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ON BRODY AND ENTIRE CURVES

by Jörg Winkelmann

Abstract. — We discuss an example of an open subset of a torus which admits a
dense entire curve, but no dense Brody curve.

Résumé (Sur les courbes de Brody et les courbes entières). — On présente un exemple
de sous-ensemble de tore qui possède une courbe entière dense mais pas de courbe de
Brody.

1. Introduction

1.1. Brody’s theorem. — Let Y be a complex manifold. It is called “taut” if
the family of all holomorphic maps f : ∆ → Y is a normal family. Let us
from now on assume that Y is compact. Then being “taut” is easily seen to be
equivalent with hyperbolicity in the sense of Kobayashi. The theorem of Brody
(see [3]) states that this is furthermore equivalent with the property that every
holomorphic map from C to Y is constant. (Remark: This can be regarded as
a special case of a heuristic philosophy known as “Bloch’s principle”, see [12].)

Now we may raise the question: What about holomorphic maps to a compact
complex manifold fixing some given base points? Given a compact complex
manifold Y and a point y ∈ Y , let us consider the following two statements:
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26 WINKELMANN (J.)

– Every holomorphic map f : C→ Y with f(0) = y is constant.
– The family of all holomorphic maps f : ∆→ Y with f(0) = y is a normal
family.

Are they equivalent?

Using the notion of the infinitesimal Kobayashi-Royden pseudometric as in-
troduced in [10] this can be reformulated into the following question: “If the infi-
nitesimal Kobayashi-Royden pseudometric on a compact complex manifold Y
degenerates for some point y ∈ Y , does this imply that there exists a holomor-
phic map f : C→ Y with y ∈ f(C)?”

Thanks to Brody’s theorem it is clear that there exists some non-constant
holomorphic map f : C → Y if the Kobayashi-Royden pseudometric is degen-
erate at some point y of Y . But it is not clear that f can be chosen in such a
way that y is in the image or at least in the closure of the image. Of course,
at first it looks absurd that degeneracy of the Kobayashi-Royden pseudometric
at one point y should only imply the existence of a non-constant holomorphic
map to some part of Y far away of y and should not imply the existence of a
non-constant map f : C→ Y whose image comes close to y.

Thus one is led to ask:

Question 1. — Let X be a compact complex manifold, x ∈ X. Assume
that the infinitesimal Kobayashi-Royden pseudometric is degenerate on TxX.
Does this imply that there exists a non-constant holomorphic map f : C → X

with f(0) = x?

Since Brody parametrization always yields a holomorphic map f : C → X

whose derivative is bounded, one might be inclined to even ask:

Question 2. — Let X be a compact complex manifold, x ∈ X. Assume
that the infinitesimal Kobayashi-Royden pseudometric is degenerate on TxX.
Does this imply that there exists a non-constant holomorphic map f : C → X

with f(0) = x such that the derivative f ′ : C→ TX is bounded (with respect to
the euclidean metric on C and some hermitian metric on X)?

In this article we give examples which show that the answer to the second
question is negative. The answer to the first question remains open.
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ON BRODY AND ENTIRE CURVES 27

1.2. Reparametrization. — The key idea for proving Brody’s theorem is the
following: Let fn : ∆ → Y be a non-normal family. Then we look for an
increasing sequence of disk ∆rn

which exhausts C (i.e. lim rn = +∞) and a
sequence of holomorphic maps αn : ∆rn → ∆ such that a subsequence of fn◦αn
converges (locally uniformly) to a non-constant holomorphic map from C to Y .

In his proof Brody used combinations of affine-linear maps with automor-
phisms of the disk for the αn.

Zalcman [12] investigated other reparametrizations where the αn themselves
are affine-linear maps, a concept which has the advantage that it can also be
applied to harmonic maps.

1.3. Subvarieties of abelian varieties. — Let A be a complex abelian variety (i.e.
a compact complex torus which is simultaneously a projective algebraic variety)
and X a subvariety. Let E denote the union of all translates of complex subtori
of A which are contained in X. It is known that this union is either all of X
or a proper algebraic subvariety (see [6]).

Since A is a compact complex torus there is a flat hermitian metric on A

induced by the euclidean metric on Cg via A ' Cg/Γ. A holomorphic map
f : C → A has bounded derivative with respect to this metric if and only if it
is induced by an affine-linear map from C to Cg.

From this, one can deduce that f(C) ⊂ E for every holomorphic map
f : C→ X with bounded derivative. In fact, f(C) ⊂ E holds for very holomor-
phic map f : C→ X; this is a consequence of the theorem of Bloch-Ochiai.

It is thus natural to conjecture:

Conjecture. — The Kobayashi-pseudodistance on X is a distance outside E.

For example, this statement is a consequence of the more general conjec-
ture VIII.I.4 by S. Lang [9]. In the context of classification theory the above
statement has also been conjectured by F. Campana [4, §9.3].

In the spirit of the analogue between diophantine geometry and entire holo-
morphic curves as pointed out by Vojta [11], the conjecture above is also sup-
ported by the famous result of Faltings [5] with which he solved the Mordell
conjecture. This result states the following: If we assume that A and X are
defined over a number field K, then with only finitely many exceptions every
K-rational point of X is contained in E.
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1.4. The first example. — We construct an example of the following type: There
is an abelian surface T with open subsets Ω2 ⊂ Ω1 ⊂ T such that there exists
an entire curve f : C → Ω1 for which the image is dense in Ω1, but for every
non-constant Brody curve f : C → T whose image is contained in Ω1 the
closure of the image is a compact complex curve inside of Ω2 (and Ω2 is not
dense in Ω1).

1.5. The second example. — We show that by blowing up a suitably chosen
curve on a suitably chosen three-dimensional abelian variety, one can obtain a
compact complex manifold X with a hypersurface Z such that Z contains the
image of every non-constant Brody curve, although X does admit an entire
curve with dense image and the infinitesimal Kobayashi-Royden pseudometric
vanishes identically on X.

1.6. Why two examples?— Although the second example suffices to show that
the answer to the second question is negative (and thus to show that the be-
haviour of Brody curves is fundamentally different from that of arbitrary en-
tire curves), we include a description of the first example (which was obtained
earlier), because we feel that it is of independent interest. The methods for
constructing the two examples are completely different, and the first example
might also be interesting from the point of view of studying entire curves in
compact complex tori.

For example, for every entire curve with values in a compact complex torus
the Zariski closure of the image is a translated subtorus, but our example shows
that the ordinary closure of the image can be far away from being a translated
real subtorus.

2. Some basic facts on Brody curves

We recall some basic facts on Brody curves.
Let X be a complex manifold endowed with some hermitian metric. Then

an entire curve is a non-constant holomorphic map from C to X and a Brody
curve is a non-constant holomorphic map f : C→ X for which the derivative f ′

is bounded (with respect to the euclidean metric on C and the given hermitian
metric on X).

– If X is compact, the notion of a “Brody curve” is independent of the
choice of the hermitian metric.

– If φ : X → Y is a holomorphic map between compact complex manifolds
and f : C → X is a Brody curve, then φ ◦ f : C → Y is a Brody curve,
too. (But not necessarily conversely.)
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– If X = Cg/Γ is a compact complex torus (e.g. an abelian variety), then
an entire curve f : C → X is a Brody curve if and only if it lifts to an
affine linear map f̃ : C→ Cg.

3. The first example

3.1. Statement of the first main result. — We construct an example of an open
domain in a torus for which the Brody reparametrization necessarily funda-
mentally changes the image for certain entire curves.

Theorem 1. — There exists a compact complex torus T , equipped with a flat
hermitian metric h and open subsets Ω2 ⊂ Ω1 ⊂ T such that:

1) Ω2 is not dense in Ω1 and neither is Ω1 in T .
2) For every point p ∈ Ω1 and every v ∈ TpΩ1 there is a non-constant

holomorphic map f : C→ Ω1 with p = f(0), v = f ′(0) and Ω1 = f(C).
3) If f : C→ T is a non-constant holomorphic map with bounded derivative

(with respect to the euclidean metric on C and h on T ) and f(C) ⊂ Ω1,
then f(C) ⊂ Ω2. Moreover f is affine-linear and f(C) is a closed analytic
subset of T .

We remark that this implies in particular that the infinitesimal Kobayashi-
Royden pseudometric vanishes identically on Ω1.

Furthermore, it provides examples of holomorphic maps from C into a com-
pact complex torus with a rather “bad” image: The closure of the image with
respect to the euclidean topology is Ω2 and thus a set with non-empty interior
such that the complement has also non-empty interior. This is in strong con-
trast to the Zariski-analytic closure: By the theorem of Green-Bloch-Ochiai for
every holomorphic map f from C to a compact complex torus T the closure of
the image f(C) with respect to the analytic Zariski topology (i.e. the smallest
closed analytic subset of T containing f(C)) is always a translated subtorus
of T .

We will now describe our example.

We precede the construction with some elementary observations about tori:
Let T = Cn/Λ be a torus, equipped with the flat euclidean metric and the
corresponding distance function dT (. , .). Let

ρ = 1
2 min
γ∈Λ\{0}

‖γ‖.
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This is the injectivity radius, in other words ρ is the largest real number such
that the natural projection π : Cn → T induces for all ε < ρ2pt][2pt] a homeo-
morphism between the ball

Bε(Cn; 0) =
{
v ∈ Cn : ‖v‖ < ε

}
and

Bε(T ; e) =
{
x ∈ T : dT (x, e) < ε

}
.

Evidently, the injectivity radius ρ is a lower bound for the diameter

ρ ≤ diam = max
x,y∈T

dT (x, y).

If we pass from T to a subtorus S ⊂ T , the injectivity radius can only increase,
while the diameter can only decrease. As a consequence we obtain:

Lemma 1. — Let T be a compact (real or complex) torus with injectivity ra-
dius ρ. Then for every real positive-dimensional subtorus S ⊂ T the diameter

diam(S) = max
x,y∈S

dT (x, y)

is at least ρ. Furthermore, if 0 < ε ≤ ρ and x ∈ T , then the ball Bε(T ;x)

contains no translate of any positive-dimensional real subtorus of T .

Before giving the details of the construction of our example, let us try to
express its idea in a drawing (see Figure 1).
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Now let us start the precise construction of the example. Let E ′ =
C/Γ′ and E ′′ = C/Γ′′ be elliptic curves and T = E ′ × E ′′. Let π′ :
C → E ′, π′′ : C → E ′′ and π = (π′, π′′) : C2 → T denote the natural
projections. We assume that E ′ is not isogenous to E ′′. (For example,
we might choose E ′ = C/Z[i] and E ′′ = C/Z[

√
2i].) Then E ′×{0} and

{0} × E ′′ are the only non-trivial complex subtori of T .
Now T = C2/Γ with Γ = Γ′ × Γ′′. The compact complex torus T

carries a hermitian metric h induced by the euclidean metric on C2

(i.e. h = dz1 ⊗ dz̄1 + dz2 ⊗ dz̄2). The associated distance function is
called d, the injectivity radius ρ is defined as explained above.

We choose numbers 0 < ρ′ < ρ′′ < ρ and define W = Bρ′(E ′, e).
Furthermore we choose 0 < δ < 1

2
ρ and we choose a holomorphic

map σ : C→ E ′′ such that there exist complex numbers t, t′ ∈ Bρ′(C, 0)
(i.e. |t|, |t′| < ρ′) and

dE′′(σ(t), σ(t′)) > 2δ.

(This is possible since 2δ is smaller than the injectivity radius ρ of T
which in turn is a lower bound for the diameter of E ′′).

Figure 1.

Now let us start the precise construction of the example.

Let E′ = C/Γ′ and E′′ = C/Γ′′ be elliptic curves and T = E′ × E′′.
Let π′ : C→ E′, π′′ : C→ E′′ and π = (π′, π′′) : C2 → T denote the natural

projections.
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We assume that E′ is not isogenous to E′′. (For example, we might choose
E′ = C/Z[i] and E′′ = C/Z[

√
2 i].) Then E′ × {0} and {0} × E′′ are the only

non-trivial complex subtori of T .
Now T = C2/Γ with Γ = Γ′ × Γ′′. The compact complex torus T carries a

hermitian metric h induced by the euclidean metric on C2 (i.e. h = dz1 ⊗ dz̄1

+ dz2 ⊗ dz̄2). The associated distance function is called d, the injectivity
radius ρ is defined as explained above.

We choose numbers 0 < ρ′ < ρ′′ < ρ and define

W = Bρ′(E′, e).

Furthermore we choose 0 < δ < 1
2ρ and a holomorphic map σ : C → E′′ such

that there exist complex numbers t, t′ ∈ Bρ′(C, 0) (i.e. |t|, |t′| < ρ′) and

dE′′
(
σ(t), σ(t′)

)
> 2δ.

(This is possible since 2δ is smaller than the injectivity radius ρ of T which in
turn is a lower bound for the diameter of E′′).

We denote by s : C→ C a holomorphic function such that σ = π′′ ◦ s.
Since π′ : C → E′ restricts to an isomorphism between Bρ(C, 0) and

Bρ(E
′, e), the holomorphic maps s and σ induce maps from Bρ(E

′, e) to C
(resp. E′′). By abuse of notation these maps will also be denoted by s (resp. σ).

Now define Ω2 = (E′ \W )× E′′ and Ω1 = Ω2 ∪ Σ with

Σ =
{

(x, y) : x ∈W, y ∈ E′′, dE′′(y − σ(x)) < δ
}
.

Let us now fix some point p ∈ Ω1 and v = (v1, v2) ∈ Tp(T ) = C2. We have
to show that there exists a holomorphic map f as stipulated in 2) of theorem 1.

Let (p1, p2) ∈ C2 be a point mapped on p by π : C2 → T . If p ∈ Σ, we
require |p1| ≤ ρ′ and |s(p1)− p2| < δ and define δ′ = δ − |s(p1)− p2|. If p 6∈ Σ,
we require |p1| > ρ′′ and define δ′ = δ.

As the next step, we will choose a pair of entire functions (Q,H).

Claim 1. — There is a pair of entire functions (Q,H) with the following prop-
erties:

1) Q is a non-constant polynomial.
2) (Q(0), H(0)) = (p1, p2).
3) (Q′(0), H ′(0)) and v are parallel.
4) If p ∈ Σ, we require furthermore that(

Q(z), H(z) + y
)
∈ π−1(Σ)

for all z and y with |Q(z)| ≤ ρ′ and |y| ≤ 1
2δ
′.
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Proof of the claim. — Let us first discuss the case where p 6∈ Σ. Then it suffices
to choose

Q(z) = z2 + v1z + p1 and H(z) = v2z + p2.

If p ∈ Σ, we proceed as follows: First, for r, t ∈ C we define

Qt(z) = (z + t)2 + p1 − t2 and Hr,t(z) = p2 − s(p1) + s
(
Qt(z)

)
+ rz.

We will set Q = Qt and H = Hr,t for appropriately chosen parameters r, t.
Evidently Qt is a polynomial for any choice of t. Furthermore(

Qt(0), Hr,t(0)
)

= (p1, p2)

independent of the choice of r, t:

Qt(0) = t2 + p1 − t2 = p1 and Hr,t(0) = p2 − s(p1) + s(p1) + 0 = p2.

Let Φr,t = (Qt, Hr,t). We have

Φ′r,t(0) =
(
Q′t(0), s′(Qt(0)

)
Q′t(0) + r) =

(
2t, 2s′(p1)t+ r

)
.

Observe that
(r, t) 7−→ 2t

2s′(p1)t+ r

defines a meromorphic function on C2 with a point of indeterminacy at (0, 0).
This is true regardless of the value of s′(p1).

Thus every neighborhood of (0, 0) contains a point (r, t) 6= (0, 0) such that
Φ′r,t(0) is a non-zero multiple of v.

Next we note that (t, z) 7→ Qt(z) defines a proper map from B1(C, 0) × C
to C. Therefore there is a constant C > 0 such that |z| < C, whenever there
exists a parameter t such that |t| ≤ 1 and |Qt(z)| ≤ ρ.

It is therefore possible to choose two numbers r, t in such a way that
1) Φ′r,t(0) is a non-zero multiple of v,
2) |t| < 1 and
3) |2rC| < δ′.

Now assume that z, y ∈ C with |Qt(z)| ≤ ρ′ and |y| < 1
2δ
′. By the definition

of the constant C, this implies |z| < C. Let

(w1, w2) = Φr,t(z) + (0, y).

Then ∣∣w2 − s(w1)
∣∣ =

∣∣p2 − s(p1) + rz + y
∣∣

< |p2 − s(p1)|+ |rC|+ 1
2δ
′ < (δ − δ′) + 1

2δ
′ + 1

2δ
′ = δ.

Now |w2 − s(w1)| < δ in combination with |w1| = |Qt(z)| ≤ ρ′ implies
π(w1, w2) ∈ Σ. Hence Φr,t(z) + (0, y) ∈ π−1(Σ) under this assumption. Thus
the claim is proved.
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Our next step is to construct a closed subset A of C to which we will apply
Arakelyan approximation.

Let A0 be the union of Bρ′′(0) and Bρ′(γ) for all γ ∈ Γ′. If p 6∈ Σ,
then p1 6∈ A0. Hence in this case we can choose η > 0 such that Bη(p1) is dis-
joint to A0 and define A1 as the union of A0 with this closed ball Bη(p1).
If p ∈ Σ, we simply take A1 = A0.

Next we choose dense countable subsets S1 ⊂ int(Σ) (where int(Σ) denotes
the interior of Σ) and S2 ⊂ Ω2. We observe that C \ A1 projects surjectively
onto E′ \W and that the fibers of this projection are infinite discrete subsets
of C. For this reason we can find sequences an, bn in C such that

S2 =
{
π(an, bn) : n ∈ N

}
and all the an are distinct elements of C\A1 with limn→∞ |an| = +∞. It follows
that

Θ =
{
an : n ∈ N

}
is a discrete subset of C which has empty intersection with A1. We define

A2 = A1 ∪Θ.

We fix a bijection ξ : Γ′ \ {0} ∼→ S1 and an enumeration n 7→ γn of Γ′ \ {0}.
Then we can choose sequences of complex numbers cn, dn such that the follow-
ing properties hold for all n ∈ N

1) π(cn, dn) = ξ(γn),
2) |cn − γn| < ρ′ and
3) |dn − s(cn)| < δ.

We define A = Q−1(A2). Observe that A contains Q−1(S1).

Claim 2. — Arakelyan approximation is applicable to A, i.e. {∞} ∪ (C \ A)

is connected and locally connected.

Proof of the claim. — Observe that C \ A1 is an unbounded open connected
subset and that Q : C → C is a ramified covering. Hence the connected
components of Q−1(C\A1) are also unbounded. Thus P1\Q−1(A) is connected.
Furthermore Q is conjugated to z 7→ z2 near∞, which implies that P1\Q−1(A)

is locally connected at ∞. Thus the claim is proved.

We will now define a continuous function h on A, which is holomorphic in
its interior, and which we will then approximate by an entire function, using
Arakelyan’s theorem.

– If p 6∈ Σ, we take h(z) = H(z) on Q−1(Bη(p1)) and h = s on
Q−1(Bρ′′(0)).

– If p ∈ Σ, we define h on Q−1(Bρ′′(0)) as H(z).
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Next, for every n ∈ N, we define h(z) as

h(z) = s(Q(z)− γn) + dn − s(cn)

whenever |Q(z)− γn| ≤ ρ′.
Finally, we define h on Q−1(Θ) by stipulating that h(z) = bn whenever

Q(z) = an for a number n ∈ N.
By the construction of (Q,H) we know that π(Q(0), h(0)) = p and that

(Q′(0), h′(0)) is a multiple of v. The choice of h implies moreover that S1 ∪ S2

is contained in the image of z 7→ π(Q(z), h(z)).
Next we define a continuous positive function ε : A→ R+ as follows:
• ε ≡ 1 on Q−1(Bη(p1)) if p 6∈ Σ.
• ε ≡ 1

2δ
′ on Q−1(Bρ′′(0)).

• ε(z) = 1
n if Q(z) = an.

• ε(z) = min
{

1
n ,

1
2 (δ − |dn − s(cn)|)

}
whenever |Q(z)− γn| ≤ ρ′.

Using proposition 1, we deduce that there exists an entire function
F : C→ C such that

1) |F (z)− h(z)| < ε(z) for all z ∈ A,
2) F (0) = h(0) and F ′(0) = h′(0).

By the second condition we obtain that π(Q(0), F (0)) = p and that
(Q′(0), F ′(0)) is a multiple of v. The first condition ensures that π(Q(z), F (z))

belongs to Ω for all z ∈ C. It also ensure that the image is dense: Indeed,
let w ∈ Ω2. Then there is a sequence of points in S2 converging to w. But
S2 = {π(an, bn) : n ∈ N} and the construction of F implies that for every n ∈ N
there exists a number zn ∈ C such that Q(zn) = an and |F (zn) − bn| < 1

n .
It follows that there is a subsequence znk

such that limk π(Q(znk
), F (znk

)) = w.
If w ∈ Σ, we argue similarily, with S1 in the role of S2. Thus the whole set Ω1

is in the closure of the image of the map z 7→ π(Q(z), F (z)) from C to T .
Finally, let µ be a complex number such that µ(Q′(0), F ′(0)) = v and define

f(z) = π
(
Q(µz), F (µz)

)
.

Then f : C→ Ω1 is a holomorphic map with the desired properties.
We still have to show assertion 3) of the theorems. Recall that T ' E′ ×

E′′ where E′ and E′′ are non-isogenous elliptic curves. Recall furthermore
that T , E′, E′′ and {e} are the only subtori of T (this is a consequence of
E′ and E′′ being non-isogenous). If f : C → T is a holomorphic map with
bounded derivative, Liouville’s theorem implies that f ′ : C → C2 is constant.
Therefore f is induced by an affine-linear map f̃ : C → C2 and thus f(C) is
the orbit of a 1-dimensional complex Lie subgroup H of T . Hence the closure
Ω1 must contain an orbit of the closure H of H in T if f(C) ⊂ Ω1. We
choose a point w ∈ W and consider the intersection of this H-orbit with F =
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(π′)−1(w) ' E′′. By construction Ω1 ∩ F is an open disc embedded into the
elliptic curve E′′. Thus F ∩ Ω1 does not contain any orbit of any positive-
dimensional subtorus of E′′. This leaves two possibilities: First, f(C) ∩ F
may be empty. Since every non-surjective holomorphic map from C to an
elliptic curve is constant, it follows that f(C) is a fiber of π′ : T → E′. As a
consequence, f(C) ⊂ Ω2 if f(C) ⊂ Ω1. Second possibility: f(C) ∩ F is non-
empty, but finite. Then the Lie group homomorphism from H to E′ induced by
the projection map π′ has finite kernel. It follows that H = H = E′. However,
by construction Ω1 does not contain any E′-orbit. So the second possibility
does not occur.

This completes the proof of theorems 1 and 2 (modulo the approximation
result which we prove in the next section).

4. Arakelyan approximation with interpolation

We will need the following slight improvement of Arakelyan’s theorem.

Proposition 1. — Let A be a closed subset in C for which P1 \A is connected
and locally connected at ∞. Let q be a point in the interior of A and let
f : A→ C be a continuous function which is holomorphic in the interior of A.
Furthermore let ε : A → R+ be a continuous function. Then there exists an
entire function F such that

F (q) = f(q), F ′(q) = f ′(q) and
∣∣F (z)− f(z)

∣∣ < ε(z)

for all z ∈ A.

Proof. — By the classical theorem of Arakelyan (see [1]) we know that there
is an entire function F with |F (z)− f(z)| < ε(z) for all z ∈ A.

We have to show that we can choose F in such a way as to obtain the
additional conditions F (q) = f(q) and F ′(q) = f ′(q).

There is no loss in generality in assuming f(q) = f ′(q) = 0 and B1(q) ⊂ A.
First we show that we can achieve F (q) = f(q). Let F1 be an entire function

with |F1(z)− f(z)| < 1
5ε(z) for all z ∈ A. If F1(q) = 0, we are done. If not, we

define g1 = F1 − f and choose an entire function G1 such that

|G1(z)− g1(z)| < min
{

1
2

∣∣g1(q)
∣∣, 1

5ε(z)
}
, ∀z ∈ A.

Then we define
F2 = F1 −

F1(q)

G1(q)
G1.

By construction we have |F1(q)/G1(q)| < 2, |G1(z)| < 2
5ε(z) and therefore

|F2(z) − f(z)| < ε(z) for all z ∈ A. Thus it is possible to find such an entire
function with the additional property F (q) = 0 = f(q).
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Next we discuss the condition on F ′(q). By the preceding arguments there
is an entire function F2 with F2(q) = f(q) and |F2(z) − f(z)| < 1

5ε(z). As-
sume F ′2(q) 6= 0. Then we define g2 = F2 − f and choose an entire function G2

with G2(q) = g2(q) = 0 and∣∣G2(z)− g2(z)
∣∣ < min

{
1
2

∣∣g′2(q)
∣∣, 1

5ε(z)
}
, ∀z ∈ A.

Since B1(q) ⊂ A and therefore |G2(z) − g2(z)| < 1
2g
′
2(q) for all z ∈ B1(q), the

lemma of Schwarz implies that |G′2(q)| > 1
2 |g
′
2(q)|. Using this fact, one verifies

easily that

F3(z) = F2(z)− F ′2(q)

G′2(q)
G2(z)

is an entire function with the desired properties.

5. The second main result

We prove the following theorem:

Theorem 2. — There exists a projective manifold X with a hypersurface Z
such that for every point x ∈ X there exists an entire curve f : C → X with
f(C) = X and x ∈ f(C), but Z contains the image of every Brody curve.

5.1. Proof of the main theorem. — The main theorem is a consequence of the
more specific theorem below.

Theorem 3. — There exists an abelian threefold A with a smooth curve C
such that the smooth projective variety Â obtained by blowing up A along C
has the following properties:

1) For every point p ∈ Â there exists a non-constant entire curve γ : C→ Â

with p ∈ γ(C) and γ(C) = Â.
2) For a given point p ∈ Â there exists a non-constant Brody curve

γ : C→ Â with p ∈ γ(C) if and only if p is contained in the exceptional
divisor E = π−1(C) of the blow-up π : Â→ A.

The key idea is that the hermitian metric will explode in some directions due
to the blow up and that this will create an obstruction against lifting Brody
curves. As a consequence there will be no Brody curves outside the exceptional
divisor. To realize this idea it is necessary to ensure that the center of the blow-
up intersects the closure of the image of each Brody curve. To achieve this it
will be necessary to blow up a center of positive dimension. Furthermore, since
the center of a blow-up has real codimension at least four, it is necessary to
choose the abelian variety in such a way that for every Brody curve the closure
is at least real 4-dimensional.
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Proof. — 1) For every x ∈ A and v ∈ TxA there is an affine-linear curve
γ : C → A with γ(0) = x and γ′(0) = v. Recall that π : Â → A is an
isomorphism outside C and that each point of x ∈ C is replaced by P(Tx/TxC).
Observe further that each entire curve γ : C → A lifts to Â unless γ(C) ⊂ C.
Combined, these facts yield statement 1).

2) We have π−1(x) ' P1 for every x ∈ C. This implies that there is a Brody
curve through every point in E = π−1(C). Conversely, let f̂ : C → Â be a
Brody curve. We will see that f̂(C) ⊂ E = π−1(C) if we choose A and C

according to proposition 7 below. Now f̂ being a Brody curve implies that
f = π ◦ f̂ : C → A is a Brody curve or constant. Let us assume that f is not
constant. If A = C3/Γ, then f lifts to an affine-linear map F : C → C3. The
image f(C) is thus the orbit of a complex one-parameter subgroup P of A.
Let H denote the (real) closure of P in A. Thanks to proposition 7 we may
assume thatH and C intersect transversally in some point p. But now we arrive
at a contradiction because according to proposition 3 under these circumstances
f : C → A can not be induced by a Brody curve f̂ : C → Â. Thus f = π ◦ f̂
must be constant. Since f̂ is non-constant and π is an isomorphism outside
of C, it follows that f̂(C) ⊂ E = π−1(C).

5.2. Local model of blow-up. — The idea we use is: If we blow up something,
the hermitian metric will explode somewhere. We will now make this precise.

Proposition 2. — Let A be a three-dimension complex manifold, C a smooth
curve, π : Â → A the corresponding blow-up with center C, p ∈ C and Ln a
sequence of (local) curves converging to a (local) curve L0 such that

1) L0 intersects C transversally in p,
2) the intersection Ln ∩ C is empty for all n 6= 0.

Furthermore assume A and Â endowed with hermitian metrics. Then there
exist sequences pn ∈ Ln and vn ∈ Tpn

(Ln) such that lim pn = p and
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lim sup
‖π−1(vn)‖

Â

‖vn‖A
=∞

(note that Ln ⊂ A \ C and that π is an isomorphism on A \ C.)

Proof. — Let p̂ denote the point in π−1(p) which points in the direction of L
(using the isomorphism between π−1(p) and the projectivization of the normal
tangent space TpA/TpC.)

We fix local holomorphic coordinates on A and Â around p resp. p̂ such that
the defining equations for C and L0 become as simply as possible. Doing this
we get local holomorphic coordinates such that

C =
{

(z1, z2, z3) : z1 = z2 = 0
}
, L0 =

{
(z1, z2, z3) : z2 = z3 = 0

}
.

Now the projection map can be written as

π(x1, x2, x3) = (x1x2, x2, x3).

Since limLn = L0, the curves Ln can be parametrized as

Ln =
{
γn(t) = (t, αn(t), βn(t)

}
where t runs through an appropriate small neighbourhood of 0 and where αn,
βn are sequences of holomorphic functions converging uniformly to the constant
function zero on this small neighbourhood.

Since all the calculations happen in some small neighbourhood of p (resp. p̂ ),
we may replace the given hermitian metrics by the euclidean metric with respect
to our coordinate systems.

Our next step is to define the auxiliary function

φn(t) = t+ αn(t)α′n(t)

We observe that φn converges to the identity map φ(t) = t. Therefore the
theorem of Rouché allows us to choose a sequence sn with limn sn = 0

and φn(sn) = 0 for all n.
We claim: αn(sn) 6= 0. Indeed, assume αn(sn) = 0. Then

αn(sn)α′n(sn) = 0

and consequently 0 = φn(sn) = sn + 0 implies sn = 0 and therefore

0 = αn(sn) = αn(0).

But αn(0) = 0 is impossible, because Ln ∩ C is empty. Thus the assumption
αn(sn) = 0 leads to a contradiction, i.e., αn(sn) must be non-zero.

Hence we may divide by αn(sn) and thereby deduce that φn(sn) = 0 implies

α′n(sn) = −sn/αn(sn).
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If γ̂(t) denotes the point in Â lying above γn(t) ∈ A \ C, we obtain

γ̂n(sn) =
(
sn/αn(sn), αn(sn), βn(sn)

)
=
(
− α′n(sn), αn(sn), βn(sn)

)
which converges to (0, 0, 0) = p̂ ∈ Â if n goes to infinity.

Now
γ′n(sn) =

(
1, α′n(sn), β′n(sn)

)
=⇒ lim

n

∥∥γ′n(sn)
∥∥ = 1

while

γ̂′n(sn) =
(1− α′n(sn)

(αn(sn))2
, α′n(sn), β′n(sn)

)
=⇒ lim

n

∥∥γ̂′n(sn)
∥∥ = +∞.

5.3. Brody curves and blow ups

Proposition 3. — Let A be an abelian variety, C a submanifold contain-
ing eA and π : Â→ A the blow-up with center C. Let φ : C→ A be a complex
1-parameter subgroup with closure B = φ(C). Let q ∈ B and define a Brody
curve γ : C→ A by γ(z) = φ(z) + q. Assume moreover that

1) v = φ′(0) 6∈ TeA
C and

2) TeA
B 6⊂ TeA

C ⊕ 〈v〉C.

Then there does not exist a Brody curve γ̂ : C→ Â with γ = π ◦ γ̂.

Proof. — Let τ : C3 → A be the universal covering. Recall that B is a real
subtorus. Let V be the Lie algebra of B. We may regard V as the connected
component of τ−1(B) which contains 0. Since φ(C) is dense in B and q ∈ B,
we can find elements λn ∈ φ(C) such that lim(λn + q) = eA. Due to condi-
tion 2) the elements λn can be chosen in such a way that there are small open
neighbourhoods W of eA in A and ∆ of 0 in C such that

C ∩W ∩
(
λn + γ(∆)

)
= {}.

Now we can use proposition 2 with p = eA, L0 = φ(∆) and Ln = (λn+γ(∆)).
Hence

sup
t∈C

‖γ̂′(t)‖
Â

‖γ′(t)‖A
= +∞

where γ̂ : C→ Â is the natural lift of γ.

Since γ is induced by an affine-linear map, the norm ‖γ′(t)‖A is a positive
constant and in particular bounded from below by a number greater than zero.
Together with the above equation this implies that γ̂ can not be a Brody curve.
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5.4. Excluding real subtori of dimension 3. — In this section we deduce the fol-
lowing statement:

Proposition 4. — There exists an abelian 3-fold A such that every real
subtorus of real dimension 3 is totally real in A.

We will prove this assertion by showing that every very general abelian
three-fold has this property, i.e., we demonstrate:

Proposition 5. — Let U → D be a locally complete family of abelian varieties
of dimension 3. Then there exists a countable family of nowhere dense closed
analytic subsets Zi ⊂ D such that every abelian threefold A corresponding to
a point outside the union

⋃
i Zi has the property “Every real subtorus of real

dimension 3 is totally real in A”.

Before proving the proposition, we need some lemmata.

Lemma 2. — Let A = C3/Γ be an complex abelian 3-fold, S a real subtorus
of dimension 3. Then there is a joint deformation of S ⊂ A over the unit disc
such that At is an abelian variety for all t and St is totally real for all t 6= 0.

Proof. — Let Λ ⊂ Γ be the Z-submodule corresponding to S. Since A is an
abelian variety, C3 admits a hermitian form H such that B = ImH has integer
values on Γ×Γ. Now B is alternating and 3 = rankZ(Λ) is odd, hence there is
an element v ∈ Λ for which B(v, .) vanishes identically on Λ. Let ΛR (resp. ΛC)
be the real (resp. complex) vector subspace of C3 generated by Λ. We may
assume that ΛR is not totally real. Then dimC(ΛC) = 2 and L = ΛR ∩ iΛR is a
complex line. Now we choose an element w ∈ Γ such that

1) B(v, w) 6= 0,
2) B(w, .) does not vanish identically on L and
3) w 6∈ ΛC.

We define R-linear self-maps φt of C3 as follows: First we observe that C3 is
the direct sum of R · v and K = {x : B(x,w) = 0}. Second we set

φt(v) = v + tw and φt(x) = x for all x ∈ K.
It is easy to check that φt is always bijective and moreover an isometry for B.
Hence Γt = φt(Γ) is a lattice for which the assertion B(Γt,Γt) ⊂ Z holds.
Thus At = C3/Γt is an abelian variety.

Now let us look at φt(ΛR). First we consider the real vector subspace

V = ΛR ⊕ Rw.

Let K = {x : B(x,w) = 0}. Then V = (V ∩K)⊕Rv. Now φt acts trivially on
K and φt(v) = v + tw ∈ V . Hence φt stabilizes V . We note that dimR(V ) = 4

and 〈V 〉C = C3, because w 6∈ ΛC. Therefore V contains a unique complex
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line, which must be L. Since φt(ΛR) ⊂ V , we may deduce that for each t

either φt(ΛR) is totally real or contains L. Now, by the construction of φt it is
clear that

φt(ΛR) ∩ φs(ΛR) = ΛR ∩K
for any s 6= t. Since L 6= ΛR ∩K due to condition 2) for the choice of w, we
may deduce that L 6⊂ φt(ΛR) for t 6= 0. As a consequence, φt(ΛR) is totally
real for t 6= 0.

Lemma 3. — Let π : U → D be a family of 3-dimensional complex abelian
varieties, parametrized by D which we assume to be the unit ball in some CN .
Let S0 be a real 3-dimensional subtorus of the abelian variety U0 = π−1(0)

Then there is natural deformation St of S0 (t ∈ D) such that

Z =
{
t ∈ D : St is not totally real

}
is a closed complex analytic subset of D.

Proof. — The family U can be described as a quotient C3 ×D by a Z6-action
which is given as

(m1, . . . ,m3, n1, . . . , n3) : (v; t) 7−→
(
v + (m1,m2,m3) +

∑
i

nifi(t); t
)

where v ∈ C3, t ∈ D and where the fi are holomorphic maps from D to C3.
We may assume that S0 is the subtorus for which the corresponding subgroup

of Z-rank 3 is generated by f1(0), f2(0 and f3(0). Then St corresponds to the
subgroup generated by the fi(t) and St is totally real if and only if this group
spans C3 as a complex vector space. Therefore the set of all t ∈ D for which St
fails to be totally real is the zero locus of det(f1(t), f(t), f3(t)) and thus is a
closed complex analytic set.

Now we can prove the proposition.

Proof. — There are only countably many different real subtori of real dimen-
sion three for a given abelian 3-fold A, each corresponding to a Z-submodule
of rank three of Z6 = H1(A,Z).

Inside the family U → D there are canonical isomorphisms

H1(U0,Z) ' H1(Ut,Z)

which we may therefore identify.
Now for each fixed Z-submodule of rank three the set of all t ∈ D for which

the corresponding subtorus St fails to be totally real is a closed analytic subset
(lemma 3) which is not all of D (lemma 2). This proves the proposition 5 and
thereby proposition 4.
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Remark. — 1) Since every subtorus of dimension smaller than 3 can be em-
bedded into a subtorus of dimension 3, the property “All real subtori of real
dimension 3 are totally real” is equivalent to the property “All real subtori of
real dimension up to 3 are totally real”.

2) An abelian threefold A is a simple abelian variety if and only if it contains
no elliptic curve. The latter property is equivalent to the statement “All real
subtori of real dimension up to two are totally real”. Hence the property “All
real subtori of real dimension three are totally real” implies that the abelian
3-fold under discussion is simple.

5.5. Dealing with real subtori of dimension 4. — The main goal of this section is
to to verify that we can a choose a curve C in a 3-dimensional abelian variety
A such that C intersects the closure of every translate of every real subtorus
of real dimension 4.

Lemma 4. — Let A be an abelian threefold, x ∈ A and let L be a complex line
in TxA. Then there exist smooth curves C ⊂ A with x ∈ C such that TxC is
arbitrarily close to L.

Proof. — We construct curves by embedding A into a projective space and tak-
ing the intersection of A with linear subspaces of codimension two containing x.
Then the statement follows from Bertini’s theorem.

Lemma 5. — Let A be an abelian threefold with smooth curves C and C ′. Then
there is a dense open subset U ⊂ A such that C ∪ λ∗tC ′ is smooth for t ∈ U
where λt denotes translation by t.

Proof. — C ∪ λ∗tC ′ is smooth if and only if C and λ∗tC
′ are disjoint. Hence

U = A \ {x− y : x ∈ C, y ∈ C ′}.

Lemma 6. — Let V be a complex 3-dimensional vector space equipped with a
hermitian inner product H and let W be a real 4-dimensional real subspace.
Then there exists a complex line L ⊂ V such that the angle between W and L
is at least 1

4π. i.e., ∣∣〈v, w〉∣∣ ≤ cos
(

1
4π
)
‖v‖ · ‖w‖

for all v ∈ L,w ∈W .

Remark. — If H(. , .) is an hermitian inner product, its real part is the asso-
ciated euclidean inner product and thus the angle between two vectors v and w
is the number φ ∈ [0, 1

2π] for which cosφ = ReH(v, w).

Proof. — We may choose vectors A,B,C such that (A, iA,B, iB,C, iC) is an
orthonormal basis for ReH and 〈A, iA,B,C + λiB〉 = W for some λ ∈ R.
Then we choose:
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• L = 〈C〉C if |λ| > 1,
• L = 〈B + iC〉C if 0 ≤ λ ≤ 1 and
• L = 〈B − iC〉C if −1 ≤ λ < 0.

It is easy to check that in each case the angle is at least 1
4π.

Proposition 6. — Let A be an abelian threefold (i.e. an abelian variety of
dimension 3). Then there exists a smooth complex curve C ⊂ A such that
for every real 4-dimensional subtorus S ⊂ A and every point a ∈ A there
exists a point p ∈ C where C and S(a) (the S-orbit in A through a) intersect
transversally.

Proof. — We have to consider all 4-subtori. Since the set of all such tori lacks
good geometric properties, we instead consider the larger set of all connected
real Lie subgroups of real dimension 4, or, equivalently, the real Grassmann
variety M which parametrizes all real vector subspaces of dimension 4 of the
Lie algebra Lie(A) ' C3. This is a real compact variety.

Now we fix an hermitian inner product on Lie(A) ' C3 (e.g. the standard one
for C3 or the one corresponding to the Riemann condition). For each element
H ∈ M we define a closed neighbourhood BH as follows: An element H ′

belongs to BH iff for every vector v′ in H ′ there is a vector v ∈ H such that
the angle between v and v′ is at most 1

16π. Due to compactness of M there is
a finite collection of elements Hi ∈M , i ∈ I such that M =

⋃
i∈I BHi .

Next we will choose a smooth complex curve Ci ⊂ A for each i ∈ I. Fix an
index i. Let H = Hi and B = BHi

. Choose a complex line L in TeA
A ' Lie(A)

such that the angle between L and H is at least 1
4π (which is possible due to

lemma 6). Then we choose a smooth complex curve S = Si through eA such
that for each v ∈ TeA

S there is a vector v′ ∈ L such that the angle between v
and v′ is at most 1

16π (lemma 4). By the definition of B, the angle between
TeA

S and H ′ is at least 1
8π for every H ′ ∈ B.

Now let π : C3 → A denote the universal covering. Let F denote a fun-
damental region, i.e. a compact subset of C3 with π(F ) = A. Let W be an
open neighbourhood of eA in S which is small enough such that the embed-
ding of W in A lifts to an embedding into C3, taking eA to 0. In addition,
we require that W is small enough such that for every w ∈ W , v ∈ TwS \ {0}
and v′ ∈ TeA

S \ {0} the angle between v and v′ is at most 1
16π.

For each H ′ ∈ B we define

Z(H ′) =
{
c+ h : c ∈W,h ∈ H ′

}
.

We claim: There exists a number ρ > 0 such that Z(H ′) contains the ball with
radius ρ and center 0 for every H ′ ∈ B. Indeed, assume the contrary. Then
there are sequences v(k) ∈ C3 and H(k) ∈ B such that:
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1) H(k) converges to an element H ′′ ∈ B (recall that B is compact),
2) lim v(k) = 0,
3) v(k) 6∈ Z(H(k)).

But this would contradict the fact that H ′′ and TeA
W are transversal. Thus we

can find such a number ρ. Next, using compactness of F , we choose a finite set
Σ ⊂ C3 such that for every x ∈ F there is an element s ∈ Σ with ‖x− s‖ < 1

3ρ.
Using this fact and lemma 5 we can find a map ξ : Σ→ C3 such that:
•
⋃
s∈Σ(π(ξ(s)) + S) is smooth and

• |ξ(s)| < 1
3ρ for all s ∈ Σ

Then we have constructed a smooth curve in A, namely

S′ =
⋃
s∈Σ

(
π(ξ(s)) + S

)
with the following property:

(T) For every vector u ∈ C3 with ‖u‖ < 1
3ρ and every real 4-dimensional

subtorus H of A with Lie(H) ∈ B every H-orbit in A intersects π(u) + S′ in
some point transversally.

We found this curve S′ after fixing an element i ∈ I. We can do the same
for every element i ∈ I, obtaining a family of curves S′i and a family of positive
real numbers ρi.

Then by lemma 5 we can choose vectors ui such that ‖ui‖ < 1
3ρi and such

that C =
⋃
i∈I(π(ui) + S′i) is a smooth curve.

By construction this curve has the property that it intersects each translate
of each real 4-dimensional subtorus of A in at least one point transversally.

Proposition 7. — There exists an abelian threefold A with a complex curve C
such that the following property holds: For every complex one-parameter sub-
group P of A and every point a in A there is a point p in C where C and the
(real) closure of P · a intersect transversally.

Proof. — We may choose A such that every real 3-dimensional real subtorus
is totally real (proposition 4). Then evidently real subtori of smaller dimension
are totally real as well. Now let P be a complex 1-parameter subgroup of A.
The closure of P is again a subgroup, and therefore in fact a real subtorus.
This subtorus does not need to be complex, but it can not be totally real, since
it contains P . Therefore for every complex 1-parameter subgroup P of A the
real dimension of its closure in A is at least 4. In particular, the closure P of P
in A contains a real subtorus S of real dimension 4. Now it suffices to choose
the curve C according to proposition 6: If P contains a real subtorus S of real
dimension 4 which intersects C transversally in some point p, then P itself has
transversal intersection with C in p as well.
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6. Brody curves and sets of rational points

Conjecturally entire curves or Brody curves with values in projective vari-
eties defined over some number field behave somewhat analoguously to sets of
rational points (admitting finite field extensions).

As we have seen, Brody curves and arbitrary entire curves behave differently.
So which are the right analogue for rational point sets? In our construction
at one point we made a “very generic” choice. For this reason it is not clear
whether one can find such an example which is defined over a number field.

If such an example can be defined over a number field, it would suggest
that complex-analytic concept corresponding to infinite rational point sets are
arbitrary entire curves and not Brody curves: For every abelian variety A

defined over a number field k there is a finite field extensionK/k such that A(K)

is Zariski dense. Then also X(K) is Zariski dense in X for every projective
manifoldX obtained from A by blowing up something. Thus if our construction
can be realized over a number field, it would yield a projective variety defined
over some number field K such that every Brody curve is degenerate, but there
is a Zariski dense subset of K-rational points.

In any case, dense sets of rational points as well as dense entire curves
behave nicely under birational transformations while our example shows that
the behaviour of Brody curves may change dramatically.

This suggests that the right complex-analytic analogue to infinite sets of
rational points should be arbitrary entire curves rather than Brody curves.
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