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BIG INDEX, BIG VOLUME

by Fabiano G.B. Brito, Pablo M. Chacón & David L. Johnson

Abstract. — We establish in this paper a lower bound for the volume of a unit
vector field �v defined on Sn \ {±x}, n = 2, 3. This lower bound is related to the sum
of the absolute values of the indices of �v at x and −x.

Résumé (Champs unitaires dans les sphères antipodalement trouées : grand indice
entraîne grand volume)

Nous établissons une borne inférieure pour le volume d’un champ de vecteurs �v
défini dans Sn \{±x}, n = 2, 3. Cette borne inférieure dépend de la somme des valeurs
absolues des indices de �v en x et en −x.

Texte reçu le 29 septembre 2006, révisé le 2 avril 2007

Fabiano G.B. Brito, Dpto. de Matemática, Instituto de Matemática e Estatística,
Universidade de São Paulo, R. do Matão 1010, São Paulo-SP, 05508-090 (Brazil) •
E-mail : fabiano@ime.usp.br
Pablo M. Chacón, Departamento de Matemáticas, Universidad de Salamanca, Plaza de
la Merced 1-4, 37008 Salamanca (Spain) • E-mail : pmchacon@usal.es
David L. Johnson, Department of Mathematics, Lehigh University, 14 E. Packer Avenue,
Bethlehem, PA, 18015 (USA) • E-mail : david.johnson@lehigh.edu

2000 Mathematics Subject Classification. — 53C20, 57R25, 53C12.

Key words and phrases. — Unit vector fields, volume, singularities, index.
During the preparation of this paper the first author was supported by CNPq, Brazil. The sec-
ond author is partially supported by MEC/FEDER project MTM2004-04934-C04-02, Spain.
The third author was supported during this research by grants from the Universidade de São
Paulo, FAPESP Proc. 1999/02684-5, and Lehigh University, and thanks those institutions
for enabling the collaboration involved in this work.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE 0037-9484/2008/147/$ 5.00
© Société Mathématique de France



148 BRITO (F.G.B.), CHACÓN (P.M.) & JOHNSON (D.L.)

1. Introduction

The volume of a unit vector field �v on a closed Riemannian manifold M is
defined [10] as the volume of the section �v : M → T

1
M , where the Sasakian

metric is considered in T
1
M . The volume of �v can be computed from the

Levi-Civita connection ∇ of M . If we denote by ν the volume form, for an
orthonormal local frame {ea}n

a=1, we have

vol(�v ) =

�

M

�
1 +

n�

a=1

�∇ea�v�2 +
�

a1<a2

�∇ea1
�v ∧∇ea2

�v�2(1)

+ · · · +
�

a1<···<an−1

�∇ea1
�v ∧ · · · ∧ ∇ean−1

�v�2
� 1

2

ν.

Note that vol(�v ) ≥ vol(M) and also that only parallel fields attain the trivial
minimum.

For odd-dimensional spheres, vector fields homologous to the Hopf fibra-
tion �vH have been studied, see [10], [3], [9] and [2]. In [5], a non-trivial lower
bound of the volume of unit vector fields on spaces of constant curvature was
obtained. In S2k+1, only the vector field �n tangent to the geodesics from a
fixed point (with two singularities) attains the volume of that bound. We call
this field �n north-south or radial vector field. We notice that unit vector fields
with singularities show up in a natural way, see also [12].

For manifolds of dimension 5, a theorem showing how the topology of a
vector field influences its volume appears in [4]. More precisely, the result in [4]
is an inequality relating the volume of �v and the Euler form of the orthogonal
distribution to �v.

The purpose of this paper is to establish a relationship between the volume
of unit vector fields and the indices of those fields around isolated singularities.

We consider these notes to be a preliminary effort to understand this phe-
nomenon. For this reason, we have chosen a simple model where such a rela-
tionship is found. We hope this could serve as inspiration for more complex
situations to be treated in a near future.

Precisely, we prove here:

Theorem 1.1. — Let W = Sn \{N, S}, n = 2 or 3, be the standard Euclidean

sphere where two antipodal points N and S are removed. Let �v be a unit smooth

vector field defined on W . Then,

for n = 2, vol(�v ) ≥ 1
2

�
π + |I�v(N)| + |I�v(S)| − 2

�
vol(S2);

for n = 3, vol(�v ) ≥
�
|I�v(N)| + |I�v(S)|

�
vol(S3),

where I�v(P ) stands the Poincaré index of �v around P.
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UNIT FIELDS ON PUNCTURED SPHERES 149

It is easy to verify that the north-south field �n achieves the equalities in the
theorem. In fact, the volume of �n in S2 is equal to 1

2πvol(S2), and in S3 is
2vol(S3). We have to point out that vol(�n) = vol(�vH) in S3.

The lower bound in S3 when the singularities are trivial (i.e. I�v(N) =
I�v(S) = 0) has no special meaning.

We will comment briefly some possible extensions for this result in Section 3
of this paper.

2. Proof of the theorem

A key ingredient in the proof of the theorem is the application of the following
result of Chern [7]. The second part of this statement is a special case of the
result of Section 3 of that article.

Proposition 2.1 (see Chern [7]). — Let M
n

be an orientable Riemannian

manifold of dimension n, with Riemannian connection 1-form ω and curva-

ture form Ω. Then, there is an (n − 1)-form Π on the unit tangent bundle

T
1
M with π : T

1
M → M the bundle projection, so that:

dΠ =

ß
e(Ω) if n is even,

0 if n is odd.

In addition,
�

π−1(x) Π = 1 for any x ∈ M , that is, Π π
−1(x) is the induced

volume form of the fiber π
−1(x), normalized to have volume 1.

The form Π as described by Chern is somewhat complicated. First, define
forms φk for k ∈ {0, . . . , [ 12n]− 1}, by choosing a frame {e1, . . . , en} of TM , so
that {e1, . . . , en−1} frame π

−1(x) at en ∈ π
−1(x). Then, at en ∈ T

1
M ,

φk =
�

1≤α1,...,αn−1≤n−1

�α1...αn−1Ωα1α2 ∧ · · · ∧ Ωα2k−1α2k ∧ ωα2k+1n ∧ · · · ∧ ωαn−1n,

where �α1...αn−1 is the sign of the permutation, and from this

Π =






1

π
1
2 n

1
2 n−1�

k=0

(−1)k

1 · 3 · · · (n− 2k − 1) · 2k+ 1
2 n

k!
φk if n is even,

1

2nπ
1
2 (n−1)( 1

2 (n− 1))!

1
2 (n−1)�

k=0

(−1)k

� 1
2 (n− 1)

k

�
φk if n is odd.

Subsequent treatments of this general theory [8], [11] use more elegant formu-
lations of forms similar to this, but usually only for the bundle of frames, and
avoid the case where M is odd-dimensional.
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150 BRITO (F.G.B.), CHACÓN (P.M.) & JOHNSON (D.L.)

The cases relevant to this research are for n = 2 and n = 3, where these
formulas simplify to

Π =

�
1
2π

ω12 if n = 2,

1
4π

(ω13 ∧ ω23 − Ω12) if n = 3.

Even though there is a common line of reasoning in the proof of both parts of
the theorem, each dimension has its special features. For that reason, we pro-
vide separate proofs for dimensions 2 and 3.

2.1. Case n = 2. — Denote by g the usual metric on S2 induced from R3.
Without loss of generality we take N = (0, 0, 1) and S = (0, 0,−1). On W we
consider an oriented orthonormal local frame {e1, e2 = �v}. Its dual basis is
denoted by {θ1, θ2} and the connection 1-forms of ∇ are ωij(X) = g(∇Xej , ei)
for i, j = 1, 2 where X is a vector in the corresponding tangent space. In
dimension 2, the volume (1) reduces to:

vol(�v ) =

�

S2

�
1 + k2 + τ2 ν,

where k = g(∇�v �v, e1) is the geodesic curvature of the integral curves of �v and
τ = g(∇e1�v, e1) is the geodesic curvature of the curves orthogonal to �v. Also,

ω12 = τθ1 + kθ2.

The first goal is to relate the integrand of the volume with the connection
form ω12. If S

1
ϕ

is the parallel of S2 at latitude ϕ ∈ (− 1
2π,

1
2π) consider the

unit field �u on S
1
ϕ

such that {�u, �n} is positively oriented where �n is the field
pointing toward N . Let α ∈ [0, 2π] be the oriented angle from �u to �v. Then
�u = sinαe1 + cos α�v. If i : S

1
ϕ
→ S2 is the inclusion map, we have

i
∗
ω12(�u) = τθ1(�u) + kθ2(�u) = τ sin α + k cos α.(2)

We split the domain of the integral in northern and southern hemisphere,
H

+ and H
− respectively. First we consider the northern hemisphere H

+. From
the general inequality

√
a2 + b2 ≥ |a cos β + b sin β| ≥ a cos β + b sin β, for any

a, b, β ∈ R, we have:
�

1 + k2 + τ2 ≥ cos ϕ +
�

k2 + τ2 sin ϕ(3)

≥ cos ϕ +
��k cos α + τ sin α

�� sin ϕ = cos ϕ +
��i∗ω12(�u)

�� sin ϕ.
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Denote by ν
� the induced volume form to S

1
ϕ
. From (2) and (3) we get

vol(�v ) H
+ ≥

�

H+

�
cos ϕ +

��i∗ω12(�u)
�� sin ϕ

�
ν(4)

=

� 1
2 π

0

�

S1
ϕ

cos ϕν
�dϕ +

� 1
2 π

0

�

S1
ϕ

��i∗ω12(�u)
�� sin ϕν

�dϕ

≥
� 1

2 π

0
2π cos2 ϕdϕ +

� 1
2 π

0
sin ϕ

���
�

S1
ϕ

i
∗
ω12

���dϕ.

The connection form ω12 satisfies dω12 = θ1 ∧ θ2. Therefore, the area of the
annulus region

A
�
ϕ,

1
2π − �

�
=

�
(x1, x2, x3) ∈ S2 | sin ϕ ≤ x3 ≤ sin( 1

2π − �)
�

provides the equality

�

A(ϕ,
1
2 π−�)

dω12 = area of A =

� 1
2 π−�

ϕ

2π cos tdt = 2π
�
sin( 1

2π − �)− sin ϕ
�
.(5)

The boundary of A(ϕ,
1
2π − �) is ∂A = S

1
ϕ
∪ S

1
1
2 π−�

(with the appropriate
orientation), so by (5) and Stokes’ Theorem

�

S1
ϕ

i
∗
ω12 =

�

A(ϕ,
1
2 π−�)

dω12 +

�

S
1
1
2 π−�

i
∗
ω12(6)

= 2π
�
sin

�
1
2π − �

�
− sin ϕ

�
+

�

S
1
1
2 π−�

i
∗
ω12.

If ω is the Riemannian connection form of the standard metric on S2, since the
limit as � goes to 0 of �v S

1
1
2 π−�

maps S
1
1
2 π−�

onto the fiber I�v (N) times, from
Proposition 2.1 we have

lim
�→0

�

S
1
1
2 π−�

i
∗
ω12 = 2π lim

�→0

�

S
1
1
2 π−�

i
∗
�v
∗Π = 2πI�v (N)

�

π−1(N)
Π = 2πI�v (N).

Thus, from (6)

(7)
�

S1
ϕ

i
∗
ω12 = 2π(1− sin ϕ) + 2πI�v (N).
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Following from (4) with (7) we have:

vol(�v ) H
+ ≥ π

2

2
+

� 1
2 π

0
sin ϕ ·

��2π(1− sin ϕ) + 2πI�v(N)
��dϕ(8)

=
π

2

2
+

� 1
2 π

0

��2π sin ϕI�v (N)− 2π sin ϕ(sinϕ− 1)
��dϕ

≥ π
2

2
+

� 1
2 π

0

���
��2π sin ϕI�v (N)

��−
��2π sin ϕ(sinϕ− 1)

��
���dϕ

≥ π
2

2
+

���
� 1

2 π

0

�
|2π sin ϕI�v (N)| − |2π sin ϕ(sinϕ− 1)|

�
dϕ

���

=
π

2

2
+

���2π
��I�v (N)

��
� 1

2 π

0
sin ϕdϕ − 2π

� 1
2 π

0
(sinϕ− sin2

ϕ)dϕ

���

=
π

2

2
+

���2π
��I�v (N)

��− 2π +
π

2

2

���.

For the southern hemisphere, the index of �v at S is obtained by

lim
�→0

�

S
1

− 1
2 π+�

i
∗
ω12 = vol(S1)I�v(S).

Therefore, if − 1
2π < ϕ ≤ 0 we have

(9)
�

S1
ϕ

i
∗
ω12 = 2πI�v(S)− 2π(sinϕ + 1).

In order to obtain a similar equation to (3) we take β = −ϕ, and together
with (2) we have

vol(�v ) H
− ≥

�

H−

�
cos ϕ−

��i∗ω12(�u)
�� sin ϕ

�
ν(10)

≥
� 0

− 1
2 π

2π cos2 ϕdϕ −
� 0

− 1
2 π

���
�

S1
ϕ

i
∗
ω12

��� sin ϕdϕ.

From (9) and (10):

vol(�v )
��
H−

≥ π
2

2
−

� 0

− 1
2 π

��2πI�v(S)− 2π(sinϕ + 1)
�� sin ϕdϕ(11)

≥ π
2

2
+

���2π
��I�v(S)

��
� 0

− 1
2 π

| sin ϕ|dϕ − 2π

� 0

− 1
2 π

| sin2
ϕ + sinϕ|dϕ

���

=
π

2

2
+

���2π
��I�v(S)

��− 2π +
π

2

2

���.

tome 136 – 2008 – no 1



UNIT FIELDS ON PUNCTURED SPHERES 153

Finally, recall that the sum of the indices of a field in S2 must be 2, therefore
the sum of the absolute values of the indices must be greater or equal than 2.
So, from (8) and (11), the volume of �v is bounded by

vol(�v ) ≥ π
2 +

���2π
��I�v(N)

��− 2π +
π

2

2

��� +
���2π

��I�v(S)
��− 2π +

π
2

2

���

≥ π
2 +

��2π
��I�v(N)

�� + 2π
��I�v(S)

��− 4π + π
2
��

= π
2 +

��2π
�
|I�v(N)| + |I�v(S)| − 2

�
+ π

2
��

= 2π
2 + 2π

�
|I�v(N)| + |I�v(S)| − 2

�
=

�
π + |I�v(N)| + |I�v(S)| − 2

�vol(S2)

2
·

2.2. Case n = 3. — As before, denote by g the metric in S3 and consider a
general situation where N = (0, 0, 0, 1), S = (0, 0, 0,−1) and I�v(N) ≥ 0 (and
therefore I�v(S) ≤ 0).

If �v is a unit vector field on W , consider on W an oriented orthonormal local
frame such that {e1, e2, e3 = �v}. The dual basis will be denoted by {θ1, θ2, θ3}.
The coefficients of the second fundamental form of the orthogonal distribution
to �v, possibly non-integrable, are hij = ωi3(ej) = g(∇ej�v, ei). The coefficients
of the acceleration of �v are given by ∇�v�v = a1e1 +a2e2. Finishing the notation,
we will use J for the integrand of the volume (1) and

σ2 =

�����
h11 h12

h21 h22

����� , σ2,1 =

�����
h11 a1

h21 a2

����� , σ2,2 =

�����
a1 h12

a2 h22

����� .

It is easy to see that

J =
�
1 +

2�

i,j=1

h
2
ij

+ a
2
1 + a

2
2 + σ

2
2 + (σ2,1)

2 + (σ2,2)
2
� 1

2

.

Note that (1 + |σ2|)2 = 1 + 2|σ2| + σ
2
2 ≤ 1 +

2�

i,j=1

h
2
ij

+ σ
2
2 . Therefore

(12) J ≥
»

(1 + |σ2|)2 + |σ2,1|2,

where equality holds if and only if a1 = a2 = 0 and we have either h11 = h22

and h12 = −h21, or h11 = −h22 and h12 = h21.

Now we want to identify the last term in (12) with the evaluation of certain
forms.

In the frame {e1, e2, �v} we can demand that e1 will be tangent to S
2
ϕ
, the

parallel of S3 with latitude ϕ ∈ (− 1
2π,

1
2π). We complete a frame in S

2
ϕ

with
�u in such a way {e1, �u} is an oriented local frame compatible with the normal
field �n that points toward the North Pole. That is, in such a way that {e1, �u, �n}
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is a positively oriented local frame of S3. Let α ∈ [0, 2π] be the oriented
angle from TS

2
ϕ

to �v and i : S
2
ϕ
→ S3 the inclusion map. In this way, �u =

cos α�v + sinαe2 and

i
∗(θ1 ∧ θ2)(e1, �u) = sinα,

i
∗(θ1 ∧ θ3)(e1, �u) = cos α,

i
∗(θ2 ∧ θ3)(e1, �u) = 0.

In order to evaluate i
∗(ω13 ∧ ω23), first we note that

ω13 ∧ ω23 = σ2θ1 ∧ θ2 + σ2,1θ1 ∧ θ3 − σ2,2θ2 ∧ θ3.

So, i
∗(ω13 ∧ ω23)(e1, �u) = sinασ2 + cos ασ2,1.

As in (3) with β ∈ [0,
1
2π] such that sin β = | sin α| and cos β = | cos α|,

from (12) we get

J ≥ sin β
�
1 + |σ2|

�
+ cos β|σ2,1|(13)

= | sin α| + | sin α| · |σ2| + | cos α| · |σ2,1|
≥ | sin α| + | sin ασ2 + cos ασ2,1|
=

��i∗(θ1 ∧ θ2)(e1, �u)
�� +

��i∗(ω13 ∧ ω23)(e1, �u)
��

≥
���i∗(θ1 ∧ θ2) + i

∗(ω13 ∧ ω23)
�
(e1, �u)

��.

We split W in northern and southern hemisphere, H
+ and H

− respectively.
Then, from (13)

vol(�v )|H+ ≥
�

H+

���i∗(θ1 ∧ θ2) + i
∗(ω13 ∧ ω23)

�
(e1, �u)

��ν(14)

≥
� 1

2 π

0

���
�

S2
ϕ

�
i
∗(θ1 ∧ θ2) + i

∗(ω13 ∧ ω23)
����dϕ.

We know that dω12 = ω13 ∧ ω23 + θ1 ∧ θ2. If A(ϕ,
1
2π − �) is the annulus

region between the parallels S
2
ϕ

and S
2
1
2 π−�

, 0 ≤ ϕ <
1
2π − � <

1
2π, we have by

Stokes’ Theorem

(15)
�

S2
ϕ

i
∗(ω13 ∧ ω23) + i

∗(θ1 ∧ θ2) =

�

S
2
1
2 π−�

i
∗(ω13 ∧ ω23) +

�

S
2
1
2 π−�

i
∗(θ1 ∧ θ2).

We bound i
∗(θ1 ∧ θ2)(e1, �u) = sinα ≥ −1 on S

2
1
2 π−�

and consequently
�

S2
ϕ

i
∗(ω13 ∧ ω23) + i

∗(θ1 ∧ θ2) ≥
�

S
2
1
2 π−�

i
∗(ω13 ∧ ω23)− 4π cos2

�
1
2π − �

�
.
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Applying Proposition 2.1, since as before, the limit as � goes to 0 of �v S
1
1
2 π−�

maps S
2
1
2 π−�

onto the fiber I�v(N) times and noting that the curvature term is
horizontal so goes to 0 in the limit,

lim
�→0

�

S
2
1
2 π−�

i
∗(ω13 ∧ ω23) = lim

�→0

�

S
2
1
2 π−�

i
∗(ω13 ∧ ω23 − Ω12)

= 4π lim
�→0

�

S
2
1
2 π−�

i
∗
�v
∗Π = 4πI�v(N)

�

π−1(N)
Π = 4πI�v(N).

So,

(16)
�

S2
ϕ

i
∗(ω13 ∧ ω23) + i

∗(θ1 ∧ θ2) ≥ 4πI�v(N) ≥ 0.

From (14) and (16) we get

(17) vol(�v ) H
+ ≥

� 1
2 π

0
4π

��I�v(N)
��dϕ = 2π

2
��I�v(N)

��.

In a similar way for the southern hemisphere, the integral of dω12 over the
annulus region A(− 1

2π + �, ϕ), − 1
2π < − 1

2π + � < ϕ ≤ 0 provides exactly (15)
but now we bound sin α ≤ 1 to obtain

�

S2
ϕ

i
∗(ω13 ∧ ω23) + i

∗(θ1 ∧ θ2) ≤
�

S
2

− 1
2 π+�

i
∗(ω13 ∧ ω23) + 4π cos2

�
− 1

2π + �
�
.

The index of �v at S can be calculated as

lim
�→0

�

S
2

− 1
2 π+�

i
∗(ω13 ∧ ω23) = vol(S2)I�v(S).

So, �

S2
ϕ

i
∗(ω13 ∧ ω23) + i

∗(θ1 ∧ θ2) ≤ 4πI�v(S) ≤ 0.

Therefore,

vol(�v )|H− ≥
� 0

− 1
2 π

���
�

S2
ϕ

i
∗(θ1 ∧ θ2) + i

∗(ω13 ∧ ω23)
���dϕ(18)

≥
� 0

− 1
2 π

4π
��I�v(S)

��dϕ = 2π
2
��I�v(S)

��.

Thus, from (17) and (18) we have

vol(�v ) ≥ 2π
2
�
|I�v(N)| + |I�v(S)|

�
=

�
|I�v(N)| + |I�v(S)|

�
vol(S3).
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3. Concluding remarks

These results should extend to higher dimensions if one makes use of some
rather complicated inequalities involving the volume integrand in (1) of a unit
vector field and some symmetric functions coming from the second fundamental
form of the orthogonal distribution (which is generally non integrable). Some
of these inequalities can be found in [6] or [5].

Index results should exist also for the case when the spheres are punctured
differently. In other words, if we have two singularities which are not antipodal
points of S2 or S3 or if we have more than two singularities, what could be said?
We believe that some results relating indices and positions of the singularities
to the volume of a unit vector field may be found.

For singular vector fields on S2 another natural situation is the one of unit
vector fields defined on S2 \ {x}. In a recent paper [1], see also [12], a unit
vector field �p is defined on S2 \ {x} by parallel translation of a given tangent
vector at −x along the minimizing geodesics to x. It has been proved in [1]
that �p minimizes the volume of unit vector fields defined on S2 \ {x}. By a
direct calculation, we obtain the inequality vol(�p) > vol(�n), where �n is the
north-south vector field tangent to the longitudes of W .

Now, new questions arise about minimality on specific topological-geometri-
cal configurations on the punctured spheres.
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