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DEGENERACY OF HOLOMORPHIC MAPS VIA ORBIFOLDS

by Erwan Rousseau

Abstract. — We use orbifold structures to deduce degeneracy statements for holo-
morphic maps into logarithmic surfaces. We improve former results in the smooth case
and generalize them to singular pairs. In particular, we give applications on nodal
surfaces and complements of singular plane curves.

Résumé (Dégénérescence des applications holomorphes par le biais des orbifoldes)
Nous utilisons les structures orbifoldes pour obtenir des résultats de dégénérescence

des applications holomorphes dans les surfaces logarithmiques. Nous améliorons cer-
tains résultats déjà obtenus dans le cas lisse et les généralisons aux paires singulières.
En particulier, nous illustrons nos résultats sur les surfaces nodales et les complémen-
taires de courbes planes singulières.

1. Introduction

It is now classical that the properties of holomorphic maps in compact com-
plex manifolds are closely related to the properties of the canonical line bundle.
More precisely, one can expect following Green-Griffiths [18] that the following
is true:
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460 E. ROUSSEAU

Conjecture 1.1. — Let X be a projective manifold of general type, i.e. its
canonical line bundle KX is big. Then there exists a proper subvariety Y ( X

which contains every non-constant entire curve f : C→ X.

It can be observed that positivity properties of the canonical bundle can be
generalized to a more general situation than the usual compact setting, and still
give properties of degeneracy for holomorphic maps. For example, a classical
result of Nevanlinna is

Theorem 1.2 ([30]). — Let a1, . . . , ak ∈ P1 and m1, . . . ,mk ∈ N ∪∞. If
k∑
i=1

Å
1− 1

mi

ã
> 2,

then every entire curve f : C → P1 which is ramified over ai with multiplicity
at least mi is constant.

Following Green-Griffiths’ philosophy, this degeneracy property should cor-
respond to the positivity property of some canonical line bundle. Here one
easily observes that the right canonical line bundle to consider is

KP1 +
k∑
i=1

Å
1− 1

mi

ã
ai,

which can be seen as the canonical line bundle of the pair (P1,∆) where ∆ =∑k
i=1

Ä
1− 1

mi

ä
ai.

More generally, following Campana [6], a pair (X,∆), consisting of a com-
plex manifold X and a Q-divisor ∆ =

∑k
i=1

Ä
1− 1

mi

ä
Zi, is called a geometric

orbifold. Positivity properties of the orbifold canonical line bundle, KX + ∆,
should provide degeneracy statements for orbifold entire curves f : C→ X, i.e.
entire curves with ramification (see section 3 below for precise definitions).

In this paper we shall study the case of surfaces improving and generaliz-
ing results of a previous work [31]. The point of view we adopt here consists
in working with the different notions of orbifolds that have appeared in the
literature: the V -manifolds of Satake, the orbifolds of Thurston, the algebraic
stacks of Grothendieck, Deligne and Mumford, and the geometric orbifolds of
Campana.

In particular, as initiated in [8], we extend to the orbifold setting the strat-
egy of Bogomolov [3] which uses symmetric differentials to obtain hyperbol-
icity properties for surfaces which satisfy c21 − c2 > 0. More precisely, we use
Kawasaki-Toën’s Riemann-Roch formula on stacks ([19], [34]) to produce orb-
ifold symmetric differentials.
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DEGENERACY OF HOLOMORPHIC MAPS VIA ORBIFOLDS 461

Then, in the case of smooth (geometric) orbifolds (i.e. X is smooth and
d∆e, the support of ∆, is a normal crossing divisor), we obtain using moreover
McQuillan’s techniques [25] as in [31]:

Theorem A. — Let (X,∆) be a smooth projective orbifold surface of general
type, i.e KX + ∆ is big, ∆ =

∑
i(1 − 1

mi
)Ci. Denote gi := g(Ci) the genus of

the curve Ci and c1, c2 the logarithmic Chern classes of (X, d∆e). If

(1.1) c21 − c2 −
n∑
i=1

1

mi
(2gi − 2 +

∑
j 6=i

CiCj) +
∑

1≤i≤j≤n

CiCj
mimj

> 0,

then there exists a proper subvariety Y ( X such that every non-constant
entire curve f : C → X which is an orbifold morphism, i.e ramified over Ci
with multiplicity at least mi, verifies f(C) ⊂ Y .

One advantage of this new approach is that we can generalize it to the
singular case, for example when the orbifold surface (X,∆) is Kawamata log
terminal, following the terminology of the Mori Program (see for example [23]).
This point of view unifies several former results (e.g. [12], [17] and [5]) where
people have noticed that singularities can help to prove degeneracy statements
on holomorphic maps. The key point here is to realize that singularities help to
produce orbifold symmetric differentials on the stack associated to the orbifold.

As applications, we obtain as a first example (compare with [12] and [17]):

Theorem B. — Let C ⊂ P2 be a curve of degree d ≥ 4 with n nodes and c
cusps. If

−d2 − 15d+
75

2
+

1079

96
c+ 6n > 0,

then there exists a curve D ⊂ P2 which contains any non-constant entire curve
f : C→ P2 \ C.

The above numerical conditions should be seen as the equivalent of

c21 − c2 > 0

in the orbifold setting. A second example is the case of nodal surfaces X ⊂ P3

of general type of degree d with l nodes where we recover a result of [5] giving
the existence of orbifold symmetric differentials as soon as l > 8

3 (d2 − 5
2d),

which is unfortunately not satisfied for d = 5 where the maximum number of
nodes is 31.

We extend our study to higher order orbifold jet differentials and obtain,
towards the existence of an hyperbolic quintic,

Theorem C. — Let X ⊂ P3 be a nodal quintic with the maximum number
of nodes, 31. Then every classical orbifold entire curve satisfies an algebraic
differential equation of order 3.
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462 E. ROUSSEAU

The paper is organized as follows. In section 2, we recall the basic facts on
orbifold structures. In section 3, we describe orbifold symmetric differentials
and orbifold morphisms. Then, in section 4, we study some properties of holo-
morphic disks in orbifolds. In section 5, we recall Kawasaki-Toën’s Riemann-
Roch formula on orbifolds. In section 6, we study the smooth case and in
section 7, the singular case. In section 8, we give applications to complements
of plane curves and nodal surfaces. Finally, in section 9, we give definitions and
applications of orbifold jet differentials.

Acknowledgements. — The approach using stacks has been suggested to us by
Philippe Eyssidieux and Michael McQuillan, so we would like to thank them
warmly for their interest in this work. We also thank Frédéric Campana for
many interesting discussions. Part of this work was done at the Fields Institute
during the thematic program on Complex Hyperbolic Geometry and Related
Topics of winter 2008, so we thank the organizers of this semester and the
Fields Institute for support and the excellent environment provided during this
period.

2. Orbifolds as pairs

As in [16] (or [13], §14) we look at orbifolds as a particular type of log pairs.
(X,∆) is a log pair if X is a normal algebraic variety (or a normal complex
space) and ∆ =

∑
i diDi is an effective Q-divisor where the Di are distinct,

irreducible divisors and di ∈ Q.
For orbifolds, we need to consider only pairs (X,∆) such that ∆ has the

form

∆ =
∑
i

Å
1− 1

mi

ã
Di,

where the Di are prime divisors and mi ∈ N. These pairs are called geometric
orbifolds by Campana in [6] and [7].

Definition 2.1. — An orbifold chart on X compatible with ∆ is a Galois
covering ϕ : U → ϕ(U) ⊂ X such that

1. U is a domain in Cn and ϕ(U) is open in X,
2. the branch locus of ϕ is d∆e ∩ ϕ(U),
3. for any x ∈ U ′′ := U \ ϕ−1(Xsing ∪ ∆sing) such that ϕ(x) ∈ Di, the

ramification order of ϕ at x verifies ordϕ(x) = mi.

Definition 2.2. — An orbifold X is a log pair (X,∆) such that X is covered
by orbifold charts compatible with ∆.
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Remark 2.3. — 1. In the language of stacks, we have a smooth Deligne-
Mumford stack π : X → X, with coarse moduli space X.

2. Geometric orbifolds (X,∆) of Campana [6] are more general since they
are not supposed to be locally uniformizable. We have an injective mapping
X → (X,∆) but most pairs (X,∆) are not in the image.

3. One can also take infinite mi. The components with mi = ∞ are added
in the quasiprojective case to compactify X.

Example 2.4. — Let X be a complex manifold and ∆ =
∑
i(1− 1

mi
)Di with a

support d∆e which is a normal crossing divisor, i.e. for any point x ∈ X there
is a holomorphic coordinate system (V, z1, . . . , zn) such that ∆ has equation

z
(1− 1

m1
)

1 · · · z
(1− 1

mn
)

n = 0.

Then (X,∆) is an orbifold. Indeed, fix a coordinate system as above. Set

ϕ : U → V, ϕ(x1, . . . , xn) = (xm1
1 , . . . , xmnn ).

Then (U,ϕ) is an orbifold chart on X compatible with ∆.
Equivalently, we have a smooth Deligne-Mumford stack π : X → X,

with coarse moduli space X, described locally as follows. For every open
polydisk D ⊂ X with local coordinates (z1, . . . , zn), such that ∆ has equation

z
(1− 1

m1
)

1 · · · z
(1− 1

mn
)

n = 0 we have:

X ×X D = [D′/G],

where G =
∏n
j=1 Z/mjZ acts on the polydisk D′ by (ζ1, . . . , ζn).(y1, . . . , yn) =

(ζ1y1, . . . , ζnyn) where we identify Z/mjZ and the group of mj-th root of unity.

Remark 2.5. — The orbifolds of the previous example are said to be smooth
(see [7]).

More examples of orbifolds are obtained looking, in the case of surfaces, at
different classes of singularities that naturally appear in the logarithmic Mori
program (see for example [23]).

Definition 2.6. — Let (X,∆), ∆ =
∑
i

Ä
1− 1

mi

ä
Ci, be a pair where X is a

normal surface and KX +∆ is Q-Cartier. Let π : ‹X → X be a resolution of the
singularities of (X,∆), so that the exceptional divisors, Ei and the components
of ‹∆, the strict transform of ∆, have normal crossings and

K
X̃

+ ‹∆ +
∑
i

Ei = π∗(KX + ∆) +
∑
i

aiEi.

1. We say that (X,∆) is log canonical if ai ≥ 0 for every exceptional
curve Ei.
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464 E. ROUSSEAU

2. We say that (X,∆) is klt (Kawamata log terminal) if mi <∞ and ai > 0

for every exceptional curve Ei.

The classification of log canonical singularities can be found in [20]. The
important point is that if (X,∆, x) is a germ of a klt surface, then it is analyt-
ically equivalent to the quotient of C2 by a finite subgroup G ⊂ GL(2,C) and
the Ci correspond to the components of the branch locus of the quotient map
p = C2 → C2/G. The ramification index over a component Ci is equal to mi.

So, we obtain new examples of orbifold surfaces ([36], [20], [28]):

Example 2.7. — Let (X,∆), ∆ =
∑
i

Ä
1− 1

mi

ä
Ci, be a log canonical pair

with X a surface, where all points which are not klt lie on b∆c, then (X,∆) is
an orbifold.

3. Orbifold morphisms and orbifold symmetric differentials

3.1. The smooth case. — Let (X,∆) be a smooth orbifold, i.e X is a smooth
complex manifold and ∆ =

∑
i(1− 1

mi
)Zi has a support d∆e which is a normal

crossing divisor.
Complex hyperbolic aspects of one-dimensional orbifolds have been studied

in [9] and, in [31], we have started the investigation of the higher dimensional
case.

We want to study orbifold holomorphic maps f : C → (X,∆). They are
defined following [7] as

Definition 3.1. — Let (X,∆) be a smooth orbifold with ∆ =
∑
i(1− 1

mi
)Zi,

D = {z ∈ C/|z| < 1} the unit disk and h a holomorphic map from D to X.

1. h is a (non-classical) orbifold morphism from D to (X,∆) if h(D) *
supp(∆) and multx(h∗Zi) > mi for all i and x ∈ D with h(x) ∈ supp(Zi).
If mi =∞ we require h(D) ∩ Zi = ∅.

2. h is a classical orbifold morphism from D to (X,∆) if h(D) * supp(∆)

and multx(h∗Zi) is a multiple of mi for all i and x ∈ D with h(x) ∈
supp(Zi). If mi =∞ we require h(D) ∩ Zi = ∅.

In the compact or logarithmic setting, symmetric differentials turned out to
be key objects for such a study (see for example [3], [25]). Let (x1, . . . , xn) be
local coordinates such that ∆ has equation

x
(1− 1

m1
)

1 · · ·x
(1− 1

mn
)

n = 0.

Let us recall the definition of sheaves of differential forms on orbifolds (see [7]
for details).
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Definition 3.2. — For N a positive integer, SNΩ(X,∆) is the locally free sub-
sheaf of SNΩX(logd∆e) generated by the elements

x
d α1
m1
e

1 · · ·x
d αnmn e
n

Å
dx1

x1

ãα1

· · ·
Å
dxn
xn

ãαn
,

such that
∑
αi = N , where dke denotes the round up of k.

Remark 3.3. — One motivation for this definition is that these orbifold sym-
metric differentials act on orbifold morphisms, i.e. for every orbifold morphism
h : D → (X,∆), h∗SNΩ(X,∆) ⊂ SNΩD. Moreover, this property characterizes
orbifold morphisms [7].

Now we consider the smooth Deligne-Mumford stack π : X → X, with
coarse moduli space X, as in example 2.4 above, and remark that

Proposition 3.4. —

π∗S
NΩX = SNΩ(X,∆).

Proof. — Note first that π∗SNΩ(X,∆) ⊂ SNΩX . Then the isomorphism be-
tween π∗SNΩX and SNΩ(X,∆) can be verified locally. Take

yα1
1 · · · yα1

n (dy1)β1 · · · (dyn)βn ,

where αi ≥ 0 for all i. Then the assertion is equivalent to the fact that the
preceding form is invariant under G =

∏n
j=1 Z/mjZ if and only ifmi|αi+βi and

αi+βi
mi

≥ d βimi e. This follows immediately from the definition of the action.

Moreover Rqπ∗SNΩX = 0 for q > 0 (see [24]). Therefore

χ(X , SNΩX ) = χ(X,SNΩ(X,∆)).

Towards the existence of global sections of SNΩ(X,∆), we will compute
χ(X , SNΩX ) using Kawasaki-Toën’s Riemann-Roch formula ([19], [34]) in the
case of orbifold surfaces.

3.2. The general case. — Following the philosophy of the previous section, we
can extend the above definitions to any orbifold (X,∆). We denote π : X → X

the Deligne-Mumford stack associated to (X,∆).

Definition 3.5. — Let (X,∆) be an orbifold. For N a positive integers, the
sheaf SNΩ(X,∆) of orbifold symmetric differentials is defined to be

SNΩ(X,∆) := π∗S
NΩX .

Definition 3.6. — Let (X,∆) be an orbifold.
1. A holomorphic map f : D→ (X,∆) is a classical orbifold map if it admits

a lift f̃ : D→X to the Deligne-Mumford stack associated to (X,∆).
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466 E. ROUSSEAU

2. A holomorphic map f : D → (X,∆) is a (non-classical) orbifold map if
f∗(SNΩ(X,∆)) ⊂ SNΩD for all positive integers N .

4. Holomorphic disks into orbifolds

In this section we would like to study some properties of holomorphic disks
into orbifolds. It is well-known that holomorphic disks into a complex manifold
can be moved off analytic subsets of codimension ≥ 2 (see [11], [10] and [21]
p.65–67). Namely

Theorem 4.1 ([10]). — If D is the unit disk, X a complex manifold and A a
closed analytic subset of X of codimension ≥ 2, then Hol(D, X \ A) is dense
in Hol(D, X) in the compact-open topology.

This result implies that removing such an analytic subset A does not change
the Kobayashi pseudo-distance dX , i.e. on X \A

dX\A = dX .

[10] underlines the importance of the hypothesis of smoothness to obtain such
results providing the example

Example 4.2. — Let Y ⊂ Pn be a hyperbolic manifold, e.g. a nonsingular
curve of genus > 1. Let π : Cn+1 → Pn and X ⊂ Cn+1 be the cone over Y .
Then dX ≡ 0. Let A = 0. Then dX\A is non-trivial since

dX\A(p, q) ≥ dY (π(p), π(q)) > 0,

if p, q ∈ X \A do not lie on the same line through the origin.

Here we would like to show that in the case of quotient singularities it is still
possible to move disks in some way.

Let X be an orbifold with coarse moduli space X. We want to study holo-
morphic maps f : D → X. It is not always possible to lift such a map to a
map D → X but endowing D with an orbifold structure, we can find a lift-
ing D̃ → X (see [1], Lemma 7.2.5) where D̃ is an orbifold disk with coarse
moduli space D. More precisely, if {pi} ⊂ D is the set of points which are
mapped to the branch locus of X → X then there exists an orbifold structure
(D,
∑

(1 − 1
mi

)pi) such that f admits a lifting (D,
∑

(1 − 1
mi

)pi) → X . More-
over D̃ can be realized as a global quotient of the unit disk (see [15] Theorem

tome 140 – 2012 – no 4



DEGENERACY OF HOLOMORPHIC MAPS VIA ORBIFOLDS 467

IV.9.12). So we have a diagram

D
g //

p

��

X

π

��
D

f
// X

We can move disks in X in the following way keeping the above notations

Theorem 4.3. — Let f : D→ X be a holomorphic map from the unit disk to
X, the coarse moduli space of the orbifold X , A a closed analytic subset of X of
codimension ≥ 2. Then there exists a sequence of holomorphic maps gn : D→
X \ A converging in the compact-open topology to f ◦ p, where f ◦ p : D → X

is a holomorphic map, induced by f , admitting a lifting to the orbifold X .

Proof. — We shall use the fact that any orbifold X can be realized as the
global quotient of a smooth manifold M by a Lie group G ([32], [2] p.11–13,
[29] p.43). The idea is to consider the frame bundle F (X ) of the orbifold X .
We recall its construction.

First take an orbifold chart (Ui, Gi, ϕi) of X and consider the frame bundle
F (Ui). The action of Gi lifts to an action on F (Ui) which commutes with the
action of GLn and is free. Then F (Ui)/Gi is a manifold equipped with an
action of GLn. F (X ) is obtained gluing the local charts F (Ui)/Gi. F (X ) is a
manifold and

F (X )/GLn ∼= X .

Take f : D→ X and recall the diagram

D
g //

p

��

X

π

��
D

f
// X

Then we see that f ◦ p : D → X can be lifted not only to X but to a map
f̃ : D→ F (X ). To see this cover D by open sets Uα with local lifts f̃α : Uα →
F (X ). Then there are holomorphic functions ϕαβ : Uα ∩Uβ → GLn such that
f̃α = ϕαβ .f̃β . Since H1(D, GLn(O)) = 0 there exists a global lifting.
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So now we have a diagram

F (X )

q

��
D

f̃
<<

g //

p

��

X

π

��
D

f
// X

Now, we apply theorem 4.1 to the manifold F (X ), the holomorphic map
f̃ : D → F (X ) and the analytic subset B := (π ◦ q)−1(A). This gives us a
sequence of maps hn : D→ F (X )\B converging to f̃ . Then gn := (π ◦q)◦hn :

D→ X \A converges to f ◦ p.

As an application, one can look at the consequences on the Kobayashi
pseudo-distance. Recall the following definition

Definition 4.4. — Let X → X be an orbifold. The classical orbifold
Kobayashi pseudo-distance d∗X on X is the largest pseudo-distance on X such
that

g∗dX 6 dP

for every classical orbifold morphism g : D→ X, where dP denotes the Poincaré
distance on D.

An immediate consequence of the previous result is

Corollary 4.5. — Let X → X be an orbifold and A a closed analytic subset
of X of codimension ≥ 2. Then

d∗X\A = d∗X

on X \A.

Example 4.6. — Consider the quadratic cone X ⊂ C3 and A = 0 the quotient
singularity. Then dX\A = dX ≡ 0. Indeed, we clearly have on X \A

dX\A ≤ d∗X\A = d∗X ≡ 0.
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5. Kawasaki-Toën’s Riemann-Roch formula

We want to prove the existence of global orbifold symmetric differentials.
For this, we shall apply Riemann-Roch on orbifolds. This was done in [19] and
generalized in [34] to more general Deligne-Mumford stacks. We shall follow
the latter approach.

Let us recall briefly Toën’s Riemann-Roch formula on Deligne-Mumford
stacks following [34] and [35]. There is an étale cohomology theory on stacks
which enables to define Chern classes and Todd classes (see [34]). For this the-
ory, if p : X → X is the projection from a stack to its moduli space, there is
an isomorphism p∗ : A(X ) ' A(X). The key point of Toën’s formula is that
the correct cohomology to work with is that of the inertia stack, defined be-
low. The components of the inertia stack give correction terms to the standard
Riemann-Roch formula.

Definition 5.1. — Let X be a Deligne-Mumford stack. The inertia stack IX
associated to X is defined to be the fiber product

IX := X ×X×X X .

Locally one may describe IX as follows. If X is a variety, H a finite group
acting on X and F = [X/H] the quotient stack then

IF '
∐

h∈c(H)

[Xh/Zh],

where Xh ⊂ X is the fixed locus by h, Zh the centralizer of h in H and c(H)

the conjugacy classes of H.
There is a natural projection q : IX →X . We write

IX =
∐
i∈I

Xi,

for the decomposition of IX into a disjoint union of connected components.
There is a distinguished component X0, corresponding to h = 1, which is
isomorphic to X .

If F is a vector bundle, then q∗F decomposes into a direct sum of eigen-
subbundles ⊕

ζ∈µ∞

F (ζ),

where µ∞ is the group of roots of unity. For such a decomposition one defines
a map ρ : K0(IX )→ K0(IX ) by

ρ(
⊕
ζ∈µ∞

F (ζ)) :=
∑
ζ

ζF (ζ).

Then one defines
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470 E. ROUSSEAU

Definition 5.2 ([34]). — Define ‹ch : K0(X )→ H∗(IX ) to be the composite

K0(X )
q∗F−−→ K0(IX )

ρ−→ K0(IX )
ch−→ H∗(IX ),

where ch is the usual Chern character.

Definition 5.3 ([34]). — Let E be a vector bundle on X and q∗E decomposed
into a direct sum (q∗E)inv ⊕ (q∗E)mov where (q∗E)inv is the eigenbundle with
eigenvalue 1 and (q∗E)mov is the direct sum with eigenvalues not equal to 1.
Then define ›Td : K0(X )→ H∗(IX ) by›Td(E) :=

Td((q∗E)inv

ch(ρ ◦ λ−1(((q∗E)mov)∗))
,

where λ−1 is defined by λ−1(V ) :=
∑
a≥0(−1)a

∧a V for a vector bundle V .

Then Toën’s Riemann-Roch formula gives

Theorem 5.4 ([34]). — Let X be a Deligne-Mumford stack with quasi-
projective coarse moduli space and which has the resolution property (i.e every
coherent sheaf is a quotient of a vector bundle). Let E be a coherent sheaf on
X then

χ(X , E) =

∫
X

‹ch(E)›Td(TX ).

6. Applications to smooth orbifold surfaces of general type

Let us apply Toën’s formula in our situation. Our observation here is that
we are only interested in asymptotic Riemann-Roch, therefore the only contri-
bution that we have to take into account is the one coming from the component
of the inertia stack of maximal dimension i.e the stack itself. In other words
the étale cohomology is enough to deal with asymptotic Riemann-Roch.

Theorem 6.1. — Let (X,∆) be a smooth projective orbifold surface, ∆ =∑
i(1− 1

mi
)Ci. Then

χ(X , SNΩX ) =
N3

6
(c21 − c2) +O(N2),

where X is the stack associated to X described in example 2.4, c1 and c2 are
the étale orbifold Chern classes of X .
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Proof. — Let Y := P(ΩX ) and L := OY (1), then χ(X , SNΩX ) = χ(Y,L⊗N ).

The inertia stack p : IY → Y is decomposed in connected components

IY = Y
n∐
i=1

Yi
∐

1≤i<j≤n

CiCj∐
k=1

Yi,j,k,

where Yi lies over Ci and Yi,j,k over Ci ∩ Cj . Corresponding to this decompo-
sition we have‹ch(L⊗N ) = ch(L⊗N )

⊕
i

ζNi ch(L⊗Ni )
⊕
i,j,k

ζNi,j,kch(L⊗Ni,j,k),

where Li and Li,j,k denotes the restrictions of p∗L to Yi and Yi,j,k. We apply
Toën’s Riemann-Roch formula and obtain

χ(Y,L⊗N ) =
c1(L)3

6
N3 +O(N2),

since the terms coming from the Li and Li,j,k are all O(N2) because of the
dimension. This concludes the proof by the classical formula relating c1(L), c1
and c2.

Now we compute the étale orbifold Chern classes. The following “Gauss-
Bonnet” formula will be useful

Proposition 6.2 ([34]). — Let X be a Deligne-Mumford stack of dimension
n with the same hypotheses as in theorem 5.4. Let {Mi}i be a stratification of
its coarse moduli space such that the order of ramification of X is constant on
each Mi equal to mi. Then ∫

X

cn =
∑
i

χ(Mi)

mi
.

Then we can compute explicitely the orbifold Chern classes

Proposition 6.3. — Let (X,∆) be a smooth projective orbifold surface, ∆ =∑
i(1 − 1

mi
)Ci. Denote gi := g(Ci) the genus of the curve Ci and c1, c2 the

logarithmic Chern classes of (X, d∆e). Then the étale orbifold Chern classes
c1, c2 of the stack X associated to (X,∆) verify

c21 = c21 − 2
n∑
i=1

1

mi
(2gi − 2) +

n∑
i=1

C2
i

m2
i

+ 2
∑

1≤i<j≤n

CiCj
mimj

− 2
n∑
j=1

n∑
i=1,i6=j

CiCj
mj

,

c2 = c2 −
n∑
i=1

1

mi
(2gi − 2)−

n∑
j=1

n∑
i=1,i6=j

CiCj
mj

+
∑

1≤i<j≤n

CiCj
mimj

.
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Proof. — We have
KX = π∗(KX + ∆),

therefore

c21 = (KX + ∆)
2

=

(
(KX +

n∑
i=1

Ci)−
n∑
i=1

1

mi
Ci

)2

= c21 − 2
n∑
j=1

1

mj
(KX +

n∑
i=1

Ci)Cj +

(
n∑
i=1

1

mi
Ci

)2

.

We have KXCj = (2gj − 2)− C2
j , therefore we obtain

c21 = c21 − 2
n∑
i=1

1

mi
(2gi − 2) + 2

n∑
i=1

C2
i

mi
− 2

n∑
j=1

n∑
i=1

CiCj
mj

+
n∑
i=1

C2
i

m2
i

+ 2
∑

1≤i<j≤n

CiCj
mimj

= c21 − 2
n∑
i=1

1

mi
(2gi − 2) +

n∑
i=1

C2
i

m2
i

+ 2
∑

1≤i<j≤n

CiCj
mimj

− 2
n∑
j=1

n∑
i=1,i6=j

CiCj
mj

.

For c2 we use the previous proposition 6.2 which gives

c2 = χ(X)− χ

(
n⋃
i=1

Ci

)
+

n∑
i=1

1

mi
χ

Ñ
Ci \

n⋃
j=1,j 6=i

Ci ∩ Cj

é
+

∑
1≤i<j≤n

1

mimj
χ(Ci ∩ Cj)

= c2 −
n∑
i=1

1

mi
(2gi − 2)−

n∑
j=1

n∑
i=1,i6=j

CiCj
mj

+
∑

1≤i<j≤n

CiCj
mimj

.

As a corollary we obtain

Corollary 6.4. — Let (X,∆) be a smooth projective orbifold surface of gen-
eral type, i.e KX + ∆ is big, ∆ =

∑
i(1 − 1

mi
)Ci and A an ample line bundle

on X. Denote gi := g(Ci) the genus of the curve Ci. If

c21 − c2 −
n∑
i=1

1

mi
(2gi − 2 +

∑
j 6=i

CiCj) +
∑

1≤i≤j≤n

CiCj
mimj

> 0,

then H0(X,SNΩ(X,∆) ⊗A−1) 6= 0 for N large enough.
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Proof. — With the hypotheses, theorem 6.1 gives that

h0(X , SNΩX ) + h2(X , SNΩX ) ≥ cN3

for some suitable positive constant c and all sufficiently large integers N .
By Serre duality h2(X , SNΩX ) = h0(X , SNΩX ⊗ K1−N

X ), and as KX =

π∗(KX + ∆), we obtain an injection h2(X , SNΩX ) ↪→ h0(X , SNΩX ). There-
fore h0(X , SNΩX ) ≥ c

2N
3. Since h0(X , SNΩX ) = h0(X,SNΩ(X,∆)), this

concludes the proof.

Now let us recall that in [31] we have obtained

Theorem 6.5. — Let (X,∆) be a smooth projective orbifold surface of general
type, A an ample line bundle on X such that H0(X,SNΩ(X,∆) ⊗A−1) 6= 0 for
N large enough. Then there exists a proper subvariety Y ( X such that every
non-constant entire curve f : C → X which is an orbifold morphism verifies
f(C) ⊂ Y .

As an immediate corollary we obtain the theorem announced

Theorem A. — Let (X,∆) be a smooth projective orbifold surface of general
type, ∆ =

∑
i(1 − 1

mi
)Ci. Denote gi := g(Ci) the genus of the curve Ci and

c1, c2 the logarithmic Chern classes of (X, d∆e). If

(1.1) c21 − c2 −
n∑
i=1

1

mi
(2gi − 2 +

∑
j 6=i

CiCj) +
∑

1≤i≤j≤n

CiCj
mimj

> 0,

then there exists a proper subvariety Y ( X such that every non-constant entire
curve f : C→ X which is an orbifold morphism verifies f(C) ⊂ Y .

Remark 6.6. — This result generalizes and implies as a particular case the
corresponding theorem of [31] where the hypotheses were much stronger. Indeed
it was needed that gi ≥ 2, h0(Ci,OCi(Ci)) 6= 0 for all i and that the logarithmic
Chern classes of (X, d∆e) had to verify

c1
2 − c2 −

n∑
i=1

1

mi
(2gi − 2 +

∑
j 6=i

CiCj) > 0.

Remark 6.7. — One can write the previous inequality 1.1 in terms of Chern
classes d1, d2 of X and quantities involving only KX and ∆. It becomes

d2
1 − d2 + 2KX∆ + ∆2 + χ(∆) > 0,

where χ(∆) = χ
Ä∑

i(1− 1
mi

)Ci
ä

:=
∑
i(1 − 1

mi
)χ(Ci) −

∑
i<j(1 − 1

mi
)(1 −

1
mj

)CiCj .

As an application we obtain the following theorem
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Theorem 6.8. — Let Ci, 1 ≤ i ≤ 2, be two smooth curves in X = P2 of
degree di ≥ 4 with normal crossings. Let ∆ = (1 − 1

m1
)C1 + (1 − 1

m2
)C2, and

d = d1 + d2. If

(6.1) deg(∆)2 − deg(∆)(d+ 3) + d1d2

Å
1− 1

m1m2

ã
+ 6 > 0

then there exists a curve D ⊂ X which contains every orbifold entire curve
f : C→ (X,∆).

Proof. — First we verify that condition 1.1 is satisfied. We compute everything
in terms of the degrees d1 ≤ d2

c1
2 − c2 −

1

m1
(2g1 − 2 + d1d2)− 1

m2
(2g2 − 2 + d1d2) +

d2
1

m2
1

+
d2

2

m2
2

+
d1d2

m1m2
=

deg(∆)2 − deg(∆)(d+ 3) + d1d2

Å
1− 1

m1m2

ã
+ 6.

So, if condition 6.1 is satisfied, we can apply theorem A and obtain the algebraic
degeneracy of f .

Example 6.9. — Let Ci, 1 ≤ i ≤ 2 be two smooth curves in P2 of degree 5

with normal crossings. Let ∆ = (1 − 1
69 )C1 + (1 − 1

69 )C2. Then there exists a
curve D ⊂ P2 which contains every orbifold entire curve f : C→ (X,∆). If the
curves Ci are very generic, then (P2,∆) is hyperbolic (see [31]).

7. The singular case

We can apply the above ideas to the second class of examples, namely klt
surfaces (X,∆).

In the classical case one obtains as an immediate consequence of [26], [27]

Theorem 7.1. — Let (X,∆) be a projective klt orbifold surface of general type
and π : X → X its associated Deligne-Mumford stack. If

c21(X )− c2(X ) > 0,

then there exists a proper subvariety Y ( X such that any non-constant clas-
sical orbifold entire curve f : C→ (X,∆) is contained in Y .

Proof. — By definition f : C→ (X,∆) lifts to f̃ : C→X . Moreover c21(X )−
c2(X ) > 0 implies that H0(X , SNΩX ⊗ π∗A−1) 6= 0 for N large enough
where A is an ample line bundle on X. Then there exists a proper sub-stack Z
of P(TX ) which contains the image of the derivative of f̃ . The main theorem
of [26] then implies that f̃ factors through a sub-stack Z ′ of X .

In the non-classical case we can prove
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Theorem 7.2. — Let (X,∆) be a projective klt orbifold surface of general
type, π : X → X its associated Deligne-Mumford stack and Z the subset of X
consisting of Sing(X) and the locus in X \ Sing(X) where d∆e is not a divisor
with only normal crossings. If

c21(X )− c2(X ) > 0,

then there exists a proper subvariety Y ( X such that any non-constant orbifold
entire curve f : C→ (X,∆) with the property that f(C) ∩ Z = ∅ is contained
in Y .

Proof. — c21(X )− c2(X ) > 0 implies that there exists

ω ∈ H0(X,SNΩ(X,∆) ⊗A−1) 6= 0

for N large enough where A is an ample line bundle on X. Let p : ‹X → X be
a resolution of the singularities of (X,∆), so that the exceptional divisors, Ei
and the components of ‹∆, the strict transform of ∆, have normal crossings and

K
X̃

+ ‹∆ +
∑
i

Ei = p∗(KX + ∆) +
∑
i

aiEi.

Let f̃ : C→ ‹X be the lifting of f . Then f̃ is an orbifold map into (‹X,‹∆+
∑
iEi)

since f(C) ∩Z = ∅ which implies f̃(C) ∩ (∪iEi) = ∅. But, since (X,∆) is klt,
(‹X,‹∆ +

∑
iEi) is of general type. Moreover

p∗ω ∈ H0(‹X,SNΩ
(X̃,∆̃+

∑
i
Ei)
⊗ p∗A−1).

To finish the proof we just have to apply theorem 6.5 to the smooth orbifold
of general type (‹X,‹∆ +

∑
iEi).

In fact, the proof shows that we can do better, namely we can shrink the
locus Z. Indeed, write the ramification formula

K
X̃

+ ‹∆ = p∗(KX + ∆) +
∑

a(E;X,∆)E,

where a(E;X,∆), which is independent of p (see [23]), is called the discrepancy
of (X,∆) at E and p(E) is called the center of E on X denoted by CenterX(E).

Then the previous proof immediately generalizes as

Theorem 7.3. — Let (X,∆) be a projective klt orbifold surface of general
type, π : X → X its associated Deligne-Mumford stack, Z the subset of X
consisting of Sing(X) and the locus in X \ Sing(X) where d∆e is not a di-
visor with only normal crossings and Z ′ the non-canonical locus, i.e Z ′ =

{CenterX(E)/a(E;X,∆) < 0}. If

c21(X )− c2(X ) > 0,
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then there exists a proper subvariety Y ( X such that any non-constant orbifold
entire curve f : C → (X,∆) with the property that f(C) ∩ Z ∩ Z ′ = ∅ is
contained in Y .

Question 7.4. — Can we shrink the “bad” locus so that it becomes empty?

Remark 7.5. — As seen in example 2.7, one can generalize slightly the pre-
ceding result to the case of log canonical orbifold surface (X,∆) where all points
which are not klt lie on b∆c.

8. Applications to singular orbifold surfaces of general type

8.1. Complements of plane curves. — Let us consider a curve C ⊂ P2. We can
apply the above results to obtain examples where any holomorphic map f :

C → P2 \ C is contained in a curve D ⊂ P2. Such kind of results have been
obtained in [12] and [17] by different methods. The approach used here shows
that “order 1” techniques, i.e. symmetric differentials, can still be useful in this
situation contrary to the smooth case.

Let us illustrate this in the case of a curve C ⊂ P2 with ordinary double
points and cusps as singularities. The orbifold (P2, αC) is klt for α < 5

6 (see for
example [22]) so the orbifold (P2,

(
1− 1

5

)
C) is klt and applying theorem 7.2

(or theorem 7.1), we obtain as announced

Theorem B. — Let C ⊂ P2 be a curve of degree d ≥ 4 with n nodes and c
cusps. If

−d2 − 15d+
75

2
+

1079

96
c+ 6n > 0,

then there exists a curve D ⊂ P2 which contains any non-constant entire curve
f : C→ P2 \ C.

Proof. — Let X be the stack associated to the klt orbifold (P2,
(
1− 1

m

)
C),

m = 5. We just have to compute c21(X ) and c2(X ). We have

c21(X ) =

Å
KP2 +

Å
1− 1

5

ã
C

ã2

=

Å
−3 +

Å
1− 1

5

ã
d

ã2

= 9 +
16

25
d2 − 24

5
d.

Now we use proposition 6.2 to compute c2(X ). To do so we need to compute
the order of the orbifold fundamental group at singular points of C. This can
be found in [36] for example. At a node we find that this order is m2 = 25 and
at a cusp, it is equal to

4

6

Å
1

m
− 1 +

5

6

ã−2

= 600.
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Therefore we obtain

c2(X ) = χ(P2)− χ(C) +
1

m
χ(C \ Sing(C)) +

1

25
n+

1

600
c

= 3−
Å

1− 1

m

ã
χ(C \ Sing(C))−

Å
1− 1

25

ã
n−

Å
1− 1

600

ã
c

= 3− 4

5
(χ(‹C)− 2n− c)− 24

25
n− 599

600
c

= 3− 4

5
χ(‹C) +

16

25
n− 119

600
c,

where ‹C is the normalization of C. We have

g(‹C) =
(d− 1)(d− 2)

2
− n− c,

therefore
χ(‹C) = 2− 2g(‹C) = 2n+ 2c− d(d− 3).

Finally we obtain

c21(X )− c2(X ) =
4

25
(−d2 − 15d+

75

2
+

1079

96
c+ 6n).

Remark 8.1. — One can compare the previous result with [12] and [17], where
a stronger property, namely hyperbolicity, is proved but under a numerical con-
dition which can be seen to be much more restrictive than the one obtained here.
In particular, all cases of [12] and [17] must verify d ≥ 9, which is not the case
above.

8.2. Singular surfaces. — Let us consider a nodal hypersurface X ⊂ P3, i.e. its
singularities are ordinary double points. Hyperbolic properties of such surfaces
have been studied in [5]. Here, applying theorem 7.3, we obtain

Theorem 8.2. — Let X ⊂ P3 be a nodal surface of general type of degree d
with l nodes. If

l >
8

3

Å
d2 − 5

2
d

ã
,

then there exists a proper subvariety Y ⊂ X which contains every non-constant
orbifold entire curve f : C→ X.

Proof. — First observe that the singularities are canonical (i.e. a(E;X) ≥ 0

for E exceptional divisors appearing in a resolution of singularities) so in the
notations of theorem 7.3 we have Z ∩Z ′ = ∅ and so no restrictions on orbifold
entire curves.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



478 E. ROUSSEAU

Let us compute c21(X ) and c2(X ) where π : X → X is the stack associated
to X. We have

KX = π∗KX

and by proposition 6.2

c2(X ) = χ(X \ Sing(X)) +
l

2
.

Now, consider p : ‹X → X the minimal resolution of X. Then we have

K
X̃

= p∗KX .

So we obtain
c21(X ) = c1(‹X)2

and

c2(X ) = χ(‹X \ ∪Ei) +
l

2
= c2(‹X)− 2l +

l

2
= c2(‹X)− 3l

2
,

where the Ei are the exceptional curves. Therefore, we have

c21(X )− c2(X ) = c1(‹X)2 − c2(‹X) +
3l

2
.‹X can be seen as the central fiber of a flat family Xt → D on the unit disk

where the other members are smooth hypersurfaces of degree d, so we have

c1(‹X)2 − c2(‹X) = d(d− 4)2 − d(d2 − 4d+ 6) = d(10− 4d).

And finally

c21(X )− c2(X ) = d(10− 4d) +
3l

2
=

3

2

Å
l − 8

3

Å
d2 − 5

2
d

ãã
.

Remark 8.3. — One can notice that we obtain exactly the same numerical
condition as in [5] and, as it is observed there, there exists surfaces of degree
d ≥ 6 satisfying it but not of degree 5, since then, the maximum number of nodes
is 31 and 33 at least is needed. The next section will provide an alternative
method to deal with entire curves on such a surface.

Remark 8.4. — One could think of using techniques introduced in section 4 to
extend the preceding result to any entire curve as in [5], not necessary orbifold
ones. As explained in section 4, if f : C→ X is an entire curve, we can endow
C with an orbifold structure C̃ such that f has a lifting C̃→X . We obtain the
algebraic degeneracy if the orbifold C̃ is not hyperbolic.

Problem 8.5. — Find a singular quintic in P3 such that c21(X )−c2(X ) > 0.
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9. Orbifold jet differentials

9.1. The smooth case. — Recall that if X is a compact complex manifold, in
[18] Green and Griffiths have introduced the vector bundle of jet differentials
of order k and degree m, EGGk,mΩX → X whose fibers are complex valued poly-
nomials Q(f ′, f ′′, . . . , f (k)) on the fibers of JkX of weight m for the action
of C∗:

Q(λf ′, λ2f ′′, . . . , λkf (k)) = λmQ(f ′, f ′′, . . . , f (k))

for all λ ∈ C∗ and (f ′, f ′′, . . . , f (k)) ∈ JkX.
If (X,D) is a smooth logarithmic manifold, i.e X is a complex manifold and

D =
∑
iDi is a reduced normal crossing divisor, the vector bundle of loga-

rithmic jet differentials of order k and degree m, EGGk,mΩ(X,D) → X, consists of
polynomial operators (satisfying the same weight condition) in the derivatives
of order 1, 2, . . . , k of f and of the log(sj(f)) where Dj = {sj = 0} locally (see
[14] for details).

Let (X,∆) be a smooth orbifold. Let (x1, . . . , xn) be local coordinates such
that ∆ has equation

x
(1− 1

m1
)

1 · · ·x
(1− 1

mn
)

n = 0.

Generalizing the definition of orbifold symmetric differentials, one may define
orbifold jet differentials in the following way

Definition 9.1. — For N a positive integer, EGGk,NΩ(X,∆) is the locally free
subsheaf of EGGk,NΩ(X,d∆e) generated by the elements∏

1≤i≤n
x
d
αi,1+···+kαi,k

mi
e

i

Å
dxi
xi

ãαi,1
· · ·

Ç
dkxi
xi

åαi,k

,

such that |α1|+ 2|α2|+ · · ·+ k|αk| = N where |αi| =
∑
j αj,i.

From this definition, it is clear that elements ω ∈ H0(X,EGGk,NΩ(X,∆)⊗A−1)

act on orbifold morphisms f : C → (X,∆) giving holomorphic sections of
f∗A−1. More precisely, we have

Theorem 9.2. — Let (X,∆) be a smooth compact orbifold, A an ample line
bundle on X and P ∈ H0(X,EGGk,NΩ(X,∆) ⊗ A−1). Then for any orbifold mor-
phism f : C→ (X,∆)

P (f) ≡ 0.

Proof. — The proof goes along the same lines as in the classical setting using
the logarithmic derivative lemma (see [33], [37], [8]) which we summarize for the
convenience of the reader. P (f) is a holomorphic section of f∗A−1. Suppose
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it does not vanish identically. Let ω = Θh(A), then by the Poincaré-Lelong
equation

i∂∂ log ||P (f)||2h−1 ≥ f∗ω.
Therefore

Tf (r, ω) ≤
∫ r

1

dt

t

∫
|z|<t

i∂∂ log ||P (f)||2h−1

and from Jensen formula∫ 2π

0

log+ ||P (f)||h−1dθ ≥ Tf (r, ω) + O(1).

Finally the logarithmic derivative lemma gives∫ 2π

0

log+ ||P (f)||h−1dθ ≤ O(log(r) + log(Tf (r, ω)))

outside a set of finite Lebesgue measure in [0,+∞[. This gives a contradiction.

Another possibility to define orbifold jet differentials, following the philoso-
phy of the preceding sections, is to consider the smooth Deligne-Mumford stack
π : X → X, with coarse moduli space X. Then one can define

Definition 9.3. — The sheaf Ek,NΩ(X,∆) of classical jet differentials is

Ek,NΩ(X,∆) := π∗Ek,NΩX .

The same proof as above gives

Theorem 9.4. — Let (X,∆) be a smooth compact orbifold, A an ample line
bundle on X and P ∈ H0(X,Ek,NΩ(X,∆)⊗A−1). Then for any classical orbifold
morphism f : C→ (X,∆)

P (f) ≡ 0.

The situation for higher order orbifold jet differentials turns out to be dif-
ferent from the case of orbifold symmetric differentials. Indeed, in the order 1

case, the key point is that orbifold symmetric differentials act on classical and
non-classical orbifold morphisms. From order 2, this is not the case anymore
as we can see in the following

Example 9.5. — Consider the morphism of orbifold [Dn/G] → Dn induced
by π : (y1, . . . , yn)→ (ym1

1 , . . . , ymnn ). A simple computation gives

ω := π∗(d
2yi)

mi = yi

Ç
1

mi

Å
1

mi
− 1

ãÅ
dyi
yi

ã2

+
1

mi

Å
d2yi
yi

ãåmi

.
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Then one can see that if f : D → Dn is an orbifold morphism, ω(f) is not
necessary holomorphic except if multx(f∗(yi = 0)) ≥ 2mi for all x such that
f(x) ∈ (yi = 0).

9.2. The singular case. — Let us study orbifold jet differentials in the case of
singular surfaces. Let (X,∆) be an orbifold and consider the smooth Deligne-
Mumford stack π : X → X, with coarse moduli space X. Then one can define,
as in the smooth case,

Definition 9.6. — The sheaf Ek,NΩ(X,∆) of classical jet differentials is

Ek,NΩ(X,∆) := π∗Ek,NΩX .

Classical jet differentials act on classical orbifold morphisms and as above
we have

Theorem 9.7. — Let (X,∆) be an orbifold with X compact, A an ample line
bundle on X and P ∈ H0(X,Ek,NΩ(X,∆)⊗A−1). Then for any classical orbifold
morphism f : C→ (X,∆)

P (f) ≡ 0.

We have seen above a numerical condition for the existence of global orbifold
symmetric differentials on nodal surfaces, which unfortunately is not satisfied
for nodal quintics. Here we have

Theorem 9.8. — Let X ⊂ P3 be a nodal surface of general type of degree d
with l nodes.

1. If

l >
−4

15
(d3 − 18d2 + 41d),

then X has global 2-jet differentials i.e. global sections of E2,NΩ(X,∆).
More precisely

h0(X,E2,NΩX) ≥
Å

15l

2
+ 2d3 − 36d2 + 82d

ã
N5

43.3!
+O(N4).

2. If

l >
−4

147
(18d3 − 242d2 + 533d)

then X has global 3-jet differentials i.e. global sections of E3,NΩ(X,∆).
More precisely

h0(X,E3,NΩX) ≥
Å

147l

2
+ 36d3 − 484d2 + 1066d

ã
N7

65
+O(N6).

In particular, a quintic with the maximum number of nodes, 31, has global 3-jet
differentials.
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Proof. — The proof is just a generalization of the original approach of [18] to
the orbifold setting. Recall that on a complex manifold Y we have a filtration
of EGGk,mΩY whose graded terms are

Grl(EGGk,NΩY ) = Sl1ΩY ⊗ Sl2ΩY ⊗ · · · ⊗ SlkΩY ,

where l := (l1, l2, . . . , lk) ∈ Nk verify l1 + 2l2 + · · ·+ klk = N. This enables the
following Riemann-Roch computations on surfaces

χ(Y,EGG2,NΩY ) = (7c21 − 5c2)
N5

43.3!
+O(N4),

χ(Y,EGG3,NΩY ) = (85c21 − 49c2)
N7

65
+O(N6).

These Riemann-Roch estimations extend to the orbifold setting in the same
way as described above for symmetric differentials, providing

χ(X , EGG2,NΩX ) = (7c21(X )− 5c2(X ))
N5

43.3!
+O(N4),

χ(X , EGG3,NΩX ) = (85c21(X )− 49c2(X ))
N7

65
+O(N6).

To conclude, in the case of manifolds, one applies a vanishing theorem of Bo-
gomolov [4] for the h2. This vanishing theorem extends to the orbifold setting
as shown in [5] (proposition 2.3). Then one uses the explicit computations of
the orbifold Chern classes described above.

If d = 5 and l ≥ 31 one obtains that
147l

2
+ 36d3 − 484d2 + 1066d > 0.

From theorems 9.8 and 9.7, we obtain:

Theorem C. — Let X ⊂ P3 be a quintic with the maximum number of
nodes 31. Then every classical orbifold entire curve satisfies an algebraic
differential equation of order 3.
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