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OVER CURVES

by Vikram B. Mehta & Christian Pauly

Abstract. — Let X be a smooth projective curve of genus g ≥ 2 defined over an

algebraically closed field k of characteristic p > 0. Given a semistable vector bundle E
over X, we show that its direct image F∗E under the Frobenius map F of X is

again semistable. We deduce a numerical characterization of the stable rank-p vector

bundles F∗L, where L is a line bundle over X.

Résumé (Semi-stabilité des images directes par Frobenius sur les courbes)
Soit X une courbe projective lisse de genre ≥ 2 définie sur un corps k algébrique-

ment clos de caractéristique p > 0. Étant donné un fibré vectoriel semi-stable E sur

X, nous montrons que l’image directe F∗E par le morphisme de Frobenius F de X
est aussi semi-stable. Nous déduisons une caractérisation numérique du fibré vectoriel

stable F∗L de rang p, où L est un fibré en droites sur X.

1. Introduction

Let X be a smooth projective curve of genus g ≥ 2 defined over an alge-
braically closed field k of characteristic p > 0 and let F : X → X1 be the
relative k-linear Frobenius map. It is by now a well-established fact that on
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106 MEHTA (V. B.) & C. PAULY

any curve X there exist semistable vector bundles E such that their pull-back
under the Frobenius map F

∗
E is not semistable [4, 5]. In order to control the

degree of instability of the bundle F
∗
E, one is naturally lead (through adjunc-

tion HomOX (F
∗
E,E

�
) = HomOX1

(E,F∗E
�
)) to ask whether semistability is

preserved by direct image under the Frobenius map. The answer is (somewhat
surprisingly) yes. In this note we show the following result.

Theorem 1.1. — Assume that g ≥ 2. If E is a semistable vector bundle

over X (of any degree), then F∗E is also semistable.

Unfortunately we do not know whether also stability is preserved by direct
image under Frobenius. It has been shown that F∗L is stable for a line bundle L

(see [4, Proposition 1.2]) and that in small characteristics the bundle F∗E is
stable for any stable bundle E of small rank (see [3]). The main ingredient of
the proof is Faltings’ cohomological criterion of semistability. We also need the
fact that the generalized Verschiebung V , defined as the rational map from the
moduli space MX1(r) of semistable rank-r vector bundles over X1 with fixed
trivial determinant to the moduli space MX(r) induced by pull-back under the
relative Frobenius map F ,

Vr : MX1(r) ��� MX(r), E �−→ F
∗
E

is dominant for large r. We actually show a stronger statement for large r.

Proposition 1.2. — If � ≥ g(p−1)+1 and � prime, then the generalized Ver-

schiebung V� is generically étale for any curve X. In particular V� is separable

and dominant.

As an application of Theorem 1.1 we obtain an upper bound of the rational
invariant ν of a vector bundle E, defined as

ν(E) := µmax(F
∗
E)− µmin(F

∗
E),

where µmax (resp. µmin) denotes the slope of the first (resp. last) piece in the
Harder-Narasimhan filtration of F

∗
E.

Proposition 1.3. — For any semistable rank-r vector bundle E

ν(E) ≤ min
�
(r − 1)(2g − 2), (p− 1)(2g − 2)

�
.

We note that the inequality ν(E) ≤ (r−1)(2g−2) was proved in [10, Corol-
lary 2], and in [11, Theorem 3.1]. We suspect that the relationship between
both inequalities comes from the conjectural fact that the length (= num-
ber of pieces) of the Harder-Narasimhan filtration of F

∗
E is at most p for

semistable E.

Finally we show that direct images of line bundles under Frobenius are
characterized by maximality of the invariant ν.
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Proposition 1.4. — Let E be a stable rank-p vector bundle over X. Then

the following statements are equivalent.

1) There exists a line bundle L such that E = F∗L.

2) ν(E) = (p− 1)(2g − 2).

We do not know whether the analogue of this proposition remains true for
higher rank.

2. Reduction to the case µ(E) = g − 1

In this section we show that it is enough to prove Theorem 1.1 for semistable
vector bundles E with slope µ(E) = g − 1.

Let E be a semistable vector bundle over X of rank r and let s be the integer
defined by the equality

µ(E) = g − 1 +
s

r
·

Applying the Grothendieck-Riemann-Roch theorem to the Frobenius map
F : X → X1, we obtain

µ(F∗E) = g − 1 +
s

pr
·

Let π : ‹X → X be a connected étale covering of degree n and let π1 : ‹X1 → X1

denote its twist by the Frobenius of k (see [9, Section 4]). The diagram

(2.1)

‹X F
−−−−→ ‹X1

π

�
� π1

X
F

−−−−→ X1

is Cartesian and we have an isomorphism

π
∗

1(F∗E) ∼= F∗(π
∗
E).

Since semistability is preserved under pull-back by a separable morphism of
curves, we see that π

∗
E is semistable. Moreover if F∗(π

∗
E) is semistable,

then F∗E is also semistable.

Let L be a degree d line bundle over ‹X1. The projection formula

F∗(π
∗
E ⊗ F

∗
L) = F∗(π

∗
E)⊗ L

shows that semistability of F∗(π
∗
E) is equivalent to semistability of

F∗(π
∗
E ⊗ F

∗
L).

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



108 MEHTA (V. B.) & C. PAULY

Let g̃ denote the genus of ‹X. By the Riemann-Hurwitz formula, one has
g̃ − 1 = n(g − 1). We compute

µ(π
∗
E ⊗ F

∗
L) = n(g − 1) + n

s

r
+ pd = g̃ − 1 + n

s

r
+ pd,

which gives
µ
�
F∗(π

∗
E ⊗ F

∗
L)

�
= g̃ − 1 + n

s

pr
+ d.

Lemma 2.1. — For any integer m there exists a connected étale covering π :

‹X → X of degree n = p
k
m for some k.

Proof. — If the p-rank of X is nonzero, the statement is clear. If the p-rank is
zero, we know by [9, Corollaire 4.3.4], that there exist connected étale coverings
Y → X of degree p

t for infinitely many integers t (more precisely for all t of
the form (�− 1)(g− 1) where � is a large prime). Now we decompose m = p

s
u

with p not dividing u. We then take a covering Y → X of degree p
t with t ≥ s

and a covering ‹X → Y of degree u.

Now the lemma applied to the integer m = pr shows existence of a connected
étale covering π : ‹X → X of degree n = p

k
m. Hence n

s
pr is an integer and we

can take d such that n
s
pr + d = 0.

To summarize, we have shown that for any semistable E over X there exists
a covering π : ‹X → X and a line bundle L over ‹X1 such that the vector bundle
‹E := π

∗
E ⊗ F

∗
L is semistable with µ(‹E) = g̃ − 1 and such that semistability

of F∗
‹E implies semistability of F∗E.

3. Proof of Theorem 1.1

In order to prove semistability of F∗E we shall use the cohomological crite-
rion of semistability due to Faltings [2].

Proposition 3.1 (see [6, Théorème 2.4]). — Let E be a rank-r vector bundle

over X with µ(E) = g−1 and � an integer >
1
4 r

2
(g−1). Then E is semistable

if and only if there exists a rank-� vector bundle G with trivial determinant

such that

h
0
(X,E ⊗G) = h

1
(X, E ⊗G) = 0.

Moreover if the previous condition holds for one bundle G, it holds for a
general bundle by upper semicontinuity of the function G �→ h

0
(X,E ⊗G).

Remark. — The proof of this proposition (see [6, Section 2.4]) works over any
algebraically closed field k.
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By Proposition 1.2 (proved in Section 4) we know that V� is dominant when �

is a large prime number. Hence a general vector bundle G ∈MX(�) is of the
form F

∗
G
� for some G

� ∈MX1(�). Consider a semistable E with µ(E) = g−1.
Then by Proposition 3.1 h

0
(X, E ⊗G) = 0 for general G ∈MX(�). Assuming

G general, we can write G = F
∗
G
� and we obtain by adjunction

h
0
(X,E ⊗ F

∗
G
�
) = h

0
(X1, F∗E ⊗G

�
) = 0.

This shows that F∗E is semistable by Proposition 3.1.

4. Proof of Proposition 1.2

According to [7, Section 2], it will be enough to prove the existence of a
stable vector bundle E ∈MX1(�) satisfying F

∗
E stable and

h
0
�
X1, B ⊗ End0(E)

�
= 0,

because the vector space H
0
(X1, B⊗End0(E)) can be identified with the kernel

of the differential of V� at the point E ∈MX1(�). Here B denotes the sheaf of
locally exact differentials over X1 (see [9, Section 4]).

Let � �= p be a prime number and let α ∈ JX1[�]
∼= JX[�] be a nonzero

�-torsion point. We denote by

π : ‹X −→ X and π1 : ‹X1 −→ X1

the associated cyclic étale cover of X and X1 and by σ a generator of the Galois
group Gal(‹X/X) = Z/�Z. We recall that the kernel of the Norm map

Nm : J ‹X −→ JX

has � connected components and we denote by

i : P := Prym(‹X/X) ⊂ J ‹X
the associated Prym variety, i.e., the connected component containing the ori-
gin. Then we have an isogeny

π
∗
× i : JX × P −→ J ‹X

and taking direct image under π induces a morphism

P −→MX(�), L �−→ π∗L.

Similarly we define the Prym variety P1 ⊂ JX1 and the morphism P1 →

MX1(�) (obtained by twisting with the Frobenius of k). Note that π1∗L is
semistable for any L ∈ P1 and stable for general L ∈ P1 (see e.g., [1]). Since
F
∗
(π1∗L) ∼= π∗(F

∗
L) — see diagram (2.1) — and since F

∗ induces the Ver-
schiebung VP : P1 → P , which is surjective, we obtain that π1∗L and F

∗
(π1∗L)

are stable for general L ∈ P1.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



110 MEHTA (V. B.) & C. PAULY

Therefore Proposition 1.2 will immediately follow from the next proposition.

Proposition 4.1. — If � ≥ g(p − 1) + 1 then there exists a cyclic degree �

étale cover π1 : ‹X1 → X1 with the property that

h
0
�
X1, B ⊗ End0(π1∗L)

�
= 0

for general L ∈ P1.

Proof. — By relative duality for the étale map π1 we have (π1∗L)
∗ ∼= π1∗L

−1.
Therefore

End(π1∗L) ∼= π1∗L⊗ π1∗L
−1 ∼= π1∗(L

−1
⊗ π

∗

1π1∗L)

by the projection formula. Moreover since π1 is Galois étale we have a direct
sum decomposition

π
∗

1π1∗L
∼=

�−1�

i=0

(σ
i
)
∗
L.

Putting these isomorphisms together we find that

H
0
�
X1, B ⊗ End(π1∗L)

�
= H

0
(X1, B ⊗ π1∗

� �−1�

i=0

L
−1
⊗ (σ

i
)
∗
L

�

=

�−1�

i=0

H
0
(X1, B ⊗ π1∗

�
L
−1
⊗ (σ

i
)
∗
L)

�

= H
0
(X1, B ⊗ π1∗OX̃1

)

⊕

�−1�

i=1

H
0
(X1, B ⊗ π1∗

�
L
−1
⊗ (σ

i
)
∗
L)

�
.

Moreover π∗OX̃1
=

��−1
i=0 α

i, which implies that

H
0
(X1, B ⊗ End0(π1∗L)) =

�−1�

i=1

H
0
(X1, B ⊗ α

i
)(4.1)

⊕

�−1�

i=1

H
0
�
X1, B ⊗ π1∗(L

−1
⊗ (σ

i
)
∗
L)

�
.

Let us denote for i = 1, . . . , �− 1 by φi the isogeny

φi : P1 −→ P1, L �−→ L
−1
⊗ (σ

i
)
∗
L.

Since the function L �→ h
0
(X1, B ⊗ End0(π1∗L)) is upper semicontinuous, it

will be enough to show the existence of a cover π1 : ‹X1 → X1 satisfying
1) for i = 1, . . . , �−1, h

0
(X1, B⊗α

i
) = 0 (or equivalently, P is an ordinary

abelian variety);
2) for M general in P , h

0
(X1, B ⊗ π1∗M) = 0.
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Note that these two conditions implie that the vector space (4.1) equals {0}
for general L ∈ P1, because the φi’s are surjective.

We recall that ker (π
∗
1 : JX1 → J ‹X1) = �α� ∼= Z/�Z and that

P1[�] = P1 ∩ π
∗

1(JX1)
∼= α

⊥
/�α�

where α
⊥

= {β ∈ JX1[�] with ω(α,β) = 1} and ω : JX1[�] × JX1[�] → µ�

denotes the symplectic Weil form. Consider a β ∈ α
⊥ \ �α�. Then π

∗
1β ∈ P1[�]

and

π1∗π
∗

1β =

�=1�

i=0

β ⊗ α
i
.

Again by upper semicontinuity of the function M �→ h
0
(X1, B ⊗ π1∗M) one

observes that conditions 1) and 2) are satisfied because of the following lemma
(take M = π

∗
1β).

Lemma 4.2. — If � ≥ g(p− 1) + 1 then there exists (α,β) ∈ JX1[�]× JX1[�]

satisfying

1) α �= 0 and β ∈ α
⊥ \ �α�;

2) for i = 1, . . . , �− 1, h
0
(X1, B ⊗ α

i
) = 0;

3) for i = 0, . . . , �− 1, h
0
(X1, B ⊗ β ⊗ α

i
) = 0.

Proof. — We adapt the proof of [9, Lemme 4.3.5]. We denote by F� the finite
field Z/�Z. Then there exists a symplectic isomorphism JX1[�]

∼= Fg
� × Fg

� ,
where the latter space is endowed with the standard symplectic form. Note
that composition is written multiplicatively in JX1[�] and additively in F2g

� .
A quick computation shows that the number of isotropic 2-planes in Fg

� × Fg
�

equals

N(�) =
(�

2g − 1)(�
2g−2 − 1)

(�2 − 1)(�− 1)
·

Let ΘB ⊂ JX1 denote the theta divisor associated to B. Then by [9,
Lemma 4.3.5], the cardinality A(�) of the finite set

Σ(�) := JX1[�] ∩ΘB

satisfies
A(�) ≤ �

2g−2
g(p− 1).

Suppose that there exists an isotropic 2-plane Π ⊂ Fg
� × Fg

� which contains
≤ � − 2 points of Σ(�). Then we can find a pair (α,β) satisfying the three
properties of the lemma as follows: any nonzero point x ∈ Π determines a
line (=F�-vector space of dimension 1). Since a line contains � − 1 nonzero
points, we obtain at most (�− 1)(�− 2) nonzero points lying on lines generated
by Σ(�) ∩ Π. Since (� − 1)(� − 2) < �

2 − 1 there exists a nonzero α in the
complement of these lines. Now we note that there are �−1 affine lines parallel

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
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to the line generated by α and the � points on any of these affine lines are of
the form βα

i for i = 0, . . . , � − 1 for some β ∈ α
⊥ \ �α�. The points Σ(�) ∩ Π

lie on at most �− 2 such affine lines, hence there exists at least one affine line
parallel to �α� avoiding Σ(�). This gives β.

Finally let us suppose that any isotropic 2-plane contains ≥ � − 1 points
of Σ(�). Then we will arrive at a contradiction as follows: we introduce the set

S =
�
(x,Π) | x ∈ Π ∩ Σ(�) and Π isotropic 2-plane

�
.

with cardinality |S|. Then by our assumption we have

(4.2) |S| ≥ (�− 1)N(�).

On the other hand, since any nonzero x∈Fg
�×Fg

� is contained in (�
2g−2−1)/(�−1)

isotropic 2-planes, we obtain

(4.3) |S| ≤
�
2g−2 − 1

�− 1
A(�).

Putting (4.2) and (4.3) together, we obtain

A(�) ≥
�
2g − 1

� + 1
·

But this contradicts the inequality A(�) ≤ �
2g−2

g(p−1) if � ≥ g(p−1)+1.

This completes the proof of Proposition 4.1.

Remark. — It has been shown [8, Theorem A.6], that Vr is dominant for any
rank r and any curve X, by using a versal deformation of a direct sum a r line
bundles.

Remark. — We note that Vr is not separable when p divides the rank r and X

is non-ordinary. In that case the Zariski tangent space at a stable bundle
E ∈MX1(r) identifies with the quotient H

1
(X1,End0(E))/�e� where e denotes

the nonzero extension class of End0(E) by OX1 given by End(E). Then the
inclusion of homotheties OX1 �→ End0(E) induces an inclusion H

1
(X1,OX1) ⊂

H
1
(X1,End0(E))/�e� and the restriction of the differential of Vr at the point E

to H
1
(X1,OX1) coincides with the non-injective Hasse-Witt map.
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5. Proof of Proposition 1.3

Since we already know that ν(E) ≤ (r − 1)(2g − 2) (see [10, 11]) it suffices
to show that ν(E) ≤ (p− 1)(2g − 2).

We consider the quotient F
∗
E → Q with minimal slope, i.e., µ(Q) =

µmin(F
∗
E) and Q semistable. By adjunction we obtain a nonzero morphism

E → F∗(Q), from which we deduce (using Theorem 1.1) that

µ(E) ≤ µ(F∗Q) =
1

p

�
µmin(F

∗
E) + (p− 1)(g − 1)

�

hence
µ(F

∗
E) ≤ µmin(F

∗
E) + (p− 1)(g − 1).

Similarly we consider the subbundle S �→ F
∗
E with maximal slope, i.e.,

µ(S) = µmax(F
∗
E) and S semistable. Taking the dual and proceeding as above,

we obtain that
µ(F

∗
E) ≥ µmax(F

∗
E)− (p− 1)(g − 1).

Now we combine both inequalities and we are done.

Remark. — We note that the inequality of Proposition 1.3 is sharp. The
maximum (p− 1)(2g − 2) is obtained for the bundles E = F∗E

� (see [3, Theo-
rem 5.3]).

6. Characterization of direct images

Consider a line bundle L over X. Then the direct image F∗L is stable (see [4],
Proposition 1.2) and the Harder-Narasimhan filtration of F

∗
F∗L is of the form

(see [3])

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vp−1 ⊂ Vp = F
∗
F∗L, with Vi/Vi−1

∼= L⊗ ω
p−i
X .

In particular ν(F∗L) = (p− 1)(2g− 2). In this section we will show a converse
statement.

More generally let E be a stable rank-rp vector bundle with µ(E) = g−1+
d
rp

for some integer d and satisfying

1) the Harder-Narasimhan filtration of F
∗
E has � terms.

2) ν(E) = (p− 1)(2g − 2).

Questions. — Do we have � ≤ p? Is E of the form E = F∗G for some
rank-r vector bundle G? We will give a positive answer in the case r = 1

(Proposition 6.1).

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
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Let us denote the Harder-Narasimhan filtration by

0 = V0 ⊂ V1 ⊂ · · · ⊂ V�−1 ⊂ V� = F
∗
E, Vi/Vi−1 = Mi

satisfying the inequalities

µmax(F
∗
E) = µ(M1) > µ(M2) > · · · > µ(M�) = µmin(F

∗
E).

The quotient F
∗
E → M� gives via adjunction a nonzero map E → F∗M�.

Since F∗M� is semistable, we obtain that µ(E) ≤ µ(F∗M�). This implies that
µ(M�) ≥ g − 1 + d/r. Similarly taking the dual of the inclusion M1 ⊂ F

∗
E

gives a map F
∗
(E

∗
) → M

∗
1 and by adjunction E

∗ → F∗(M
∗
1 ). Let us denote

µ(M
∗

1 ) = g − 1 + δ,

so that µ(F∗(M
∗
1 )) = g − 1 + δ/p. Because of semistability of F∗(M

∗
1 ), we

obtain

−

�
g − 1 +

d

rp

�
= µ(E

∗
) ≤ µ

�
F
∗
(M

∗

1 )
�
,

hence δ ≥ −2p(g − 1) − d/r. This implies µ(M1) ≤ (2p − 1)(g − 1) + d/r.
Combining this inequality with µ(M�) ≥ g − 1 + d/r and the assumption
µ(M1)− µ(M�) = (p− 1)(2g − 2), we obtain that

µ(M1) = (2p− 1)(g − 1) +
d

r

, µ(M�) = g − 1 +
d

r
·

Let us denote by ri the rank of the semistable bundle Mi. We have the
equality

(6.1)
��

i=1

ri = rp.

Since E is stable and F∗(M�) is semistable and since these bundles have the
same slope, we deduce that r� ≥ r. Similarly we obtain that r1 ≥ r.

Note that it is enough to show that r� = r. Since E is stable and F∗M�

semistable and since the two bundles have the same slope and rank, they will
be isomorphic.

We introduce for i = 1, . . . , �− 1 the integers

δi = µ(Mi+1)− µ(Mi) + 2(g − 1) = µ(Mi+1 ⊗ ω)− µ(Mi).

Then we have the equality

(6.2)
�−1�

i=1

δi = µ(M�)− µ(M1) + 2(�− 1)(g − 1) = 2(�− p)(g − 1).

We note that if δi < 0, then Hom(Mi, Mi+1 ⊗ ω) = 0.
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Proposition 6.1. — Let E be stable rank-p vector bundle with

µ(E) = g − 1 + d/p and ν(E) = (p− 1)(2g − 2).

Then E = F∗L for some line bundle L of degree g − 1 + d.

Proof. — Let us first show that � = p. We suppose that � < p. Then
�−1�

i=1

δi = 2(�− p)(g − 1) < 0

so that there exists a k ≤ � − 1 such that δk < 0. We may choose k minimal,
i.e., δi ≥ 0 for i < k. Then we have

(6.3) µ(Mk) > µ(Mi) + 2(g − 1) for i > k.

We recall that µ(Mi) ≤ µ(Mk+1) for i > k. The Harder-Narasimhan filtration
of Vk is given by the first k terms of the Harder-Narasimhan filtration of F

∗
E.

Hence µmin(Vk) = µ(Mk).
Consider now the canonical connection ∇ on F

∗
E and its first fundamental

form
φk : Vk �−→ F

∗
E

∇
−→ F

∗
E ⊗ ωX −→ (F

∗
E/Vk)⊗ ωX .

Since µmin(Vk) > µ(Mi ⊗ ω) for i > k we obtain φk = 0. Hence ∇ pre-
serves Vk and since ∇ has zero p-curvature, there exists a subbundle Ek ⊂ E

such that F
∗
Ek = Vk.

We now evaluate µ(Ek). By assumption δi ≥ 0 for i < k. Hence

µ(Mi) ≥ µ(M1)− 2(i− 1)(g − 1) for i ≤ k,

which implies that

deg (Vk) =

k�

i=1

riµ(Mi) ≥ rk (Vk)µ(M1)− 2(g − 1)

k�

i=1

ri(i− 1).

Hence we obtain

pµ(Ek) = µ(Vk) ≥ µ(M1)− 2(g − 1)C,

where C denotes the fraction (
�k

i=1 ri(i− 1))/rk (Vk). We will prove in a
moment that C ≤

1
2 (p− 1), so that we obtain by substitution

pµ(Ek) ≥ (2p− 1)(g − 1) + d− (g − 1)(p− 1) = p(g − 1) + d = pµ(E),

contradicting stability of E. Now let us show that C ≤
1
2 (p−1) or equivalently

k�

i=1

iri ≤
1
2 (p + 1)

k�

i=1

ri.
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But that is obvious if k ≤
1
2 (p − 1). Now if k >

1
2 (p − 1) we note that

passing from E to E
∗ reverses the order of the δi’s, so that the index k

∗ for E
∗

satisfies k
∗ ≤

1
2 (p− 1). This proves that � = p.

Because of (6.1) we obtain ri = 1 for all i and therefore E = F∗Mp.

7. Stability of F∗E?

Is stability also preserved by F∗?

We show the following result in that direction.

Proposition 7.1. — Let E be a stable vector bundle over X. Then F∗E is

simple.

Proof. — Using relative duality (F∗E)
∗ ∼= F∗(E

∗ ⊗ ω
1−p
X ) we obtain

H
0
�
X1,End(F∗E)

�
= H

0
(X, F

∗
F∗E ⊗ E

∗
⊗ ω

1−p
X ).

Moreover the Harder-Narasimhan filtration of F
∗
F∗E is of the form (see [3])

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vp−1 ⊂ Vp = F
∗
F∗E, with Vi/Vi−1

∼= E ⊗ ω
p−i
X .

We deduce that

H
0
(X,F

∗
F∗E ⊗ E

∗
⊗ ω

1−p
X ) = H

0
(X, V1 ⊗ E

∗
⊗ ω

1−p
X ) = H

0
�
X,End(E)

�
,

and we are done.
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