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Abstract. — Let I be a coherent subsheaf of a locally free sheaf O(E0) and suppose
that F = O(E0)/ I has pure codimension. Starting with a residue current R obtained
from a locally free resolution of F we construct a vector-valued Coleff-Herrera current
µ with support on the variety associated to F such that φ is in I if and only if µφ = 0.
Such a current µ can also be derived algebraically from a fundamental theorem of
Roos about the bidualizing functor, and the relation between these two approaches is
discussed. By a construction due to Björk one gets Noetherian operators for I from the
current µ. The current R also provides an explicit realization of the Dickenstein-Sessa
decomposition and other related canonical isomorphisms.

Résumé (Courants de Coleff-Herrera, dualité et opérateurs noethériens)
Soit I un sous-faisceau cohérent d’un faisceau localement libre O(E0) et supposons

que F = O(E0)/ I ait une codimension pure. En partant d’un courant résiduel R,
obtenu à partir d’une résolution localement libre de F , nous construisons un courant
de Coleff-Herrera vectoriel µ à support sur la variété associée à F , tel que φ soit dans
I si et seulement si µφ = 0. Un tel courant µ peut également être dérivé algébrique-
ment grâce à un théorème fondamental de Roos sur le foncteur bidualisant, et nous
étudions le lien entre les deux approches. Par une construction due à Björk, on obtient
des opérateurs noethériens pour I à partir du courant µ. Le courant R nous fournit
également une réalisation explicite de la décomposition de Dickenstein-Sessa, ainsi que
d’autres isomorphismes canoniques afférents.
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536 M. ANDERSSON

1. Introduction

A function φ in the local ring O0 in one complex variable belongs to the
ideal I generated by zm if and only if

L`φ(0) = 0, ` = 0, . . . ,m− 1,

where L` = ∂`/∂z`. These conditions can be elegantly expressed by the single
equation φ∂̄(1/zm) = 0, where 1/zm is the usual principal value distribu-
tion. Moreover, the current µ = ∂̄(1/zm) is canonical up to a non-vanishing
holomorphic factor. There is a well-known multivariable generalization. Let
f = (f1, . . . , fp) be a tuple of holomorphic functions in a neighborhood of
the origin in Cn that defines a complete intersection, i.e., the codimension of
Zf = {f = 0} is equal to p. Then the Coleff-Herrera product

µf = ∂̄
1

f1
∧ · · · ∧∂̄ 1

fp
,

introduced in [9], is a ∂̄-closed (0, p)-current with support on Zf , and it is inde-
pendent (up to a nonvanishing holomorphic factor) of the choice of generators
of the ideal sheaf I generated by f . It was proved in [10] and [17] that I
coincides with the ideal sheaf annµf of holomorphic functions φ such that the
current µfφ vanishes. This is often referred to as the duality principle.

The Coleff-Herrera product is the model for a general Coleff-Herrera current
introduced by Björk: Given a variety Z of pure codimension p we say that
a (possibly vector-valued) (0, p)-current µ (with support on Z) is a Coleff-
Herrera current on Z, µ ∈ CH Z , if it is ∂̄-closed, annihilated by ĪZ (i.e.,
ξ̄µ = 0 for each holomorphic ξ that vanishes on Z), and has the standard
extension property SEP. This means, roughly speaking, that µ has no “mass”
concentrated on any subvariety of higher codimension; in particular that µ is
determined by its values on Zreg, see, e.g., [7] or [3], and Section 2.1. The
SEP implies that annµ has pure dimension, see, e.g., Proposition 5.3 in [5].
The condition ĪZµ = 0 means that µ only involves holomorphic derivatives.
Following Björk, see [7], one can quite easily find a finite number of holomorphic
differential operators L` such that φµ = 0 if and only if L1φ = · · · = Lνφ = 0

on Z; i.e., a (complete) set of Noetherian operators for annµ. In this paper
we use the residue theory developed in [4] and [5] to extend the duality for a
complete intersection to a general pure-dimensional ideal (or submodule of a
locally free) sheaf. In particular we can express such an ideal as the annihilator
of a finite set of Coleff-Herrera currents (Theorem 1.2 and its corollaries). Jan-
Erik Björk has pointed out to us that one can deduce the same duality result
from a fundamental theorem of Jan-Erik Roos, [18], about purity for a module
in terms of the bidualizing sheaves, combined with some other known facts that
will be described below. However our approach gives a representation of the
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COLEFF-HERRERA CURRENTS, DUALITY, AND NOETHERIAN OPERATORS 537

duality and the Coleff-Herrera currents in terms of one basic residue current,
that we first describe.

To begin with, let I be any coherent subsheaf of a locally free sheaf O(E0)

over a complex manifold X, and assume that

(1.1) 0→ O(EN )
fN−→ · · · f3−→ O(E2)

f2−→ O(E1)
f1−→ O(E0)

is a locally free resolution of F = O(E0)/ I . Here O(Ek) denotes the locally
free sheaf associated to the vector bundle Ek over X. If X is Stein, then one
can find such a resolution in a neighborhood of any given compact subset. We
will assume that F has codimension p > 0; cf., Remark 2. Then f1 is (can be
assumed to be) generically surjective, and the analytic set Z where it is not
surjective has codimension p and coincides with the zero set of the ideal sheaf
ann F . In [4] we defined, given Hermitian metrics on Ek, a residue current
R = Rp + Rp+1 + · · · with support on Z, where Rk is a (0, k)-current that
takes values in Hom (E0, Ek), such that a holomorphic section φ ∈ O(E0) is in
I if and only if Rφ = 0.

Recall that F has pure codimension p if the associated prime ideals (of each
stalk) all have codimension p. The starting point in this paper is the following
result that follows from [5] (see also Section 7 below); as we will see later on it
is in a way equivalent to Roos’ characterization of purity.

Theorem 1.1. — The sheaf F = O(E0)/ I has pure codimension p if and only
if I is equal to the annihilator of Rp, i.e.,

I = {φ ∈ O(E0); Rpφ = 0}.

If F is Cohen-Macaulay we can choose a resolution (1.1) with N = p, and
then R = Rp is a matrix of CH Z-currents which thus solves our problem.
However, in general Rp is not ∂̄-closed even if F has pure codimension. Let

(1.2) 0→ O(E∗0 )
f∗1−→ O(E∗1 )

f∗2−→ · · ·
f∗p−1−→ O(E∗p−1)

f∗p−→ O(E∗p)
f∗p+1−→

be the dual complex of (1.1) and let

(1.3) H k( O(E∗•)) =
Ker f∗

k+1
O(E∗k)

f∗k O(E∗k−1)

be the associated cohomology sheaves. It turns out that for each choice of
ξ ∈ O(E∗p) such that f∗p+1ξ = 0, the current ξRp is in CH Z(E∗0 ), and we have
in fact a bilinear (over O) pairing

(1.4) H p( O(E∗•))× F → CH Z , (ξ, φ) 7→ ξRpφ.

Moreover, (1.4) is independent of the choice of Hermitian metrics on Ek. It is
well-known that the sheaves in (1.3) represent the intrinsic sheaves ExtkO( F , O).
(If Z does not have pure codimension p then we define CH Z as CH Z′ , where
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538 M. ANDERSSON

Z ′ is the union of irreducible components of codimension p; this is reasonable,
in view of the SEP.)

Theorem 1.2. — Assume that F has codimension p > 0. The pairing (1.4)
induces an intrinsic pairing

(1.5) ExtpO( F , O)× F → CH Z .

If F has pure codimension, then the pairing is non-degenerate.

Notice that Hom ( F , CH Z) is the subsheaf of Hom ( O(E0), CH Z) = CH Z(E∗0 )

consisting of all Coleff-Herrera currents µ with values in E∗0 such that µφ = 0

for all φ ∈ I . It follows that we have the equality

(1.6) I = {φ ∈ O(E0); µφ = 0 for all µ ∈ Hom ( F , CH Z)}

if F is pure. The sheaf H p( O(E∗•)) is coherent and thus locally finitely gener-
ated. Therefore we have now a solution to our problem:

Corollary 1.3. — Assume that F has pure codimension. If ξ1, . . . , ξν ∈
O(E∗p) generate H p( O(E∗•)), then µj = ξjRp are in Hom ( F , CH Z) and

(1.7) I = ∩νj=1annµj .

Remark 1. — If I is not pure, one obtains a decomposition (1.7) after a
preliminary decomposition I = ∩ I ν , where each I ν has pure codimension.

In case of a complete intersection, Extp( F , O) is isomorphic to F itself. If
F = O(E0)/ I is a sheaf of Cohen-Macaulay modules there is also a certain
symmetry: If (1.1) is a resolution with N = p, then it is well-known, cf., also
Example 4 below, that the dual complex (1.2) is a resolution of O(E∗p)/ I ∗,
where I ∗ = f∗p O(E∗p−1) ⊂ O(E∗p), and we have

Corollary 1.4. — If O(E0)/ I is Cohen-Macaulay, then O(E∗p)/ I ∗ is
Cohen-Macaulay as well and we have a non-degenerate pairing

O(E0)/ I × O(E∗p)/ I ∗ → CH Z , (ξ, φ) 7→ ξRpφ.

Remark 2. — Assume that F has codimension p = 0, or equivalently,
ann F = 0. If it is pure, i.e., (0) is the only associated prime ideal, then
there is a homomorphism f0 : O(E0) → O(E−1) such that I = Ker f0. It
is natural to consider f0 as a Coleff-Herrera current µ associated with the
zero-codimensional “variety” X. Then I = annµ and thus analogues of
Theorem 1.1 and Corollary 1.3 still hold.
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The duality discussed here leads to a generalization of the Dickenstein-Sessa
decomposition that we now will describe. It was proved by Malgrange, see,
e.g., [7], that the analytic sheaf of distributions C is stalkwise injective. Thus
the double complex

(1.8) Hom O( O(E`), C
0,k) = C0,k(E∗` ),

with differentials ∂̄ and f∗, is exact except at k = 0 and ` = 0, where we have
the cohomology sheaves O(E∗` ) and Hom ( F , C0,•), respectively. By standard
homological algebra, we therefore have natural isomorphisms

(1.9) H k( O(E∗•)) ' H k( Hom ( F , C0,•)).

The residue calculus also gives

Theorem 1.5. — Assume that codim F = p > 0. Both mappings

(1.10) H p( O(E∗•))
Ψ' Hom ( F , CH Z) ' H p( Hom ( F , C0,•))

are isomorphisms, and the composed mapping coincides with the isomorphism
(1.9).

These isomorphisms seem to be known as “folklore” since long ago, cf., Sec-
tion 4 below. Our contribution should be the proof by residue calculus, and
especially, the realization of the mapping Ψ as ξ 7→ ξRp.

Example 1. — If µ ∈ CH Z is annihilated by I it follows that we have the
factorization µ = ξRp. There are analogous isomorphisms where O is replaced
by Ωr, the sheaf of holomorphic (r, 0)-forms, and Coleff-Herrera currents of
bidegree (r, p), CH r

Z = CH Z ⊗ O Ωr. For instance it follows that there is a
factorization

[Z] = ξRp,

where [Z] is the Lelong current, and ξ is in Ωp(E∗p) with f∗p+1ξ = 0.

Example 2. — We can rephrase the second isomorphism in (1.10) as the de-
composition

(1.11) Ker
(
Hom ( F , C0,p)

∂̄→ ( Hom ( F , C0,p+1)
)

=

= Hom ( F , CH Z)⊕ ∂̄ Hom ( F , C0,p−1).

For a given ∂̄-closed (0, p)-current µ (with values in E∗0 and annihilated by I ),
its canonical projection in Hom ( F , CH Z) is given by ξRp, where ξ is obtained
from µ via the isomorphism (1.9).
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Example 3. — Assume that Z has pure codimension p and let C0,k
Z denote

the sheaf of (0, k)-currents with support on Z. If F has support on Z, then
Hom ( F , C0,k) = Hom ( F , C0,k

Z ). Since any current with support on Z must be
annihilated by some power of IZ , (1.11) implies the decomposition

(1.12) Ker
(
C0,p
Z

∂̄→ C0,p+1
Z

)
= CH Z ⊕ ∂̄ C0,p−1

Z

that was first proved in [10] by Dickenstein and Sessa (in the case of a complete
intersection; see [7] for the general case).

The main results are proved in Section 3. In Section 4 we sketch a purely
algebraic proof of Theorem 1.2 (except for the explicit residue representation)
based on Roos’ theorem. In Section 5 we consider in some more detail the
absolute case, i.e., p = n, and in Section 6 we briefly discuss a cohomological
variant of the duality. In Section 7 we consider a partial generalization of (1.10)
to k > p; again we can trace residue manifestations of Roos’ theorem.

In Section 2 we collect some basic material about residue currents. For the
reader’s convenience we include Björk’s construction of Noetherian operators
for the ideal annµ. To further exemplify the utility of the residue calculus,
we include a proof of Malgrange’s theorem by means of residues and integral
formulas in Section 2.3.

All results above have natural analogues for polynomial ideals and modules:
Let I be a submodule of C[z1, . . . , zn]r, and assume that F = C[z1, . . . , zn]r/I

has positive codimension p. From a free resolution of the of the corresponding
homogeneous module over the graded ring C[z0, . . . , zn] we constructed in [4]
a residue current on Pn whose restriction R to Cn has the property that Φ ∈
C[z1, . . . , zn]r is in I if and only if RΦ = 0 in Cn. If F has pure codimension,
then precisely as in the semi-global case above we have that Φ is in I if and
only if RpΦ = 0. By the same proofs we get complete analogues of Theorem 1.2
and its corollaries. In particular if F is pure, we get a finite number of global
Coleff-Herrera currents µj = ξRp such that Φ ∈ I if and only if µjΦ = 0 for
each j. Moreover, since Rp has a current extension to Pn, following the proof
in Section 2.1 with Ω = Cn, we obtain for each µj a finite set of differential
operators Lj` with polynomial coefficients such that Lj`Φ vanishes on Z for
all ` if and only if Φ is in the annihilator of µj . Starting with a primary
decomposition of I we obtain in this way a complete proof of the existence of
Noetherian operators for an arbitrary polynomial ideal, a fact first proved by
Ehrenpreis and Palamodov as the corner stone in the celebrated fundamental
principle, see [11], [16], [13], and [6]. For a discussion about effectivity, see [15].
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2. Some elements of residue theory

LetX be an n-dimensional complex manifold. In [5] was introduced the sheaf
of pseudomeromorphic currents PM. Roughly speaking a current µ is pseu-
domeromorphic if locally it is the push-forward under a modification π : X̃ → X

of a (finite sum of) currents like

∂̄
1

sα1
1

∧ · · · ∧∂̄ 1

s
αq
q
∧ ω

s
αq+1

q+1 · · · s
αn
n
,

where s is a local coordinate system and ω is a smooth form with compact
support. Here q may be 0 which means that we have no residue factor but only
principal value factors. The sheaf PM is closed under ∂̄ and multiplication
with smooth forms. It turns out that if µ is in PM and V is a subvariety,
then the restriction of µ to the open set X \ V has a natural extension to a
pseudomeromorphic current 1X\V µ on X such that 1V µ := µ − 1X\V µ has
support on V . If h is any holomorphic tuple such that V = {h = 0}, then
λ 7→ |h|2λµ, that is well-defined if Reλ � 0, has a current-valued analytic
continuation to Reλ > −ε, and the value at λ = 0, |h|2λµ|λ=0, is precisely
1X\V µ.

If µ is in PM and has support on V , then ĪV µ = 0, i.e., ξ̄µ = 0 for each
holomorphic function that vanishes on V . If µ has support on V we say that
it has the standard extension property, SEP, if 1Wµ = 0 for each W ⊂ V of
positive codimension. For (the equivalence to) the more classical way to define
SEP, see [3] Proposition 5.1. We also have the dimension principle:

Proposition 2.1 ([5], Corollary 2.4). — If µ ∈ PM has bidegree (r, k) and
support on a variety V of codimension > k, then µ = 0.

It follows that if µ has bidegree (r, p) and support on V with codimension p
then it has automatically the SEP with respect to V .

2.1. Coleff-Herra currents and Noetherian operators. — Let V be a subvariety
with pure codimension p. We define the sheaf of Coleff-Herra currents CH r

V

as the subsheaf of PM of currents of bidegree (r, p) that has support on V and
are ∂̄-closed. See Proposition 5.1 in [3] for an equivalent definition.
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Theorem 2.2 (Björk [7]). — Let V be a germ of an analytic variety of pure
codimension p at 0 ∈ Cn. There is a neighborhood Ω of 0 such that for each
µ ∈ CH V (E∗0 ) in Ω, there are holomorphic differential operators L1, . . . , Lν in
Ω such that for any φ ∈ O(E0), µφ = 0 if and only if

(2.1) L1φ = · · · = Lνφ = 0 on V.

Proof. — In a suitable pseudoconvex neighhborhood Ω of 0 we can find holo-
morphic functions f1, . . . , fp, forming a complete intersection, such that V ∩Ω,
henceforth denoted just V , is a union of irreducible components of Vf = {f =

0}, and such that df1∧ · · · ∧dfp 6= 0 on V \ W , where W is a hypersurface
not containing any component of Vf . By a suitable choice of coordinates
(ζ, ω) ∈ Cn−p × Cp we may assume that W is the zero set of h = det(∂f/∂ω).

Let z = ζ, w = f(ζ, ω). Since d(z, w)/d(ζ, ω) = h, locally in Ω \W , (z, w) is a
holomorphic coordinate system. If we take the multiindex M so large that µ
is annihilated by fMj+1

j , it follows from [7] (or Theorem 4.1 in [3]) that there
is a holomorphic function A ∈ Ω such that

µ = A∂̄
1

fM1+1
1

∧ · · · ∧∂̄ 1

f
Mp+1
p

in Ω. Thus locally in Ω \W ,

µ.ξ =

∫
w=0

∑
α≤M

cα
∂M−αA(z, 0)

∂wM−α
γ¬ ∂

αξ

∂wα
,

where γ¬ is contraction with the vector field

γ =
∂

∂wp
∧ · · · ∧ ∂

∂w1
.

Now µφ = 0 if and only if for all test forms ξ,

(2.2) 0 = µφ.ξ =

∫
w=0

∑
`≤M

(Q`φ)γ¬ ∂`

∂w`
ξ,

where

Q` =
∑

`≤α≤M

cα,`
∂M−αA

∂wM−α
∂α−`

∂wα−`
.

Applying to ξ = w`η (induction over ` downwards) it follows that (2.2) holds
for all ξ if and only if Q`φ = 0 (locally) on V \W for all ` ≤M .

However, ∂ω/∂w = (∂f/∂ω)−1 = γ/h where γ is a holomorphic matrix in
Ω. It follows that L` = hNQ` are well-defined and holomorphic in Ω if N is
large enough, and by the SEP, µφ = 0 in Ω if and only if (2.1) holds.
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One also get a global (in Ω) representation of µ in this way: Notice that for
some L, γ̃ = hLγ is holomorphic in Ω. One can verify that (with L = L0),
actually

µ.ξ =

∫
Z

1

hM+L
γ̃¬ Lξ

for all test forms, if the right hand side is interpreted as a principal value.

2.2. Residue currents associated with Hermitian complexes. — We first have to
recall the construction in [4]. Let

(2.3) 0→ EN
fN−→ · · · f3−→ E2

f2−→ E1
f1−→ E0 → · · ·

f−M+1−→ E−M → 0

be a generically exact complex of Hermitian vector bundles over a complex
manifold X, and let

(2.4) 0→ O(EN )
fN−→ · · · f1−→ O(E0) −→ · · · f−M+1−→ O(E−M )→ 0

be the corresponding complex of locally free sheaves. Assume that (2.3) is
pointwise exact outside the variety Z. Furthermore, over X \Z let σk : Ek−1 →
Ek be the minimal inverses of fk. Then fσ+σf = IE , where IE is the identity
on E = ⊕Ek, f = ⊕fk and σ = ⊕σk. The bundle E has a natural superbundle
structure E = E+ ⊕ E−, where E+ = ⊕E2k and E− = ⊕E2k+1, and f and σ
are odd mappings with respect to this structure, see, e.g., [4] for more details.
The operator ∇ = f − ∂̄ acts on C0,•(X,E) and extends to a mapping ∇End

on C0,•(X,EndE) and ∇2
End = 0. If

u =
σ

∇Endσ
= σ + σ(∂̄σ) + σ(∂̄σ)2 + · · ·

it turns out that ∇Endu = IE in X \ Z. One can define a canonical current
extension U of u across Z as the analytic continuation to λ = 0 of |F |2λu,
where F is any holomorphic function that vanishes on Z. In the same way we
can define the current R = ∂̄|F |2λ∧u|λ=0 with support on Z, and then

(2.5) ∇EndU = IE −R.

More precisely
R =

∑
`

R` =
∑
`k

R`k,

where R`k is a (0, k − `)-current that takes values in Hom (E`, Ek), i.e.,

R`k ∈ C0,k−`(X,Hom (E`, Ek)).

It is shown in [5] that the currents U and R both are pseudomeromorphic.
Moreover we have (Proposition 2.2 in [4])
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Proposition 2.3. — If φ ∈ O(E`) and f`φ = R`φ = 0, then φ = f`+1ψ has
local solutions ψ ∈ O(E`+1). If R`+1 = 0, then φ = f`+1ψ has local holomorphic
solutions ψ if and only if f`φ = R`φ = 0.

Since (2.3) is generically exact, so is its dual complex

(2.6) 0→ E∗−M
f∗−M+1−→ · · · f

∗
N−→ E∗N → 0

of Hermitian vector bundles, and we have the corresponding dual complex of
locally free sheaves

(2.7) 0→ O(E∗−M )
f∗−M+1−→ · · · f

∗
N−→ O(E∗N )→ 0.

Using the induced metrics, we get a residue current

R∗ =
∑
k

(R∗)k =
∑
k,`

(R∗)k` ,

where (R∗)k` takes values in Hom (E∗k , E
∗
` ).

Proposition 2.4. — Using the natural isomorphisms Hom (E∗k , E
∗
` ) =

Hom (E`, Ek) we have that (R∗)k` = R`k.

Proof. — It is readily verified that the adjoint σ∗ : E∗ → E∗ of σ : E → E over
X \ Z is the minimal inverse of f∗. Therefore,

u∗ = (σ + σ(∂̄σ) + σ(∂̄σ)2 + · · · )∗ = σ∗ + σ∗(∂̄σ∗) + σ∗(∂̄σ∗)2 + · · · ,

since, see [4], σ∗∂̄σ∗ = (∂̄σ∗)σ∗. Now the proposition follows.

If ξ ∈ O(E∗k) and φ ∈ O(E`) we write

ξR`kφ = φ(R∗)k` ξ.

2.3. The injectivity of the analytic sheaf C . — Here is a proof of Malgrange’s
theorem by residue calculus. Let F be any module over the local ring O0 and
let (1.1) be a resolution of F . We have to prove that then the complex

(2.8) 0→ Hom ( O0(E0), C)
f∗1−→ Hom ( O0(E1), C)

f∗2−→

is exact except at k = 0. Fix a natural number N . Given a smooth function φ
in X ⊂ Cn, let φ̃ be the function

φ̃(ζ, ω) =
∑
|α|<N

∂αζ̄ φ(ζ)(ω − ζ̄)α/α!,

in X̃ = {(ζ, ζ̄) ∈ C2n; ζ ∈ X}. Then

φ̃(ζ, ζ̄) = φ(ζ), ∂̄φ̃ = O(|ω − ζ̄|N ).

tome 139 – 2011 – no 4



COLEFF-HERRERA CURRENTS, DUALITY, AND NOETHERIAN OPERATORS 545

Moreover, if f is holomorphic then f̃φ = fφ̃. Combining the formulas in [2]
with the construction in [1], we get

φ̃(z, z̄) =

∫
ζ,ω

(fk+1(z)HkUk +HkRk +HkUk−1fk)∧(φ̃+ ∂̄φ̃∧vz)∧g,

where g is a suitable form in C2n with compact support and vz is the Bochner-
Martinelli form in C2n with pole at (z, z̄), and H` are holomorphic forms. Since
Rk = 0 for k ≥ 1 when (1.1) is a resolution, see Theorem 3.1 in [4], we have
the homotopy formula

φ = fk+1Tk+1φ+ Tk(fkφ), k ≥ 1,

where

Tkφ(z) =

∫
ζ,ω

HkU(φ̃+ ∂̄φ̃∧vz)∧gz.

Moreover, as in [1] one can verify that Tkφ is of class CM if N is large enough.
If now µ has order at most M , then we have

µ = T ∗k+1f
∗
k+1µ+ f∗kT

∗
kµ,

so if f∗k+1µ = 0, then µ = f∗kγ if γ = T ∗kµ. Thus (2.8) is exact at k.

3. Proofs of the main results

Assume that F is a coherent sheaf of positive codimension p, and let (1.1)
be a (locally) free resolution of F = O(E0)/ I . Moreover, assume that f1 is
generically surjective so that the corresponding vector bundle complex

(3.1) 0→ EN
fN−→ · · · f3−→ E2

f2−→ E1
f1−→ E0 → 0

is generically exact. It follows from Proposition 2.1 that

R0 = R0
p +R0

p+1 + · · · .

By Theorem 3.1 in [4], R`k = 0 for each ` ≥ 1, i.e., R = R0, and combining with
Proposition 2.3 above we find that a φ ∈ O(E0) is in I if and only if Rφ = 0.
It is proved in Section 5 of [5] that F has pure codimension p if and only if
annR = annRp, i.e., Theorem 1.1 holds.

Proof of Theorem 1.2. — It follows from (2.5) that

(3.2) ∂̄Rk = fk+1Rk+1

for each k. If ξ ∈ O(E∗k) and f∗k+1ξ = 0 we therefore have

∂̄(ξRk) = ±ξ∂̄Rk = ±ξfk+1Rk+1 = ±(f∗k+1ξ)Rk+1 = 0.
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Thus ξRp is ∂̄-closed and since it is also pseudomeromorphic, cf., Proposi-
tion 2.1, it is in CH Z . Moreover, if ξ = f∗p η, then

ξRp = (f∗p η)Rp = ηfpRp = η∂̄Rp−1 = 0

since Rk = 0 for k < p. Thus ξRp only depends on the cohomology class of ξ in
Hp( O(E∗•)). We now choose another Hermitian metric on E and let R̃ denote
the current associated with the new metric. It is showed in [4] (see the proof
of Theorem 4.4) that then

Rp − R̃p = fp+1M
0
p+1

for a certain residue current M . Thus ξRp = ξR̃p. It follows that the mapping
(1.4) is well-defined and independent of the Hermitian metric on E.

It is enough to prove the invariance at a fixed point x, so we consider stalks
of the sheaves at x. It is well-known that then our resolution Ox(E•), f• can
be written

Ox(E′• ⊕ E′′• ) ' Ox(E′•)⊕ Ox(E′′• ), f• = f ′• ⊕ f ′′• ,
where Ox(E′•) is a resolution of F x and (since we assume that E0 has minimal
rank) Ox(E′′k ), k ≥ 1, is a resolution of Ox(E′′0 ) = 0. It follows that the natural
mapping Hp( Ox((E′•)

∗) → Hp( Ox((E•)
∗)), ξ′ 7→ (ξ′, 0), is an isomorphism.

Moreover, if we choose a metric on Ek = E′k ⊕ E′′k that respects the direct
sum, then the resulting current R is R′ ⊕ 0, where R′ is the current associated
with Ox(E′•). Since all minimal resolutions are isomorphic, the mapping (1.5)
is therefore well-defined.

It remains to check that (1.5) is non-degenerate. If ξ ∈ O(E∗p) with f∗p+1ξ = 0

and ξRpφ = 0 for all φ ∈ O(E0), then clearly ξRp = 0. Since R = R0
p,

by Proposition 2.4 therefore (R∗)p`ξ = 0 for all `, and now it follows from
Proposition 2.3 that ξ = f∗p η for some η. Thus (the class of) ξ is zero in
H p( O(E∗•)).

Now, assume that ξRpφ = 0 for all ξ such that f∗p+1ξ = 0. If F is Cohen-
Macaulay and N = p, then f∗p+1 = 0 so the assumption implies that Rpφ = 0,
and thus φ ∈ I . However, generically on Z, F is Cohen-Macaulay, and hence
for an arbitrary resolution we must have that Rpφ = 0 outside a variety of
codimension ≥ p+ 1. Since Rpφ is pseudomeromorphic with bidegree (0, p) it
follows from Proposition 2.1 that Rpφ vanishes identically. If we in addition
assume that F has pure codimension it follows from Theorem 1.1 that φ ∈ I .
Thus the pairing is non-degenerate.

Example 4 (The Cohen-Macaulay case). — It is well-known, see, e.g., [12],
that F is Cohen-Macaulay if and only if it admits resolutions of length p =

codimZ. If (1.1) is a resolution with N = p, then R = R0
p, and hence R∗ =

(R∗)0
p. It follows from Proposition 2.3, applied to R∗, that the dual complex
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(1.2) is a resolution of O(E∗0 )/ I ∗ and, in particular, that O(E∗0 )/ I ∗ is Cohen-
Macaulay.

Proof of Theorem 1.5. — Let

Lν =
∑
`+k=ν

C0,k(E∗` )

be the total complex with differential ∇∗ = f∗ − ∂̄ associated with the double
complex (1.8). We then have natural isomorphisms

(3.3) H k( O(E∗•)) ' H k( L) =def
Ker∇∗ L

k

∇∗ Lk−1
' H k( Hom ( F , C0,•)).

The naturality means that the ismorphisms are induced by the natural map-
pings O(E∗k)→ Lk and Hom ( F , C0,`)→ Lk, respectively, and that ξ ∈ O(E∗k)

such that f∗k+1ξ = 0 defines the same class as µ ∈ Hom ( F , C0,k) with ∂̄µ = 0

if and only if there is W ∈ Lk−1 such that ∇∗W = ξ − µ.
If now ξ ∈ O(E∗k) and f∗k+1ξ = 0, then ∇∗ξ = 0, and hence

(3.4) ∇∗(U∗)kξ = ξ − (R∗)kξ = ξ − ξRk,
cf., (2.5) and Proposition 2.4 above. Therefore the composed mapping in (1.10)
coincides with the isomorphisms in (1.9). It is readily verified that the second
mapping in (1.10) is injective, see, e.g., Lemma 3.3 in [3], and hence both
mappings must be isomorphisms. Thus Theorem 1.5 is proved.

We think it may be enlightening with a proof of the first isomorphism in
(1.10) that does not rely on Malgrange’s theorem. We already know from
Theorem 1.2 that this mapping is injective, so we have to prove the surjectivity.
The proof is based on the following lemma.

Lemma 3.1. — If there is a current W ∈ Lp−1 such that ∇∗W = µ ∈
CH Z(E∗0 ), then µ = 0.

Proof. — Let u be a smooth form u such that ∇∗Endu = IE∗ in X \ Z. For
a given neighborhood ω of Z, take a cutoff function χ with support in ω and
equal to 1 in some neighborhood of Z. Then g = χIE∗ − ∂̄χ∧u is smooth with
compact support in ω, equal to IE∗ in a neighborhood of Z, and moreover
∇∗g = 0. Therefore, ∇∗(gW ) = gµ = µ and hence, for degree reasons, we have
a solution ∂̄w = µ with support in ω. Since ω ⊃ Z is arbitrary it follows, cf.,
Lemma 3.3 in [3], that µ = 0.

Since (1.8) is exact in k except at k = 0, the first equivalence in (3.3) holds.
Take µ ∈ Hom ( F , CH Z). Then ∇∗µ = (f∗1 − ∂̄)µ = 0 so by (3.3) (with k = p)
there is ξ ∈ O(E∗p) such that ∇∗W = ξ − µ has a current solution W ∈ Lp−1.
In view of (3.4) it now follows from Lemma 3.1 that µ = ξR0

p.
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4. An algebraic approach

In this section we indicate how Theorem 1.2 and its corollaries (except for the
concrete representation ξ 7→ ξRp) can be proved algebraically. This material
has been communicated to us by Jan-Erik Björk. Whereas our residue proof
above was based on Theorem 1.1, the algebraic proof instead relies on the
following fundamental result due to J-E Roos, [18]:

Theorem 4.1. — The sheaf F has pure codimension p if and only if the nat-
ural mapping

(4.1) F → Extp( Extp( F , O), O)

is injective.

Assume that
0→ I → O(E0)→ F → 0

is exact as before. Moreover, let us assume to begin with that we already know
the isomorphisms (1.10). In particular we then have that

Extp( F , O) ' Hom ( F , CH Z).

Thus we can choose (locally) a finite number of generators µα, α ∈ A, for
Hom ( F , CH Z) and get an exact sequence

0→ I → OA → Hom ( F , CH Z)→ 0,

and therefore we have, with M = Hom ( F , CH Z) ' Extp( F , O), that

Extp( M, O) ' Hom ( M, CH Z).

We claim that the canonical mapping (4.1) is given by

O(E0) 3 φ 7→ (µαφ)α.

In fact, clearly it is a mapping from F = O(E0)/ I , since each µα is. Moreover,
if (ψα) ∈ I , then by definition

∑
α ψαµα = 0, and hence (µαφ)α defines an

element in
Hom ( OA/ I , CH Z) ' Extp( Extp( F , O), O).

One can verify that this mapping is independent of the choice of generators,
and must be the canonical mapping (4.1).

It follows that (4.1) is injective if and only if the equality (1.6) holds. If
F has pure codimension p, by Theorem 4.1 therefore (1.6) holds and then
Corollary 1.3 as well as Theorem 1.2 follow.
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Remark 3. — We actually get a residue proof of Theorem 4.1: If F has pure
codimension p we know that (1.6) holds by the residue theory, and thus (4.1)
is injective. On the other hand, it is not hard to see, e.g., it follows from [5],
that the annihilator of (a set of) currents in CH Z must have pure codimension
p. Thus the injectivity of (4.1) implies that F has pure codimension.

Let us conclude with a brief discussion of (1.10). The Dickenstein-Sessa de-
composition (1.12) is well-known; see [10] in case of a complete intersection and
[7] for the general case. Malgrange also proved that CZ is stalkwise injective as
an analytic sheaf. Using these two facts and considering the spectral sequence
obtained from the double complex

Hom ( O(E`), C
0,k
Z ),

one can conclude that the second mapping in (1.10) is indeed an isomorphism,
and hence both of them. However, we omit the details.

5. The absolute case and Bezoutians

Let I ⊂ O0(E0) be a submodule of the free module O0(E0) over the local
ring O0 such that the zero variety of ann ( O0(E0)/I) is Z = {0}. Moreover, let
(1.1) be a resolution of O0(E0)/I of length n. From Corollary 1.4 we have the
non-degenerate pairing

O0(E0)/I × O0(E∗n)/I∗ → CH {0}.

Let α ∈ Ωn0 be a germ of a nonvanishing holomorphic (n, 0)-form at the origin,
and let

CH {0} → C, µ→ µ.α =

∫
α∧µ.

Then we have

Proposition 5.1. — The composed mapping

(5.1) O0(E0)/I × O0(E∗n)/I∗ → C

is a non-degenerate pairing.

Proof. — If φ ∈ O0(E0) is not in I, then there is some ξ ∈ O0(E∗n) such
that µ = ξRnφ is not identically zero. Since µ is in CH {0} there is some
holomorphic ψ ∈ O0 such that ψµ 6= 0. Thus ψξRnφ.α = ψµ.α 6= 0. Since we
can interchange the roles of I and I∗ the proposition follows.
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In particular, we obtain an (non-canonical) isomorphism

(5.2) ( O0(E0)/I)∗ ' O0(E∗n)/I∗.

Notice that the form u0
n defines a Hom (E0, En)-valued Dolbeault cohomol-

ogy class ω in U \ {0}. Since ∂̄U0
n = Rn we have

(5.3) (ξ, φ) =

∫
|ζ|=ε

α∧ξωφ

From (5.4) in [4] we get the representation

φ(z) = f1(z)

∫
H1Uφ∧g +

∫
H0
nRnφ∧g, φ ∈ O(E0);

here H1 is a holomorphic Hom (E,E1)-valued form, H0
n is a Hom (En, E0)-

valued holomorphic (n, 0)-form, so that

H0
n = h0

nα,

and g is the form (5.2) in [4]. It has compact support and depends holomor-
phically on z. Moreover, g = χ+ · · · , where the dots denote smooth forms of
positive bidegree, so modulo I we have

φ(z) ≡mod I

∫
|ζ|=ε

H0
n(·, z)ωφ,

and hence
φ(z) ≡mod I (h0

n(·, z), φ).

This means that we can consider h0
n as a (generalized) Bezoutian, cf., [8]. For

each analytic functional µ on O0(E0) that vanishes on I there is a unique
element ξ in O0(E∗n)/I∗ such that the action on O0(E0) modulo I coincides
with µ.φ = (ξ, φ) in view of (5.2). More explicitly we have

ξ(ζ) = µz(h
0
n(ζ, ·)).

In the classical case of a complete intersection I = (f1, . . . , fn), if we choose
Hefer forms, i.e., (1, 0)-forms hk =

∑
j hjkdζj such that

∑
hjk(ζj − zj) =

fk(z) − fk(ζ), and α = dζ1∧ · · · ∧dζn, then, cf., [2], it turns out that h0
n =

det(hjk); this is a well-known formula, cf., [8], for the Bezoutian in this case.

6. Cohomological residues

The Coleff-Herrera currents admit a nice intrinsic way of expressing the ac-
tion of holomorphic differential operators, but the very definition relies on Hi-
ronaka’s theorem about the existence of resolutions of singularities. In [10] and
[17] there is also a cohomological way of expressing the duality for a complete
intersection. We have the following cohomological version of Corollary 1.3.
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Theorem 6.1. — With the assumptions and notation as in Corollary 1.3 and
with wj = ξju

0
p outside Z we have for φ ∈ O(E0) that

(6.1) wjφ.ψ = 0, ψ ∈ D, ∂̄ψ = 0 close to Z,

if and only if φ ∈ I .

In fact, wj can be extended to Wj = ξjU
0
p across Z and

∂̄Wj = ∂̄(ξjU
0
p ) = ±ξjRp = ±µj .

One can now verify that (6.1) implies that µjφ = 0, see, e.g., Theorem 6.1 in
[3]. Thus Theorem 6.1 follows from Corollary 1.3. Moreover, (6.1) is equivalent
to that wjφ are ∂̄-exact in X \ Z for each Stein neighborhood X.

In the complete intersection case, as well as the Cohen-Macaulay case, see
[14], the proof is algebraic and only involves “cohomological” residues, whereas
the proof of Theorem 6.1 here is obtained via the residue calculus. It is rea-
sonable to believe that one can produce a purely algebraic proof (thus avoiding
Hironaka’s theorem) based on Roos’ theorem, cf., Section 4.

7. Higher Ext sheaves

Assume that F = O(E0)/ I has codimension p as before. In view of Propo-
sition 2.1 and (1.10) one could guess that Extk( F , O) for k > p could be repre-
sented by cohomology of pseudomeromorphic currents. We have the following
partial result.

Theorem 7.1. — Assume that (1.1) is a resolution of F and R is the as-
sociated residue current (with respect to some given metric). For each k,
O(E∗k) 3 ξ 7→ ξRk induces an invariant injectice mapping

(7.1) Extk( F , O)→ H k( Hom ( F , PM0,•
)).

Moreover, the composed mapping

(7.2) H k( O(E∗•))→ H k( Hom ( F , PM0,•
))→ H k( Hom ( F , C0,•))

coincides with the natural isomorphism (1.9).

Remark 4. — If we widen the definition of PM slightly so that it is preserved
under any surjective holomorphic mapping rather than just modifications, then
the ∂̄-complex PM0,• is exact and thus it is a fine resolution of the sheaf O. It
is reasonable to believe that PM so defined is stalkwise injective. If this is true,
by considering the double complex PM0,k(E∗` ), we could conclude that the first
mapping in (7.2) is an isomorphism for any k, and hence that both mappings
are.
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Let Zk be the analytic set where the mapping fk in (1.1) does not have opti-
mal rank. It is well-known and not hard to see that these sets are independent
of the resolution and hence invariants of the sheaf F . Then

· · ·Zk+1 ⊂ Zk ⊂ · · · ⊂ Zp+1 ⊂ Zsing ⊂ Zp = Z

and the Buchsbaum-Eisenbud theorem, see [12], states that the codimension of
Zk is at least k. Moreover, by Corollary 20.14 in [12], F has pure codimension
p if and only if

(7.3) codimZk ≥ k + 1, k > p.

Notice also that F is Cohen-Macaulay if and only if Zk = ∅ for all k > p.

Proof of Theorem 1.1. — If F is pure, using (7.3), it follows as in (the proof
of) Lemma 5.2 in [5], that annRp = annR, and thus annRp = I . Conversely,
assume that annRp = I . It follows from Proposition 5.3 in [5] that annRp must
be an intersection of primary modules of codimension p, and hence I = annRp
is pure.

Proof of Theorem 7.1. — Since Rφ = 0 for φ ∈ I , it follows from (3.2) that the
first mapping in (7.2) is well-defined, and in view of (3.4) the composed map-
ping coincides with the natural isomorphism. It follows that the first mapping
must be injective. (This is also easily seen by a direct argument that avoids
Malgrange’s theorem: Assume that ξRk = ∂̄γ for some γ in Hom ( F , PM0,k−1

).
Then ξRk = ∇∗γ, so that ∇∗(U∗ξ − γ) = ξ and hence ξ = 0 in H k( O(E∗•)) in
view of the first isomorphism in (3.3).)

If R̃ denotes the current associated with another metric, then as before there
is a current M with support on Z such that

∇EndM = R− R̃.

In fact, if

u = σ/∇Endσ = σ + (∂̄σ)σ + (∂̄σ)2σ + · · ·

and ũ is the analogous form corresponding to the new metric, then, cf., [4], we
can take

(7.4) M = ∂̄|F |2λ∧uũ|λ=0.

Now, if ξ ∈ O(E∗k) and f∗k+1ξ = 0, then

ξ(Rk − R̃k) = ξ(∇EndM)0 = ξ(fk+1M
0
k+1 − ∂̄M0

k ) = −± ∂̄(ξM0
k ).
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Thus we must show that ξM0
kφ = 0 for φ ∈ I . If φ ∈ I , then φ = f1ψ = ∇ψ

for some ψ ∈ O(E1). Thus

ξM0
kφ = ξM(∇ψ) = ξ(∇EndM)ψ − ξ∇(Mψ) =

ξ(R1
k − R̃1

k)ψ − ξfk+1M
1
k+1ψ + ξ∂̄M1

kψ = ξ∂̄M1
kψ

since R1 = R̃1 = 0, so it is enough to check that M1
k = 0, which we prove by

induction over k: First notice that M1
k must vanish for k ≤ p + 1 since it has

bidegree (0, k−2) and has support on Z that has codimension p. Now suppose
that we have proved that M1

k = 0. Outside Zk+1 the mapping σk+1 is smooth
so we have, cf., (7.4) and the definition of R,

M1
k+1 = σk+1R̃

1
k+1 + (∂̄σk+1)M1

k = (∂̄σk+1)M1
k = 0

there since R̃1 = 0. Thus M1
k+1 has support on Zk+1 and for degree reasons it

must vanish identically.

Outside the set Zk, there is a resolution (1.1) of F with N < k, and it
follows that then Extk( F , O) ' H k( O(E∗•)) vanishes there; i.e., Extk( F , O) has
its support on Zk. On the other hand, if Ext`( F , O) = 0 for all ` ≥ k, then

O(E∗k−1)
f∗k−→ O(E∗k)

f∗k+1−→ · · · f
∗
N−→ O(E∗N )→ 0

is exact, and hence all the mappings must have constant rank, so we must be
outside Zk. It follows that

(7.5) supp Extk( F , O) ⊂ Zk ⊂
⋃
`≥k

supp Ext`( F , O).

If F has pure codimension p, then it follows from (7.5) and Eisenbud’s theorem
mentioned above that the support of Extk( F , O) has at least codimension k+1;
a fact that was already established by Roos in [18].

On the other hand, if we have not pure codimension somewhere, then for
some k > p, codimZk has codimension k. It follows from (7.5) that then
the support V of Extk( F , O) has codimension k here (since supp Ext`( F , O) for
` > k have higher codimension). By the coherence there is ξ ∈ O(E∗k) whose
cohomology class is (generically) nonvanishing on V . By Theorem 7.1 then the
current ξRk represents the corresponding nonvanishing class in Hom ( F , C0,•).
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