
Bulletin

SOCIÉTÉ MATHÉMATIQUE DE FRANCE

de la SOCIÉTÉ MATHÉMATIQUE DE FRANCE

Tome 137
Fascicule 2

2009

pages 225-251

RADIAL MAXIMAL FUNCTION
CHARACTERIZATIONS FOR HARDY

SPACES ON RD-SPACES

Loukas Grafakos & Liguang Liu & Dachun Yang (corresponding author)



Bull. Soc. math. France

137 (2), 2009, p. 225–251

RADIAL MAXIMAL FUNCTION CHARACTERIZATIONS FOR
HARDY SPACES ON RD-SPACES

by Loukas Grafakos, Liguang Liu
& Dachun Yang (corresponding author)

Abstract. — An RD-space X is a space of homogeneous type in the sense of Coifman
and Weiss with the additional property that a reverse doubling property holds. The
authors prove that for a space of homogeneous type X having “dimension” n, there
exists a p0 ∈ (n/(n + 1), 1) such that for certain classes of distributions, the Lp(X )
quasi-norms of their radial maximal functions and grand maximal functions are equiv-
alent when p ∈ (p0,∞]. This result yields a radial maximal function characterization
for Hardy spaces on X .

Texte reçu le 17 septembre 2007, révisé le 29 juillet 2008, accepté le 23 septembre 2008

Loukas Grafakos, Department of Mathematics, University of Missouri, Columbia, MO
65211, USA • E-mail : loukas@math.missouri.edu

Liguang Liu, School of Mathematical Sciences, Beijing Normal University, Laboratory
of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, People’s
Republic of China • E-mail : liuliguang@mail.bnu.edu.cn

Dachun Yang (corresponding author), School of Mathematical Sciences, Beijing Normal
University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing
100875, People’s Republic of China • E-mail : dcyang@bnu.edu.cn

2000 Mathematics Subject Classification. — 42B25; 42B30, 47B38, 47A30.

Key words and phrases. — Space of homogeneous type, approximation of the identity, space
of test function, grand maximal function, radial maximal function, Hardy space.

The first author was supported by grant DMS 0400387 of the National Science Foundation of
the USA and the University of Missouri Research Council. The third (corresponding) author
was supported by the National Science Foundation for Distinguished Young Scholars (Grant
No. 10425106) of China.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE 0037-9484/2009/225/$ 5.00
© Société Mathématique de France



226 L. GRAFAKOS, L. LIU & D. YANG

Résumé (Caractérisations de fonctions radiales maximales pour les espaces de Hardy

sur les RD-espaces)
Un RD-espace X est un espace de type homogène au sens de Coifman et Weiss,

possédant en outre une propriété de doublement inverse. Les auteurs prouvent que pour
un espace de type homogène X de « dimension » n, il existe un p0 ∈ (n/(n+1), 1) tel que
les quasi-normes Lp(X) des fonctions radiales maximales et grand-maximales d’une
certaine classe de distributions soient équivalentes lorsque p ∈ (p0,∞]. Ce résultat
fournit une caractérisation des espaces de Hardy sur X en termes de fonctions radiales
maximales.

1. Introduction

The theory of Hardy spaces on Euclidean spaces plays an important role in
harmonic analysis and partial differential equations and has been systematically
studied and developed; see, for example, [7, 19, 8, 21]. It is well known that
spaces of homogeneous type, in the sense of Coifman and Weiss [3], are a natural
setting of the Calderón-Zygmund theory of singular integrals; see also [4].

A space of homogeneous type is a set X equipped with a metric d and a
regular Borel measure µ having the doubling property. Coifman and Weiss
[4] introduced the atomic Hardy space H

p

at (X ) for p ∈ (0, 1] and further es-
tablished a molecular characterization for H

1
at (X ). Moreover, under the as-

sumption that the measure of any ball in X is equivalent to its radius (i. e., X
is an Ahlfors 1-regular metric measure space), when p ∈ (1/2, 1], Macías and
Segovia [14] used distributions acting on certain spaces of Lipschitz functions
to obtain a grand maximal function characterization for H

p

at (X ); Han [10] fur-
ther established a Lusin-area characterization for H

p

at (X ), and Duong and Yan
[6] characterized these atomic Hardy spaces in terms of Lusin-area functions
associated with certain Poisson semigroups. Also in this setting, a deep result
of Uchiyama [22] states that if p ∈ (p0, 1] for some p0 near 1, for functions in
L

1(X ), the L
p(X ) quasi-norms of the grand maximal functions as in [14] are

equivalent to the L
p(X ) quasi-norms of the radial maximal functions defined

via some kernels in [4].
An important special class of spaces of homogeneous type is called RD-

spaces, which is introduced in [12] (see also [11, 15]) and modeled on Euclidean
spaces with A∞-weights (Muckenhoupt’s class), Ahlfors n-regular metric mea-
sure spaces (see, for example, [13]), Lie groups of polynomial growth (see, for
example, [23, 24, 1]) and Carnot-Carathéodory spaces with doubling measure
(see, for example, [16, 17, 5, 20, 18]). A Littlewood-Paley theory of Hardy
spaces on RD-spaces was established in [11], and these Hardy spaces are shown
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RADIAL MAXIMAL FUNCTION CHARACTERIZATIONS 227

to coincide with some of Triebel-Lizorkin spaces in [12]. The grand, nontan-
gential and dyadic maximal function characterizations of these Hardy spaces
have recently been established in [9].

The main purpose of this paper is twofold: first to generalize the results
of Uchiyama [22] to the setting of RD-spaces and second to replace the space
L

1(X ) used by Uchiyama in [22] by certain spaces of distributions developed
in [11, 12]. In other words, we build on the work of Uchiyama [22] to establish
a radial maximal function characterization for the Hardy spaces in [11].

To state our main results, we need to recall some definitions and notation.
We begin with the classical notions of spaces of homogeneous type ([3], [4]) and
RD-spaces ([12]).

Definition 1.1. — Let (X , d) be a metric space with a regular Borel measure
µ such that all balls defined by d have finite and positive measures. For any
x ∈ X and r > 0, set B(x, r) ≡ {y ∈ X : d(x, y) < r}.

(i) The triple (X , d, µ) is called a space of homogeneous type if there exists a
constant C0 ≥ 1 such that for all x ∈ X and r > 0,

(1.1) µ(B(x, 2r)) ≤ C0µ(B(x, r)) (doubling property).

(ii) Let 0 < κ ≤ n. The triple (X , d, µ) is called a (κ, n)-space if there exist
constants 0 < C1 ≤ 1 and C2 ≥ 1 such that for all x ∈ X , 0 < r <

diam (X )/2 and 1 ≤ λ < diam (X )/(2r),

(1.2) C1λ
κ
µ(B(x, r)) ≤ µ(B(x, λr)) ≤ C2λ

n
µ(B(x, r)),

where diam (X ) ≡ sup
x, y∈X d(x, y).

A space of homogeneous type is called an RD-space, if it is a (κ, n)-space for
some 0 < κ ≤ n, i. e., some “reverse” doubling condition holds.

Remark 1.2. — (i) A regular Borel measure µ has the property that open
sets are measurable and every set is contained in a Borel set with the
same measure; see [13].

(ii) The number n in some sense measures the “dimension” of X . Obviously
any (κ, n) space is a space of homogeneous type with C0 = C22

n. Con-
versely, any space of homogeneous type satisfies the second inequality of
(1.2) with C2 = C0 and n = log2 C0.

(iii) If µ is doubling, then µ satisfies (1.2) if and only if there exist constants
a0 > 1 and ‹C0 > 1 such that for all x ∈ X and 0 < r < diam (X )/a0,

µ(B(x, a0r)) ≥ ‹C0µ(B(x, r)) (reverse doubling property)

(If a0 = 2, this is the classical reverse doubling condition), and equiva-
lently, for all x ∈ X and 0 < r < diam (X )/a0,

B(x, a0r) \B(x, r) �= ∅;
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228 L. GRAFAKOS, L. LIU & D. YANG

see [12]. From this, it follows that if X is an RD-space, then µ({x}) = 0

for all x ∈ X .

Throughout the whole paper, we always assume that X is an RD-space
and µ(X ) = ∞. For any x, y ∈ X and δ > 0, set Vδ(x) ≡ µ(B(x, δ)) and
V (x, y) ≡ µ(B(x, d(x, y))). It follows from (1.1) that V (x, y) ∼ V (y, x). The
following notion of approximations of the identity on RD-spaces is a variant of
that in [12, Definitions 2.1, 2.2]; see also [11].

Definition 1.3. — Let �1 ∈ (0, 1], �2 > 0 and �3 > 0. A sequence {Sk}k∈Z of
bounded linear integral operators on L

2(X ) is said to be a special approximation
of the identity of order (�1, �2, �3) (for short, (�1, �2, �3)-SAOTI ), if there exists
a constant C3 >

√
2 such that for all k ∈ Z and all x, x

�, y and y
� ∈ X , Sk(x, y),

the integral kernel of Sk is a function from X × X into [0,∞) satisfying

(i) Sk(x, y) ≤ C3
1

V2−k (x)+V2−k (y)+V (x,y)
2−k�2

(2−k+d(x,y))�2
;

(ii) |Sk(x, y) − Sk(x�, y)| ≤ C3
d(x,x

�)�1

(2−k+d(x,y))�1

1
V2−k (x)+V2−k (y)+V (x,y)

2−k�2

(2−k+d(x,y))�2

for d(x, x
�) ≤ (2−k + d(x, y))/2;

(iii) Property (ii) holds with x and y interchanged;
(iv) |[Sk(x, y)− Sk(x, y

�)]− [Sk(x�, y)− Sk(x�, y�)]| ≤ C3
d(x,x

�)�1

(2−k+d(x,y))�1

d(y,y
�)�1

(2−k+d(x,y))�1

× 1
V2−k (x)+V2−k (y)+V (x,y)

2−k�3

(2−k+d(x,y))�3
for d(x, x

�) ≤ (2−k +d(x, y))/3 and
d(y, y

�) ≤ (2−k + d(x, y))/3;
(v) C3V2−k(x)Sk(x, x) > 1 for all x ∈ X and k ∈ Z;
(vi)

�
X Sk(x, y) dµ(y) = 1 =

�
X Sk(x, y) dµ(x).

We remark that (i) and (v) of Definition 1.3 imply that C3 >
√

2. The
existence of (�1, �2, �3)- SAOTI ’s was proved in [12, Theorem 2.1].

The following spaces of test functions play a key role in the theory of function
spaces on RD-spaces; see [12, 11].

Definition 1.4. — Let x1 ∈ X , r ∈ (0,∞), β ∈ (0, 1] and γ ∈ (0,∞). A
function ϕ on X is said to be a test function of type (x1, r,β, γ) if there exists
a nonnegative constant C such that

(i) |ϕ(x)| ≤ C
1

Vr(x1)+V (x1,x)

Ä
r

r+d(x1,x)

äγ

for all x ∈ X ;

(ii) |ϕ(x)−ϕ(y)| ≤ C

Ä
d(x,y)

r+d(x1,x)

äβ
1

Vr(x1)+V (x1,x)

Ä
r

r+d(x1,x)

äγ

for all x, y ∈ X
satisfying d(x, y) ≤ (r + d(x1, x))/2.

We denote by G(x1, r,β, γ) the set of all test functions of type (x1, r, β, γ). If ϕ ∈
G(x1, r,β, γ), we define its norm by �ϕ�G(x1, r, β, γ) ≡ inf{C : (i) and (ii) hold}.
The space G(x1, r,β, γ) is called the space of test functions.
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Throughout the whole paper, we fix x1 ∈ X . Let G(β, γ) ≡ G(x1, 1, β, γ).
It is easy to see that for any x2 ∈ X and r > 0, we have G(x2, r,β, γ) =

G(β, γ) with equivalent norms (but with constants depending on x1, x2 and r).
Moreover, G(β, γ) is a Banach space.

For any given � ∈ (0, 1], let G�

0(β, γ) be the completion of the space G(�, �)

in G(β, γ) when β, γ ∈ (0, �]. Obviously G�

0(�, �) = G(�, �). Moreover, ϕ ∈
G�

0(β, γ) if and only if ϕ ∈ G(β, γ) and there exists {φi}i∈N ⊂ G(�, �) such that
�ϕ − φi�G(β,γ) → 0 as i → ∞. If ϕ ∈ G�

0(β, γ), define �ϕ�G�

0(β,γ) ≡ �ϕ�G(β,γ).
Obviously G�

0(β, γ) is a Banach space and �ϕ�G�

0(β,γ) = limi→∞ �φi�G(β,γ) for
the above chosen {φi}i∈N. It is known that G�

0(β, γ) is dense in L
p(X ) for

p ∈ [1,∞); see [12, Corollary 2.1]. Let (G�

0(β, γ))� be the set of all bounded
linear functionals f from G�

0(β, γ) to C. Denote by �f, ϕ� the natural pairing
of elements f ∈ (G�

0(β, γ))� and ϕ ∈ G�

0(β, γ).

Let � ∈ (0, 1), β, γ ∈ (0, �) and p ∈ (0,∞]. If f ∈ (G�

0(β, γ))�, then for all
x ∈ X , we define the grand maximal function of f to be

f
∗
(x) ≡ sup

�
|�f, ϕ�| : ϕ ∈ G(�, �), �ϕ�G(x,r,�,�) ≤ 1 for some r > 0

�
.

Define the corresponding Hardy space by

H
∗, p

(X ) ≡
�
f ∈ (G�

0(β, γ))
�
: �f∗�Lp(X ) < ∞

�
.

For any f ∈ H
∗, p(X ), set �f�H∗, p(X ) ≡ �f∗�Lp(X ). Let {Qk

α
: k ∈ Z, α ∈ Ik}

be the Christ dyadic cube collection of X , where Ik is some index set; see [2].
For any f ∈ (G�

0(β, γ))�, we define the dyadic maximal function Md(f) of f by
setting, for all x ∈ X ,

Md(f)(x) ≡ sup
k∈Z, α∈Ik

®
1

µ(Qk
α
)

�

Qk
α

|Sk(f)(y)| dµ(y)

´
χQk

α
(x),

and define H
p

d
(X ) to be the corresponding Hardy space; see [9, Definition 2.9].

When p ∈ (1,∞], it was proved in [9, Corollary 3.12] that H
∗, p(X ) = H

p

d
(X ) =

L
p(X ) with equivalent norms.

Definition 1.5. — Let �1 ∈ (0, 1], �2 > 0, �3 > 0, � ∈ (0, �1∧�2) and {Sk}k∈Z
be an (�1, �2, �3)-SAOTI . Let p ∈ (0,∞] and f ∈ (G�

0(β, γ))� with β, γ ∈ (0, �).
Define the radial maximal function of f to be M0(f)(x) ≡ sup

k∈Z |Sk(f)(x)|
for all x ∈ X . The corresponding Hardy spaces are defined by

H
p

0 (X ) ≡
�
f ∈ (G�

0(β, γ))
�
: �M0(f)�Lp(X ) < ∞

�
,

and moreover, we define �f�H
p

0 (X ) ≡ �M0(f)�Lp(X ).
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230 L. GRAFAKOS, L. LIU & D. YANG

The properties (i) and (ii) in Definition 1.3 imply that M0(f)(x) � f
∗(x)

for all x ∈ X . In what follows, for simplicity of presentation, for any t > 0, we
use the notation

(1.3) St(x, y) ≡
�

k∈Z
Sk(x, y)χ(2−k−1, 2−k](t).

By (1.3) and Definition 1.5, it is easy to see that for all x ∈ X ,

(1.4) M0(f)(x) = sup
t>0

|St(f)(x)|.

Obviously, St satisfies (i) through (vi) in Definition 1.3 with 2−k replaced by t.
From (iv) and (v) in Definition 1.3, it follows easily that there exist constants
C4 ∈ (0, (C3)

−2/�1) and C5 > 1 such that for all t > 0 and all x, y ∈ X
satisfying d(x, y) < C4t,

(1.5) C5Vt(x)St(x, y) > 1.

This observation is used in applications below.
Denote by M the centered Hardy-Littlewood maximal operator. To be

precise, for any f ∈ L
1
loc(X ) and x ∈ X , set

M(f)(x) ≡ sup
r>0

1

µ(B(x, r))

�

B(x, r)
|f(y)| dµ(y).

Then M is weak-type (1, 1) and bounded on L
p(X ) for p ∈ (1,∞] in [4, 3].

It is not so difficult to show that for all x ∈ X , M0(f)(x) � M(f)(x) and
Md(f)(x) � M(M0(f))(x) by their definitions and Lemma 2.1 (iv) below.
Therefore, we have H

p

0 (X ) = L
p(X ) with equivalent norms when p ∈ (1,∞].

The main result of this paper concerns the spaces H
p

0 (X ) and H
∗, p(X ), and

is as follows.

Theorem 1.6. — Let �1 ∈ (0, 1], �2 > 0, �3 > 0 and � ∈ (0, �1 ∧ �2). Let
{Sk}k∈Z be an (�1, �2, �3)-SAOTI and M0 be as in (1.4). Then there exist
σ ∈ (0, 1/2) and η ∈ (0, (1 − σ)1/� ∧ (1/2)), both depending only on X and �,
such that for any given p ∈ (n/(n + log

η
(1 − σ)),∞] and all f ∈ (G�

0(β, γ))�

with β ∈ (0, log
η
(1− σ)) and γ ∈ (0, �),

�f∗�Lp(X ) ≤ C�M0(f)�Lp(X ),

where C is a positive constant independent of f .

Theorem 1.6 will be a consequence of the following key proposition.

Proposition 1.7. — With the notation of Theorem 1.6, for any δ0 ∈
(0, log

η
(1 − σ)), there exists a positive constant C, depending on X , � and δ0,
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RADIAL MAXIMAL FUNCTION CHARACTERIZATIONS 231

such that for all f ∈ (G�

0(β, γ))� with β ∈ (0, log
η
(1 − σ)) and γ ∈ (0, �), and

all ϕ ∈ G(x0, r0, �, �) satisfying �ϕ�G(x0,r0,�,�) ≤ 1 for some x0 ∈ X and r0 > 0,

|�f, ϕ�| ≤ C

î
M([M0(f)]

n/(n+δ0))(x0)

ó(n+δ0)/n

.

We remark that in Theorem 1.6 and Proposition 1.7, it is not necessary to
assume that {Sk}k∈Z has the property (vi) of Definition 1.3. Moreover, The-
orem 1.6 follows easily from Proposition 1.7; see Section 3 below. The main
ingredient in the proof of Proposition 1.7 is to expand ϕ as in Proposition 1.7
into a sum of certain St as in (1.3); see (3.11) below. When X is an Ahlfors
1-regular metric measure space, for any Lipschitz function with bounded sup-
port, Uchiyama in [22] established an expansion similar to (3.11), which holds
pointwise. Unlike [22], we prove that for any ϕ as in Proposition 1.7, (3.11)
also holds in G�

0(β, γ) with β and γ as in Proposition 1.7. This allows us to
relax the assumption f ∈ L

1(X ) to f ∈ (G�

0(β, γ))�.
From the fact M0(f) � f

∗ and Theorem 1.6, it follows that for p in a certain
range of (0, 1], H

p

0 (X ) coincides with H
∗, p(X ) as a subspace of certain distri-

bution spaces (G�

0(β, γ))�. Recall that when p ∈ (n/(n+1), 1], [9, Remark 3.16]
and [9, Corollary 4.19] tell us that the definition of H

∗, p(X ) is independent of
the choices of (G�

0(β, γ))� with β, γ ∈ (n(1/p− 1), �). Therefore, we deduce the
following conclusion.

Corollary 1.8. — Let �1, �2, �3, σ and η be as in Theorem 1.6 and � ∈
(0, �1 ∧ �2). Let p0 ≡ n/(n + log

η
(1 − σ)) and p ∈ (p0, 1]. Then H

p

0 (X ) =

H
∗, p(X ) with equivalent quasi-norms, where H

p

0 (X ) and H
∗, p(X ) are defined

via (G�

0(β, γ))� with some β ∈ (n(1/p − 1), n(1/p0 − 1)) and γ ∈ (n(1/p −
1), �). Consequently, the definition of H

p

0 (X ) is independent of the choices of
(�1, �2, �3)-SAOTI and (G�

0(β, γ))� with β and γ as above.

Remark 1.9. — We point out that in Theorem 1.6 and Proposition 1.7, it is
not necessary to assume that X satisfies the reverse doubling condition deter-
mined by the first inequality of (1.2). However, the assertion H

p

0 (X ) = L
p(X )

when p ∈ (1,∞] and Corollary 1.8 do need this assumption, since, to obtain
these conclusions, we need to use the Calderón reproducing formulae in [12],
which depend on the reverse doubling condition.

The organization of this paper is as follows. In Section 2, we give some
technical lemmas which will be used in the proof of Proposition 1.7. Section 3
is the main part of this paper, which contains a proof of Proposition 1.7 and
also of Theorem 1.6.

In this paper we use the following notation: N ≡ {1, 2, · · · }, Z+ ≡ N∪{0} and
R+ ≡ [0,∞). For any p ∈ [1,∞], we denote by p

� the conjugate index, namely,
1/p + 1/p

� = 1. We also denote by C a positive constant independent of the
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main parameters involved, which may vary at different occurrences. Constants
with subscripts do not change through the whole paper. We use f � g and
f � g to denote f ≤ Cg and f ≥ Cg, respectively. If f � g � f , we then write
f ∼ g. For any a, b ∈ R, set a ∧ b ≡ min{a, b} and a ∨ b ≡ max{a, b}. For any
set E, we denote by �E the cardinality of E.

2. Some technical lemmas

In this section, we establish several technical lemmas which will be used in
the proof of Proposition 1.7. The following lemma includes some basic prop-
erties on RD-spaces, which are used throughout the paper; see, for example,
[12, 9, 11].

Lemma 2.1. — Let δ > 0, a > 0, r > 0 and θ ∈ (0, 1). Then,

(i) For all x, y ∈ X and r > 0, Vr(x)+V (x, y) ∼ Vr(y)+V (y, x) ∼ µ(B(y, r+

d(y, x))) ∼ µ(B(x, r + d(x, y))).
(ii) If x, x

�, x1 ∈ X satisfy d(x, x
�) ≤ θ(r + d(x, x1)), then r + d(x, x1) ∼

r + d(x�, x1) and µ(B(x, r + d(x, x1))) ∼ µ(B(x�, r + d(x�, x1))).
(iii)

�
X

1
Vr(x)+V (x,y) (

r

r+d(x,y) )
a
d(x, y)η

dµ(x) ≤ Cr
η uniformly in x ∈ X and

r > 0 if a > η ≥ 0.
(iv) For all f ∈ L

1
loc(X ) and x ∈ X ,

�
d(x, y)>δ

1
V (x,y)

δ
a

d(x,y)a |f(y)| dµ(y) ≤
CM(f)(x) uniformly in δ > 0, f ∈ L

1
loc(X ) and x ∈ X .

When δ = 0, the following lemma provides a property of Carleson measures
on RD-spaces; see [12, Proposition 5.14].

Lemma 2.2. — Let p ∈ (1,∞] and δ ≥ 0. Let ν be a non-negative measure on
X × R+ such that for all x ∈ X and r > 0,

(2.1) ν(B(x, r)× (0, r)) ≤ [µ(B(x, r))]
1+δ

.

Then there exists a positive constant C such that for all f ∈ L
p(X ),

®�

X×R+

|F (r, y, f)|p(1+δ)
dν(y, r)

´1/(p(1+δ))

≤ C�f�Lp(X ),

where and in what follows, F (r, x, f) ≡ Sr(f)(x) for all r > 0 and x ∈ X .

Proof. — Fix λ > 0 and let Wλ ≡ {(x, r) ∈ X × R+ : |F (r, x, f)| > λ}. For
any � ∈ Z, set

W�,λ ≡
®

x ∈ X : sup
2�−1<r≤2�

|F (r, x, f)| > λ

´
.
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For each N ∈ N, let EN ≡ {x ∈ X : sup
r>2N |F (r, x, f)| > λ}. It is easy to

deduce that

(2.2) lim
N→∞

EN = ∅.

To prove (2.2), notice that limN→∞EN = ∩N∈NEN since EN+1 ⊂ EN for any
N ∈ N. Suppose that (2.2) fails, that is, there exists an x ∈ ∩N∈NEN . Thus
for any N ∈ N, there exists r

N
> 2N satisfying that |F (r

N
, x, f)| > λ. By this,

(1.3), Hölder’s inequality and Lemma 2.1 (iii), we obtain

λ < |F (r
N

, x, f)| =
����
�

X
Sr

N
(x, y)f(y) dµ(y)

���� � 1

[V2N (x)]1/p

ß�

X
|f(y)|p dµ(y)

™1/p

,

which implies that V2N (x) � λ
−p�f�p

Lp(X ) < ∞ for all N ∈ N, and hence
µ(X ) < ∞. This contradicts the assumption µ(X ) = ∞. Thus, (2.2) holds.

It is not so difficult to prove that for any given N ∈ N, there exist LN < N

with LN ∈ Z or LN = −∞, a set of indices IN,� with � ∈ {LN + 1, · · · , N},
and disjoint balls {B(yN

�,j
, 2�)}LN <�≤N, j∈IN,�

satisfying

(i) y
N

�,j
∈ W�,λ;

(ii) B(yN

�,j
, 2�) ∩ (∪N

m=�+1 ∪i∈IN,m
B(yN

m,i
, 2m)) = ∅;

(iii) for any x ∈ W�,λ, B(x, 2�) ∩ (∪N

m=�
∪i∈IN,m

B(yN

m,i
, 2m)) �= ∅.

In fact, we start with � = N and choose an arbitrary point in WN,λ as y
N

N,1.
Then we find a point y

N

N,2 ∈ WN,λ \ B(yN

N,1, 2
N ) such that B(yN

N,2, 2
N ) ∩

B(yN

N,1, 2
N ) = ∅. Continuing in this way, by Zorn’s lemma and the doubling

property of the measure µ, we arrive at IN,N = N or IN,N will be a finite set.
We then consider � = N − 1. In this way, one finds the desired balls.

From (i), (ii) and (iii), it follows that for each N ∈ N,

(2.3) Wλ ⊂

Ñ
N�

�=LN+1

�

j∈IN,�

�
B(y

N

�,j
, 2

�+1
)× (0, 2

�
)
�
é

� �
EN × (2

N
,∞)

�
.

To see (2.3), notice that for any (x, r) ∈ Wλ, |F (r, x, f)| > λ. If r > 2N , then
(x, r) ∈ EN × (2N

,∞); otherwise there exists � ≤ N such that 2�−1
< r ≤ 2�,

which implies that x ∈ W�,λ. By Property (iii) above, there exist integers
� ≤ m ≤ N and j ∈ IN,m such that B(x, 2�) ∩B(yN

m,j
, 2m) �= ∅. Noticing that

� ≤ m, we have x ∈ B(yN

m,j
, 2m+1) and thus (x, r) ∈ B(yN

m,j
, 2m+1) × (0, 2m),

which yields (2.3) then.
For any N ∈ N, by (2.3),

ν(Wλ) ≤
N�

�=LN+1

�

j∈IN.�

ν(B(y
N

�,j
, 2

�+1
)× (0, 2

�
)) + ν(EN × (2

N
,∞)).
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Letting N →∞ in the formula above, then using (2.1) and (2.2), we obtain

(2.4)

ν(Wλ) ≤ lim
N→∞

N�

�=LN+1

�

j∈IN.�

�
µ(B(y

N

�,j
, 2

�+1
))

�1+δ

≤ lim
N→∞






N�

�=LN+1

�

j∈IN.�

µ(B(y
N

�,j
, 2

�+1
))






1+δ

,

where in the second step we use the fact (
�

j∈N |aj |)κ ≤
�

j∈N |aj |κ for any
κ ∈ (0, 1]. Choose �p ∈ (1, p). For any N , � ∈ (LN , N ] and any given j ∈ IN,�,
by Property (i), the size condition of S−�, (1.2) and Hölder’s inequality, we
have

λ < sup
2�−1<r≤2�

|F (r, y
N

�,j
, f)|

� 1

V2�(yN

�,j
)

�

B(yN

�,j
, 2�)

|f(z)| dµ(z)

+

∞�

k=1

�

2�+k−1≤d(yN

�,j
, z)<2�+k

1

V2�(yN

�,j
) + V (yN

�,j
, z)

Ç
2�

2� + d(yN

�,j
, z)

å�2

|f(z)| dµ(z)

�
∞�

k=0

2
−k�2

�
1

V2�+k(yN

�,j
)

�

B(yN

�,j
, 2�+k)

|f(z)|p/�p
dµ(z)

��p/p

� inf

®�
M

�
|f |p/�p

�
(z

N

�,j
)

��p/p

: z
N

�,j
∈ B(y

N

�,j
, 2

�
)

´
,

which together with the pairwise disjointness of the balls {B(y
N

�,j
, 2

�
)}LN <�≤N, j∈IN,�

and L
�p(X )-boundedness of M yields that for all N ∈ N,

N�

�=LN+1

�

j∈IN.�

µ(B(y
N

�,j
, 2

�+1
))λ

p �
�

X

�
M

�
|f |p/�p

�
(z)

��p
dµ(z) � �f�p

Lp(X ).

Combining this with (2.4) shows that λ
p(1+δ)

ν(Wλ) � �f�p(1+δ)
Lp(X ) . Then the

desired conclusion follows from the Marcinkiewicz interpolation theorem, which
completes the proof of Lemma 2.2.

Lemma 2.3. — Let x0 ∈ X , r0 > 0 and g be a non-negative function on X .
Then for any t ∈ (0, 1], there exist {xj}j ⊂ X with xj ≡ xj(g, t, x0, r0) and
positive constants C6 and C7 depending only on X such that for all x ∈ X ,

(2.5) 1 ≤
�

j

χB(xj , C4trj)(x) ≤ C6
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and

(2.6) g(xj)
1/2 ≤ C7F (trj , xj , g

1/2
χB(xj , C4trj)),

where rj ≡ r0 +d(xj , x0) and F is as in Lemma 2.2. In particular, there exists
a constant C8 > 1 such that for all j and all x ∈ B(xj , C4trj),

2a
C8

Vrj
(xj)

Å
r0

rj

ãa

Vtrj
(xj)Strj

(xj , x)χB(xj , C4trj)(x)

≥ 1

Vr0(x0) + V (x0, x)

Å
r0

r0 + d(x0, x)

ãa

,(2.7)

where Strj
is as in (1.3). Moreover, C6 through C8 are independent of x0, r0

and g.

Proof. — For any x ∈ X , set rx ≡ r0 + d(x0, x). By Zorn’s lemma, there
exists a set of points {yj}j ⊂ X satisfying that yj /∈ ∪j−1

i=1B(yi, C4tryi
/4) and

X = ∪jB(yj , C4tryj
/4). From the selection of {yj}j , it follows that for any

i �= j,

(2.8) d(yi, yj) ≥
1

4
C4t min{ryi

, ryj
},

and that for all x ∈ X ,

(2.9)
�

j

χB(yj ,C4tryj
/4)(x) ≥ 1.

By (1.2) and the disjointness of {B(yi, C4tr0/8)}i, we know that {yj}j is at
most countable. For every yj , choose xj ≡ xj(g, t, x0, r0) satisfying that

(2.10) d(xj , yj) < C4tryj
/4

and

(2.11) g(xj)
1/2 ≤ 1

µ(B(yj , C4tryj
/4))

�

B(yj , C4tryj
/4)

g(z)
1/2

dµ(z).

Let rj ≡ rxj
. By (2.10) and the triangle inequality for d together with C4 < 1/2

and t ∈ (0, 1], we have

(2.12) ryj
/2 ≤ rj ≤ 2ryj

,

which together with (2.9) implies the left-hand side inequality of (2.5).
For any x ∈ X , set J(x) ≡ {j : d(xj , x) < C4trj}. Notice that for any

j ∈ J(x), by (2.12), rj/2 ≤ rx ≤ 2rj . This together with (2.10) and (2.12)
yields that J(x) ⊂ �J(x), where �J(x) ≡ {j : d(yj , x) < 3C4trx}. It follows
from (1.2) and the pairwise disjointness of {B(yi, C4tr0/8)}i that � �J(x) < ∞.
Thus, we may assume that ry1 = min{ryj

: j ∈ J(x)}. Therefore, by (2.8),
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{B(yj , C4try1/8)}j∈J(x) are mutually disjoint. Furthermore, for any j ∈ J(x),
by (2.12) and rj/2 ≤ rx ≤ 2rj , we have

B(yj , C4trx/32) ⊂ B(yj , C4try1/8) ⊂ B(x, 4C4trx) ⊂ B(yj , 7C4trx).

From this and (1.2), it follows that �J(x) is bounded by a positive constant
which depends only on X . This implies the validity of (2.5).

The fact that B(yj , C4tryj
/4) ⊂ B(xj , C4trj) together with (2.11) and (1.5)

implies (2.6). Since for any x ∈ B(xj , C4trj), we have rj/2 ≤ rx ≤ 2rj . Using
this fact, (1.5), (2.5) and Lemma 2.1 (i), we obtain (2.7), which completes the
proof of Lemma 2.3.

Lemma 2.4. — Let t ∈ (0, 1], a ∈ [0,∞), b ∈ (a,∞), M ∈ [0,∞) and {xj}j ⊂
X satisfying

(2.13)
�

j

χB(xj , C4trj)(x) ≤ C6,

where rj ≡ r0 + d(xj , x0) with r0 > 0 and x0 ∈ X and C6 is as in (2.5). For
any j and x ∈ X , set

uj(x) ≡ 1

Vrj
(xj)

Å
1

rj

ãa
VC4trj

(xj)

Vtrj
(xj) + Vtrj

(x) + V (xj , x)

×
Å

trj

trj + d(xj , x)

ãb

χ[M,∞)

Å
d(xj , x)

trj

ã
,

where χ[M,∞) is the characteristic function of the interval [M,∞). Then there
exists C9 > 1 independent of x0, r0 and M such that for all x ∈ X ,

�

j

uj(x) ≤ C9 max{tb, (1 + M)
−b} 1

Vr0(x0) + V (x0, x)

Å
1

r0 + d(x0, x)

ãa

.

Proof. — For any k ∈ Z, set J(k) ≡ {j : 2k−1 ≤ rj < 2k} and vk ≡
�

j∈J(k) uj .
For any fixed x ∈ X , let

W1 ≡ {k ∈ Z : (r0 + d(x0, x))/2 ≤ 2
k

< 4(r0 + d(x0, x))},

W2 ≡ {k ∈ Z : 2
k

< (r0 + d(x0, x))/2},
and

W3 ≡ {k ∈ Z : 2
k ≥ 4(r0 + d(x0, x))}.

We then write,
�

j

uj(x) =

�

k∈W1

�

j∈J(k)

uj(x) +

�

k∈W2

�

j∈J(k)

uj(x) +

�

k∈W3

�

j∈J(k)

uj(x) ≡ Z1 + Z2 + Z3.

To estimate Z1, notice that for any k ∈ W1 and j ∈ J(k), we have
(2.14)
µ(B(xj , r0 + d(xj , x0))) ∼ µ(B(x0, rj)) ∼ µ(B(x0, 2

k
)) ∼ Vr0(x0) + V (x0, x).
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For any j ∈ J(k) and z ∈ B(xj , C4trj), we have d(z, xj) < C4trj < C4t2
k,

which together with Lemma 2.1 further implies that for all z ∈ B(xj , C4trj),

(2.15) t2
k
+d(xj , x) ∼ t2

k
+d(z, x), Vt2k(xj)+V (xj , x) ∼ Vt2k(z)+V (z, x)

and

(2.16) χ[M,∞)

Å
d(xj , x)

trj

ã
≤ χ[M,∞)

Å
d(xj , x)

t2k−1

ã
≤ χ[M−2C4,∞)

Å
d(z, x)

t2k−1

ã
.

From (2.13) through (2.16), it follows that

vk(x) � 1

2a(k−1)

1

Vr0(x0) + V (x0, x)

×
�

j∈J(k)

VC4trj
(xj)

Vt2k(xj) + Vt2k(x) + V (xj , x)

Ç
t2k

t2k + d(xj , x)

åb

χ[M,∞)

Å
d(xj , x)

t2k−1

ã

� 1

2ak

1

Vr0(x0) + V (x0, x)

×
�

X

1

Vt2k(z) + Vt2k(x) + V (z, x)

Ç
t2k

t2k + d(z, x)

åb

χ[M−2C4,∞)

Å
d(z, x)

t2k−1

ã
dµ(z).

Denote by J the integral in the last formula. When 0 ≤ M ≤ 4C4 + 1, by
Lemma 2.1,

J ≤
�

X

1

Vt2k(z) + Vt2k(x) + V (z, x)

Ç
t2k

t2k + d(z, x)

åb

dµ(z) � 1 � (1 + M)
−b

.

When M > 1+4C4, we have M −2C4 > (1+M)/2. For any i ∈ N and x ∈ X ,
set

Ri ≡ {z ∈ X : 2
i+k−2

(M − 2C4)t ≤ d(z, x) < 2
i+k−1

(M − 2C4)t}.

We then obtain

J =

∞�

i=1

�

Ri

1

Vt2k(z) + Vt2k(x) + V (z, x)

Ç
t2k

t2k + d(z, x)

åb

dµ(z)

�
∞�

i=1

[1 + 2
i−1

(M − 2C4)]
−b � (M − 2C4)

−b � (1 + M)
−b

.

Therefore, for all k ∈ W1 and x ∈ X , we have

vk(x) � 1

2ak

(1 + M)−b

Vr0(x0) + V (x0, x)
,

which together with the fact �W1 ≤ 5 yields that

Z1 ≤
�

k∈W1

1

2ak

(1 + M)−b

Vr0(x0) + V (x0, x)
� 1

(r0 + d(x0, x))a

(1 + M)−b

Vr0(x0) + V (x0, x)
.
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To estimate Z2, notice that for any k ∈ W2 and j ∈ J(k), we have

r0 + d(x0, x) ≤ r0 + d(x0, xj) + d(xj , x) < 2
k

+ d(x, xj) ≤ (r0 + d(x0, x))/2 + d(x, xj).

From this, it follows that for any j ∈ J(k),

(2.17) d(x, xj) > (r0 + d(x0, x))/2 > 2
k

and thus

(2.18) V (xj , x) � µ(B(x, r0 + d(x0, x))) ∼ Vr0(x0) + V (x0, x).

For k ∈ Z and j ∈ J(k), we have V2k(xj) ∼ V2k(x0) and B(xj , C4trj) ⊂
B(x0, (1 + C4t)2

k), which together with (1.2) and (2.13) yields that
(2.19)

�

j∈J(k)

VC4t2k(xj)

V2k(xj)
�

�

B(x0, (1+C4t)2k)

1

V2k(x0)

�

j∈J(k)

χB(xj ,C4trj)(x) dµ(x) � 1.

For any k ∈ Z and j ∈ J(k), we have Vrj
(xj) � V2k(xj), which together with

(2.17), (2.18), and (2.19) implies that

Z2 �
�

k∈W2

�

j∈J(k)

1

2ak

1

V2k(xj)

VC4t2k(xj)

Vr0(x0) + V (x0, x)

Ç
t2k

t2k + r0 + d(x0, x)

åb

� t
b

1

Vr0(x0) + V (x0, x)

Å
1

r0 + d(x0, x)

ãa

.

To estimate Z3, notice that for any k ∈ W3 and j ∈ J(k),

(2.20) Vrj
(xj) ∼ µ(B(xj , r0+d(xj , x0))) � µ(B(x0, 2

k
)) � Vr0(x0)+V (x0, x).

Moreover, since

2
k−1 ≤ r0 + d(xj , x0) ≤ r0 + d(xj , x) + d(x, x0) ≤ 2

k−2
+ d(xj , x),

we have d(xj , x) ≥ 2k−2 ≥ rj/4. Consequently, for any k ∈ W3 and j ∈ J(k),

(2.21) Vtrj
(xj) + Vtrj

(x) + V (xj , x) ≥ V (xj , x) � Vrj/2(xj).

An argument similar to (2.19) yields that

(2.22)
�

j∈J(k)

VC4trj
(xj)

Vrj/2(xj)
� 1.

Applying (2.20) through (2.22) and the fact that d(xj , x) ≥ rj/4, we obtain

Z3 �
�

k∈W3

�

j∈J(k)

1

2ka

1

Vr0(x0) + V (x0, x)

VC4trj
(xj)

Vrj/2(xj)

Å
t

1 + t

ãb

� t
b

1

Vr0(x0) + V (x0, x)

Å
1

r0 + d(x0, x)

ãa

,

which completes the proof of Lemma 2.4.
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3. Proofs of Theorem 1.6 and Proposition 1.7

Assuming Proposition 1.7 for the moment, we now prove Theorem 1.6.

Proof of Theorem 1.6. — Choose δ0 ∈ (0, log
η
(1−σ)) satisfying p > n/(n+δ0).

By Proposition 1.7 and the L
p(n+δ0)/n(X )-boundedness of M, we obtain

�f∗�Lp(X ) �
���
î
M([M0(f)]

n/(n+δ0))

ó(n+δ0)/n
���

Lp(X )
� �M0(f)�Lp(X ),

which completes the proof of Theorem 1.6.

The rest of this section is devoted to the proof of Proposition 1.7. The key
for the proof of Proposition 1.7 is to obtain a desired expansion (3.11) for any
ϕ ∈ G(x0, r0, �, �) in terms of the given (�1, �2, �3)- SAOTI and to show this
expansion converges in G�

0(β, γ). To this end, for a given ϕ ∈ G(x0, r0, �, �), we
construct a sequence of functions {ϕs}s∈Z+ and obtain some desired estimates
for these functions.

Proof of Proposition 1.7. — Let ϕ ∈ G(x0, r0, �, �) satisfy �ϕ�G(x0,r0,�,�) ≤ 1

for some x0 ∈ X and r0 > 0. Write ϕ as

ϕ = (�(ϕ) ∨ 0)− (�(ϕ) ∧ 0) + i[(�(ϕ) ∨ 0)− (�(ϕ) ∧ 0)],

where �(ϕ) and �(ϕ) represent the real part and the imaginary part of the
function ϕ, respectively. Since �ϕ�G(x0,r0,�,�) ≤ 1, it follows easily that each
term of the decomposition above has a norm in G(x0, r0, �, �) at most 1. Thus,
we may assume that ϕ is non-negative.

Fix A ≡ 2�+1
C8 and some σ ∈ (0, 1/(1+AC3C9)). Choose positive numbers

H and η such that

H ≤ min

®
1

2

Å
1− σ −AC3C9σ

2

ã1/�

,
1

2

Å
(1− σ −AC3C9σ)(1− σ)

4AC3C9σ

ã1/�1
´

and

η < min

®
(1− σ)

1/�
,

H

C4
,

1

AC3C9
,

Å
1− σ

2

ã1/�1

, H

Å
1

AC3C9

ã1/�2
´

.

Choose δ0 ∈ (0, log
η
(1− σ)). For any s ∈ N, applying Lemma 2.3 with t = η

s

and g = M0(f), we obtain {xs,j : s ∈ N, j = 1, · · · , j(s)} ⊂ X , where j(s) can
be finite or ∞. For each s ∈ N and j = 1, · · · , j(s), let rs,j ≡ r0 + d(xs,j , x0).
Lemma 2.3 further implies that

(A) for any x ∈ X and s ∈ N, 1 ≤
�j(s)

j=1 χ
Bs,j

(x) ≤ C6, where Bs,j ≡
B(xs,j , C4η

s
rs,j);

(B) [M0(f)(xs,j)]
1/2 ≤ C7F (ηs

rs,j , xs,j , [M0(f)]1/2
χBs,j

).
Let us now inductively construct {�s,j : s ∈ N, j = 1, · · · , j(s)} ⊂ {−1, 0, 1}

and functions {ϕs}s∈Z+ satisfying that for all x ∈ X ,
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(C) for all s ∈ Z+, |ϕs(x)| ≤ (1− σ)s
1

Vr0(x0) + V (x0, x)

Å
r0

r0 + d(x0, x)

ã�

;

(D) ϕ0(x) ≡ ϕ(x), and for any s ∈ N,

(3.1) ϕs(x) ≡ ϕ(x)−Aσ

s�

i=1

j(i)�

j=1

(1− σ)
i−1

�i,j

×
VC4ηsri,j

(xi,j)

Vri,j
(xi,j)

Å
r0

ri,j

ã�

Sηiri,j
(xi,j , x).

In fact, obviously, ϕ0 satisfies (C). Suppose that {�i,j : i = 1, · · · , s− 1; j =

1, · · · , j(i)} and {ϕi}s−1
i=0 satisfying (C) have been constructed. Then for each

j = 1, · · · , j(s), let �s,j ≡ sign(ϕs−1(xs,j)), and ϕs be as in (D). Now it remains
to verify that ϕs satisfies (C). To this end, for all x ∈ X , set

(3.2) ωs(x) ≡ Aσ

j(s)�

j=1

(1− σ)
s−1

�s,j

VC4ηsrs,j
(xs,j)

Vrs,j
(xs,j)

Å
r0

rs,j

ã�

Sηsrs,j
(xs,j , x).

By the size condition of St, �2 > � and Lemma 2.4 with t = η
s, a = �, b = �2

and M = 0, we obtain

|ωs(x)| ≤ AC3σ

j(s)�

j=1

(1− σ)
s−1 VC4ηsrs,j

(xs,j)

Vrs,j
(xs,j)

Å
r0

rs,j

ã�

× 1

Vηsrs,j
(xs,j) + Vηsrs,j

(x) + V (xs,j , x)

Å
η

s
rs,j

ηsrs,j + d(xs,j , x)

ã�2

≤ AC3C9σ(1− σ)
s−1 1

Vr0(x0) + V (x0, x)

Å
r0

r0 + d(x0, x)

ã�

.(3.3)

If d(x, y) ≤ η
s−1(r0 + d(x0, x))/2, then for any i = 1, · · · , s − 1, we have that

d(x, y) ≤ (ηi
ri,j + d(x, xi,j))/2. This combined with the regularity of Sηiri,j

and Lemma 2.4 with t = η
i, a = � + �1, b = �1 + �2 and M = 0 yields that

|ϕs−1(x)− ϕs−1(y)|

≤ |ϕ(x)− ϕ(y)|+ AC3σ

s−1�

i=1

j(i)�

j=1

(1− σ)
i−1

×
VC4ηiri,j

(xi,j)

Vri,j
(xi,j)

Å
r0

ri,j

ã�

|Sηiri,j
(xi,j , x)− Sηiri,j

(xi,j , y)|

≤ |ϕ(x)− ϕ(y)|+ AC3σ

s−1�

i=1

j(i)�

j=1

(1− σ)i−1

Vri,j
(xi,j)

Å
r0

ri,j

ã� Å
η

i
ri,j

ηiri,j + d(xi,j , x)

ã�2

×
VC4ηiri,j

(xi,j)

Vηiri,j
(xi,j) + Vηiri,j

(x) + V (xi,j , x)

Å
d(x, y)

ηiri,j + d(xi,j , x)

ã�1
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≤ |ϕ(x)− ϕ(y)|+ AC3C9σ

1− σ − η�1

ñÅ
1− σ

η�1

ãs−1

− 1

ô

× 1

Vr0(x0) + V (x0, x)

Å
d(x, y)

r0 + d(x0, x)

ã�1
Å

r0

r0 + d(x, x0)

ã�

.(3.4)

When

(3.5) d(x, y) < Hη
s−1

(r0 + d(y, x0)),

the assumption that H < 1/4 gives d(x, y) < 2Hη
s−1(r0+d(x0, x)) < η

s−1(r0+

d(x0, x))/2, which together with (3.4) and the regularity of ϕ yields that

|ϕs−1(x)− ϕs−1(y)| ≤
ñ
(2H)

�

Å
η

�

1− σ

ãs−1

+
(2H)�1AC3C9σ

1− σ − η�1

Ç
1−

Å
η

�1

1− σ

ãs−1
åô

× (1− σ)s−1

Vr0(x0) + V (x0, x)

Å
r0

r0 + d(x0, x)

ã�

≤ λH

(1− σ)s−1

Vr0(x0) + V (x0, x)

Å
r0

r0 + d(x0, x)

ã�

,(3.6)

where

λH ≡ (2H)
�
+

(2H)�1AC3C9σ

1− σ − η�1
.

For any λ ∈ R and s ∈ N, set

Ωs,λ ≡
ß

x ∈ X : ϕs−1(x) > λ(1− σ)
s−1 1

Vr0(x0) + V (x0, x)

Å
r0

r0 + d(x0, x)

ã�™
.

If ϕs−1(xs,j) < 0, then by (3.6) and the definition of Ωs,λ, we obtain

(3.7) B(xs,j , η
s−1

rs,j/3)

�
Ωs,λH

= ∅.

In fact, for any x ∈ B(xs,j , η
s−1

rs,j/3), by (3.6),

ϕs−1(x) ≤ ϕs−1(xs,j) + λH

(1− σ)s−1

Vr0(x0) + V (x0, x)

Å
r0

r0 + d(x0, x)

ã�

< λH

(1− σ)s−1

Vr0(x0) + V (x0, x)

Å
r0

r0 + d(x0, x)

ã�

,

which implies that x /∈ Ωs,λH
and thus (3.7) holds.

For any x ∈ X , by (3.2), we write

ωs(x) =

�

{j: ϕs−1(xs,j)>0}

Aσ(1− σ)
s−1 VC4ηsrs,j

(xs,j)

Vrs,j
(xs,j)

Å
r0

rs,j

ã�

Sηsrs,j
(xs,j , x)

−
�

{j: ϕs−1(xs,j)<0}

· · · ≡ I− II.
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We now turn to obtain a desired upper bound for ϕs by considering two
cases: x ∈ Ωs,λH

and x /∈ Ωs,λH
. For any x ∈ Ωs,λH

, Property (A) implies that
x ∈ B(xs,j0 , C4η

s
rs,j0) for some j0. By this and the assumption η < H/C4,

we have d(x, xsj0
) < C4η

s
rs,j0 ≤ Hη

s−1
rs,j0 , which together with (3.7) implies

that ϕs−1(xs,j0) > 0. Thus, by (2.7),

I ≥ Aσ(1− σ)
s−1

VC4ηsrs,j0
(xs,j0)

Vrs,j0
(xs,j0)

Å
r0

rs,j0

ã�

Sηsrs,j0
(xs,j0 , x)

≥ Aσ(1− σ)s−1

C82
�

1

Vr0(x0) + V (x0, x)

Å
r0

r0 + d(x0, x)

ã�

.

On the other hand, by (3.7) and Lemma 2.4,

II ≤ AC3C9σ(1− σ)s−1

Vr0(x0) + V (x0, x)

Å
r0

r0 + d(x0, x)

ã�

max{ηs�2 , (1 + Hη
−1

)
−�2}.

From the assumption on η, it follows easily that
A

C82
�
−AC3C9 max{ηs�2 , (1 + Hη

−1
)
−�2} ≥ 1,

which together with the estimates for I and II yields that when x ∈ Ωs,λH
,

(3.8) ωs(x) ≥ σ(1− σ)s−1

Vr0(x0) + V (x0, x)

Å
r0

r0 + d(x0, x)

ã�

.

Thus, by (2.1) and the fact that (C) holds for s − 1, we obtain that when
x ∈ Ωs,λH

,

ϕs(x) = ϕs−1(x)− ωs(x) ≤ (1− σ)s

Vr0(x0) + V (x0, x)

Å
r0

r0 + d(x0, x)

ã�

.

Let now x /∈ Ωs,λH
. Notice that (C) holds for s− 1. From this and (3.3), we

deduce that

ϕs(x) = ϕs−1(x)− ωs(x)

≤ λH

(1− σ)s−1

Vr0(x0) + V (x0, x)

Å
r0

r0 + d(x0, x)

ã�

+AC3C9σ(1− σ)
s−1 1

Vr0(x0) + V (x0, x)

Å
r0

r0 + d(x0, x)

ã�

≤ (1− σ)s

Vr0(x0) + V (x0, x)

Å
r0

r0 + d(x0, x)

ã�

,

where in the last inequality, we used the fact λH + AC3C9σ ≤ 1− σ. Thus, we
obtain a desired upper bound of ϕs.

Let us now show that ϕs has the desired lower bound also by considering two
cases: x /∈ Ωs,−λH

and x ∈ Ωs,−λH
. For every xs,j satisfying ϕs−1(xs,j) > 0, by

(3.6) and an argument similar to the proof of (3.7), we have B(xs,j , Hη
s−1

rs,j)∩
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(X \Ωs,−λH
) = ∅. From this, Lemmas 2.3 and 2.4 together with an argument

similar to the estimates for I and II, it follows that when x /∈ Ωs,−λH
,

(3.9) ωs(x) ≤ − σ(1− σ)s−1

Vr0(x0) + V (x0, x)

Å
r0

r0 + d(x0, x)

ã�

.

Therefore, (3.9) and the lower bound of ϕs−1 yields that when x /∈ Ωs,−λH
,

(3.10) ϕs(x) = ϕs−1(x)− ωs(x) ≥ − (1− σ)s

Vr0(x0) + V (x0, x)

Å
r0

r0 + d(x0, x)

ã�

;

and the validity of (C) for s− 1 together with (3.3) and the assumption λH +

AC3C9σ ≤ 1− σ implies that when x ∈ Ωs,−λH
,

ϕs(x) ≥ ϕs−1(x)− ωs(x)

≥ −λH

(1− σ)s−1

Vr0(x0) + V (x0, x)

Å
r0

r0 + d(x0, x)

ã�

−AC3C9σ(1− σ)
s−1 1

Vr0(x0) + V (x0, x)

Å
r0

r0 + d(x0, x)

ã�

≥ − (1− σ)s

Vr0(x0) + V (x0, x)

Å
r0

r0 + d(x0, x)

ã�

,

which together with (3.10) further yields the desired lower bound of ϕs. This
finishes the proofs of (C) and (D).

It follows from (C) and (D) that for all x ∈ X ,

(3.11) ϕ(x) = Aσ

∞�

i=1

j(i)�

j=1

(1− σ)
i−1

�i,j

VC4ηiri,j
(xi,j)

Vri,j
(xi,j)

Å
r0

ri,j

ã�

Sηiri,j
(xi,j , x).

Set

ΦL(x) ≡ Aσ

L�

i=1

�

{j: ηiri,j≤Li}

(1− σ)
i−1

�i,j

VC4ηiri,j
(xi,j)

Vri,j
(xi,j)

Å
r0

ri,j

ã�

Sηiri,j
(xi,j , x).

By (A) and (1.2), it is easy to see that the series in ΦL has only finitely
many terms. To verify that (3.11) holds in G�

0(β, γ), it suffices to show that
ΦL converges to ϕ in G�

0(β, γ) as L → ∞. Notice that for any i and j,
Sηiri,j

(xi,j , ·) ∈ G(xi,j , η
i
ri,j , �, �). Thus ΦL ∈ G(�, �) since it has only finite

terms. Now it remains to show

lim
L→∞

�ϕ− ΦL�G(x0,r0,β,γ) = 0.

To this end, we write

|ϕ(x)− ΦL(x)| ≤

������
Aσ

∞�

i=1

�

{j: ηiri,j>Li}

(1− σ)
i−1

�i,j

VC4ηiri,j
(xi,j)

Vri,j
(xi,j)

Å
r0

ri,j

ã�

Sηiri,j
(xi,j , x)

������
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+

������
Aσ

∞�

i=L

�

{j: ηiri,j≤Li}

(1− σ)
i−1

�i,j

VC4ηiri,j
(xi,j)

Vri,j
(xi,j)

Å
r0

ri,j

ã�

Sηiri,j
(xi,j , x)

������

≡ Φ
1
L
(x) + Φ

2
L
(x).

Let us first prove that Φ1
L

converges to zero in G(x0, r0, β, γ) as L → ∞.
Notice that � > γ and ri,j = r0 + d(xi,j , x0). By the size condition of St and
Lemma 2.4, we obtain that for all x ∈ X ,

|Φ1
L
(x)| �

∞�

i=1

�

{j: ηiri,j>Li}

(1− σ)
i−1

Å
r0η

i

Li

ã�−γ
VC4ηiri,j

(xi,j)

Vri,j
(xi,j)

Å
r0

ri,j

ãγ

Sηiri,j
(xi,j , x)

� (1− σ)η�−γ

L�−γ − (1− σ)η�−γ

1

Vr0(x0) + V (x0, x)

Å
r0

r0 + d(x0, x)

ãγ

.

(3.12)

For any x, y ∈ X satisfying d(x, y) ≤ (r0 + d(x0, x))/2, we write

|Φ1
L
(x)− Φ

1
L
(y)|

≤ Aσ

∞�

i=1

�

j∈W1
i

(1− σ)
i−1 VC4ηiri,j

(xi,j)

Vri,j
(xi,j)

Å
r0

ri,j

ã�

|Sηiri,j
(xi,j , x)− Sηiri,j

(xi,j , y)|

+

∞�

i=1

�

j∈W2
i

· · ·+
∞�

i=1

�

j∈W3
i

· · · ≡
∞�

i=1

�
Z

1
i

+ Z
2
i

+ Z
3
i

�
,

where

W
1
i
≡ {j ∈ N : η

i
ri,j > L

i
, d(x, y) ≤ (η

i
ri,j + d(x, xi,j))/2},

W
2
i
≡ {j ∈ N : η

i
ri,j > L

i
, d(x, y) > (η

i
ri,j + d(x, xi,j))/2, d(y, xi,j) ≥ d(x, xi,j)}

and

W
3
i
≡ {j ∈ N : η

i
ri,j > L

i
, d(x, y) > (η

i
ri,j + d(x, xi,j))/2, d(y, xi,j) < d(x, xi,j)}.

By the regularity of Sηiri,j
, Lemma 2.4 and η

i(r0 +d(xi,j , x0)) > L
i, we obtain

Z
1
i

�
�

j∈W1
i

(1− σ)
i−1 VC4ηiri,j

(xi,j)

Vri,j
(xi,j)

Å
r0η

i

Li

ã�−γ Å
r0

ri,j

ãγ

× 1

Vηiri,j
(xi,j) + Vηiri,j

(x) + V (xi,j , x)

Å
d(x, y)

ηiri,j + d(xi,j , x)

ã�1
Å

η
i
ri,j

ηiri,j + d(xi,j , x)

ã�2

�
Å

(1− σ)η�−γ−�1

L�−γ

ãi
1

Vr0(x0) + V (x0, x)

Å
d(x, y)

r0 + d(x, x0)

ã�1
Å

r0

r0 + d(x0, x)

ãγ

.
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By the size condition of Sηiri,j
, d(x, y) > (ηi

ri,j + d(x, xi,j))/2, d(y, xi,j) ≥
d(x, xi,j), ri,j ≥ r0 and Lemma 2.4,

Z
2
i

�
�

j∈W2
i

(1− σ)
i−1 VC4ηiri,j

(xi,j)

Vri,j
(xi,j)

Å
r0

ri,j

ã� �
Sηiri,j

(xi,j , x) + Sηiri,j
(xi,j , y)

�

�
�

j∈W2
i

(1− σ)
i−1

Å
r0η

i

Li

ã�−γ Å
r0

ri,j

ãγ
VC4ηiri,j

(xi,j)

Vri,j
(xi,j)

Å
d(x, y)

ηir0

ã�1

× 1

Vηiri,j
(xi,j) + Vηiri,j

(x) + V (xi,j , x)

Å
η

i
ri,j

ηiri,j + d(xi,j , x)

ã�2+�1

�
Å

(1− σ)η�−γ−�1

L�−γ

ãi
1

Vr0(x0) + V (x0, x)

Å
d(x, y)

r0 + d(x, x0)

ã�1
Å

r0

r0 + d(x0, x)

ãγ

.

From the assumption d(x, y) ≤ (r0 + d(x0, x))/2, it follows that
(3.13)
r0 + d(x0, x) ∼ r0 + d(y, x0) and Vr0(x0) + V (x0, x) ∼ Vr0(x0) + V (x0, y),

which together with the definition of W3
i

and an argument similar to the esti-
mation of Z2

i
yields that

Z
3
i

�
Å

(1− σ)η�−γ−�1

L�−γ

ãi
1

Vr0(x0) + V (x0, x)

Å
d(x, y)

r0 + d(x0, x)

ã�1
Å

r0

r0 + d(x0, x)

ãγ

.

By the estimates of Z1
i , Z2

i
and Z3

i
, we obtain that when L is large enough and

satisfies L
�−γ

> (1− σ)η�−γ−�1 ,

|Φ1
L
(x)− Φ

1
L
(y)| � (1− σ)η�−γ−�1

L�−γ − (1− σ)η�−γ−�1

Å
d(x, y)

r0 + d(x0, x)

ã�1

× 1

Vr0(x0) + V (x0, x)

Å
r0

r0 + d(x0, x)

ãγ

,

which together with (3.12) implies that limL→∞ �Φ1
L
�G(x0,r0,β,γ) = 0.

Now we consider �Φ2
L
�G(x0,r0,β,γ). By the size condition of Sηiri,j

and Lemma
2.4, we obtain that for all x ∈ X ,

|Φ2
L
(x)| �

∞�

i=L

�

j

(1− σ)
i−1 1

Vri,j
(xi,j)

Å
r0

ri,j

ãγ

×
VC4ηiri,j

(xi,j)

Vηiri,j
(xi,j) + Vηiri,j

(x) + V (xi,j , x)

Å
η

i
ri,j

ηiri,j + d(xi,j , x)

ã�2

� (1− σ)
L

1

Vr0(x0) + V (x0, x)

Å
r0

r0 + d(x0, x)

ãγ

.(3.14)
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For any x, y ∈ X satisfying d(x, y) ≤ (r0 + d(x0, x))/2, we write

|Φ2
L
(x)− Φ

2
L
(y)|

≤ Aσ

∞�

i=L

�

j∈W4
i

(1− σ)
i−1 VC4ηiri,j

(xi,j)

Vri,j
(xi,j)

Å
r0

ri,j

ã�

|Sηiri,j
(xi,j , x)− Sηiri,j

(xi,j , y)|

+

∞�

i=L

�

j∈W5
i

· · ·+
∞�

i=L

�

j∈W6
i

· · · ≡
∞�

i=L

�
Z

4
i

+ Z
5
i

+ Z
6
i

�
,

where
W

4
i
≡ {j ∈ N : d(x, y) ≤ (η

i
ri,j + d(x, xi,j))/2},

W
5
i
≡ {j ∈ N : d(x, y) > (η

i
ri,j + d(x, xi,j))/2, d(y, xi,j) ≥ d(x, xi,j)}

and

W
6
i
≡ {j ∈ N : d(x, y) > (η

i
ri,j + d(x, xi,j))/2, d(y, xi,j) < d(x, xi,j)}.

For any i ∈ N and k = 4, 5, 6, by d(x, y) ≤ (r0 + d(x0, x))/2, (3.2), (3.3) and
(3.13),

(3.15) Z
k

i
≤ |ωi(x)|+ |ωi(y)| � (1− σ)

i
1

Vr0(x0) + V (x0, x)

Å
r0

r0 + d(x0, x)

ã�

.

The regularity of Sηiri,j
and Lemma 2.4 show that

Z
4
i

�
�

j∈W4
i

(1− σ)
i−1 VC4ηiri,j

(xi,j)

Vri,j
(xi,j)

Å
r0

ri,j

ã� Å
d(x, y)

ηiri,j + d(xi,j , x)

ã�1

× 1

Vηiri,j
(xi,j) + Vηiri,j

(x) + V (xi,j , x)

Å
η

i
ri,j

ηiri,j + d(xi,j , x)

ã�2

�
Å

1− σ

η�1

ãi
1

Vr0(x0) + V (x0, x)

Å
d(x, y)

r0 + d(x0, x)

ã�1
Å

r0

r0 + d(x0, x)

ã�

.(3.16)

For any j ∈ W5
i
, we have d(y, xi,j) ≥ d(x, xi,j). From this, the size condition

of Sηiri,j
and Lemma 2.4, we deduce that

Z
5
i

�
�

j∈W5
i

(1− σ)
i−1 VC4ηiri,j

(xi,j)

Vri,j
(xi,j)

Å
r0

ri,j

ã� Å
d(x, y)

ηiri,j + d(xi,j , x)

ã�1

× 1

Vηiri,j
(xi,j) + Vηiri,j

(x) + V (xi,j , x)

Å
η

i
ri,j

ηiri,j + d(xi,j , x)

ã�2

�
Å

1− σ

η�1

ãi
1

Vr0(x0) + V (x0, x)

Å
d(x, y)

r0 + d(x0, x)

ã�1
Å

r0

r0 + d(x0, x)

ã�

,(3.17)
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By an argument similar to the estimate of Z3
i
, we obtain

(3.18)

Z
6
i

�
Å

1− σ

η�1

ãi
1

Vr0(x0) + V (x0, x)

Å
d(x, y)

r0 + d(x0, x)

ã�1
Å

r0

r0 + d(x0, x)

ã�

.

The geometric means of (3.16) and (3.15), (3.17) and (3.15), (3.18) and (3.15),
respectively, give that for all i ∈ N and k = 4, 5, 6,

Z
k

i
�

Å
1− σ

ηβ

ãi
1

Vr0(x0) + V (x0, x)

Å
d(x, y)

r0 + d(x0, x)

ãβ Å
r0

r0 + d(x0, x)

ãγ

.

Using this and the assumption η
β

> 1−σ, we obtain, for all x, y ∈ X satisfying
d(x, y) ≤ (r0 + d(x0, x))/2, the following estimate:

|Φ2
L
(x)− Φ

2
L
(y)| �

Å
1− σ

ηβ

ãL
1

Vr0(x0) + V (x0, x)

Å
d(x, y)

r0 + d(x0, x)

ãβ Å
r0

r0 + d(x0, x)

ãγ

.

This together with (3.14) yields that limL→∞ �Φ2
L
�G(x0,r0,β,γ) = 0. Therefore,

we obtain limL→∞ �ΦL�G(x0,r0,β,γ) = 0 and thus limL→∞ �ΦL�G(x1,1,β,γ) = 0,
which implies that (3.11) holds in G�

0(β, γ).
Set

ν ≡
∞�

i=1

j(i)�

j=1

(1− σ)
i−1 VC4ηiri,j

(xi,j)

Vri,j
(xi,j)

Å
r0

ri,j

ã�

δ(xi,j ,ηiri,j),

where δ(x,r) is the Dirac measure of point (x, r) ∈ X ×R+. Notice that for any
given i and j, by Property (B) above, we have

|�Sηiri,j
(xi,j , ·), f�| ≤M0(f)(xi,j) � [F (η

i
ri,j , xi,j , [M0(f)]

1/2
χBi,j

)]
2
.

Then, by this and (3.11),

|�f, ϕ�| �
∞�

i=1

j(i)�

j=1

(1− σ)
i−1 VC4ηiri,j

(xi,j)

Vri,j
(xi,j)

Å
r0

ri,j

ã� î
F

Ä
η

i
ri,j , xi,j , [M0(f)]

1/2
χBi,j

äó2

=

�

X×R+

î
F

Ä
r, x, [M0(f)]

1/2
χB(x,C4r)

äó2
dν(x, r).

Denote by �log2 r0� the largest integer no more than log2 r0. Since ri,j ≥ r0,
we then have

ν � (r0)
�

∞�

t=�log2 r0�+1

2
−t�

V2t(x0)
−1

�

{i, j: 2t−1≤ri,j<2t}

(1− σ)
i
VC4ηiri,j

(xi,j)δ(xi,j ,ηiri,j)

≡ (r0)
�

∞�

t=�log2 r0�+1

2
−t�

νt.

(3.19)
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If 2t−1 ≤ ri,j < 2t, then for any z ∈ B(xi,j , C4η
i
ri,j), we have

d(z, x0) ≤ d(z, xi,j) + d(xi,j , x0) ≤ 2ri,j < 2
t+1

,

which implies that B(xi,j , C4η
i
ri,j) ⊂ B(x0, 2

t+1). From this, it follows that
for any (x, r) ∈ supp νt,

(3.20) F (r, x, [M0(f)]
1/2

χB(x,C4r)) ≤ F (r, x, [M0(f)]
1/2

χB(x0,2t+1)).

By (3.19) and (3.20),
(3.21)

|�f, ϕ�| � (r0)
�

∞�

t=�log2 r0�

2
−t�

�

X×R+

î
F

Ä
r, x, [M0(f)]

1/2
χB(x,2t+1)

äó2
dνt(x, r).

We claim that for any fixed δ0 ∈ (0, log
η
(1−σ)), there exists a positive constant

Cδ0 independent of t such that for all x ∈ X and r > 0,

(3.22) νt(B(x, r)× (0, r)) ≤ Cδ0

Å
Vr(x)

V2t(x0)

ã(n+δ0)/n

.

Assume this claim for the moment. By this claim, (3.21) and Lemma 2.2,
we have

|�f, ϕ�| � (r0)
�

∞�

t=�log2 r0�+1

2
−t�

®
1

V2t(x0)

�

B(x0, C42t+1)
[M0(f)(x)]

n/(n+δ0) dµ(x)

´(n+δ0)/n

�
î
M

Ä
(M0(f))

n/(n+δ0)
ä

(x0)

ó(n+δ0)/n

,

where in the last step, we use (r0)
�
�∞

t=�log2 r0�+1 2−t� � 1. Thus the desired
conclusion of Proposition 1.7 holds.

To finish the proof of Proposition 1.7, we still need to verify the validity of
(3.22). For any x ∈ X and r > 0, set

W ≡ {(i, j) : 2
t−1 ≤ ri,j < 2

t
, η

i
ri,j < r, d(x, xi,j) < r}.

For any (i, j) ∈ W , since C4 < 1, we have B(xi,j , C4η
i
ri,j) ⊂ B(x, 2r), which

further implies that

(3.23)
�

{j: (i, j)∈W}

VC4ηiri,j
(xi,j) � Vr(x).

If (i, j) ∈ W, then 2t
< 2ri,j < 2rη

−i. From this, we deduce that for any
z ∈ B(x0, 2

t),

d(z, x) ≤ d(z, x0) + d(x0, xi,j) + d(xi,j , x) ≤ 2
t
+ 2

t
+ r ≤ (4η

−i
+ 1)r,

and thus B(x0, 2
t) ⊂ B(x, (4η

−i + 1)r). Moreover, by (1.2),

(3.24) V2t(x0) � (4η
−i

+ 1)
n
Vr(x) � η

−in
Vr(x).

tome 137 – 2009 – no 2



RADIAL MAXIMAL FUNCTION CHARACTERIZATIONS 249

Combining (3.19), (3.23), (3.24) and the assumption δ0 < log
η
(1 − σ) yields

that

νt(B(x, r)× (0, r))

= [V2t(x0)]
−1

�

B(x,r)×(0,r)

�

{i, j: 2t−1≤ri,j<2t}

(1− σ)
i
VC4ηiri,j

(xi,j) dδ(xi,j ,ηiri,j)

� [V2t(x0)]
−1

�

(i, j)∈W

(1− σ)
i
VC4ηiri,j

(xi,j)

Å
η
−in

Vr(x)

V2t(x0)

ãδ0/n

�
Å

Vr(x)

V2t(x0)

ã(n+δ0)/n �

i∈N

Å
1− σ

ηδ0

ãi

�
Å

Vr(x)

V2t(x0)

ã(n+δ0)/n

,

which implies the claim, and hence completes the proof of Proposition 1.7.

Remark 3.1. — By the proof of Theorem 1.6, we need the assumption p >

n/(n+ δ0), while in the proof of Proposition 1.7, we also need δ0 < log
η
(1−σ).

Thus, Theorem 1.6 holds for any p ∈ (n/(n+log
η
(1−σ)),∞]. In fact, Theorem

1.6 and Proposition 1.7 hold for all σ > 0 and η > 0, if σ, η, A > 0 in (3.1)
and H > 0 in (3.5) satisfy the following five inequalities: H ≤ 1/3; C4η <

H; η
�1 < 1− σ < η

β ;
A

C82� −AC3C9 max{η�2 , (1 + Hη
−1)−�2} ≥ 1; and

Å
H

1−H

ã�

+

Å
H

1−H

ã�1
AC3C9σ

1− σ − η�1
≤ 1− σ −AC3C9σ.
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