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A DILATION THEOREM FOR OPERATORS ON BANACH SPACES
by

Elena STROESCU

Introduction. -

Let R" be the set of all non-negative real numbers and B (¥ ) the
Banach algebra of all linear bounded operators on a Banach space ¥ . In this pa-
per, we present a dilation theorem by which an object {¥ , I , U} dilates into
{f,0,P, T, V}; where ¥ and ¥ are Banach spaces,p is a bicontinuous iso-
morphism of ¥ into ¥ , P a continuous projection of ¥ onto ©(¥%¥) ,

F={Tt}tER+C B(¥) and I‘={Tt}t€R

a B X )-valued linear map on an arbitrary algebra (G estimated by a submultipli-

+CB( %) are operator semi-groups, U is

cative functional and V a B( ¥)-valued representation on @ such that

V. 'Tt = Tt Va, , for every a€Q =and t€ R . This theorem is an extension of
some previous results (see [8] , [9]) ; it has arisen from the concern to characte-
rize restrictions of spectral operators on invariant subspaces (or operators which

dilate in spectral operators) by a map replacing the spectral representation.

Notations. -

Throughout the following C denotes the complex plane ; N = {0,1,2,...};
Q@ an arbitrary algebra over C with unit element denoted by 1 ; K a submul=-
tiplicative functional of @ into R (i.e. KabSKa K, for any a,b€0) such
that K. =1 ; X a Banach space over C ; #( %) the Banach algebra of all 1li-

1
near bounded operators on ¥ over C ; I the identity operator. Let T,

B}

T2E B( %) two commuting operators ; then one says that T. is quasi-nilpotent
equivalent with T, and denotes T, ~ T, , if 1lim ||(Tl- T,)" ] /n =0 . A family
n->o

of operators {Tt}té r* CcB(x) is called semi-group if T

for any t and sER+ .

=1 and Tt+s= T.T

0 t7s

THEOREM. - Let {Tt}té g+ € B(%) be a semi-group of operators and U :Q+>B8B( %)

a linear map such that U, =1, HUa I <K, for any a€d .

Then, there exists a Banach space X , an isometric isomorphism ¢ of
¥ into ¥ , a continuous projection P of % onto (%) , a semi-group

T = {i't}te R+ CRB( %) and a representation V : g + B ( ) such that :
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(o) Il =15 %)l =T, , foramy t€R" 5V, =T ena
”Va” < Ka , for any a€QC .

(i) Vai‘_r = 'ETVu , for any a€Q@ , T€R+ .

(ii) P'i‘T v, o (x) = cp(TTUax) , for any a€Q , rer’ , XEX o

- o +
(iii) ¥ is the closed vector space spanned by {TtVaq)(x);otEQ, te R ,x€ %}.

(iv) Let s €R+ 5 then we have the following equivalences
1° Ts p(x) = cp(Tsx) , for any x€% ;
2° PLV, ®(x)= 'i'sta o(x) , for any o€Q@ , x€%;

3° UrT =TU, , forany a€Q .

(v) Let bEQ ; then Vbcp(x) =0 (be) , for any x€% 1is equivalent

with Uab = U&Ub , for any a€Q .

(vi) Let o€ R" and Be€a commuting with all the elements of @ such

- = . 5o_v )R =
that U . =UU, , TU =UT , for any a€Q ; then ”(TG VB) |

” (Tc - Uev)n” , for every n€lN .

R+><Q x(t ,8-)
Proof : A) Let us consider the Cartesian product % = 1T
(t,a)€ R*xa
+ (t,a)
a £
and the direct sum (B )_= ® L % , where zt.e)_ g for
(t,a)eR™xQ

+
a . .
every tert , a€EQ « An element y€ IR x is a family

)

(yt,a (t,a)e RYxa

(many times we write y = (yt,a) ) of components (yj(t,a) =Yg .a €%, for every

t,a

+ (R+x0,) R+xa ..
t€ER , a€Q@ . If y€% <X , then (y)t o= Y% s # 0 for only a finite
s ’

number of elements (t,a)€ r*xa .

Let us consider a map : . +
a

0= (0b?) + of g (Rx0) into % <0

(t,a) ER'xQ

defined by

(®'xa)

Ay = (Tt I TU ) , for every yE€% .

Y
s,b s ab’s,b’t,a

It is easy to see that ® 1is a well defined linear map. Then, we denote by i

the range of ® and by § an arbitrary element of .
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For every §€% , we have :

+
plg) = yex® X gy -p .
-~ + -
We define a function w : ¥ -~ R by w(§) = inf ekl vy, L0,
veo-l({(§)) sp ° ol Yo

for every $€% ; let us prove that w is anormon % . Let p€C be non-zero,
€% and AF) = {uy 3 y€OL({F)) ; then we show that ® L({u§}) = A(u§). In-

)

oy ,

t,a=

~ . =1l,;a -
deed, let uye A(uF), i.e. ye® ~({F}), then uy = (u'I‘t T T U Yy
s,b i

hence uyg@‘l({ui}) . Let now ZE@)-l({u?}), i.e. Bz =u§y or ® % = § , hence

y' =2 €0({§}) and 2z = uy'€ A(uF) . Then w(uf) = inf sl &)l 2. .l
" 2€07 ({u5}) 2 %l %o
= inf ol & Iz, Jl=  inf e, g Iy,
z€ AuF) s,b s % $P yepml({5) s ° “ s5b

[u]  inf tolr Tx Iy, = lul @), iee wu§) = |ulu@) ;
yeo l({3)) s B RRRER

whence one deduces also that m(6)= O . Then, for u = 0 we have w(0§) = 0 and
0w(§) =0, for any F€% . Hence w(y¥) = |u|w(§) , for any Fe€X% , uecC .
al A2
Let § , ¥€% and
a a2 1, 2 =l,ra 2 =1, 42
a3t + 72 = e s yreot s, Yo (13D,

then obviously we have A(§r1+ ?2) c® -1({5’1+ 372}) and

RN RN ERN A

w3+ §°) = inf L2
zE@'l(y + §°)

< inf ol I g Nzl
sea(ghe §2) e Bl B e

. 1 2
= ,inf IolTll gl vg ot vg ol <
Peo i), e o e o P e T

AL N T S P P |
S,b 4 ,b s

<
vee (3% s

inf
yreo " (15'h)
ive. (38 52 < w3+ 0(F?) , for 11§, 5%
Then, from the definition of w , for every $€% , we have :

1) w@ <z |k llv,, s for any y€OTN((§) ana
b 3

bl

2) 19, o li<ll Ty || Kgu(@) 5 for ter" , aca .

Hence w 1is a norm on ¥ ; we dencte by 1 the w-completion of ¥ and the norm

on i also by w .
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+
B) We define an isomorphism ¢ of % into .'fR xQ by Cp(x)=(TtUaX)t N

= (Tt st TV Sos S1p X)t,a €% , for every x€% .
t]

Applying 1) and 2) we get
3) x|l < wlo(x))< [|x|| , for any x€% .

Therefore @ 1is an isometric isomorphism of % into %X .

We define a projection P of X onto o(%) , by Py = ( )
every F€% . Applying 3) and 2), we get w(P¥) = w(CP(370 Hy l“ (}7), i.e.
L) w(P§) < w(§) , for any F€% . Hence, P can be extended by continuity

to a continuous projection of I onto @(%) , that will be denoted by the same

symbol.
Let now 1€ R+ 3 then for every ?Ei we put

T-r = (Tt z TS+'I.' Uab ys,b)t ,:a = (Tt z Tc Uab Vot ,b)t,a
s,b * Oy
= ! @ = ek
<Tt z Ta Uab 2o,b)t,a 7 2 €% ®
0,b
where we denote s + 1T = 0 ; 250 = Yoot b for o>t and ‘zo,b= 0, for O<go<T ,

with b€ad .

We see easily that 'i’l_ is a well defined linear map of ¥ into X .
Let us prove that also it is continuous.

+
For every 3€% , denoting A(t, §) = {25 I(R xa) ;’£

o,b = ycr--'c,b for

o>1 and Qo p =0 for Ogo <7t ,D€Q, yE@'l({i‘r}) } , we see that

o, F)c (9-1({'5T ¥1) . Then, we have w(E‘T ¥) =’1' 1(%{1({1‘ 1 cfb HTo “K‘b”%g,b“g
inf z T 3 = inf T
B en(r,§) o,b 1% 11 1% FETHEF) o,p 1% 1% | Your o
© i 2 Il <ln ), e
5) o(T, §) < T || wl§) , for any F€E .

Thus, for every T ert , 'i( can be extended by continuity to an element
of B( %) , that will be denoted by the same symbol. Then, we see easily that
PTTcp(x) = cp(TT x) , for any x€% .
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Hence ”TT x|l = wl CP<TT x)) = w(P“fT o(x)) < w("i'TCP(X))S ||TTH wlp(x)) =|| TT” =,
i.e.
6) ”TT x|l < ”TTH x|l , for any x€% . At last, we see easily that
{E‘T}TE . is a semi-group of operators, that we denote by T .
c) Let us define a representation V . Let o€Q ; then for every ?Ei .
we put
vV g=(T : TU .y ), =(r £ T U T oy L)
o t s,b s "aab Ys,b’t,a t 8,0 s "ac béac s,b’t,a
=(T, £ T U u ) = Ou = U€X , where
s ac s,c’'t,a
s,c
G = {b€EQ ; ab =c} and u = I ¥y , for s€R' , cea .
c s,C S,b
t€Q
c
The map V  : 2 > X is well defined. Indeed, let S}l = ?262 3 then there exists
+ R
yl s yZEI(R xa) such that S"fl = @yl and 572 = ®y2 , hence
Tz T U,y .=T I T U, ¥y £ ter" , aca
t s "ab Ys,b T Tt s “ab Yg,p » 'OT AV € ’ :
s,b s,b
Then, T, & T U L =17 v 2 for t€R' and a' = aa€q
> s a' Vs,b ot s “a'b Ys,p °

s,b

with a€Q . We see easily that for every a€Q, ch : ¥ >% is a linear map and

S,b

V. §=%, for any $€% . Moreover, V : @ ~ & (X ) is a representation (see [4] ;
for a vector space X , &£(X) denctes the algebra of all linear maps of X into
X ) . Now, we prove that, ch X % is continuous, for every o€Q . Let oa€Q ,

+
(B™a@) .

$€X and Ala , §) = (u€k Yoy o €@ 71({$1)} , then ve see

= I
¢ vea
Ao, F) C®_1({Vu #}) . Therefore, we have :

WV §) =  inf ol kg <
o uG@..]_({va?}) s,c s K'b s,C =
< inf oo llx flu. ] inf DI SN 10 | I B (P
u€nla,j) s,e 5 % yepTl(F)) s,e 71 beQ 8,P
<int sl liklly, Nk, inr 2Tl v, = o3
y€®-1({?}) s,b s ob s,b o yE@'l({?}) s,b s I{b s,b] o ’
i.e. for every a€Q we get
7 w(Va 7)< K, w(§) , for any FEZI . Hence, V, can be extended by

continuity to an element of B8(%) that will be denoted by Vv, » for every a€Q.

24
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Thus, (0) is completely proved. The property (i) is immediate, since

+ ~
fo Q F = 1 -
r every af and TER , we have TV, ¥ (Tt S):b Ts+r U b ys,b)t,a
~ E] ~

= Va T, ¥ , for any ?65? . Using the definitions of ¢ , P , Voc and T , for
0€Q, 1€ Rt , ve obtain immediately (ii), (iii) and (v).

D) Let us prove (iv). From T s olx) = <Tt T, U, x)t,a and

= ) o ;
cp(Ts x) = (Tt U, Ty x)t,a , we see that 1° and 3° are equivalent.

Now chosing o =1 in 2° , and using P'chp(x) = cp(T_l_ x) for T€ r* ,
x€X (see (ii)), we get 1°.

Conversely, taking into account of (ii) and writting 1° with U, x ins-
tead of x , for a€Q, we get 2° .

At last, we show (vi). Let oeR+ , and B€Q, as in the assumption,

also let neN and $€% ; then, we write :

=~ n. _ @2 nk 2, =k .n-k . _
(F, -V = 1 DT () Tove -
_n n-k 2 n-k B A
=3 O (n 2T Uy ™ Uy, )y e = OV R,
k=0 S,b

where v 1is defined by

n x A X N
Vs = I (-7 (o) T g™y, for yEBTUF)) , seR , and

Denoting by A(o, B, n, §) = the set of all element v so defined, we
see that :

Ao, B ,n, F)c @'1({50 - VB)n $1).

Then, we have :

w((F, - V)" §) = veeﬁf{i; v m90) Il bl <
Y LA LY SN
e LR LN EN kgo (™ G ) <
S R BTSN N AN
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n
)n-k (k) Tlg U’g-k | w(§) . Therefore, for every n€ N ,

n
Iz (-1
k=0

we have m((i‘c— VB)n < (i‘c- Ue)n” w(§) , for any F€Z ; hence

”(fg- VB)nH < ”(Tc- UB)n” . Conversely, since (‘50- VB)n o (x)= c;;((T0 - UB)n x)

for any x€% , we get easily ”('fc- VB)nH < | (Tc - Ue)n”

DEFINITION. - Let {%¥, I , U} be an object, where % 1is a Banach space,

T = {Tt}t €r* cB (%) a semi-group of operators and U : @+ B (X) a linear map

as in the above theorem. Then, an object {x s, P, T, V} where X is a

Banach space, ¢ a bicontinuous isomorphism of ¥ into ¥ , P a continuous pro-

Jection of I onto 9 (%) , I = {ic}téR*' cB(%¥ ) a semi-group of operators and

V:a-> B(¥) a representation such that Vl =1, Va TT = TT Va s for any

a€Q , 'reR+ , is called an Q-spectral dilation of { %, I , U} if the property

(ii) is satisfyed. An Q-spectral dilation is called minimal if also we have (iii).

Remark 1. - When @ 1is a Michael algebra and U : @+ B(%) a linear continuous

map, then K 1is the seminorm which estimates U .

‘Remark 2. - Let TEB(X) ; then the above theorem is obviously true with
{Tn}nEN instead of {Tt}té Rt -

Application. - Let % be an admissible algebra in the sense of [1]. Then, an
operator T€ B( %) is called Y-subspectral (see [9]) if there is a Banach space
containing ¥ as a closed subspace, a continuous projection P of f onto ¥ ,

a Y -spectral operator TER(E) having a U-spectral representation V : Q@ - 8( i)
with the properties szCf and Pi'fo = ‘fPfo , for any f€Y , x€%X , such
that T|, =T .

We have the following characterization for U-subspectral operators : an
operator T€®B(X) is Y-subspectral if and only if there is a linear map
U:%> B(%) with the properties :

(1) u=I,
(2) Uer, =0p Uy s
(3) |]Uf|| < ML, for any fey ,

(where M is a positive constant and L : U+ B(Y) , a linear map satisfying
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(5) Mgl <zl ln 5 for any £, g€% and the function

(33) £ > LfE is analytic in Bsupp f , for every f€%Y ;

Y is a Banach space), such that W, =0
and [91).

g T, for any f€Y and U-T , (see [8]

If % 1is an admissible topologic algebra with the topology of Michael
algebra, then the property (3) of U is replaced by its continuity.

For instance, let Y= {z€C ; |z| = 1} ; one denotes by P(¥)(p < =)
the Banach space of the all complex-valued functions f on Y such that |f|p is
integrable with respect to the Lebesgue measure. (Thus a function f€ P(y) if
and only if the function f defined by f(8) = f(eie) for 6€ [- m, + 1] belongs

P _1
to L(2w ae)) .

In the same way one considers the Banach algebra Lw(Y) of all complex=-
valued essential bounded functions with respect to the Lebesgue measure on Y ,
(i.e. a function f€ L (Y) if and only if the function £ defined by
7(8) = f(eie) belongs to L ( %‘ de)) .

Let p=1 , as usual, the space HP is the set of analytic functions in
D={z; |z| <1} such that f. defined by fr(e) = f(rele) , for 8€ [- m, +n] ,

belongs to Lp(—2-i-— d8) for every O<r<1 , or with the other words, H® is a
closed subspace of functions f of IP(Y) such that frm e1n® f(ele) =4d6=0 ,

n=1, 2, 3, ... -

Taking %= IP(Y) and U= 1L1"(Y) , we define a representation
V:%U~> B(X) by :
ch f=0@f , for every cpELm(Y) , ferP(y) .

From the theorem of M. Riesz ([3], cap. IX) we have LP(y) = HP @ﬁz .
1 <p < o , where ﬁg is the space of complex-conjugate functions of H® beco-
ming zero at 2z = O ..Let P be the continuous projection of IP(Y) onto HP .
We define the continuous linear map U : L7(Y) » B(#P) by :

Ucp £f =P Vw £ , for every ®e€ L (Y) , feHP .

Obviously, U 1is a continuous linear map with the above properties (1)

and (2). Then an operator T€®(H®) such that U. T =T U for ©€ L(Y) and

- ® ®
T~ U 10 is a L (Y)-subspectral operator. For p =2,V 16 is the bilateral
e e
shift and U . is the unilateral shift (see [2]) .

10
e
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