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POINTED k-SURFACES

by Graham Smith

Abstract. — Let S be a Riemann surface. Let H3 be the 3-dimensional hyperbolic
space and let ∂∞H3 be its ideal boundary. In our context, a Plateau problem is
a locally holomorphic mapping ϕ : S → ∂∞H3 = bC. If i : S → H3 is a convex
immersion, and if N is its exterior normal vector field, we define the Gauss lifting, ı̂,
of i by ı̂ = N . Let −→n : UH3 → ∂∞H3 be the Gauss-Minkowski mapping. A solution
to the Plateau problem (S, ϕ) is a convex immersion i of constant Gaussian curvature
equal to k ∈ (0, 1) such that the Gauss lifting (S, ı̂) is complete and −→n ◦ ı̂ = ϕ. In this
paper, we show that, if S is a compact Riemann surface, if P is a discrete subset of S

and if ϕ : S → bC is a ramified covering, then, for all p0 ∈ P, the solution (S\P, i) to the
Plateau problem (S \ P, ϕ) converges asymptotically as one tends to p0 to a cylinder
wrapping a finite number, k, of times about a geodesic terminating at ϕ(p0). Moreover,
k is equal to the order of ramification of ϕ at p0. We also obtain a converse of this
result, thus completely describing complete, constant Gaussian curvature, immersed
hypersurfaces in H3 with cylindrical ends.
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Résumé (k-surfaces à points). — Soit S une surface de Riemann. Soit H3 l’espace
hyperbolique de dimension 3 et soit ∂∞H3 son bord à l’infini. Dans le cadre de cet
article, un problème de Plateau est une application localement holomorphe ϕ : S →
∂∞H3 = Ĉ. Si i : S → H3 est une immersion convexe, et si N est son champ de vecteurs
normal, on définit ı̂, la relevée de Gauss de i, par ı̂ = N . Soit −→n : UH3 → ∂∞H3

l’application de Gauss-Minkowski. Une solution au problème de Plateau (S, ϕ) est
une immersion convexe i à courbure gaussienne constante égale à k ∈ ]0, 1[ telle que sa
relevée de Gauss (S, ı̂) soit complète en tant que sous-variété immergée et que −→n ◦ı̂ = ϕ.
Dans cet article, on montre que, si S est une surface de Riemannn compacte, si P est
un sous-ensemble discret de S et si ϕ : S → Ĉ est un revêtement ramifié, alors,
pour tout p0 ∈ P, la solution (S \ P, i) au problème de Plateau (S \ P, ϕ) converge
asymptotiquement vers un cylindre qui s’enroule un nombre fini k de fois autour d’une
géodésique ayant ϕ(p0) pour une de ses extrémités lorsqu’on s’approche de p0. De plus,
k est égale à l’ordre de ramification de ϕ en p0. On obtient également une réciproque
de ce résultat nous permettant de décrire entièrement les surfaces complètes immergées
dans H3 à courbure gaussienne constante et aux bouts cylindriques.

1. Introduction

In this paper, by establishing a result permitting us to describe the be-
haviour “at infinity” of surfaces of constant Gaussian curvature immersed in
3-dimensional hyperbolic space, we obtain a complete geometric description of
solutions to the Plateau problem for compact Riemann surfaces with marked
points.

Let H3 be 3-dimensional hyperbolic space, and let ∂∞H3 be its ideal bound-
ary (see, for example [1]). The ideal boundary of H3 may be identified canon-

ically with the Riemann sphere Ĉ. In this context, following [4] and [9], we
define a Plateau problem to be a pair (S, ϕ) where S is a Riemann surface and
ϕ : S → ∂∞H3 is a locally conformal mapping (i.e., a locally homeomorphic
holomorphic mapping). The Plateau problem (S, ϕ) is said to be of hyperbolic,
parabolic or elliptic type depending on whether S is hyperbolic, parabolic or
elliptic respectively.

Let UH3 be the unitary bundle over H3. For i : S → H3 an immersion, using
the canonical orientation of S, we may define the unit normal exterior vector
field N over S. This field is a section of UH3 over i. We define the Gauss lifting
ı̂ of i by ı̂ = N. We define a k-surface to be an immersed surface Σ = (S, i)
in H3 of constant Gaussian curvature k whose Gauss lifting Σ̂ = (S, ı̂) is a
complete immersed surface in UH3. For k ∈ (0, 1), a solution to the Plateau
problem (S, ϕ) is a k-surface Σ = (S, i) such that, if we denote by −→n the
Gauss-Minkowski mapping of H3, then the Gauss lifting ı̂ of i satisfies

ϕ = −→n ◦ ı̂.
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In [9] we show that, if (S, ϕ) is a hyperbolic Plateau problem, then, for all
k ∈ (0, 1) there exists a unique solution i to the Plateau problem (S, ϕ) with
constant Gaussian curvature k. Moreover, we show that i depends continuously
on ϕ. In this paper, following on from these ideas, we study the structure of
solutions to the Plateau problem (S, ϕ) when S is a compact Riemann surface
with isolated marked points.

The following result, which provides the key to the rest of the paper, de-
scribes the behaviour “at infinity” of solutions to the Plateau problem.

Theorem 1.1 (Boundary Behaviour Theorem). — Let S be a hyperbolic Rie-
mann surface and let ϕ : S → Ĉ be a locally conformal mapping. For k ∈ (0, 1),
let i : S → UH3 be an immersion such that (S, i) is the unique solution to the
Plateau problem (S, ϕ) with constant Gaussian curvature k. Let K be a com-
pact subset of S and let Ω be a connected component of S \ K. Let q be an
arbitrary point in the boundary of ϕ(Ω) that is not in ϕ(Ω∩K).

If (pn)n∈N ∈ Ω is a sequence of points such that (ϕ(pn))n∈N tends towards q,
then the sequence (i(pn))n∈N also tends towards q.

Remark. — This theorem confirms our intuition concerning solutions to the
Plateau problem. In particular, if S is a Jordan domain in ∂∞H3, if ϕ is the
canonical embedding and if i : S → H3 is a solution to the Plateau prob-
lem (S, ϕ), then the ideal boundary of the immersed surface (S, i) coincides
with ∂S.

We use this theorem to study the behaviour of solutions to the Plateau prob-
lem near to isolated singularities. We begin by a series of definitions concerning
tubes about geodesics. For Γ a geodesic in H3, we define NΓ to be the normal
bundle over Γ in UH3:

NΓ =
{
np ∈ UH3 s.t. p ∈ Γ, np ⊥ TpΓ

}
.

A tube about Γ is a pair T = (S, ı̂) where S is a complete surface and ı̂ : S → NΓ

is a covering map. Since NΓ is conformally equivalent to S1×R, where S1 is the
circle of radius 1 in C, we may assume either that S = S1×R or that S = R×R.
In the former case, ı̂ is a covering map of finite order, and, if k is the order
of ı̂, then we say that the tube T is a tube of order k. The application ı̂ is then
unique up to vertical translations and horizontal rotations of S1 × R. In the
latter case, we say that T is a tube of infinite order. The application ı̂ is then
unique up to translations of R × R. In the sequel, we will only be interested in
tubes of finite order.

Let S be a compact surface and let P be a finite set of points in S. Let
ı̂ : S \ P → UH3 be an immersion. Let p be an arbitrary point in P . We say
that (S \ P , ı̂) is asymtotically tubular of order k about p if and only if it is a
bounded graph over a half tube of order k in UH3, which tends towards the tube
itself as one tends towards infinity. More precisely, let Exp : TUH3 → UH3
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be the exponential mapping and let NNΓ be the normal bundle of NΓ. Then
(S \ P , ı̂) is asymptotically tubular of order k about p if there exists

(i) a geodesic Γ and a tube T = (S1 × R, ̂) of order k about Γ,

(ii) a section λ of ̂∗NNΓ over S1 × (0,∞),

(iii) a neighbourhood Ω of p in S such that P ∩Ω = {p}, and

(iv) a diffeomorphism α : S1 × (0,∞) → Ω \ {p},
such that

(i) ı̂ ◦ α = Exp ◦λ,

(ii) α(eiθ, t) → p as t → ∞, and

(iii) for all p ∈ N, the derivative Dpλ(eiθ, t) tends to zero as t tends to +∞.

We now obtain the following result.

Theorem 1.2. — Let S be a Riemann surface. Let P be a discrete subset
of S such that S \P is hyperbolic. Let ϕ : S → Ĉ be a ramified covering having
critical points in P. Let κ be a real number in (0, 1). Let i : S \ P → H3 be
the unique solution to the Plateau problem (S \ P , ϕ) with constant Gaussian
curvature κ. Let Σ̂ = (S \P , ı̂) be the Gauss lifting of Σ. Let p0 be an arbitrary
point in P.

If ϕ has a critical point of order k at p0, then Σ̂ is asymptotically tubular of
order k at p0.

Remark. — This means that if the mapping ϕ has a critical point of order k
at p0, and is thus equivalent to z )→ zk, then the immersed surface (S \ P , i)
wraps k times about a geodesic which terminates at ϕ(p0). We observe that
critical points of order 1 are admitted, even though they are not, strictly speak-
ing, critical points.

We also obtain a converse to this result:

Theorem 1.3. — Let S be a surface and let P ⊆ S be a discrete subset of S.
Let i : S \ P → H3 be an immersion such that Σ = (S \ P , i) is a k-surface
(and is thus the solution to a Plateau problem). Let −→n : UH3 → ∂∞H3 be
the Gauss-Minkowski mapping which sends UH3 to ∂∞H3. Let ı̂ be the Gauss
lifting of i so that ϕ = −→n ◦ ı̂ defines the Plateau problem to which i is the
solution. Let H be the holomorphic structure generated over S \ P by the local
homeomorphism ϕ. Let p0 be an arbitrary point in P, and suppose that Σ is
asymptotically tubular of order k about p0.

Then there exists a unique holomorphic structure H̃ over (S\P)∪{p0} and a
unique holomorphic mapping ϕ̃ : (S \ P)∪{p0} → Ĉ such that H̃ and ϕ̃ extend
H and ϕ respectively. Moreover, ϕ̃ has a critical point of order k at p0.
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Remark. — Together, these two theorems provide a complete geometric des-
crition of solutions to the Plateau problem (S, ϕ) when S is a compact Riemann
surface with a finite number of marked points.

Throughout this paper, we will use the convention that 0 /∈ N.

In the first section, we provide an overview of the definitions and notations
that will be used in the sequel. In the second section, we study the differential
geometry of the unitary bundle of a Riemannian manifold, focusing, in particu-
lar, on the canonical contact and complex structures of this bundle. In the third
section, we define the Plateau problem, providing various auxiliary definitions
and recalling existing results of [4] and [9] which will be required in the sequel.
In the fifth section, we prove Theorem 1.1. In the sixth section, we study the
geometry of the Plateau problem (D∗, z )→ z), which provides a model for the
study of all other cases. In the seventh section, we prove Theorem 1.2, and in
the final section we prove Theorem 1.3.

These results provoke the following reflections concerning potential future
avenues of research: first, we obtain a homeomorphism between the space of
meromorphic mappings over compact Riemann surfaces with a finite number
of marked points on the one hand and complete positive pseudo-holomorphic
curves immersed in UH3 with cylindrical ends on the other. These pseudo-
holomorphic curves project down to surfaces of constant Gaussian curvature
immersed into H3. Such an equivalence may well permit us to better understand
the structure of either one or both of these two spaces. Second, by integrating
primitives of the canonical volume form of H3 over these immersed surfaces,
one obtains a “volume”bounded by these surfaces. If this volume can be shown
to be finite, then we would obtain a new function over the Teichmüller space of
compact Riemann surfaces with marked points. We would then be interested
in the properties of such a function. Finally, since the reasoning employed
is essentially geometric in nature, and does not appear to rely on the precise
analytic structure of H3, it seems reasonable to expect an analogous result in
the case where H3 is replaced by a Hadamard manifold whose curvature lies in
the range [−K,−k], where K ! k > 0 are two positive real numbers.

I would like to thank François Labourie for having initially brought my
attention to this problem.

2. Immersed surfaces – Definitions and notations

2.1. Definitions. — In this section we will review basic definitions from the
theory of immersed submanifolds and establish the notations that will be used
throughout this article.
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Let M be a smooth manifold. An immersed submanifold is a pair Σ = (S, i)
where S is a smooth manifold and i : S → M is a smooth immersion. An
immersed hypersurface is an immersed submanifold of codimension 1.

Let g be a Riemannian metric on M . We give S the unique Riemannian
metric i∗g which makes i into an isometry. We say that Σ is complete if and
only if the Riemannian manifold (S, i∗g) is.

2.2. Normal vector fields, second fundamental form, convexity

Let Σ be a hypersurface immersed in the Riemannian manifold M . There
exists a canonical embedding i∗ of the tangent bundle TS of S into the pull-
back i∗TM of the tangent bundle of M . This embedding may be considered
as a section of End(TS, i∗TM). We denote by TΣ the image of TS under the
action of this embedding.

Let us suppose that both M and S are oriented. We define NΣ ⊆ i∗TM ,
the normal bundle of Σ, by

NΣ = TΣ⊥.

NΣ is a 1-dimensional subbundle of i∗TM from which it inherits a canonical
Riemannian metric. Using the orientations of S and M , we define the exterior
unit normal vector field , NΣ ∈ Γ(S, NΣ), over Σ in M . This is a global section
of NΣ which consequently trivialises this bundle. We define the Weingarten
operator , AΣ, which is a section of End(TS, TΣ), by

AΣ(X) = (i∗∇)XNΣ.

Since there exists a canonical isomorphism (being i∗) between TΣ and TS, we
may equally well view AΣ as a section of End(TS). This section is self-adjoint
with respect to the canonical Riemannian metric over S. We thus define the
second fundamental form, IIΣ, which is a symmetric bilinear form over TS by

IIΣ(X, Y ) = 〈AΣX, Y 〉.

Σ is said to be convex at p ∈ S if and only if the bilinear form IIΣ is either
positive or negative definite at p. Σ is then said to be locally convex if and
only if it is convex at every point. Through a slight abuse of language, we
will say that Σ is convex in this case. Bearing in mind that the sign of IIΣ
depends on the sign of NΣ, which in turn depends on the choice of orientation
of S, if Σ is convex, then we may choose the orientation of S such that IIΣ
is positive definite. Consequently, in the sequel, if Σ is convex, then we will
assume that IIΣ is positive definite.

2.3. Curvature. — Let Σ = (S, i) be an oriented hypersurface immersed in
an oriented Riemannian manifold M . We define the Gaussian curvature kΣ

of Σ by

kΣ = Det(AΣ).
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In this paper, we study oriented surfaces of constant Gaussian curvature im-
mersed into 3-dimensional hyperbolic space.

Let p be an arbitrary point in S. Let Σ′ = (S′, i′) be another oriented
immersed hypersurface in M . We say that Σ′ is tangent to Σ at p if there
exists p′ ∈ S′ such that i(p) = i′(p′) and

TpΣ = Tp′Σ′.

We call p′ a point of tangency of Σ′ on Σ. For such a pair of points (p, p′), we
may show that there exists:

(i) a neighbourhood U of p in S and a neighbourhood U ′ of p′ in S′,

(ii) a diffeomorphism ϕ : (U, p) → (U ′, p′), and

(iii) a function λ : U → R,

such that, if N : S → TM is the exterior unit normal vector field over Σ in M ,
and if Exp : TM → M is the exponential mapping of M , then, for all x ∈ U

(i′ ◦ ϕ)(x) = Exp
(
λ(x)N(x)

)
.

In otherwords Σ′ is locally a graph over Σ near p. Moreover, since Σ′ is tangent
to Σ at p, we obtain

dλ(p) = 0.

If ϕ′ is another diffeomorphism defined in a neighbourhood of p such that
ϕ′(p) = p′ and if λ′ is another function defined in a neighbourhood of p such
that (i′ ◦ ϕ′)(x) = Exp(λ′(x)N(x)) for all x in a neighbourhood of p, then the
pairs of functions (ϕ, λ) and (ϕ′, λ′) coincide in a neighbourhood of p.

If Σ′ is tangent to Σ at p, then we say that Σ′ is an exterior tangent (resp.
interior tangent) to Σ at p if and only if λ ! 0 (resp. λ " 0) in a neighbourhood
of p. We now obtain the following weak geometric maximum principle:

Lemma 2.1 (Weak Geometric Maximum Principle). — Let M be an oriented
manifold. Let Σ = (S, i) and Σ′ = (S′, i′) be two convex oriented immersed
hypersurfaces in M . Let p be a point in S and suppose that Σ′ is an exterior
tangent to Σ at p. Let p′ ∈ S′ be a point of exterior tangency of Σ′ on Σ.
If kΣ(p) and kΣ′(p′) denote the Gaussian curvatures of Σ at p and Σ′ at p′

respectively, we obtain

kΣ(p) " kΣ′(p′).

A proof of this result may be found in [4]. An analogous result exists when Σ′

is an interior tangent to Σ at p.

2.4. Hausdorff convergence. — In the sequel, we will make use of the
notion of Hausdorff convergence of sequences of compact sets contained within
a given metrisable space. The following lemmata will permit us to better
understand the nature of the Hausdorff topology. First, we recall a classical
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result which tells us that the Hausdorff topology of a compact metrisable space
does not depend on the metric chosen over that space.

Lemma 2.2. — Let X be a compact metrisable space. Let g1 and g2 be two
metrics over X compatible with the topology of X. Let (An)n∈N, A0 be com-
pact subsets of X. The sequence (An)n∈N converges to A0 in the g1-Hausdorff
topology if and only if it converges to A0 in the g2-Hausdorff topology.

In particular, the Hausdorff topology of H3 ∪ ∂∞H3 is well defined. Next, we
have a result concerning the relationship between the Hausdorff topology and
the topology of uniform convergence for homeomorphisms of a given compact
metric space.

Lemma 2.3. — Let (X, d) be a compact metric space. Let (Yn)n∈N, Y0 ⊂ X
be subsets of X such that (Yn)n∈N converges to Y0 in the Hausdorff topology.
Let (αn)n∈N, α0 be homeomorphisms of X such that (αn)n∈N converges to α0

in the compact-open topology (i.e., the topology of uniform convergence). The
sequence (αn(Yn))n∈N converges to α0(Y0) in the Hausdorff topology.

Finally, we have a result concerning the intersections of two sequences of
compact sets that converge.

Lemma 2.4. — Let (X, d) be a compact metric space. Let (An)n∈N, A0 ⊆ X
and (Bn)n∈N, B0 ⊆ X be compact sets such that (An)n∈N and (Bn)n∈N converge
to A0 and B0 respectively in the Hausdorff topology. If, for all n An ∩Bn 0= ∅.
then A0 ∩B0 0= ∅.

Proofs of Lemmata 2.3 and 2.4 may be found in appendix A of [8].

2.5. Pointed manifolds, convergence. — In the sequel, we will use the
concept of Cheeger-Gromov convergence for complete pointed immersed sub-
manifolds.

A pointed Riemannian manifold is a pair (M, p) where M is a Riemannnian
manifold and p is a point in M . If (M, p) and (M ′, p′) are pointed manifolds
then a mapping from (M, p) to (M ′, p′) is a (not necessarily even continuous)
function from M to M ′ which sends p to p′and is of type C∞ in a neighbourhood
of p. In this section, we will discuss a notion of convergence for this family.
It should be borne in mind that, even though this family is not a set, we may
consider it as such. Indeed, since every manifold may be plunged into an infinite
dimensional real vector space, we may discuss, instead, the equivalent family of
pointed finite dimensional submanifolds of this vector space, and this is a set.

Let (Mn, pn)n∈N be a sequence of complete pointed Riemannian manifolds.
For all n, we denote by gn the Riemannian metric over Mn. We say that the
sequence (Mn, pn)n∈N converges to the complete pointed manifold (M0, p0) in
the Cheeger-Gromov topology if and only if, for all n, there exists a mapping
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ϕn : (M0, p0) → (Mn, pn) such that, for every compact subset K of M0, there
exists N ∈ N such that for all n ! N :

(i) the restriction of ϕn to K is a C∞-diffeomorphism onto its image, and

(ii) if we denote by g0 the Riemannian metric over M0, then the sequence
of metrics (ϕ∗

ngn)n!N converges to g0 in the C∞ topology over K.

We refer to the sequence (ϕn)n∈N as a sequence of convergence mappings
of the sequence (Mn)n∈N with respect to the limit (M0, p0). The convergence
mappings are trivially not unique. However, two sequences of convergence
mappings (ϕn)n∈N and (ϕ′

n)n∈N are equivalent in the sense that there exists
an isometry φ of (M0, p0) such that, for every compact subset K of M0, there
exists N ∈ N such that:

(i) for n ! N , the mapping (ϕ−1
n ◦ ϕ′

n) is well defined over K, and

(ii) the sequence (ϕ−1
n ◦ϕ′

n)n!N converges to φ in the C∞ topology over K.

One may verify that this mode of convergence does indeed arise from a
topological structure over the space of complete pointed manifolds. Moreover,
this topology is Hausdorff (up to isometries).

Most topological properties are unstable under this limiting process. For
example, the limit of a sequence of simply connected manifolds is not necessarily
simply connected. On the other hand, the limit of a sequence of surfaces of
genus k is a surface of genus at most k (but quite possibly with many holes).

Let M be a complete Riemannian manifold. A pointed immersed submanifold
in M is a pair (Σ, p) where Σ = (S, i) is an immersed submanifold in M and p
is a point in S.

Let (Σn, pn)n∈N = (Sn, pn, in)n∈N be a sequence of complete pointed im-
mersed submanifolds in M . We say that (Σn, pn)n∈N converges to (Σ0, p0) =
(S0, p0, i0) in the Cheeger-Gromov topology if (Sn, pn)n∈N converges to (S0, p0)
in the Cheeger-Gromov topology, and, for every sequence (ϕn)n∈N of conver-
gence mappings with respect to this limit, and for every compact subset K
of S0, the sequence of functions (in ◦ϕn)n!N converges to the function (i0 ◦ϕ0)
in the C∞ topology over K.

As before, this mode of convergence arises from a topological structure over
the space of complete immersed submanifolds. Moreover, this topology is Haus-
dorff (up to isometries).

2.6. “Common sense” lemmata. — In order to make good use of the con-
cept of Cheeger-Gromov convergence, it is helpful to recall some basic lemmata
concerning the topological properties of functions acting on open subsets of Rn.
The results that follow are essentially formal expressions of“common sense”. To
begin with, we recall a result concerning the inverses of a sequence of functions
that converges.
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Lemma 2.5. — Let Ω ⊆ Rn be an open set. Let (fn)n∈N, f0 : Ω → Rn be
such that, for every n, the function fi is a homeomorphism onto its image.
Let Ω′ be the image of Ω under the action of f0. If (fn)n∈N converges towards
f0 locally uniformly in Ω, then the sequence (f−1

n )n∈N converges towards f−1
0

locally uniformly in Ω′.
To be precise, for every compact subset K in Ω′, there exists N ∈ N such

that, for every n ! N , the set K is contained within fn(Ω) and (f−1
n )n!N

converges towards f−1
0 uniformly over K.

Moreover, if every fn is of type Cm and if (fn)n∈N converges to f0 in the
Cm

loc topology, then (f−1
n )n∈N also converges towards f−1

0 in the Cm
loc topology.

We recall a result concerning the injectivity of the limit.

Lemma 2.6. — Let Ω ⊆ Rn be an open set. Let (fn)n∈N, f0 : Ω → Rn be
such that for every n > 0, the function fn is a homeomorphism onto its image.
If (fn)n∈N tends towards f0 locally uniformly, and if, moreover, f0 is a local
homeomorphism, then f0 is injective.

We recall a converse of this result for C2 functions.

Lemma 2.7. — Let Ω ⊆ Rn be an open set. Let (fn)n∈N, f0 : Ω → Rn be C2

functions such that (fn)n∈N converges towards f0 in the C2
loc topology. If f0 is

a diffeomorphism onto its image, then for every compact subset K in Ω, there
exists N ∈ N such that, for n ! N , the restriction of fn to K is injective.

Finally, we have a result concerning the images of a sequence of functions.

Lemma 2.8. — Let Ω ⊆ Rn be an open set. Let (fn)n∈N : Ω→ Rn be such that
for every n, the function fn is a homeomorphism onto its image. If there exists
a local homeomorphism f0 : Ω → Rn such that (fn)n∈N converges to f0 locally
uniformly, then, for every compact subset K ⊆ f0(Ω), there exists N ∈ N such
that for n ! N , K ⊆ fn(Ω).

The interested reader may find a discussion and proofs of these results in
the appendix A of [8].

3. The unitary bundle of a Riemannian manifold

3.1. Geometric structures over TM . — Let M be a Riemannian mani-
fold. We define π : TM → M to be the canonical projection of the tangent
space of M onto M . We denote by HTM ⊆ TTM the horizontal bundle of
the Levi-Civita covariant derivative of M . We denote by V TM ⊆ TTM the
vertical bundle over TM . To be precise, V TM is defined to be the kernel of

tome 134 – 2006 – no 4



POINTED k-SURFACES 519

the projection π within TTM . The tangent bundle of TM is the direct sum
of these two subbundles:

TTM = HTM ⊕ V TM.

Each of HTM and V TM is canonically isomorphic to π ∗TM . We de-
note by iH (resp. iV ), which is a section of End(HTM,π ∗TM) (resp.
End(V TM, π ∗TM)), the canonical isomorphism sending HTM (resp. V TM)
to π ∗TM . We obtain the isomorphism

iH ⊕ iV : TTM −→ π ∗TM ⊕ π ∗TM.

For every pair of vector fields X, Y ∈ Γ(M, TM) over M we define the vector
field {X, Y } over TM such that

(iH ⊕ iV )
(
{X, Y }

)
= (π ∗X,π ∗Y ).

Trivially, every vector field over TM may be expressed (at least locally) in
terms of a linear combination of such vector fields. In the same way, for a given
point p ∈ M and for a given triplet of vectors X, Y, q ∈ TpM over p, we may
define {X, Y }q ∈ TqTM such that

(iH ⊕ iV )q{X, Y }q = (π ∗
q X,π ∗

q Y ).

Finally, for a given vector field X over M , we may define

XH = {X, 0}, XV = {0, X}.

3.2. Geometric structures over UM . — For M a Riemannian manifold,
we define UM , the unitary bundle over M by

UM =
{
X ∈ TM s.t. ‖X‖ = 1

}
.

We define the tautological vector fields T H and T V over the tangent space TM
to M such that, for all q ∈ TM

T H(q) = {q, 0}q , T V (q) = {0, q}q .

Let i : UM → TM be the canonical embedding. Let HUM (resp. V UM) be
the restriction of HTM (resp. V TM) to UM :

HUM = i∗HTM, V UM = i∗V TM.

The section i∗T H (resp. i∗T V ) is nowhere vanishing. It consequently de-
fines a 1-dimensional subbundle of HUM (resp. V UM). In order to simplify
the notation we will also denote this section by T H (resp. T V ). We denote
the 1-dimensional subbundle that it generates by 〈q〉H (resp. 〈q〉V ). We de-
fine the subbundles 〈q〉⊥H and 〈q〉⊥V to be the orthogonal complements of 〈q〉H
and 〈q〉V in HUM and V UM respectively.

Since parallel transport preserves the length of vectors and thus sends UM
onto itself, the immersion i induces the following isomorphism of vector bundles:

i∗ : TUM −→ HUM ⊕ 〈q〉⊥V .
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In order to simplify our notation, we consider HUM , 〈q〉⊥H and 〈q〉⊥V as sub-
bundles of TUM . In particular, we define WUM by

WUM = 〈q〉⊥H ⊕ 〈q〉⊥V .

The subbundle WUM defines, in fact, a contact structure over UM , and we will
consequently refer to it as the contact bundle over UM . In the sequel we
will denote the bundles HUM , V UM , WUM , etc. by H , V , W , etc. For k > 0,
we write ν =

√
k and we define the metric gν over TTM such that, for every

pair of vector fields X, Y ∈ Γ(M, TM) over M we have

gν
(
{X, Y }, {X, Y }

)
= 〈X, X〉 + ν−2〈Y, Y 〉.

We denote also by gν the metric induced over UM by gν and the canonical
embedding of UM into TM .

From now on, we will suppose that M is oriented and 3-dimensional. This
allows us to canonically identify TM and TM ∧TM and consequently to define
a vector product × over TM . We then define the canonical complex structures
JH (resp. JV ) over 〈q〉⊥H (resp. 〈q〉⊥V ) such that for every q ∈ UM and for every
vector X orthogonal to q:

JH
q {X, 0}q = {q × X, 0}q , JV

q {0, X}q = {0, q × X}q .

In order to simplify notation we refer to both JH and JV by J . We define the
isomorphism j : HTM → V TM by

j = i−1
V ◦ iH .

This isometry sends 〈q〉H onto 〈q〉V and consequently 〈q〉⊥H onto 〈q〉⊥V . More-
over, we trivially obtain the commutative diagram

〈q〉⊥H
j−−−−−→ 〈q〉⊥V(J

(J

〈q〉⊥H
j−−−−−→ 〈q〉⊥V .

We identify 〈q〉⊥H and 〈q〉⊥V through the isomorphism j, and we define the com-
plex structure Jν over W = 〈q〉⊥H ⊕ 〈q〉⊥V by

Jν =
( 0 ν−1J
νJ 0

)
.

By composing this form with the orthogonal projection of TUM onto W , we
may extend it to a form defined on TUM .

Let q be a point in UM . Let Σ ⊆ Wq be a plane in Wq. We say that Σ is
the graph of the matrix A over 〈q〉⊥H if

Σ =
{
{V, AV } s.t. V ∈ 〈q〉⊥

}
.

We say that the plane Σ is k-complex if and only if it is stable under the action
of Jν . In this case, if it is the graph of a matrix A, we may trivially show that

tome 134 – 2006 – no 4



POINTED k-SURFACES 521

A is symmetric and of determinant equal to k. The plane Σ is then said to be
positive if and only if it is the graph of a positive definite matrix.

3.3. Holomorphic curves, k-surfaces. — Let M be a compact oriented 3-
dimensional Riemannian manifold and let Σ = (S, i) be a convex hypersurface
immersed in M . Let NΣ be the normal exterior vector field to Σ. We define
the Gauss lifting Σ̂ = (S, ı̂) of Σ by

(S, ı̂) = (S, NΣ).

For k > 0, we say that Σ is a k-surface if and only if Σ̂ is complete and the
Gaussian curvature of Σ is always equal to k.

We say that Σ̂ is a k-holomorphic curve if and only if all its tangent planes
are k-complex planes, and we say that it is positive if and only if all its tangent
planes are positive.

These concepts are related by the following elementary result:

Lemma 3.1. — Let M be an oriented 3-dimensional Riemannian manifold.
Let Σ = (S, i) be a convex hypersurface immersed in M . Σ is a k-surface if
and only if Σ̂ is a complete positive k-holomorphic curve.

Proof. — See, for example [3].

We now consider the case where M = H3. Let −→n be the Gauss-Minkowski
mapping which sends UH3 to ∂∞H3 ∼= Ĉ. For Σ̂ = (S, ı̂) a k-holomorphic curve
in UH3, we define ϕ : S → Ĉ by

ϕ = −→n ◦ ı̂.

Let H be the canonical holomorphic structure over Ĉ. We obtain the following
result:

Lemma 3.2. — Let Σ̂ = (S, ı̂) be a positive k-holomorphic curve in UH3.

Let −→n be the Gauss-Minkowski mapping which sends UH3 to ∂∞H3 ∼= Ĉ. Let H
be the canonical conformal structure over Ĉ. Let H′ be the conformal struc-
ture generated over S by ı̂∗gν and the canonical orientation of S. The two
structures H′ and ϕ∗H are quasiconformally equivalent.

Proof. — See [9].

4. The Plateau problem

4.1. Definitions. — A Hadamard manifold is a complete, connected and
simply connected manifold of negative sectional curvature. The manifold H3 is
an example of a 3-dimensional Hadamard manifold. In [4], Labourie studies the
Plateau problem for constant Gaussian curvature hypersurfaces immersed in a
3-dimensional Hadamard manifold M . In the language of this paper, a Plateau
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problem is a pair (S, ϕ) where S is a Riemann surface and ϕ : S → ∂∞H3 is a
locally conformal mapping. A solution to this Plateau problem is an immersion
i : S → H3 such that the immersed hypersurface (S, i) is a k-surface and, if we
denote by ı̂ the Gauss lifting of i and by −→n the Gauss-Minkowski mapping,
then

−→n ◦ ı̂ = ϕ.

4.2. Tubes, tubular surfaces, asymptotically tubular surfaces. — In
this section we will define tubes about geodesics which, as will be shown in the
following sections, play a special role in the study of k-surfaces.

For Γ a geodesic in H3, we define NΓ to be the normal bundle over Γ in UH3:

NΓ =
{
np ∈ UH3 s.t. p ∈ Γ, np ⊥ TpΓ

}
.

A tube about Γ is a pair T = (S, ı̂) where S is a complete surface and
ı̂ : S → NΓ is a locally conformal covering map. Since NΓ is conformally
equivalent to S1 × R, where S1 is the circle of radius 1 in C, we may assume
either that S = S1 × R or that S = R × R. In the former case ı̂ is a covering
map of finite order, and, if k is the order of ı̂, then we say that the tube T is a
tube of order k. The application ı̂ is then unique up to vertical translations
and horizontal rotations of S1 × R. In the latter case, we say that the tube T
is a tube of infinite order. The application ı̂ is then unique up to translations
of R × R. In either case, we call the point (0, 0) the origin of the tube T .

In the sequel, we will only be interested in tubes of finite order.

Let T = (S1 × R, ı̂) be a tube of order k. We define the fields ∂θ and ∂t

over T by

∂θ(e
iθ, t) = ∂φ(e

iθ+iφ, t) φ=0, ∂t(e
iθ, t) = ∂s(e

iθ, t + s) s=0.

Using the definition of gν , we find that every fibre of NΓ is a circle of
length 2πν−1. Consequently, since ı̂ is a covering map of order k, and since S1

is of length 2π, it follows by homogeneity that

‖T ı̂ · ∂θ‖ = kν−1.

Since ı̂ is locally conformal, we obtain

‖T ı̂ · ∂t‖ = kν−1.

Let Exp : TUH3 → UH3 be the exponential mapping over UH3. Let NNΓ be
the normal bundle over NΓ in TUH3. Let T = (S1 × R, ı̂) be a tube of order k
about Γ. We define the normal bundle NT over T by

NT = ı̂∗NNΓ.

For r ∈ R we define Tr by

Tr =
(
S1 × (−r, r), ı̂

)
.

We define NTr to be the restriction of NT to the set S1 × (−r, r).
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Let (Σ̂, p) = (S, ı̂, p) be a pointed immersed surface in UH3. We say that
(Σ̂, p) is a graph over T of half length r if and only if there exist:

(i) a neighbourhood Ω of S about p,

(ii) a diffeomorphism ϕ : S1 × (−r, r) → Ω, and

(iii) a section λ ∈ Γ(S1 × (−r, r), NTr), such that ϕ(0, 0) = p and

Exp ◦λ = ı̂ ◦ ϕ.

We call ϕ a graph diffeomorphism of (Σ̂, p) over Tr and we call λ a graph
function of (Σ̂, p) over Tr.

For ε ∈ R+, we define

NεNΓ =
{
vp ∈ NNΓ s.t. ‖vp‖ " ε

}
.

Since UH3 is homogeneous, there exists ε ∈ R+ independent of Γ such that
the restriction of Exp to NεNΓ is a diffeomorphism onto its image. It follows
that if S is a graph over a tube of finite order and of half length r with graph
diffeomorphism ϕ and graph function λ, and if ‖λ‖ < ε, then λ and ϕ are
unique.

We define the upper half tube T+ of T by

T+ =
(
S1 × (0,∞), ı̂

)
.

We define NT+ to be the restriction of NT to the set S1 × (0,∞).

Let S be surface and let p be a point in S. Let ı̂ : S \ {p} → UH3 be an
immersion. We define the immersed surface

Σ̂ =
(
S \ {p} , ı̂

)
.

We say that Σ̂ is a graph over T+ near p if and only if there exists:

(i) a neighbourhood Ω of S about p,

(ii) a diffeomorphism ϕ : S1 × (0,∞) → Ω \ {p}, and

(iii) a section λ ∈ Γ(S1 × (0,∞), NT+),

such that ϕ(eiθ , t) tends to p as t tends to ∞ and

Exp ◦λ = ı̂ ◦ ϕ.

As before, we call ϕ a graph diffeomorphism of Σ̂ over T+ and we call λ a
graph function of Σ̂ over T+. Similarly, if ‖λ‖ < ε, then λ and ϕ are unique up
to composition with an affine transformation of S1 × R.

There exists a canonical trivialisation τ : NT → (S1 × R) × R3 which is
unique up to composition by an endomorphism in SO(3). Consequently, we
may interpret a graph funtion λ as a function on a subset of S1 × R taking
values in R3. We say that Σ̂ is asymptotically tubular of order k about p if and
only if there exists a tube T of order k such that:

(i) Σ̂ is a graph over T+, and
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(ii) if λ is a graph function of Σ̂ over T+, then, for all p ∈ N∪{0}:
∥∥Dpλ(eiθ, t)

∥∥ −→ 0 as t → +∞.

4.3. The space of solutions. — We define L to be the set of Gauss liftings
of pointed k-surfaces in H3:

L =
{
(Σ̂, p) s.t. Σ is a k-surface in H3, p ∈ Σ̂

}
.

We define L∞ to be the set of pointed tubes in UH3:

L∞ =
{
(T, p) s.t. T is a tube about a geodesic γ in H3, p ∈ T

}
.

We define L to be the union of these two sets:

L = L∪L∞.

The justification for this notation will become clear presently. In [9], we proved
the existence of solutions to Plateau problems of hyperbolic type. We quote
Theorem 1.1 of this paper:

Theorem 4.1 (Hyperbolic Existence Theorem, [8]). — Let ϕ : D → Ĉ be lo-
cally conformal. Then, for every k ∈ (0, 1), there exists a unique solution
ik : D → H3 to the Plateau problem (D, ϕ).

We now introduce a definition. If Σ = (S, i) ⊆ H3 is a complete, convex,
immersed surface and if NΣ is the exterior, normal vector field over Σ, we define
Φ : S × (0,∞) → H3 by

Φ(p, t) = Expi(p)

(
tNΣ(p)

)
.

Φ is everywhere a local diffeomorphism. Thus, if g is the canonical Riemannian
metric over H3, then Φ∗g defines a complete Riemannian metric over S×[0,∞).
Moreover, this metric is trivially of constant curvature equal to −1. We refer
to the Riemannian manifold with boundary (S × [0,∞),Φ∗g) as the extension
of Σ.

We may now quote the following result of Labourie concerning the relation-
ship between two solutions to the Plateau problem (Theorem 7.2.1 of [4]):

Theorem 4.2 (Structure of Solutions, [4]). — Let (S, ϕ) be a Plateau prob-
lem. If there exists a solution to this problem, then it is unique. Moreover,
let Σ = (S, i) be a complete, immersed, convex surface in H3 of constant Gaus-
sian curvature equal to k, and let Σ̂ = (S, ı̂) be its Gauss lifting. Define ϕ by
ϕ = −→n ◦ ı̂ such that i is the solution to the Plateau problem (S, ϕ). Let Ω by an
open subset of S. There exists a solution to the Plateau problem (Ω, ϕ) which is
a graph over Ω in the extension of Σ. In other words, there exists f : Ω→ R+

such that the solution coincides (up to reparametrisation) with (Ω, Exp(fNΣ)).

Finally, as a compactness result, we use the principal result of [3], which
translates into our framework as follows:
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Theorem 4.3 (Compactness, [4]). — Let (Σn)n∈N = (Sn, in)n∈N be a se-
quence of k-surfaces in H3 and, for every n, let Σ̂n = (Sn, ı̂n) be the Gauss
lifting of Σn. For every n, let pn ∈ Sn be an arbitrary point of Sn. If there
exists a compact subset K ⊆ UH3 such that ı̂n(pn) ∈ K for every n, then there
exists (Σ̂0, p0) ∈ L = L∪L∞ such that, after extraction of a subsequence,
(Σ̂n, pn)n∈N converges to (Σ̂0, p0) in the Cheeger-Gromov topology.

Remark. — One may also obtain this theorem as a special case of [10].

5. The behaviour at infinity

5.1. The key result. — The following theorem provides the key to the rest
of this paper:

Theorem 1.1 (Boundary Behaviour Theorem). — Let S be a hyperbolic Rie-
mann surface and let ϕ : S → Ĉ be a locally conformal mapping. For k ∈ (0, 1),
let i : S → UH3 be an immersion such that (S, i) is the unique solution to the
Plateau problem (S, ϕ) with constant Gaussian curvature k. Let K be a com-
pact subset of S and let Ω be a connected component of S \ K. Let q be an
arbitrary point in the boundary of ϕ(Ω) that is not in ϕ(Ω∩K).

If (pn)n∈N ∈ Ω is a sequence of points such that (ϕ(pn))n∈N tends to q, then
the sequence (i(pn))n∈N also tends towards q.

Proof. — We will assume the contrary in order to obtain a contradiction. Let
us denote by ı̂ the Gauss lifting of i. We identify H3 with C× (0,∞) and ∂∞H3

with Ĉ. After applying an isometry of H3 if necessary, we may identify q
with ∞. For all n, we define qn by qn = ϕ(pn). Let (zn, λn)n∈N be a sequence
such that, for all n,

i(pn) = (zn, λn).

Since (i(pn))n∈N does not tend towards infinity, after extraction of a subse-
quence, we may assume that there exists R > 0 such that, for all n,

‖zn, λn‖ < R.

Let us define the sequence of isometries (An)n∈N of H3 such that, for all n,

An(z, λ) =
1

λn
(z − zn, λ).

In particular, for all n, we have

An(zn, λn) = (1, 0).

For all n, we note also by An the automorphism of ∂∞H3 = Ĉ induced by the
action of An. If we denote by ‖.‖ the Euclidean norm over C, we obtain

∥∥An(qn)
∥∥ !

1

R

(
‖qn‖ − R

)
.
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In particular, since (qn)n∈N tends to infinity, the sequence of points (An(qn))n∈N

also tends to infinity. For all n, we define in : S → H3 by

in = An ◦ i.

For every n, we denote the Gauss lifting of in by ı̂n. Since in(pn) = (0, 1),
by Labourie’s compactness theorem (Theorem 4.3), there exists an immersed
surface (S0, ı̂0, p0) in UH3 (which may be a tube) such that (S, ı̂n, pn)n∈N tends
towards this surface. Let −→n be the Gauss-Minkowksi mapping which sends UH3

to ∂∞H3 = Ĉ. We obtain

(−→n ◦ ı̂0)(p0) = Lim
n→∞

(−→n ◦ ı̂n)(pn) = Lim
n→∞

(−→n ◦ An ◦ ı̂)(pn)

= Lim
n→∞

(An ◦ −→n ◦ ı̂)(pn) = Lim
n→∞

(An ◦ ϕ)(pn)

= Lim
n→∞

An(qn) = ∞.

For p ∈ S an arbitary point, ε ∈ (0,∞) a positive real number, and g a metric
over S, we define Bε(p; g) to be the ball of radius ε about p in S with respect
to the metric g. Let us furnish S with the metric ı̂∗gν . For all ε ∈ (0,∞), since
the surface (S, ı̂∗gν) is complete, there exists N ∈ N such that, for all n ! N ,

Bε(pn; ı̂∗gν) ⊆ Ω.

Indeed, otherwise, since these balls are connected, we may assume that, for
all n,

Bε(pn; ı̂∗gν)∩K 0= ∅.

It thus follows that the sequence (pn)n∈N is contained in the ball of radius ε
about the compact set K. Since this ball is also compact, we may assume
that there exists p′0 ∈ Ω such that the sequence (pn)n∈N converges to p′0. By
continuity ϕ(p′0) = q and consequently q is either in the image of Ω or in the
image of Ω∩K. In either case, this contradicts the hypotheses on q.

For all n, let us define the metric gn over S by

gn = ı̂∗ngν = ı̂∗A∗
ngν .

For all n, since An is an isometry, the metric gn coincides with ı̂∗gν . For all n,
let us define

Bn = Bε(pn; gn).

We may thus assume that Bn is contained in Ω for all n, and consequently
that ∞ is not in ϕ(Bn). Since An preserves ∞, we obtain

∞ /∈ (An ◦ ϕ)(Bn) = (−→n ◦ ı̂n)(Bn).

By choosing ε to be sufficiently small, we may assume that the restriction
of −→n ◦ ı̂0 to B0 = Bε(p0; g0) is a homeomorphism onto its image. Consequently,
by common sense Lemma 2.7, we may assume that, for all n, the restriction
of the mapping (−→n ◦ ı̂n) to Bn is a homeomorphism onto its image. Thus, by
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common sense Lemma 2.8, ∞ is not in (−→n ◦ ı̂0)(B0). We thus obtain the desired
contradiction and the result follows.

6. The Geometry of the problem (D∗, z !→ z)

6.1. Overview of geometric properties of the solution. — The solution
to the problem (D, z )→ z) will serve as a model for the study of the general
case. In this section we establish some of its geometric properties.

We identify H3 with C × (0,∞) and ∂∞H3 with Ĉ.

We define D∗ and ϕ : D∗ → Ĉ by

D∗ =
{
z ∈ C s.t. 0 < |z| < 1

}
and ϕ(z) = z.

Since D∗ is hyperbolic, by the hyperbolic existence theorem (Theorem 4.1),
there exists a unique solution to the Plateau problem (D∗, ϕ). Let us denote
this solution by i : D∗ → H3, and let ı̂ be its Gauss lifting. We define the
immersed surface Σ by Σ = (D∗, i).

The following result gives us a better idea of the shape of Σ:

Lemma 6.1 (First Structure Lemma). — There exists f : D∗ → (0,∞) which
only depends on r = |z| such that Σ coincides with the graph of f over D∗.
Moreover f(r) tends towards 0 as r tends towards 0 and 1.

This result is proven in Section 6.2. We denote by h the metric on H3 and
we define the metric g over Σ by g = i∗h. By the uniqueness of solutions to
the Plateau problem, g is invariant under rotations and reflections of D∗. In
Section 6.3, we prove the following result concerning g.

Lemma 6.2 (Second Structure Lemma). — The Riemannian manifold (D∗, g)
is complete. Moreover, if we define the vector field ∂θ over D∗ by

∂θ(reiθ) = ∂t rei(θ+t)
t=0,

then g(∂θ, ∂θ) tends towards 0 as r tends to 0.

Remark. — For r ∈ ]0, 1[ we define the curve cr : ]0, 2π[→ D∗ by cr(θ) = reiθ.
We define Len(cr, g) to be the length of cr with respect to the metric g. Since g
is rotationally invariant, we obtain

Len(cr, g) =

∫ 2π

0

√
g(∂θ, ∂θ)dθ = 2π

√
g(∂θ, ∂θ).

It follows that g(∂θ, ∂θ) tends to 0 as r tends to 0 if and only if Len(cr, g) tends
to 0 as r tends to 0.

We define T = i(S) to be the image in H3 of the mapping i. Let T be the
closure of T in H3 ∪ ∂∞H3. We obtain the following result.
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Lemma 6.3 (Third Structure Lemma). — Let K be a compact subset of H3.
Let (pn)n∈N ∈ H3 be a sequence which converges towards 0 ∈ ∂∞H3 ∼= Ĉ. Let
(An)n∈N be a sequence of isometries of H3 such that, for all n,

Anpn ∈ K.

If, for every n, we define Tn by Tn = AnT , then there exists T 0 ⊆ H3 ∪ ∂∞H3

which is either the closure in H3 ∪ ∂∞H3 of a geodesic in H3, or a point in ∂H3,
such that, after extraction of a subsequence, (Tn)n∈N converges to T 0 in the
Hausdorff topology.

We define Γ0,∞ to be the closure in H3 ∪ ∂∞H3 of the geodesic joining 0
and ∞. If, for every n, we define Γn by Γn = AnΓ0,∞, then the sequence
(Γn)n∈N also converges to T 0 in the Hausdorff topology.

This result is proven in Section 6.4.

6.2. A graph over D∗. — By symmetry of D∗ with respect to reflections
and rotations, and by the uniqueness of solutions to the Plateau problem, there
exist functions i1 : (0, 1) → R and i2 : (0, 1) → (0,∞) such that

i(reiθ) =
(
i1(r)e

iθ, i2(r)
)
.

Using the boundary behaviour theorem (Theorem 1.1), we obtain the following
result.

Proposition 6.4. — Let S be a surface and let ϕ : S → Ĉ be a local dif-
feomorphism. Let i : S → H3 be an immersion such that (S, i) is the unique
solution to the Plateau problem (S, ϕ). Let q be a point in the boundary of ϕ(S).
If (pn)n∈N is a sequence of points in S such that (ϕ(pn))n∈N converges to q,
then (i(pn))n∈N also converges to q.

Proof. — We take K = ∅ in Theorem 1.1 and the result follows.

This permits us to establish certain properties of i1 and i2:

Proposition 6.5. — One has

i1(r) →
{ 0 as r → 0,

1 as r → 1,
i2(r) → 0 as r → 0, 1.

Proof. — By the preceding proposition, i(z) → (0, 0) as z tends to 0 and, for
all θ ∈ [0, 2π], i(z) converges to (eiθ, 0) as z tends to eiθ. The result now
follows.

Next we have the following result:

Proposition 6.6. — The function i1 is strictly increasing.
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Proof. — Since i is smooth, the function i1 is also. We recall that the inter-
section of a strictly convex surface with a geodesic consists of isolated points.
Moreover, in the canonical identification of H3 with C × (0,∞), the vertical
lines are geodesics. Thus, since Σ is a strictly convex surface of revolution, the
critical points of i1 are either strict local maxima or strict local minima (see Fig-
ure 1), and, in particular, they are isolated. We denote the Gauss-Minkowksi

application that sends UH3 to ∂∞H3 by −→n . We identify ∂∞H3 with Ĉ and, for
t ∈ (0, 1), we find that −→n ◦ ı̂(t) ∈ R̂ ⊆ Ĉ. Since Σ is strictly convex, Figure 1
illustrates how, if t ∈ (0, 1) is a local minimum of i1, then

−→n ◦ ı̂(t) < i1(t).

−→
n ◦ ı̂(t) i1(t) t

i

Figure 1

Likewise, if t ∈ (0, 1) is a local maximum of i1, then
−→n ◦ ı̂(t) > i1(t).

Since −→n ◦ ı̂(t) = t ∈ ]0, 1[ and since i1(t) tends to 0 and 1 as t tends to 0
and 1 respectively, the function i1 takes values in the interval [0, 1]. Indeed,
otherwise, by compactness, there exists t0 ∈ (0, 1) such that, either i1(t0) < 0
and t0 is a minimum of i1 or i1(t0) > 1 and t0 is a maximum of i1. In the first
instance, we obtain

t0 = (−→n ◦ ı̂)(t0) < i1(t0) < 0.

This is absurd. Likewise, the second possibility is absurd, and we thus obtain
the desired contradiction.

Suppose that t0 ∈ (0, 1) is a strict local maximum of i1. Since i1(t0) " 1,
and since i1(t) tends to 1 as t tends to 1, there exists a strict local minimum
t1 of i1 in the open interval (t0, 1) such that i1(t1) < i1(t0). However:

t1 = −→n ◦ ı̂(t1) < i1(t1) < i1(t0) < −→n ◦ ı̂(t0) = t0.

This is absurd. Consequently, there are no strict local maxima of i1 in (0, 1).
For the same reasons, there are no strict local minima of i1 in (0, 1). Conse-
quently i1 does not have any critical points in (0, 1) and the result follows.

We may now prove the first structure lemma.
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Lemma 6.1 (First Structure Lemma). — There exists f : D∗ → (0,∞) which
only depends on r = |z| such that Σ coincides with the graph of f over D∗.
Moreover f(r) tends towards 0 as r tends towards 0 and 1.

Proof. — By the preceding proposition, the application i1 does not have critical
points and is thus strictly increasing and invertible. We define α : D∗ → D∗ by

α(reiθ) = i−1
1 (r)eiθ.

We define f : D∗ → (0,∞) by

f(reiθ) = i2
(
i−1
1 (r)

)
.

The mapping α is a diffeomorphism of D∗ and:

(i ◦ α)(reiθ) = i
(
i−1
1 (r)eiθ

)
=

(
i1(i

−1
1 (r))eiθ, i2(i

−1
1 (r))

)
=

(
reiθ, f(reiθ)

)
.

The surface Σ thus coincides with the graph of f above D∗. By definition, the
function f is independent of θ, and by Proposition 6.5, f(r) tends to 0 as r
tends to 0 and 1. The result now follows.

6.3. The properties of i∗g. — For all θ ∈ [0, 2π], we define Dθ by

Dθ =
{
z ∈ C ; |z − 1

2 eiθ| < 1
2

}
.

For all θ, let iθ be the unique solution to the Plateau problem (Dθ, z )→ z)
with constant Gaussian curvature equal to k. For all θ, we define Σθ by
Σθ = (Dθ, iθ). The surface Σθ is a surface equidistant from the (Euclidian)
hemisphere of radius 1

2 centred on 1
2 eiθ in the complex plane. In fact, Σθ is the

intersection with the upper half space of a Euclidean sphere whose centre lies in
the lower half space. Let Ωθ be the region exterior to this surface (i.e., Ωθ is the
intersection of the interior of this sphere with the upper half space). We define

Ω =
⋂

θ∈[0,2π]

Ωθ.

We obtain the following result.

Proposition 6.7. — The surface Σ is contained in the complement of Ω.

Proof. — Let θ ∈ [0, 2π] be arbitrary. For t ∈ (0, 1) we define Dt,θ by

Dt,θ =
{
z ∈ C ; |w − 1

2 eiθ| < 1
2

}
.

For all t, let it,θ be the unique solution to the Plateau problem (Dt,θ, z )→ z)
with constant Gaussian curvature equal to kt = (1 − t) + tk > k. For all t,
we define Σt,θ by Σt,θ = (Dt,θ, it,θ). By considering the foliation of H3 defined
by solutions of constant Gaussian curvature kt to the Plateau problems given
by all the discs centred on 1

2 eiθ, using the weak geometric maximum principle
(Lemma 2.1), we may show that, for all s < t, Σs,θ lies in the exterior of Σt,θ

and so the family (Σt,θ)t∈(0,1) is a foliation of Ωθ.
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Let us denote by Σt,θ the closure of the image of Σt,θ in H3 ∪ ∂∞H3. Since
∂∞Σ = ∂D∗, there exists ε ∈ (0, 1) such that, for all t < ε, Σt,θ ∩Σ = ∅. Let
us define t0 by

t0 = Sup
{
t s.t. Σs,θ ∩Σ = ∅, ∀s ∈ ]0, t[

}
.

We aim to show that t0 = 1. We will assume the contrary in order to obtain
a contradiction. Since Σθ and Σt0,θ are compact, and since the foliation is
continuous, we obtain

Σt0,θ ∩Σ 0= ∅.

Now ∂∞Σt0,θ = ∂Dt0,θ ⊆ Ĉ and ∂∞Σ = ∂D∗ ⊆ Ĉ. Thus

∂∞Σt0,θ ∩ ∂∞Σ = ∅ =⇒ Σt0,θ ∩Σ 0= ∅.

Let p0 be in the intersection of Σt0,θ and Σ, and let us denote by Ext(Σt0,θ)
the exterior of Σt0,θ. We obtain

Ext(Σt0,θ) =
⋂

0<t<t0

Σt,θ =⇒ Σ∩Ext(Σt0,θ) = ∅.

It follows that Σ is tangent to Σt0,θ within the interior of this surface at p0.
However, since the Gaussian curvature of Σt0,θ is strictly greater than that
of Σ, we obtain a contradiction by the weak geometric maximum principle
(Lemma 2.1). It thus follows that t0 = 1 and we obtain Σ ⊆ Ωc

θ. Since θ ∈ [0, 2π]
is arbitrary, the result follows.

We now obtain the following result concerning the behaviour of i and f .

Corollary 6.8. — There exists B ∈ ]0,∞[ such that

LimSup
r→0

i1(r)

i2(r)
" B.

In other words

LimSup
r→0

r

f(r)
" B.

Proof. — Since f(r) = (i2 ◦ i−1
1 )(r) and i1(0) = 0, these two results are equiv-

alent. Let Σ1,0 and D0 be as in the proof of the preceding propostion. Let
f̃ : D0 → ]0,∞[ be such that Σ1,0 is the graph of f̃ over D0. By the preceding
proposition, for all p ∈ D0,

f(p) ! f̃(p).

However, by considering the restriction of f̃ to (0, 1), there exists B ∈ (0,∞)
such that

LimSup
r→0

r

f̃(r)
" B.

The result now follows.
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Let Γ ⊆ H3 be the geodesic going from 0 to ∞. Let δ : H3 → (0,∞) be such
that, for all r,θ and λ,

δ(reiθ, λ) = d
(
(reiθ, λ),Γ

)
.

Since δ is invariant under the action of isometries of H3 which preserve Γ,
we find that it only depends on r/λ. By the preceding result, there exists
B ∈ (0,∞) such that

LimSup
z→0

δ
(
i(z)

)
" B.

We may now refine this estimate as follows:

Proposition 6.9. — Lim
z→0

δ
(
i(z)

)
= 0.

Proof. — Let (pn)n∈N ∈ D∗ be a sequence of points that converges to 0 such
that

δ
(
i(pn)

)
−→ LimSup

z→0
δ
(
i(z)

)
.

For all n, let us define (zn, λn)n∈N ∈ H3 by

(zn, λn) = i(pn).

For all n, we define the isometry An : H3 → H3 by

An(z, λ) =
1

λn
(z, λ).

In particular,

(An ◦ i)(pn) = An(zn, λn) =
( zn

λn
, 1

)
.

Since LimSupn→∞ |zn/λn| " B, there exists a compact subset K of H3 such
that, for all n,

(An ◦ i)(pn) ∈ K.

For all n, we define in by in = An◦i and we denote the Gauss lifting of in by ı̂n.
For all n, we define the immersed surface Σn by Σn = (D∗, in) and we denote the
Gauss lifting of Σn by Σ̂n. By Labourie’s compactness theorem (Theorem 4.3),
there exists a (possibly tubular) pointed immersed surface (Σ̂0, p0) = (S0, ı̂0, p0)
in UH3 such that (Σ̂n, pn)n∈N converges to (Σ̂0, p0) in the Cheeger-Gromov
topology.

We define " by

" = LimSup
z→0

δ
(
i(z)

)
.

Let η ∈ (0,∞) be an arbitrary positive real number. By definition, there exists
a positive real number ε ∈ (0,∞) such that, for 0 < |z| < ε,

δ(i(z)) " " + η.
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For g an arbitrary metric over D∗, for p ∈ D∗ an arbitrary point and for
R ∈ (0,∞) an arbitrary positive real number, we define dg to be the metric
(i.e., the distance function) generated over D∗ by g and we define BR(p; g) by

BR(p; g) =
{
q ∈ D∗ s.t. dg(p, q) < R

}
.

For all n, since An is an isometry, we obtain

ı̂∗ngν = ı̂∗gν =⇒ BR(pn; ı̂∗ngν) = BR(pn; ı̂∗gν).

We fix R. Since (D∗, ı̂∗gν) is complete, if we define D ∗
ε by

D ∗
ε =

{
z ∈ D∗ s.t. |z| < ε

}
,

then there exists a positive integer N ∈ N such that for all n ! N :

BR(pn; ı̂∗gν) ⊆ D ∗
ε .

Consequently, for n ! N ,

BR(pn; ı̂∗ngν) ⊆ D ∗
ε =⇒ Sup

{
δ(in(q)) s.t. q ∈ BR(pn; ı̂∗ngν)

}
" " + η.

Thus, after taking limits, we obtain

Sup {δ(i0(q)) s.t. q ∈ BR(p0; ı̂
∗
0 gν)} " " + η.

Since η, R ∈ (0,∞) are both arbitrary, we have

Sup {δ(i0(q)) s.t. q ∈ S0} " ".

However, by definition δ(in(pn)) → " as n → ∞. Consequently

δ
(
i0(p0)

)
= ".

We will show that Σ̂0 is a tube. Indeed, suppose the contrary, in which
case it is the Gauss lifting of a k-surface Σ0 = (S, i0). The surface Σ0 is an
interior tangent at the point p0 to the surface δ−1(B). However, the Gaussian
curvature of δ−1(B) is equal to 1 and is thus strictly greater than k. The
desired contradiction now follows by the weak geometric maximum principle
(Lemma 2.1). Consequently Σ̂0 must be a tube about a geodesic ∆.

For all p ∈ ∆, δ(p) " ". Consequently, ∆ remains within a fixed distance
of Γ. It thus follows that ∆ and Γ coincide and that, for all p ∈ ∆, δ(p) = 0.
In particular, we obtain " = δ(i0(p0)) = 0. The desired result now follows.

In particular, we obtain:

Corollary 6.10. — Lim
r→0

i1(r)

i2(r)
= Lim

r→0

r

f(r)
= 0.

We may now prove the second structure lemma.
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Lemma 6.2 (Second Structure Lemma). — The Riemannian manifold (D∗, g)
is complete. Moreover, if we define the vector field ∂θ over D∗ by

∂θ(reiθ) = ∂trei(θ+t)
t=0,

then g(∂θ, ∂θ) tends towards 0 as r tends to 0.

Proof. — Let h be the Riemannian metric over H3. By the boundary behaviour
theorem (Theorem 1.1), the immersion i is proper, and thus the metric g = i∗h
is complete. For r ∈ (0, 1), we define the curve cr : (0, 2π) → D∗ such that,
for all θ, cr(θ) = reiθ. We have

(i ◦ cr)(θ) = (i1(r)e
iθ, i2(r)) =⇒ Lenh(i ◦ cr) = 2πi1(r)/i2(r)

=⇒ Lim
r→0

Lenh(i ◦ cr) = 0.

However, for all r, Lenh(i ◦ cr) = Leng(cr). The result now follows.

6.4. Convergence in the Hausdorff topology. — We now prove the

Lemma 6.3 (Third Structure Lemma). — Let K be a compact subset of H3.
Let (pn)n∈N ∈ H3 be a sequence which converges towards (0, 0) ∈ ∂∞H3. Let
(An)n∈N be a sequence of isometries of H3 such that, for all n,

Anpn ∈ K.

If, for every n, we define Tn by Tn = AnT , then there exists T 0 ⊆ H3 ∪ ∂∞H3

which is either the closure in H3 ∪ ∂∞H3 of a geodesic in H3, or a point in ∂H3,
such that (T n)n∈N converges to T 0 in the Hausdorff topology. We define Γ0,∞

to be the closure in H3 ∪ ∂∞H3 of the geodesic joining 0 and ∞.

If, for every n, we define Γn by Γn = AnΓ0,∞, then the sequence (Γn)n∈N

converges to T 0 in the Hausdorff topology.

Proof. — Let (pn)n∈N ∈ H3 be a sequence in H3 that converges to 0. For all n,
let us define (wn, λn) by

pn = (wn, λn).

For all n, we define the isometry Mn of H3 by

Mn(z, λ) =
1

λn
(z, λ).

For all R ∈ (0,∞), we define BR ⊆ H3 ∪ ∂∞H3 by

BR =
{
(z, λ) ∈ C × [0,∞) s.t. |z|2 + λ2 ! R2

}
∪ {∞} .

For all r ∈ (0,∞) we define Cr ⊆ H3 ∪ ∂∞H3 by

Cr =
{
(z, λ) ∈ C × [0,∞) s.t. |z|2 " r2λ2

}
∪{∞} .

We now define the mushroom MushR,r ⊆ H3 ∪ ∂∞H3 by

MushR,r = BR ∪Cr.
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The mushrooms MushR,r converge to Γ0,∞ in the Hausdorff topology as R
tends to infinity and r tends to 0.

Suppose that there exists B ∈ (0,∞) such that, for all n, |wn/λn| < B.
There exists a compact subset L of H3 such that, for all n, Mnpn ∈ L. By
the first and second structure lemmata (Lemmata 6.1 and 6.2), for all r ∈ R+,
there exists R ∈ R+ such that

T ⊆ MushR,r .

After taking a subsequence if necessary, we may thus construct sequences of
positive real numbers, (Rn)n∈N, (rn)n∈N ∈ (0,∞) such that (Rn/λn)n∈N tends
to infinity, (rn)n∈N tends to 0, and, for all n,

T ⊆ MushRn,rn
.

Consequently,

MnT ⊆ MushRn/λn,rn
.

It follows that MnT converges towards Γ0,∞ in the Hausdorff topology. For
all n, we define the application Bn by Bn = AnM−1

n and we obtain

Bn(Mnpn) ∈ K.

However, since L and K are both compact, the family of isometries of H3

which send a point of L onto a point of K is also compact. It follows that,
after taking a further subsequence if necessary, we may assume that there
exists B0 such that (Bn)n∈N converges to B0. By Lemma 2.3, it follows that
(AnT )n∈N = (BnMn(T ))n∈N and (AnΓ0,∞)n∈N = (BnΓ0,∞)n∈N both converge
to A0Γ0,∞ in the Hausdorff topology.

We now suppose that no such B exists. For all n, we define ρn = |wn/λn|.
After taking a subsequence if necessary, we may assume that (ρn)n∈N tends
to infinity. As before, after taking a further subsequence if necessary, we may
construct sequences (Rn)n∈N, (rn)n∈N, (Kn)n∈N ∈ ]0,∞[ such that:

(i) the sequence (Kn)n∈N tends to infinity,

(ii) the sequence (rn)n∈N tends to zero,

(iii) for all n, Rn ! Kn |wn| = Knρnλn, and

(iv) for all n, T ⊆ MushRn,rn
⇒ MnT ⊆ MushRn/λn,rn

. For all n, we define
the application Nn by

Nn(z, λ) =
(
z −

wn

λn

,λ
)
.

For all sufficiently large n, we obtain

Nn MushRn/λn,rn
⊆ Bρn/2.
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Consequently, for sufficiently large n,

NnMnTn, NnMnΓ0,∞ ⊆ Bρn/2.

Since (Bρn/2)n∈N converges towards {∞} in the Hausdorff topology, it follows

that (NnMnTn)n∈N and (NnMnΓ0,∞)n∈N also converge to {∞} in the Haus-
dorff topology. For all n, we define Bn = An(NnMn)−1. By following the
same reasoning as before, after taking a subsequence if necessary, we may as-
sume that there exists p0 ∈ ∂∞H3 such that (AnTn)n∈N and (AnΓ0,∞)n∈N both
converge towards {p0} in the Hausdorff topology, and the result follows.

7. Ramified Coverings

7.1. Introduction. — In this section we prove Theorem 1.2:

Theorem 1.2. — Let S be a Riemann surface. Let P be a discrete subset
of S such that S \P is hyperbolic. Let ϕ : S → Ĉ be a ramified covering having
critical points in P. Let κ be a real number in (0, 1). Let i : S \ P → H3 be
the unique solution to the Plateau problem (S \ P , ϕ) with constant Gaussian
curvature κ. Let Σ̂ = (S \ P , ı̂) be the Gauss lifting of Σ.

Let p0 be an arbitrary point in P. If ϕ has a critical point of order k at p0,
then Σ̂ is asymptotically tubular of order k at p0.

We proceed in many steps. We first prove that if (pn)n∈N is a sequence of
points in S \ P which converges to p0, then (Σ̂, pn)n∈N converges to a tube in
the Cheeger-Gromov topology. We show that this tube is necessarily of order k.
We then show how convergence in the Cheeger-Gromov topology allows us to
deduce that (Σ, pn) is a graph over a tube of given finite length for all sufficiently
large n. Finally, by gluing together such graphs, we obtain the desired result.

7.2. The position of ı̂(p) near to ramification points. — Let S be a

Riemann surface and let P ⊆ S be a discrete subset. Let ϕ : S → Ĉ be a
ramified covering of S over Ĉ with critical points in P . Let κ ∈ (0, 1) be a real
number. Let i : S \ P → H3 be the unique solution to the Plateau problem
(S \ P , ϕ) with constant Gaussian curvature κ, and let us define the immersed
surface Σ by Σ = (S \P , i). Let ı̂ be the Gauss lifting of i, and let Σ̂ = (S \P , ı̂)
be the Gauss lifting of Σ. Let p0 ∈ P be a ramification point of ϕ. Let Γ0,∞

be the unique geodesic in H3 going from 0 to ∞.

We begin by recalling the following result which gives a local description of
ramified coverings near to ramification points:
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Lemma 7.1. — Suppose that ϕ(p0) = 0. There exist a chart (f,Ω, D) of S
about p0, a real number λ ∈ (0,∞) and a positive integer k ∈ N such that the fol-
lowing diagram commutes:

U

" 

"
 "

f
ϕ

D
z !−→λzk

Ĉ

Remark. — This lemma is usually quoted without the factor λ. We include λ
so that the image of f may be chosen to be D, which is more convenient for
our purposes.

Using the boundary behaviour theorem (Theorem 1.1), we obtain the fol-
lowing result.

Proposition 7.2. — Let p0 ∈ P be a ramification point of ϕ. If (pn)n∈N is a
sequence of S \ P which converges to p0, then (in(pn))n∈N tends towards ϕ(p0)
in H3 ∪ ∂∞H3.

Proof. — Let us denote by 2D the disc of radius 2 about the origin in C. By
the preceding lemma, after composing ϕ with an isometry of H3 if necessary,
we may assume that there exists a chart (f, U, 2D) of S \P about p0 and k ∈ N

such that the following diagram commutes:

U

" 

"
 "

f
ϕ

D
z !−→zk

Ĉ2

We define the compact subset K of S \P by K = f−1({|z| = 1}) and we define
the connected component Ω of (S \ P) \ K by Ω = f−1({0 < |z| < 1}). The
result now follows by the boundary behaviour theorem (Theorem 1.1).

7.3. Tubes about geodesics. — We begin by controlling the geometry of Σ
near to p0. For simplicity, we will assume that ϕ(p0) = 0. Let (pn)n∈N ∈ S \ P
be a sequence which tends to p0. By identifying H3 with C × (0,∞), for all n,
we define (wn, λn)n∈N ∈ H3 by

(wn, λn) = i(pn).

For all n, we define the isometry An of H3 by

An(w, λ) =
1

λn
(w, λ).
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For all n, we define the immersion in by

in = Ani.

For all n, let ı̂n be the Gauss lifting of in. For all n, we define the immersed
surface Σn by Σn = (S \ P , in) and we define Σ̂n = (S \ P , ı̂n) to be the Gauss
lifting of Σ.

We obtain the following result:

Proposition 7.3. — After extraction of a subsequence, (in(pn))n∈N converges
towards (0, 1) and (Σ̂n, pn)n∈N converges to a tube about Γ0,∞.

Proof. — By Lemma 7.1, after applying an isometry of H3 if necessary, we may
find a chart (z, U, D) of S about p0 and k ∈ N such that the following diagram
commutes:

U

" 

"
 "

z
ϕ

D
z !−→zk

Ĉ

For all 1, we define the function ϕ( : D∗ → Ĉ by

ϕ((z) = z(.

For all 1, let us define the immersion f( : D∗ → Ĉ to be the unique solution of
the Plateau problem (D∗, ϕ(). For all 1, we define Σ( = (D∗, f() and we define
T( = f((D∗) to be the image of f( in H3. Let us define T by T = T1. Then T(
coincides with T for all 1. Let T be the closure of T in H3 ∪ ∂∞H3.

By Labourie’s uniqueness theorem (Theorem 4.2), the immersed surface Σk

is a graph above U \ {p0} in the extension of Σ. By controlling the behaviour
of Σ near p0 in terms of Σk, we will be able to conclude.

For all n, let us define the isometry Mn of H3 by

Mn(w, λ) =
(
w −

wn

λn

,λ
)
.

In particular, for all n, Mn(in(pn)) = (0, 1). For all n we define the immer-
sion jn by jn = Mn ◦ in and we denote the Gauss lifting of jn by ̂n. For
all n, we define the immersed surface Σ′

n by Σ′
n = (S \ P , jn) and we define

Σ̂′
n = (S \ P , ̂n) to be the Gauss lifting of Σ′

n.

By Labourie’s compactness theorem 4.3, after extracting a subsequence if
necessary, we may assume that there exists a (possibly tubular) pointed im-
mersed surface (Σ̂′

0, p̂0) = (S0, ̂0, p̂0) in UH3 such that (Σ̂′
n, pn)n∈N converges

towards (Σ̂′
0, p̂0) in the Cheeger-Gromov topology.

For all n, we define Tn by Tn = MnAnT . By the Third Structure Lemma
(Lemma 6.3), after extracting a subsequence if necessary, we may assume that
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there exists T 0 ⊆ H3 ∪ ∂∞H3 which is either the closure in H3 ∪ ∂∞H3 of a
geodesic in H3 or a point in ∂∞H3 such that (Tn)n∈N converges towards T 0 in
the Hausdorff topology. At the same time (MnΓ0,∞)n∈N converges to T 0 in the
Hausdorff topology.

We now show that every normal geodesic leaving Σ̂0 intersects T 0 non-
trivially. This permits us to show that Σ̂0 is a tube about a geodesic.

For M a manifold, for p ∈ M an arbitrary point, g a Riemannian metric
over M and R a positive real number, we define BR(p; g) to be the ball of
radius R in M with respect to the metric g. Let q0 be an arbitrary point in S0.
For all n, since An and Mn are isometries, we observe that ̂∗ngν = ı̂∗gν . Let
R ∈ (0,∞) be a positive real number such that q0 ∈ BR(p0; ̂∗0 gν). Let (qn)n∈N

be a sequence of points in S \ P which tends to q0 such that, for all n,

qn ∈ BR(pn; ̂∗ngν) = BR(pn; ı̂∗gν).

Since the surface (S \P , ı̂∗gν) is complete, for all sufficently large n, we obtain

qn ∈ BR(pn; ̂∗ngν) = BR(pn; ı̂∗gν) ⊆ U \ {p0}.

Consequently, for all sufficiently large n, the point qn is in U \ {p0}. Let
Exp : TH3 → H3 be the exponential mapping over H3. For vp a vector in UH3,
we define the set X(vp) ⊆ H3 ∪ ∂∞H3 by

X(vp) =
{
Exp(tvp) s.t. t ∈ [0,∞]

}
.

The sequence (X(̂n(qn)))n∈N converges towards X(̂0(q0)) in the Hausdorff
topology. Since Σk is a graph above U \ {p0} in the extension of Σ, it follows
that for every n,

X
(
̂n(qn)

)
∩Tn 0= ∅.

Consequently, by Lemma 2.4:

X
(
̂0(q0)

)
∩T 0 0= ∅

We will begin by showing that Σ̂′
0 is a tube. Let us assume the contrary in order

to obtain a contradiction. There exists an immersion j0 : S0 → H3 such that ̂0
is the Gauss lifting of j0. The immersed surface Σ′

0 = (S0, j0) is everywhere
locally convex. Let V be a sufficently small open subset of S0 such that the
immersed surface (V, j0) coincides with a portion of the boundary of a strictly
convex subset of H3. Let us define the applications E : V × [0,∞) → H3 and
E∞ : V → ∂∞H3 by

E(p, t) = Exp
(
t̂0(p)

)
, E∞(p) = Lim

t→∞
Exp

(
t̂0(p)

)
.

Let us denote by W the set E(U × [0,∞)). The application E defines a diffeo-
morphism of V × [0,∞) onto W . Let us define π1 : V × [0,∞) → V to be the
projection onto the first coordinate, and let us define π : W → V by

π = π1 ◦ E−1.
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In particular π is smooth. Let us denote by W∞ the set E∞(U). The application
E∞ defines a homeomorphism of V onto W∞.

We now have two possibilities. Either T 0 is a point in ∂∞H3, or it is the
closure in H3 ∪ ∂∞H3 of a geodesic in H3. If T 0 is a point {t0} in ∂∞H3, then,
since, for all q ∈ V , the intersection of X(̂0(q)) with T 0 is non-empty, we
obtain

E∞(V ) = {t0} .

This is absurd, since E∞ is a homeomorphism. Let us now assume that T 0 is the
closure in H3 ∪ ∂∞H3 of a geodesic in H3. Let γ : R → H3 be a parametrisation
of this geodesic. Let (In)n∈N be a collection of disjoint subintervals of R such
that

γ(R)∩W =
⋂

n∈N

γ(In).

For every n, the application π◦γ is smooth over In. Consequently, if we denote
by µ the 2-dimensional measure generated over V by the metric ̂∗0 gν , we obtain

µ
( ⋂

n∈N

(π ◦ γ)(In)
)

= 0.

Let us denote by γ(±∞) the boundary of the image of γ in H3 ∪ ∂∞H3. Since
E∞ is a homeomorphism, the set E−1

∞ (γ(±∞)) consists of at most two points.
Consequently

µ
(
E−1
∞

(
γ(±∞)

))
= 0.

Let q ∈ V be an arbitrary point in V . Since the intersection of X(̂0(q)) with T0

is non-empty, q must be in the union of
⋂

n∈N
(π ◦ γ)(In) with µ(E−1

∞ (γ(±∞)).
Consequently, V is the union of these two sets and is thus of measure zero.
This is absurd, and it follows that Σ̂′

0 is not the Gauss lifting of a k-surface,
and is consequently a tube about a geodesic in H3. Let us denote this geodesic
by Γ, and let us denote by Γ the closure of Γ in H3 ∪ ∂∞H3. Since every normal
geodesic leaving Γ intersects T 0 non-trivially, a similar reasoning permits us to
conclude that T0 coincides with Γ.

For all n, MnΓ0,∞ is the unique vertical geodesic joining −wn/λn to ∞.
Since (MnΓ0,∞)n∈N converges towards T 0 = Γ in the Hausdorff topology, and
since Γ passes by (0, 1), we conclude that Γ is the unique vertical geodesic
passing by (0, 1). Consequently

Γ = Γ0,∞.

It follows that (wn/λn)n∈N tends towards 0. Since (wn/λn)n∈N converges to-
wards 0, it follows that the sequence (Mn)n∈N converges to the identity. Con-
sequently, the sequence of immersions (̂ın)n∈N = (M−1

n ◦ ̂n)n∈N converges to-
wards ̂0. In otherwords, the sequence of immersed surfaces (Σn, pn)n∈N con-
verges in the Cheeger-Gromov topology towards (Σ′

0, p0), which is itself a tube
about Γ0,∞, and the result now follows.
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7.4. Tubes of finite order about geodesics. — By continuing to iden-
tify H3 with the upper half space C × R+ and TH3 with (C × R)(C×R+), we
define n0,1 ∈ U(0,1)H

3 by

n(0,1) = (1, 0)(0,1).

Let N0,∞ be the normal circle bundle over Γ0,∞ in H3. Let N0,∞(0, 1) be
the fibre above (0, 1). Every subsequence of (̂ın(pn))n∈N has a subsubsequence
converging to a point in N0,∞(0, 1). It follows that there exists a sequence
(Rn)n∈N of rotations about Γ0,∞ such that the sequence (Rn ◦ ı̂n(pn))n∈N con-
verges to n(0,1). By replacing An with Rn ◦ An for all n, we may assume that
the sequence (̂ın(pn))n∈N converges to n(0,1).

We now obtain the following stronger version of the previous result.

Proposition 7.4. — After extracting a subsequence, (Σ̂n, pn)n∈N converges
to a tube of order k about Γ0,∞ with base point n(0,1).

Proof. — Let N0,∞ be the normal unitary bundle over Γ0,∞ in UH3. The se-

quence (Σ̂n, pn)n∈N converges to a tube about Γ0,∞ in the Cheeger-Gromov

topology. Let (Σ̂0, p̂0) = (S0, ı̂0, p̂0) be the limit of this sequence. Since
ı̂0 : S0 → N0,∞ is a local isometry between two complete surfaces, there ex-
ists m ∈ N∪{∞} such that ı̂0 is an m-fold covering of N0,∞. We thus aim to
show that m = k.

As before, after applying an isometry of H3 if necessary, by Lemma 7.1, we
may find a chart (z, U, D) of S about p0 and k ∈ N such that the following
diagram commutes:

For all n, recalling that i(pn) = (wn, λn), we define zn and Dn by

zn = λ−1/k
n z, Dn =

{
z ∈ C s.t. 0 < |z| < λ−1/k

n

}
.

For all n, (zn, U \{p0}, Dn) defines a chart of S\P such that, if −→n is the Gauss-
Minkowski mapping which sends UH3 to ∂∞H3, then, for all p ∈ U \ {p0}:

ϕn(p) = −→n ◦ ı̂n(p) = zn(p)k.

Using these charts, we will construct a sequence of pointed tubes of order k
about Γ0,∞ which converges to (Σ̂0, p̂0) in the Cheeger-Gromov topology. The
Hausdorff property of the Cheeger-Gromov topology will then permit us to
conclude.

We begin by constructing a number of coordinate charts that are well
adapted to our problem. To begin with, we may assume that (S0, ı̂∗0 gν) is
equal either to S1 × R or to R2, both of these spaces being furnished with
the canonical Euclidean metric. Let NN0,∞ be the normal bundle over N0,∞

in UH3. NN0,∞ is trivial and there exists a canonical vector bundle isomor-
phism τ : (S1 × R) × R3 → NN0,∞ which is unique up to composition with an
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element of SO(3). For ε ∈ R+ we define

NεN0,∞ =
{
v ∈ NN0,∞ s.t. ‖v‖ < ε

}
.

Let Exp : NN0,∞ → UH3 be the exponential mapping. Since UH3 is homo-
geneous, there exists ε ∈ R+ such that the restriction of Exp to NεN0,∞ is a
diffeomorphism onto its image. We define the mapping ω by ω = Exp ◦τ and
we define Ω ⊆ UH3 by

Ω = ω
(
(S1 × R) × Bε(0)

)
.

We may assume that ω sends the origin to ı̂0(p̂0) = n(0,1). The triple
(ω−1,Ω, (S1 × R) × Bε(0)) provides a coordinate chart of UH3 which is well
adapted to our problem. Let π1 : (S1 ×R)×Bε(0) → S1 × R be the projection
onto the first factor. In the sequel, we will identify S1 × R with the zero
section (S1 × R) × {0} of the trivial bundle (S1 × R) × R3.

Let us denote by −→n the Gauss-Minkowski mapping which sends UH3

onto ∂∞H3. We identify ∂∞H3 with the Riemann sphere Ĉ. Since the group of
isometries of H3 which preserve Γ0,∞ acts transitively over N0,∞, by reducing ε
if necessary, we may assume that

−→n (Ω) = C∗ = Ĉ \ {0,∞} .

We define ñ : (S1 × R) × R3 → C∗ by

ñ = −→n ◦ w.

The application ñ defines a diffeomorphism between S1 × R and C∗. Let us
denote the inverse of this mapping by π̂Cyl.

Let (ψn)n∈N be a sequence of convergence mappings of (Σ̂n, pn)n∈N with
respect to (Σ̂0, p̂0). Let R ∈ R+ be a positive real number. Let N ∈ N be such
that, for all n ! N :

(i) the restriction of ψn to BR+1(p̂0) is a diffeomorphism onto its image,

(ii) BR+1/2(pn) is contained in the image of BR+1(p̂0) under ψn,

(iii) the image of BR+1/4(p̂0) under ψn is contained in BR+1/2(pn),

(iv) BR+1/2(pn) is contained in U \ {p0}, and

(v) in(BR+1/2(p̂0)) is contained in Ω.

In particular, for all n ! N , the fourth condition permits us to identify ϕn

with αk ◦ zn over BR+1/2(pn), and the fifth condition allows us to define
ı̃n : BR+1/2(pn) → (S1 × R) × R3 by

ı̃n = ω−1 ◦ ı̂n.

We define ı̃0 in a similar manner. For all p ∈ N∪{0}, let ‖.‖Cp,R be a Cp norm
over BR(p̂0). Since Σ0 is a tube, ı̃0 takes values in S1 × R. Consequently

π1 ◦ ı̃0 = ı̃0.
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Thus (‖π1 ◦ (̃ın ◦ ψn) − (̃ın ◦ ψn)‖Cp,R)n!N → 0. Applying ñ, we obtain
(
‖ñ ◦ π1 ◦ (̃ın ◦ ψn) − ñ ◦ (̃ın ◦ ψn)‖Cp,R

)
n!N

−→ 0.

However, for all n ! N ,

ϕn = −→n ◦ ı̂n = (−→n ◦ ω) ◦ (ω−1 ◦ ı̂n) = ñ ◦ ı̃n.

Thus (
‖ñ ◦ π1 ◦ (̃ın ◦ ψn) − (ϕn ◦ ψn)‖Cp,R

)
n!N

→ 0.

We now apply π̂Cyl to obtain

(‖π̂Cyl ◦ ñ ◦ π1 ◦ (̃ın ◦ ψn) − π̂Cyl ◦ (ϕn ◦ ψn)‖Cp,R)n!N −→ 0.

Since the restriction of π̂Cyl ◦ ñ to S1 × R is equal to the identity, we obtain
(
‖π1 ◦ (̃ın ◦ ψn) − π̂Cyl ◦ (ϕn ◦ ψn)‖Cp,R

)
n∈N

−→ 0.

By considering the metric (ω ∗gν) over (S1 × R) × Bε(0), the first and last of
these limits permit us to obtain

(
‖(̃ın ◦ ψn)∗π ∗

1 (ω ∗gν) − (̃ın ◦ ψn)∗(ω ∗gν)‖Cp,R

)
n!N

−→ 0,
(
‖(̃ın ◦ ψn)∗π ∗

1 (ω ∗gν) − (ϕn ◦ ψn)∗π̂ ∗
Cyl(ω

∗gν)‖Cp,R

)
n!N

−→ 0.

Combining these two limits, we obtain
(
‖(̃ın ◦ ψn)∗(ω ∗gν) − (ϕn ◦ ψn)∗π̂ ∗

Cyl(ω
∗gν)‖Cp,R

)
n!N

−→ 0.

Since ı̂ = ω ◦ ı̃, we have ı̂∗ = ı̃∗ω ∗. Let us define πCyl : C∗ → N0,∞ by

πCyl = ω ◦ π̂Cyl.

This gives us π ∗
Cyl = π̂ ∗

Cylω
∗. Thus

(
‖(̂ı ◦ ψn)∗gν − (ϕn ◦ ψn)∗π ∗

Cylg
ν‖Cp,R

)
n!N

−→ 0.

Consequently, since ((̂ın ◦ ψn)∗gν)n∈N converges to ı̂∗0 gν , we obtain
(
‖ı̂∗0 gν − (ϕn ◦ ψn)∗(π0,∞)∗gν‖Cp,R

)
n!N

−→ 0.

Let us define αk : C∗ → C∗ by

αk(z) = zk.

We define gk over C∗ by
gk = α∗

kπ
∗
Cylg

ν .

Since ϕn = αk ◦ zn, we have
(
‖ı̂∗0 gν − (zn ◦ ψn)∗gk‖Cp,R

)
n!N

−→ 0.

For all n ! N , the function (zn ◦ψn) is defined and is smooth over BR(p̂0), and
its restriction to BR(p̂0) is a diffeomorphism onto its image. Since R ∈ R+ is ar-
bitrary, it follows that (zn ◦ψn)n∈N defines a sequence of convergence mappings
for the sequence (C∗, ϕn(pn), gk)n∈N with respect to the limit (S0, p0, ı̂∗0 gν).
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Since (ϕn(pn))n∈N = (−→n ◦ ı̂n(pn))n∈N converges to −→n (n0,1) = 1 and since
the Cheeger-Gromov topology is Hausdorff, it follows that (S0, p0, ı̂∗0 gν) is iso-
metric to (C∗, 1, gk). By considering, for example, the length of the shortest
homotopically non-trivial curve in C∗, we find that, for k 0= k′, the manifolds
(C∗, 1, gk) and (C∗, 1, gk′) are not isometric. Consequently m = k, and the
result now follows.

Since the same result holds for every subsequence of (Σ̂n, pn)n∈N, we obtain
the following stronger version of this result.

Corollary 7.5. — (Σ̂n, pn)n∈N converges to a tube of order k about Γ0,∞

with base point n(0,1).

Proof. — We assume the contrary. Let (T0, p0) be the tube of order k about
Γ0,∞ with base point n(0,1). We may assume that there exists a neighbour-
hood Ω of (T0, p0) in the Cheeger-Gromov topology such that, after extraction
of a subsequence, for all n,

(Σ̂n, pn) /∈ Ω.

However, by the preceding result, there exists a subsequence of (Σ̂n, pn)n∈N

which converges towards (T0, p0). We thus have a contradiction and the result
now follows.

Expressing this result in terms of graphs over tubes, we obtain:

Proposition 7.6. — Let r ∈ R+ be a positive real number. There exists N ∈
N such that for all n ! N , the pointed surface (Σ̂n, pn) is locally a graph over
a tube about Γ0,∞ of order k and of half length r.

Moreover, if, for all n ! N , we denote by λn the graph function of (Σ̂n, pn)
over S1×] − r, r[, then (λn)n!N converges to 0 in the C∞

loc topology.

Proof. — Let Exp : TUH3 → UH3 be the exponential mapping over UH3.
Let N0,∞ be the normal circle bundle over Γ0,∞ in UH3. Let NN0,∞ be the
normal bundle over N0,∞ in TUH3. For ε ∈ R+, we define NεN0,∞ by

NεN0,∞ =
{
v ∈ NN0,∞ s.t. ‖v‖ < ε

}
.

Since UH3 is homogeneous, there exists ε ∈ R+ such that the restriction of
Exp to NεN0,∞ is a diffeomorphism onto its image. Let us define U ⊆ UH3 by
U = Exp(NεN0,∞). Let π : U → N0,∞ be the orthogonal projection onto N0,∞.

Let T = (S1 × R, ı̂0) be a tube of order k about Γ0,∞. Let p̂0 be the origin

of T . By the preceding result, we may assume that (Σ̂n, pn)n∈N converges
towards (T, p̂0) in the Cheeger-Gromov topology. Let (ϕn)n∈N be a sequence
of convergence mappings for (Σ̂n, pn)n∈N with respect to (T, p̂0).

Let us define the application α : (S1 × R)× (S1 × R) → (S1 × R)×N0,∞ by

α(x, y) =
(
x, ı̂0(y)

)
.
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Let ∆ be the diagonal in (S1 × R) × (S1 × R):

∆ =
{
(x, x) s.t. x ∈ (S1 × R)

}
.

For all ρ ∈ R+, let Bρ(∆) be the tubular neighbourhood of radius ρ about
∆ in (S1 × R) × (S1 × R). Since α is a local diffeomorphism, it follows by
homogeneity that there exists ρ ∈ R+ such that the restriction of α to Bρ(∆)
is a diffeomorphism onto its image. We will use this mapping to unravel other
mappings that wrap k times round N0,∞. We define V ⊆ (S1 × R) × N0,∞ by

V = α
(
Bρ(∆)

)
.

Let π1, π2 : (S1 × R)× (S1 × R) → S1 × R be the projections onto the first and
second factors respectively.

Let R > 0 be a positive real number such that T4r ⊆ BR(p̂0) ⊆ T . Let
N1 ∈ N be such that for all n ! N1:

(i) the restriction of ϕn to BR+1(p̂0) is a diffeomorphism onto its image,

(ii) (̂ın ◦ ϕn)(BR+1(p̂0)) is contained within U , and

(iii) (x, π ◦ ı̂n ◦ ϕn(x)) ∈ V for all x ∈ BR+1(p̂0).
For all n ! N1, we define βn : BR+1(p̂0) → S1 × R by

βn(x) = π2 ◦ α−1
(
x, π ◦ ı̂n ◦ ϕn(x)

)
.

We define β0 : BR+1(p̂0) → S1 × R by

β0(x) = π2 ◦ α−1
(
x, π ◦ ı̂0(x)

)
.

Trivially β0(x) = x. Since (βn)n!N1
converges to β0 in the C∞

loc topology, it
follows by the common sense Lemmata 2.7 and 2.8 that there exists N2 ! N1

such that for all n ! N2:

(i) the restriction of βn to BR+1/2(p̂0) is a diffeomorphism onto its image,

(ii) (S1 × (−3r, 3r)) is contained in βn(BR+1/2(p̂0)).

For all n ! N2, we define ψn : S1×(−2r, 2r) → BR+1/2(p̂0) ⊆ S1×R and λn

by

ψn = β−1
n S1×]−2r,2r[ and λn = Exp−1 ◦ı̂n ◦ ϕn ◦ ψn.

Trivially, for all n ! N2, ϕn ◦ ψn is a diffeomorphism onto its image, and

Exp ◦λn = ı̂n ◦ (ϕn ◦ ψn).

We now show that, for all n ! N2, λn is a section of NN0,∞ above ı̂0. For
all x ∈ S1 × (−2r, 2r) and for all n ! N2, we have βn ◦ ψn(x) = x. Thus, by
definition of βn

π2 ◦ α−1
(
ψn(x), π ◦ ı̂n ◦ ϕn ◦ ψn(x)

)
= x.
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Since π1 ◦ α = π1, and thus π1 ◦ α−1 = π1, we obtain

α−1
(
ψn(x), π ◦ ı̂n ◦ ϕn ◦ ψn(x)

)
=

(
ψn(x), x

)

=⇒
(
ψn(x), π ◦ ı̂n ◦ ϕn ◦ ψn(x)

)
=

(
ψn(x), ı̂0(x)

)

=⇒ π ◦ ı̂n ◦ ϕn ◦ ψn(x) = ı̂0(x).

Thus, if π̂ denotes the canonical projection from NεN0,∞ onto N0,∞, then, since
π = π̂ ◦ Exp,

π̂ ◦ Exp−1 ◦ ı̂n ◦ ϕn ◦ ψn = ı̂0 =⇒ π̂ ◦ λn = ı̂0.

It follows that λn is a section of ı̂∗0NN0,∞.

Since (βn)n∈N converges to the identity, it follows that (βn(p̂0))n∈N converges
to p̂0. For all n ! N2, let φn : S1×R → S1×R be the unique conformal mapping
which sends p̂0 to βn(p̂0). There exists N3 ! N2 such that for all n ! N3,

φn

(
S1 × (−r, r)

)
⊆ S1 × (−2r, 2r).

For all n ! N3, we define

ψ′
n = ϕn ◦ ψn ◦ φn, λ′

n = λn ◦ φn, ı̂′0,n = ı̂0 ◦ φn.

For all n ! N3, we obtain:

(i) (S1 × (−r, r), ı̂′0,n) is a tube of order k about Γ0,∞,

(ii) ψ′
n : (S1 × (−r, r), 0) → (Sn, pn) is a diffeomorphism onto its image,

(iii) λ′
n is a section of (̂ı′0,n)∗NN0,∞ over S1 × R, and

(iv) ı̂n ◦ ψ′
n = Exp ◦λ′

n.
Consequently, for all n ! N3, the immersed surface (Σ̂n, pn) is locally a

graph over a tube about Γ0,∞ of order k and of half length r, and the first
result follows. Moreover, we find that (λ′

n)n∈N converges to 0 over S1 × (−r, r)
in the C∞

loc topology, and the second result follows.

Since the property of being locally a graph over Γ0,∞ is invariant under
isometries of H3 which preserve Γ0,∞, we immediately obtain the following
result:

Corollary 7.7. — Let r, ε ∈ R+ be positive real numbers. There exists an
integer N ∈ N such that for n ! N the pointed immersed surface (Σ̂, pn) is
locally a graph over a tube about Γ0,∞ of order k and of half length r and if λn

is the graph function of (Σ̂, pn) over S1×] − r, r[ then ‖λn‖ < ε. Moreover
(λn)n∈N tends to 0 in the C∞

loc topology.

If ε is sufficiently small, then the graph functions and the graph diffeomor-
phisms are unique. Since the same result holds for every sequence of points
in S \ P which tends towards p0, we obtain:
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Corollary 7.8. — Let r, ε ∈ R+ be positive real numbers. There exists an
open set Ω of p0 in S such that, if p ∈ Ω \ {p0}, then (Σ̂, p) is locally a graph
over a tube about Γ0,∞ of order k and of half length r and if λp is the graph

function of (Σ̂, p) over S1 × (−r, r) then ‖λp‖ < ε. Moreover λp tends to 0 in
the C∞

loc topology as p tends to p0.

By gluing these graphs together, we now obtain Theorem 1.2:

Theorem 1.2. — Let S be a Riemann surface. Let P be a discrete subset
of S such that S \P is hyperbolic. Let ϕ : S → Ĉ be a ramified covering having
critical points in P. Let κ be a real number in (0, 1). Let i : S \ P → H3 be
the unique solution to the Plateau problem (S \ P , ϕ) with constant Gaussian
curvature κ. Let Σ̂ = (S \P , ı̂) be the Gauss lifting of Σ. Let p0 be an arbitrary
point in P.

If ϕ has a critical point of order k at p0, then Σ̂ is asymptotically tubular of
order k at p0.

Proof. — Let ε be such that the restriction of Exp to NεN0,∞ is a diffeomor-
phism onto its image. Let us define U ⊆ UH3 by U = Exp(NεN0,∞). Let
π : U → N0,∞ be the orthogonal projection onto N0,∞.

Let r be a positive real number. By Corollary 7.8, there exists a connected
neighbourhood Ω of p0 in S such that if p ∈ Ω \ {p0}, then (Σ̂, p) is locally a
graph over a tube about Γ0,∞ of order k and of half length 2r and if λ is the

graph function of (Σ̂, p) over S1 × (−2r, 2r), then ‖λ‖ < ε.
By using foliations, we will construct a chart over an open set about p0

which is well adapted to our problem. Let F0,∞ be the canonical circle foliation
of N0,∞ arising from its structure as a circle bundle over Γ0,∞. Let F be a the
canonical circle foliation of S1 × (−2r, 2r).

For p a point in Ω \ {p0}, let Tp = (S1 × (−2r, 2r), ı̂p) be the tube of
order k and of half length 2r over which (Σ, p) is a locally a graph. Let
ϕp : S1 × (−2r, 2r) → S \ P be the graph diffeomorphism of (Σ, p) over Tp.
We define

Ωp = ϕp

(
S1 × (−r, r)

)
.

Let λp : S1 × (−2r, 2r) → R be the graph function of (Σ, p) over Tp. Since
‖λp‖ < ε, we have ı̂(q) ∈ U for all q ∈ Ωp. Moreover, we may assume that
(π ◦ ı̂)∗gν defines a metric over Ωp.

We remark that, by the uniqueness of graph diffeomorphisms and graph
functions, for all p, q ∈ Ω \ {p0}, q ∈ Ωp if and only if p ∈ Ωq. We define

Ω̂ =
⋂

p∈Ω\{p0}

Ωp.

Since Ω is connected, so is Ω̂. For all p, (ϕp)∗F defines a smooth circle foli-
ation of Ωp. This circle foliation coincides with (π ◦ ı̂)∗F0,∞. It thus follows
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that Ω̂ is foliated by (π ◦ ı̂)∗F0,∞. Using the definition of gν, and recalling that
π ◦ ı̂ ◦ ϕp = ı̂p is a k-fold covering map, we find that every leaf of this foliation
is of length 2πkν−1 with respect to the metric (π ◦ ı̂)∗gν .

Let us define L to be the quotient manifold given by

L = Ω̂/(π ◦ ı̂)∗F0,∞.

L is a smooth connected 1-dimensional manifold without boundary and is thus
diffeomorphic to an open interval I = (a, b) in R. The set Ω̂ is thus diffeo-
morphic to a smooth circle bundle over I. We thus obtain a diffeomorphism
ψ1 : S1 × I → Ω̂. We will show that by modifying this diffeomorphism we
obtain the desired chart.

Let δ be an arbitrary metric over S compatible with its topology. For p ∈ Ω,
we define

∆(p) = Inf
{
δ(ϕp(eiθ, t), p0) s.t. (eiθ, t) ∈ S1 × (−r, r)

}
.

By uniqueness of graph diffeomorphisms and graph functions, for all (eiθ, t)
in S1 × (−r, r), we obtain

∆
(
ϕp(e

iθ, t)
)

= Inf
{
δ(ϕp(e

iφ, s), p0) s.t. (eiφ, s) ∈ S1 × (t − r, t + r)
}
.

Consequently, ∆ is continuous. Since S1 × (−r, r) is compact, we find that
∆(p) > 0 for all p ∈ Ω \ {p0}.

Let Ω1 be connected neighbourhood of p0 contained in Ω̂. Let us define

∆1 = Inf
{
∆(p) s.t. p ∈ ∂Ω1

}
.

Let us define
Ω2 =

{
p ∈ S s.t. δ(p, p0) < ∆1

}
.

We define Ω̂2 in the same way as Ω̂. Since q ∈ Ωp if and only if p ∈ Ωq, we

obtain Ω̂2 ∩ ∂Ω1 = ∅. Consequently

Ω̂2 ⊆ Ω1.

Since Ω̂2 is connected and foliated by (π ◦ ı̂)∗F0,∞, there exists an open subin-
terval I ′ ⊆ I such that

Ω̂2 = ϕ1(S
1 × I ′).

Moreover, since p0 is contained in the closure of Ω̂2, it follows that the closure of
I ′ in I is not compact. Consequently, we may assume that there exists a′ ∈ (a, b)
such that

I ′ = (a′, b).

Since we may choose Ω1 arbitrarily small about p0, we find that ψ1(eiθ, t) tends
to p0 as t tends to b.

Let p : N0,∞ → Γ0,∞ be the canonical projection. Let us also denote by p
the composition p ◦ π : NN0,∞ → Γ0,∞. Let t0 be an arbitrary point in (a, b).
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Let γ : R → Γ0,∞ be a unit speed parametrisation of Γ0,∞ such that γ(t) → 0
as t tends to +∞ and

γ(0) = (p ◦ ı̂ ◦ ψ1)(e
iθ, t0).

Since ψ1 respects the foliation (π ◦ ı̂)∗F0,∞, the mapping

t )−→ (γ−1 ◦ p ◦ ı̂ ◦ ψ1)(e
iθ, t)

is independent of θ and is everywhere a local diffeomorphism. Consequently,
it defines a diffeomorphism. By Proposition 7.2, ı̂(p) → 0 as p → p0. Conse-
quently (γ−1 ◦p◦ ı̂◦ϕ1)(eiθ, t) → +∞ as t → b. We may thus reparametrise ψ1

to obtain a diffeomorphism ψ2 : S1 × (0,∞) → Ω̂ such that, for all θ and for
all t,

(p ◦ ı̂ ◦ ψ2)(e
iθ, t) = γ(t).

We define the vector fields ∂θ and ∂t over S1 × (−2r, 2r) by

∂θ(e
iθ, t) = ∂φ(e

i(θ+φ), t) φ=0, ∂t(e
iθ, t) = ∂s(e

iθ, t + s) s=0.

For all p, we may orient ϕp in such a manner that there exists Tp ∈ R such
that for all (t, eiθ),

(p ◦ ı̂ ◦ ϕp)(t, eiθ) = γ(t + Tp).

We then define Xp and Yp over Ωp by

Xp = (ϕp)∗∂θ, Yp = (ϕp)∗∂t.

By the uniqueness of graph diffeomorphisms, for all p, q ∈ Ω, the map-
ping ϕ−1

p ◦ ϕq defined over ϕ−1
q (Ωp ∩Ωq) is an affine mapping (i.e., a rotation

followed by a translation). Since ϕ−1
p ◦ ϕq preserves orientation, we obtain, for

all p, q ∈ Ω,

Xp Ωp ∩Ωq
= Xq Ωp ∩Ωq

, Yp Ωp ∩Ωq
= Yq Ωp ∩Ωq

.

We may thus define X and Y over the whole of Ω̂ such that, for all p,

X Ωp
= Xp, Y Ωp

= Yp.

In particular [XY ] = 0. Let Φ and Ψ be the flows of X and Y . (Φt)t∈R is
a flow that moves along the leaves of the foliation (π ◦ ı̂)∗F0,∞ with speed

kν−2 with respect to the metric (π ◦ ı̂)∗gν . In particular Φt is defined over Ω̂
for all t ∈ R. Moreover, since every leaf of (π ◦ ı̂)∗F0,∞ is of length 2πkν−1, it
follows that (Φt)t∈R is periodic with period 2π. Let (Gt)t∈R be the geodesic flow
along Γ0,∞ in the positive direction (i.e., towards 0) with constant speed kν−2.
For all t ! 0, the following diagram commutes:

Ω̂
Ψt−−−−−−−−→ Ω̂(p

(p

Γ0,∞
Gt−−−−−−→Γ0,∞.
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It follows that Ψt is defined over Ω̂ for all t ! 0. We define ψ3 : R× (0,∞) → Ω̂
by

ψ3(s, t) = Φ2πν−1ksΨt

(
ψ2(0, 0)

)
.

Since (Φt)t∈R is periodic with period 2π, the mapping ψ3 quotients to an ap-
plication ψ : S1 × (0,∞) → Ω̂. We define ̂ and λ by

̂ = π ◦ ı̂ ◦ ψ, and λ = Exp−1 ◦ ı̂ ◦ ψ.

For all p ∈ Ω, we find that ϕ−1
p ◦ ψ ψ−1(Ωp) is the restriction of an affine

transformation φp of S1 × R to ψ−1(Ωp). Consequently

̂ ψ−1(Ωp) = π ◦ ı̂ ◦ ψ ψ−1(Ωp)

= (π ◦ ı̂ ◦ ϕp) ◦ (ϕ−1
p ◦ ψ) ψ−1(Ωp) = ı̂p ◦ φp.

We recall that ı̂p is a locally conformal k-fold covering map. It thus follows
that ̂ : S1 × (0,∞) → N0,∞ is a locally conformal k-fold covering map. We
thus have:

(i) (S1 × (0,∞), ̂) defines a half tube of order k about Γ0,∞,

(ii) λ is a section of ̂∗NN0,∞, and

(iii) ı̂ ◦ ψ = Exp ◦λ.
We have thus shown that Σ̂ is a graph over a half tube of order k about Γ0,∞.

Moreover, by Corollary 7.8, and the uniqueness of graph functions, we find that
for all p ∈ R, ‖Dpλ(eiθ, t)‖ converges to 0 as t tends to +∞, and the result
follows.

8. Asymptotically tubular surfaces of finite order

8.1. Introduction. — In this section, we will prove Theorem 1.3:

Theorem 1.3. — Let S be a surface and let P ⊆ S be a discrete subset of S.
Let i : S \ P → H3 be an immersion such that Σ = (S \ P , i) is a k-surface
(and is thus the solution to a Plateau problem). Let −→n : UH3 → ∂∞H3 be
the Gauss-Minkowski mapping which sends UH3 to ∂∞H3. Let ı̂ be the Gauss
lifting of i so that ϕ = −→n ◦ ı̂ defines the Plateau problem to which i is the
solution. Let H be the holomorphic structure generated over S \ P by the local
homeomorphism ϕ. Let p0 be an arbitrary point in P, and suppose that Σ is
asymptotically tubular of order k about p0.

Then there exists a unique holomorphic structure H̃ over (S\P)∪{p0} and a
unique holomorphic mapping ϕ̃ : (S \ P)∪{p0} → Ĉ such that H̃ and ϕ̃ extend
H and ϕ respectively. Moreover, ϕ̃ has a critical point of order k at p0.

This result will be proven in two stages. First, by using the properties of
the modules of conformal rings, we obtain:

tome 134 – 2006 – no 4



POINTED k-SURFACES 551

Proposition 8.1. — Let S be a surface. Let P be a discrete subset of S. Let
i : S \ P → H3 be an immersion such that the immersed surface Σ = (S \ P , i)
is a k-surface. Let Σ̂ = (S, ı̂) be the Gauss lifting of Σ. Let −→n be the Gauss-
Minkowski mapping that sends UH3 into ∂∞H3 = Ĉ. Let us define ϕ = −→n ◦ ı̂.
Let H be the canonical conformal structure over Ĉ. Let p0 be a point in P.

If Σ̂ is asymptotically tubular of finite order near p0, then ϕ∗H extends to a
unique conformal structure on (S \ P)∪{p0}.

Next, by showing that there exists q0 such that ϕ(p) tends to q0 as p tends
to p0, applying Cauchy’s removable singularity theorem, we obtain:

Proposition 8.2. — With the same hypotheses as in Proposition 8.1, let p0

be a point in P. If Σ̂ is asymptotically tubular of order k near p0, then ϕ
extends to a unique holomorphic function over (S \ P)∪{p0} having a critical
point of order k at p0.

Theorem 1.3 now follows as a direct corollary to these two propositions.

8.2. Conformal rings. — In this section we will recall various properties of
holomorphic rings. We define a (conformal) ring to be a Riemann surface A
whose fundamental group is isomorphic to Z. For R a real number greater
than 1, let us define the ring

AR =
{
z s.t. 1 < |z| < R

}
.

The uniformisation principle permits us to show that an arbitrary ring is bi-
holomorphic to one of C∗, D∗ or AR for some R ∈ (1,∞). Let Γ be the family
of curves in A which are freely homotopic to a generator of π1(A). For g a
conformal Riemannian metric over A, and for γ ∈ Γ an arbitrary curve in Γ,
we define Leng(γ) to be the length of γ with respect to g, and we define

Lg(Γ) = Inf
γ∈Γ

Leng(γ).

For g a conformal metric over A, we define Areag(A) to be the area of A with
respect to g. We define Mod(A), the module of A, by

Mod(A) = Sup
Areag(A)=1
g conformal

Lg(Γ).

By definition Mod(A) only depends on the conformal class of A. Mod(A) may
be calculated in certain cases, and, in particular, we have the following result:

Lemma 8.3. — For all R ∈ (0,∞),

Mod(AR) =

√
2π

Log(R)
, Mod

(
S1 × (0, R)

)
=

√
2π

R
·
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Proof. — Let g be a conformal metric of area 1 over AR. Let gEuc be the
Euclidean metric over AR and let λ : AR → (0,∞) be such that

g = λgEuc.

Using the Cauchy-Schwarz inequality, we obtain

Areag(AR) =

∫ R

1

∫ 2π

0
λrdrdθ !

∫ R

1

1

2πr

( ∫ 2π

0
rλ1/2dθ

)2
dr

!

∫ R

1

1

2πr
Lg(Γ)2dr =

Log(R)

2π
Lg(Γ)2.

Since Areag(AR) = 1, we obtain

Lg(Γ)2 "
2π

Log(R)
·

We obtain equality if and only if λ = Kr−2 for some normalising factor
K ∈ (0,∞), and an explicit calculation of K permits us to obtain the first
result. The second result follows by a similar reasoning.

The following lemma permits us to compare the modules of two rings of
which one is contained inside the other:

Lemma 8.4. — Let A1 and A2 be two rings. Let i : A1 → A2 be an embedding.
If i∗π1(A1) = π1(A2), then

Mod(A2) " Mod(A1).

Proof. — Let Γ2 be the family of curves in A2 which are freely homotopic to
a generator of π1(A2). By the proof of the preceding lemma, there exists a
conformal metric g over A2 such that

Areag(A2) = 1, Lg(Γ2) = Mod(A2).

Let Γ1 be the family of curves in A1 which are freely homotopic to a generator
of π1(A1). The mapping i∗ sends Γ1 into Γ2. We thus obtain

Lg(i∗Γ1) ! Lg(Γ2).

Let us define h by

h =
1

Areai∗g(A1)
i∗g.

Since Areag(A1) " Areag(A2) = 1, it follows that h ! i∗g and consequently

Lh(Γ1) ! Li∗g(Γ1) ! Lg(Γ2) = Mod(A2).

Since Areah(A1) = 1, the result follows.

In particular, we obtain:

Corollary 8.5. — One has Mod(A) = 0 if and only if A is conformally
equivalent to D∗ or to C∗.
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Proof. — Let R ∈ (0,∞) be a positive real number. We have
{
1/R < |z| < 1

}
⊆ D∗ ⊆ C∗.

Using the previous result, we thus obtain

Mod(C∗) " Mod(D∗) "

√
2π

Log(R)
·

By letting R tend to infinity, we obtain

Mod(C∗) = Mod(D∗) = 0.

The converse follows by the uniformisation principle.

8.3. Extending the complex structure. — Let S be a surface and let P
be a discrete subset of S. Let i : S \ P → H3 be an immersion such that
the immersed surface Σ = (S \ P , i) is a k-surface. Let ı̂ be the Gauss lifting
of i and let us denote by −→n the Gauss-Minkowski mapping that sends UH3

to ∂∞H3 = Ĉ. Let H be the canonical conformal structure over Ĉ. Let us
define ϕ = −→n ◦ ı̂. Since ϕ is a local homeomorphism ϕ∗H defines a conformal
structure over S \ P . In this section, we will prove Proposition 8.1.

Let p0 be an arbitrary point in P . We suppose that Σ̂ is asymptotically
tubular of finite order about p0. We obtain the following result:

Proposition 8.6. — For every sufficiently small neighbourhood U of p0 in S
which is homeomorphic to a disc, the Riemann surface (U \ {p0}, ϕ∗H) is con-
formally equivalent to D∗.

Proof. — Let H′ be the conformal structure generated over S \ P by the met-
ric ı̂∗gν and the canonical orientation of S. By Lemma 3.2, H′ is k-quasi-
conformally equivalent to ϕ∗H. It thus suffices to show that (U \ {p0},H′)
is conformally equivalent to D∗.

Let Γ0,∞ be the unique geodesic in H3 joining 0 to ∞. We may assume

that Σ̂ is asymptotically tubular about Γ0,∞. Let N0,∞ be the normal circle
bundle over Γ0,∞ in UH3. Let Exp : TUH3 → UH3 be the exponential mapping
over UH3.

Let T = (S1 ×(0,∞), ̂) be a half tube of order k about Γ0,∞ such that there
exist

(i) a neighbourhood Ω of p0 in S,

(ii) a graph diffeomorphism φ : S1 × (0,∞) → Ω \ {p0}, and

(iii) a graph function λ ∈ Γ(̂∗NN0,∞),

such that

(i) φ(eiθ, t) → p0 as t tends to +∞,
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(ii) for all p ∈ N∪{0}, ‖Dpλ(eiθ, t)‖ tends to 0 in the C1 norm as t tends
to +∞, and

(iii) ı̂ ◦ φ = Exp ◦λ.

For R, T > 0, we define the set

AR,T = S1 × (T, T + R).

Since ‖D1λ(eiθ, t)‖ tends to 0 as t tends to +∞, we have

|φ∗ı̂∗gν − ̂∗gν | (eiθ, t) −→ 0 as t → ∞.

Consequently, if we denote by dR,T the L∞ norm of the complex dilatation of
the metric φ∗ı̂∗gν relative to ̂∗gν over AR,T , we find that for all R,

dR,T −→ 0 as T → +∞.

Thus, by the translation invariance of ̂∗gν , for all R we obtain

Mod(AR,T ;φ∗ı̂∗gν) −→ Mod(A0,R; ̂∗gν) as T → +∞.

It follows by Lemma 8.4 that, for all R,

Mod
(
S1 × (0,∞);φ∗ı̂∗gν

)
" Mod(A0,R; ̂∗gν).

Thus
Mod

(
S1 × (0,∞);φ∗ı̂∗gν

)
" Mod

(
S1 × (0,∞); ̂∗gν

)
= 0.

Consequently, by Corollary 8.5, (Ω \ {p0}, ı̂∗gν) is biholomorphic either to C∗

or to D∗. Thus, by reducing Ω if necessary, we obtain the desired result.

We now obtain Proposition 8.1 as a corollary to this result:

Proposition 8.1. — Let S be a surface. Let P be a discrete subset of S. Let
i : S \ P → H3 be an immersion such that the immersed surface Σ = (S \ P , i)
is a k-surface. Let Σ̂ = (S, ı̂) be the Gauss lifting of Σ. Let −→n be the Gauss-
Minkowski mapping that sends UH3 into ∂∞H3 = Ĉ. Let us define ϕ = −→n ◦ ı̂.
Let H be the canonical conformal structure over Ĉ. Let p0 be a point in P.

If Σ̂ is asymptotically tubular of finite order near p0, then ϕ∗H extends to a
unique conformal structure on (S \ P)∪{p0}.

Proof. — Let U be a neighbourhood of p0 in S such that U \ {p0} is biholo-
morphic to D∗ and let α : U \ {p0} → D∗ be this biholomorphism. Let Ω be a
neighbourhood of zero in D and let γ be a simple closed curve in Ω \ {0} such
that 0 ∈ Int(γ).

Let us define the curve γ̃ by γ̃ = α−1◦γ. It is a simple closed curve in U\{p0}.
It follows that the complement of γ̃ in U consists of two connected components
U1 and U2. We may assume that p0 ∈ U1. Since α is a homeomorphism, it
sends U1 \ {p0} either onto Int(γ) \ {0} = Ω or onto Ext(γ)∩D. However, by
the preceding lemma

Mod
(
U1 \ {p0}

)
= 0.
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Consequently, the set U1 \ {p0} is not biholomorphic to Ext(γ)∩D, and so

α
(
U1 \ {p0}

)
= Int(γ) \ {0}.

It follows that α(p) tends to zero as p tends to p0 and we may thus extend α
to a continuous mapping over U by defining

α(p0) = 0.

Since α is bijective, by the principle of invariance of domains, it is a homeomor-
phism. We thus obtain a holomorphic chart (α, U, D) of (S \P)∪{p0} about p0

which extends the conformal structure of S \ P , and we thus obtain existence.
Uniqueness follows from the Cauchy removable singularity theorem.

8.4. Extending the holomorphic function. — We continue to work with
the construction of the previous section. We now obtain the following result:

Proposition 8.7. — If Σ̂ is asymptotically tubular of finite order about p0,
then there exists a point q0 ∈ Ĉ such that ϕ(p) tends to q0 as p tends to p0.

Proof. — Let Γ0,∞ be the geodesic joining 0 to infinity. We may assume that
Σ is asymptotically tubular about Γ0,∞. Let N0,∞ be the normal circle bundle
of Γ0,∞ in UH3. Let π : N0,∞ → Γ0,∞ be the canonical projection. Let
γ : R → Γ0,∞ be a unit speed parametrisation of Γ0,∞ such that γ(t) tends to 0
as t tends to +∞. By identifying H3 with C× (0,∞), we define h : R → (0,∞)
such that, for all t,

γ(t) =
(
0, h(t)

)
.

For all t ∈ R, we define At ∈ Isom(H3) by

At(z, s) =
( z

h(t)
, s

h(t)

)
.

We also denote by At the actions of At on UH3 and ∂∞H3.

Let T = (S1 × (0,∞), ̂), Ω, φ and λ be as in the proof of Proposition 8.6.
We may suppose that ̂ is normalised such that, for all t ! 0,

π ◦ At ◦ ̂(eiθ, t) = (0, 1) =⇒
∣∣−→n ◦ At ◦ ̂(eiθ, t)

∣∣ = 1.

Since λ(eiθ, t) tends to 0 in the C1 norm as t tends to +∞, we have
∣∣−→n ◦ At ◦ ̂(eiθ, t) − −→n ◦ At ◦ ı̂ ◦ φ(eiθ, t)

∣∣ −→ 0 as t → +∞,

=⇒
∣∣−→n ◦ At ◦ ı̂ ◦ φ(eiθ, t)

∣∣ −→ 1 as t → +∞,

=⇒
∣∣At ◦ −→n ◦ ı̂ ◦ φ(eiθ, t)

∣∣ −→ 1 as t → +∞,

=⇒
∣∣−→n ◦ ı̂ ◦ φ(eiθ, t)

∣∣ −→ 0 as t → +∞,

=⇒ ϕ(p) −→ 0 as p → p0.

The result now follows.
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We now obtain Proposition 8.2 as a corollary to this result:

Proposition 8.2. — With the same hypotheses as in Proposition 8.1, let p0

be a point in P. If Σ̂ is asymptotically tubular of order k near p0, then ϕ
extends to a unique holomorphic function over (S \ P)∪{p0} having a critical
point of order k at p0.

Proof. — It follows by Cauchy’s removable singularity theorem and the
preceding proposition that ϕ extends to a unique holomorphic function
over (S \ P)∪{p0}.

Using the same reasoning and notation as in the preceding proposition, we
find that there exists T > 0 such that for t ! T , and for all θ:

∣∣(At ◦ ϕ ◦ φ)(eiθ, t) − (At ◦ −→n ◦ ̂)(eiθ, t)
∣∣ < 1

=⇒
∣∣(At ◦ ϕ ◦ φ)(eiθ, t) − eikθ

∣∣ < 1.

It follows that, for t ! T , the curve θ )→ (ϕ ◦ φ)(eiθ, t) is homotopic in C∗ to
the curve θ )→ eikθ, and thus turns k times round the origin.

By Proposition 8.1, we may assume that (φ(S1 × [T,∞)), φ∗ϕ∗H) is biholo-
morphic to D∗. Let α : φ(S1 × [T,∞)) → D∗ be a biholomorphic mapping.
For t ! T , since α is a homeomorphism, the curve θ )→ (α◦φ)(eiθ, t) turns once
around the origin. The result now follows by considering (ϕ ◦ α−1).
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Thèse, Orsay, 2004.

[9] , Hyperbolic Plateau problems, http://arxiv.org/abs/math/
0506231v1, 2005.

[10] , Positive special Legendrian structures and Weingarten problems,
http://arxiv.org/abs/math/0506230v1, 2005.
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