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Abstract. — In this paper we investigate numerous constructions of minimal systems

from the point of view of (F1, F2)-chaos (but most of our results concern the particular

cases of distributional chaos of type 1 and 2). We consider standard classes of systems,

such as Toeplitz flows, Grillenberger K-systems or Blanchard-Kwiatkowski extensions

of the Chacón flow, proving that all of them are DC2. An example of DC1 minimal

system with positive topological entropy is also introduced. The above mentioned

results answer a few open problems known from the literature.

1. Introduction

The notion of distributional chaos was introduced by Schweizer and Smıtal
in 1994 in [29] as a property equivalent to positive topological entropy for maps
acting on the unit interval (it extends the notion of pair chaotic in the sense of
Li and Yorke, which was know to be not sufficiently strong to imply positive
topological entropy). Presently, we have at least three different definitions of
distributionally chaotic pair [5] and it was also observed that uniform constant
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402 P. OPROCHA

of separation of orbits may be important when dealing with this kind of chaos
[23]. Recently, Xiong and Tan used in [31] families of subset of integers to
define chaotic maps, obtaining that way an interesting and general definition.
We adopt this approach here (all the necessary definitions are postponed to the
next section).

In [29] the name distributional chaos do not appear explicitly, however it is
proved there (in different terminology) that on the unit interval, one DC3 pair
is enough to the existence of distributionally ε-scrambled set and both these
properties are equivalent to positive topological entropy. It is also interesting
that chaos means in [29] the existence of uncountable set whose any two distinct
elements form a DC2 pair (so a condition somewhere in the middle between
the above two properties). In general setting (i.e. beyond dimension one) there
is no more such equivalence, that is, there are systems with positive topological
entropy and no DC1 pairs [27] (even minimal ones [4]) as well as systems with
DC1 pairs but entropy zero [22].

There are only a few general tools detecting distributionally scrambled sets
(e.g. see [30, 3, 25]) however dynamics of systems fulfilling assumptions of these
results is highly non-minimal. In the case of minimal maps some methods of
construction have been developed, however they have either entropy zero (e.g.
see [22, 23, 31]) or do not contain DC1 pairs (e.g. see [4]), while containing
plenty of DC2 pairs. In fact, the most challenging conjecture related to distri-
butional chaos (probably first stated by Smítal and then repeated by others,
including the author himself) is that every system with positive entropy must
contain a DC2 pair.

The main aim of this article is to examine various constructions of mini-
mal systems with positive topological entropy (e.g. Toeplitz flows, extensions
of Chacón flow, minimal K-systems, etc.) from the point of view of distri-
butional chaos, or more generally (F1,F2)-chaos, where F1,F2 are upward
hereditary sets of subsets of N (so-called Furstenberg families). That way we
provide many methods of construction of minimal dynamical systems having
uncountably many distributionally chaotic pairs (or not having them at all),
filling a gap existing in the literature of the topic and answering a few open
problems stated before (e.g. these stated by Balibrea and Smítal in [4]). Espe-
cially, two constructions contained in the paper can be of interest: a minimal
system with positive entropy and DC1 pairs (see Theorem 9.3) and minimal
system with positive entropy but without DC1 pairs nor regularly recurrent
points (see Theorem 6.1). Second of this examples follows form a general fact
that almost 1-1 extensions of minimal distal systems never have DC1 pairs (see
Corollary 4.2). We also prove that every minimal u.p.e. system has plenty of
DC2 pairs (see Theorem 7.6), which provides a partial answer (in a very re-
stricted case) to the general conjecture on entropy and DC2 mentioned before.
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2. Preliminaries

2.1. Basic notation. — In this paper X is always assumed to be a compact
metric space with a metric d, and f : X → X to be continuous. The set
of all such maps is denoted C(X). Open balls are denoted by B(x, ε) :=
{y ∈ X : d(x, y) < ε}. The same notation is used for every nonempty set A ⊂
X, that is B(A, ε) :=

�
x∈A B(x, ε).

If (X, d1), (Y, d2) are metric spaces, we always endow X × Y with the max-

imum metric ρ((x, y), (p, q)) = max {d1(x, p), d2(y, q)}. The diagonal in the
product X ×X is denoted ∆ := {(x, x) : x ∈ X} and ∆ε := B(∆, ε) for any
ε > 0. By a perfect set we mean a nonempty compact set without isolated
points and by a Cantor set we mean a perfect and totally disconnected set. If
a set A contains a countable intersection of open and dense subsets of X, then
we say that A is residual in X.

By Orb+(x) we denote the set Orb+(x) :=
�
x, f(x), f2(x), . . .

�
and call it

the (positive) orbit of a point x. If f is invertible, then we define orbit of x by
Orb(x) :=

�
f i(x) : i ∈ Z

�
. A point y ∈ X is an ω-limit point of a point x if it is

an accumulation point of the sequence x, f(x), f2(x), . . . . The set of all ω-limit
points of x is said to be the ω-limit set of x or positive limit set of x and is
denoted L+(x, f); we reserve symbol ω to denote another property. We say that
a point x is periodic if fn(x) = x for some n ≥ 1 and recurrent if x ∈ L+(x, f).
Every set M which is nonempty, closed, invariant (i.e. f(M) ⊂ M) and has
no proper subset with these three properties is said to be a minimal set. If X
is the minimal set for f then we say that f is a minimal system. Elements of
minimal system are usually said to be minimal points.

Points x, y ∈ X are proximal, if lim infn→∞ d(fn(x), fn(y)) = 0. We say that
a point x is distal, if it is not proximal to any point y ∈ L+(x, f) \ {x}. We say
that a nonempty set A is synchronously proximal if lim infn→∞ diam fn(A) =
0. It is known that every point is proximal to some minimal point [11] (this
statement is nontrivial when given point is not minimal), so distal points are
always minimal. We say that f is distal if all of its points are distal (by the
above, such a system is always a disjoint sum of minimal systems).

Let X and Y be compact metric spaces and let f ∈ C(X), g ∈ C(Y ). If
there is a continuous onto map φ : X → Y with φ◦f = g ◦φ, we say that f and
g are semiconjugate (by φ). The map φ is said to be a semiconjugacy (between
f and g) or a factor map, the map g is said to be a factor of f and the map f
is said to be an extension of g.

2.2. Families and filters. — Here we recall basic facts related to families and
filters. Our notation follows [2] together with some concepts from [31].
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404 P. OPROCHA

A (Furstenberg) family F is a collection of subsets of N which is upwards

hereditary, that is

F1 ∈ F and F1 ⊂ F2 =⇒ F2 ∈ F .

A family is proper if N ∈ F and ∅ /∈ F . Recall that a set A ⊂ N is thick if
for every n > 0 there is i such that {i, i + 1, . . . , i + n} ⊂ A. We denote by B
the family of infinite subsets of N and by τB the family of all thick subsets of
N.

For every family F we define its dual family by kF := {F ⊂ N : N \ F /∈ F}.
Elements of the dual family kτB are said to be syndetic sets.

If F1 and F2 are families then we define

F1 · F2 := {F1 ∩ F2 : F1 ∈ F1, F2 ∈ F2} .

Note that F1 ∪F2 ⊂ F1 ·F2 for any two proper families F1,F2. We say that
families F1 and F2 meet when F1 · F2 is proper. Let P(N) denote the power
set of N. For A ⊂ P(N) we define the family generated by A as

[A ] := {F ⊂ N : A ⊂ F for some A ∈ A }

For the case A = {A}, where A ⊂ N, we simply write [A] instead of [A ]. For
any infinite set Q ∈ B we define �Q� := [T (Q)] where T (Q) is the set of tails
of Q, i.e. T (Q) = {Q ∩ [n, +∞) : n ∈ N}.

A filter F is a proper family such that F · F = F . Let A ⊂ P(N) and
denote A ∩ := {A1 ∩ · · · ∩An : Ai ∈ A , n > 0}. If ∅ �∈ A ∩ then [A ∩] is a
filter. In that case we say that A generates a filter and call [A ∩] the filter

generated by A .
Note that, if Q ∈ B then [Q] and �Q� are filters generated by {Q} and T (Q)

respectively, since {Q}∩ = {Q} and T (Q)∩ = T (Q).
Given A ⊂ X and x ∈ X we write N(x, A, f) = {n : fn(x) ∈ A} . If A, B

are sets then N(A, B, f) = {n : f−n(B) ∩A �= ∅}. We say that a point x is
uniformly recurrent if the set N(x, U, f) is syndetic for every open set U � x.
It is known that every element of a minimal set is uniformly recurrent, and
L+(x, f) is a minimal set for every uniformly recurrent point (this was first
proved by Birkhoff), in particular minimal or uniformly recurrent points define
the same property in different language.

Let P = {p1 < p2 < · · · } ∈ B. Define

D∗(P ) := lim sup
n→∞

#(P ∩ {1, . . . , n})
n

, D∗(P ) := lim inf
n→∞

#(P ∩ {1, . . . , n})
n

.

We say that D∗(P ) and D∗(P ) are the upper density and the lower density of

P respectively. If D∗(P ) = D∗(P ) then we denote D(P ) := D∗(P ) and call this
number the density of P .
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For any t > 0 we define the following (proper) family

M (t) := {P ∈ B : D∗(P ) ≥ t} .

The above mentioned families will be the main ingredient of most of the defi-
nitions appearing in the present paper.

2.3. Scrambled sets

Definition 2.1. — We say that an uncountable set S ⊂ X is ε-scrambled if

lim inf
n→∞

d(fn(x), fn(y)) = 0 and lim sup
n→∞

d(fn(x), fn(y)) > ε

for any distinct x, y ∈ S and some ε > 0. If the above conditions holds only

with ε = 0 then we say that S is a scrambled set.

If there is a scrambled (or ε-scrambled set) for f then we say that f is chaotic
(resp. ε-chaotic) in the sense of Li and Yorke.

The above definition originated from [21] and was later extended by numer-
ous authors. Below we present a few such extensions which will be used in a
further parts of the article.

For any positive integer n, points x, y ∈ X and t > 0, let

Φ(n)
xy (t) :=

1

n
#

�
i : d(f i(x), f i(y)) < t , 0 ≤ i < n

�
,

Φxy(t) := lim inf
n→∞

Φ(n)
xy (t) = D∗

��
i : d(f i(x), f i(y)) < t

��
,

Φ∗
xy(t) := lim sup

n→∞
Φ(n)

xy (t) = D∗ ��
i : d(f i(x), f i(y)) < t

��
.

Definition 2.2. — Let ε > 0. A pair (x, y) ∈ X × X is distributionally
ε-scrambled if

Φxy(ε) = 0 and Φ∗
xy(t) = 1 for all t > 0.

If a pair is distributionally ε-scrambled for some ε > 0 then we simply call

it distributionally scrambled. The sets of all distributionally ε-scrambled and

distributionally scrambled pairs are denoted DCε(f) and DC(f) respectively.

We say that a set S ⊂ X is distributionally ε-scrambled (resp. distri-
butionally scrambled) if S is uncountable and S × S ⊂ DCε(f) ∪ ∆ (resp.

S × S ⊂ DC(f) ∪∆).

The concept of distributional chaos originated from [29] and presently there
are at least three versions of distributionally chaotic pair in the literature [5].
Furthermore, DC1 is completely independent of the value of topological entropy
in general (there are examples of maps with entropy zero but DC1 [22] and vice-
versa [27]). More extensive introduction to the topic of distributional chaos can
be found in [28].
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Definition 2.3. — If there is an uncountable S such that for every distinct

x, y ∈ S:

(DC1) Φ∗
xy(t) = 1 for all t > 0 and Φxy(s) = 0 for some s > 0,

(DC2) Φ∗
xy(t) = 1 for all t > 0 and Φxy(s) < 1 for some s > 0,

(DC3) Φ∗
xy(t) > Φxy(t) for all t ∈ J , where J is some nondegenerate

interval,

then we say that f is distributionally chaotic of type 1, 2 or 3 respectively (DC1,

DC2 or DC3 for short).

Note that f has a distributionally scrambled set if and only if it is DC1. The
following three definitions were introduced in [31].

Definition 2.4. — Let F be a family and A ⊂ X be nonempty. Then x ∈ X
is an F -attaching point of A if N(x, A, f) ∈ F . We call the set

F (A, f) :=
�

F∈F

�

i∈F

f−i(A)

the F -attaching set of A.

Note that F (A, f) = {x : x is F -attaching point of A}.

Definition 2.5. — Let F be a family and A ⊂ X be a nonempty set. We say

that a point x ∈ X is an F -adherent point of A, if it is an F -attaching point

of B(A, ε) for any ε > 0.
The set of all F -adherent points of A is denoted

F+(A, f) := {x : N(x, B(A, ε), f) ∈ F for any ε > 0}
=

�

ε>0

F (B(A, ε), f).

Note that if δ < ε and N(x, B(A, δ), f) ∈ F then also N(x,B(A, ε), f) ∈ F
since F is a family. But then we can write

F+(A, f) =
�

n>0

F (B(A, 1
n ), f).

Definition 2.6. — Let (X, d) be compact, let f ∈ C(X) and let F1, F2 be

families. We say that f is (F1,F2)-chaotic, if there exists an uncountable set

K ⊂ X such that for any distinct points x, y ∈ K the pair (x, y) fulfils the

condition

(x, y) ∈ F+
1 (∆, f × f) ∩F2(X ×X \ ∆γ , f × f)

with some γ = γ(x, y) > 0.
If there is one global ε = ε(K) > 0 such that

(x, y) ∈ F+
1 (∆, f × f) ∩F2(X ×X \ ∆ε, f × f)
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for any distinct points x, y ∈ K, then we say that f is (F1,F2)-ε-chaotic.
The uncountable set K in the above definitions is said to be (F1,F2)-scram-

bled set and (F1,F2)-ε-scrambled set respectively.

2.4. Symbolic dynamics. — Let A be a finite set (an alphabet) and denote by
A∗ the set of all finite words over A. The set A∗ with the concatenation of
words is a free monoid with the minimal set of generators A (we assume that
the empty word, denoted by λ is in A∗). The set of nonempty words is denoted
by A+. If w ∈ A+ and k > 0 then by wk = ww · · ·w we denote the k-times
concatenation of w with itself. If w = a0a1 · · · ak−1 ∈ A+ then we write wi := ai

or w[i] := ai; the number |w| = k is said to be the length of w; by |w|a is denoted
the number of occurrences of the letter a in w.

If x ∈ AN and i ≤ j are integers then we denote x[i,j] = xixi+1 . . . xj and
x[i,j) = x[i,j−1]. If i > j then x[i,j] = λ, where λ is the empty word. If x = y then
we put d(x, y) = 0 and d(x, y) = 2−k otherwise, where k ≥ 0 is the maximal
number such that x[0,k) = y[0,k). We also define the shift map σ : AN → AN

by putting σ(x)i = xi+1 for all i ∈ N. It can be easily verified that (AN, d)
is a compact metric space and σ is continuous. For any w ∈ A+ we define its
cylinder set C[w] :=

¶
x ∈ AN ; x[0,n) = w

©
where n = |w|. It is well know that

cylinder sets form a basis of the topology of (AN, d).
Any closed set X invariant under σ (i.e. σ(X) ⊂ X) is said to be a shift or

a subshift. For simplicity, we write CX [w] = C[w] ∩ X where X is a subshift
of (AN, d). By L(X) we denote the language of subshift X, that is the set
L(X) :=

�
x[0,k] : x ∈ X, k ≥ 0

�
. We write Ln(X) := {w ∈ L(X) : |w| = n}

for every n > 0.
Similarly, we can define two-sided subshifts of AZ with the only difference

that in the definition of metric k is the maximal number such that x(−k,k) =
y(−k,k). In that case all other definitions presented above are modified accord-
ingly.

2.5. Odometers and Toeplitz flows. — The reader not familiar with Toeplitz
flows is refereed to [9] or [20, Ch. 4]. Here we briefly recall main definitions
used later.

Let s = {sm}∞m=1 be a sequence of positive integers such that sm divides
sm+1. We call such a sequence a scale. If we endow the cyclic group Zn with
the discrete topology, and define πm : Zsm+1 → Zsm by πm(z) = z (mod sm)
then the inverse limit

Gs = lim←− {Zsm , πm} = {{xn}∞n=1 : πm(xm+1) = xm}
is well defined, compact subset of the countable Cartesian product of Zsm with
the product topology. Denote 1 := (1, 1, . . . ). By the odometer on scale s we
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mean Gs together with the map Rs : Gs → Gs defined by Rs(j) = j + 1, where
the addition is coordinatewise, modulo sm on each coordinate m. We say that
an odometer is nontrivial if Gs is infinite (hence it is a Cantor set).

Let π : X → Y be a factor map (between f ∈ C(X) and g ∈ C(Y )), and let
Y1 denote the set of points y ∈ Y whose fibers π−1({y}) are singletons. We say
that f is almost 1-1 extension of g (via the factor map π) if Y1 is residual in
Y .

We say that a point x ∈ X is regularly recurrent if for every open neighbor-
hood U of x there is l > 0 such that N(x, U, f) ⊃ lN. Any regularly recurrent
point of σ in {0, 1}N is said to be Toeplitz sequence. Each subshift Xω generated
by a Toeplitz sequence ω is said to be a Toeplitz flow (i.e. Xω = Orb+(ω,σ)).
Elements of a Toeplitz flow are said to be Toeplitz orbitals.

It is well known that a minimal system f ∈ C(X) is an almost 1-1 extension
of an odometer Gs if and only if it is the orbit closure of a regularly recurrent
point (e.g. see [9, Theorem 5.1]). For a Toeplitz orbital x and an integer s > 0,
we denote

Pers(x) = {n ∈ N : x(n) = x(n + ks) for every k = 1, 2, . . . } .

If ω is a Toeplitz sequence then N =
�

m Perm(ω). By an essential period of ω
we mean any s such that Pers(ω) �= ∅ and does not coincide with Perk(ω) for
any k < s. A period structure of ω is any sequence s = {sm}∞m=1 of essential
periods such that each sm divides sm+1 and N =

�
m Persm(ω). It is known

that a periodic structure always exists, and Xω is an almost 1-1 extension of
the odometer Gs. So we will always assume that a periodic structure is fixed
together with the factor map πω : Xω → Gs. If x is a Toeplitz orbital, then
it may happen that periodic parts do not cover whole N, that is the aperiodic

part of x

Aper(x) := N \
∞�

m=1

Persm(x)

is nonempty.

2.6. Topological entropy and entropy pairs. — The topological entropy of a sys-
tem was first defined by Adler, Konheim and McAndrew [1]. Let CX be the set
of all finite open covers of X. Given two covers U, V ∈ CX denote

U ∧ V = {U ∩ V : U ∈ U, V ∈ U} .

Let r(U) denote the minimum among the cardinalities of subsets of U ∈ CX

that cover X. The topological entropy of the cover U ∈ CX is defined as

htop(f, U) = lim
n→∞

1

n
log r

�
n−1�

i=0

f−i(U)

�
.
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where the existence of the limit and the second identity follow from the fact that¶
log r

Ä�n−1
i=0 f−i(U)

ä©
n∈N

is a sub-additive sequence. The topological entropy

of f is the number htop(f) ∈ [0,+∞] defined by htop(f) = sup U∈ CX
htop(f, U).

Recall that a set A is (n, ε)-separating if for every distinct x, y ∈ A there
is 0 ≤ i ≤ n such that d(f i(x), f i(y)) > ε. We will denote by SA(n, ε) the
maximal number of elements in any (n, ε)-separating set contained in A. It is
well known that on compact metric spaces:

htop(f) = lim
ε→0+

lim sup
n→∞

1

n
log SX(n, ε).

We say that a surjective f ∈ C(X) has uniformly positive entropy (u.p.e.)

if for each non-trivial (i.e. not containing X) open cover U consisting of two
elements we have htop(f, U) > 0.

In all calculations related to entropy we assume that logarithms have base
2, i.e. log(·) always stands for log2(·).

3. A family of minimal shifts (Xiong and Tan construction)

In this section we extend the technique introduced in [31]. The first of all, we
think that the class of minimal systems presented in [31] is interesting enough
to deserve further investigation and additionally this class fits nicely in our
research. Strictly speaking, for every a ∈ [0, 1) we will use Tan and Xiong ideas
to construct a minimal shift Xa over the alphabet {0, 1} such that for every
ε ∈ (0, 1) the shift map σ restricted to Xa is (M (1),M (a))-ε-chaotic but is
not (M (1),M (1))-chaotic. In fact, we show even more, since there is a Cantor
set K ⊂ Xa and Q ∈ M (1) with the property that for every n = 1, 2, . . . there
is Qn ∈ �Q� such that

K ×K \ ∆ ⊂ [Qn](∆1/n, σ × σ) ∩M (a)(Xa ×Xa \ ∆ε, σ × σ).

In particular K is synchronously proximal, and the set of iterations during
which diam K < δ is of upper density 1 for any δ > 0. Furthermore, Xa can be
arbitrarily close to the whole space {0, 1}N in the sense of Hausdorff distance. As
we said before, our construction generalizes ideas of [31]. Later, in further parts
of the article, we will present another method of creation of examples with the
above mentioned chaotic properties. That method will be less transparent (the
construction will be obtained via an application of strong results in topological
dynamics), however the dynamical properties of the constructed family will be
also a little bit stronger (the topological entropy will be positive).

Now, we are ready to start our construction. Fix any a ∈ [0, 1) and θ ∈ (a, 1).
Fix words v1, . . . , vs and let u = v1v2 · · · vs. We add a few symbols 0 at the end
of u if necessary, obtaining |u| > 6.
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First, we will construct inductively a family of words
�
Ai, Ai

�∞
i=1

⊂ {0, 1}+.
The desired subshift will be obtained as the orbit closure of the infinite con-
catenation of some of these words.

Let k1 > 1 be such that 3|u|/k1 < 1− θ. Define

A1 = 0|u|+21u11(01)k1 , A1 = 0|u|+21u1(01)k11.

Observe, that |A1| = |A1| and η(1) > θ where

η(1) :=
1

|A1|
#

�
0 ≤ j < |A1| : A1(j) �= A1(j)

�

since by the definition

η(1) =
2k1 + 1

2k1 + 2|u| + 5
≥ 1− 3|u|

k1
> θ.

Next, suppose that words Ai, Ai ∈ {0, 1}+ are defined such that |Ai| = |Ai|,
Ai �= Ai and η(i) > θ for all i = 1, . . . , n, where

η(i) :=
1

|Ai|
#

�
0 ≤ j < |Ai| : Ai(j) �= Ai(j)

�
.

There is α ∈ (0, 1) such that η(i) > θ + α for every i = 1, . . . , n. Fix a positive
integer kn+1 such that 2/kn+1 < α. Let

(3.1) Pn :=
�
B1 · · ·Bn : Bi ∈

�
Ai, Ai

�
, 1 ≤ i ≤ n

�
.

For any P ∈ Pn, P = B1 · · ·Bn denote P = B1 · · ·Bn, where Ai = Ai. As-
sume that elements of Pn are enumerated, let say Pn = {P1, . . . , Ps}. Assume
additionally that P 1 = P2. Note that s = 2n since Ai �= Ai for every i. Define
An+1 and An+1 by

An+1 := P1 (P1)
kn+1 (P2)

kn+1 · · · (Ps)
kn+1

An+1 := P1

�
P 1

�kn+1 �
P 2

�kn+1 · · ·
�
P s

�kn+1
.

First note that An+1 �= An+1 and |An+1| = |An+1|. To proceed with induction,
it remains to show that η(n + 1) > θ. To prove that, observe that |Pi| = |P1|
for i = 1, . . . , s, and so

η(n + 1) ≥ kn+1

|P1|(skn+1 + 1)

s�

j=1

#
�
0 ≤ i < |P1| : Pj [i] �= P j [i]

�

≥ kn+1

|P1|(skn+1 + 1)

s�

j=1

n�

i=1

|Ai|η(i)

≥ kn+1

|P1|(skn+1 + 1)

s�

j=1

n�

i=1

|Ai|(θ + α)

tome 140 – 2012 – no 3



MINIMAL SYSTEMS AND DISTRIBUTIONALLY SCRAMBLED SETS 411

≥ skn+1

skn+1 + 1
(θ + α) ≥ θ + α− 2

kn+1

> θ.

By the induction, a word Ai with the properties specified above is well defined
for i = 1, 2, . . . .

Put xa := A1A2A3 · · · and define Xa := L+(xa, σ). Further in this section
(see Lemma 3.3) we will show that Xa is minimal for every parameter a ∈ [0, 1).

Lemma 3.1. — For every n > 0 there is a sequence {ij}∞j=1 ⊂ {1, . . . , 2n} such

that

xa = Pi1Pi2 · · ·
where Pn = {P1, . . . , P2n} is defined by (3.1).

Proof. — The proof is straightforward, thus left to the reader.

Lemma 3.2. — Fix any n > 0 and P,Q, R ∈ Pn. If there are x, y ∈ {0, 1}∗

such that PQ = xRy then x = λ or y = λ.

Proof. — For n = 1 the statement of the Lemma is obvious, since 0|u|+2

can be only a prefix of a word in P1 =
�
A1, A1

�
. Next assume that the

statement holds for all n = 1, . . . ,m and fix any P,Q, R ∈ Pm+1. There
are B1, . . . , Br, C1, . . . , Cr, D1, . . . ,Dr ∈ Pm such that P = B1 · · ·Br, Q =
C1 · · ·Cr, R = D1 · · ·Dr where r = 1 + 2mkm+1. Now assume that PQ = xRy
for some x, y ∈ {0, 1}∗. If x = λ or x = P then we are done, so assume contrary
that |x| ∈ (0, |P |). By the assumptions of the induction, there is s < r such that
x = B1 · · ·Bs. Note that Bj , Dj �∈ {P1, P2} =

�
P 1, P 2

�
for j > 2km+1 + 1,

while Cj , Dj ∈ {P1, P2} for j ∈ [1, 2 + 2km+1). If s ∈ [1, 2 + 2km+1) then
Dr = Cs ∈ {P1, P2} and if s ∈ [1 + 2km+1, r − 1] then Bs+1 = D1 ∈ {P1, P2}.
Both situations are impossible.

Lemma 3.3. — For every a ∈ [0, 1), the map σ is minimal on Xa.

Proof. — First note that words x = A1 · · ·An and y = A1 · · ·An are contained
in Pn and so both x, y are subwords of An+1 and An+1 (in both An+1, An+1 all
words from the set Pn have to appear, however in a different order). This im-
plies that both x, y are subwords of every word in Pn+1. But then by Lemma 3.1
we obtain

{j : xa[i + j] = w[i], 0 ≤ i ≤ |w|} ∈ kτB

for any w of the form w = A1A2 · · ·An, which in other words means that xa is
uniformly recurrent. This shows that Xa is a minimal set for σ.
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Theorem 3.4. — For every a ∈ [0, 1)every proper family F and every γ > 0

F+(∆, σ × σ) ∩ τB(Xa ×Xa \ ∆γ , σ × σ) = ∅.

In particular, the shift map σ = σ|Xa is not (M (1),M (1))-chaotic.

Proof. — Suppose contrary to the statement of the theorem that there are
x, y ∈ Xa and γ > 0 such that

(x, y) ∈ F+(∆, σ × σ) ∩ τB(Xa ×Xa \ ∆γ , σ × σ).

We may assume that x �= y, since obviously

∆ ∩ τB(Xa ×Xa \ ∆γ , σ × σ) = ∅.

There is n > 1 such that 2−n < γ. By Lemma 3.1, without loss of generality
we may assume that

(3.2) x = Pi1Pi2 · · · , y = vPk1Pk2 · · ·

for some word v ∈ {0, 1}∗ with 0 ≤ |v| < |P1| and some sequences
{ij}∞j=1 , {kj}∞j=1 ⊂ {1, . . . , 2n}, where Pn = {P1, . . . , P2n} is defined by
(3.1).

Denote m = |v|. First assume that m > 0. We claim that the set

F = {i : xi �= yi}

is syndetic. Otherwise for l = 3|P1| there is i such that xi+j = yi+j for j =
0, . . . , l. By (3.2) there are z, z�, w, w� and P,Q, R ∈ Pn such that |z�| = |z|+m
and zPQw = z�Rw� = xi · · ·xi+k−1. We obtain a contradiction by Lemma 3.2.
Indeed F is syndetic. But then there is ε > 0 such that

N((x, y),∆ε, σ × σ) ⊂
�
i : d(σi(x), σi(y)) < 2ε

�
= ∅.

Since F is proper, (x, y) �∈ F+(∆, σ×σ) which contradicts assumptions about
the pair (x, y). Then the only possibility is m = 0. But there is a word w ∈ Pn−1

such that w is a prefix of every word in Pn. Note that |w| ≥ (n − 1)|A1| > n
and that the set

E = {i : xi+j = yi+j = wj for 0 ≤ j < |w|}

is syndetic, that is E ∈ kτB. Furthermore, if xi+j = yi+j for 0 ≤ j < n then
d(σi(x), σi(y)) < γ. This immediately implies that

N((x, y), Xa ×Xa \ ∆γ , σ × σ) ⊂ N \ E �∈ τB.

and so (x, y) �∈ τB(X ×X \ ∆γ , σ × σ) which is a contradiction.
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Theorem 3.5. — For every a ∈ [0, 1) and every ε < 1/2 there is a Cantor set

K ⊂ Xa and a sequence of sets {Qn}∞n=1 ∈ M (1) such that Qn+1 ⊂ Qn and

K ×K \ ∆ ⊂ [Qn](∆1/n, σ × σ) ∩M (a)(Xa ×Xa \ ∆ε, σ × σ).

for every n = 1, 2, . . . .

Proof. — Let Ξ ⊂ {0, 1}N be an uncountable set, such that if α,β ∈ Ξ are
distinct, then

# {i : αi = βi} = ∞ , # {i : αi �= βi} = ∞.

There are numerous methods for constructing such sets; e.g. we may follow [26]
and for every x ∈ {0, 1}N define αx ∈ {0, 1}N putting

(3.3) αx = x00x0x10x0x1x20x0 · · · ∈ {0, 1}N .

Now it is enough to define Ξ =
¶
αx : x ∈ {0, 1}N©. Next, for any α ∈ Ξ define

zα = Bα
1 Bα

2 Bα
3 · · · where Bα

i = Ai if αi = 0 and Bα
i = Ai otherwise. We put

K = {zα : α ∈ Ξ} .

Note that K is a Cantor set since maps x �→ αx and α �→ zα are continuous
injections.

For any n > 0 denote ln = |A1 · · ·An|. Let ξ = 10120130140150 · · · and
observe that if ξi = 0 then αi = 0 for any α ∈ Ξ. Define

Q =
�

{i:ξi=0}

[li, li+1 − i) ∩ N.

Observe that if we fix any m and next take n > m then zα[i+j] = An+1[i−ln+j]
for every i ∈ Q∩ [ln, ln+1), every j ∈ {0, . . . ,m} and every α ∈ Ξ. Additionally,
ξn = 0 if and only if Q ∩ [ln, ln+1) �= ∅.

By (3.1), if P ∈ Pn then |P | = ln, which implies that

|An+1| = (2nkn+1 + 1)ln > 2nln.

Fix any m > 0. For every n > m such that ξn = 0 and every α,β ∈ Ξ we obtain
that

d(σi(zα), σi(zβ)) < 2−m

provided that i ∈ Q ∩ [ln, ln+1) = [ln, ln+1 − n) ∩ N. This shows that

K ×K ⊂ [Qm](∆2−m , σ × σ) ⊂ [Qm](∆1/m, σ × σ)

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



414 P. OPROCHA

where Qm = Q ∩ [lm,+∞). To see that Q ∈ M (1) (which obviously implies
that Qm ∈ M (1)) it is enough to calculate

D∗(Q) ≥ lim sup
n→∞

1

ln+1
# (Q ∩ [ln, ln+1 − n))

≥ lim
n→∞

ln+1 − ln − n

ln+1
≥ 1− lim

n→∞

2ln
ln+1

≥ 1− lim
n→∞

2ln
2nln

= 1.

Next, if we fix any α,β ∈ Ξ then for every m there is n > m such that
α[n] �= β[n]. But then we see that

#
�
0 ≤ i < ln+1 : d(σi(zα), σi(zβ)) > 2ε

�

≥ #
¶
0 ≤ i < ln+1 : zα

i �= zβ
i

©

≥ #
¶
ln ≤ i < ln+1 : zα

i �= zβ
i

©

≥ #
�
ln ≤ i < ln+1 : An+1[i] �= An+1[i]

�

≥ |An+1|η(n + 1) ≥ |An+1|θ
≥ (ln+1 − ln)θ.

This immediately implies that

D∗(
�
i : (σi(x), σi(y)) �∈ ∆ε

�
) ≥ lim

n→∞

ln+1 − ln
ln+1

θ

≥ θ(1− lim
n→∞

ln
2nln

)

≥ θ > a

and so (x, y) ∈ M (a)(Xa ×Xa \ ∆ε, σ × σ).

Remark 3.6. — It follows from the statement of Theorem 3.5, that �Q� ⊂
M (1) and

K ×K \ ∆ ⊂ �Q�+ (∆, σ × σ) ∩M (a)(Xa ×Xa \ ∆ε, σ × σ).

Theorem 3.7. — For every a ∈ [0, 1), every ε < 1/2 and every δ > 0

the subshift Xa ⊂ {0, 1}N
is minimal and the shift map σ = σ|Xa is

(M (1),M (a))-ε-chaotic but is not (M (1),M (1))-chaotic. Additionally

H d(Xa, {0, 1}N) < δ.

Proof. — Fix m such that 2−m < δ and let v1, . . . , vs be all possible words
over {0, 1} and with length m. Next use u = v1v2 · · · vs in the construction of
Xa.

The proof is finished by Lemma 3.3, Theorem 3.4, Theorem 3.5 and the fact
that Xa ∩ C[vi] �= ∅ for i = 1, . . . , s.
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We are going to show that dynamics on Xa is to some extent similar to that
of an odometer. First, we have to prove two auxiliary results. The first one
seems to be well known, however we don’t know any direct reference.

Lemma 3.8. — Assume that X is compact and f ∈ C(X). The following con-

ditions are equivalent:

1. f is weakly mixing,

2. there is x with dense orbit such that for any open set U � x there is

s = sU > 0 such that s, s + 1 ∈ N(U, U, f).

Proof. — The proof is elementary. We leave it to the reader.

Recall that a closed set is called regular closed if it is the closure of an
open set. A characteristic feature of a transitive map f ∈ C(X) such that
fn is not totally transitive is that X may be written in an essentially unique
way as the union of a finite set {D0, . . . ,Dn} of non-empty regular closed
sets with pairwise disjoint interiors such that f(Di) ⊆ Di+1 (mod n) for each
i ≤ n − 1. It is easy to check that these regular periodic decompositions have
the property that fn is invariant and transitive on each Di. Recall that a
regular periodic decomposition is terminal if it is of maximal length among all
periodic decomposition. If a decomposition of length n is terminal then fn is
totally transitive on each of its elements (see [6, Theorem 3.1]).

If f is minimal then elements of a regular periodic decomposition are pairwise
disjoint [6, Lemma 2.7]. Furthermore, we have the following property (see [6,
Theorem 4.4]):

Theorem 3.9. — Let X be a compact metric space and let f ∈ C(X) be

minimal. If f has no terminal decomposition then f is an extension of an

odometer.

Following [18], we will say that f has dense small periodic sets if for any
nonempty open set U there is a nonempty closed set A ⊂ U and n such that
fn(A) = A. It was proved in [24] that totally transitive map with dense small
periodic sets is weakly mixing. It is also easy to see that if f has dense small
periodic sets, then so does fn restricted to any element of regular periodic
decomposition of length n.

Lemma 3.10. — For every a ∈ [0, 1), the subshift Xa constructed above has

dense small periodic sets.
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Proof. — Fix any nonempty open set U and denote X = Xa. There is w such
that CX [w] ⊂ U . The orbit of xa is dense, so there is m such that w is a subword
of A1 · · ·Am ∈ Pm. But this implies that w is also a subword of P (m+1)

1 ∈
Pm+1 where P (m+1)

1 is the first word in the ordering of Pm+1 fixed during the
construction. But P (m+1)

1 is a prefix of both Am+2 and Am+2. This implies
that R[k,k+j) = P (m+1)

1 for every R ∈ Pm+2 where k = |A1|+ · · ·+ |Am+1| and
j = |P (m+1)

1 |. The proof is finished by Lemma 3.1 and [18, Proposition 3.2].

Theorem 3.11. — For every a ∈ [0, 1), the subshift Xa constructed above is

an extension of an odometer.

Proof. — It is enough to show that f has no terminal regular periodic decom-
position. Assume on contrary that such a decomposition exists, let say of length
m, and let D be a set in this decomposition so that xa ∈ D. Then D is invariant
for fm and fm|D has dense small periodic sets by Lemma 3.10 (D is the closure
of its interior by the definition). Furthermore fm|D is totally transitive (D is a
member of terminal decomposition) which implies that fm|D is weakly mixing
[24, Proposition 3.7]. There is l > m and R ∈ P l such that W = CX [R] ⊂ D
and by Lemma 3.8 there is s such that s, s + m ∈ N(W,W, f). But then there
are subwords x, y of xa of length |x| + m = |y| such that R is a prefix and
a suffix of both x and y. Such a situation is impossible by Lemma 3.2, since
|R| ≥ l > m. We arrived to a contradiction and so the proof is finished by
Theorem 3.9.

Question 1. — It is not known to the author, whether Xa are almost 1-1

extensions of odometers. By [9, Theorem 5.1] it is sufficient to prove that there

is a regularly recurrent point z ∈ Xa, but we are not sure if Xa must contain

such a point.

We also remark here that a similar technique to [31] was used in [22] to
provide an example of a minimal subshift which is distributionally chaotic.
Later, even an uncountable family of such sets was obtained in [23]. We will
investigate this technique later, in Section 9

In next section we will show that almost 1-1 extensions of odometers are
never (M (1),M (1))-chaotic. If we could show that there is a factor map from
Xa into an odometer with a singleton fibre then it would simplify some of our
arguments. However, as we mentioned above we are not sure if such a factor
map exists.
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4. Extensions of minimal systems

Theorem 4.1. — Let (X, d), (Y, ρ) be compact metric spaces and let π : X →
Y be a factor map between f ∈ C(X) and g ∈ C(Y ). If g is a minimal map,

there is z ∈ Y such that #π−1({z}) = 1 and F+(∆, g × g) = ∆ for some

proper family F then for any γ > 0 we have

F+(∆, f × f) ∩ τB(X ×X \ ∆γ , f × f) = ∅.

In particular it implies that f is not (F , τB)-chaotic.

Proof. — We are going to show that

F+(∆, f × f) ∩ τB(X ×X \ ∆γ , f × f) = ∅.

for any γ > 0. Fix γ > 0 and consider two points x, y ∈ X.
We may assume that f j(x) �= f j(y) for all j ≥ 0, since (z, z) �∈ F (X ×X \

∆γ , f × f) for any z ∈ X. First assume that π(f j(x)) �= π(f j(y)) for every
j ≥ 0. For any n there is δn > 0 such that (π × π)(∆δ) ⊂ ∆1/n, where ∆δ and
∆1/n are neighborhoods of diagonals in X × X and Y × Y respectively. But
then

N((x, y),∆δn , f × f) ⊂ N((π(x), π(y)),∆1/n, g × g)

which in other words means that we have the implication

(π(x), π(y)) �∈ F+(∆, g × g) =⇒ (x, y) �∈ F+(∆, f × f).

This ends the proof for this case.
For the second case, without loss of generality, we may assume that π(x) =

π(y), say x, y ∈ π−1({q}) for some q ∈ X. Let p ∈ X denote the unique point
π(p) = z. There is an open set U � p such that U × U ⊂ ∆γ ⊂ X ×X. There
is also an open set V � z such that π−1(V ) ⊂ U as otherwise π−1({z}) �= {p}.
The point π(x) is uniformly recurrent and gm(π(x)) ∈ V for some m ≥ 0. This
implies that there is a syndetic set F such that N(π(x), V, g) = F , and so

N((x, y),∆γ , f × f) ⊃ N((x, y), U × U, f × f)

⊃ N((π(x), π(y)), V × V, g × g)

= N(π(x), V, g) = F.

Then N((x, y),∆γ , f ×f) ∈ kτB, which implies that N((x, y), X×X \∆γ , f ×
f) �∈ τB, or equivalently (x, y) �∈ τB(X ×X \ ∆γ , f × f).

Corollary 4.2. — Let (X, d), (Y, ρ) be compact metric spaces and let π :
X → Y be a factor map between f ∈ C(X) and g ∈ C(Y ). If g is minimal,

distal and there is x ∈ Y such that #π−1({x}) = 1 then for any γ > 0 and any

proper family F we have

F+(∆, f × f) ∩ τB(X ×X \ ∆γ , f × f) = ∅.
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In particular, f is not (F , τB)-chaotic for any proper family F and does not

have DC1 pairs (thus is not (M (1),M (1))-chaotic).

Proof. — First note that M (1) ⊂ τB. By the definition of distality, for every
y, z ∈ Y there is δ > 0 such that (gn(y), gn(z)) /∈ ∆δ for any n. Then (y, z) �∈
F+(∆, g×g) for any proper family F and so the result follows by Theorem 4.1.

As a consequence of Corollary 4.2 we see that every minimal map with a
regularly recurrent point cannot have DC1 pairs (all such maps are almost 1-1
extensions of odometers [9, Theorem 5.1.]). This fact was first proved in [4,
Theorem 2].

Corollary 4.3. — Let (X, d), (Y, ρ) be compact metric spaces and let π :
X → Y be a factor map between f ∈ C(X) and g ∈ C(Y ). If g is a minimal

map, there is z ∈ Y such that #π−1({z}) = 1 and (x, y) ∈ τB(X×X\∆γ , f×f)
for some γ > 0 then x, y belong to different fibres of π, that is π(x) �= π(y).

Proof. — It is explicitly calculated in the second half of the proof of Theo-
rem 4.1.

Remark 4.4. — Almost 1-1 extensions of distal systems, for instance those

of irrational rotations or odometers, fulfill the assumptions of Corollary 4.2.

5. Toeplitz flows

In this section we will construct another family of systems with positive topo-
logical entropy which are not (M (1),M (1))-chaotic. The construction will be
less transparent than this in Section 3, however it will allow us to raise the
topological entropy above zero (in fact, arbitrarily close to the entropy of the
full shift). There is well known technique of construction of such systems and it
allows to ’pack’ any subshift in the aperiodic readouts of the resulting Toeplitz
system (e.g. see WilliamsŠ Construction on page 30 of [9]). Nevertheless, we de-
cided to perform a construction of a special family of Toeplitz flows to highlight
the fact that the edge between (M (1),M (1))-chaos and (M (1),M (a))-chaos
can be much more thick than can be foreseen by the application of Corol-
lary 4.2. Strictly speaking, for any 0 < a < b < 1 we will obtain a system which
is (M (1),M (a))-chaotic but is not (M (1),M (b)) chaotic, or even more

M (1)+(∆, σ × σ) ∩M (b)(Xω ×Xω \ ∆γ , σ × σ) = ∅
for any γ > 0. Unfortunately, systems obtained by this method are never mixing
or even weakly mixing, since they have a nontrivial equicontinuous factor (see
the proof of [20, Prop. 2.45]).
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First, let us recall some more facts on Toeplitz flows. Suppose that a Toeplitz
flow Xω is an extension of an odometer Gs via a factor map πω. If we fix any
j ∈ Gs then Aper(x) = Aper(y) for every x, y ∈ π−1

ω (j); in particular we can
write Aper(j) := Aper(x). Assume that Aper(x) is infinite and enumerate its
elements Aper(x) = {0 ≤ n1 < n2 < · · · }. Then by the aperiodic readout of x
we mean the sequence

y := x|Aper(x) = x[n1]x[n2] · · ·
In other words, we read and write down symbols along Aper(x). For every
j ∈ Gs with # Aper(j) = ∞, let Yj be the set of all possible aperiodic readouts
of elements in π−1

ω (j).

Theorem 5.1. — Assume that Xω is a Toeplitz flow and there is j such that

D(Aper(j)) = η > 0. If Yj contains an (M (1),M (a))-γ-scrambled set for some

a > 0, γ ∈ (0, 1/2) then Xω contains (M (1),M (a�))-1/2-scrambled set, where

a� = aγη.

Proof. — Fix m > 0 such that 2−m < γ ≤ 2−m+1 and observe that if
(σi(p), σi(q)) �∈ ∆γ then d(σi(p), σi(q)) ≥ γ and so p[i,i+m) �= q[i,i+m). Take
p, q ∈ Yj such that

(p, q) ∈ M (1)+(∆, f × f) ∩M (a)(Xω ×Xω \ ∆γ , σ × σ)

and let x, y be points in the fibre defined by j with aperiodic readouts p and q
respectively.

For any δ > 0 we can find arbitrarily large n such that we have

a− δ ≤ 1

n
#

�
0 ≤ i < n : p[i,i+m) �= q[i,i+m)

�

≤ m

n
# {0 ≤ i < n : p[i] �= q[i]} .

Then we obtain that

γ(a− δ) ≤ a− δ

2m−1
≤ a− δ

m
≤ 1

n
# {0 ≤ i < n : p[i] �= q[i]} .

Additionally, observe that x[i] �= y[i] if and only if i = nj for some nj ∈ Aper(j)
(nj is j-th element in this set) and p[j] �= q[j]. Given n > 0 let n� denote
#(Aper(j) ∩ [0, n)). By the above observations we obtain that for any δ > 0
and sufficiently large n = n(δ) we have the following lower bound

1

n
# {0 ≤ i < n : x[i] �= y[i]} =

1

n
# {0 ≤ j < n� : p[j] �= q[j]}

≥ 1

n
(η − δ)nγ(a− δ).

Since δ can be arbitrary small, we see that

(p, q) ∈ M (aηγ)(Xω ×Xω \ ∆1/2, σ × σ).
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Next, observe that for any k > 0, if

(5.1)
1

n
#

�
i < n : p[i,i+k) �= q[i,i+k)

�
< ε

then
1

n
# {i < n : p[i] �= q[i]} < ε.

Furthermore, if n is such that aperiodic readout of x over x[0,n) contains exactly
n� symbols then for sufficiently large n we have n�/n < 2η and so

1

n
# {0 ≤ i < n : x[i] �= y[i]} < ε

n�

n
≤ 2εη

But if x[i] �= y[i] then also x[j,j+l) �= y[j,j+l) for any l > 0 and any j such that
i ∈ [j, j + l), which gives

1

n
#

�
0 ≤ i < n : x[i,i+l) = y[i,i+l)

�
> 1− 2lεη − l

n
.

provided that (5.1) is satisfied. By the above observation and the fact that ε
can be arbitrarily small (and does not depend on l) we see that also for any
fixed l we have

lim sup
n→∞

1

n
#

�
0 ≤ i < n : x[i,i+l) = y[i,i+l)

�
= 1

and so the proof is finished.

Remark 5.2. — There is a well known technique (which originated from pa-

pers of Susan Williams [32]) of construction of Toeplitz flows fulfilling assump-

tions of Theorem 5.1 (see [9, p. 30]).

The following definition is a stronger version of the same property introduced
in [9].

Definition 5.3. — We say that Xω fulfils the condition (SAR) if Yj are the

same for every j ∈ Gs with # Aper(j) = ∞.

Theorem 5.4. — For every a ∈ [0, 1), every b ∈ (a, 1], every ε < 1 there is

a Toeplitz subshift Xa ⊂ {0, 1}N
fulfilling (SAR) such that the shift map σ =

σ|Xa is (M (1),M (a))-ε-chaotic but is not (M (1),M (b))-chaotic. Additionally

htop(Xa) = a.

Proof. — Start with the construction of two sequences sm, s�m. Put s0 = s�0 = 1
and next sm+1 = smqm, s�m+1 = s�mq�m, where q�0/q0 ∈ (a, b), qm > q�m > 2 and
limm→∞ s�m/sm = a. Such sequence can be easily constructed by induction, e.g.
in the following way. Denote α(m) = log(s�m) − log(sm) − log(a) and observe
that for the construction it is enough, if limm→∞ α(m) = 0.
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Since limn→∞ log(n+1
n ) = 0 there is q�m such that log(q�m +k +1)− log(q�m +

k) < α(m)/2 for every k ≥ 0. In particular, there is k such that α(m) ≥
log(q�m+k)−log(q�m) > α(m)/2. If we put qm = q�m+k then α(m+1) < α(m)/2.

From now on, we assume that sequences sm, s�m, qm, q�m are fixed. We put
rm = qm − q�m and tm = s�mrm. Then we fix a sequence of words Bm ∈ {0, 1}+

such that |Bm| = tm and every word u ∈ {0, 1}+ is a prefix and a suffix of some
(possibly different) words Bm. In addition to symbols 0, 1 we will also use the
symbol ♦. If |w|♦ = m and |u| = m then by w ↓ u we denote the word obtained
from w by putting symbols of u in place of ♦, e.g 11♦1 ↓ 0 = 1101.

For every n ≥ 1 we will define a word V (n) such that |V (n)| = sn and
|V (n)|♦ = s�n. First, we put V (1) = B0♦s�1 . Next, if V (n) is defined, then we
put W (n) = V (n)rn ↓ Bn (this operation is well defined since V (n)rn contains
tn occurrences of ♦) and finally V (n + 1) = W (n)V (n)q�n .

Note that for every n ≥ 1 and k > 1 the word V (n)V (n) is a suffix of
V (n+k). Let Sn = V (n)∞ and ω = limn→∞ Sn, where the limit is taken in the
space {0, 1,♦}N. Observe that ω is a Toeplitz sequence, such that Persn(ω) =
{i : Sn[i] �= ♦} (the inclusion ⊃ is obvious, and the converse follows from the
definition of Bm). Note that

lim
m→∞

D(Persm(ω)) = 1− lim
m→∞

s�m
sm

= 1− a.

Additionally it follows from the construction, that for any u ∈ {0, 1}+, |u| = 2sn

the word V (n)V (n) ↓ u is a suffix of W (m) for some m > 0 (u is a suffix of
some Bm). Furthermore, for every subword u of ω with |u| = sn there is a
subword v of V (n)V (n) such that u is obtained form v by replacement of all ♦
by symbols 0, 1.

Note that |v|♦ = |V (n)|♦ = s�n. Then, similarly to the proof of [20, Theo-
rem 4.77], we obtain that

2s�n ≤ # Lsn(Xω) ≤ sn2s�n

and so
htop(Xω) = lim

n→∞

s�n
sn

log(2) = a.

Additionally, observe that Xω fulfills (SAR). Take any j ∈ Gs with # Aper(j) =
∞ and fix any x ∈ π−1

ω (j). Assume that Aper(x) = {n1 < n2 < · · · }. Fix any
k, let sm > nk and let u be the prefix of x with |u| = sm. Then, there is
v ⊂ V (m)V (m) such that v(ni) = ♦ for i = 1, 2, . . . , k. We can replace some of
the symbols u(ni) to opposite ones, obtaining a word u�. Note that u� ∈ L(Xω)
and furthermore, u� is obtained from the same symbols of V (m)V (m) that
previously defined u. But then, if we define y ∈ {0, 1}N putting y[i] = x[i]
for i �∈ Aper(x), and any choice of symbols on other positions, then by the
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above comment still y ∈ Xω. Additionally, note that if x = limn→∞ σj�m(ω),
where j�m = jm (mod sm) and jm is the m-th coordinate of j, then by the
construction of the sequence V (n) and the above remark, there is a sequence
j��m = jm (mod sm) such that y = limn→∞ σj��m(ω). This shows that πω(x) =

πω(y). In particular Yj = {0, 1}N which ends the proof of (SAR).
This implies, by [9, Cor. 14.2] that there is q ∈ Gs with D(Aper(q)) = a.

With all the above facts, we can continue with the proof. First, if x, y are
in different fibres of πω then their orbits are not proximal, thus (x, y) �∈
M (1)(∆γ , σ × σ) for some sufficiently small γ > 0. Assume that x, y are in
the same fiber and fix any m > 0. For every δ > 0, 3δ < b− a, there is n such
that m/sn < δ and s�n/sn− δ < a. By the construction, word W (n) appears in
x and y with period sn, so for any l > 2 we calculate

1

l
#

�
0 ≤ i ≤ lsn : x[i,i+m) = y[i,i+m)

�
≥ (l − 1)(|W (n)|−m)

lsn

≥ (l − 1)

l
(1− s�n

sn
− m

sn
)

≥ (l − 1)

l
(1− a− 2δ).

Then
D∗(

�
i : d(σi(x), σi(y)) ≤ 2−m

�
) ≥ 1− a− 2δ > 1− b,

in particular
(x, y) �∈ M(b)(Xω ×Xω \ ∆γ , σ × σ)

for any γ > 0. Next, in a similar way as it was done in (3.3), we can construct
a Cantor set C ⊂ {0, 1}N such that for every n and every x, y ∈ C there are k, l
such that x[i] = y[i] for i ∈ [k, (2n +1)k] and x[i] �= y[i] for i ∈ [l, (2n +1)l]. For
every x ∈ C denote by zx ∈ π−1(q) the point with aperiodic readout equal to
x. Now, if we fix any ε < 1 and denote K = {zx : x ∈ C} then K is a Cantor
set, and we see that

K ×K \ ∆ ⊂ M (1)+(∆, σ × σ) ∩M (a)(Xω ×Xω \ ∆ε, σ × σ).

It is enough to put Xa = Xω and the proof is finished.

Note that if b < 1 then M (b) \ τB �= ∅ and obviously also τB \M (b) �= ∅,
since there are thick subsets with small density (even zero), and sets with high
density which are not thick (e.g. complements of infinite progressions).

Remark 5.5. — By Corollary 4.2, the map σ|Xa is not (F , τB)-chaotic for

any proper family F , since it is an almost 1-1 extension of an odometer.
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6. Entropy, DC1 and regularly recurrent points

In [4] the authors state the problem whether minimal system with positive
topological entropy has a DC1 pair if and only if it contains no regularly re-
current point (Problem (iii) in [4]). In this section we will prove that there is a
minimal system with positive topological entropy but without DC1 pairs nor
regularly recurrent points.

Consider first F = Rρ×Rs where Rρ : S → S is an irrational rotation of the
unit circle Rρ(x) = x+ρ (mod 1) and Rs is a nontrivial odometer on a scale s.
It is easy to verify that F is distal, hence every point is uniformly recurrent (see
[11, p. 160]). Additionally, Rn

ρ = Rnρ is minimal for every n, and every point
is regularly recurrent under Rs, so F is also minimal. By the same argument,
we see that F has no regularly recurrent points.

Now, let T be a Toeplitz flow with positive topological entropy, constructed
as an almost 1-1 extension of the odometer Rs. Then the map G = Rρ × T is
an almost 1-1 extension of F and obviously its topological entropy is positive.
But there is no regularly recurrent point under G, since if there were such a
point for G then F also would have a regularly recurrent point. There is also
no DC1 pair for G by Corollary 4.2. Therefore we answered Problem (iii) from
[4, p. 1678] in negative:

Theorem 6.1. — There is a minimal system with positive topological entropy

but without DC1 pairs and without regularly recurrent points.

7. Minimal systems with positive entropy and u.p.e.

Another technique originated from papers C. Grillenberger [12, 13] (see also
[14]), where the first explicit (symbolic) examples of strictly ergodic systems
with positive entropy were constructed. For the purposes of this section results
of [13] are particularly important, since examples of minimal K-systems are
constructed there. We will comment on this in the further parts of this section.
The main result of this section is that all minimal u.p.e. systems are DC2
(and it is known that (invertible) K-systems are topological K-systems [16], in
particular they are u.p.e.).

The following fact seems to be folklore (e.g. see [19, p.877]) and can be
proved using the Stirling formula (we leave the calculations to the reader).

Lemma 7.1. — For every t > 0 there are c > 0 and N > 0 such that

�cn��

k=0

Ç
n

k

å
< 2tn

for every n > N .
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Lemma 7.2. — If f ∈ C(X) is minimal and has positive topological entropy,

then there are ε, α > 0 such that for every nonempty open set U and K > 0
there are n > K and a pair of points p, q ∈ U such that

1

n
#

�
0 ≤ i ≤ n : d(f i(p), f i(q)) > ε

�
> α.

Proof. — First observe that by the definition of topological entropy, there are
γ, t > 0 such that

lim sup
n→∞

log(SX(n, γ))

n
= 2t > 0.

Let c and N be provided for t by Lemma 7.1. The set X is compact, so it
can be covered by a finite number of balls with radius γ/4, let say V1, . . . , Vm.
Decreasing c if necessary, we may additionally assume that c log(m) < t/2. Fix
α < c and let ε > 0 be such that 2ε is a Lebesgue number of the cover {Vi}.

Fix any open set U . The system (f, X) is minimal, thus there is k such that�k
i=0 f−i(U) = X and so also

lim sup
n→∞

log(SU (n, γ))

n
= 2t > 0.

Assume that A ⊂ U is an (n, γ)-separating set, where n > N . If x, y ∈ A and
d(f i(x), f i(y)) ≥ γ/2 then f i(x), f i(y) cannot both belong to the same set Vj .
Then the number of elements x, y ∈ A which are not in the same set Vj during
iterations with numbers 0 ≤ i1 < i2 < · · · < is < n is bounded from the above
by ms (just by the definitions of (n, γ)-separating set).

We claim that for every N > 0 there are n > N and an (n, γ)-separating set
A ⊂ U and p, q ∈ A such that

# {0 ≤ i ≤ n : τ(q, i) �= τ(p, i)} > αn

where τ(x, i) is the index such that f i(x) ∈ Vτ(x,i). While there are probably
more than one possible ways of defining functions τ(q, ·), τ(p, ·), we ensure that
τ(q, i) = τ(p, i) for as many i as possible.

In contrary, assume that there in N > 0 such that for any n > N any
(n, γ)-separating set and any p, q ∈ A we have that

# {0 ≤ i ≤ n : τ(q, i) �= τ(p, i)} < α.

In particular, by the choice of α we also have

# {0 ≤ i ≤ n : τ(q, i) �= τ(p, i)} < �cn�

This implies that f i(p), f i(q) can be in different sets Vj during at most �cn�
iterations. If we z ∈ A then we can uniquely identify other points of A by saying
that during iteration i they visited the same set Vj as z or providing the label
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(i.e. index j) of the visited set when it was different. Furthermore, there is at
most one point of A generating given itinerary. That way we can estimate that

#A ≤
�cn��

k=0

mk

Ç
n

k

å
≤ mcn2tn

≤ 2log(m)cn2tn(7.1)
< 23tn/2.

As an immediate consequence of the above we get that

2t = lim sup
n→∞

log(SU (n, γ))

n
< lim

n→∞

log(23tn/2)

n
< 2t

which is impossible. Indeed, the claim must be satisfied.
But then for n > N and p, q specified in the above claim we have

1

n
#

�
0 ≤ i ≤ n : d(f i(p), f i(q)) > ε

�
≥ 1

n
# {0 ≤ i ≤ n : τ(q, i) �= τ(p, i)}

> α.

and so the proof is finished.

Theorem 7.3. — If f ∈ C(X) is a minimal system with positive topological

entropy then there are a, γ > 0 such that the set

M (a)(X ×X \ ∆γ , f × f)

is residual in X ×X.

Proof. — Let ε, α > 0 be provided by Lemma 7.2. Denote a = α/6 and γ = ε/4.
For any m > 0 define the set Qm ⊂ X × X in the following way. A pair
(x, y) ∈ Qm if there is n > m such that

1

n
#

�
0 ≤ i < n : d(f i(x), f i(y)) > 2γ

�
> 2a− 1

m
.

The map f is uniformly continuous, and so it is immediate that Qm is open.
By Lemma 7.2 it is also dense, since for any z ∈ X and p, q ∈ X

1

n
#

�
0 ≤ i < n : d(f i(p), f i(z)) > 2γ

�
> 2a

or
1

n
#

�
0 ≤ i < n : d(f i(q), f i(z)) > 2γ

�
> 2a

provided that
1

n
#

�
0 ≤ i < n : d(f i(q), f i(p)) > ε

�
> α− a.
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This shows that the set Qa =
�∞

m=k Qm is residual, where k is such that
k > 1/a. Now, if (x, y) ∈ Qa then there are nk < nk+1 < · · · such that for
every j ≥ k we have

1

nj
#

�
0 ≤ i < nj : d(f i(x), f i(y)) > 2γ

�
> 2a− 1

j
> a.

This immediately implies that D∗(F ) ≥ a, where

F =
�
i : (f × f)i(x, y) ∈ X ×X \ ∆γ

�

and so F ∈ M (a). The proof is completed.

Theorem 7.4. — If f ∈ C(X) is u.p.e. then

M (1)+(∆, f × f)

is residual in X ×X.

Proof. — Fix m > 0 and define a set Am in the following way: (x, y) ∈ Am if
there is n > m such that

1

n
#

�
0 ≤ i < n : (f i(x), f i(y)) ∈ ∆1/m

�
> 1− 1

m
.

Again, it is easy to verify that each set Am is open. If f is invertible then Am

is also dense, because the set of asymptotic pairs is dense in X × X in every
invertible u.p.e. system by [7, Proposition 4]. In the case that f is not homeo-
morphism the argument is the following. Let us consider natural extension of f
to the shift map σf on the inverse limit of X with f as the single bounding map,

that is σf : Xf → Xf , where Xf = {(x1, x2, · · · ) ∈
∞�
1

X : f(xn+1) = xn, n ∈ N}

and σf (x1, x2, · · · ) = (f(x1), x1, · · · ). Next, by [15, Theorem 4.1] we get that
σf is also u.p.e. and so we are allowed to use [7, Proposition 4], thus asymp-
totic pairs of σf are dense in Xf ×Xf . But asymptotic pairs of σf project onto
asymptotic pairs of f , and so Am is dense also in non-invertible case.

Furthermore, we can easily verify that if (x, y) ∈
�∞

m=1 Am then

D∗(
�
i : (f i(x), f i(y)) ∈ ∆ε

�
) = 1

for every ε > 0. In other words (x, y) ∈ M (1)(∆ε, f×f) and so M (1)(∆ε, f×f)
is residual for every ε > 0 which ends the proof.

Recall that a set is a Mycielski set if it can be presented as at countable
union of Cantor sets. The following fact is a simplified version of Mycielski
theorem (see [2]).

Theorem 7.5. — If X is perfect and R ⊂ X ×X is symmetric and residual

then there is a dense Mycielski set M such that M ×M ⊂ R ∪∆.
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Corollary 7.6. — If f is a minimal u.p.e. then there is dense Mycielski

(M (1),M (a))-ε-scrambled set for some a, ε > 0.

Proof. — Combining Theorems 7.3 and 7.4 we obtain a, ε > 0 such that the
following set is residual:

M (1)+(∆, f × f) ∩M (a)(X ×X \ ∆γ , f × f).

Now it is enough to apply Theorem 7.5 and the proof is finished.

If f is (invertible) K-system then it is topological K-system by [16]. It can
also be proved (see [17]) that every minimal topological K-system is mixing.

Remark 7.7. — By Corollary 7.6 we see that there are numerous examples

of minimal mixing DC2 systems with positive topological entropy. This class

contains every minimal K-system, e.g. these constructed by Grillenberger in

[13].

8. Some extensions of the Chacón flow

GrillenbergerŠs ideas were further developed to a technique, which is often
called ”construction by (embedded) k-blocks” (e.g. see [8]). This technique per-
mits to construct weakly mixing strictly ergodic systems with positive topolog-
ical entropy having a factor with zero topological entropy. In this construction,
we lose some freedom when compared to extensions of Toeplitz flows, which
is tribute we have to pay for embedding much complex dynamics (as we men-
tioned it earlier, Toeplitz flows are never weakly mixing). In this section we will
investigate the class of extensions of the Chacón flow introduced in [8] from the
point of view of DC2 pairs.

We start recalling briefly the construction of Blanchard and Kwiatkowski.
For more detailed description we refer to [8]. First we present how the Chacón

flow is constructed. Define a family of words B̂n over the alphabet {♦, ∗} by
the following inductive formula. Put B̂0 = ♦ and B̂n+1 = B̂nB̂n ∗ B̂n for n ≥ 0.
Note that |B̂n|♦ = 3n and dn = |B̂n| = 1

2 (3n+1 − 1). We define bi-infinite
sequence x ∈ {♦, ∗}Z by

x[−dn,dn) = B̂nB̂n.

Next, we define X = Orb(x,σ) and call the system (X,σ|X) the Chacón flow

(or Chacón subshift).
Now we are ready to construct a class of extensions of the Chacón flow

introduced in [8]. Assume that 1 ≤ k0 < k1 < · · · are positive integers and
denote

pn = k0 + · · · + kn, Bn = B̂pn , ln = |Bn|.
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We will construct a subshift over the alphabet A =
�
1, 2, . . . , 3k0 , ∗

�
. First,

we are going to define a family An of blocks of length ln and we will denote
mn = #An. By Π(n) we will denote the family of permutations of the set
{1, . . . , n}.

First, fix σ ∈ Π(3k0) and define B(1)
σ by substituting successive occurrences

of ♦ in B0 = B̂k0 by σ(1), σ(2), . . . ,σ(3k0). We keep the letter ’∗’ unchanged.
In the notation os Section 5 we simply define

B(1)
σ = B0 ↓ σ(1) · · ·σ(k0).

That way we can define the following set

A1 =
¶
B(1)

σ : σ ∈ Π(3k0)
©

.

Next, assume that sets A1, . . . , An are defined, and numbers k0 < k1 < · · · < kn

satisfy 3ki − 2 > mi−1 for i = 1, . . . , n, where m0 = 0. Enumerate elements of
An, let say

An =
¶
B(n)

1 , . . . , B(n)
mn

©
.

Fix any two different blocks Ln, Fn ∈ An and choose kn+1 > mn + 2. Let tn+1

be such that
tn+1mn ≤ 3kn+1 − 2 < (tn+1 + 1)mn

Let Φn denote the set of functions φ : {1, . . . , tn+1mn} → {1, . . . ,mn} such
that each fiber has the same number of elements, that is #φ−1(t) = tn+1

for every t ∈ {1, . . . ,mn}. By the inductive formula in the construction of the
Chacón flow, it is possible to present Bn+1 as a concatenation of blocks Bn with
additional occurrences of the symbol ’∗’ somewhere between them. Note that
we have exactly 3kn+1 occurrences of Bn in Bn+1. Fix any σ ∈ Φn and denote
un = 3kn+1 − tn+1mn− 2 ≥ 0. We define the block B(n+1)

σ by substituting first
un + 1 occurrences of Bn in Bn+1 by the block Ln. Next tn+1mn occurrences
of Bn are replaced by B(n)

σ(j), j = 1, . . . , tn+1mn, and finally we replace the last
remaining occurrence of Bn by the block Fn. In other words (here we substitute
whole Bn, not single occurrences of ♦):

B(n+1)
σ = Bn+1 ↓ (Ln)un+1B(n)

σ(1) · · ·B
(n)
σ(tn+1mn )Fn.

That way we obtain the following set of blocks

An+1 =
¶
B(n+1)

σ : σ ∈ Φn

©
.

We continue with this construction recursively. Finally define bi-infinite se-
quence ω ∈ AZ by

ω[−ln,ln) = FnLn

and put Ω = Orb(ω,σ).
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Lemma 8.1. — Assume that

∞�

n=1

1

3kn
+

∞�

n=1

2 + mn

3kn+1
= θ <

2

3
.

Then there is a sequence of permutations φn : An → An such that for every n
and every w ∈ An the following holds:

αn(w) =
1

ln
{i : w[i] �= φn(w)[i]} ≥ 2

3
− θ > 0.

Proof. — Let ψ be a cycle on the set
�
1, 2, . . . , 3k0

�
. For any permutation

σ ∈ Π(3k0) define

φ1(B
(1)
σ ) = B(1)

ψ◦σ.

Then B(1)
σ [i] �= B(1)

ψ◦σ[i] for every i such that Bk0 [i] = ♦. But then

α1(w) =
1

l1
# {i : w[i] �= φ1(w)[i]} =

3k0

1
2 (3k0+1 − 1)

>
2

3
.

Next assume that for every j = 1, . . . , n we have already constructed a per-
mutation φj : Aj → Aj such that α̂n = minw∈ An

αn(w) satisfies the inequality

α̂j ≥
2

3
−

j−1�

i=1

1

3ki
−

j−1�

i=1

mi + 2

3ki+1

≥ 2

3
− θ.

We are going to show how φn+1 : An+1 → An+1 can be constructed. Fix any
function σ : {1, . . . , tn+1mn} → {1, . . . ,mn}. By the definition

B(n+1)
σ = Bn+1 ↓ (Ln)un+1B(n)

σ(1) · · ·B
(n)
σ(tn+1mn )Fn

and thus if we put

φn+1(B
(n+1)
σ ) = Bn+1 ↓ (Ln)un+1φn(B(n)

σ(1)) · · ·φn(B(n)
σ(tn+1mn ))Fn
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then φn+1 is well defined on any element of An+1, and it is also invertible, since
φn is invertible. To complete the proof, it is enough to calculate that

αn+1(B
(n+1)
σ ) =

1

ln+1
#
¶
i : B(n+1)

σ [i] �= φn+1(B
(n+1)
σ )[i]

©

≥ 1

ln+1

tn+1mn�

j=1

#
¶
i : B(n)

σ(j)[i] �= φn(B(n)
σ(j))[i]

©

≥ 1

ln+1

tn+1mn�

j=1

lnα̂n = tn+1mnα̂n
ln

ln+1

≥ α̂n

�
3kn+1 −mn − 2

�Å 1

3kn+1
− 1

3pn+1+1

ã

≥ α̂n −
mn + 2

3kn+1
− 3kn+1

3pn+1+1

≥ α̂n −
mn + 2

3kn+1
− 1

3kn

≥ 2

3
−

n�

i=1

1

3ki
−

n�

i=1

mi + 2

3ki+1
.

since obviously α̂n+1 = αn+1(B
(n+1)
σ ) for some σ.

Theorem 8.2. — Let Ω be the extension of the Chacón flow constructed above

and assume that

2
∞�

n=1

1

3kn
+

3

2

∞�

n=1

2 + mn

3kn+1
< 1.

Then Ω is minimal with positive topological entropy and has

(M (1),M (a))-1/2-scrambled set for some a > 0.

Proof. — The fact that Ω is minimal with positive topological entropy fol-
lows by [8, Corollary 1 & Proposition 1], so it remains to construct an
(M (1),M (a))-1/2-scrambled set.

First note that if we fix any σ ∈ Φn then as the suffix of B(n+1)
σ we will have

the block
B(n)

σ(tn+1mn−1)B
(n)
σ(tn+1mn) ∗ Fn.

By the same argument, there is γ ∈ Φn+1 such that B(n+1)
γ(tn+2mn+1)−1 = B(n+1)

σ

and so the suffix of B(n+2)
γ has the form

B(n)
σ(tn+1mn−1)B

(n)
σ(tn+1mn) ∗ FnB(n+1)

γ(tn+2mn+1)
∗ Fn+1.

This shows that for every sequence σn ∈ Φn there is a point x ∈ Ω such that

x[0,+∞) = B(2)
σ1
∗ F2B

(3)
σ2
∗ F3B

(4)
σ3
∗ F4 · · ·
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Let D be the set of all points that can be defined that way. Observe that each
block of the form

B(2)
σ1
∗ F2B

(3)
σ2
∗ F3 · · ·B(n)

σn−1
∗ Fn

is a suffix of B(n+1)
γ for some γ ∈ Φn and the length of this suffix is shorter

than 1
2 ln+1. This shows that D does not have isolated points. Obviously it is

also closed, thus perfect.
Let θ be provided by Lemma 8.1. For any l, s > 0 define a set As

l ⊂ D ×D
such that (x, y) ∈ As

l if and only if there is k > s such that

1

k
#

�
0 ≤ i < k : x[i,i+l] = y[i,i+l]

�
>

s− 1

s
.

We claim that this set is dense in D×D (it is clear that it is open in D×D).
Fix any open sets U, V such that U ∩ D �= ∅, V ∩ D �= ∅ There are n > 0
and sequences of permutations σ1, . . . ,σn−1, η1, . . . , ηn−1 such that we have
inclusion of cylinder sets CΩ[u] ⊂ U , CΩ[v] ⊂ V where

u = B(2)
σ1
∗ F2B

(3)
σ2
∗ F3 · · ·B(n)

σn−1
∗ Fn

v = B(2)
η1
∗ F2B

(3)
η2
∗ F3 · · ·B(n)

ηn−1
∗ Fn

Note that |u| = |v| = n− 1 + 2
�n

j=2 ln and 3pn/4 ≤ ln ≤ 3pn+1/2. Then for n
sufficiently large, in particular n > l we get

|u| + l + 1

ln+1
≤

2n + 2
�n

j=2 lj
ln+1

≤ 2n

3n
+

6
�n

j=2 3pj /2

3pn+1/4

≤ 2n

3n
+

12n

3kn+1
≤ 14n

3n
−→ 0.

Now, consider x, y ∈ D with prefixes u ∗B(n+1)
γ , v ∗B(n+1)

γ respectively, where
B(n+1)

γ is a fixed word in An+1 (such words x, y exist by the definition of D).
As an immediate consequence we see that for sufficiently large n and k =
|u| + ln+1 + 1 we have

1

k
#

�
0 ≤ i < k : x[i,i+l] = y[i,i+l]

�
≥ 1− |u| + l + 1

ln+1
>

s− 1

s
.

Indeed, each set As
l ⊂ D ×D is open and dense.

Next, observe that by the assumptions

3

2

∞�

n=1

1

3kn
+

3

2

∞�

n=1

2 + mn

3kn+1
< 1.
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and so we are allowed to use Lemma 8.1. Consider the following number

ck
xy =

1

k
# {0 ≤ i < k : xi �= yi}

for some fixed words x, y with prefixes u, v respectively. Assume even more,
that as before the prefix of x is u ∗ B(n+1)

γ while in the case of y we have the
prefix u ∗φn+1(B

(n+1)
γ ), where the function φn+1 is a permutation provided by

Lemma 8.1. For k = |u| + 1 + ln+1, putting δ = 2
3 − θ > 0, we can calculate

that

ck
xy ≥

δln+1

ln+1 + |u| + 1
≥ δ − 2|u|

ln+1

≥ δ − 4nln
ln+1

≥ δ − 4nln
1
23kn ln

≥ δ − 8n

3n
−→ δ.

Now, consider the set Cl ⊂ D×D consisting of pairs (x, y) such that for some
k > l the following inequality is satisfied

1

k
# {0 ≤ i < k : xi �= yi} > ε

with ε = 1
2 ( 2

3 − θ). Simply by the definition Cl is open and by previous cal-
culations it is also a dense subset of D ×D for every l > 0. As an immediate
consequence we obtain that the set

R =
∞�

l,s=1

(As
l ∩ Cl)

is a residual subset of D×D and for every (x, y) ∈ R and every t > 0 we have

Φ∗
xy(t) = 1 and Φxy(1) ≤ 1− ε.

In particular it means that

(x, y) ∈ M (1)+(∆, σ × σ) ∩M (a)(Ω× Ω \ ∆1/2, σ × σ)

where a = ε/2. It remains to apply Theorem 7.5 and the proof is completed.

9. Embedded k-blocks and (M (1),M (1))-chaos

Almost 1-1 extensions are one of the most prominent techniques of construc-
tion of minimal systems with prescribed properties. One starts with a system
with well studied dynamics and then extend it to another one, by splitting some
of fibres in a way that a much richer dynamics is obtained. Unfortunately, as
we demonstrated in Section 4, (M (1),M (1))-chaotic system cannot arise that
way.
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According to the best knowledge of the author there is only one general
technique of the construction of DC1 minimal systems known in the literature,
which originated from [22] and was later used by various authors. However, by
similar reasons as in Section 3, topological entropy of systems constructed by
this scheme must be zero. Here we will combine the technique of embedded
k-blocks (inspired by the construction from [8]) with some ideas of [22]. That
way a minimal weakly mixing and (M (1),M (1))-chaotic system with positive
topological entropy will be constructed. A question whether such a system
exists was stated explicitly in [4, Problem (ii)].

Notation used in this section will be very similar to that in Section 8. Fix
any k0 > 2 and let A = {1, 2, . . . , k0}. Let

A1 = {σ(1)σ(2) · · ·σ(k0) : σ ∈ Π(k0)} ∪
�
ak0+1 : a = 1, . . . , k0

�
.

We put m1 = #A1 = k0! + k0. Let tn be an increasing sequence (it will
be specified more precisely later). For every n (under assumption that the
number mn is defined), let Φn denote the set of maps φ : {1, . . . , tn+1mn} →
{1, . . . ,mn} such that each fiber has the same number of elements, that is
#φ−1(t) = tn+1 for every t ∈ {1, . . . ,mn}.

The family of words An is defined recursively in the following way. Assume
that An is defined and enumerate its elements An =

¶
B(n)

1 , . . . , B(n)
mn

©
where

mn = #An. We put

An+1 =
¶
B(n)

σ(1)B
(n)
σ(2) · · ·B

(n)
σ(mntn+1)

S : σ ∈ Φn, S ∈ An

©
.

We assume additionally that B(n)
1 is a prefix of B(n+1)

1 , where B(n+1)
1 is the

first word in An+1 after enumeration of its elements. Note that each w ∈ An+1

can be uniquely decomposed into elements of A1 and then (since the number
of elements of Ai used to construct an element of Ai+1 is always the same),
decomposition of w into elements of An is also unique.

Finally we define x to be the unique infinite sequence beginning with B(n)
1

for every n, and let X = Orb+(x, σ) be the generated subshift.

Lemma 9.1. — For every n > 0 there is a permutation φn : An → An such

that |φn(w)| = |w| and {0 ≤ i < |w| : w[i] = φn(w)[i]} = ∅ for every w ∈ An.

Proof. — When n = 1 it is easy. Namely, we fix a cycle ψ ∈ Π(k0) and
φ1(w1 · · ·wk) = ψ(w1) · · ·ψ(wk) where k = k0 or k0 + 1 depending on the
choice of word in A1.
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Next, if w ∈ An+1 then w = B(n)
σ(1)B

(n)
σ(2) · · ·B

(n)
σ(mntn+1)

S for some σ ∈
Φn, S ∈ An, and so we can define

φn+1(w) = φn(B(n)
σ(1))φn(B(n)

σ(2)) · · ·φn(B(n)
σ(mntn+1)

)φn(S)

= B(n)
σ�(1)B

(n)
σ�(2) · · ·B

(n)
σ�(mntn+1)

S�

where σ� ∈ Φn, S� ∈ An are uniquely determined by φn. Obviously φn+1 defined
that way is invertible since φn is. The remaining properties of φn+1 easily follow
by induction.

Lemma 9.2. — For every n > 0 and every A, B ∈ An we have
��|A|− |B|

�� ≤ 1
and |A|/|B| < 2. Furthermore, for every n = 1, 2, . . . we can find A, B ∈ An

so that |A|− |B| = 1.

Proof. — The proof easily follows by induction.

Theorem 9.3. — There is a sequence tn such that the shift X defined above

has the following properties:

1. is minimal,

2. is weakly mixing,

3. has distributionally 1/2-scrambled set (in particular is

(M (1),M (1))-chaotic),
4. htop(X) > 0.

Proof. — For the proof of conditions (1)–(3) it is enough to assume that tn is
increasing. We will later specify how fast tn should grow to ensure also (4). The
proof of (1) is standard (see the proof of Lemma 3.3) thus left to the reader.

Now we are going to prove (2). For n > 2, clearly tn ≥ 3 and so for any
S ∈ An the word B(n)

1 SB(n)
1 must appear somewhere in x. If we fix any neigh-

borhood U of x then for sufficiently large n we have U ⊃ CX [B(n)
1 ] and so by

Lemma 9.2 we immediately obtain that k, k + 1 ∈ N(U, U, σ) for some k > 0,
thus (2) follows by Lemma 3.8.

The proof of (3) is a little more complicated. Let D ⊂ X consists of points
that can be obtained as the limit of a sequence of words wn ∈ An. Any word
from An is a prefix of at least two words in An+1, so D does not have isolated
points. It is also easy to verify that it is compact. Namely, for any sequence
{xn}∞n=1 we select an infinite subsequence {yn}∞n=1 having the same word w1 ∈
A1 as a prefix of all its elements. Next we take a subsequence of {yn}∞n=1 having
the same word from w2 ∈ A2 as a prefix and so on (obviously w1 must be a
prefix of w2). That way a convergent subsequence is produced and its limit z
has all words wn ∈ An selected above as its prefixes, thus z ∈ D. Indeed, D is
a perfect set.
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Next, we claim that DC1/2(σ)∩ (D×D) is residual in D×D. First, for any
l, s > 0 define a set As

l ⊂ D × D such that (x, y) ∈ As
l if and only if there is

k > s such that
1

k
#

�
0 ≤ i < k : x[i,i+l] = y[i,i+l]

�
>

s− 1

s
.

Note that every set As
l is open in D×D and if (x, y) ∈

�∞
l,s=1 As

l then Φ∗
xy(t) = 1

for every parameter t > 0. We are going to show that sets As
l are dense. Fix

any open sets U, V intersecting D and let u, v ∈ A∗ be such that CX [u] ⊂ U ,
CX [v] ⊂ V . There are n > 0 and τ, ξ such that u is a prefix of B(n)

τ , v is
a prefix of B(n)

ξ and mn−1 > max {6s, l}. We can also assume that |B(n)
τ | =

|B(n)
ξ |. To simplify further notation assume that τ = 1 and ξ = mn. If we

put φ(i) = 1 + (i − 1 (mod mn)) for i = 1, . . . , tn+1mn then φ ∈ Φn. Define
ψ to be equal to φ with the only exception that ψ(1) = φ(tn+1mn) = mn,
ψ(tn+1mn) = φ(1) = 1. Note that if B ∈ An then |B| ≥ mn−1 > l. But now,
if we consider words Bψ = B(n)

ψ(1) · · ·B
(n)
ψ(tn+1mn) and Bφ = B(n)

φ(1) · · ·B
(n)
φ(tn+1mn)

(and put k = |Bψ|) then u, v are their respective prefixes, and additionally
1

k

�
0 ≤ i < k : (Bψ)[i,i+l] = (Bφ)[i,i+l]

�
≥ 1

k
(k − 3 max

w∈ An

|w|)

≥ 1− 3

mn
≥ s− 1

s

since by Lemma 9.2 we have |B(n)
i |/k < 2/tn+1mn < 1/mn for every i =

1, . . . ,mn. But obviously, there are x, y ∈ D such that Bψ is a prefix of x and
Bφ is a prefix of y, which immediately implies that As

l is dense in D ×D.
Next, for any l, s > 0 define a set Rs

l ⊂ D ×D such that (x, y) ∈ Rs
l if and

only if there is k > l such that
1

k
# {0 ≤ i < k : x[i] �= y[i]} >

s− 1

s
.

Again, it is obvious that Rs
l is open and if (x, y) ∈

�∞
l,s=1 Rs

l then Φxy(1/2) = 0.
But, similarly to the case of As

l we can prove that Rs
l is dense. More precisely,

let all objects, including ψ, be as defined above (for the case of As
l ). Let η ∈ Φn

be the map such that

Bη = φn(B(n)
ψ(1))φn(B(n)

ψ(2)) · · ·φn(B(n)
ψ(mntn+1)

) = B(n)
η(1)B

(n)
η(2) · · ·B

(n)
η(mntn+1)

where the map φn is provided by Lemma 9.1. If η(1) = mn then we put φ = η
and j = 2. Otherwise we find the first position j such that η(j) = mn and we
define φ to be equal η with the only exception that φ(1) = η(j) = mn and
φ(j) = η(1). Then φ ∈ Φn and additionally, for at least tn+1mn − 2 indices
p we have |B(n)

ψ(p)| = |B(n)
φ(p)| and B(n)

ψ(p)[i] �= B(n)
φ(p)[i] for every 0 ≤ i < |B(n)

ψ(p)|.
Similarly to the case of As

l we have CX [Bψ(1)] ⊂ U , CX [Bφ(1)] ⊂ V . We can
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also repeat all previous calculations (extending Bψ, Bφ to x and y respectively),
obtaining

1

k
# {0 ≤ i < k : Bψ[i] �= Bφ[i]} ≥ 1

k

Ä
k − |B(n)

ψ(1)|− |B(n)
ψ(j)|

ä

≥ 1− 2

mn
≥ s− 1

s
.

Since sets As
l , Rl

s are open and dense in D × D, the set
�∞

l,s=1 (As
l ∩Rs

l ) is
residual in D ×D. But we also have that

∞�

l,s=1

(As
l ∩Rs

l ) ⊂ DC1/2(σ) ∩ (D ×D).

which by Theorem 7.5 implies that D contains a Cantor set C such that C×C ⊂
DC1/2(σ) ∪∆. In other words C ⊂ X is distributionally 1/2-scrambled set.

The proof of (4) is a direct calculation, which uses to some extent ideas of
[8]. Denote by sn the longest word in An and try to estimate the number cn

of words of length sn. Obviously mn ≤ cn, so htop(X) ≥ lim supn→∞
log(mn)

sn
.

Denote τn = log(mn)/sn. We also assume that tn satisfies the following two
conditions:

Å
1 +

1

tn

ã
≤ 2

1
2n , tn ≥ 2βn+1 where β = 2k0 + 2.

Before we proceed with calculations, make additional two observations:

mn+1 ≥
(mntn+1)!

(tn+1!)mn
, sn+1 ≤ (mntn+1 + 1)sn.

Additionally, it is known by Stirling’s formula that n log(n) − n ≤ log(n!) ≤
n log(n) and also sn ≥ tn. Then we can calculate that

log(mn+1)

sn+1
≥ mntn+1(log(mntn+1)− 1− log(tn+1))

(mntn+1 + 1)sn

≥ 1

1 + 1
mntn+1

log(mn)

sn
− 1

tn

≥ 2−
1

2n+1 τn −
1

βn+1
≥

n�

j=1

2−
1

2j+1 τ1 −
n�

j=1

1

βj+1

≥ 2−1/2τ1 −
1

β(β − 1)
≥ log(k0)− 1

β
> 0.

We have just proved that htop(X) ≥ log(k0)−1
β > 0 and thus the proof is com-

pleted.
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Recall that a closed set J ⊂ X × Y is a joining of (X, f) and (Y, g) if it is
invariant (for the product map f × g) and its projections on first and second
coordinate are X and Y respectively. If each joining is equal to X ×Y then we
say that (X, f) and (Y, g) are disjoint.

The following example shows that assumptions of Corollary 4.2 are essential
(in particular, constructed example cannot be almost 1-1 extension of odome-
ter).

Example 9.4. — Every odometer has an extension which is minimal and has

a distributionally ε-scrambled set (so it is (M (1),M (1))-chaotic).

Proof. — Let (X,σ) be the minimal system from Theorem 9.3 and let (Y, f)
be an odometer. Consider F = σ × f and Z = X × Y endowed with the
product topology and the standard maximum metric ρ (maximum of distance
on coordinates). Obviously (Z, F ) is an extension of (Y, f) and it is also known
that minimal distal systems are disjoint from weakly mixing systems (see [10,
Theorem 2.3]). So Z is the only joining of (X,σ), (Y, f) and thus F must be
minimal on Z. If we take a distributionally ε-scrambled set S ⊂ X then by the
definition of metric in Z we immediately see that S×{y} is also distributionally
ε-scrambled for any fixed y ∈ Y which ends the proof.
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