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H
∞ CALCULUS AND DILATIONS

by Andreas M. Fröhlich & Lutz Weis

Abstract. — We characterise the boundedness of the H∞ calculus of a sectorial
operator in terms of dilation theorems. We show e. g. that if −A generates a bounded
analytic C0 semigroup (Tt) on a UMD space, then the H∞ calculus of A is bounded
if and only if (Tt) has a dilation to a bounded group on L2([0, 1], X). This generalises
a Hilbert space result of C. Le Merdy. If X is an Lp space we can choose another Lp

space in place of L2([0, 1], X).

Résumé (Calcul H∞ et dilatations). — Nous donnons une condition nécessaire et
suffisante en termes de théorèmes de dilatation pour que le calcul H∞ d’un opérateur
sectoriel soit borné. Nous montrons par exemple que, si A engendre un semigroupe
C0 analytique borné (Tt) sur un espace UMD, alors le calcul H∞ de A est borné si
et seulement si (Tt) admet une dilatation en un groupe borné sur L2([0, 1], X). Ceci
généralise un résultat de C. Le Merdy sur les espaces de Hilbert. Si X est un espace
Lp, on peut choisir un autre espace Lp à la place de L2([0, 1], X).

1. Introduction

In recent years, the holomorphic functional calculus for sectorial operators
as introduced in [19] and [4] has received a lot of attention because of its
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applications to evolution equations (e. g., interpolation of domains and maximal
regularity [14], [17]) and to Kato’s square root problem [1], [2]. In particular,
the boundedness of the H∞ functional calculus was shown for large classes of
elliptic differential operators – see [5], [22], and the literature cited there.

One of the first results in this direction was the observation that an accretive
operator A on a Hilbert spaceH has a boundedH∞ calculus. This follows from
the Sz.-Nagy dilation theorem for contractions. More recently, C. Le Merdy [18]
has shown that there is a converse to this statement: a sectorial operator A of
type < 1

2π on H has a bounded H∞ calculus if and only if it is accretive in an
equivalent Hilbert space norm, and therefore, by the dilation theorem, A has
a bounded H∞ calculus if and only if there is a second Hilbert space G, an
isomorphic embedding J : H ↪→ G and a C0 group of isometries (Ut) on G such
that

(1.1) JTt = PUtJ for all t > 0,

where (Tt) is the analytic semigroup generated by −A and P : G → J(H) is
the orthogonal projection onto J(H).

In this paper, we show that this characterisation of the boundedH∞ calculus
can be extended to the class of Banach spaces of finite cotype. These are
Banach spaces that do not contain `∞n uniformly for all dimensions n. If X is
a UMD space and A is R-sectorial (or almost R-sectorial) of type < 1

2π, then
our result takes a particular simple form (Corollary 5.4): A has a bounded H∞

calculus if and only if there is an isomorphic embedding J : X → L2([0, 1], X),
a bounded projection P : L2([0, 1], X) → J(X) and a group of isometries (Ut)
on L2([0, 1], X) such that (1.1) holds. If X is an Lp(Ω, µ) space we can even
replace L2([0, 1], X) in this statement by another Lp(Ω0, µ0) space.

Furthermore, our construction shows that the generator of Ut does not just
have an H∞ calculus but can be chosen to be a spectral operator of scalar type
in the sense of Dunford and Schwartz [6], and in this form our characterisation
also holds in Banach spaces of finite cotype (see Theorem 5.1 and Corollary 5.3).
Spectral operators of scalar type are quite rare on Banach spaces that are not
Hilbert spaces. Therefore it seems remarkable that the rather large class of
operators with a bounded H∞ calculus can be characterised by dilations to
operators in this small class of Banach space operators which have a spectral
theory as rich as the spectral theory of normal operators on a Hilbert space.

We also get a dilation theorem for general sectorial operators whose type is
not smaller than 1

2π (Theorem 5.5 and Corollary 5.6). In this case we obtain a
result that may be new even in Hilbert space: a sectorial operator on a Hilbert
space has a bounded H∞ calculus if and only if it has a dilation to a normal
operator (Corollary 5.7).

Our proofs are based on the square function characterisation of the bound-
edness of the H∞ calculus. This technique was introduced for Hilbert spaces
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by McIntosh [19] and extended to Lp spaces in [4]. (For subspaces of Lp spaces,
see also [16].) We use square functions in a general Banach space setting as
introduced in [13] and [12]. These definitions and further preliminary informa-
tion on sectorial operators and spectral theory will be given in Sections 2, 3
and 4. In Section 5 we describe our main results and Section 6 contains the
construction of the dilation.

We would like to thank the referee for suggesting several improvements of
our presentation.

2. H
∞ calculus and spectral operators

We start with some notation. Let X 6= {0} be a complex Banach space;

. B(X) will denote the space of all bounded linear operators on X with the
operator norm, and

. C(X) is the set of closed linear operators on X ; we write

. D(A) for the domain of an operator A and R(A) for its range;

. N(A) is the kernel.

For θ ∈ (0, π) we define the sector Sθ := { z ∈ C \ {0} : |arg z| < θ }. Let

. H(Sθ) be the set of all functions holomorphic on Sθ and let

. H∞(Sθ) be the set of all functions in H(Sθ) that are bounded.

Furthermore, we define

Ψ(Sθ) :=
{

ψ ∈ H(Sθ) | ∃ c, s > 0, ∀z ∈ Sθ : |ψ(z)| 6 c min{|z|s, |z|−s}
}

.

Definition 2.1. — An operator A ∈ C(X) is of type µ, where µ ∈ (0, π), if

1) σ(A) ⊂ Sµ and

2) for all θ ∈ (µ, π), there exists a constant Cθ such that
∥

∥R(z,A)
∥

∥ 6 Cθ|z|−1 for all z /∈ Sθ .

If A is of type µ for some µ ∈ (0, π), we say that A is a sectorial operator, and
by ω(A) we denote the infimum over all such µ.

Remark 2.2. — An operator A is densely defined and sectorial of type < 1
2π

if and only if −A generates a bounded analytic semigroup [7, Thm 4.6].

Cowling, Doust, McIntosh, and Yagi [4] have introduced a functional calculus
for sectorial operators, based on earlier work by McIntosh [19]: if A is of type µ,
we can define ψ(A) ∈ B(X) for ψ ∈ Ψ(Sθ) with θ > µ by the contour integral

ψ(A) =
1

2πi

∫

γα

ψ(z)R(z,A)dz ,
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where γα is the edge of the sector Sα (with µ < α < θ), oriented in the positive
sense. (Compare this with ψ(λ) = 1

2πi

∫

γα
ψ(z)(z−λ)−1dz for all λ ∈ Sα, which

follows from Cauchy’s formula.)

If, moreover, A has dense domain and dense range (which implies that A is
one-to-one, too), this calculus Ψ(Sθ) → B(X) can be extended to the class of
functions f ∈ H(Sθ) with ψn

0 f ∈ Ψ(Sθ) for some n ∈ N and ψ0(z) := z/(1+z)2

using the definition

f(A) := ψ0(A)−n(ψn
0 f)(A),

D
(

f(A)
)

:=
{

x ∈ X : (ψ0f)(A)y ∈ R(ψn
0 (A))

}

.

Note that f(A) is a densely defined closed operator but not necessarily a
bounded operator for all f ∈ H∞(Sθ).

However, we always have fλ(A) = R(λ,A) for fλ(z) := (λ − z)−1 and
|argλ| > µ. Furthermore,

f(A)g(A) = (fg)(A) on D((fg)(A)) ∩ D(g(A)) and

f(A) + g(A) = (f + g)(A) on D(f(A)) ∩ D(g(A)).

Note that g(A) = A for g(z) := z and h(tA) = Tt for h(z) := e−z if −A
generates a C0 semigroup (Tt) and ω(A) < 1

2π. We can also define Az for
all z ∈ C.

Remark 2.3. — This functional calculus has the following convergence prop-
erty which is an immediate consequence of Lebesgue’s convergence theorem:
if fn, f ∈ H∞(Sθ) are uniformly bounded and fn(z) → f(z) for every z ∈ Sθ,

we have

(fnψ)(A)
n→∞−−−−→ (fψ)(A) for every ψ ∈ Ψ(Sθ).

This is often used in connection with an “approximate identity” such as

ψn(z) :=
nz − 1

nz

(n+ z)( 1
n + z)

= − n

−n− z
+

1
n

− 1
n − z

which satisfies ψn(A)x
n→∞−−−−→ x for all x ∈ D(A) ∩ R(A).

Definition 2.4. — Let A be of type µ, with dense domain and dense range.
We say that A has a bounded H∞(Sθ) functional calculus, where θ ∈ (µ, π), if
f(A) ∈ B(X) for all f ∈ H∞(Sθ). By ωH∞(A) we denote the infimum over all
such θ.

In this case, there exists a constant C such that ‖f(A)‖ 6 C‖f‖∞ for all
f ∈ H∞(Sθ). To check that A has a bounded H∞(Sθ) functional calculus
it suffices [4, Cor. 2.2] to show ‖ψ(A)‖ 6 C‖ψ‖∞ for all ψ ∈ Ψ(Sθ).

If a sectorial operator has a bounded H∞ functional calculus (short: a
bounded H∞ calculus), we always have weak estimates of the following form:
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Proposition 2.5 (see [4, Thm 4.2]). — Let A be a sectorial operator of type µ
with dense domain and dense range. If A has a bounded H∞(Sθ) functional

calculus for some θ ∈ (µ, π), then for every ψ ∈ Ψ(Sθ), there exists a con-

stant C > 0 satisfying
∫ ∞

0

∣

∣

〈

ψ(tA)x, x′
〉∣

∣

dt

t
6 C‖x‖ · ‖x′‖ for all x ∈ X and x′ ∈ X ′ .

For some sectorial operators we can define f(A) ∈ B(X) for every bounded
Borel function f ∈ Bb(σ(A)) on σ(A) and get a functional calculus which has
the same properties as the functional calculus of normal operators on Hilbert
spaces.

Definition 2.6. — A sectorial operator A is said to be a spectral operator of

scalar type if there exists a functional calculus Φ : Bb(σ(A)) → B(X) with the
following properties:

1) The operator Φ is bounded, linear and multiplicative.

2) For λ /∈ σ(A) we have Φ((λ− ·)−1) = R(λ,A), and Φ(1) = idX .

3) Let fn, f ∈ Bb(σ(A)) and fn(z) → f(z) for almost all z ∈ σ(A).
If ‖fn‖∞ 6 C for all n ∈ N, then Φ(fn)x→ Φ(f)x for all x ∈ X .

Such operators are studied in detail in [6, Section XVIII.2.8], where a
definition in terms of spectral representations and spectral measures is given.
However, Theorem 11 in [6, XVIII.2.8], shows that our definition is equiva-
lent. Of course, the strong functional calculus of Definition 2.6 implies the
boundedness of the H∞ calculus.

Proposition 2.7. — If A is a spectral operator of scalar type with σ(A) ⊂ Sµ,

then A has a bounded H∞(Sθ) functional calculus for every θ > µ.

Proof. — Obviously, A is sectorial of type µ. We will show that Φ(ψ) = ψ(A)
for all ψ ∈ Ψ(Sθ), where ψ(A) is the operator defined via the functional calculus
for sectorial operators. (The boundedness of Φ gives the desired result then.)
By property 2) we have

ψ(A) =
1

2πi

∫

γ

ψ(z)R(z,A)dz =
1

2πi

∫

γ

ψ(z)Φ
(

(z − ·)−1
)

dz ,

and using linearity of Φ and the convergence property 3) the claim follows.
(The latter can be applied because the existence of the integrals is clear.)

3. The moon dual

Let A ∈ C(X) be densely defined. Thus, if A is sectorial, the dual operator
A′ ∈ C(X ′) is sectorial, too, but in general, it will not be densely defined.
Consequently, we can not plug A′ into the functional calculus.
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Therefore, we will consider the moon dual space X#, a space that is even
smaller than the sun dual X� = D(A′) considered in [21], but still large enough
to norm X . (Another notation for the moon dual space is X$.)

Definition 3.1. — Let A ∈ C(X) be a densely defined sectorial operator with
dense range. The moon dual space X# is defined by

X# := D(A′) ∩ R(A′) with ‖ .‖X′ as its norm.

The moon dual operator A# is the part of A′ in X#, i.e.,

A#x# = A′x#

for all x# ∈ D(A#) = {x′ ∈ X# : x′ ∈ D(A′) and A′x′ ∈ D(A′)}.
Lemma 3.2. — Let A ∈ C(X) be a densely defined sectorial operator with

dense range. The embedding ι : X → (X#)′ defined by (ιx)(x#) := x#(x)
and its inverse are bounded, i.e.,

C−1‖x‖ 6 ‖x‖# := sup
{

|〈x, x#〉| : x# ∈ X#, ‖x#‖ 6 1
}

6 ‖x‖,
where C = 2 sup{‖tR(−t, A)‖ : t > 0}.
Proof. — Because of X# ⊂ X ′ we have ‖x‖# 6 ‖x‖ for all x ∈ X . For
x′ ∈ X ′ with ‖x′‖ 6 1 let x#

n := ψn(A′)x′ with ψn from Remark 2.3. Then we
have x#

n ∈ X# and

〈x, x#
n 〉 =

〈

x, ψn(A′)x′
〉

=
〈

ψn(A)x, x′
〉 n→∞−−−−→ 〈x, x′〉

for every x ∈ X . Since ‖x#
n ‖ = ‖ψn(A′)x′‖ 6 C‖x′‖ 6 C by Remark 2.3,

‖x‖#
> lim

n→∞

∣

∣〈x, x#
n /C〉

∣

∣ =
|〈x, x′〉|
C

for all x ∈ X.

Taking the supremum for x′ ∈ X ′ with ‖x′‖ 6 1 yields C‖x‖# > ‖x‖.
Next, we take a look at the moon dual operator and show that it has the

properties that are necessary for the functional calculus.

Proposition 3.3. — If A ∈ C(X) is a densely defined sectorial operator of

type µ with dense range, the operator A# in X# has the following properties:

1) %(A#) = %(A) and R(z,A#) = R(z,A)′
X#

for z ∈ %(A).

2) A# is densely defined, sectorial of type µ and has dense range.

3) If A has a bounded H∞(Sθ) functional calculus, A# has one, too.

Proof

1) For z ∈ %(A) and x# ∈ D(A#), we have
〈

x,R(z,A)′(z −A#)x#
〉

=
〈

(z −A)R(z,A)x, x#
〉

= 〈x, x#〉
for all x ∈ X , i.e., R(z,A)′(z − A#) = id on D(A#). If, on the other hand,
we choose an x# ∈ X# and let y# := R(z,A)′x#, we can show y# ∈ D(A#)
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as follows: obviously, y# ∈ D(A′). Because R(z,A)′ is bounded and maps

R(A′) into R(A′), it maps R(A′) into R(A′), i.e., we have y# ∈ R(A′). Since

A′R(z,A)′ is bounded and maps D(A′) into D(A′), we have A′y# ∈ D(A′).
Thus, we know y# ∈ D(A#) and get

〈x, (z − A#)R(z,A)′x#〉 =
〈

R(z,A)(z −A)x, x#
〉

= 〈x, x#〉

for every x ∈ D(A). Since this is true for every x# ∈ D(A#), it follows
that (z − A#)R(z,A)′ = id on X#. We have proven that z ∈ %(A#) and
R(z,A#) = R(z,A)′|X# .

It remains to show that %(A#) ⊂ %(A). Lemma 3.2 tells us that there
exists a constant α > 0 such that for every x ∈ X , there exists an x# ∈ X#

with ‖x#‖ 6 1 and |〈x, x#〉| > α‖x‖. For z ∈ %(A#) and β := ‖R(z,A#)‖−1

we get for every x ∈ X and the corresponding x# ∈ X#

∥

∥(z −A)x
∥

∥ > β
∣

∣〈(z −A)x,R(z,A#)x#〉
∣

∣

= β
∣

∣〈x, (z −A#)R(z,A#)x#〉
∣

∣ = β
∣

∣〈x, x#〉
∣

∣ > αβ‖x‖.

This implies that the operator z − A is one-to-one and has closed range. Fur-
thermore, the operator has dense range: for z = 0, this is clear, so we can
assume z 6= 0. If z − A doesn’t have dense range, there exists x′ ∈ X ′

with x′ 6= 0 and 〈(z − A)x, x′〉 = 0 for all x ∈ D(A). This implies x′ ∈ D(A′)
and (z −A′)x′ = 0, i.e., A′x′ = zx′ ∈ D(A′) and x′ = A′x′/z ∈ R(A′). The re-
sult is x′ ∈ D(A#) and (z−A#)x′ = 0. Because of z ∈ %(A#) this gives x′ = 0,
a contradiction.

2) This follows from [4, Thm 3.8] because of X# = (X ′)∞ ∩ (X ′)00 in the
notation of the latter paper.

3) The definition of the functional calculus and R(z,A#) = R(z,A′)|X#

imply ψ(A#) = ψ(A′)|X# for all ψ ∈ Ψ(Sθ). Because A′ has a bounded
H∞(Sθ) functional calculus, this gives the desired result.

4. Square functions

Kalton and Weis [13] have shown how the notion of square function estimates
of the form

∥

∥

∥

(

∫ ∞

0

∣

∣ψ(tA)x(.)
∣

∣

2 dt

t

)
1
2
∥

∥

∥

Lp

6 C‖x‖Lp (x ∈ Lp)

can be generalised to a Banach space X . In this section we summarise some
of their definitions and results. For this purpose, let g1, g2, . . . be independent,
N(0, 1) distributed random variables.
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Definition 4.1. — If H is a Hilbert space andX is a Banach space, γ+(H,X)
denotes the space of all linear operators u : H → X satisfying

‖u‖γ := sup
(en)

(

E
∥

∥

∑

gnu(en)
∥

∥

2
)

1
2

<∞,

where the supremum is taken over all finite orthonormal systems (en) in H .
This norm is certainly finite for finite rank operators and we let γ(H,X) be
the closure of all finite rank operators in γ+(H,X).

With the norm ‖.‖γ , the two linear spaces γ+(H,X) and γ(H,X) are Banach
spaces.

Definition 4.2. — If H is a Hilbert space and X is a Banach space,
γ′+(H,X ′) denotes the space of all linear operators v : H → X ′ satisfying

‖v‖γ′ := sup
{

|trace(v′u)| : u ∈ γ(H,X), dim u(H) <∞, ‖u‖γ 6 1
}

<∞.

Furthermore, we define γ′(H,X ′) to be the closure of all finite rank operators
in γ′+(H,X ′).

The spaces γ′+(H,X ′) and γ′(H,X ′) are Banach spaces, too. The dual space
of γ(H,X) can be written in the following form:

Proposition 4.3 (see [13, Prop. 5.1 and 5.2]). — The space γ′+(H,X ′) is the

dual of γ(H,X) with respect to trace duality 〈u , v〉γ := trace(v′u). Further-

more, γ+(H,X ′) ⊂ γ′+(H,X ′) and ‖v‖γ′ 6 ‖v‖γ for v ∈ γ+(H,X ′).

Now we will consider the special caseH = L2(Ω), where (Ω,A, ν) is a σ-finite
measure space.

Definition 4.4. — Let P2(Ω, X) denote the linear space of Bochner measur-
able functions f : Ω → X such that x′ ◦ f ∈ L2(Ω) for all x′ ∈ X ′.

For f ∈ P2(Ω, X), a linear operator uf : L2(Ω) → X is defined [13] by

〈

uf (ϕ), x′
〉

=

∫

Ω

〈

f(ω), x′
〉

ϕ(ω)dν (ω), x′ ∈ X ′, ϕ ∈ L2(Ω).

We write ‖f‖γ := ‖uf‖γ and we say that the operator uf is represented by the
function f . Similarly, we write ‖g‖γ′ := ‖vg‖γ′ for g ∈ P2(Ω, X

′).

Note that ‖f‖γ = ∞ is possible, even if f ∈ L2(Ω, X). Nevertheless, for
certain functions in L2(Ω, X) we always get finite norm.

Remark 4.5. — We use the notation

L2 ⊗X :=
{

N
∑

n=1

fn( .)xn

∣

∣

∣
N ∈ N, fn ∈ L2(R), xn ∈ X

}

.
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Then we have uf ∈ γ(L2(R), X) for every f ∈ L2 ⊗X , and {uf : f ∈ L2 ⊗X}
is dense in γ(L2(R), X). Note that for h ∈ L2(Ω) and x ∈ X , we have

∥

∥h( .)x
∥

∥

γ
= ‖h‖L2 · ‖x‖.

For operators represented by functions, the duality can be computed using
these functions [13, Cor. 5.5].

Proposition 4.6. — For functions f ∈ P2(Ω, X) and g ∈ P2(Ω, X
′) with

uf ∈ γ(L2(Ω), X) and vg ∈ γ′+(L2(Ω), X ′), we have

〈uf , vg〉γ =

∫

Ω

〈

f(ω), g(ω)
〉

dν (ω).

Bounded operators can be extended from L2(Ω) to γ(L2(Ω), X) using the
following result [13, Cor. 4.8].

Theorem 4.7. — Let M ∈ B(L2(Ω1), L
2(Ω2)). If M ′ ∈ B(L2(Ω2), L

2(Ω1)) is

the dual operator with respect to 〈f, g〉 =
∫

f(ω)g(ω)dν (ω), then

Mu := u ◦M ′

defines an operator

M : γ
(

L2(Ω1), X
)

−→ γ(L2(Ω2), X)

with ‖M‖ 6 ‖M‖, such that for f ∈ P2(Ω1, X) and g ∈ P2(Ω2, X) with

Muf = ug, we have
〈

g( .), x′
〉

= M
(〈

f( .), x′
〉)

for all x′ ∈ X ′.

Remark 4.8. — For f = h(.)x with h ∈ L2(Ω) and x ∈ X this means

〈

(Muf )ϕ, x′
〉

= 〈ufM
′ϕ, x′〉 =

∫

Ω

〈

f(ω), x′
〉

(M ′ϕ)(ω)dν (ω),

i.e., Muh( .)x is represented by the function (Mh)(.)x, since

M
(〈

f(.), x′
〉)

= M
(

〈x, x′〉h(.)
)

=
〈

xMh(.), x′
〉

.

Corollary 4.9. — Every isometric isomorphism M : L2(Ω1) → L2(Ω2) can

be extended to an isometric isomorphism

M : γ
(

L2(Ω1), X
)

−→ γ
(

L2(Ω2), X
)

such that for h ∈ L2(Ω1) and x ∈ X the operator Muh( .)x is represented by the

function (Mh)(.)x.

Lemma 4.10 (see [13, Lemma 4.10 b) and Rem. 5.4]). — Let fn, f ∈ P2(Ω, X).
If fn(ω) → f(ω) almost everywhere, then

‖f‖γ 6 lim inf‖fn‖γ .

The same is true for the ‖ .‖γ′ norm.
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5. The main results

IfX is not a Hilbert space there are only few spectral operators of scalar type
on X , i.e., operators with an Bb(σ(A)) calculus. For example, A = d/dx is not
a spectral operator on Lp(R) for p 6= 2. The reason for this is a general lack
of spectral projections outside the Hilbert space setting. Nevertheless, we can
characterise the H∞ calculus by dilations to these very special operators.

Recall that a Banach space X has cotype q ∈ [2,∞) if there exists a con-
stant C > 0 with

(

m
∑

n=1

‖xn‖q
)1/q

6

(

∫ 1

0

∥

∥

m
∑

n=1

rn(t)xn

∥

∥

q
dt

)1/q

for all m ∈ N and x1, . . . , xm ∈ X . Here, (rn) is the sequence of Rademacher
functions. If X has some cotype q ∈ [2,∞) we say that X has finite cotype.

First, we consider a sectorial operator A with ω(A) < 1
2π.

Theorem 5.1. — Let −A be the generator of a bounded analytic semigroup

in a Banach space X with finite cotype. Let A have dense range, and assume

that X has finite cotype. Then we get 1) ⇒ 2) ⇒ 3) ⇒ 4) with

1) A has a bounded H∞(Sθ) functional calculus for some θ < 1
2π.

2) There exist a Banach space Y , an isomorphic embedding J : X → Y ,

a bounded projection P of Y onto J(X), and a spectral operator of scalar

type M on Y with σ(M) = iR such that

(5.1) JR(z,A) = PR(z,M)J for Re z < 0.

In other words, the following diagram commutes:

Y
R(z,M)−−−−−−−−→ Y

∪




y
P

J(X) J(X)

J

x





x




J

X
R(z,A)−−−−−−−−→ X

3) There exist Y , J and M as in 2) such that for the semigroups (Tt)
and (Nt) generated by −A and −M respectively, we have

(5.2) JTt = PNtJ for t > 0.

4) A has a bounded H∞(Sθ) functional calculus for all θ > 1
2π.

Remark 5.2. — The proof of this theorem will be given in Section 6, where
we will see that we can choose Y = γ(L2(R), X). Note that γ(L2(R), X) is
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isomorphic to the subspace Rad(X) of L2([0, 1], X) with

Rad(X) := span
{

∑

n

xnrn : xn ∈ X
}

,

where (rn) is the sequence of the Rademacher functions. If X is B-convex
(cf. [20]) then Rad(X) is complemented in L2([0, 1], X) and it is easy to see
(as in the proof of Corollary 5.4) that we can choose Y = L2([0, 1], X) in 2)
and 3) above.

For Hilbert spaces, a result of McIntosh [19] states that ωH∞(A) = ω(A),
provided that A has a bounded H∞(Sθ) functional calculus for some θ ∈ (0, π),
so that in this case 4) ⇒ 1) and we get a full characterisation. This Hilbert
space result is due to Le Merdy [18].

In general Banach spaces one may have ωH∞(A) > ω(A) (see [10]) and we
have to make an additional assumption to obtain a full characterisation.

A sectorial operator is called almost R-sectorial if for some ω > ω(A) the set
{zAR(z,A)2 : z /∈ Sω} is R-bounded. By ωr(A) we denote the infimum over all
such ω. It is shown in [11] that every operator A with a bounded H∞ calculus
is almost R-bounded and, furthermore, we have ωr(A) = ωH∞(A). Hence we
obtain a characterisation for almost R-bounded operators.

Corollary 5.3. — If the assumptions of Theorem 5.1 hold and A is almost

R-bounded with ωr(A) < 1
2π, then 1), 2), 3), and 4) in Theorem 5.1 are equiv-

alent.

If X is a UMD space (see [3] for information on this class), we can restate
our characterisation in a manner more closely related to the Sz.-Nagy dilation
theorem.

Corollary 5.4. — Let X be a UMD space and A an almost R-sectorial op-

erator with ωr(A) < 1
2π that has dense domain and dense range. Then A has

a bounded H∞ calculus with

ωH∞(A) = ωr(A) < 1
2π

if and only if there are an isomorphic embedding J : X → L2([0, 1], X), a

bounded projection P : L2([0, 1], X) → J(X) and a bounded group (Nt) on

L2([0, 1], X), such that for the semigroup (Tt) generated by −A we have

(5.3) JTt = PNtJ for t > 0.

If X = Lp(Ω, µ) with 1 < p < ∞, then L2([0, 1], X) can be replaced in this

statement by a space Lp(Ω0, µ0).

Proof. — Assume that we have a bounded group (Nt) on L2([0, 1], X) with
generator −M satisfying (5.3). Since L2([0, 1], X) is also a UMD space it
follows from [9] that the operator M has a bounded H∞(SΘ) calculus for
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all Θ > 1
2Π. As in the proof of Theorem 5.1 we see that ωH∞(A) 6 ωH∞(M)

and by assumption ωH∞(A) = ωr(A) < 1
2π.

Conversely, if A has a bounded H∞ calculus, we construct the group (Nt)
on Y = Rad(X) as in the proof of Theorem 5.1. Since a UMD space
has non-trivial type [3], the space Rad(X) is a complemented subspace of
L2([0, 1], X) (see [20]), i.e., L2([0, 1], X) ∼= RadX⊕Z with a closed subspace Z

of L2([0, 1], X). Now the group Ñt := Nt ⊕ eit idZ on L2([0, 1], X) has the
required properties.

If X = Lp(Ω, µ), then X is a UMD space if 1 < p < ∞. The ar-
gument given above also works for Lp([0, 1], X) in place of L2([0, 1], X).
But Lp([0, 1], Lp(Ω, µ)) is of the form Lp(Ω0, µ0).

Now we consider sectorial operators without the restriction ω(A) < 1
2π.

Theorem 5.5. — Let −A be a sectorial operator of type µ in a Banach

space X with finite cotype. Let A have dense domain and dense range, and

assume that X has finite cotype. For µ < ω < π we get 1) ⇒ 2) ⇒ 3) with

1) A has a bounded H∞(Sθ) functional calculus for some θ < ω.

2) There exist a Banach space Y , an isomorphic embedding J : X → Y , a

bounded projection P of Y onto J(X) and a spectral operator of scalar

type M on Y with σ(M) = ∂Sω such that

JR(z,A) = PR(z,M)J for |arg z| > ω.

3) A has a bounded H∞(Sθ) functional calculus for all θ > ω.

Again the additional assumption of almost R-boundedness allows us to ob-
tain a full characterisation. Since ωH∞(A) = ωr(A) (see [11]) we get from
Theorem 5.5:

Corollary 5.6. — If the assumptions of Theorem 5.5 hold and A is almost

R-sectorial, we have the following equivalence: 2) from Theorem 5.5 is true for

some ω > ωr(A) if and only if A has a bounded H∞(Sθ) functional calculus

for all θ > ωr(A).

For ωH∞(A) > 1
2π, Corollary 5.6 gives a new result even in Hilbert spaces

since every sectorial operator is almost R-sectorial in this setting.

Corollary 5.7. — Let X be a Hilbert space. A sectorial operator A on X
has a bounded H∞ calculus if and only if A has a dilation to a normal operator,

i.e., there is a Hilbert space Y , an isomorphic embedding J : X → Y and a

normal operator M on Y such that

JR(z,A) = PR(z,M)J for all z ∈ R
−

with a bounded projection P : Y → J(X).
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6. The construction

In this section, we will prove Theorem 5.1 and Theorem 5.5. Until stated
otherwise assume that −A ∈ C(X) generates a bounded analytic semigroup (Tt)
and has dense range; then A has type µ < 1

2π by Remark 2.2. Furthermore, we

assume that A has a bounded H∞(Sθ) functional calculus for some θ < 1
2π.

We choose Y = γ(L2(R), X), which was defined in Section 4.

Next, we will define the dilation (Nt), the embedding J and the projection P
satisfying the dilation equation (5.2).

The dilation (Nt). — We define

Nt : γ
(

L2(R), X
)

−→ γ
(

L2(R), X
)

to be the extension (see Theorem 4.7) of the bounded multiplication operator
in L2(R) that maps h ∈ L2(R) to the function s 7→ e−isth(s). This means

(Ntu)(ϕ) = u
(

s 7→ e−istϕ(s)
)

for u ∈ γ(L2(R), X) and ϕ ∈ L2(R).

Proposition 6.1. — With this definition, (Nt) is a C0 group of isometries.

If we call its generator −M , then M is a spectral operator of scalar type.

Proof. — By Corollary 4.9, Nt is an isometry and for h ∈ L2(R) and x ∈ X ,
the operatorNtuh( .)x is represented by the function s 7→ e−isth(s)x. Therefore,
we have

‖Ntuh( .)x − uh( .)x‖γ =
∥

∥s 7→ (e−ist − 1)h(s)
∥

∥

L2 · ‖x‖
t→0−−−→ 0.

This implies Ntuf → uf for t → 0 and all f ∈ L2 ⊗ X . Since the operators
corresponding to this set are dense in γ(L2(R), X), we have proven that (Nt)
is a C0 group (the group properties are obvious).

Now let’s take at look at M . If we choose x ∈ X and h ∈ L2(R) such that
the function s 7→ sh(s) is in L2(R),

Ntuh( .)x − uh( .)x

t
is represented by s 7→ e−ist − 1

t
h(s)x.

For t → 0 this function converges to s 7→ −ish(s)x with respect to ‖ .‖γ ,
so Muh( .)x is represented by s 7→ ish(s)x. For z /∈ iR, we consider the opera-

tor Mz that is the extension of the multiplication operator in L2(R) mapping h
to s 7→ h(s)/(z − is). Then we have

Mz(z −M)uf = (z −M)Mzuf = uf

for all f ∈ L2 ⊗ X by Remark 4.8 and a density argument, and since the
set K := {uf : f ∈ L2 ⊗ X} is dense in γ(L2(R), X) by Remark 4.5 and
Nt(K) ⊂ K, it is a core for M and we have (z −M)Mz = id on γ(L2(R), X)
and Mz(z −M) = id on D(M), i.e., z ∈ %(M).
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Now we will show that M is a spectral operator of scalar type. From the
considerations above it follows that σ(M) = iR. We define Φ(f) to be the
extension of the multiplication operator (Bfh)(t) := f(it)h(t). This functional
calculus Φ is bounded, linear and multiplicative. Property 2) of sectorial oper-
ators follows from Φ((z − ·)−1) = Mz .

This leaves us with 3): Since ‖Φ(fn)‖ 6 ‖Bfn
‖ 6 ‖fn‖∞, it suffices (Banach-

Steinhaus) to show Φ(fn)u → Φ(f)u for every u represented by a function
in L2 ⊗ X , and for this it is enough to consider u represented by h(.)x with
h ∈ L2(R) and x ∈ X . In this case Φ(fn)u is represented by the func-
tion t 7→ fn(it)h(t)x and Φ(f)u by t 7→ f(it)h(t)x. Because of fn(it)h(t) →
f(it)h(t) in L2(R) the claim follows from Remark 4.5.

The embedding J. — Now we assume that the Banach space X has fi-
nite cotype. Under this assumption, we want to show that one can define an
embedding J : X → γ(L2(R), X) by

〈

(Jx)(ϕ), x′
〉

:=

∫ ∞

−∞

〈

A
1
2R(it, A)x, x′

〉

ϕ(t)dt

for all x ∈ X , x′ ∈ X ′ and ϕ ∈ L2(R). In other words, we want to show that Jx
belongs to ∈ γ(L2(R), X) and is represented by the function

t 7−→ A
1
2R(it, A)x.

To ease matters later on, we consider a second embedding J#. For x# ∈ X#,
the operator J#x

# will be represented by the function

t 7−→ (A#)
1
2R(−it, A#)x# .

Note that A# has the same properties as A by Proposition 3.3.

Proposition 6.2. — The operator J : X → γ(L2(R), X) is well defined and

bounded, and the same is true for the operator J# : X# → γ′+(L2(R), X ′).

Proof. — Since X has finite cotype and A has a bounded H∞(Sθ) functional
calculus with θ < 1

2π, we know from [13, Thm 7.2] that Jx ∈ γ(L2(R), X) and
that ‖Jx‖γ 6 C‖x‖ for all x ∈ D(A) ∩ R(A). Since this set is dense in X ,
the claim follows with Lemma 4.10 if we can prove that for every x ∈ X the

function t 7→ A
1
2R(it, A)x is in P2(R, X), i.e.,

∫ ∞

−∞

∣

∣

〈

A
1
2R(it, A)x, x′

〉
∣

∣

2
dt <∞

for all x ∈ X and x′ ∈ X ′. This may be seen as follows:
∣

∣

〈

A
1
2R(it, A)x, x′

〉∣

∣

2
6

∥

∥A
1
2R(it, A)x

∥

∥ · ‖x′‖ ·
∣

∣

〈

A
1
2R(it, A)x, x′

〉∣

∣.

The first factor is 6 D/
√
t with some constant D since ‖ψ(A/t)‖ 6 D for

ψ(z) := z
1
2 /(i− z). Now the claim follows from Proposition 2.5.
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The proof for J# is the same since [13, Thm 7.2] gives J#x
# ∈ γ′+(L2(R), X ′)

and ‖J#x
#‖γ′ 6 C‖x#‖ for x# ∈ D(A#) ∩ R(A#).

Now we will prove that the embedding J gives rise to an equivalent norm
on X . To this end, we will use the following result.

Lemma 6.3. — For all x ∈ X and x# ∈ X# we have

〈Jx , J#x
#〉γ = π〈x, x#〉.

Proof. — From Proposition 4.6 it follows that

〈Jx , J#x
#〉γ =

∫ ∞

−∞

〈

A
1
2R(it, A)x, (A#)

1
2R(−it, A#)x#

〉

dt

=

∫ ∞

−∞

〈

AR(it, A)R(−it, A)x, x#
〉

dt

= 2

∫ ∞

0

〈

(A/t)R(i, A/t)R(−i, A/t)x, x#
〉 dt

t

= 2

∫ ∞

0

〈

sAR(i, sA)R(−i, sA)x, x#
〉 ds

s
·

According to Proposition 2.5 this is continuous in x. Thus, the claim follows
from Lemma 6.4 and

∫ ∞

0

s

(i− s)(−i− s)

ds

s
=

∫ ∞

0

1

1 + s2
ds =

1

2
π

because D(A) ∩ R(A) is dense in X (see Remark 2.3).

Lemma 6.4 (see [19]). — Under the assumptions of this section we have
∫ ∞

0

ψ(tA)x
dt

t
= x for all x ∈ D(A) ∩ R(A)

if ψ ∈ Ψ(Sθ) has the property
∫ ∞

0 ψ(t) dt
t = 1.

Proposition 6.5. — There exist constants α, β > 0 such that for all x ∈ X

α‖x‖ 6 ‖Jx‖γ 6 β‖x‖.

Proof. — The existence of β follows from Proposition 6.2. Furthermore, this
proposition tells us that J# is bounded, too. Lemma 6.3 implies

∣

∣〈x, x#〉
∣

∣ 6 π−1 · ‖Jx‖γ · ‖J#x
#‖γ′ 6 π−1 · ‖Jx‖γ · ‖J#‖ · ‖x#‖,

and taking the supremum for all x# with ‖x#‖ 6 1 gives the desired result
(using Lemma 3.2).
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The projection P . — Our idea is to define P = π−1J(J#)′, but since (J#)′

is an operator from γ′+(L2(R), X ′)′ to (X#)′, we have to deal with certain
embedding operators.

Definition 6.6. — The embedding

ιγ : γ
(

L2(R), X
)

−→ γ′+
(

L2(R), X ′
)′

is defined, for u ∈ γ(L2(R), X) and v ∈ γ′+(L2(R), X ′), by

(ιγu)(v) := 〈u , v〉γ .

Remark 6.7. — The embedding ιγ is well defined and bounded by Proposi-
tion 4.3.

Now we can consider the operator (J#)′ ◦ ιγ : γ(L2(R), X) → (X#)′, and we
can show that it is, in a certain sense, X-valued.

Lemma 6.8. — For uf represented by a function f ∈ L2 ⊗X we have

〈

(J#)′(ιγuf ), x#
〉

((X#)′,X#)
=

〈

∫ ∞

0

A
1
2R(−it, A)f(t)dt, x#

〉

(X,X′)

for all x# ∈ X#.

Proof. — We have
〈

(J#)′(ιγuf ), x#
〉

((X#)′,X#) = 〈ιγuf , J#x
#〉(γ′

+
(L2(R),X′)′,γ′

+
(L2(R),X′))

= 〈uf , J#x
#〉γ =

∫ ∞

0

〈

f(t), (A#)
1
2R(−it, A#)x#

〉

dt ,

and the claim follows. (Note that the integral in the stated equality exists
according to the inequality shown in the proof of Proposition 6.2)

From Lemma 3.2 we know that the bounded embedding ι : X → (X#)′

defined by (ιx)(x#) := x#(x) has a bounded inverse on ι(X). Lemma 6.8 tells
us that

(J#)′(ιγuf ) ∈ ι(X) for f ∈ L2 ⊗X.

Corollary 6.9. — For every u ∈ γ(L2(R), X), we have

(J#)′(ιγu) ∈ ι(X).

Proof. — Since {uf : f ∈ L2⊗X} is dense in γ(L2(R), X) with respect to ‖ .‖γ

according to Remark 4.5 and ι(X) is a closed subspace of (X#)′, this follows
from Lemma 6.8.
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Now we are ready to define the projection P . Let

P : γ
(

L2(R), X
)

−→ γ
(

L2(R), X
)

be defined by

P := π−1J ◦ ι−1 ◦ (J#)′ ◦ ιγ .

Proposition 6.10. — The operator P is a bounded projection onto R(J).

Proof. — The boundedness of P is clear. Since R(P ) ⊂ R(J), we just have to
show that Pu = u for all u ∈ R(J), i.e., π−1ι−1(J#)′ιγJ = id. This follows
using Lemma 6.3: for every x# ∈ X# we get

〈

ι−1(J#)′ιγJx, x
#

〉

(X,X′)
=

〈

(J#)′ιγJx, x
#

〉

((X#)′,X#)

= 〈ιγJx, J#x
#〉(γ′

+
(L2(R),X′)′,γ′

+
(L2(R),X′))

= 〈Jx , J#x
#〉γ = π〈x, x#〉.

Proof of Theorem 5.1

1) ⇒ 2). Let J , P and M be defined as above. It remains to check the
dilation equation JR(z,A) = PR(z,M)J . For Re z < 0 we have (using the
resolvent equation)

A
1
2R(it, A)R(z,A)x =

A
1
2R(it, A)x

z − it
− A

1
2R(z,A)x

z − it
,

and this is the function representing JR(z,A)x. Thus,
〈

JR(z,A)x , J#x
#

〉

γ

=

∫ ∞

−∞

〈

A
1
2R(it, A)R(z,A)x, (A#)

1
2R(−it, A#)x#

〉

dt

=

∫ ∞

−∞

〈A 1
2R(it, A)x, (A#)

1
2R(−it, A#)x#〉

z − it
dt

−
∫ ∞

−∞

〈A 1
2R(z,A)x, (A#)

1
2R(−it, A#)x#〉

z − it
dt .

On operators represented by functions the operator R(z,M) acts as multipli-
cation by (z − it)−1. Therefore, the first integral equals

〈

R(z,M)Jx , J#x
#

〉

γ
.

The second integral equals 0. This can be seen as follows: on every sector Sν

with 1
2π < ν < min{|arg z|, π − θ} the function

λ 7−→ 〈A 1
2R(z,A)x, (A#)

1
2R(−λ,A#)x#〉

z − λ
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is analytic. Furthermore, ‖ψ(A#/λ)‖ 6 C for ψ(z) := z
1
2 (−1 − z)−1, i.e.,

∥

∥(A#)
1
2R(−λ,A#)x#

∥

∥ 6
C

|λ| 12
,

and the claim follows using Cauchy’s theorem. (Consider a semi-circle in the
right half plane with radius r → ∞.) Our result is

〈

JR(z,A)x , J#x
#

〉

γ
=

〈

R(z,M)Jx , J#x
#

〉

γ
,

and Lemma 6.3 implies

π
〈

R(z,A)x, x#
〉

=
〈

JR(z,A)x , J#x
#

〉

γ
=

〈

R(z,M)Jx , J#x
#

〉

γ

=
〈

ιγR(z,M)Jx, J#x
#

〉

(γ′

+
(L2(R),X′)′,γ′

+
(L2(R),X′))

=
〈

(J#)′ιγR(z,M)Jx, x#
〉

((X#)′,X#)
.

We have proven

πR(z,A) = ι−1(J#)′ιγR(z,M)J ,

and the definition of P gives us JR(z,A) = PR(z,M)J .
2) ⇒ 3). Apply the exponential formula

Stx = lim
n→∞

[n

t
R

(n

t
,B

)]n

x

for the generator B of a C0 semigroup (St) to B = −A and B = −M .
Then (5.2) follows from (5.1).

3) ⇒ 4). From Proposition 2.7 and Proposition 6.1 it follows that M has
an H∞(Sθ) functional calculus for all θ > 1

2π. The Laplace formula R(λ,B) =
∫ ∞

0
e−λtStdt for a semigroup generator B applied to B = −A and B = −M

implies the dilation equation (5.1). Now the definition of the functional calculus
implies Jψ(A) = Pψ(M)J for all ψ ∈ Ψ(Sθ), and with the properties of J
and P this gives us the estimate ‖ψ(A)‖ 6 C‖ψ‖∞.

Remark 6.11. — There is an alternative construction of the dilation in (5.2);
more details can be found in [8]. Let (Ut) be defined by

(Utu)(ϕ) := u
(

ϕ(· − t)
)

for u ∈ γ
(

L2(R), X
)

and ϕ ∈ L2(R).

Then one can show that (Ut)t∈R is a C0 group of isometries. If we call its
generator −B, then B is a spectral operator of scalar type with σ(B) = iR.
The embedding J is defined as follows: for x ∈ X the operator Jx is represented
by the function

t 7−→
{A

1
2 Ttx t > 0,

0 t 6 0.

The projection P can be defined as

P := 2J ◦ ι−1 ◦ (J#)′ ◦ ιγ ,
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where J# is defined with (A#)
1
2T#

t . The properties of J and P follow from the
identity

∫ ∞

0

〈ATtx, x
′〉dt = 〈x, x′〉 for all x ∈ X and x′ ∈ X ′ .

In this case the dilation equation can be proven somewhat simpler: we use that
UtJx is represented by

s 7−→
{A

1
2Ts+tx s > −t,

0 s 6 −t
and the fact that Puf = Puf ·χ

R+
by the definition of J and P . Essentially, the

first construction is the “Fourier image” of the present one.

We still have to prove Theorem 5.5, and for this we need the following known
result which we state for convenience. (Note that a stronger result holds true:
Aβ is sectorial of type βµ and has a bounded H∞(Sβθ) functional calculus.
However, only the weaker result is needed here.)

Lemma 6.12. — Let A be a sectorial operator of type µ with dense domain and

dense range. Assume that A has a bounded H∞(Sθ) functional calculus and

let β ∈ (0, π/θ). Then the operator Aβ, defined by the functional calculus, is

sectorial of type βθ, has dense domain and dense range and a bounded H∞(Sτ )
functional calculus for every τ > βθ. For f ∈ H∞(Sτ ), we have f(Aβ) =
fβ(A), where fβ(z) := f(zβ).

Proof. — From the properties of the functional calculus it follows that Aβ is
closed and densely defined. It has dense range because A−β = (Aβ)−1 and A−β

is densely defined.

Now we will show that Aβ is sectorial of type βθ. Obviously, we have

zR(z,Aβ) = fz(A) with fz(λ) :=
z

z − λβ

for |arg z| > βθ. For |arg z| > βθ + ε the functions fz are uniformly
bounded on Sθ and the resolvent estimate follows from the fact that A has a
bounded H∞(Sθ) functional calculus.

We still have to show the last statement: for x ∈ X we have

ψ(Aβ)AR(−1, A)x =
1

2πi

∫

γ

ψ(z)R(z,Aβ)AR(−1, A)xdz

=
1

2πi

∫

γ

ψ(z)
1

2πi

∫

γ1

λ

(z − λβ)(−1 − λ)
R(λ,A)xdλdz

=
1

2πi

∫

γ1

ψ(λβ)
λ

−1 − λ
R(λ,A)xdλ

= ψβ(A)AR(−1, A)x,
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where γ is the edge of a sector between Sβθ and Sτ and γ1 is the edge of a
sector between Sµ and Sθ. Since R(AR(−1, A)) = R(A) is dense in X , this
implies the desired identity for ψ ∈ Ψ(Sτ ). For f ∈ H∞(Sτ ), we can use an
approximation argument.

Proof of Theorem 5.5. — We define α := 2
πω, which gives us ω = 1

2απ.

1) ⇒ 2). We consider the operator A0 := A1/α. It is sectorial and
has a bounded H∞(Sθ0

) functional calculus for every θ0 > θ/α. Be-
cause of θ/α < ω/α = 1

2π we can choose θ0 < 1
2π. Now, Theorem 5.1

gives us an embedding J0, a projection P0 and a spectral operator M0

(with σ(M0) = iR) such that J0R(z,A0) = P0R(z,M0)J0 for Re z < 0.
This implies J0ψ0(A0) = P0ψ0(M0)J0 for every ψ0 ∈ Ψ(Sτ ) with τ > 1

2π.
For f0 ∈ H∞(Sτ ) we consider fn := f0 ·ψn ∈ Ψ(Sτ ) with ψn from Remark 2.3.
For n → ∞ we get J0f0(A0)x = P0f0(M0)J0x for every f0 ∈ H∞(Sτ ) and
every x ∈ X .

Let J := J0 and P := P0. Let M := Mα
0 . Similarly to the proof of

Lemma 6.12 one can show that M is a spectral operator of scalar type
with σ(M) = ∂S 1

2
απ, and for f0 ∈ H∞(Sτ ) and f(λ) := f0(λ

1/α) we have

f0(M0) = f(M).

For z with |arg z| > ω we choose τ ∈ (1
2π, |arg z|/α). Then the function

f0(λ) :=
1

z − λα

lies in H∞(Sτ ), and with f(λ) := (z − λ)−1 we get

JR(z,A) = Jf(A) = J0f0(A0) = P0f0(M0)J0 = Pf(M)J = PR(z,M)J .

2) ⇒ 3). Since M has a bounded H∞(Sθ) functional calculus for ev-
ery θ > ω, this implication can be shown as in the proof of Theorem 5.1.
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