial solution to problem 1 ' ) .

PROPOSITION 1 . - Let X be a coherent real analytic space and suppose that for
any connected component X. f̂_ X we have dim X. < + oo .

Let Y be a real analytic manifold, d : Y x Y -*• R a continuous metric and
f : X -*• Y a continuous map.

Then. for any e > 0 , there exists an analytic map h : X -» Y such that :
d ( f ( x ) , h ( x - ) ) < e , V x £ X and h is homotopic to f .

Proof : We may suppose X connected.

There exis-ts an analytic proper injective map j : X —E11 , n = 2 dim X + 1 ,
such that j : X -* j ( x ) is home omor phi sm and j ( x ) is a coherent real analy-
tic space (see [ 9 ] ) .

It is then clear that it is enough to solve the problem for the analytic sub-
space j ( x ) of 3R and the function f ' = f o j , so in the following we
Bhall suppose X subspace of R11 .

It is known that Y may be considered as a submanifold of R"1 , m ^ 2 dimY-H
and there exists a tubular neighbourhood U of Y in JR"1
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By definition of.tubular neighbourhood there exists an analytic map p : U — Y

such that : p(x) = x , if x £ Y , and p is homotopic to the identity map

i : U -» U .

Any continuous map f : X -* Y may be approached by C°° maps f.' : X -*• U c: R

(see [10]) ; theorem 1 asserts that we can approach f.' by analytic maps

f" : X -* U CM"1 .

If f is close enough to f and f" to f the analytic map

f . = p o f" : X -» Y approaches f in the required sense.

Finally it is easy to verify that if f" approachesenough f then f. is homotopic

to f .

The proposition is now proved.

The demonstration of proposition 1 points out that we obtain results of type
1 t ) » 2 ' ) , 5 ' ) if the'following conditions are satisfied :

a) X and Y are imbedded in some euclidian s^jace ;

b) Y has a tubular neighbourhood.

So we can affirm that (at last following this way) we cannot solve the problem

1 ' ) if Y is singular (it is Imown that, if Y has at least a singular point, it

is impossible to find a tubular neighbourhood).

Analogously we cannot solve problem 2' ) and we can solve problem 5') only if X
(*)and Y are isomorphic to algebraic subspaces of some euclidian space and Y is

regular at any point (the existence of tubular neighbourhoods for algebraic regular

subspaces of 1R is proved in [5]).

It is not difficult to convince ourself that result 1 ' ) , if Y is singular,

result 2 ' ) , result 5 ' ) if X or Y are not imbedded are false (at least in general)

For example let :

X = i (x ,y) £ R^x2 + y2 - 9 = 0;

Y^ l(x.y) £ JR^Ix2 + (y-1)2 - 1 = 0 }

Y^= j(x,y) £ R^x2 + (y-H)2 - 1 = 0 )

^ Y = Y U Y and f : X - Y the projection of X into Y . from the origin 0'

of JR2 .

It is easy to verify that :

f is continuous but for any analytic map f : X -» Y we have f 'Cx ) cz Y
or f ( x ) c = Y ^ . - __________

(,*) In general a regular compact algebraic space is not isomorphic to a subspace

of an euclidian space (see '(5]).
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So we conclude that f cannot be approximated by analytic map and any analytic
map f ' : X - - Y is not homotopic to f .

About the problem 2 ' ) we remark the following : if it should be possible to
obtain results of type 2 ' ) then we shall also have that two compact regular affine
varieties are isomorphic if and only if they are C°° - isomorphic and this is false
(in fact for proving this last result we need a stronger version of 2 ' ) involving
approximation of derivatives).

About the problem 5 ' ) we remark the circle S may be considered as a real
algebraic subspace of ]R , and also with the algebraic structure induced by K
identifying S with R/Z . It is easy to verify that S , endowed with the last
structure, has no global algebraic function ; we'shall denote S the circle with
this last structure.

A 1 1It is now clear that the identity map i : S -*• S cannot be approximated by
morphisms of algebraic structures and any morphism is not homotopic to i .

Using theorem 1 in the relative form we can strenghten proposition 1 and we
obtain :

THEOREM 4. - Let X be a real coherent analytic space, X' a coherent analytic
subspace of X such that dim X' < + oo .

Let Y be a real analytic manifold, d : Y x Y -»• R a continuous metric and
f : X -» Y a continuous map such that ^yi is analytic.

Then for any e > 0 there exists an analytic map h : X -»• Y such that :

f| = h| , d ( f ( x ) , h ( x ) ) < e , yx £ X and, f is homotopic to h .

The idea for proving theorem 4 is the following : let X = U X the de-
nON n

composition of X into irreducible components ; then one, using proposition 1 ,
approximate fl by f : X -» Y , after, without changing f I , one1 x n x-
approximate f| . . . .

^ u ̂
The family [X } is locally finite so we can construct an analytic appro-

ximation of f .
Theorem 4 is proved in [ 1 1 ] .
A problem tied to problem 1 ' ) is the following

1 " ) Let X be a coherent real analytic space and (B -> X , G , F) an analytic
fiber bundle with structural Lie group G and fiber, F . Suppose F is an analy-

(- x-) In fact one proves that if two affine varieties X , X' are isomorphic then
their complexifications are birationally equivalent.
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tic manifold and y : X -» B be a continuous cross section.

V/e ask if it is possible to approach y by analytic cross sections A partial affir-

mative answer is given by

PROPOSITION 2. - Let X .be an analytic manifold and B ^ X an analytic fiber

bundle the fiber of which is a manifold. Let d : B x B -*• R be a continuous metric

on B , X' a coherent analytic sub.space of X and y : X -*• B a continuous cross

^section such that y j , is analytic.—_——_____^__ ' j\.
Then for any e > 0 there exists an analytic cross section y : X -» B such that :

——————————— Q^ _______^_________^^^————.

^ a l X ' = ^X ' ' ^Y^) ' ^x^ < £ ' ^ x c x and ^a is homotopic to y .

Proof : B is an analytic manifold then, by proposition 1 , the map y : X -*• B

may be approached by analytic maps y . : X -» B such that Y | v ^ = Y • l ^ •i X i X

In general the maps a. = ' T T o y . : X -*• X are not the identity but, if y. is

close enough to y , we know that a. is an isomorphism of analytic manifolds.

It is now clear that y . = y . 0 a . : X - » B is an analytic cross section of B

and, if y. is close enough to y , then y. satisfies the condition d(y.(x) ,

y(x)) < £ , V x £ X .

If x £ X' we have a. (x) = x then y . (x ) = y . ( x ) = y(x) . The proposition 1

asserts that, if y. is close enough to y , there exists a homotopy y. tieing
t A

y. to y ; it is clear that y. ties y. to y

The proof is acquired.

As a consequence of the theorem 4 and the proposition 2 we can prove the follo-

wing

PROPOSITION 5. - Let X , dim X < + oo , be a real coherent analytic space and

B -^ X a topolog.ical principal fibre bundle of structural group G . If G is a

connected (or a compact) Lie group then there exists an analytic fiber bundle
71

B —> X that is topologically equivalent to B

Let X be a real analytic manifold and G a Lie group.
7l!

Let B. —> X , i = 1 , 2 , be two analytic principal fiber bundles with struc-

tural group G , then B is analytically isomorphic to B^ if and only if B, is topo-
logically isomorphic to B^ _._____________________________\_____

(•x-) Here we need that y. and their "first derivative" approach y and its first
derivat^e and this is possible by theorem - 1 .
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Proof '' ̂  is known (see [ ^ 0 ] ) , that if the Lie group G is connected then, in
the bundle B^ -» X , the structural group may be reduced to a compact subgroup G'

For any n £ JN there exists a universal bundle u ( G ' , n ) -» D ( G ' , n ) relative
to the group G' ; it is known (see [ 1 0 ] ) that the universal bundle U ( G ' , n ) - » D ( G ' , n )
may be endowed of real analytic structure.

To prove the first part of the proposition it is enough to show that any conti- .
nuous map <p : X - ' • I ^ G ' y n ) , n = dim X , is homotopic to an analytic map
(p^ : X -»• D ( G ' , n ) and this is proved in proposition 1 .

To prove the second part of proposition we recall that, given the fiber bundles
B^ , B^ , there exists another fiber bundle : B -» X such that B is topologi-
caJly (analytically) isomorphic to B if and only if B, _ has at least one con-* >
tinuous (analytic) section (for the construction of B see [ l 5 j ) .

v It is now clear that the proposition 2 proves the second part of this proposi-
tion.
Proposition 2 is a particular case of the following

THEOREM 5. - Let X be a real coherent analytic space, dim X < oo and X* a
coherent analytic subspace.

Le'^ B ^ X be a real analytic fiber bun die of structural Lie group G and
fiber the analytic manifold F

J^et d : B x B —•E a continuous metric, y : X -*• B a continuous cross section
such that y| is analytic.

Then, if G is connected, for any e > 0 there exists an analytic section

v : X -» B such that :a —™^—

^X' = ^Ix' ' ^(^O » Va^^ < £ » V x 6 ' X and y is homotopic to y .

•Remark : It is possible to prove a version of proposition 1 and 2 for compact
regular algebraic sets of R11 (the proofs are formally the same).

Also a weak form of proposition 3 may be proved for the compact algebraic sub-
sets of IR11 .

§ 5.. AN APPLICATION OF THEOREM 2

Let V be a compact differ en liable submanifold of JR11 ; J. Nash in [14], has
put the following problems :
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I) does it exist an affine regular variety V isomorphic (as differentiable ma-a
nifold) to V ?

II) if there exists V , is it possible to realize V as a submanifold of JÊa a
close to V ?

Nash has proved that there exists an affine variety V such that V has an ana-a a
lytic component V that solves problems l) and I I ) . In the terminology we have
introduced we can say that Nash has solved problems l) and II) with a regular com-
pact algebraic set V . Using theorem 2 we can prove that the problem l) has an

a ( * )affirmative resolution and problem II) can be solved if n > 2 dim V . W e now
shall give some definitions to explain'problem I I ) . Let L , L* be two linear
r-dimensional subspaces of 1R and x , . . . , x , y , » . . . » y a system of ortho-
gonal coordinates of M such that : L= { ( x , . . . , x , y , , . . . , y ) | y . = . . . = y = 0 ) .
We shall say that L' is an e-approximation of L if L' has equations of the
form

r
y . = E a. •. x . + c . , i = 1 , . . . , n-r1 j=i 1J 3 z

2 2with the condition Z | a . I -»- £ c . < e
i , j 1J

Let V be a compact differentiable manifold of dimension r differentiably em-
bedded in JR11 . At each point x £ V take the disc D of radius 6 contained
in the n - r dimensional linear space orthogonal to V .
If 6 is small enough it is known that the union of all these discs has the struc-
ture of a fibre bundle over V .

(*^)This bundle is called the normal bundle of radius 6 and it is denoted
by B ( 6 ) .
The set B ( 6 ) is an open neighbourhood of V in IR11 and the projection
P ' : B ( 6 ) -» V defined by : p(y) = x if y £ D is a differentiable map,
Let V be a differentiable manifold of R11 , we shall say that V is an e-appro-
ximation of V if :

1°/ V is contained in the tubular neighbourhood B ( e ) of V
2°/ p : V -» V is an isomorphism of the differentiable structures
5°/ for any x C V the tangent linear variety to V* at x is an e-approxima-

tion of the tangent linear variety to V at p(x) .

C*) The author conjectures that problem II) can be solved without any restriction
on the codimension of V .
(**) B ( 6 ) is also called the tubular neighbourhood of radius 6 <
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Let V be a differentiable submanifold of R11 we shall say that V ' has, (in JR11)

an algebraic e -approximation if there exists an affine regular subvariety V of

IR, that is an e -approximation of V .

We shall say that V admits algebraic approximation if, for any e > 0 , V. has an

algebraic e -approximation.

A formulation of problem II is the following :

Any compact .differentiable submanifold of H^ admits -algebraic approximation ?

It is possible to prove the following

THEOREM 6. - Let V be a compact differentiable submanifold of IR11 , n > 2 dim V ,

then V admits algebraic approximation.

COROLLARY. - Any compact differentiable manifold is isomorphic to a regular affine

variety.

Theorem 6 is proved in [4] we shall give here an idea of the proof. We need the

following

LEMMA. - Any compact differentiable manifold is in the same cobordism class of a

compact, regular affine variety.

Proof : Let P (K) be the n-protective space on the real numbers. We denote

by z , . . . , z » w , ... ,w , m ^ n two systems of coordinates of P (lR) and

P^H) .

We put :

Ym^ = l^^i e ̂  x WVo ̂ l ^•^Ym- °i

It is known (see [16]) that the manifolds P (R) , H (B) are generators of cobor-

dism ring.

Then to prove the lemma it is enough to show that P (B) has a structure of regular

affine variety.

Let us consider the map ^ ; P (E) -*-JR defined by
j-if n

"ik^ = WJ, A
It is easy to verify that the map X ; P ()R) -^JET11 '1 ' defined 15y

X(x) = {^(x)^ ^^ ^ is infective, of maximum rank at any point and the set

x(P^(jR)) is the regular affine subvariety W of JR.'^ ) defined by the equations ;
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n
2 X. . = 1

i=o lz

'ik îr = ̂ l ̂

k̂ = ̂  i»k»l»r = o » • • - » n -

So we have proved that P (lR) is isomorphic to W ; it is now easy to verify that
W is regular affine subvarity of JT ' .

Let V , V be two differentiable manifolds and suppose that V is in the
same cobordism class of V .

By Whitney's embedding theorems, (see [ 1 7 ] ) , we may suppose that there exists
a differential submanifold, with boundary W of R such that, if x , . . . , x
are coordinates in M , we have :

1 ° / W c: ( ( x . } | x > 0) , the boundary 6W = V U V of W is equal to
w n l^ilK+l = ° ! •

2°/the set W = W u ( ( x , . . . . , x ) | (x , . . . ,-x ) £ W J is a differentiable
submanifold of R11'1'1 .

5°/ the hyperplane x = 0 cuts transversally W . '

Furthermore if V is an affine regular variety we may suppose that W is the
disjoint union of a regular affine Subvariety V' of B , , isomorphic to V ,
and of a differentiable submanifold V* isomorphic to V .

The manifold W shall be Said the torus constructed on V and V .

The idea of the proof of theorem 6 is the following : let V be a compact
differentiable manifold and V a regular compact affine variety in the same co-
bordism class. Let W be the torus constructed on V and V . Then we approach
W by an affine regular variety W in such a way that the intersection of W
with the hyperplane x = 0 is composed by two analytic compact manifolds V ,
V* • that are e -approximation of V , V^ for some e .

But if in the approximation process we use theorem 2 instead of the classical
Weierstrass theorem we can obtain V = V . So we have that V \J V* is a regular
affine subvariety of JR. , V ' = V is an affine regular subvariety and we can
conclude that V ' is affine and an e -approximation of V .
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