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QUADRATIC REGRESSION IMPLIES

WISHART DISTRIBUTIONS

by G. Letac & J. Wesołowski

Abstract. — If the space Q of quadratic forms in Rn is splitted in a direct sum
Q1 ⊕ · · · ⊕ Qk and if X and Y are independent random variables of Rn, assume that
there exist a real number a such that E(X|X + Y ) = a(X + Y ) and real distinct
numbers b1, ..., bk such that E(q(X)|X + Y ) = biq(X + Y ) for any q in Qi. We prove
that this happens only when k = 2, when Rn can be structured in a Euclidean Jordan
algebra and when X and Y have Wishart distributions corresponding to this structure.

Résumé (Pourquoi les algèbres de Jordan sont-elles naturelles en statistiques? La
régression quadratique implique la distribution de Wishart)

Si l’espace Q des formes quadratiques sur Rn est décomposé en une somme directe
Q1⊕· · ·⊕ Qk et si X et Y sont des variables aléatoires indépendantes de Rn, supposons
qu’il existe un nombre réel a tel que E(X|X + Y ) = a(X + Y ) ainsi que des nombres
réels distincts b1, ..., bk tels que E(q(X)|X + Y ) = biq(X + Y ) pour tout q de Qi.

Nous montrons que cela n’arrive que pour k = 2, que lorsque Rn peut être structuré
en algèbre de Jordan euclidienne et que lorsque X et Y suivent des lois de Wishart
correspondant à cette structure.
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130 G. LETAC & J. WESOŁOWSKI

I. Introduction

Let Sr be the set of (r, r) real symmetric matrices and let X and Y be inde-
pendent random variables valued in Sr such that they are Wishart distributed
γp,σ and γp′,σ , which means that

(1.1) E(e−tr θX) = det(Ir + θσ)−p

where θ and σ are in the set Pr of the positive definite elements of Sr and p is
in

(1.2) Λ = {1

2
, . . . ,

r − 1

2
} ∪ (

r − 1

2
,∞)

(In (1.1) tr means trace). Note that for a = p/(p+ p′)

(1.3) E(X|X + Y ) = a(X + Y ).

Assume furthermore that p + p′ > r−1
2 . This implies that (X + Y )−1 exists.

Then it is known that Z = (X + Y )−1/2X(X + Y )−1/2 and X + Y are in-
dependent and that Z ∼ uZuT for any orthogonal (r, r) matrix u. There are
many consequences, nuances and characterizations of the Wishart distributions
related to this result. One of these consequences is the following fact: for any
s ∈ Sr consider the two quadratic forms on Sr defined by

(1.4) qs1(x) =
1

2
tr 2(xs) + tr (sxsx), qs2(x) = tr 2(xs)− tr (sxsx)

and the two numbers

b1 =
p

p+ p′
p+ 1

p+ p′ + 1
, b2 =

p

p+ p′
p− 1

2

p+ p′ − 1
2

.

Then for i = 1, 2 and for any s

(1.5) E(qsi (X)|X + Y ) = biq
s
i (X + Y )

This is the particular case d = 1 of Corollary 2.3 of Letac and Massam (1998).
An important fact about this set (qs1, q

s
2)s∈Sr is that it spans the whole space of

quadratic forms Q on Sr (since if qs(x) = tr 2(xs) then {qs ; s ∈ Sr} spans Q).
More specifically denote by Qi the subspace of Q generated by {qsi ; s ∈ Sr}.
Then Q = Q1 ⊕ Q2 (see for instance Theorem 5.2 below for a proof).

The aim of the paper is to prove a reciprocal statement of (1.3) and (1.5): Let
V be a linear real finite dimensional space (instead of Sr) and denote by Q the
space of all quadratic forms on V . Fix a decomposition Q = Q1⊕ Q2⊕· · ·⊕ Qk
with k ≥ 2 as a direct sum of linear subspaces. Consider two independent
random variables X and Y with exponential moments satisfying (1.3) for some
a and E(q(X)|X + Y ) = biq(X + Y ) for all q ∈ Qi and for some distinct
real numbers b1, . . . , bk. We show that under these circumstances, necessarily
k = 2 and X and Y are Wishart distributed in the following sense: there
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WHY JORDAN ALGEBRAS ARE NATURAL IN STATISTICS 131

necessarily exists a structure of Euclidean Jordan algebra on V (like symmetric
matrices, Hermitian matrices, or space with a Lorentz cone) such that X and
Y are Wishart on the symmetric cone associated to it. Section 5 contains more
detailed information about the two spaces Q1 and Q2 of quadratic forms on Sr
(or more generally, on a Euclidean Jordan algebra)

II. Some history of the subject

Wishart distributions on Sr. Wishart distributions have been intro-
duced by J. Wishart (1928) as distributions of Z1Z

T
1 + · · ·+ ZNZ

T
N ∼ γN/2,2Σ

where Z1, . . . , ZN are iid in Rr such that Zi ∼ N(0,Σ). Elegant calculations
about them are in Bartlett (1933) and the classical reference is Muirhead
(1982). For the space Sr of (r, r) real symmetric matrices the extension of
the definition of γp,σ from a half integer p to the whole set Λ defined by (1.2) is
made in the fundamental paper of Olkin and Rubin (1962). Proving that a dis-
tribution γp,σ on the semi positive definite matrices such that (1.1) holds only
if p is in Λ was considered as a challenge by statisticians (see Eaton (1983)) al-
though the appendix of Olkin and Rubin contains an unnoticed proof of it (and
unfortunately erroneous: see Casalis and Letac (1994)). This conjecture was
independently proved by Shanbhag (1988) and Peddada and Richards (1989) by
quite different means, although a solution already appeared in Gyndikin (1975)
and seems to have been well known by analysts, who also call the set Λ and its
extensions the Wallach set (see Lassalle (1987) for proofs and references).

Lukacs-Olkin-Rubin Theorem. — Wishart distributions on Sr are the most nat-
ural generalization of the gamma distributions on the positive line. Lukacs
(1956) shows that if X and Y are positive, independent non Dirac random
variables and if Z = X/(X + Y ), then Z and X + Y are independent if and
only if there exists σ, p, p′ > 0 such that X ∼ γp,σ and Y ∼ γp′,σ. This was
extended to Sr by Olkin and Rubin (1962) by a proper definition of Z such that
Z is symmetric (for instance by choosing Z = (X + Y )−1/2X(X + Y )−1/2 or
by choosing Z = C−1X(C−1)T where C is the triangular matrix with positive
diagonal elements coming from the Cholesky decomposition CCT = X + Y ).

They show that if X and Y are independent non Dirac random semi positive
definite matrices in Sr such thatX+Y is invertible and such that Z ∼ uZuT for
any orthogonal (r, r) matrix u then Z and X+Y are independent if and only if
there exists a positive definite matrix σ and p and p′ in Λ with p+p′ > (r−1)/2

such that X ∼ γp,σ and Y ∼ γp′,σ. If Z is defined as (X+Y )−1/2X(X+Y )−1/2,
Bobecka and Wesołowski (2002) have shown that the invariance hypothesis for
Z by the orthogonal group can be dropped provided one assumes that X and Y
have smooth densities. Removing this assumption of density is still a challenge.
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132 G. LETAC & J. WESOŁOWSKI

Wishart distributions on Hermitian matrices and on Euclidean Jordan algebras. —
Since normal distributions on Hermitian spaces have been considered (see e.g.,
Goodman (1963)), therefore Wishart distributions on Hermitian matrices occur
naturally. Actually physicists considered them quite early (see Mehta (2004)).
Carter (1975) in an unpublished PhD thesis extends Olkin and Rubin to this
case.

On the other hand, works on the classification of natural exponential fami-
lies by their variance function have led to the observation that the exponential
family {γp,σ;σ ∈ Pr} of Wishart distributions on Sr with fixed shape pa-
rameter p ∈ Λ has a variance function which is the map from Sr into itself
x 7→ V (m)(x) = 1

pmxm where m is in Pr. In other terms, this means that if κ
is a cumulant function of γp,σ then for all x in Sr we have

κ′′(θ)(x) =
1

p
κ′(θ)xκ′(θ).

Facts about multivariate distributions such that their corresponding variance
functions are quadratic in the mean are collected in Letac (1989). In particu-
lar, Wishart distributions obtained from simple Euclidean Jordan algebras are
described there. An indispensable reference for simple Euclidean Jordan alge-
bras is Faraut and Koranyi (1994) always abreviated F.-K. below. Recall that
simple Euclidean Jordan algebras are basically in one to one correspondence
with the irreducible symmetric cones (self dual cones in Euclidean space such
that the group of automorphisms of the cone acts transitively on it), in the
way that Sr is linked to Pr. A quick definition of the Wishart distribution γp,σ
on the Jordan algebra V with rank r, Peirce constant d, cone Ω of square ele-
ments, trace and determinant function tr and det can be done by its Laplace
transform ∫

Ω

e−tr θxγp,σ(dx) = det(e+ θσ)−p

where σ is in the interior Ω of Ω and where p is in the Gyndikin set of the
Jordan algebra V defined by

(2.6) ΛV = {d
2
, d, . . . ,

d

2
(r − 1)} ∪ (

d

2
(r − 1),∞).

While the definition of determinant is the standard one for Sr and for Hermi-
tian matrices, it requires some care for the three other types of Jordan algebras:
quaternionic Hermitian matrices, 27 dimensional Albert algebra and the alge-
bra of the Lorentz cone.

Particular cases of use of Wishart distributions on Jordan algebras in statis-
tics occurred earlier (Andersson (1975) for the Hermitian and quaternionic
cases, and Jensen (1988) for the Lorentz cone, with its deep connexions to
Clifford algebras). Jordan algebras are the natural framework for Wishart
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WHY JORDAN ALGEBRAS ARE NATURAL IN STATISTICS 133

distributions: Casalis and Letac (1996) is a clarification and an extension to
Jordan algebras of Olkin and Rubin (1962) and of Carter (1975); Carter fol-
lows step by step the difficult Olkin and Rubin’s approach and his work was
unknown to Casalis and Letac (1996).

Quadratic homogeneity and Wishart distributions. — A remarkable fact about
the classical Wishart distributions on Sr is that the above variance function
m 7→ V (m) is not only quadratic in m but homogeneous quadratic. This hap-
pens also to be true for Wishart distributions on any Euclidean Jordan algebra.
This observation lead Casalis (1991) to prove the converse: any natural expo-
nential family with a homogeneous quadratic variance function is a Wishart
family, as conjectured in Letac (1989). Put in other words, if κ is a cumulant
function of some random variable X valued in Rn such that κ′′(θ) = V (κ′(θ))

where V is a homogeneous quadratic function, then Rn can be structured in a
Jordan algebra such that X is Wishart for that structure.

Quadratic regression property. — A slight extension of Lukacs (1956) is to take
two non Dirac independent rv X and Y on the positive line such that there
exist positive a and b such that E(X|X + Y ) = a(X + Y ) and E(X2|X + Y ) =

b(X + Y )2 and to prove that there exist positive p, p′, σ such that X ∼ γp,σ
and Y ∼ γp′,σ. To see this, just multiply these two equalities by eθ(X+Y ), take
expectations and obtain two differential equations for the Laplace transforms
of X and Y. This procedure is contained in Laha and Lukacs (1960). Bivariate
regression version of Lukacs theorem based on conditions E(X2

i |X + Y ) =

b(Xi+Yi)
2, i = 1, 2, where X = (X1, X2) and Y = (Y1, Y2) are independent was

obtained in Wang (1981). This result was generalized in Letac and Wesolowski
(2008) by considering regressions of quadratic forms E(q(X)|X+Y ) = bq(X+

Y ) for all quadratic forms q orthogonal to an arbitrary fixed quadratic form q0.

That is in the setting of the present paper we required k = 1 and codimension
of Q1 to be equal 1.

Letac and Massam (1998) use the quadratic regression approach to get a
simpler proof of Olkin and Rubin theorem, as extended to Jordan algebras in
Casalis and Letac (1996). It actually characterizes the Wishart distributions of
independent X and Y in Sr (and more generally of a Jordan algebra) through
the following properties: if for i = 1, 2, s ∈ Sr and qsi are defined by (1.4),
then (1.5) holds (with suitable analogues of qi if the Jordan algebra is not Sr).
Note that this regression perspective leads to a characterization of γp,σ, γp′,σ

without the hypothesis of invertibility of X+Y which was needed in the Olkin
and Rubin characterization.
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134 G. LETAC & J. WESOŁOWSKI

III. Main result

Let V be a real linear space with dimension n > 1, let V ∗ be its dual and
consider the space F = Ls(V, V

∗) of the symmetric linear maps from V to
V ∗. If θ ∈ V ∗ and x ∈ V we write 〈θ, x〉 for θ(x). Denote by Q the space
of quadratic forms q on V, namely the set of real functions q on V such that
(x, y) 7→ 1

2 (q(x + y) − q(x) − q(y)) is bilinear on V × V and q(λx) = λ2q(x)

when λ is a real number. The map from F to Q defined by f 7→ qf where
x 7→ qf (x) = 〈f(x), x〉 is one to one. More specifically:

1

2
(qf (x+ y)− qf (x)− qf (y)) =

1

2
(〈f(x), y〉+ 〈f(y), x〉) = 〈f(x), y〉

For q ∈ Q we therefore define the inverse map q 7→ fq of f 7→ qf by
1

2
(q(x+ y)− q(x)− q(y)) = 〈fq(x), y〉.

Let us also define here the concept of irreducibility for a probability measure
µ on V. We say first that µ is reducible if there exists a direct sum V1⊕V2 = V

with dimVi > 0 for i = 1, 2, two probability measures µ1 and µ2 on V1 and V2

such that µ = µ1⊗µ2. In other terms, if X ∼ µ its projections X1 on V1 parallel
to V2 andX2 on V2 parallel to V1 are independent. Suppose that furthermoreX
has a Laplace transform L = eκ defined on some open set Θ ⊂ V ∗ = V ∗1 ⊕ V ∗2 .
In this case κ(θ) = κ1(θ1) + κ2(θ2) where θi is the projection of θ on V ∗i and
κ1 and κ2 are the cumulant functions of X1 and X2. We say also that X and
κ are reducible in that case. Finally, µ, X and κ are said to be irreducible if
they are not reducible...

Theorem III.1. — Let Q1⊕ Q2⊕· · ·⊕ Qk = Q be a direct sum decomposition of
the space of quadratic forms on V with k ≥ 2. Let X and Y be two independent
irreducible random variables valued in V such that their Laplace transforms
exist on an open set Θ ⊂ V ∗. We assume that

1. there exists a real number a such that E(X|X + Y ) = a(X + Y );

2. there exist distinct numbers b1, . . . , bk such that for any i = 1, . . . , k and
for any q ∈ Qi we have

(3.7) E(q(X)|X + Y ) = biq(X + Y ).

Under these circumstances 0 < a < 1, k = 2 and there exists a simple Euclidean
Jordan algebra structure on V such that X and Y are Wishart distributed on
the positive cone of the algebra with the same scale parameter and respective
shape parameters p and p′ in ΛV defined in (2.6). Moreover Q1 and Q2 are
spanned by

(3.8) qs1(x) =
d

2
tr 2(xs) + tr (P(x)(s)s), qs2(x) = tr 2(xs)− tr (P(x)(s)s)
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WHY JORDAN ALGEBRAS ARE NATURAL IN STATISTICS 135

where tr , P and d are respectively the trace, the quadratic map and the Peirce
constant of the Jordan algebra and s ∈ V. In this case

(3.9) a =
p

p+ p′
, b1 =

p

p+ p′
p+ 1

p+ p′ + 1
, b2 =

p

p+ p′
p− d

2

p+ p′ − d
2

.

Proof. — Denote by LX and LY the Laplace transforms of X and Y. It is
standard to prove that from condition 1) we have L1−a

X = LaY : just multiply
both sides of E(X|X + Y ) = a(X + Y ) by e〈θ,X+Y 〉 where θ ∈ Θ and take
expectations of both sides to obtain the differential equation (1− a)L′X/LX =

aL′Y /LY . The fact that X and Y are irreducible implies that a = 0 or a = 1 is
impossible. The fact that logLX and logLY are convex implies that a < 0 or
a > 1 are impossible. From now on we denote eκ = LX = L

a/(1−a)
Y .

In the sequel, we use the symbol Tr for the trace of an endomorphism. The
symbol tr is reserved for the trace in a Jordan algebra. If q is a quadratic form
on V we write

q(
∂

∂θ
)(κ)(θ) = Tr (fqκ

′′(θ)).

Since κ is a real twice differentiable function defined on an open subset of V ∗,
the second derivative κ′′(θ) is an element of Ls(V ∗, V ), the linear map fq is
an element of Ls(V, V ∗) and thus fqκ′′(θ) belongs to L(V ∗, V ∗). It therefore
makes sense to speak of the trace of this endomorphism of V ∗. Note that
〈fq(x), x〉 = Tr (fq(x⊗x)) and that ∂

∂θ ⊗
∂
∂θκ = κ′′. This explains the definition

q( ∂∂θ )(κ) = Tr (fqκ
′′). Also q(κ′) can be written in terms of fq as q(κ′) =

Tr (fq(κ
′ ⊗ κ′)) = 〈fq(κ′), κ′〉.

Calculations done in Letac and Wesołowski (2008) (2.9), show that for any
i = 1, . . . k and for all q ∈ Qi we have

(3.10) (1− bi
a

)q(
∂

∂θ
)(κ) = (

bi
a2
− 1)q(κ′).

(Again, to prove (3.10) just multiply (3.7) by e〈θ,X+Y 〉 and take expectations).
Observe that bi = a is impossible, since it implies that q(κ′) = 0 for any q in
Qi. Since Qi is not the zero space, there exists a non zero q with q(κ′) = 0. Now
{x ∈ V ; q(x) = 0} is a quadric of V and has an empty interior. On the other
hand, since X is irreducible, this implies that X cannot be concentrated on
some affine subspace of V . Therefore κ is strictly convex and the set κ′(Θ) is
open and cannot be contained in a quadric. Thus a = bi is impossible, division
by (1− bi

a ) is permitted and we rewrite (3.10) as

(3.11) q(
∂

∂θ
)(κ) = piq(κ

′)

where pi = bi−a2

a2−abi
.
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136 G. LETAC & J. WESOŁOWSKI

Now let us fix θ ∈ V ∗ and consider the element θ ⊗ θ of F defined by
(θ⊗θ)(x) = 〈θ, x〉θ. Denote by F i the image of Qi by the isomorphism q 7→ fq.

Obviously we have
F 1 ⊕ F 2 ⊕ · · · ⊕ F k = F .

Therefore there exist elements fi ∈ F i such that f1 + · · · + fk = θ ⊗ θ. Since
f1, . . . , fk depend actually on θ we rather write fi(θ, x) instead of fi(x) for
x ∈ V. Thus x 7→ fi(θ, x) is a linear map from V to V ∗. We rewrite the
equality θ ⊗ θ = f1 + · · ·+ fk as

〈θ, x〉2 = 〈f1(θ, x), x〉+ · · ·+ 〈fk(θ, x), x〉

for any x in V.We now fix θ = θ0 in this equality and we recall that q( ∂∂θ )(κ)(θ)

means Tr (fqκ
′′(θ)). Thus we get

Tr ((θ0 ⊗ θ0) κ′′(θ)) =
k∑
i=1

Tr [fi(θ0, ·)κ′′(θ)].

We now use the fact that x 7→ 〈fi(θ0, x), x〉 = q(x) is a quadratic form belonging
to Qi to which we apply (3.11). Therefore we obtain

(3.12) Tr ((θ0 ⊗ θ0) κ′′(θ)) =
k∑
i=1

piTr (fi(θ0, ·)κ′(θ)⊗ κ′(θ)).

Since this is true for any θ0 in V ∗ this is enough to claim that κ′′ is a quadratic
homogeneous function of κ′.

We now apply the Casalis’ theorem (1991) which says that if κ is irreducible
and if κ′′ is a quadratic homogeneous function of κ′, then there exists a simple
Euclidean Jordan algebra structure on V related to X in a way that we explain
now. Let Ω be the open cone of the squares of V , let tr and det be the trace
and determinant functions on the Jordan algebra, let d and r be the Peirce
and rank constants of V. Then there exists p ∈ ΛV defined by (2.6) and σ ∈ Ω

such X has the Wishart distribution γp,σ on Ω defined by its Laplace transform
E(e−tr θX) = det(Ir + θσ)−p for all θ ∈ Ω.

To complete the proof, denote for a while by Q̃1 and Q̃2 the spaces of
quadratic forms spanned by (qs1)s∈V and (qs2)s∈V as defined in (3.8). Denote
also

b̃1 =
p

p+ p′
p+ 1

p+ p′ + 1
, b̃2 =

p

p+ p′
p− d

2

p+ p′ − d
2

.

Recall that we want to prove that k = 2 and that { Q̃1, Q̃2} = { Q1, Q2}. Let
now q ∈ Qi. Therefore E(q(X)|X+Y ) = biq(X+Y ).We now write q = q1 +q2

with qi ∈ Q̃i which is possible since Q̃1 ⊕ Q̃2 = Q. Recall that since X and Y
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WHY JORDAN ALGEBRAS ARE NATURAL IN STATISTICS 137

have distributions γp,σ and γp′,σ we can write E(qi(X)|X + Y ) = b̃iqi(X + Y ).

Thus
(̃b1 − bi)q1(X + Y ) = (bi − b̃2)q2(X + Y ).

Since X + Y is valued in the open set Ω this implies (̃b1 − bi)q1 = (bi − b̃2)q2.

Thus the two sides of this equality are zero: either bi = b̃1 and q2 = 0 or the
reverse statement holds. Since we have assumed that b1, . . . , bk are distinct,
this ends the proof.

IV. Comments

1. Surprisingly enough, while starting from a linear space V without any
additional algebraic structure, the regression conditions on X and Y of
the theorem impose by themselves a Euclidean Jordan algebra structure
on V.

2. The three numbers a, b1 and b2 together with the dimension of V deter-
mine uniquely the structure of Jordan algebra on V in the following sense:
we can see from the equations (3.9) that b2 < a2 < b1 < a.Moreover these
equations give the Peirce constant d of V by

d = 2
a− b1
b1 − a2

a2 − b2
a− b2

.

Since the rank r satisfies dimV = r + d
2r(r − 1) the type of the Jordan

algebra is completely known.
3. In the theorem, k = 1 would lead to X and Y concentrated on a line

Rv of V . If X = X1v and Y = Y1v then X1 and Y1 would be one
dimensional gamma distributed and X would not be irreducible since we
have assumed dimV > 1. Furthermore if in the theorem we do not assume
that b1, . . . , bk are distinct, then either they are all equal to one b and
this sends us back to the trivial case k = 1 or they are not and if k′ ≥ 2

is the number of distinct bi’s, then the theorem gives k′ = 2.

4. Some comments about irreducibility are in order. If LY is a power of LX ,
then Y is irreducible if and only ifX is. Therefore irreducibility can be as-
sumed in the theorem for X only. If irreducibility is not assumed, we have
an artificial generality. For instance suppose that (X1, X2, X3, Y1, Y2, Y3)

are independent real rv with Xi ∼ γαi,σ and Yi ∼ γβi,σ. Then for i 6= j

we have

E(XiXj |X + Y ) =
αiαj

(αi + βi)(αj + βj)
(Xi + Yi)(Xj + Yj),

E(X2
i |X + Y ) =

αi(αi + 1)

(αi + βi)(αi + βi + 1)
(Xi + Yi)

2.
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138 G. LETAC & J. WESOŁOWSKI

This implies that k = 6 corresponding to six independent quadratic forms
on V = R3 defined by qij(x) = xixj for i ≤ j.

V. The spaces Q1 and Q2: the operator Ψ

If V is a simple Euclidean Jordan algebra with rank r and Peirce constant
d = 2d′, denote by F = Ls(V ) the space of symmetric linear operators on V.
The dimension of V is n = r+dr(r−1)/2. Given y ∈ V , important examples of
elements of F are respectively L(y) defined by x 7→ yx where yx is the Jordan
product, and

P(y) = 2(L(y))2 − L(y2)

as defined in F.-K. page 32. If a and b are in V we denote by a ⊗ b the
endomorphism x 7→ a tr (bx) of V. The endomorphism a⊗ b+ b⊗ a belongs to
F . Denote by F 1 and F 2 the linear subspaces of F respectively generated by
and {d′y ⊗ y + P(y); y ∈ V } and {y ⊗ y − P(y); y ∈ V }. From (3.8) F 1 and F 2

are canonically isomorphic to Q1 and Q2 by q 7→ fq where q(x) = 〈fq(x), x〉.
We endow F with the Euclidean structure defined by Tr (ab). Here again we
distinguish the trace tr of the Jordan algebra V from the trace Tr of the
endomorphisms on the linear space V. Here is a list of various traces:

Proposition V.1. — 1. Tr (a ⊗ b) = tr (ab), Tr [(a ⊗ b)(c ⊗ d)] =

tr (ad)tr (bc),

Tr ((a1 ⊗ b1) · · · (ak ⊗ bk)) = tr (a1bk)tr (a2b1) · · · tr (akbk−1).

2. Tr [L(a)L(b)(c⊗ d)] = tr [(a(bc))d]

3. Tr (P(a)(b⊗ c)) = tr [(P(a)b)c]

Proof. — (1) is standard since it only involves the Euclidean structure of V
and not its Jordan algebra structure. (2) is a consequence of (1). Applying the
definition of P(a), (3) is a consequence of (2).

In the theorem below, we consider an endomorphism Ψ of F such that
Ψ(y ⊗ y) = P(y) for all y ∈ V. It is an essential tool of the two papers Casalis
and Letac (1996) and Letac and Massam (1998). The theorem shows that F 1

and F 2 are its two eigenspaces and uses this fact to give the dimensions of the
spaces of quadratic forms Q1 and Q2 defined in Th. 3.1 above.

Theorem V.2. — 1. There exists a symmetric endomorphism Ψ of F such
that Ψ(y ⊗ y) = P(y) for all y ∈ V. It satisfies

(5.13) Ψ(P(y)) = d′y ⊗ y + (1− d′)P(y)

2. The spaces F 1 and F 2 are orthogonal and F = F 1 ⊕ F 2

3. The spaces F 1 and F 2 are the two eigenspaces of Ψ corresponding to the
two eigenvalues 1 and −d′ respectively.
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4. The dimensions of F 1 and F 2 are given by

n(n+ 1)

2
− dim F 1 = dim F 2 =

r(r − 1)

2
× 1 + d′(2r − 3) + d′2(r − 1)(r − 2)

1 + d′

Examples. — For the Jordan algebra associated to the Lorentz cone where
r = 2 we get dim F 2 = 1. More specifically, if E is a Euclidean space with
scalar product ~x.~y consider the Jordan algebra V = R × E endowed with the
Jordan product between x = (x0, ~x) and y = (y0, ~y) defined by

xy = (x0y0 + ~x.~y , x0~y + y0~x).

Here the Lorentz cone is {(x0, ~x) ∈ V ; x0 > ‖~x‖}, the trace is tr (x0, ~x) = 2x0

and the Peirce constant is d = dimE − 1. In this case F 2 is spanned by the
symmetry S defined by (x0, ~x) 7→ (x0,−~x). To see this observe that if e = (1,~0)

then S = e⊗ e−P(e) is in F 2 and use dim F 2 = 1. As a consequence if

[
a b

b∗ c

]
represents a symmetric endomorphism of V (where a is real, c is a symmetric

endomorphism of E and b is a linear form on E) then

[
a b

b∗ c

]
is in F 1 if and

only if it is orthogonal to

S =

[
1 0

0 −idE

]
,

that is if and only if a = Tr c. The dimension of F 1 is 1
2 (n− 1)(n+ 2).

For the Jordan algebra Sr of symmetric real matrices where d = 1, we get
dim F 2 = r2

12 (r−1)(r+ 1) and dim F 1 = r
24 (r+ 1)(r2 + 5r+ 6). For the Jordan

algebra of Hermitian matrices where d = 2, we get

dim F 1 =

Å
r(r + 1)

2

ã2

, dim F 2 =

Å
r(r − 1)

2

ã2

,

and since d′ = 1, Ψ is an orthogonal symmetry with respect to F 2. For
the Jordan algebra of Hermitian quaternionic matrices where d = 4, we get
dim F 2 = 4r r(r−1)(r−2)

6 + r(r−1)
2 and dim F 1 = r2

3 (4r2 − 1). For the Albert
algebra where d = 8 and r = 3 we get dim F 2 = 27, dim F 1 = 351 = 27× 13.

Proof. — (1) The existence of Ψ is proved in Casalis and Letac (1996) (Lemma
6.3) and (5.13) is proved in Letac and Massam (1998) (Proposition 3.1). For
proving that Ψ is symmetric, enough is to see that Tr [Ψ(x ⊗ x)(y ⊗ y)] is
symmetric in x and y in V since {y ⊗ y ; y ∈ V } spans F . Equivalently we
have to see that Tr [P(x)(y⊗ y)] is symmetric. From Proposition 3.1 part 3, we
have to show that tr [(P(x)y)y)] is symmetric. Applying the definition of P, we
get

tr [(P(x)y)y)] = tr [(2(x(xy)− x2y)y].
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Let us now use Proposition II.1.1, (iii) in F.-K. which says

L(x2y)− L(x2)L(y) = 2L(xy)L(x)− 2L(x)L(y)L(x).

Applying this equality to y we get (x2y)y − x2y2 = 2(xy)2 − 2x(y(xy)) that
we rewrite as 2(xy)2 + x2y2 = 2x(y(xy)) + (x2y)y. Since the left hand side is
symmetric in (x, y) this proves 2x(y(xy)) + (x2y)y = 2y(x(xy)) + (y2x)x which
implies in turn that (2(x(xy)− x2y)y is symmetric in (x, y) and shows that Ψ

is symmetric.

(2) and (3) Since {y ⊗ y ; y ∈ V } spans F and since

y ⊗ y =
1

1 + d′
(d′y ⊗ y + P(y)) +

1

1 + d′
(y ⊗ y − P(y)),

clearly F = F 1 + F 2. From the formula (5.13) and the definition of Ψ we
get easily that F 1 and F 2 are made of eigenvectors of Ψ respectively for the
eigenvalues 1 and −d′. In particular F 1 ∩ F 2 = {0}. Therefore F = F 1 ⊕ F 2

and thus the endomorphism Ψ has no other eigenvalues. From the fact that Ψ

is symmetric, F 1 and F 2 are orthogonal.

(4) It is the difficult point. We have dim F 1 + dim F 2 = n(n+1)
2 where

n is the dimension of V. An other linear equation for (dim F 1, dim F 2) is
trace(Ψ) = dim F 1 − d′ dim F 2 leading to

(5.14) dim F 2 =
1

1 + d′

Å
n(n+ 1)

2
− trace(Ψ)

ã
.

We embark for a calculation of trace(Ψ) by selecting an orthonormal basis
f = (f`)

n(n+1)/2
`=1 of F and by computing Tr [Ψ(f`)f`] in order to get

trace(Ψ) =

n(n+1)/2∑
`=1

Tr [Ψ(f`)f`].

The basis f is chosen as follows. We start from a Jordan frame (c1, . . . , cr) of
V (see F.-K. page 44). Recall that c2s = cs and csct = 0 for s 6= t. We denote
by V (c, λ) the eigenspace of V of L(c) for the eigenvalue λ. For 1 ≤ s < t ≤ r

we denote
Vst = V (cs,

1

2
) ∩ V (ct,

1

2
), Vss = V (cs, 1).

Recall that V =
⊕

1≤s≤t≤r Vst, that the dimension of Vst is d for s < t and
1 for s = t and that these spaces are orthogonal (F.-K. Th. IV 2.1, (i)). Let
(c1s,t, . . . , c

d
s,t) be an orthonormal basis of the space Vs,t for s < t. The space Vss

is spanned by cs. For simplicity denote also by e = (e1, . . . , en) the orthonormal
basis of V defined by the c′ss and the ckst’s. Finally the basis f of F consists of
the elements of the form f` = ei⊗ei for i = 1, . . . , n, or f` = (ei⊗ej+ej⊗ei)/

√
2

for 1 ≤ i < j ≤ n. Since e is an orthonormal basis of the Euclidean space V it

tome 139 – 2011 – no 1



WHY JORDAN ALGEBRAS ARE NATURAL IN STATISTICS 141

is standard to see that f is an orthonormal basis of the space F of symmetric
endomorphisms of V.

We now compute Tr [Ψ(f`)f`] = C` for all possible choices of f` in the basis
f.

1. Case A: f` = ei⊗ei. From Proposition 5.1, part 5 we have for all x ∈ V :

(5.15) Tr (P(x)(x⊗ x)) = trx4

Case A1: ei = cs. Thus inserting x = cs in (5.15) we get C` = tr cs = 1.

Case A2: ei = ckst. We use the fact that x2 = ‖x‖2
2 (cs + ct) when

x ∈ Vst (see F.-K. Proposition IV. 1.4 (i)) and apply (5.15) to x = ckst.

We get

C` = tr (ckst)
4 =

1

4
tr [(ct + cs)

2] =
1

2
.

2. Case B: f` = (ei ⊗ ej + ej ⊗ ei)/
√

2. We use the following calculation:

Ψ(x⊗ y + y ⊗ x) = P(x+ y)− P(x)− P(y) = 2[L(x)L(y) + L(y)L(x)− L(xy)]

(F.-K. page 32) and, using Proposition 5.1 part 2:

Tr [(L(x)L(y) + L(y)L(x)− L(xy))(x⊗ y + y ⊗ x)] = tr [(yx2)y + (xy2)x].

Thus

(5.16) C` = tr [(eje
2
i )ej + (eie

2
j )ei].

Case B1: ei = cs, ej = ct with s < t. From (5.16):

C` = tr [(ctc
2
s)ct + (csc

2
t )cs] = 0.

Case B2: ei = cs, ej = ckuv with 1 ≤ u < v ≤ r with s ∈ {u, v}. By
the definition of Vuv we have ckuvcs = 1

2c
k
uv and thus from (5.16):

C` = tr [(ckuvc
2
s)c

k
uv + (cs(c

k
uv)

2)cs] = tr [(ckuvcs)c
k
uv + (cs

1

2
(cu + cv))cs]

= tr [
1

4
(cu + cv) + (cs

1

2
(cu + cv))cs] = 1.

Case B3: ei = cs, ej = ckuv with 1 ≤ u < v ≤ r with s 6∈ {u, v}. Here
we have ckuvcs = 0 from F.-K. page 68 last line. A calculation similar to
B2 gives C` = 0.

Case B4: ei = ckuv, ej = cmuv with 1 ≤ u < v ≤ r and 1 ≤ k < m ≤ d.

Note that if x and y have norm 1 in Vuv then

(yx2)y+ (xy2)x = (y
1

2
(cu + cv))y+ (x

1

2
(cu + cv))x =

1

2
(y2 + x2) =

1

2
(cu + cv)

Applying this to x = ckuv and y = cmuv we get C` = 1 through (5.16).
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Case B5: ei = ckst, ej = cmuv with 1 ≤ s < t ≤ r, with 1 ≤ u < v ≤ r,
with 1 ≤ k,m ≤ d and with {s, t}∩{u, v} reduced to one point, say u = s.

Note that if x and y have norm 1 in x ∈ Vst and y ∈ Vsv then

(yx2)y+(xy2)x = (y
1

2
(cs+ct))y+(x

1

2
(cs+cv))x =

1

4
(y2+x2) =

1

8
(2cs+ct+cv)

Applying this to x = ckst and y = cmsv we get C` = 1/2 through (5.16).
Case B6: ei = ckst, ej = cmuv with 1 ≤ s < t ≤ r and with 1 ≤ u <

v ≤ r with {s, t} ∩ {u, v} = ∅. Using F.-K. page 68 last line we see that
(yx2)y + (xy2)x = 0 when x ∈ Vst and y ∈ Vuv. Therefore C` = 0.

We are now in position to compute the trace of Ψ. We adopt the obvious
notation C(A1) =

∑
`∈A1

C`. Thus

trace(Ψ) = C(A1) + C(A2) + C(B2) + C(B4) + C(B5).

Since C` is constant on each of these five sets A1, A2, B2, B4, B5 we first count
the number of their elements:

N(A1) = r, N(A2) = r(r − 1)d′, N(B2) = 2r(r − 1)d′,

N(B4) = r(r − 1)d′(d′ − 1

2
), N(B5) = 2r(r − 1)(r − 2)d′2.

We get finally
trace(Ψ) = r + r(r − 1)d′ [2 + (r − 1)d′]

which leads to the result through (5.14).

Comments. — Observe that Tr [Ψ(f)f ] = Tr f2 if and only if f is in F 1 (write
f = f1 + f2 with fi ∈ F i and Tr [Ψ(f)f ]− Trf2 = −(d′ + 1)Tr f2

2 to see this).
Thus in the above orthonormal basis (f`)

n(n+1)/2
1 of F we have f` ∈ F 1 if and

only if C` = 1, which happens only in the cases A1, B2 and B4. This is a set
of size N(A1) +N(B2) +N(B4) < dim F 1. Similarly Tr [Ψ(f)f ] = −d′Tr f2 if
and only if f is in F 2, and this shows that no f` is in F 2 since C` ≥ 0 for all `.
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