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WEYL FORMULA WITH OPTIMAL REMAINDER ESTIMATE
OF SOME ELASTIC NETWORKS AND APPLICATIONS

BY KAis AMMARI & MOUEZ DIMASSI

ABSTRACT. — We consider a network of vibrating elastic strings and Euler-Bernoulli
beams. Using a generalized Poisson formula and some Tauberian theorem, we give
a Weyl formula with optimal remainder estimate. As a consequence we prove some
observability and stabilization results.

REsSUME (Formule de Weyl avec reste optimal de quelques réseaux élastiques et appli-
cations)

Nous considérons un réseau de cordes et de poutres d’Euler-Bernoulli. En utilisant
une formule de Poisson généralisée et un théoréme taubérien nous prouvons une for-
mule de Weyl avec reste optimal. Comme conséquence nous prouvons des résultats
d’observabilités et de stabilisations.

1. Introduction

In the last years various models of multiple-link flexible structures have been
given and developed. The structures which we have in mind consist of finitely
many interconnected flexible elements like strings, beams, plates representative
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396 K. AMMARI & M. DIMASSI

of trusses, frames, solar panels, antennae deformable mirrors, for more details
concerning the models see [12]. "The spectral analysis of such models displays,
in addition to its own mathematical interest, control and stabilization problems,
see [9, 10, 11, 12], [15, 16, 18] and [1, 3, 4, 5].

First of all, we introduce some notations, which are simply those of [7], [14],
we refer to [7] for more details, that is needed to formulate the problem under
consideration.

Let T be a connected topological graph embedded in R™, m € N*, with n
verticies J ={EZ-, 1< < n} and N edges @ ={ki, 1< < N}. Each edge k;
is a Jordan curve in R™ and is assumed to be parametrized by its arc length
parameter x;, such that the parametrizations

T [0,4;] = Kyt xy — ()
is C([0,1;],R™) forall 1 < j < N.
We now define the C¥-network G associated with I" as the union
N
G = U;sq k.
The incidence matrix D = (d;;)nxn of I' is defined by
1 lf Wj(li) = Ei,
dij = —1 if’/Tj(U) :Ei,
0 otherwise.
The adjacency matrix & = (e;)nxn of I' is given by

{ 1 if there exists an edge k,(;,5) between E; and Ej
€in =

0 otherwise.

The valence ") of the node E; will be noted v(E;). There are two types of
nodes: the interior nodes intJ ={E; € J; y(E;) > 1} and the boundary
nodes 9 ={E¢ e d: v(E;) = 1}. In the following we will denote I.;; =
{i 6{1, ,n} s y(E;) = 1} and I;; ={1,...,n} \ I.yt. We denote by N; =
{j e{1,...,n}, E; € k;} the set of edges adjacent to E;,. We remark that if
E; € 04, then N; is a singleton which is denoted by {]Z}
For a function u: G — R, we set u; = uom; : [0,1;] — R, its restriction to
the edge k;. We further use the abbreviations:
- Ty
de’

(r7Y(E;)), n e N*.

u;(Ei) = Uj(ﬂfl(Ei))vuj$§n> (E:) ;

Finally, differentiations are carried out on each edge k; with respect to the arc
length parameter x;.

(*) The valence of the node E; is the cardinal of the set of edges adjacent to E;.
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WEYL FORMULA WITH OPTIMAL REMAINDER ESTIMATE 397

We consider the following operator Ag on the Hilbert space H =

N
H L*(0,1;), endowed with the usual product norm.
=1

D(Ag) = {u € H, u; € H*(0,1;) satisfying (1.1) — (1.3)}

AGU = (— ujz§2))N s Yue€e D(Ag)

j=1
If O = (Oip)nxn is the orientation matrix defined by

1if ky(i,n) is directed from E; to Ej,

Oin = § —1if kg p) is directed from Ej, to E;
0 else
(1.1) uis continuous on G,
(1.2) > Owmuje,(E))=0,Yi=1,...,n,
j=s(i,R)EN;
(13) Uyj, (E,L) = 0, Vie Iezt-

We study a model of networks of strings and of Euler-Bernoulli beams.
More precisely we consider the following initial problems:
on a finite network, of length L, made of edges k;, identified to a real interval

N
of length l;, j=1,...,N, (i.e. L= Z l;) we consider the eigenvalue problem
i=1
d?u; .
(14) _H;:Auj, k’j,]=1,...,N,
J
(1.5) u satisfies (1.1) — (1.3)
and
d*u, .
(16) dTZ:)\U], kj,_]:].,,N,
J
(1.7 Oihujm@)(Ei) = Oikulz(2) (Ey), ifj = s(i,h), Il = s(i, k),
J 1
(1.8) Y. Omu,o(Bi)=0,Yi=1,...,n,
j=s(i,h)EN; ’
(19) ’U,ji (El) = 0, ’U,jv 1(2) (El) = 0, VZ (S Iezh
g
(1.10) u satisfies (1.1) — (1.2).
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398 K. AMMARI & M. DIMASSI

In the present paper we give some asymptotic Weyl formula of some networks
of strings and of Euler-Bernoulli beams.

The plan of the paper is as follows. In the following section we give precise
statements of the main results. The two last sections are devoted to some
applications and related question.

2. Asymptotics with optimal remainder estimates

Let Adg < A1 < Ag < --- < A\, < --- be the eigenvalues, repeated according to
their multiplicity, of the self-adjoint operator Ag on a C?—network G which is
defined in Section 1.

We introduce the counting function of eigenvalues
Nag(A) = #0(Ag) N]—00,A],

where in general # A denotes the number of elements of A.
Our main result can now be stated as follows.

THEOREM 2.1. — There exists Ao > 1 such that
L
Na,(\) = ;\f)\—i— 0(1),
uniformly on A €]Ag, +00].

Proof. — Let x € C§°(] — €, €[), with x(0) = 1. We choose € > 0 small enough
such that I; > e for all j = 1,...,N. We may chose x with the additional

property X(t) > 0 and X(0) > 0. In fact, it suffices to choose x = 1 * ¢ for a
suitable 1) € C5°. Here () = ¢(—t). We define
) =

pO) = #5m <A =Y (1)
<A

where u; = 4/A;. According to Lemma 4.1 in the Appendix, we have

(21) RO+ 1) + DX = 1) = 2Lx(0) + (n = N)R(V)-

§=0 3=0
Since X(0) > 0, there exists § > 0 such that X(t) > 3x(0) for all ¢t € [, 6].
Combining this with the fact that X(t) > 0 for all t € R, and using (2.1), we
obtain

(22)  #lim e N-EA+a)} < —

ﬂmgj@0+uﬁ+ﬂk—wﬁ

(2Lx(0) + (n = N)x(V)) = O(1),
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WEYL FORMULA WITH OPTIMAL REMAINDER ESTIMATE 399

uniformly on A € R. Without any loss of generality, we may assume that § = 1.
Writing

[A]

pN) <D p@+1) - p),

0
with [A\|=largest integer < A\, we obtain
(2.3) u() = OV,
which yields

pi = 0(1)].
An immediate consequence of the above equality is that
(2.4) 3RO =) = D)), for A <0,
j=0
o0

XA+ p5) = O((A)~>°), for A > 0.

Put K(\) = //\ X(7)dr. We have
(2.6) [ KO = a)dut@) = 3 KO- )

-y /_:“ Rrydr =3 /_; R — ).

We recall that pu()\) = Z (1). The estimates (2.4) and (2.5) yield
Hn <A

A
(2.7) /K(/\ —z)du(z) = 2Lx(0)/0 dz + O(1)

=2Lx(0)A + O(1), A — +o0.
We rewrite the left hand side of (2.6) as

(2.8) [ KO- aau@) = [ wr-niziar

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



400 K. AMMARI & M. DIMASSI

since /)?(T)dT = 2mx(0) = 27. For A > 1, we get from (2.2)
A = 7) = (V)] < C(1 + 7).
Consequently,
(2.9) /(M(A —7) — pA)X(T)dr = O(1), (A — +o0).
Putting together (2.7), (2.8) and (2.9), we get
B\ = %A +0(1).
Combining this with the fact that u(v/X) = Na, (\), we get Theorem 2.1. [

As a consequence we have the following result concerning the beams net-
works:

COROLLARY 2.2. — There exists Ao > 1 such that
L
Naz () == #0(AZ)N] — 00,X] = ~A+ 0(D),

uniformly on X €]\g, +0o[ and where D(AZ%) = {u € H, u; € H*(0,1;) satisfying
(1.1) = (1.2) and (1.7) — (1.8)}.

REMARK 2.3. — We remark that our method is valid for all elliptic operator
in a graph.

As consequence of Theorem 2.1 we have the following result:

COROLLARY 2.4. — There exist M € N* and n > 0 such that
Bt M — pn =M, V1 >0,
where pr = VA, Vk > 0.
Proof. — From Theorem 2.1, there exists ng € N* and C' > 0 such that

for all n > ng. Changing C by C > C, we may assume that ng = 0. Using the
above inequality, we obtain

T ~
TM =20 < pngns — pin,

for all n > 0, M € N*. Choosing M large enough so that %M —-2C>nM

we obtain the result. O
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3. Applications

Let H be a Hilbert space equipped with the norm ||.||g, and let A; : D(A;) —
H be a self-adjoint, positive and boundedly invertible operator with compact
resolvent. We introduce the scale of Hilbert spaces H,, o € R, as follows: for
every a > 0, H, = D(A$), with the norm ||z||o = ||A§2||z. The space H_,, is
defined by duality with respect to the pivot space H a follows: H_, = H for
a > 0. The operator A; can be extended (or restricted) to each H,, such that
it becomes a bounded operator

(310) Ay :H,—H,_, VaelR.

The second ingredient needed for our construction is a bounded linear operator
B,:U—H_ 1 where U is another Hilbert space which will be identified with
its dual. The systems we consider are described by

(3.11) W(t) + Ajw(t) + Biy(t) = 0,w(0) = wo, w(0) = wy,

(3.12) y(t) = Biu(t),
where t € [0, 00) is the time. The equation (3.11) is understood as an equation
in H_ 1 i.e., all the terms are in H_ 1 Most of the linear equations modelling
the damped vibrations of elastic structures can be written in the form (3.11),
where w stands for the displacement field and the term B;Bjw(t), represents
a viscous feedback damping. The system (3.11)-(3.12) is well-posed:

For (wo,w1) € Hy x H, the problem (3.11)-(3.12) admits a unique solution

w € C([0,00); Hy) N € ([0, 00); H)
such that Bfw(-) € H'(0,T;U). Moreover w satisfies, for all ¢ > 0, the energy

estimate
t
(3.13)  |l(wo, wi) |3, xr — I(w(®), wE)|F, xu = 2/ — Biw(s)| ds.
2 2 0 dt U

From (3.13) it follows that the mapping t — ||(w(t),w(t))||%, vy is non in-
2

2

d

creasing.
We consider the initial value problem

(3.14) ¢(t) + Arp(t) = 0,

(3.15) ¢(0) = wo, $(0) = wi.
It is well known that (3.14)-(3.15) is well-posed in Hy x Hy and in Hy x H.
Consider now the unbounded linear operator

0 I
3.16 Gq: D(Cy) — Hi x H, g = ,
(3.16) 4t D(Ga) 1 X d <_A1 —BlB;’f>
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402 K. AMMARI & M. DIMASSI

where
D) :{(u,v) €Hy x H, Ayu+ BBjv e H, v € H,}
The result below, see [6], shows that, under a certain regularity assumption, the

polynomial stability of (3.11)-(3.12) is a consequence of a weak observability
inequality. More precisely, we have:

THEOREM 3.1. — Assume that for any v > 0 we have
(3.17) sup || AB;(NI + Al)‘lBl}}Z,(U) < .
Rel=v

Then the following assertion holds true:
If there exist T,C > 0, > —% such that: ¥V (wg,w1) € Hy X H% we have

(3.18) IBTe' )l 20,70y = € Nwo, w)llg_xm >
2

where @(t) is a solution of (3.14)-(3.15).
Then there ezists a constant C7 > 0 such that for all t > 0 and for all
(w% w') € D(Gq) we have

(3.19) [(w (), @ (@) |ery <o < G 1(w®, wh) | pa)-
2 (]_ + t)4a+2

3.1. Application to a polynomial stabilization of a star-shaped network of strings.
— We consider the following initial and boundary value problems:

82ui 82ui
2 — = .
(3.20) 72 (z,t) 92 (z,6) =0, 0<z<ly t>0,
(321) ul(l“t) =0, t>0,
(322) uZ(O, t) = uj(O, t), t>0,
N
8’(]4 3u1
3.23 0,t) = —(0,t t>0
(3.23) > 5 0.0 =500, t>0
0 du, 1
(3.24) u;(z,0) = u; (x), E(x,O) =u;(z), 0<z<l,
for i, = 1,..., N and where u; : [0,;] X (0,400) — R,i=1,...,N, N > 2
N
be the displacement of the string of length ;. Denote by L = Z l;.
i=1
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N d2
2
Let H = EL 0,1;), Ay = —
N
D(A;) = {((ui)i_l,m,N) e [T H?(0,4), ui(0) = u;(0), ¥i,j =1,..., N,
=1

@(Alé) is the completed of 9D(A;) with respect to the norm

dzzl
IE3 ||®(A2 =1/(A12,2) ¢ 5 2idz.

Let B; € (R, D(A §)’) Biv=(A1)_ Wv Vv € R, where (Al)_l : @(Alé) —
D(AZ) is an extension of A; to D(A ) Ve LR, DA )) and Av is a

solution of:

(3.25) % =0, 0<z<l;
(3.26) (N v)i(l;) =0,
(3.27) (V0);(0) = (Hv);(0),

N
(3.28) Z d(ﬁ; V)i (0 = o,

foralli,j=1,...,N, and
1
Biy =11(0), VY € D(A7).
l; .
We denote by Ay = p3 the eigenvalues of A;. In the case: T ¢Q,vi<i#j<
J

N, the eigenvalues )y are simple (see [3]) and the corresponding eigenfunctions
are given by:

6 () = sin(ug(z — 1;))

Y
sin(prl;) (Z 2’)

i=1 Sm (/l’kl’t)
We define the energy of u;, ¢ =1,..., N of (3.20)-(3.24) at instant ¢ by

(3.29) Z / (8“’ 2) da.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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404 K. AMMARI & M. DIMASSI
. N
The wellposedness space for (3.20)-(3.24) is E = D(A?) x H L*(0,1;). Denote
i=1

N
D(ta) = {((ui)i_L,..,N, (vi)i=1,...N) € l@(Af) n HHQ(UJi)] x D(AT),

N du
(3.30) > d’(0)=v1(0)}.
=1

X

The corresponding operator @, is defined by

Ui U1
un UN
g =1 &2, |- A (u, U) S @(ﬁd)
U1 dz2
d2
UN dgév

If (u®,u') € E, then the problem (3.20)-(3.24) admits a unique solution
. N
u € C(0,+00; D(A})) N CH(0,+00; [ L*(0,1:))
i=1
and we have: , li+m E(t) = 0 holds true for any finite energy solution of (3.20)-
—>T 00
(3.24) if and only if

(3.31) fi¢@,v1§i7éj§N,
J

where (Q is the set of all rational numbers.

Denote by f the set of all numbers p such that p ¢ Q and if [0, a1, ..., an,...]
is the expansion of p as a continued fraction, then (a,) is bounded. Let us
notice that ¢ is obviously uncountable and, by classical results on diophantine
approximation, its Lebesgue measure is equal to zero. Roughly speaking the
set f contains the irrationals which are approximable by rational numbers. In
particular, by Euler-Lagrange theorem ¢ contains all [;/1;, 1 <1 # j < N such
that [;/l; is an irrational quadratic number (i.e. satisfying a second degree
equation with rational coefficients). According to [13], we have that I;/l; €
J,1 <14 # j <N, if and only if there exists a positive constant C' such that:

c
Lm||:= min |z|> =, V¥meN".
L L 7 m

Tm—z€
J

TOME 138 — 2010 — N° 3
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COROLLARY 3.2. — 1. Ifl;/l; € J,V1 < i # j < N, there exists § > 0
such that for all t > 0 we have

(3.32) E(t) < LA”(uOvul)H%ﬁ(ﬁd)’ vV (u°,u') € D(Ga),
(t+1)7
where C > 0 is a constant depending only on l;, i =1,... ,N.
2. For all € > 0 there exists a set B, C R, such that the Lebesque measure
of R\ B. is equal to zero, and a constants 3,C. > 0 for which, if l;/l; €
B.,1<i#j <N, then for allt >0

(3.33)  E(t) <

W”(uoﬂ””%mw ¥ (u,u') € D(6a),

where C. > 0 is a constant depending only onl;, i =1,...,N and €.

Proof. By a simple calculations we show that
N -1
)\BI()\QI + Al)_lBl = — (2 coth()\li)> VYA eC, Re) > 0.
i=1

So the condition (3.17) is satisfied according to the following lemma:

LEMMA 3.3. — [3, Lemma 3.3]
Let v > 0 be a fized real number and C, ={)\ € C| Re(N) = 'y}. Then, the

function

(3.34) FO) 1

-~
> coth(Al)
i=1

is bounded on C,.

For k < 0, we denote by ur = —p—g. Let 0 < 7' < n with n/ < 21\’/}1. We
claim that
(3.35) Prar — pe >0 M, VEk € Z.
In fact, for & > 0 resp.(k + M < 0) (3.35) follows from Corollary 2.4 resp.(
Corollary 2.4 and the fact that puy = —p_x). For k+ M > 0 and k < 0 we use
that pkn — ik = petnr + o > 211 > M7y’

We denote by A;, j =1,..., M the set of integers m satisfying :

fom = fom—1 21
P = -1 <N, Vm+1<n<m+j—1
Hm+j = Bmetj—1 2177 -

Then the M(M +1)/2 sets Aj+k={n+k; neA;},0<k<j<M are
disjoint and form a partition of the set Z. Let us introduce for m € A; the
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divided differences e, (t), . .., em+;—1(t) of the exponential functions e?#*, n =
m,...,m+j—1. Since puy are simple (see [3]) then ey (see [11]) is given by the
following expression

ek(t):i{ ﬁ (,up—,uq)} etV k=m,...,m+j— 1.

p=m | g=m, q7#p
For
W, .. ul,ul, . k)t =
Z ag (i(ﬁ}c,...,i¢kN,¢,1c,...,¢kN>t, (ar), .7 € 2
T Mk Pk ke
we have
3901 = > are™ 91(0) = > b er(t),
ke, ke,
where ¢ = (p1,...,0n)" is a solution of conservative system associated to

2
(3.20)-(3.24). According to [11, Theorem 9.4] we have that for T > =" there
n

01

exists a constant Cl > 0 such that
dt > C E b
2 = L1 | k|

/0 kel

and if [;/l1; € J, V1 <i+# j < N, there exist §,Cy > 0 such that we have:
WL0.0] @z 0r 3l

/0 kel

Which implies, according to Theorem 3.1, the estimate (3.32).

— (0, t)

01

In order to prove (3.33) we use a well-known result (see [8] p. 120) asserting
that for all € > 0, there exists a set B, C R, such that the Lebesgue measure
of R\ B. is equal to zero, and a constant C. > 0 for which, if ¢ € B., then
llgmlll > 755=-

Let us notice that by Roth’s theorem (see [17]) B. contains all real numbers

L.

having the property that li is an algebraic irrational (see [8] for details). If
J

l; /l € B.,1<1i# j < N, there exists a constant C > 0 such that ||mi;/i;]|| >

1+E, Vm > 1. Then, as above we have for T > 2= that there exists a constant

C3 > 0 such that:

[

TOME 138 — 2010 — N° 3
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Which implies (3.33), according to Theorem 3.1. O

3.2. Application to a polynomial stabilization of a star-shaped network of Euler-
Bernoulli beams. — We consider the following initial and boundary value prob-
lem:

82U1 841141'

(3.36) 52 ( ’t)+W(x’t)_0’ 0<z<l t>0,
(3.37) (li,t) =0 @(z £)=0, t>0

. ul 19 - ) aIQ 19 ) )

N u, 02u; 0%u,
(3.38) u;(0,t) = u;(0,1), ; o (0:1) =0, =2(0,t) = 52 (0,1), >0,
N
(93’UJZ‘ Bul
(3.39) ; 53 (01 =—>5-(0.1), t>0,
Oui 1

(3.40) ui(z,0) = ud(x), 5 iz, 0) =u;(z), 0<z<l

for i,57 =1,...,N,2 < N € N and where u; : [0,;] x (0,+00) — R, be the
displacement of the beam of length [;.
N

d4
Let H = il;[lLQ(o,zi), Ar= o,
N d%u;
D(Ay) = {((ui)izl,...,N) € gH4(O, 1), ui(0) = u;(0), dm; (I;) = 0,

du; _ du]
dx (0) = dx

N
(0),V1<i,j <N, ui(l) = Z

1
D(A?) is the completed of D(A;) with respect to the norm

d4zl
| ||€Z)(A2 =1/(412,2) \/ T ZidT.

Let B, € Z(R, D(A?)), Biv = (A;)_ 10, ¥v € R, where (41) 1 L D(AT) -
D(A?) is an extension of A; to D(A ) N e LR, DA )) and Nv is a

solution of:

dA (A v),
(3.41) W =0, O<z<l;
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(3.42) o)) =0, Ty —

(343)  (0i0) = 0),0), 20 () = O )
N

(3.44) Z N”)’ )=,

foralli,j=1,...,N, and
1
Bi =11(0), V¢ € D(A}).
l; .,
We denote by Ay = p} the eigenvalues of A;. In the case: T ¢Q,V1i<i#j<

N, the eigenvalues )\ are simple (see [1]) and the corresponding eigenfunctions
are given by:

i (z) = sin(uk(z ~ 1)) i=1,...,N.

N L 2
sin(pkl;) <Z 22>

= sin”(uxli)
We define the energy of u solution of (3.36)-(3.40) at instant ¢ by

(3.45) Z /( +’%1“;(x,t)r)dx.

The wellposedness space for (3.36)-(3.40) is X = D(A 1% X H L*(0,1;)

8uZ

Denote
N 2,,.
D(ta) ={(u,v) € l@(Af)ﬂHH‘*(O,li)] x D(A?), Cfm; (L) =0,
(3.46) d%u; 2u - d3u
() = H(0), V1 <ij < N, de; )=-u(0)}.

The corresponding operator &, is defined by

@y (“) - < §4u> Y (u,0) € D(Gy).
Y T dzt

If (u®,u') € X, then the problem (3.36)-(3.40) admits a unique solution u €
N

C(0,+o0; D(A ))DC1 0, +o0; HL2 (0,1;)) and we have: tligrn E(t) = 0 holds

=1
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true for any finite energy solution of (3.36)-(3.40) if and only if

l;
(3.47) T EQVI<i# <N
J
COROLLARY 3.4. — 1. Suppose that l;/l; € J,V1 < i # j < N. There
exists v > 0 such that for all t > 0 we have
C
(348) B0 < @ u) iy VW) € D),
(t+ 1)~
where C > 0 is a constant depending only onl;, i =1,...,N.

2. For all € > 0 there exists a set B, C R, such that the Lebesgue measure
of R\ B. is equal to zero, and a constant C. > 0 for which, if l;/l; €
B.,V1 < i # j < N, then there exists v > 0 suh that for all t > 0 we

have
Ce 0, 1\(2 0,1
(3.49) B(t) < ———I(v"s u)l[a, V(u',u’) € D(ta),
(t+1)7+
where Cz > 0 is a constant depending only on l;, i =1,...,N and ¢.
Proof. — By a simple calculations we show that

1 1

N TN
Z cotg(wl;) Z coth(wl;)
j=1 j=1

ABF (NI + Ay)7'B; = ﬁ

)

forall A=iw? e C,w=re?,r>0,0¢c [-5,0], ReX > 0.

So The condition (3.17) is satisified according to the following lemma:

LEMMA 3.5. — [1, Lemma 3.3] Let 6 > 0 be a fized real number and Cs =
)
{w € C | Re(w)Im(w) = —5} Then

(3.50) fw) = - ! ! ,

N TN
Z cotg(wl;) Z coth(wl;)
Jj=1 j=1

1s bounded on Cy.

The remainder of the proof is completely similar to Corollary 3.2. O
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4. Related question

A question related to the problem studied in this paper is a Weyl formula with
second term of the same elastic networks [2].
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Appendix

The aim of this appendix is to prove the equality (2.1). In fact formula (2.1)
can be obtained by applying Theorem 2 in [16], but for the reader convenience
we give the proof. Let G be a finite network made of edges 4;,l =1,..., N and
n vertices. We denote by 4; the length of 3; and L = 41 + - - - 4+ i the length of
the graph G. We denote by & resp. (J the set of edges (resp. vertices).

Fix a vertex s, and let m(s) be the number of arcs descended from s. For
two arcs ¢ and j (containing s), we define the real number ¢;; = %, ifi# —j

and €;; = s — 1, if i = —j.
Consider the wave equation on the graph G:
O2u(zx,t) = 0%u(x,t), dyu(z,0) = 0,u(z,0) = f,
It is well known that:
m
u(z,t) =Y [ e f@), t>0.

Cy l=1

where the sum is taken over all paths (i1, ...,%,) such that y € i1, z € i, with

d(z,I(in)) +i2 + -+ + im—1 + d(y,T(i1)) = t, for m > 2,

d(z,y) =t for m = 1.

Here I(i) (resp. T'(¢)) is the starting (resp. end) point of the oriented arc i. We
recall that a path (i1, ..., 4y, ) is a circuit such that T'(41) = I(é2),..., T (im—-1) =
I(ip,).

For t < 0, we have u(z,t) = u(z, —t) due to the fact that d;u(z,0) = 0.
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Now let § € C§°(R). A simple calculus gives

/ = /0+°0 u(z, t)dt + /_OOO O(t)u(z,t)dt

33 Mewis [ 100 TG) +ia+-+-

2 C =1
+im—1 + d(x, I(in)))

+0(—(d(y, T(i1)) + iz + -+ + im—1 + d(z, I(in))))dy

+5 3 [ 100 2) + 0(—dty.2)dy.

On the other hand the spectral theorem yields

Jowutende =3 [ [ coss/2)p)0n (@) )6nw)aui,

where (¢, )n>1 is an orthonormalized basis of eigenfunctions corresponding to

the problem (1.4)-(1.5).
Identifying the two above equalities and integrating over x, we obtain

;//cos(mt)e(t)dt: ;;0(0)(/jdx+/jda:)

11

L SIT evi / (0(d(x, T (1)) +i2 + -+ im—1 + d(z, I(im)))+
C

O(—(d(z, T(i1)) +i2 + - + im—1 + d(z,I(in))))dz.
Now let 0 € C5°(] — €,¢€[), with € small enough such that 6(i;) = 0 for all
l=1,...,N. In particular, we have
(% (d(x, T(i1)) + iz + -
im) # (i1, —1;). Consequently

Z//Cos(mt)e(t)dt= LO(0)+
+2 Ze_m/ 2d(z, T(i)) + 6(=2d(z, I(~i)))))dz.

i€t
The assumption on the support of 6 implies that

/0(2d(:c, T(1))) + 0(—2d(z, I(—i)))dx = /R 0(2z)dz.

i

+ gTn—l + d(xa I(Zm))) =0,

for all circuit (iy,...,
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412 K. AMMARI & M. DIMASSI

Next, using the fact that e_;; = ﬁ — 1, we obtain
2
O
ict jet m(I(J))
Z:Z:——udzZp—m®FQM—M.
s€J 5 1(5)=s sed

We recall that n (resp. N) is the number of vertices (resp. of edges).

Summing up, we have proved that
N
Z / cos(v/ Ant)8(t)dt = LO(0

Applying the above equality to the function e~***6(t) instead of §(t), we obtain

LEMMA 4.1. — Let 0 € C§°(] — €, €[) with € small enough. We have
1 ~ ~ — N~
§§:WA—MMJ+ﬂA+M&J=ﬂmL+n2 a0,

for all X € R.
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