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CASCADE OF PHASES IN TURBULENT FLOWS

by Christophe Cheverry

Abstract. — This article is devoted to incompressible Euler equations (or to Navier-
Stokes equations in the vanishing viscosity limit). It describes the propagation of
quasi-singularities. The underlying phenomena are consistent with the notion of a
cascade of energy.

Résumé (Cascade de phases pour des fluides turbulents). — Cet article étudie les
équations d’Euler incompressible (ou de Navier-Stokes en présence de viscosité évanes-
cente). On y décrit la propagation de quasi-singularités. Les phénomènes sous-jacents
confirment l’idée selon laquelle il se produit une cascade d’énergie.

1. Introduction

Consider incompressible fluid equations

(E) ∂tu + (u ·∇)u + ∇p = 0, div u = 0, (t, x) ∈ [0, T ]× R
d,

where u = t(u1, . . . ,ud) ∈ R
d is the fluid velocity and p ∈ R is the pressure.

The structure of weak solutions of (E) in d-space dimensions with d ≥ 2 is a
problem of wide current interest [3], [5], [25]. The questions are how to describe
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34 CHEVERRY (C.)

the phenomena with adequate models and how to visualize the results in spite
of their complexity. We will achieve a small step in these two directions.

According to the physical intuition, the appearance of singularities is linked
with the increase of the vorticity. Along this line, we have to mark the contri-
butions [2] and [10]. Interesting objects are solutions which do not blow up in
finite time but whose associated vorticities increase arbitrarily fast. These are
quasi-singularities. Their study is of practical importance.

Typical examples of quasi-singularities are oscillations. This is a well-known
fact going back to [4], [26]. The works [4] and [26] rely on phenomenological
considerations and engineering experiments. Further developments are related
to homogenization [14], [15], compensated compactness [12], [18] and non linear
geometric optics [7], [8], [9].

DiPerna and Majda [12] show the persistence of oscillations in three dimen-
sional Euler equations (d = 3). To this end, they select parameters ε ∈ ]0, 1]
and look at

(1.1) uε
s(t, x) := t

(
g(x2, ε

−1x2), 0,h(x1 − g(x2, ε
−1x2)t, x2, ε

−1x2)
)

where g(x2, θ) and h(x1, x2, θ) are smooth bounded functions with period 1
in θ. They remark that the functions uε

s are exact smooth solutions of (E) and
they let ε goes to zero. Yet, this construction is of a very special form. First,
it comes from shear layers (these are steady 2D solutions) as

ũε
s(t, x) = ũε

s(0, x) = t
(
g(x2, ε

−1x2), 0
)
∈ R

2.

Secondly, it involves a phase ϕ0(t, x) ≡ x2 which does not depend on ε. Of
course, this is a common fact [11], [21], [20], [28] when dealing with such large
amplitude high frequency waves. Nevertheless, this is far from giving a complete
idea of what can happen. Our aim in this paper is to develop a theory which
allows to remove the two restrictions mentioned above.

Section 2 is devoted to notations.
Section 3 gives the main results.
Subsection 3.1 states Theorem 3.1. Introduce the geometrical phase

ϕε
g(t, x) := ϕ0(t, x) +

`−1∑

k=1

εk/`ϕk(t, x), ` ∈ N∗.

Fix [ = (`,N) ∈ N
2 where the integers ` and N are such that 0 < ` < N .

Theorem 3.1 provides with approximate solutions uε
[ defined on the interval

[0, T ] with T > 0 and having the form

uε
[(t, x) = t(uε1

[ , . . . ,u
εd
[ )(t, x)(1.2)

= u0(t, x) +

N∑

k=1

εk/`Uk

(
t, x, ε−1ϕε

g(t, x)
)
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CASCADE OF PHASES IN TURBULENT FLOWS 35

where the smooth profiles

Uk(t, x, θ) = t(U1
k , . . . , U

d
k )(t, x, θ) ∈ R

d, 1 ≤ k ≤ N

are periodic functions of θ ∈ T := R/Z. We assume that

∃(t, x, θ) ∈ [0, T ]× R
d × T, ∂θU1(t, x, θ) 6= 0.

The family {uε
[}ε∈]0,1] is ε-stratified [20] with respect to the phase ϕε

g with
in general ϕε

g 6≡ ϕ0. The presence in ϕε
g of the non trivial functions ϕk with

1 ≤ k ≤ ` − 1 is necessary and sufficient to encompass all the geometrical
features of the propagation.

We say that {uε
[}ε is a weak, a strong or a turbulent oscillation according

as we have respectively ` = 1, ` = 2 or ` ≥ 3. The order of magnitude of the
energy of the oscillations is ε1/`. Compute the vorticities associated with uε

[ .

These are the skew-symmetric matrices Ωε
[ = (Ωεi

[j)1≤i,j≤d where

Ωεi
[j(t, x) := (∂ju

εi
[ − ∂iu

εj
[ )(t, x)

=

N∑

k=1

εk/`−1(∂jϕ
ε
g∂θU

i
k − ∂iϕ

ε
g∂θU

j
k)

(
t, x, ε−1ϕε

g(t, x)
)

+ (∂ju
i
0 − ∂iu

j
0)(t, x) +

N∑

k=1

εk/`(∂jU
i
k − ∂iU

j
k)

(
t, x, ε−1ϕε

g(t, x)
)
.

The principal term in Ωε
[ is of size ε1/`−1. When ` ≥ 2, there is no uniform

majoration in Lp on the family {Ωε
[}ε∈]0,1] since

lim
ε→0

‖Ωε
[‖Lp([0,T ]×Rd) = +∞, ∀p ∈ [1,∞].

In particular, if d = 3, there is no uniform control on the enstrophy
∫ T

0

∫

R3

|ωε
[ (t, x)|2 dtdx, ωε

[ (t, x) := (∇ ∧ uε
[)(t, x) ≡ Ωε

[(t, x).

We see here that strong and turbulent oscillations are examples of quasi-
singularities. Observe that the expansion (1.2) involves a more complicated
structure than in (1.1) though the corresponding regime is less singular.

Subsection 3.2 states the Proposition 3.1. Introduce the complete phase

ϕε
[(t, x) := ϕ0(t, x) +

N∑

k=1

εk/`ϕk(t, x).

Proposition 3.1 deals with approximate solutions ũε
[ defined on the interval

[0, T ] with T > 0 and having the form

ũε
[(t, x) = t(ũε1

[ , . . . , ũ
εd
[ )(t, x)(1.3)

= u0(t, x) +

N∑

k=1

εk/`Ũk

(
t, x, ε−1ϕε

[(t, x)
)
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36 CHEVERRY (C.)

where the smooth profiles

Ũk(t, x, θ) = t(Ũ1
k, . . . , Ũ

d
k)(t, x, θ) ∈ R

d, 1 ≤ k ≤ N

are periodic functions of θ ∈ T. Again

∃(t, x, θ) ∈ [0, T ]× R
d × T, ∂θŨ1(t, x, θ) 6= 0.

Section 4 shows at first Proposition 3.1 and then Theorem 3.1.

The proof of Proposition 3.1 is based on some induction argument which is
quite straightforward. In fact, the difficulty is hidden in the introduction of the
adjusting phase

ϕε
a(t, x) := ε−1(ϕε

[ − ϕε
g)(t, x) =

N∑

k=l

εk/`−1ϕk(t, x).

Indeed, the use of the geometrical phase ϕε
g does not suffice to perform the BKW

analysis. Among other things, the extra terms ϕk with ` ≤ k ≤ N must be
incorporated in order to put the system of formal equations in a triangular
form.

Subsection 4.2 explains how to deduce Theorem 3.1 from Proposition 3.1.
It mainly consists in eliminating the adjusting phase (and in checking that the
remainder created by that operation is small) as well as in replacing the small
divergence of Proposition 3.1 by a zero divergence.

Section 5 interprets the results 3.1.
It starts with various comments related to the Leray projector, the infinite

accuracy of approximate solutions, the finite speed of propagation and the large
time existence.

Subsection 5.2 proceeds to a careful study of the hierarchy of phases. We
examine successively the phase shift ϕ1, the phase shift ϕ2, and the other
terms ϕk with 3 ≤ k ≤ N .

The formal construction reveals that the phase shift ϕ1 and the terms ϕk

with 2 ≤ k ≤ ` − 1 play different parts. The rôle of ϕ1 is partly revealed
in the articles [7] and [8] which deal with the case ` = 2. When ` ≥ 3, the
phenomenon to emphasize is the creation of the ϕk with 2 ≤ k ≤ `−1. Indeed,
suppose that

ϕ2(0, .) ≡ · · · ≡ ϕ`−1(0, .) ≡ 0, ` ≥ 3.

Then, generically, we find

∃t ∈ ]0, T ], ϕ2(t, .) 6≡ 0, . . . , ϕ`−1(t, .) 6≡ 0.

Now, starting with large amplitude waves (this corresponds to the limit case
` = +∞) that is

uε
∞(0, x) =

∞∑

k=0

εkUk

(
0, x, ε−1ϕ0(0, x)

)
, ∂θU0 6≡ 0,
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CASCADE OF PHASES IN TURBULENT FLOWS 37

the description of uε
∞(t, .) on the interval [0, T ] with T > 0 needs the introduc-

tion of an infinite cascade of phases ϕk. The scenario is the following. Oscil-
lations of the velocity develop spontaneously in all the intermediate frequen-
cies εk/`−1 and in all the corresponding directions ∇ϕk(t, x). This expresses
turbulent features in the flow.

Subsection 5.3 alludes to closure problems. This is the classical difficulty
encountered when dealing with expansions as uε

[ . It is solved here through the
introduction of the ϕk with 1 ≤ k ≤ N .

Subsection 5.4 insists on obvious instabilities which are mechanisms of am-
plification which can be detected just by looking at the BKW analysis presented
before. It allows to retrieve known non linear instability results on Euler equa-
tions (see Proposition 5.1).

Subsection 5.5 and subsection 5.6 are mainly heuristical. They could also
interest researchers in Fluid mechanics. They contain no precise statement or
proof but consist in reading Theorem 3.1 in the light of previous numerical,
mathematical or physical results. They derive many informations about mi-
crostructures, compensated compactness and non linear geometric optics. They
also confirm observations which have been made in the statistical approach of
turbulences [16], [24].

Section 6 consider parabolic perturbations of Euler equations. This change
of framework has two main motivations.

First, it has a physical meaning. Most real models involve some viscosity.
And, even if it were only at a formal level, it is interesting to determine what is
the size and the structure of the dissipation terms which could be incorporated
without changing the phenomena under study.

Secondly, it has implications on the stability. The expressions uε
[ are only ap-

proximate solutions of Euler equations, yielding small error terms f ε
[ as source

terms. The matter is to know if the addition of (well-adjusted) dissipation
terms implies the existence of exact solutions (of Navier-Stokes type equations)
which coincide with uε

[(0, .) at time t = 0, which are defined on [0, T ] where
T > 0 is independent on ε, and which are close to approximate divergence free
solutions like uε

[ .
These two directions are difficult tasks. In this paper, we will be satisfied to

touch on these subjects.
In Subsection 6.1, we build (Proposition 6.1) approximate solutions {uε

[}ε

to some Navier-Stokes equation (NS) involving the variables t, x and θ. We
start by describing the properties of the parabolic perturbation. The viscosity is
vanishing and anisotropic. It could be real or artificial but it must be compatible
with the complete phase ϕε

[ . Then, we adapt the proof of subsection 4.1 to this
new setting. In particular, we are faced with the study of the divergence free
relation written in the (t, x, θ) variables.
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38 CHEVERRY (C.)

In Subsection 6.2, we look at the stability of strong oscillations {uε
(2,N)}ε

given by Proposition 6.1. Theorem 6.1 shows that exact solutions uε of (NS)
exist on some interval [0, T ] where T > 0 is independent on the parameter
ε ∈ ]0, 1]. Moreover, the family {uε}ε remains close to {uε

(2,N)}ε.

2. Notations

Variables. — Let T ∈ R
+. The time variable is t ∈ [0, T ]. Let d ∈ N \ {0, 1}.

The space variables are (x, θ) ∈ R
d × T where x ∈ R

d is the slow variable
whereas θ ∈ T := R/Z is the fast (periodic) variable. Mark the ball

B(0, R] :=
{
x ∈ R

d; |x|2 :=
d∑

i=1

x2
i ≤ R

}
, R ∈ R

+.

The state variables are the velocity field u = t(u1, · · · , ud) ∈ R
d and the pres-

sure p ∈ R. Given (u, ũ) ∈ (Rd)2, define

u · ũ :=

d∑

i=1

uiũi, |u|2 := u · u, u⊗ ũ := (uj ũi)1≤i,j≤d.

The symbol Sd is for the set of symmetric quadratic forms on R
d. An element

q ∈ Sd can be represented by some d× d matrix (qij)1≤i,j≤d and

q(ξ, ξ̃) =
∑

1≤i,j≤d

qijξiξj = q(ξ̃ , ξ), ∀(ξ, ξ̃) ∈ (Rd)2.

Functional spaces. — Distinguish the expressions u(t, x) which do not depend
on the variable θ from the expressions u(t, x, θ) which depend on θ. The bold-
faced type u is used in the first case whereas the letter u is employed in the
second situation.

Note C∞
b ([0, T ] × R

d) the space of functions in [0, T ] × R
d with bounded

continuous derivatives of any order.
Let m ∈ N. The Sobolev space Hm is the set of functions

u(x, θ) =
∑

k∈Z

uk(x)eikθ

such that

‖u‖2
Hm :=

∑

k∈Z

(
1 + |k|2

)m
∫

Rd

(
1 + |ξ|2

)m∣∣ûk(ξ)
∣∣2 dξ <∞

where

F(u)(ξ) = û(ξ) := (2π)−
1
2d

∫

Rd

e−ix·ξu(x)dx, ξ ∈ R
d.
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CASCADE OF PHASES IN TURBULENT FLOWS 39

With these conventions, the condition u ∈ Hm means simply that

‖u‖2
Hm :=

∫

Rd

(
1 + |ξ|2

)m∣∣û(ξ)
∣∣2 dξ <∞.

Define the Sobolev spaces

Hm
T :=

{
u; ∂j

t u ∈ L2([0, T ];Hm−j), ∀j ∈ {0, . . . ,m}
}

and the Banach spaces

Wm
T :=

{
u; u ∈ Cj([0, T ];Hm−j), ∀j ∈ {0, . . . ,m}

}

with the corresponding norms

‖u‖2
Hm

T
:=

m∑

j=0

∫ T

0

‖∂j
tu(t, .)‖2

Hm dt, ‖u‖Wm
T

:= sup
t∈[0,T ]

m∑

j=0

‖∂j
tu(t, .)‖Hm .

Consider also

Hm
∞ :=

⋂

T∈R+

Hm
T , H∞

T :=
⋂

m∈N

Hm
T , H∞

∞ :=
⋂

T∈R

H∞
T , Wm

∞ :=
⋂

T∈R+

Wm
T ,

W∞
T :=

⋂

m∈N

Wm
T , W∞

∞ :=
⋂

T∈R

W∞
T .

When m = 0, replace H0 with L2. Any function u ∈ L2 can be decomposed
according to

u(t, x, θ) = 〈u〉(t, x) + u∗(t, x, θ) = u(t, x) + u∗(t, x, θ)

where 〈u〉 or u are the mean values

〈u〉(t, x) = u(t, x) :=

∫

T

u(t, x, θ)dθ.

Let Γ be the symbol of any of the spaces Hm, Hm
T , Wm

T , . . . defined before.
In order to specify the functions with mean value zero, introduce

Γ∗ :=
{
u ∈ Γ; u ≡ 0

}
.

Mark also

suppxu
∗ := closure of

{
x ∈ R

d; ‖u∗(x, .)‖L2(T) 6= 0
}
.

Differential operators. — Note

∂t ≡ ∂0 :=
∂

∂t
, ∂θ ≡ ∂d+1 :=

∂

∂θ
, ∂j :=

∂

∂xj

, j ∈ {1, . . . , d},

∇ := (∂1, . . . , ∂d), ∆ := ∆x + ∂2
θ = ∂2

1 + · · · + ∂2
d + ∂2

θ .
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40 CHEVERRY (C.)

Let u ∈ W∞
T . Define

u · ∇ := u1∂1 + · · · + ud∂d,

div u := ∂1u
1 + · · · + ∂du

d ∈ R,

div(u⊗ ũ) :=

d∑

j=1

t
(
∂j(u

j ũ1), . . . , ∂j(u
j ũd)

)
∈ R

d.

Employ the bracket 〈. , .〉H for the scalar product in the Hilbert space H .
Note L(E;F ) the space of linear continuous applications T : E → F where
E and F are Banach spaces. The symbol L(E) is simply for L(E;E). Intro-
duce the commutator

[A;B] := A ◦B −B ◦A, (A,B) ∈ L(E)2.

Let r ∈ Z. The operator T is in Lr if

‖T ‖L(Hm+r
T ;Hm

T ) <∞, ∀m ∈ N.

Let ε0 > 0. The family of operators {T ε}ε is in ULr if

sup
ε∈]0,ε0]

‖T ε‖L(Hm+r
T ;Hm

T ) <∞, ∀m ∈ N.

Given a family {fε}ε such that fε(t, x, θ) ∈ W∞
T for all ε ∈ ]0, ε0], we say that

{fε}ε = O(εr) if

sup
ε∈]0,ε0]

ε−r‖fε‖Wm
T
<∞, ∀m ∈ N.

Given a family {fε}ε such that fε(t, x) ∈ W∞
T for all ε ∈ ]0, ε0], we say that

{fε}ε = O(εr) if

sup
ε∈]0,ε0]

ε−r+m‖fε‖Wm
T
<∞, ∀m ∈ N.

Observe that the two preceding definitions have very different significations
according as we use the letter f or the boldfaced type f . In particular, the
second inequalities correspond to ε-stratified estimates. The families {fε}ε

or {fε}ε are O(ε∞) if they are O(εr) for all r ∈ Z.

3. Statement of the results

The description of incompressible flows in turbulent regime is a delicate
question. No systematic analysis is yet available. However, special approximate
solutions with rapidly varying structure in space and time can be exhibited.
Their construction is summarized in this chapter 3.
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CASCADE OF PHASES IN TURBULENT FLOWS 41

3.1. The main theorem. — Select smooth functions

u00 ∈ H∞, ϕ00 ∈ C1(Rd), ∇ϕ00 ∈ C∞
b (Rd).

Impose the non degeneracy hypothesis

∃ c > 0;
∣∣∇ϕ00(x)

∣∣ ≥ 4c, ∀x ∈ R
d.

For T > 0 small enough, the equation (E) associated with

(3.1) u0(0, x) = u00(x), ∀x ∈ R
d

has a smooth solution u0(t, x) ∈ W∞
T . It satisfies

(3.2) ∂tu0 + (u0 · ∇)u0 + ∇p0 = 0, div u0 = 0, (t, x) ∈ [0, T ]× R
d.

Solve the eiconal equation

(3.3) ∂tϕ0 + (u0 · ∇)ϕ0 = 0, (t, x) ∈ [0, T ]× R
d

with the initial data

(3.4) ϕ0(0, x) = ϕ00(x), ∀x ∈ R
d.

If necessary, restrict the time T in order to have

(3.5)
∣∣∇ϕ0(t, x)

∣∣ ≥ 2c, ∀(t, x) ∈ [0, T ]× R
d.

Call Π0(t, x) the orthogonal projector from R
d onto the hyperplane

∇ϕ0(t, x)
⊥ :=

{
u ∈ R

d;u · ∇ϕ0(t, x) = 0
}
.

In other words

Π0(t, x)u = u− |∇ϕ0(t, x)|−2
(
u · ∇ϕ0(t, x)

)
∇ϕ0(t, x), ∀u ∈ R

d.

One can construct approximate solutions to the incompressible Euler equa-
tion (E) as the superposition of the exact solution (u0,p0) and an arbitrarily
large number of profiles, like in (1.2).

Theorem 3.1. — Choose any [ = (`,N) ∈ N
2 such that 0 < `(3 + 1

2d) < N .
Select arbitrary data

Uk0(x) ∈ H∞, 1 ≤ k ≤ N − `; ϕk0(x) ∈ H∞, 1 ≤ k ≤ `− 1.

Select any data

U∗
k0(x, θ) ∈ H∞, 〈U∗

k0〉 ≡ 0, 1 ≤ k ≤ N − `

satisfying the polarization conditions

U∗
k0(x, θ) = Π0(0, x)U

∗
k0(x, θ), ∀(x, θ) ∈ R

d × T.

Suppose moreover that the functions Uk0(·, θ) for all k ∈ {1, . . . , N − `} and
for all θ ∈ T have a support which is contained in a fixed compact set D ⊂ R

d.
The following preliminaries (i), (ii) and (iii) can be achieved.
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(i) There are finite sequences {Uk}1≤k≤N and {Pk}1≤k≤N with

Uk(t, x, θ) ∈ W∞
T , Pk(t, x, θ) ∈ W∞

T , 1 ≤ k ≤ N,

and which are such that

Π0(0, x)U
∗
k (0, x, θ) = U∗

k0(x, θ), ∀k ∈ {1, . . . , N − `},

Uk(0, x) = Uk0(x), ∀k ∈ {1, . . . , N − `}.
(ii) There is a finite sequence {ϕk}1≤k≤`−1 with

ϕk(t, x) ∈ W∞
T , ∀k ∈ {1, . . . , `− 1},

and which is such that

ϕk(0, x) = ϕk0(x), ∀k ∈ {1, . . . , `− 1}.
(iii) There is ε0 ∈ ]0, 1] and there are correctors

cuε
[(t, x) ∈ W∞

T , cpε
[(t, x) ∈ W∞

T , ε ∈ ]0, ε0],

which give rise to families satisfying

{cuε
[}ε = O(εN/`−2− 1

2d), {cpε
[}ε = O(ε(N+1)/`).

With the materials of (i), (ii) and (iii), construct the geometrical phase

ϕε
g(t, x) := ϕ0(t, x) +

`−1∑

k=1

εk/`ϕk(t, x),

the initial data

hε
[(x) := u00(x) +

N∑

k=1

εk/`Uk

(
0, x, ε−1ϕε

g(0, x)
)

+ cuε
[(0, x),

and the functions uε
[ and pε

[ defined according to

(3.6)

{
uε

[(t, x) := u0(t, x) +
∑N

k=1 ε
k/`Uk

(
t, x, ε−1ϕε

g(t, x)
)

+ cuε
[(t, x),

pε
[(t, x) := p0(t, x) +

∑N
k=1 ε

k/`Pk

(
t, x, ε−1ϕε

g(t, x)
)

+ cpε
[(t, x).

Then, all these expressions can be adjusted so that the functions uε
[ and pε

[
satisfy on the interval [0, T ] the incompressible Euler equation (E) up to some
small forcing term fε

[ . More precisely

(3.7) ∂tu
ε
[ + (uε

[ · ∇)uε
[ + ∇pε

[ = f ε
[ , div uε

[ = 0, uε
[(0, x) = hε

[(x)

and we have {fε
[}ε = O(εN/`−3− 1

2d).

In practice, Theorem 3.1 should be applied with N/`� 1 and with a main
profile U∗

10 adjusted so that

(3.8) ∃(x, θ) ∈ R
d × T; U∗

10(x, θ) 6= 0.
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It follows that U∗
1 6≡ 0 and the principal oscillating part of the approximate

solution uε
[ is given by

ε1/`U∗
1

(
t, x, ε−1ϕε

g(t, x)
)
, ` ∈ N∗.

Observe also that the approximate solution can be written

uε
[(t, x) = u0(t, x) + cuε

[(t, x)

+ ε1/`Uε
(
t, x, ε−1ϕ0(t, x), ε

1/`−1ϕ1(t, x), . . . , ε
−1/`ϕ`−1(t, x)

)

where the profile Uε(t, x, θ0, θ1, . . . , θ`−1) ∈ C∞([0, T ] × R
d × T

d) is defined
according to

Uε(t, x, θ0, θ1, . . . , θ`−1) :=
N∑

k=1

ε(k−1)/`Uk(t, x, θ0 + θ1 + · · · + θ`−1).

According to this interpretation, Theorem 3.1 is a multiphase non linear ge-
ometric optics result. However, since all the terms ϕk are grouped together
inside the geometrical phase ϕε

g, it must be rather understood as an extension
of some monophase analysis.

Theorem 3.1 will be obtained as the consequence of the result which is ex-
posed in the next Subsection 3.2.

3.2. The key of the analysis. — The core of the analysis is the proof of
the following result.

Proposition 3.1. — Choose any [ = (`,N) ∈ N
2 such that 0 < ` < N . Select

arbitrary data

〈Ũk0〉(x) ∈ H∞, 1 ≤ k ≤ N − `, ϕk0(x) ∈ H∞, 1 ≤ k ≤ N.

Select any data

Ũ∗
k0(x, θ) ∈ H∞, 〈Ũ∗

k0〉 ≡ 0, 1 ≤ k ≤ N − `

satisfying the polarization conditions

Ũ∗
k0(x, θ) = Π0(0, x)Ũ

∗
k0(x, θ), ∀(x, θ) ∈ R

d × T.

The following preliminaries (i) and (ii) can be achieved.

(i) There are finite sequences {Ũk}1≤k≤N and {P̃ k}1≤k≤N with

Ũk(t, x, θ) ∈ W∞
T , P̃ k(t, x, θ) ∈ W∞

T , 1 ≤ k ≤ N,

and which are such that

Π0(0, x)Ũ
∗
k(0, x, θ) = Ũ∗

k0(x, θ), ∀k ∈ {1, . . . , N − `},

〈Ũk〉(0, x) = 〈Ũk0〉(x), ∀k ∈ {1, . . . , N − `}.
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(ii) There is a finite sequence {ϕk}1≤k≤N with

ϕk(t, x) ∈ W∞
T , ∀k ∈ {1, . . . , N},

and which is such that

ϕk(0, x) = ϕk0(x), ∀k ∈ {1, . . . , N}.
With the materials of (i) and (ii), construct the complete phase

ϕε
[(t, x) := ϕ0(t, x) +

N∑

k=1

εk/`ϕk(t, x),

the initial data

h̃ε
[(x, θ) := u00(x) +

N∑

k=1

εk/`Ũk(0, x, θ),

and the functions ũε
[ and p̃ε

[ defined according to

(3.9)

{̃
uε

[(t, x, θ) = u0(t, x) +
∑N

k=1 ε
k/`Ũk(t, x, θ),

p̃ε
[(t, x, θ) = p0(t, x) +

∑N
k=1 ε

k/`P̃ k(t, x, θ).

Then, all these expressions can be adjusted so that the functions ũε
[ and p̃ε

[

satisfy on the domain [0, T ]× R
d × T the following singular system

(3.10)






∂tũ
ε
[ + (ũε

[ · ∇)ũε
[ + ∇p̃ε

[

+ε−1(∂tϕ
ε
[ + ũε

[ · ∇ϕε
[)∂θũ

ε
[ + ε−1∂θ p̃

ε
[∇ϕε

[ = f̃ ε
[ ,

div ũε
[ + ε−1∇ϕε

[ · ∂θũ
ε
[ = g̃ε

[ , ũ
ε
[(0, x, θ) = h̃ε

[(x, θ),

where the correctors f̃ ε
[ and g̃ε

[ are such that

f̃ ε
[(t, x, θ) ∈ W∞

T , g̃ε
[(t, x, θ) ∈ W∞

T , ∀ε ∈ ]0, ε0],

and satisfy

(3.11) {f̃ ε
[}ε = O(ε(N+1−`)/`), {g̃ε

[}ε = O(ε(N+1−`)/`).

Proposition 3.1 works with the variables (t, x, θ). Of course, the given infor-
mations can be interpreted in the variables (t, x). Define

(3.12)





ũε
[(t, x) := u0(t, x) +

N∑

k=1

εk/`Ũk

(
t, x, ε−1ϕε

[(t, x)
)
,

p̃ε
[(t, x) := p0(t, x) +

N∑

k=1

εk/`P̃ k

(
t, x, ε−1ϕε

[(t, x)
)
,

h̃ε
[(t, x) := h̃ε

[

(
t, x, ε−1ϕε

[(t, x)
)
,

f̃ ε
[(t, x) := f̃ ε

[

(
t, x, ε−1ϕε

[(t, x)
)
,

g̃ε
[(t, x) := g̃ε

[

(
t, x, ε−1ϕε

[(t, x)
)
.
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Then, deduce from (3.10) that

(3.13) ∂tũ
ε
[ + (ũε

[ · ∇)ũε
[ + ∇p̃ε

[ = f̃ ε
[ , div ũε

[ = g̃ε
[ , ũε

[(0, x) = h̃ε
[(x).

The information (3.11) yields

(3.14) {f̃ ε
[}ε = O(ε(N+1−`)/`), {g̃ε

[}ε = O(ε(N+1−`)/`).

There are two main differences between Theorem 3.1 and Proposition 3.1:

• First, the function ũε
[ is not divergence free. Something must be done to

pass from (3.13) to (3.7).

• Secondly, the expressions ũε
[ and p̃ε

[ involve the complete phase ϕε
[(t, x)

instead of the geometrical phase ϕε
g(t, x). Indeed, we have incorporated the

additional terms ϕk with ` ≤ k ≤ N .

Remark that

ϕε
[(t, x) = ϕε

g(t, x) + εϕε
a(t, x), ϕε

a(t, x) :=

N∑

k=l

εk/`−1ϕk(t, x),

where ϕε
a(t, x) is the adjusting phase.

4. Proofs of the results

Theorem 3.1 follows from Proposition 3.1. Therefore, to understand Theo-
rem 3.1, it is necessary to go through the proof of Proposition 3.1.

4.1. Proof of Proposition 3.1. — We work in the framework of Proposi-
tion 3.1. For convenience, we drop in this paragraph 4.1 the tilde ‘˜’ on the
expressions Uk0, Uk, Pk, hε

[ , u
ε
[ , p

ε
[ , f

ε
[ and gε

[ . These modifications concern
only this proof. We hope that it will not induce confusions.

The phase ϕε
[ will be determined during the process. For a while, do as

if it is some already known data. Because of (3.5), for ε small enough, the
function ϕε

[ is not stationary

(4.1) ∃ε0 > 0;
∣∣∇ϕε

[(t, x)
∣∣ ≥ c > 0, ∀(ε, t, x) ∈ ]0, ε0] × [0, T ]× R

d.

Therefore, we can define the application Πε
[(t, x) which is the orthogonal pro-

jector on the hyperplane ∇ϕε
[(t, x)

⊥ ⊂ R
d. In other words

Πε
[(t, x)u = u−

∣∣∇ϕε
[(t, x)

∣∣−2(
u · ∇ϕε

[(t, x)
)
∇ϕε

[(t, x).

Adopt the conventions

Xε
[ (t, x) := ∇ϕε

[(t, x) =

N∑

k=0

εk/`Xk(t, x), Xk(t, x) := ∇ϕk(t, x),

Πε
[(t, x) =

∞∑

k=0

εk/`Πk(t, x), Πk(t, x) ∈ W∞
T .
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Simple computations indicate that the access to Πk needs only the knowledge
of the Xj for j ≤ k. Introduce

vε
[ := Xε

[ · uε
[ =

∞∑

k=0

εk/`Vk, Vk = Xk · u0 +

k−1∑

j=0

Xj · Uk−j ,

wε
[ := Πε

[u
ε
[ =

∞∑

k=0

εk/`Wk, Wk = Πku0 +

k−1∑

j=0

ΠjUk−j .

By construction

uε
[ = vε

[ |Xε
[ |−2Xε

[ + wε
[ .

It follows that

(4.2) Uk = Vk|X0|−2X0 +Wk + Hk,

where Hk depends only on the Xj for j ≤ k and on the Uj for j ≤ k − 1.

The conditions prescribed in Proposition 3.1 on the initial data U∗
k (0, x, θ)

allow to fix the functions ∇ϕ0(0, x) · U∗
k (0, x, θ) as we want. Since

V ∗
k = ∇ϕ0 · U∗

k +
k−1∑

j=1

Xj · U∗
k−j ,

the same is true (by induction) for the components V ∗
k (0, x, θ). To begin with,

impose the polarization conditions

(4.3) P ∗
k ≡ V ∗

k ≡ 0, ∀k ∈ {1, · · · , `}.
Adjust a priori the geometrical phase ϕε

g so that

(4.4) ∂tϕk + Vk = 0, ∀k ∈ {1, . . . , `− 1}
which implies the approximate eiconal equation

∂tϕ
ε
g + (uε

[ · ∇)ϕε
g =

∞∑

k=l

εk/`Vk = O(ε).

To simplify notations, we will sometimes drop the indices ε and [ at the level
of uε

[ , v
ε
[ , w

ε
[ , p

ε
[ , Πε

[ and ϕε
[ . The interpretation of (E) in the variables (t, x, θ)

leads to the singular system

(4.5)

{
∂tu+ (u · ∇)u+ ∇p+ ε−1(∂tϕ+ v)∂θu+ ε−1∂θp∇ϕ = 0,

div u+ ε−1∂θv = 0.

The scalar component v is subjected to

∂tv + (u · ∇)v +X · ∇p+ ε−1(∂tϕ+ v)∂θv(4.6)

+ ε−1∂θp‖X‖2 −
(
∂tX + (u · ∇)X

)
· u = 0.
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The vector valued function w satisfies

(4.7) ∂tw + (u · ∇)w + Π∇p+ ε−1(∂tϕ+ v)∂θw −
(
∂tΠ + (u · ∇)Π

)
u = 0.

Substitute the expressions uε
[ and pε

[ given by (3.9) into (4.5). Then arrange
the terms according to the different powers of ε which are in factor.

The contributions coming from the orders ε1/`−1, . . . , ε−1/` and ε0 are elim-
inated through (4.3), (4.4) and the constraints imposed on (u0,p0).

Now, look at the terms in front of εj/` with j ∈ N∗. It remains

(4.8)





∂tUj +

j∑

k=0

(Uk · ∇)Uj−k + ∇Pj +

j∑

k=0

∂θP`+k∇ϕj−k

+

j−1∑

k=0

(∂tϕ`+k + V`+k)∂θUj−k = 0,

divUj + ∂θVj+` = 0.

Proceed in a similar manner with (4.6). It gives

∂tVj +

j∑

k=0

(Uk · ∇)Vj−k +

j−1∑

k=0

(∂tϕ`+k + V`+k)∂θVj−k(4.9)

+

j∑

k=0

Xk · ∇Pj−k −
j∑

k=0

∂tXk · Uj−k −
j∑

k=0

( k∑

`=0

(Uk−` · ∇)X`

)
· Uj−k

+

j−1∑

k=1

( k∑

`=0

X` ·Xk−`

)
∂θPj+`−k + |X0|2∂θPj+` = 0.

The same operation with (4.7) yields

∂tWj +

j∑

k=0

(Uk · ∇)Wj−k +

j−1∑

k=0

(∂tϕ`+k + V`+k)∂θWj−k(4.10)

+

j∑

k=0

Πk∇Pj−k −
j∑

k=0

∂tΠkUj−k −
j∑

k=0

( k∑

`=0

(Uk−` · ∇)Π`

)
Uj−k = 0.

Then extract the mean value of (4.8)

(4.11)





∂tUj + (u0 · ∇)Uj + (Uj · ∇)u0 + ∇Pj

+

j−1∑

k=1

〈
(Uk · ∇)Uj−k

〉
+

j−1∑

k=1

〈V ∗
`+k∂θUj−k〉 = 0,

divUj = 0.
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Adopt the conventions

Uk ≡ 0, ∀k ∈ {1 − `, . . . ,−1},

∂−1
θ U(θ) :=

∫ θ

0

U(s)ds−
∫

T

{∫ θ

0

U(s)ds
}

dθ.

Observe that the divergence free relation furnishes

(4.12) V ∗
j+` = − div ∂−1

θ U∗
j , ∀j ∈ N∗.

Consider the inductive reasoning based on the following hypothesis (Hj)
where j ≥ 1:

Hypothesis (Hj)

(i) The expressions U1, . . . , Uj and P1, . . . , Pj are known.
(ii) The phases ϕ1, . . . , ϕj are identified. The same is true for the vectors

X1, . . . , Xj and the projectors Π1, . . . ,Πj . Moreover, the following relations
are satisfied

(4.13) ∂tϕk + Vk = 0, ∀k ∈ {1, . . . , j}.
(iii) The correctors V ∗

j+1, . . . , V
∗
j+` and P ∗

j+1, . . . , P
∗
j+` are identified. In par-

ticular, the scalars V ∗
j+1, . . . , V

∗
j+` are given by the relations

(4.14) V ∗
k = − div ∂−1

θ U∗
k−`, ∀k ∈ {1, . . . , j + `}.

Verification of (H1). — Note first that the conditions which are obtained in
(4.14) when j = 1 and k ∈ {1, . . . , ` − 1} are compatible with the previ-
ous restrictions in (4.3). Indeed, the preceding conventions on the profiles Uk

with k ∈ {1 − `, . . . ,−1} have been adjusted accordingly.

The mean value U1 is obtained by solving

(4.15)

{
∂tU1 + (u0 · ∇)U1 + (U1 · ∇)u0 + ∇P1 = 0,

divU1 = 0, U1(0, x) = U10(x).

Extract
V1 = X1 · u0 +X0 · U1, W1 = Π1u0 + Π0U1.

We have imposed (4.4). For k = 1, it yields ∂tϕ1 + V1 = 0 which allows to
get ϕ1. Observe that (4.3) with k = 1 means that W ∗

1 ≡ U∗
1 . Look at the

oscillating part of (4.10) with the index j = 1. Because of (4.3), the constraint
on W ∗

1 writes

∂tW
∗
1 + (u0 · ∇)W ∗

1 + (∂tϕ` + V`)∂θW
∗
1 = MW ∗

1

where M is the linear application

MU := (∂tΠ0)U +
(
(u0 · ∇)Π0

)
U − Π0(U · ∇)u0.

Suppose that, for j = 1, we have

(4.16) ∂tϕj+k + Vj+k = 0, ∀k ∈ {1, . . . , `− 1}.
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In fact, in view of (4.4), this reduces to the last condition ∂tϕ` + V` = 0. Now,

the link between W ∗
1 and V` is removed. It suffices to determine W ∗

1 through
the linear equation

∂tW
∗
1 + (u0 · ∇)W ∗

1 = MW ∗
1 , W ∗

1 (0, x, θ) = U∗
10(x, θ).

Observe that the polarization condition W ∗
1 = Π0W

∗
1 is conserved since the

equation on W ∗
1 is equivalent to

(4.17)

{
Π0

[
∂tW

∗
1 + (u0 · ∇)W ∗

1 + (W ∗
1 · ∇)u0

]
= 0,

W ∗
1 = Π0W

∗
1 .

Introduce the linear form

`U := |X0|−2
[
∂tX0 · U +

(
(u0 · ∇)X0

)
· U −X0 ·

(
(U · ∇)u0

)]
.

Consider the oscillating part of (4.9) with the index j = 1. Since (4.3) imposes
V ∗

1 ≡ 0, it remains

(4.18) P ∗
`+1 = `∂−1

θ W ∗
1 .

We must also have (4.12) with j = 1, that is

V ∗
`+1 = − div ∂−1

θ W ∗
1 .

At this stage, we know who is the profile U1 ≡ U1 + W ∗
1 and the pressure

P1 ≡ P1. Moreover, by construction, we have the relations (4.13) and (4.14).
Thus, hypothesis (H1) is verified.

The induction. — Suppose that the conditions given in (Hj) are satisfied. The
question is to obtain (Hj+1). Consider first (4.11) with the index j + 1. Use
(4.14) and some integration by parts to get

〈V ∗
`+k∂θU

∗
j+1−k〉 = 〈divU∗

k∂θU
∗
j+1−k〉, ∀k ∈ {1, . . . , j}.

Thus, it remains

(4.19)





∂tUj+1 + (u0 · ∇)Uj+1 + (Uj+1 · ∇)u0 + ∇Pj+1

+

j∑

k=1

(Uk · ∇)Uj+1−k +

j∑

k=1

div〈U∗
k ⊗ U∗

j+1−k〉 = 0,

divUj+1 = 0.

This system is completed with the initial data

Uj+1(0, x) = U0(j+1)(x), ∀x ∈ R
d.

It gives access to Uj+1 and Pj+1. Recall that the step j relies on (4.16). In
particular, for k = 1, we must have

∂tϕj+1 + (u0 · ∇)ϕj+1 +X0 · Uj+1 +

j∑

`=1

X` · Uj+1−` = 0.
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50 CHEVERRY (C.)

Observe that, in the hypothesis (Hj+1), this is exactly (4.13) with k = j + 1.
From this equation and

ϕj+1(0, x) = ϕ0(j+1)(x), ∀x ∈ R
d,

deduce ϕj+1. From ϕj+1, extract Xj+1 and Πj+1. Impose the triangulation
condition (4.16) written with the index j + 1. It means that we add

(4.20) ∂tϕj+` + Vj+` = 0.

Then, extract the oscillating part of (4.10) written with j + 1. Use (Hj)
and (4.20) in order to simplify the resulting equation. It yields

(4.21) ∂tW
∗
j+1 + (u0 · ∇)W ∗

j+1 = MW ∗
j+1 + f

where f is known. We get W ∗
j+1 by solving (4.21). Therefore we have U∗

j+1

and we can deduce V ∗
j+`+1 = − div ∂−1

θ U∗
j+1.

Now look at the constraint (4.9) for the index j + 1. Extract the oscillating
part. It allows to recover P ∗

j+`+1. Thus we have (Hj+1).

Apply the preceding induction up to j = N − `. In view of (i), (ii) and (iii)
in Hypothesis (HN−`), the expressions

U1, . . . , UN−`, P1, . . . , PN−`, ϕ1, . . . , ϕN−`,

are identified. In accordance with (4.13) and (4.14), define

V ∗
N−`+k = − div ∂−1

θ U∗
N−2`+k, W ∗

N−`+k ≡ 0, k ∈ {1, . . . , `},
VN−`+k ≡ 0, WN−`+k ≡ 0, k ∈ {1, . . . , `},
ϕN−`+k(t, x) = ϕ(N−`+k)0(x), PN−`+k = P ∗

N−`+k, k ∈ {1, . . . , `}.

An induction based on (4.2) allows to recover UN−`+k, . . . , UN . Look at uε
[ and

pε
[ as in (3.9). Note that we have (3.10) with

fε
[ (t, x, θ) =

∞∑

j=N+1−`

εj/`Fj(t, x, θ), gε
[ (t, x, θ) =

∞∑

j=N+1−`

εj/`(divUj + ∂θVj+`),

where the sums are in fact finite and

Fj(t, x, θ) := −
j−1∑

k=0

(∂tϕ`+k + V`+k)∂θUj−k − ∂tUj

−
j∑

k=0

(Uk · ∇)Uj−k −∇Pj −
j∑

k=0

∂θP`+k∇ϕj−k.

By construction, we have (i) and (ii) of Proposition 3.1, and also (3.11). The
proof is therefore complete.
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4.2. Proof of Theorem 3.1. — Now, we explain how to deduce Theorem 3.1
from Proposition 3.1. Select arbitrary initial data for

Π0(0, x)Ũ
∗
k(0, x, θ) ∈ H∞, 〈Ũk〉(0, x) ∈ H∞, 1 ≤ k ≤ N,

and arbitrary initial data for

ϕk(0, x) ∈ H∞, 1 ≤ k ≤ `− 1.

On the contrary, impose

(4.22) ϕk(0, .) ≡ 0, ∀k ∈ {`, . . . , N}.
Proposition 3.1 provides with finite sequences

{Ũk}1≤k≤N , {P̃ k}1≤k≤N , {ϕk}1≤k≤N ,

and source terms

f̃ ε
[(t, x, θ) ∈ W∞

T , g̃ε
[(t, x, θ) ∈ W∞

T .

Define ũε
[ and p̃ε

[ as in (3.12). In the paragraph below, we eliminate the
adjusting phase ϕε

a in order to get uε
[ and pε

[ . We show that this operation
creates only small remainders. We also check that this manipulation yields no
contradiction when fixing the data at time t = 0.

Dictionary between the profiles. — The functions ũε
[ and p̃ε

[ can also be written
in terms of the phase ϕε

g. Indeed, there is a unique decomposition

ũε
[ = ǔε

[ + ruε
[ = ǔε

[ +O(ε(N+1)/`), p̃ε
[ = p̌ε

[ + rpε
[ = p̌ε

[ +O(ε(N+1)/`),

involving the representations

(4.23) ǔε
[(t, x) = ǔε

[

(
t, x, ε−1ϕε

g(t, x)
)
, p̌ε

[(t, x) = p̌ε
[

(
t, x, ε−1ϕε

g(t, x)
)

where the profiles ǔε
[(t, x, θ) and p̌ε

[(t, x, θ) have the form

ǔε
[(t, x, θ) = u0(t, x) +

N∑

k=1

εk/`Uk(t, x, θ),

p̌ε
[(t, x, θ) = p0(t, x) +

N∑

k=1

εk/`Pk(t, x, θ).

The transition from ũε
[ to ǔε

[ is achieved through the phase shift ϕε
a

Ũk(t, x, ε−1ϕε
[) = Ũk

(
t, x, ε−1ϕε

g + ϕ` +

N∑

k=`+1

εk/`−1ϕk

)
.

Use the Taylor formula in order to absorb the small term in the right. It

furnishes the following explicit link between the (Uk, Pk) and the (Ũk, P̃ k)

(4.24)

{
Uk

(
t, x, θ − ϕ`(t, x)

)
:= Ũk(t, x, θ) + Gk(Ũ1, . . . , Ũk−1)(t, x, θ),

Pk

(
t, x, θ − ϕ`(t, x)

)
:= P̃ k(t, x, θ) + Gk(P̃ 1, . . . , P̃ k−1)(t, x, θ).
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The application Gk can be put in the form

(4.25) Gk(Ũ1, . . . , Ũk−1) :=

k−1∑

p=1

∂p
θGk

p (Ũ1, . . . , Ũk−p), k ∈ {2, . . . , N}.

The terms Gk
p are given by

(4.26) Gk
p (Ũ1, . . . , Ũk−p) :=

1

p!

∑

α∈J k
p

ϕ`+1+α1 × · · · × ϕ`+1+αpŨαp+1 ,

where the sum is taken over the set

J k
p :=

{
α = (α1, . . . , αp, αp+1) ∈ N

p+1;

0 ≤ αj ≤ N − `− 1, ∀j ∈ {1, . . . , p},
1 ≤ αp+1 ≤ k − p, α1 + · · · + αp + αp+1 = k − p

}
.

The relation (4.24) and the definition of Gk imply that

Uk(t, x) = 〈Ũk〉(t, x), ∀k ∈ {1, . . . , N}, ∀t ∈ [0, T ].

Therefore, prescribing the initial data for the Uk or the 〈Ũk〉 amounts to the
same thing. The condition (4.22) yields

Gk
p (Ũ1, . . . , Ũk−p)(0, x, θ) = 0, ∀k ∈ {1, . . . , N}.

Since ϕ`(0, .) ≡ 0, we have

Π0(0, x)U
∗
k (0, x, θ) = Π0(0, x)Ũ

∗
k(0, x, θ), ∀k ∈ {1, . . . , N}.

In view of these identities, it is clearly equivalent to specify the initial data for

the Π0U
∗
k or the Π0Ũ

∗
k.

To get (3.7), we have also to replace g̃ε
[ by zero. To this end, we first exhibit

some properties of the operator ‘div’.

The divergence free relation in the variables (t, x). — Consider the
application

div : C∞
D := {u ⊂ D} −→ Im(div) ⊂ {g ∈ H∞; ĝ(0) = 0}.

We can select some special right inverse.

Lemma 4.1. — There is a linear operator ridiv : C∞
D → H∞ with

div ◦ ridivg = g, ∀g ∈ Im(div).

For all ι > 0 and for all m ∈ N, there is a constant Cι
m > 0 such that

(4.27) ‖ ridiv g‖Hm ≤ Cι
m‖g‖

Hm+1+ 1
2

d+ι , ∀g ∈ Im(div).
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Proof of Lemma 4.1. — Introduce a cut-off function ψ ∈ C∞(Rd) such that
{
ξ; ψ(ξ) 6= 0

}
⊂ B(0, 2],

{
ξ; ψ(ξ) = 1

}
⊃ B(0, 1].

For g ∈ Im(div), take the explicit formula

ridiv(g) := F−1
( ∫ 1

0

∇ξ(ψĝ)(rξ)dr + |ξ|−2(1 − ψ)(ξ)ĝ(ξ) × ξ
)
.

Since ĝ(0) = 0, the relation (??) is satisfied. For s > 1
2d, the injection

Hs(Rd) ↪→ L∞(Rd) is continuous. It leads to (4.27).

End of the proof of Theorem 3.1. — Take ι = 1/` > 0. Using (3.14) and
Lemma 4.1, associated with the remark Finite speed of propagation in the next
paragraph 5.1, we get

{
ridiv g̃ε

[

}
ε

= O(εN/`−2− 1
2d).

Define
cuε

[ := ruε
[ − ridiv g̃ε

[ , cpε
[ := rpε

[ ,

uε
[ := ǔε

[ + cuε
[ , pε

[ := p̌ε
[ + cpε

[ .

Compute

div uε
[ = div ũε

[ − div ◦ ridiv g̃ε
[ = 0.

Moreover

∂tu
ε
[ + (uε

[ · ∇)uε
[ + ∇pε

[ = f
ε
[

with

fε
[ = f̃ ε

[ − (ridiv g̃ε
[ · ∇)ũε

[ − (ũε
[ · ∇) ridiv g̃ε

[

− ∂t ridiv g̃ε
[ + (ridiv g̃ε

[ · ∇) ridiv g̃ε
[ .

A derivative in t or x costs a power of ε. The small error term f
ε
[ is controled

as indicated. The proof of Theorem 3.1 is therefore complete.

5. Consequences of Theorem 3.1

5.1. Various comments

The Leray projector. — Note Π(ξ) the orthogonal projector from R
d onto the

plane

ξ⊥ :=
{
u ∈ R

d; u · ξ = 0
}
.

Introduce the closed subspace

F :=
{
u ∈ L2; div u = 0

}
⊂ L2.

Call P the orthogonal projector from L2 onto F. It corresponds to the Fourier
multiplier

Pu = Π(Dx)u := (2π)−
1
2d

∫

Rd

eix·ξΠ(ξ)û(ξ)dξ.
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The application P is the Leray projector onto the space of divergence free
vector fields. It is a self-adjoint operator such that

ker div = ImP, Im∇ =
(
ker(div)

)⊥
= kerP.

Consider the Cauchy problem

∂tu + ∇p = f , div u = 0, u(0, .) = h

with data f ∈ L2
T and h ∈ L2. It leads to the equivalent conditions

(5.1) ∂tu = Pf , u(0, .) = Ph, ∇p = (Id−P)f .

In particular, the equation (3.7) can be interpreted as

∂tu
ε
[ + P

(
(uε

[ · ∇)uε
[

)
= Pfε

[ , uε
[(0, .) = Phε

[ .

Infinite accuracy. — Fix any ` ∈ N∗. The Borel’s summation process allows
to take N = +∞ in the Theorem 3.1. It yields BKW solutions (uε

[ ,p
ε
[) which

solve (E) with infinite accuracy

∂tu
ε
[ + (uε

[ · ∇)uε
[ + ∇pε

[ = O(ε∞), div uε
[ = 0.

Finite speed of propagation. — The characteristic curves of the field
∂t + u0 · ∇x are obtained by solving the differential equation

∂tΓ(t, x) = u0

(
t,Γ(t, x)

)
, Γ(0, x) = x.

Suppose that the oscillations of the profiles U∗
k0 are concentrated in some do-

main D ⊂ R
d. In other words

suppxU
∗
k0 ⊂ D, ∀k ∈ {1, . . . , N}.

The BKW analysis
(
see (4.19)–(4.21)

)
reveals that for all t ∈ [0, T ] we have

suppxU
∗
k (t, .) ⊂

{
Γ(t, x); x ∈ D

}
, ∀k ∈ {1, . . . , N}.

The phenomena under study have a finite speed of propagation.

Large time existence. — Suppose that the function u0 ∈ W∞
∞ is a global solu-

tion of the Euler equation. Suppose also that the phase ϕ0 ∈ W∞
∞ is subjected

to (3.5) on the strip [0,∞[×R
d and that it is a global solution of the eiconal

equation. Fix any T ∈ R
+
∗ . Since all the transport equations (4.19), (4.20) and

(4.21) are linear, they can be solved on the whole time interval [0, T ]. In par-
ticular, no blow up occurs at the level of the equations yielding the profiles Uk,
Pk and the phases ϕk. In this context, Theorem 3.1 can be applied with any
T ∈ R

+
∗ .

However, non linear effects are present. For instance, the appearance of the
phases ϕk with k ≥ 1. We study some of the related mechanisms below.

5.2. The cascade of phases. — The phase ϕ0 is determined as usual
through the eiconal equation (3.3). We examine in this subsection 5.2 the
part of the other phases coming into play.
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The first phase shift. — First, suppose that ϕ10 ≡ 0 and U10 ≡ 0. In view of
(4.15), we have U1 ≡ 0. Now, ϕ1 is determined by

∂tϕ1 + (u0 · ∇)ϕ1 + U1 · ∇ϕ0 = ∂tϕ1 + (u0 · ∇)ϕ1 = 0.

It follows that ϕ1 ≡ 0. The terms ϕ1 and U1 do not appear if we start with
ϕ10 ≡ 0 and U10 ≡ 0.

Suppose now that ϕ10 6≡ 0 or U10 6≡ 0. Replace u00 by u00 + δU10 and ϕ00

by ϕ00 + δϕ10 where δ > 0 is some parameter. Solve (3.1)–(3.2) and (3.3)–(3.4)
with these new groundstates. It furnishes expressions u0 and ϕ0 which depend
on δ. Apply Theorem 3.1 where ϕ10 ≡ 0 and U10 ≡ 0, while the other data are
not changed. It yields ϕ1 ≡ 0 and U1 ≡ 0. Then choose δ = ε to recover the
situation under study.

This technical trick allows to reduce the case ϕ10 6≡ 0 or U10 6≡ 0 to the case
ϕ10 ≡ 0 and U10 ≡ 0. It was already used in [8].

As explained below, such a manipulation is not possible concerning the other
terms ϕ2, . . . , ϕ`−1.

The second phase shift. — Suppose this time that

U10 ≡ 0, ϕ10 ≡ 0, U20 ≡ 0, ϕ20 ≡ 0.

Then, for j = 1, the equation (4.19) becomes

(5.2)

{
∂tU2 + (u0 · ∇)U2 + (U2 · ∇)u0 + ∇P2 + div〈U∗

1 ⊗ U∗
1 〉 = 0,

divU2 = 0.

This equation involves the source term div〈U∗
1 ⊗ U∗

1 〉 which is able to awake
the function U2. This influence can then be transmitted to ϕ2 through the
transport equation

∂tϕ2 + (u0 · ∇)ϕ2 + (U2 · ∇)ϕ0 = 0.

As a matter of fact, we have

ϕ2(t, x) = − 1
2∇ϕ00(x) · ∂tU2(0, x)t

2 +O(t3)

and there is no reason for the coefficient

− 1
2∇ϕ00(x) · ∂tU2(0, x) = 1

2∇ϕ00(x) · P div〈U∗
10 ⊗ U∗

10〉
to be zero. To illustrate this assertion, consider the following simple case. Take
d = 2 and

u0 ≡ 0, ϕ00(x) = x1, U∗
10(x, θ) = ψ(x)t

(
0, h(θ)

)

where ψ ∈ C∞(R2; R) and h ∈ C∞(T; R) are two non trivial functions. Then,
compute

∇ϕ00(x) = (1, 0), div〈U∗
10 ⊗ U∗

10〉 = t
(
0, 〈h(θ)2〉∂2

[
ψ(x)2

])
.
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56 CHEVERRY (C.)

For any scalar function f , the decomposition

t(0, f) = Pt(0, f) + ∇χ
implies that

(1, 0) · Pt(0, f) = −∂1χ, ∂2f = ∆χ.

It follows that

− 1
2∇ϕ00(x) · ∂tU2(0, x) = 1

2 〈h(θ)2〉∂1χ

where the scalar function χ is subjected to

∆χ = −∂2
22

[
ψ(x)2

]
.

If ψ has compact support, necessarily we have ∂1χ 6≡ 0 which implies
that ϕ2 6≡ 0. In general, the second phase shift ϕ2 appears even if it is not
present at time t = 0. The phase ϕ2 is generically created by the evolution.

The geometrical phase. — The other terms ϕ3, . . . , ϕ`−1 are subjected to

∂tϕk + u0 · ∇ϕk +

k−1∑

j=0

〈Ũk−j〉 · ∇ϕj = 0, ∀k ∈ {3, . . . , `− 1}.

Like ϕ2, the functions ϕ3, . . . , ϕ`−1 are in general non trivial even if

ϕ1(0, .) ≡ · · · ≡ ϕ`−1(0, .) ≡ 0, U1(0, .) ≡ · · · ≡ U`−1(0, .) ≡ 0.

There is no more trick which allows to get rid of ϕ2, · · · , ϕ`−1. The introduc-
tion of the phase shifts ϕk with 2 ≤ k ≤ `−1 cannot be avoided. Therefore the
difficulties that we deal with appear from ` = 3. When ` ≥ 3, the characteristic
rate e of eddy dissipation is bigger than one [4]. This is the reason why such
situations are refered to as turbulent regimes.

The expressions ϕ2, . . . , ϕ`−1 are components of the geometrical phase

ϕε
g(t, x) = ϕ0(t, x) +

`−1∑

k=1

εk/`ϕk(t, x)

which comes from the approximate eiconal equation

∂tϕ
ε
g +

(
〈ũε

[〉 · ∇
)
ϕε

g = O(ε).

The family {uε
[(t, x)}ε∈]0,1] has an ε−stratified regularity [20] with respect

to the phase ϕε
g. This is a geometrical information.

The complete phase ϕε
[ yields a better approximation than ϕε

g since

∂tϕ
ε
[ + (〈ũε

[〉 · ∇)ϕε
[ = O

(
ε(N+1)/`

)
.

The addition of the adjusting phase ϕε
a has no geometrical meaning. Neverthe-

less, it plays a crucial rôle as it is explained in the next paragraph.
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5.3. Closure problems. — We have explained why appealing only to ϕ0

is not sufficient. It turns out that BKW computations relying only on the
geometrical phase ϕε

g come also to nothing. This is a subtle aspect when
proving Theorem 3.1. We lay now stress on it. Define the transformations
Gk as in (4.25)–(4.26). Fix N ∈ N∗ and consider the map

G : (W∞
T )N −−−−→ (W∞

T )N ,



Ũ1

Ũ2

...

ŨN


 (t, x, θ) 7−→




Ũ1

Ũ2 + G2(Ũ1)
...

ŨN + GN (Ũ1, . . . , ŨN−1)




(
t, x, θ + ϕ`(t, x)

)
.

Obviously, the application G is one to one. There is a complete dictionary

between the Uj and the Ũj . Once the Uj or the Ũj are known, it is entirely

equivalent to use the representation uε
[ or ũε

[ . Before the Uj or the Ũj have
been identified, that is in practice, for instance when performing the BKW
calculus, it is deeply different to employ uε

[ or ũε
[ . Indeed, there is a unique

choice of the ϕk with ` ≤ k ≤ N , which imposes a specific hierarchy between the

profiles Ũk, which makes possible the triangulation of the equations obtained
by the formal computations.

Let us explain this affirmation more precisely. In the subsection 4.1, we have

performed the BKW analysis with the profiles Ũk. The result was a sequence
of equations

(5.3) X̃ k(Ũ1, . . . , Ũk+`) = 0, 1 ≤ k ≤ N.

As usual in non linear geometric optics, this can be rewritten in order to find
a sequence of well-posed equations

(5.4) Ẋk(U̇k) = F(U̇1, . . . , U̇k−1), 1 ≤ k ≤ N,

where the U̇k are made of pieces of the Ũj (in the circumstances Uj , Pj , ϕj ,
W ∗

j , V ∗
j+` and P ∗

j+`). Of course, the equation (5.4) can be interpreted in terms

of the Ũj and then (using G) in terms of the Uj . However, in this second

step, something unusual happens. The access to Uj requires to implement Ũj ,
the phase shift ϕ` and the transformations Gj

p with 1 ≤ p ≤ j − 1. Now, to

compute Gj
1 , we need to identify ϕj+`−1 which is not included in U̇j . This is

what says (4.24)–(4.25).
In other words, our analysis reveals that ϕ` or the various coefficients ϕi

which appear in (4.26) do not depend only on (U̇1, . . . , U̇k) but also on some U̇i

with i > k. Therefore, the interpretation of (5.4) in terms of the Uj yields some
underdetermined system. Computations involving the functions Uj lead to a
sequence of equations which are not closed.
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The insertion of the phases ϕk with ` ≤ k ≤ N is an elegant way to intro-
duce G. The change of variables G, though it is a function of (U1, . . . , UN), is
needed to progress. It allows to get round closure problems.

5.4. Obvious instabilities. — The obvious instabilities are the mechanisms
of amplifications which can be detected by looking directly at the formal ex-
pansions uε

[ . They imply the non linear instability of Euler equations. Indeed,

fix any T > 0, any u0 ∈ W∞
T (Rd) which is solution of (E), and any δ > 0.

Work on the balls

B0(u0; δ] :=
{
u ∈ L2; ‖u(.) − u0(0, .)‖L2(Rd) ≤ δ

}
,

BT (u0; δ] :=
{
u ∈ L2

T ; ‖u − u0‖L2([0,T ]×Rd) ≤ δ
}
.

Proposition 5.1. — For all constant C > 0, there are small data

(h, h̃) ∈
(
B0(u0; δ] ∩H∞

)2
, (f , f̃ ) ∈

(
BT (u0; δ] ∩W∞

T

)2

so that the Cauchy problems

∂tu + (u · ∇)u + ∇p = f , div u = 0, u(0, .) = h(.),

∂tũ + (ũ · ∇)ũ + ∇p̃ = f̃ , div ũ = 0, ũ(0, .) = h̃(.),

have solutions (u, ũ) ∈ BT (u0; δ]
2 and there is t ∈ ]0, T ] such that

∥∥(u − ũ)(t, .)
∥∥

L2(Rd)
(5.5)

≥ C
(
‖h − h̃‖L2(Rd) +

∫ t

0

‖(f − f̃ )(s, .)‖L2(Rd) ds
)
.

Inequalities as (5.5) are well-known. In general, see [8], [17], [19], the proof
is achieved in two steps:

• First detect equilibria where instability arises in the discrete spectrum.

• Then establish that linearized instability implies non linear instability.

The procedure we adopt below is different. We just look at approximate
solutions like uε

[ . It follows a more simple proof of inequality (5.5). In fact,
the Proposition 5.1 is a convenient way to retrieve known non linear instability
results.

Proof of Proposition 5.1. — The proof consists in a contradiction argument
based on the decomposition of Theorem 3.1. Take ` = 2 and N ≥ (8 + d).
Consider two deals of initial data

Ũ1
k(0, x, θ), ϕ1

k(0, x), 1 ≤ k ≤ N,

Ũ2
k(0, x, θ), ϕ2

k(0, x), 1 ≤ k ≤ N.

Fix these expressions in the following way

Ũ1
1(0, .) ≡ Ũ2

1(0, .), ϕ1
1(0, .) ≡ ϕ2

1(0, .) ≡ 0, ϕ1
2(0, .) ≡ ϕ2

2(0, .) ≡ 0.
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It implies that

Ũ1
1(t, .) ≡ Ũ2

1(t, .), ϕ1
1(t, .) ≡ ϕ2

1(t, .) ≡ 0, ∀t ∈ [0, T ].

Adjust Ũ1
2(0, .) and Ũ2

2(0, .) so that

∂t(ϕ
1
2 − ϕ2

2)(0, .) = −∇ϕ0 · 〈Ũ1
2 − Ũ2

2〉(0, .) 6≡ 0.

Therefore, we are sure to find some t > 0 such that (ϕ1
2 − ϕ2

2)(t, .) 6≡ 0. It
follows that

U1
1 (t, x, θ) = Ũ1

1

(
t, x, θ + ϕ1

2(t, x)
)

(5.6)

6≡ U2
1 (t, x, θ) = Ũ1

1

(
t, x, θ + ϕ2

2(t, x)
)
.

Note uε1
[ and uε2

[ the approximate solutions built with the profiles {U1
k}k

and {U2
k}k. The associated error terms are fε1

[ and f ε2
[ . Now, proceed by

contradiction. Suppose that Proposition 5.1 is wrong. Then, there is C > 0
and ε1 ∈ ]0, ε0] such that for all ε ∈ ]0, ε1], we have

‖(uε1
[ − uε2

[ )(t, .)‖L2(Rd) ≤ C
(
‖(uε1

[ − uε2
[ )(0, .)‖L2(Rd)

+

∫ t

0

‖(fε1
[ − fε2

[ )(s, .)‖L2(Rd) ds
)
.

Divide this inequality by
√
ε. By construction, we have

ε−
1
2 ‖(uε1

[ − uε2
[ )(0, .)‖L2(Rd) = O(

√
ε),

ε−
1
2 ‖(f ε1

[ − fε2
[ )(s, .)‖L2(Rd) = O(

√
ε), ∀s ∈ [0, t].

ε−
1
2 ‖(uε1

[ − uε2
[ )(t, .)‖L2(Rd) = ‖(U1

1 − U2
1 )(t, ·, ε−1ϕε

g(t, .)‖L2(Rd) +O(
√
ε).

It follows that

lim
ε→0

ε−
1
2

∥∥(uε1
[ − uε2

[ )(t, .)
∥∥

L2(Rd)
=

∥∥(U1
1 − U2

1 )(t, .)
∥∥

L2(Rd×T)
= 0

which is inconsistent with (5.6).

In the proof presented above, the amplification is due to ϕ2 which is the
principal term in the adjusting phase. The presence of ϕ2 becomes efficient in
comparison with the other effects when

∣∣Ũ1
1

(
t, x, θ + ϕ1

2(t, x)
)
− Ũ2

1

(
t, x, θ + ϕ2

2(t, x)
)∣∣ ∼ ct� √

ε.

This requires to wait a lapse of time bigger than
√
ε. This delay can be reduced

by adapting the above procedure to the cases ` > 2.

5.5. The mathematical background. — This subsection is mainly heuris-
tical. It describes consequences of Theorem 3.1. Since it contains assertions
which are involved in the paragraph 4.1, it could be difficult to read if one does
not have in mind details of the proof of Proposition 3.1.
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Microstructures. — The result 3.1 is concerned with the convection of mi-
crostructures. It is linked with the multiple scale approach of [26] and [4].
In [26] the authors look for BKW solutions uε

† in the form

uε
†(t, x) = u0(t, x) + U∗

0

(
t, x, ε−1t, ε−1~ϕ0(t, x)

)
+O(ε).

In the more recent paper [4], the selected expansion is

µε
†(t, x) = u0(t, x) + ε

1
3U1

(
t, x, ε−

2
3 t, ε−1~ϕ0(t, x)

)
+O(ε

2
3 ).

Both articles [4] and [26] use homogenization techniques. They perform com-
putations involving expressions as uε

† or µε
†. Simplifications (supported by

engineering experiments) are made in order to get effective equations for the
evolution of (u0, U

∗
0 ) or (u0, U1).

Consider the simple case of one phase expansions (that is when ~ϕ0 ≡ ϕ0 is a
scalar valued function). Reasons why a complete mathematical analysis based
on uε

† or µε
† is not available can be drawn from Theorem 3.1. For instance, look

at µε
†. When ` = 3, the oscillation µε

† involves the same scales as uε
(3,N) since

ε−1ϕε
g(t, x) = ε−1ϕ0(t, x) + ε−

2
3ϕ1(t, x) + ε−

1
3ϕ2(t, x).

Now the analogy stops here since in general ϕ1(t, x) 6≡ t and ϕ2(t, x) 6≡ 0.
These are geometrical obstructions which prevent to describe the propagation
by way of µε

†. The asymptotic expansion µε
† is not suitable.

Analogous arguments concerning uε
† will be presented further.

Compensated compactness. — Consider approximate solutions (uε
[ ,p

ε
[) with

infinite accuracy. They satisfy

(5.7) ∂tu
ε
[ + (uε

[ · ∇)uε
[ + ∇pε

[ = f
ε
[ = O(ε∞), div uε

[ = 0.

Suppose that u00 ≡ 0 so that

(5.8) uε
[(0, .) = h

ε
[(.) = O(ε1/`).

Now, forget all about the explicit construction of Theorem 3.1. Since the L2-
norm is conserved, any smooth solution of (5.7) is subjected to the uniform
control

(5.9) sup
{
‖ε−1/`uε

[‖L2
T
; ε ∈ ]0, 1]

}
≤ C <∞.

Arguments issued from the theory of compensated compactness [18] can be
employed to study the family {ε−1/`uε

[}ε. In the spirit of [12] or [14], we can try
to exploit the informations contained in (5.9) and the equation on uε

[ in order to

describe the asymptotic behaviour when ε goes to zero of the functions ε−1/`uε
[ .

However this approach is not applicable here.
Indeed, obstructions come from the presence of obvious instabilities. Below,

we recall the intuitive idea of what can happen. Use the representation ũε
[
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involving the phase ϕε
[ . The determination of the intermediate term ϕ` re-

quires to identify 〈Ũ`〉 and Ũ∗
`−1. This is a consequence of the equations (4.13)

and (4.19).
In view of the formula (4.24), when ϕ` is modified by an amount of δϕ`,

the quantity U1(t, x, θ) undergoes a perturbation of the same order δϕ`. When

dealing with quasi-singularities, some quantities with ε in factor (like 〈Ũ`〉) or

with ε1−1/` in factor (like Ũ∗
`−1) can control informations of size ε1/`. This fact

is expressed by the following rules of transformation

(5.10)

{
〈Ũ`〉/〈Ũ`〉 + δ〈Ũ`〉 =⇒ uε

[/u
ε
[ +O(ε1/`)δ〈Ũ`〉,

Ũ∗
`−1/Ũ

∗
`−1 + δŨ∗

`−1 =⇒ uε
[/u

ε
[ +O(ε1/`)δŨ∗

` .

Now reverse the preceding reasoning. To describe features in the principal
oscillating term ε1/`U∗

1

(
t, x, ε−1ϕε

g(t, x)
)
, we must identify ϕ` which means to

obtain 〈Ũ`〉 and Ũ∗
`−1. In other words, we need to know quantities which have

respectively ε and ε1−1/` in factor. When ` ≥ 2 such informations are clearly
not reachable by rough controls as (5.9).

The preceding discussion indicates that the study of turbulent regimes re-
quires to combine at least geometrical aspects, multiphase analysis and high
order expansions. The tools of non linear geometric optics seem to be appro-
priate. Some attempts in this direction have already been made.

Non linear geometric optics. — We make in this paragraph several comments
about non linear geometric optics. They concern both old [21], [20], [28] and
more recent [7], [8], [9] results which all are devoted to one phase expansions
of the type

(5.11) uε
\(t, x) := u0(t, x) +

∞∑

k=k0

εk/`Uk

(
t, x, ε−1ϕ0(t, x)

)

where k0 ∈ N and ` ∈ N∗.

. Systems of multidimensional conservation laws Consider the hyperbolic
non linear system

∂tf0(u) +
d∑

j=1

∂jfj(u) = 0, u ∈ R
m, m ∈ N∗

where the fluxes fj : R
m → R

m are smooth functions. Introduce the matrix
symbol

A(u, ξ) :=

d∑

j=1

ξjf
′
0(u)

−1f ′
j(u), (u, ξ) ∈ R

m × R
d.

Select some eigenvalue λ(u, ξ) of A(u, ξ). We have

E(u, ξ) := ker
[
A(u, ξ) − λ(u, ξ) Id

]
6= {0}.
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Introduce the vector space

F(u) :=
⋂

ξ∈Rd\{0}

E(u, ξ).

A change of coordinates [9] yields

F(u) = F, ∀u ∈ R
m.

Suppose that some of the oscillation uε
\ is polarized in the direction of E which

means that the projection of ∂θU
∗
k0(t, x, θ) on E

(
u0(t, x)

)
is not always reduced

to {0}. The problem is to determine (k0, `) with k0/` as minimal as possible
such that approximate (or better exact) solutions like (5.11) exist on some
uniform interval [0, T ] with T > 0.

α) When λ is genuine non linear, because of the formation of shocks, the
pertinent regime is k0 = 1 and ` = 1. This is the domain of weakly non linear
geometric optics. The asymptotic behavior and the stability of uε

\ are well

understood. In fact, a complete theory has been achieved (see [21], [20] and
the related references).

β) When λ is linearly degenerate, we can take k0 = 1 and ` = 2. Expressions
as uε

\ are called strong oscillations. In the hyperbolic situation, the family

{uε
\}ε∈]0,1] is unstable [8] on the interval [0, T ]. It becomes stable on condition

that a small viscosity is incorporated [7]. Applications can be given to describe
large-scale motions in the atmosphere [7].

γ) When λ is linearly degenerate, when F 6= {0}, and when the oscillations
are supported by F, the choice k0 = 0 and ` = 1 is suitable. We can construct
large amplitude high frequency waves [9].

Nonisentropic compressible Euler equations are the prototype of a non linear
hyperbolic system at the level of which the three situations α), β) and γ)
can be tested. Singularities which correspond to the generation of shocks by
compression [29] can appear (as in α). There is a linearly degenerate eigenvalue
(as in β). The vector space F is non trivial (as in γ): it is one-dimensional and
corresponds to the entropy component.

The above study is not exhaustive. For instance, it does not include:

δ) Multidimensional Bürgers type equations

(5.12) ∂tu+

d∑

j=1

aj(u)∂ju = 0, u ∈ R
m,

where the scalar coefficients aj : R
m → R are all non constant functions. The

quasilinear system (5.12) is not always issued from an equation in conservative
form. Moreover, though F = R

d, the eigenvalue

λ(u, ξ) =

d∑

j=1

ξjaj(u)
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is not linearly degenerate since

∀(u, ξ) ∈ R
m × (Rd \ {0}), ∃ũ ∈ E(u, ξ) ≡ R

d, ∇λ(u, ξ) · ũ 6= 0.

There is no systematic study in such cases. Special compatibility conditions
seem to be needed in order to progress up to k0 = 0 and ` = 1.

Likewise, the above classification does not include:

. Incompressible Euler equations. — Here, there is no genuine shock and the
production of singularities poses a much more subtle problem [2], [10] which
up to now remains basically open.

Theorem 3.1 says that, for k0 = 1, one can reach any ` ∈ N∗. In this
sense, the situation is intermediate between β) and γ). Aspects of δ) come
also into play. But these analogies must be handled with care. In fact, the
incompressible framework is quite apart.

. Brief survey. — In the preceding approach, the choice for the amplitude
of the oscillations was very important. Another way to present the analysis is
to fix the size of the oscillating initial data. For example, we can start with
large amplitude high frequency waves

(5.13) uε
∞(0, x) = U0

(
0, x, ε−1ϕ0(0, x)

)
+O(ε), ∂θU

∗
0 (0, .) 6≡ 0.

The idea is to increase the time of propagation Tε to reach the regime where
non linear effects appear. The above discussion can then be summarized by
the diagram of Figure1 . This picture allows to understand the position of the
present paper in comparison with previous results.

T ' 1
infinite cascade

of phases

ϕ0 − (ϕ1) − · · ·

turbulent
flows

incompressible

fluid equations

T ' ε
1

3

ϕ0 − (ϕ1) − ϕ2 turbulent flows
incompressible

fluid equations

T ' ε
1

2

ϕ0 − (ϕ1)

strong

oscillations

[7], [9]

systemsofconservation
lawswith a linearly

degenerate field

T ' ε

ϕ0

weakly non linear
geometric optics

[21], [20]

systems of
conservation laws

T = 0

phases regimes equations

Figure 1. Influence the time of propagation Tε

. Prospects . — A natural question is to investigate on the time interval
[0, T ] with T > 0 the asymptotic behavior of solutions to Euler equations when
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64 CHEVERRY (C.)

the initial data are as in (5.13). In [28], this problem is tackled by the usual
BKW method relying on expansions of the form

(5.14) uε
∞(t, x) :=

∞∑

k=0

εkUk

(
t, x, ε−1ϕ0(t, x)

)
, ∂θU

∗
0 6≡ 0.

Modulation equations for the main profile U0 are proposed. However these
transport equations are not hyperbolic so that they are ill posed (in the sense
of Hadamard) with respect to the initial value problem. It confirms that a BKW
construction based on (5.14) is not relevant.

The contribution [28] does not explain why expansion (5.14) is not the good
one. We come back below to this point. At first sight, Theorem 3.1 does not
include large amplitude waves since uε

[ − u0 = O(ε1/`) � O(1). A change of
variables leads to recant this impression. Suppose that u0 ≡ 0 and ∂θU

∗
1 6≡ 0.

Then define

u̇ε
[(t, x) := ε−1/`uε

[(ε
−1/`t, x), ṗε

[(t, x) := ε−2/`pε
[(ε

−1/`t, x).

Observe that the structure of u̇ε
[ and ṗε

[ is very different from the one in (5.14)
since we have

u̇ε
[(t, x) =

∞∑

k=1

ε(k−1)/`Uk

(
ε−1/`t, x, ε−1ϕε

g(ε
−1/`t, x)

)
+ ε−1/`cuε

[(ε
−1/`t, x),

ṗε
[(t, x) =

∞∑

k=1

ε(k−2)/`Pk

(
ε−1/`t, x, ε−1ϕε

g(ε
−1/`t, x)

)
+ ε−2/`cpε

[(ε
−1/`t, x).

The functions u̇ε
[ and ṗε

[ satisfy

∂tu̇
ε
[ + (u̇ε

[ · ∇)u̇ε
[ + ∇ṗε

[ = ḟ
ε

[ , div u̇ε
[ = 0, ḟ

ε

[(t, x) = ε−2/`fε
[(ε

−1/`t, x).

The functions u̇ε
[ are oscillations of the order 1. They are approximate solutions

of (E) on the small interval [0, ε1/`T ]. Indeed, for all m ∈ N, the family {ḟε

[}ε

is subjected to the uniform majoration

sup
ε∈]0,ε0]

ε−N/`+2/`+d/2+3+m‖ḟε

[‖Wm

ε
(1/`)

T

<∞.

If moreover N = +∞ and

(5.15) ϕ1(0, .) ≡ · · · ≡ ϕ`−1(0, .) ≡ 0, Uk+1(0, .) ≡ 0, ∀k ∈ N \ (`N),

the trace u̇ε
[(0, .) has the form

u̇ε
[(0, x) =

∞∑

k=0

εkU1+`k

(
0, x, ε−1ϕ0(0, x)

)
, ∂θU

∗
1 6≡ 0.

At the time t = 0, we recover (5.14). Now the construction underlying the
Theorem 3.1 reveals that in general

(5.16) ϕk(t, .) 6≡ 0, ∀t ∈ ]0, T ], ∀k ∈ {2, . . . , `− 1}.
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The functions ϕj with j ∈ {2, · · · , ` − 1} are not present when t = 0. But

the description of u̇ε
[(t, .) on the interval [0, ε1−k/`T ] with k ∈ {2, · · · , ` − 1}

requires the introduction of the phase shifts ϕj for j ∈ {2, · · · , k}.
The life span of u̇ε

[(t, .) is ε1/`T . There are various manners to get a family

{u̇ε
[(t, .)}ε∈]0,1] which is defined on some interval [0, T̃ ] with T̃ > 0 independent

on ε. In particular, we can:

• Select any T̃ > 0 when T = +∞. However nothing guarantees that

the functions u̇ε
[ are still approximate solutions on the interval [0, T̃ ]. Indeed,

since t is replaced by ε−1/`t, the size of the error terms ḟ
ε

[ depends on the
increase of f

ε
[ with respect to t. At this level, we are faced with secular growth

problems [23].

• Make ` goes to ∞. When performing the formal analysis, arbitrary values
can be given to the parameters ε ∈ ]0, 1] and ` ∈ N∗. For instance ε can be

fixed whereas ` goes to ∞. Or ` = −(ln ε)/(ln 2) so that ε1/`T = 1
2T ≥ T̃ > 0.

Even at a formal level, difficulties occur in order to justify some convergence

process. At any rate, the description of u̇ε
[(t, .) on the whole interval [0, T̃ ]

needs the introduction of an infinite cascade of phases {ϕj}j∈N∗
. It is like if,

as you come closer to T̃ , you need more and more precision on the small scales
of the solution.

Such a phenomenon does not occur when constructing large amplitude os-
cillations for systems of conservation laws in one space dimension [11], [15]. It
is specific to the multidimensional framework and it is deeply linked with the
incompressible constraint. It explains why the classical approach of [28] fails.
Theorem 3.1 shows that one must give up one phase expansions and instead
accept the idea that new phases are generated.

Two reasons could explain why this remark has not yet been made:

• The creation of the phases ϕj is not due to well-known mechanisms. It is
not linked with resonances. It is related neither to dispersive nor to diffractive
effects.

• The most simple constructions indicating the persistence of oscillations,
based on shear layers (1.1), involve only the phase ϕ0. In fact, expressions
like uε

s have a very special form. Let us explain why. Change the variable t
into ε1/`t and uε

s into u̇ε
s := ε1/`uε

s. The main phase ϕ0(t, x) ≡ x2 remains the
same. Now we are faced with

u̇ε
s(t, x) := t

(
ε1/`g(x2, ε

−1x2), 0, ε
1/`h

(
x1 − ε1/`g(x2, ε

−1x2)t, x2, ε
−1x2

))
.

It is still a solution of Euler equations. Now it falls in the framework of the

Theorem 3.1. The constraints on U2 = t(U
1

2, U
2

2, U
3

2)

U
1

2 ≡ U
2

2 ≡ 0, ∂tU
3

2 + 〈g∂1h〉 = 0.
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The contribution U2 is non trivial but it is polarized so that U2 · ∇ϕ0 ≡ 0.
Therefore it does not produce the phase shift ϕ2. The same phenomenon
occurs concerning ϕ3, · · · , ϕ`−1. These terms are not present. It turns out
that the expansion uε

s involves only the phase ϕ0(t, x) ≡ x2.

5.6. Some heuristical interpretation. — Turbulence and intermittency
are topics which represent extremely different points of view. Two approaches
compete:

a) The deterministic approach which studies the time evolution of flows
arising in fluid mechanics [1], [4], [12], [14], [26].

b) The statistical approach in which the velocity of the fluid is a random
variable [16], [24].

Attempts have been made in order to bring together the fields a) and b), see
for instance [13]. Something in this direction can also be made with the help
of the results 3.1.

Theorem 3.1 is mainly connected with a). It brings various informations
related to the propagation of quasi-singularities. These aspects have been de-
tailed in the preceding paragraphs. In this subsection 5.6, we briefly explain b)
and we draw (in the setting of Theorem 3.1) a phenomenological comparison
between a) and b).

The statistical approach. — It deals with quantitative informations.
These informations are obtained at the level of expressions, say µ(x), which

in general do not depend on the time t. The introduction of µ can be achieved
by looking at stationary statistical solutions [16] of the Navier-Stokes equations
that is

µ(x) ≡ lim
T→∞

1

T

∫ T

0

u(t, x)dt

or in conjunction with the ensemble average operator (see [24], V-6) marked by
the brackets 〈 . 〉. We follow this second option.

The description below is extracted from the book of M. Lesieur [24] (chapters
V and VI). Work in dimension d = 3. Interesting quantities are the mean kinetic
energy

1
2

〈
µ(x)2

〉
∼

∫

R3

∣∣µ(x)
∣∣2 dx,

the enstrophy (that is the space integral of the square norm of the vorticity)

1
2

〈
ω(x)2

〉
∼

∫

R3

∣∣ω(x)
∣∣2 dx, ω(x) := ∇∧ µ(x),

and the rate of dissipation e ∼ κ〈ω(x)2〉.
In the setting of isotropic turbulence, these three quantities can be expressed

in terms of some scalar function k 7→ E(k). The real number E(k) represents
the density of kinetic energy at wave number k (or the kinetic energy in Fourier
space integrated on a sphere of radius k).
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The relevant relations are the following:

[24, V-10-4]: 1
2 〈µ(x)2〉 =

∫ +∞

0
E(k)dk.

[24, V-10-15]: 1
2 〈ω(x)2〉 =

∫ +∞

0 k2E(k)dk.

[24, VI-3-15]: e = 2κ
∫ +∞

0
k2E(k)dk.

Kolmogorov’s theory assumes that

[24, VI-4-1]: ∃c > 0, E(k) = ce
2
3 k−

5
3 , ∀k ∈ [ki, kd].

This law is valid up to the frequency kd with

[24, VI-4-2]: kd ∼ (e/κ3)
1
4 .

The small quantity ε := k−1
d is the Kolmogorov dissipative scale. Relations

[24, VI-3-15] and [24, VI-4-2] imply that the rate of injection of kinetic energy
e is linked to the number ` according to e ∼ ε−1+3/`. We recover here that
e ∼ 1 when ` = 3 (see [4]).

A starting point for the conventional theory of turbulence is the notion that,
on average, kinetic energy is transfered from low wave numbers modes to high
wave numbers modes. A recent paper [16] put forward the following idea: in
the spectral region below that of injection of energy, an inverse (from high to
low modes) transfer of energy takes place. At any rate, it is a central question
to determine how the kinetic energy is distributed.

Phenomenological comparison. — The statistical approach is concerned with
the spectral properties of solutions. Below, we draw a parallel with the propa-
gation of quasi-singularities as it is described in Theorem 3.1.

Suppose (5.15) and consider u̇ε
[ . Let us examine how the square F(u̇ε

[)(t, ξ)
2

of the Fourier transform of u̇ε
[(t, x) is distributed. To this end, consider the

application
Ẽ(t, .) : R

+ −→ R
+,

k 7−→ Ẽ (t, k) :=

∫

{ξ∈Rd;|ξ|=k}

∣∣F(u̇ε
[)(t, ξ)

∣∣2 dσ(ξ).

The initial data u̇ε
[(0, .) has a spectral gap. In another words, the graph of

the function k 7→ Ẽ (0, k) appears concentrated around the two characteristic
wave numbers k ' 1 and k ' ε−1 = kd. In view of (5.16), this situation does
not persist. At the time t = ε1/`, the concentration is around ` characteristic
wave numbers which are intermediate between the two preceding ones. This
corresponds to a discrete cascade of energy.

To describe the fluid on the time interval [0, T̃ ] with T̃ > 0, we need to
introduce an infinite cascade of phase shifts. The intuition(1) is that the graph

of Ẽ becomes continuous (no more gap). This corresponds to the impression

(1)Even at a formal level, difficulties occur in order to justify the different convergences.
Rigorous results in this direction seem to be a difficult task.
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of an infinite cascade of energy. This remark is consistent with engineering
experiments and the observations reported in the statistical approach.

The turbulent phenomena which we study are very complex in their realiza-
tion. When t > 0, the description of u̇ε

[(t, .) involves an infinite set of phases
so that computations and representations are hard to implement. It gives the
impression of a chaos. Nevertheless, our analysis reveals that these phenom-
ena contain no mystery in their generation. On the contrary quantitative and
qualitative features can be predicted in the framework of non linear geometric
optics.

6. About Navier-Stokes type equations

Many real models involve dissipation terms which vanish or are small in
some directions. It follows that hyperbolic features can still take place. In such
cases, the form of the singularities and the structure of the viscosity are deeply
linked. This general principle is the basis of the article [7] which is related to
compressible Euler equations. Our aim in this section is to perform a similar
analysis in the setting of incompressible equations.

More precisely, we consider some Navier-Stokes equation with vanishing
anisotropic viscosity. We work with the variables t, x and θ. The introduction
of the (periodic) fast variable θ induces new difficulties when constructing ap-
proximate solutions uε

[(t, x, θ). First, because the parabolic perturbation must
be formulated in (x, θ). Secondly, because we have to solve the divergence free
relation in (x, θ), that is

(6.1) ε divuε
[(t, x, θ) + ∇ϕε

[(t, x) · ∂θu
ε
[(t, x, θ) = 0.

Yet, the introduction of θ is needed to progress. The distinction between slow
and fast variables is crucial when studying the stability. Indeed, we will have
to extract mean values.

6.1. Approximate solutions. — In practice, the dissipation terms are often
measured through experiments. They are given data and the matter is to adapt
the quasi-singularities to the parabolic perturbation.

Below, we follow the opposite way. We fix some oscillation {ũε
[}ε as in

(3.12) and we adjust the dissipation terms accordingly. We require that the
BKW calculus of Section 4 is not modified, except possibly for the introduction
of well-known source terms. Then, we say that the viscosity is compatible with
the complete phase ϕε

[ .
These two approaches amount ultimately to the same thing. Note however

that the second one is much easier. Indeed, it is difficult to obtain quasi-
singularities with a prescribed stratification given by some ϕε

[ .

tome 134 – 2006 – no 1



CASCADE OF PHASES IN TURBULENT FLOWS 69

Real compatible viscosity. — Consider smooth coefficients q
ij
αβ such that

(
q

ij
αβ(t, x)

)
1≤i,j≤d

∈ C∞([0, T ]× R
d;Sd), ∀(α, β) ∈ {1, . . . , d}2.

By convention, the matrix symbol

q(t, x, ξ) :=
( ∑

1≤i,j≤d

q
ij
αβ(t, x)ξiξj

)

1≤α,β≤d

is in the (elliptic) class Ed
+ if

∑

1≤α,β,i,j≤d

q
ij
αβ(t, x)ξiξju

αuβ ≥ 0, ∀(t, x, ξ, u) ∈ [0, T ]× (Rd)3.

The expression ũε
[ undergoes rapid variations in the direction

Xε
[1(t, x) :=

∣∣Xε
[ (t, x)

∣∣−1
Xε

[ (t, x), Xε
[ (t, x) = ∇ϕε

[(t, x).

Complete the unit vector Xε
[1(t, x) into some orthonormal basis of R

d

Xε
[i(t, x) · Xε

[j(t, x) = δij , ∀(i, j) ∈ {1, . . . , d}2

so that all the vector fields Xε
[i are smooth functions on [0, T ] × R

d. The
corresponding differential operators are denoted

Xε
[i(∂x) := Xε

[i(t, x) · ∇, i ∈ {1, . . . , d}.
Their adjoints are

Xε
[i(∂x)∗ := Xε

[i(t, x) · ∇ + div(Xε
[i)(t, x), i ∈ {1, . . . , d}.

In order to be compatible with the propagation of oscillations, the viscosity
must be small enough (of size ε2 or less) in the direction Xε

[1. It can be of

size ε0 or less in the other directions. Let q ∈ Ed
+ and m = (m1, . . . ,md) ∈ N

d

a multi-indice such that

m1 ≥ 1, m2 ≥ 0, . . . , md ≥ 0.

The preceding considerations lead to the following differential operator of order
two

Bm
q (∂x) : C∞([0, T ]× R

d; Rd) −→ C∞([0, T ] × R
d; Rd),

u(t, x) 7−→
(
Bm

q
(∂x)u

)
(t, x)

where

(
Bm

q (∂x)u
)
α
(t, x) :=

d∑

i=1

εmiXε
[i(∂x)∗

{ d∑

j,β=1

q
ij
αβ(t, x)εmj Xε

[j(∂x)uβ(t, x)
}
.

It turns out that the real viscosity Bm
q (∂x) is compatible with ϕε

[ .
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Artificial compatible viscosity. — Introduce

Xε
[1(∂x,θ) := Xε

[1(∂x) + ε−1|Xε
[ (t, x)| × ∂θ,

Xε
[j(∂x,θ) := Xε

[j(∂x), ∀j ∈ {2, . . . , d}.
The action of Bm

q (∂x) can be interpreted in (x, θ). It yields

Bm
q

(∂x,θ) : C∞
(
[0, T ]× R

d × T; Rd
)
−→ C∞([0, T ] × R

d × T; Rd),

u(t, x, θ) 7−→
(
Bm

q (∂x,θ)u
)
(t, x, θ)

where
(
Bm

q
(∂x,θ)u

)
α
(t, x, θ)

:=

d∑

i=1

εmiXε
[i(∂x,θ)

∗
{ d∑

j,β=1

q
ij
αβ(t, x)εmj Xε

[j(∂x,θ)u
β(t, x, θ)

}
.

One is faced here with some negative differential operator of the order two,
where all the derivatives ∂j and ∂θ have ε0 or less (εk with k ≥ 0) in factor.
Thereafter, we will carry on the analysis with the prototype of such operators,
that is the diagonal action given by

∆ := ∆x + ∂2
θ , ∆x := ∂2

1 + · · · + ∂2
d .

This Laplacian ∆ is of course an artificial viscosity. In fact, throughout the
Subsection 6.1, the symbol ∆ can be replaced by any of the compatible ac-
tions Bm

q . It is used here only to simplify the presentation.

Statement of the result. — Fix some number ν ≥ 0. Select a smooth solution
u0(t, x) ∈ W∞

T of

∂tu0 + (u0 · ∇)u0 + ∇p0 = ν∆xu0, div u0 = 0.

Choose a phase ϕ0(t, x) ∈ C1([0, T ] × R
d) with ∇ϕ0(t, x) ∈ C∞

b ([0, T ] × R
d).

Suppose that it satisfies the eiconal equation (3.3) and the condition (3.5).
We need also a non degeneracy hypothesis on ϕ0 which enables to prove that
approximate solutions are exactly divergence free in the (t, x, θ) variables. We
suppose that we can find a direction ζ ∈ R

d \ {0} such that

(6.2) ∃c > 0; ∇ϕ0(t, x) · ζ ≥ c, ∀(t, x) ∈ [0, T ]× R
d.

Proposition 6.1. — The functions u0 and the phase ϕ0 are as above. Choose
any [ = (`,N) ∈ N

2 such that 0 < ` < N . Select arbitrary data

U∗
k0(x, θ) ∈ H∞, 〈Uk0〉(x) ∈ H∞, ϕk0(x) ∈ H∞, 1 ≤ k ≤ N.

The following preliminaries (i), (ii) and (iii) can be achieved.

(i) There are finite sequences {Uk}1≤k≤N and {Pk}1≤k≤N with

Uk(t, x, θ) ∈ W∞
T , Pk(t, x, θ) ∈ W∞

T , 1 ≤ k ≤ N
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and which are such that

Π0(0, x)U
∗
k (0, x, θ) = Π0(0, x)U

∗
k0(x, θ), ∀k ∈ {1, . . . , N − `},

〈Uk〉(0, x) = 〈Uk0〉(x), ∀k ∈ {1, . . . , N − `}.
(ii) There is a finite sequence {ϕk}1≤k≤N with

ϕk(t, x) ∈ W∞
T , ∀k ∈ {1, . . . , N},

and which is such that

ϕk(0, x) = ϕk0(x), ∀k ∈ {1, . . . , N}.

(iii) There is ε0 ∈ ]0, 1] and correctors

cuε
[(t, x, θ) ∈ W∞

T , ε ∈]0, ε0],

which give rise to a family satisfying {cuε
[}ε = O(ε(N+1−`)/`).

With the materials of (i), (ii) and (iii), construct ϕε
[ , the initial data

hε
[(x, θ) := u0(0, x) +

N∑

k=1

εk/`Uk(0, x, θ) + cuε
[(0, x, θ)

and the functions uε
[ and pε

[ defined according to

(6.3)





uε
[(t, x, θ) = u0(t, x) +

N∑

k=1

εk/`Uk(t, x, θ) + cuε
[(t, x, θ),

pε
[(t, x, θ) = p0(t, x) +

N∑

k=1

εk/`Pk(t, x, θ).

Then, all these expressions can be adjusted so that the functions uε
[ and pε

[

satisfy on the domain [0, T ]× R
d × T the following singular system

(NS)





∂tu
ε
[ + (uε

[ · ∇)uε
[ + ∇pε

[ + ε−1(∂tϕ
ε
[ + uε

[ · ∇ϕε
[)∂θu

ε
[

+ ε−1∂θp
ε
[∇ϕε

[ = ν∆uε
[ + fε

[ ,

div uε
[ + ε−1∇ϕε

[ · ∂θu
ε
[ = 0, uε

[(0, x, θ) = hε
[(x, θ),

where the corrector fε
[ (t, x, θ) ∈ W∞

T satisfy {fε
[ }ε = O(ε(N+2)/`−2).

Define

gradε
[ := ε∇ +Xε

[ × ∂θ, divε
[ := (gradε

[)
? = ε div +Xε

[ · ∂θ.

We need some material before proving Proposition 6.1.
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The divergence free relation in the variables (t, x, θ). — We can select some
special right inverse of the application divε

[ : H∞∗
T −→ H∞∗

T .

Lemma 6.1. — There is a linear operator ridivε
[ : Im(divε

[) −→ H∞∗
T with

(6.4) divε
[ ◦ ridivε

[g = g, ∀g ∈ Im(divε
[).

For all m ∈ N, there is a constant Cm > 0 such that

(6.5) ‖ridivε
[g‖Hm ≤ Cm‖g‖

Hm+1+1
2

d , ∀g ∈ Im(divε
[).

Proof of Lemma 6.1. — Let n ∈ N∗. Note

tj :=
jT

n
, xj =

k

n
, 1 ≤ j ≤ n− 1, k ∈ Z

d.

Consider a related partition of unity

χ(j,k) ∈ C∞([0, T ]× R
d), (j, k) ∈ {1, . . . , n− 1} × Z

d,

n−1∑

j=1

∑

k∈Zd

χ(j,k)(t, x) = 1, ∀(t, x) ∈ [0, T ]× R
d,

{
(t, x); χ(j,k)(t, x) 6= 0

}
⊂

[
tj − 2

n
, tj + 2

n

]
×B

(
xj ,

2
n

]
,

{
(t, x); χ(j,k)(t, x) = 1

}
⊃

[
tj − 1

n
, tj + 1

n ] ×B
(
xj ,

1
n

]
.

By hypothesis, there is a function v ∈ H∞∗
T such that g = divε

[v. Introduce

v(j,k) := χ(j,k)v ∈ H∞∗
T , g(j,k) := divε

[v(j,k).

It suffices to exhibit ridivε
[g(j,k) and to show (6.5) with a constant Cm which is

uniform in (j, k).

The problem of finding ridivε
[g(j,k) can be reduced to a model situation. This

can be achieved by using a change of variables in (t, x), based on (6.2). From
now on, the time t is viewed as a parameter, the space variable is x = (x1, x̂) ∈
R × R

d−1, and we work with

g = g∗ = divε
[v = (ε∂1 + ∂θ)v1 + ∂2v2 + · · · + ∂dvd,

{
x; g(x, θ) 6= 0

}
⊂

{
x; v(x, θ) 6= 0

}
⊂ B(0, 1

2 ].

Let ψ ∈ C∞(Rd−1; R+) be such that
∫

Rd−1 ψ(x̂)dx̂ = 1 and
{
x̂;ψ(x̂) 6= 0

}
⊂ B(0, 1],

{
x̂; ψ(x̂) = 1

}
⊃ B(0, 1

2 ].

Decompose g according to

g = (g − ğ)ψ + ğψ, ğ(x) :=

∫

Rd−1

g(x1, x̂)dx̂ = (ε∂1 + ∂θ)v̆1.

Seek a special solution u having the form

u = ridivε
[g = t

(
a, ridiv[(g − ğ)ψ]

)
, a ∈ H∞∗

T
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where ‘ridiv’ is the operator of Lemma 4.1 applied in dimension d−1. It remains
to control the scalar function a which satisfies the constraint

ε∂1a+ ∂θa = h := ğψ = (ε∂1 + ∂θ)(v̆1ψ).

Take the explicit solution

a(x1, x̂, θ) =

∫ θ

−∞

h
(
x1 + ε(s− θ), x̂, s

)
ds = ε−1

∫ 0

−∞

h
(
x1 + r, x̂, θ + ε−1r

)
dr.

By construction

a(x, θ + 1) = a(x, θ),

∫

T

a(x, θ)dθ = 0, ∀(x, θ) ∈ R
d × T.

For |x1| + |x̂| ≥ 2, we find

a(x, θ) =

∫ θ

−∞

d

ds

[
(v̆1ψ)

(
x1 + ε(s− θ), x̂, s

)]
ds = (v̆1ψ)(x, θ) = 0.

It implies that {
(x, θ); a(x, θ) 6= 0

}
⊂ B(0; 2].

Note h := ∂−1
θ h ∈ H∞∗. Obviously

‖h‖Hm ≤ Cm‖h‖Hm , ∀m ∈ N,
{
(x, θ); h(x, θ) 6= 0

}
⊂ B(0; 1],

and we have the identity

a(x1, x̂, θ) = h(x1, x̂, θ) −
∫ −x1+1

−x1−1

∂1h
(
x1 + r, x̂, θ + ε−1r

)
dr.

The term on the right is supported in B(0, 2]. Use Fubini and Cauchy-Schwarz
inequality to control the integration of ∂1h. It yields (6.5).

Proof of Proposition 6.1. — The BKW computations go as in Subsection 4.1.
There are only minor modifications. Some of them are listed below. The
equation (4.18) must be replaced by

P ∗
`+1 = `∂−1

θ W ∗
1 + ν|X0|−2X0 · ∂−1

θ ∆W ∗
1 .

The transport equations (4.19) becomes

∂tUj+1 + (u0 · ∇)Uj+1 + (Uj+1 · ∇)u0 +

j∑

k=1

(Uk · ∇)Uj+1−k

+

j∑

k=1

div〈U∗
k ⊗ U∗

j+1−k〉 + ∇Pj+1 = ν∆xUj+1,

divUj+1 = 0,

whereas (4.21) is modified into

∂tW
∗
j+1 + (u0 · ∇)W ∗

j+1 = MW ∗
j+1 + νΠ0∆W

∗
j+1 + f.
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where f is known. Define

ũε
[(t, x, θ) = u0(t, x) +

N∑

k=1

εk/`Uk(t, x, θ),

p̃ε
[(t, x, θ) = p0(t, x) +

N∑

k=1

εk/`Pk(t, x, θ).

By construction, we have

∂tũ
ε
[ + (ũε

[ · ∇)ũε
[ + ∇p̃ε

[ + ε−1(∂tϕ
ε
[ + ũε

[ · ∇ϕε
[)∂θũ

ε
[

+ ε−1∂θ p̃
ε
[∇ϕε

[ = ν∆ũε
[ + f̃ ε

[ ,

div ũε
[ + ε−1∇ϕε

[ · ∂θũ
ε
[ = g̃ε

[ , ũε
[(0, x, θ) = h̃ε

[(x, θ),

where the correctors f̃ ε
[ and g̃ε

[ satisfy

{f̃ ε
[}ε = O(ε(N+1−`)/`), {g̃ε

[}ε = O(ε(N+1−`)/`).

It remains to absorb the term g̃ε
[ . Use the decomposition

gε
[ = 〈g̃ε

[〉 + g̃ε∗
[ , 〈g̃ε

[〉 ∈ Im(div), g̃ε∗
[ ∈ Im(divε

[).

It suffices to choose

cuε
[ := − ridiv〈g̃ε

[〉 − ridivε
[ g̃

ε∗
[ = O(ε(N+1−`)/`).

6.2. A preliminary result of stability. — Consider the Cauchy problem

(6.6)

{
∂tu

ε + (uε · ∇)uε + ∇pε = Bm
q (∂x)uε, div uε = 0,

uε(0, x) = uε
[

(
0, x, ε−1ϕε

[(0, x)
)
,

where uε
[(t, x, θ) and ϕε

[(t, x) are given by the Proposition 6.1. Let Tε be the
upper bound of the T ≥ 0 such that (6.6) has a solution uε ∈ W0

T . Classical
results for fluid equations imply that Tε > 0. The matter is to investigate the
singular limit ‘ε goes to zero’.

Generalities. — The analysis must contain the two following parts.

. An existence result for a time T0 which is independent on the small pa-
rameter ε ∈ ]0, ε0]. It is required that

inf
{
Tε; ε ∈ ]0, 1]

}
≥ T0 > 0.

Look at the special choice

q
ij
αβ(t, x) = νδijδαβ , m1 = m2 = · · · = md = 1

which corresponds to
Bm

q
(∂x)uε = νε2∆xuε.

When ν > 0, or when ν = 0 and d = 2, we know [5], [25] that Tε = +∞ so that
T0 = +∞. When ν = 0 and d ≥ 3, nothing guarantees that T0 > 0. To our
knowledge, this is an open question.
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. A convergence result. Since the error term fε
[ is small, we expect that the

exact solution uε remains close to the approximate solution

uε
a(t, x) := uε

[

(
t, x, ε−1ϕε

[(t, x)
)
.

This is verified on small time intervals. However, on the whole interval [0, T0], it
is a delicate question to prove estimates on the difference uε−uε

a. In particular,
we wonder if

(6.7) lim
ε→0

‖ε−1/`(uε − uε
a)‖L2

T0
= 0.

Even if fε
[ = O(ε∞), the identity (6.7) is not sure to be true. Various amplifi-

cation mechanisms can occur. Obvious instabilities are the phenomena which
are detected by the ‘monophase’ description of Section 4. They are not the
only one. Other mechanisms can happen. By contrast, they are called hidden
instabilities.

Examples of hidden instabilities can be found in the hyperbolic situation or
when the influence of Bm

q
is negligible. In [8], we work with the case Bm

q
≡ 0

and ` = 2. Let us recall what can happen. Select a second (main) phase
ψ0(t, x) ∈ W∞

T such that

∂tψ0 + (u0 · ∇)ψ0 = 0, ∇ψ0 ∧∇ϕ0 6≡ 0

and disturb the Cauchy data of (6.6) according to

uε(0, x) = uε
[

(
0, x, ε−1ϕε

[(0, x)
)

+ εM/`U
(
x, ε−1ψ0(0, x)

)
, M � `.

The small oscillations contained in the perturbation of size εM/` are not
always kept under control. They interact with uε

a and with themselves. They
can be organized in such a way to affect the leading oscillation uε

a. Concretely
(see [8]), we can adjust U and ψ0 so that there is a constant C > 0 and times
tε ∈ ]0, Tε[ going to zero with ε such that

‖(uε − uε
a)(tε, .)‖L2(Rd) ≥ Cε

1
2 , ∀ε ∈ ]0, ε0].

The power εM/` at the time t = 0 is turned into ε
1
2 at the time t = tε. In

fact, such amplifications occur whatever the selection of ` ≥ 2. They imply
minorations similar to (5.5) though the underlying mechanisms are completely
distinct.

The first information brought by our BKW construction is that mean values
Uk and oscillations U∗

k do not play the same part. This fact is well illustrated
by the rules of transformation (5.10). It means that we have to distinguish
these quantities if we want to go further in the analysis.

This distinction can be done by involving the variables (t, x, θ) that
is by working at the level of (NS). To deal with (uε, pε)(t, x, θ) instead
of (uε,pε)(t, x) is usual in non linear geometric optics [27]. It allows to mark
the terms apt to induce instabilities. It gives rise to new technical difficulties.
For instance, we have to implement:
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The Leray projector interpreted in the variables (t, x, θ). — Define

dj,ε := ε∂j + ∂jϕ
ε
[ × ∂θ, j ∈ {0, . . . , d}.

Introduce the closed subspace

Fε
[ :=

{
u∗ ∈ L2∗

T ; divε
[u

∗ = 0
}
⊂ L2∗

T .

Note Pε
[ the orthogonal projector from L2∗

T onto Fε
[ . This is a self-adjoint

operator such that

ker divε
[ = Im Pε

[ , Im gradε
[ = (ker divε

[)
⊥ = kerPε

[ .

Expand the function u∗ ∈ L2∗
T in Fourier series and decompose the action of Pε

[

in view of the Fourier modes

u∗(t, x, θ) =
∑

k∈Z∗

uk(t, x)eikθ , Pε
[u

∗ =
∑

k∈Z∗

Pε
[kuk(t, x)eikθ .

Simple computations indicate that

Pε
[kuk := e−iε−1kϕε

[ Π(Dx)
(
eiε−1kϕε

[ uk

)
.

The following result explains why the projector Pε
[ is replaced by Π0 when

performing the BKW calculus.

Lemma 6.2

(i) The family {Pε
[}ε is in UL0. We have [∂θ; P

ε
[ ] = 0 and

[dj,ε; P
ε
[ ] = 0, ∀j ∈ {0, . . . , d}.

(ii) The projector Πε
[(t, x) is an approximation of Pε

[ in the sense that
{
Pε

[ − Πε
[

}
ε
∈ εUL2+ 1

2d,
{
Pε

[(Id−Πε
[)

}
ε
∈ εUL1.

Proof of Lemma 6.2. — Since Pε
[ is a projector in L2, we are sure that it is

bounded
‖Pε

[u‖L2
T
≤ ‖u‖L2

T
, ∀(ε, u) ∈ ]0, ε0] × L2

T .

It shows that {Pε
[}ε ∈ UL0.

[dj,ε; P
ε
[ ]u

∗(t, x, θ) =
∑

k∈Z∗

[ε∂j + ik∂jϕ
ε
[ ; P

ε
[k]uk(t, x)eikθ .

Observe that

(ε∂j + ik∂jϕ
ε
[)P

ε
[kuk = e−iε−1kϕε

[ Π(Dx)ε∂j

(
eiε−1kϕε

[ uk)

= Pε
[k(ε∂j + ik∂jϕ

ε
[)uk.

All these informations give access to the first assertion (i).

Now consider (ii). The asymptotic expansion formula for pseudodifferential
operators say that for all uk in C∞

0 (Rd
T ) we have

∀(t, x) ∈ R
d
T , lim

ε→0

{
(Pε

[kuk)(t, x) − Π
(
∇ϕε

[(t, x)
)
uk(t, x)

}
= 0.
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Since Πε
[ = Π(∇ϕε

[ ), it indicates that Pε
[ is close to Πε

[ . We have to make this
information more precise. To this end, proceed to the decomposition

u∗ = v∗ + ε∇p∗ + ∂θp
∗ ×Xε

[ , v∗ = Pε
[u

∗.

We seek a solution (v∗, p∗) of these constraints such that

v∗ = Πε
[u

∗ + εṽ∗, p∗ = ‖Xε
[ ‖−2Xε

[ · ∂−1
θ u∗ + εp̃∗.

After substitution, we find the relation

−∇
(
‖Xε

[ ‖−2Xε
[ · ∂−1

θ u∗
)

= ṽ∗ + ε∇p̃∗ + ∂θp̃
∗ ×Xε

[

which must be completed by the condition

− div(Πε
[u

∗) = ε div ṽ∗ +Xε
[ · ∂θ ṽ

∗.

It follows that

ṽ∗ = −Pε
[

[
∇(‖Xε

[ ‖−2Xε
[ · ∂−1

θ u∗)
]
+ (Pε

[ − Id)ridivε
[

(
div(Πε

[u
∗)

)
.

In view of this relation, the point (ii) becomes clear.

Consider the Cauchy problem

d0,εu
∗ + ε−1gradε

[p
∗ = f∗, divε

[u
∗ = 0, u∗(0, .) = h∗(.)

with data f∗ ∈ L2∗
T and h∗ ∈ L2∗. Compose on the left with Pε

[ . It yields

d0,εu
∗ = Pε

[f
∗, u∗(0, .) = Pε

[h
∗(.).

The above Cauchy problem can be solved in two steps. First extract u∗ from
the above equation. Then recover p∗ from the remaining relations.

Statement of the result. — A general principle is emphasized throughout the
article [7]. Obvious instabilities can be absorbed by a dependent change of
variables. But this manipulation induces a defect of hyperbolicity. Hidden
instabilities can be implemented by soliciting this lack of hyperbolicity. On the
contrary, they are not produced when this lack of hyperbolicity is compensated
by some well adjusted parabolic perturbation Bm

q .
This last observation is the source of the analysis which follows. From now

on, we restrict to the case ` = 2 and N ≥ 3. Thus, we are faced with strong
oscillations. Note that the discussion is linked with the approach of [6] though
the point of view is different.

Apply Proposition 6.1 with [ = (2, N). It furnishes a phase ϕε
[ ≡ ϕε

(2,N)

which is henceforth fixed. It yields also some approximate solution

uε
a(t, x, θ) := uε

(2,N)(t, x, θ), pε
a(t, x, θ) := pε

(2,N)(t, x, θ)

which is subjected to the system (NS) with source term fε
a ≡ fε

(2,N). To

simplify the presentation, work again with the Laplacian ∆. Look at

(6.8)

{
d0,εu

ε + (uε · gradε
[)u

ε + gradε
[p

ε = νε∆uε, divε
[u

ε = 0,

uε(0, x, θ) = uε
a(0, x, θ).
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78 CHEVERRY (C.)

The Proposition 6.1 below is a small step in the direction of existence and
convergence results.

Theorem 6.1. — Fix [ = (2, N) with N ≥ 3. Consider some approximate
solution {uε

a}ε of (NS). Then, there is T > 0, εN ∈ ]0, 1] and νN > 0 such
that for all ε ∈ ]0, εN ] and for all ν > νN the Cauchy problem (6.8) has a
unique solution (uε, pε) defined on the strip [0, T ]× R

d × T. Moreover

(6.9) {uε − uε
a}ε = O(ε

1
2 (N−3)).

Note that the information (6.9) implies (6.7).

Proof of Theorem 6.1. — The system (6.8) amounts to the same thing as

(6.10)






∂tu
ε + (uε · ∇)uε + div〈uε∗ ⊗ uε∗〉 + ∇p̄ε = ν∆xu

ε,

∂0,εu
ε∗ + (uε · gradε

[)u
ε∗ + ε(uε∗ · ∇)uε

+
[
(uε∗ · gradε

[)u
ε∗

]∗
+ gradε

[p
ε∗ = νε∆uε∗,

div uε = divε
[u

ε∗ = 0.

The equation (6.10) is also equivalent to solve the Cauchy problem

(6.11)






P∂tu
ε + P [(uε · ∇)uε] + P [div〈uε∗ ⊗ uε∗〉] = ν∆xu

ε,

Pε
[∂0,εu

ε∗ + Pε
[

[
(uε · gradε

[)u
ε∗

]
+ εPε

[ [(uε∗ · ∇)uε]

+ Pε
[

[
(uε∗ · gradε

[)u
ε∗

]∗
= νεPε

[∆u
ε∗,

associated with the compatible initial data

uε(0, .) = Puε
[(0, .), uε∗(0, .) = Pε

[u
ε∗
[ (0, .).

Obvious instabilities have an important consequence. To describe the related
amplifications, it is necessary to introduce new quantities which correspond to
the various phase shifts ϕj . In other words, the only way to get L2-estimates
is to blow up the state variables. This idea was exploited in [7] in the case of
compressible Euler equations.

We use below a variant of this method.

Blow up. — Let ι ∈ R+ a parameter which will be adjusted later. Introduce
the new unknown

dε = t(dε, dε∗) = t(Pdε,Pε
[d

ε∗)

:= ε−ι
(
ε−

1
2 (uε − uε

[), (u
ε∗ − uε∗

[ )
)
, [ = (2, N).

Note that this transformation agrees with (5.10). The weight ε−1/` in front of
(uε − uε

[) induces a shift on the indice `. Functions U` and U∗
`−1 play now the

same part related to the amplifications.

To write the equation on dε in an abbreviated form, we need notations.
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Quasilinear terms:

Lε
11d := P

[
(uε

[ · ∇)d
]
,

Lε
12d

∗ := P
[
div〈ε− 1

2 uε∗
[ ⊗ d∗ + d∗ ⊗ ε−

1
2uε∗

[ 〉
]
,

Lε
21d := ε

1
2 Pε

[

[
(uε∗

[ · ∇)d
]
,

Lε
22d

∗ := Pε
[

[
(uε

[ · ∇)d∗
]
+ ε−1Pε

[

[
(uε∗

[ · gradε
[)d

∗
]∗

+ε−1Pε
[

[
(∂tϕ

ε
[ + uε

[ · ∇ϕε
[)∂θd

∗
]
.

Semilinear terms:

Aε
11d := P

[
(d · ∇)uε

[

]
, Aε

21d := Pε
[

[
(d · gradε

[)(ε
− 1

2uε∗
[ )

]
,

Aε
22d

∗ := Pε
[

[
(d∗ · ∇)uε

[

]
+ ε−1Pε

[

[
(d∗ · gradε

[)u
ε∗
[

]∗
.

Small quadratic terms:

Qε
1 := ε

3
2P

[
div(d ⊗ d)

]
+ ε

1
2P

[
div〈d∗ ⊗ d∗〉

]
,

Qε
2 := ε

1
2 Pε

[

[
(d · gradε

[)d
∗
]
+ ε

3
2 Pε

[

[
(d∗ · ∇)d

]
+ Pε

[

[
(d∗ · gradε

[)d
∗
]∗
.

And error terms:

erε
1 := ε−ι− 1

2P f̄ε
[ , erε

2 := ε−ιPε
[f

ε∗
[ .

With these conventions, the expression dε is subjected to

(6.12)





P∂td
ε + Lε

11d
ε + Lε

12d
ε∗ +Aε

11d
ε + ει−1Qε

1 + erε
1 = νP∆xd

ε,

Pε
[∂td

ε∗ + Lε
21d

ε + Lε
22d

ε∗ +Aε
21d

ε +Aε
22d

ε∗

+ει−1Qε
2 + erε

2 = νPε
[∆d

ε∗.

Energy estimates are obtained at the level of (6.12). The related arguments
which are classical. Below, we just sketch them.

L2-estimates for the linear problem. — The linearized equations of Euler equa-
tions along the approximate solution uε

[ are obtained by removing Qε
1 and Qε

2

from (6.12). It yields a system which, at first sight, involves coefficients which
are singular in ε. In fact, this is not the case. Let us explain why.

This is clear for Lε
11, Lε

21 and Aε
11.

Since uε∗
[ = O(ε1/`), this is also true for Lε

12 and Aε
21.

The contributions which in Lε
22 have ε−1 in factor give no trouble since

∂tϕ
ε
[ + uε

[ · ∇ϕε
[ = O(ε

1
2 N ) = O(ε), uε∗

[ · ∇ϕε
[ = vε∗

[ = O(ε1+1/`).

Now, look at Aε
22. Recall that dε∗ = Pε

[d
ε∗ which means that

ε−1∂θd
ε∗ · ∇ϕε

[ = − div dε∗.

Therefore

ε−1 [(dε∗ · gradε
[)u

ε∗
[ ]

∗
=

[
(dε∗ · ∇)uε∗

[ − div ∂−1
θ dε∗∂θu

ε∗
[

]∗

which is obviously an operator of the order one.
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Observe that these manipulations and the blow up procedure induce a loss
of hyperbolicity. In other words, the system (6.12) involve operators which are
non singular with respect to ε, which are all of the order one, but which are
not all skew-symmetric. When ν = 0, this is the source of hidden instabilities.
When ν ≥ νN > 0 with νN large enough, the losses of derivatives can be
compensated by the viscosity. This is the key to L2-estimates.

The non linear problem and higher order estimates. — Let σ be the smaller
integer such that σ ≥ 1

2 (d + 3). If the life span Tε of the exact solution uε is
finite, we must have

lim
t→Tε

‖uε(t, .)‖Hσ = +∞.

Thus, Theorem 6.1 is a consequence of the following majoration

sup
{
‖uε(t, .)‖Hσ ; t ∈ [0,min(Tε, T )]

}
≤ C <∞.

Consider the set

Zε :=
{
d0,ε, . . . , dd,ε, ∂θ

}
.

Observe that the commutator of two vector fields in Zε is a linear combination
of elements of Zε with coefficients in C∞. Build the differential operators

Zk
ε := Z1 ◦ · · · ◦ Zk, Zj ∈ Zε, k ≤ σ.

It suffices to show that

max
0≤k≤σ

sup
{
‖ε−kZk

ε u
ε(t, .)‖L2 ; t ∈ [0,min(Tε, T )]

}
≤ C <∞.

Pick some Zk
ε with k ≤ σ. Apply Zk

ε on the left of (6.12). Use the point (i) of
Lemma 6.2 to pass through Pε

[ . We get an equation on Zk
ε d

ε∗.
Perform L2-estimates on this equation, as in the preceding paragraph.

Take ι = 1 which implies that Qε
1 and Qε

2 have ε0 in factor. Therefore, the
contributions due to Qε

1 and Qε
2 can be controled by way of the a priori

estimate and the viscosity. Since

erε
1 = O

(
ε

1
2 (N−5)

)
, erε

2 = O
(
ε

1
2N−2

)
, dε(0, .) ≡ 0,

we find dε = O
(
ε

1
2 (N−5)

)
which leads to uε − uε

a = O
(
ε

1
2 (N−3)

)
.

Note that the size ε
1
2N−1 of the source term fε

[ is turned into ε
1
2 (N−3). This

(fixed) lost of the weight ε
1
2 corresponds exactly to what is listed at the level

of obvious instabilities.
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