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FREE DECAY OF SOLUTIONS TO WAVE EQUATIONS

ON A CURVED BACKGROUND

by Serge Alinhac

Abstract. — We investigate for which metric g (close to the standard metric g0) the
solutions of the corresponding d’Alembertian behave like free solutions of the standard
wave equation. We give rather weak (i.e., non integrable) decay conditions on g − g0;

in particular, g − g0 decays like t
− 1

2
−ε along wave cones.

Résumé (Décroissance des solutions des équations d’ondes sur un arrière-plan courbe)
Nous étudions pour quelles métriques g (proches de la métrique standard g0) les

solutions du d’Alembertien pour g se comportent comme des solutions libres de l’équa-
tion des ondes standard. Nous proposons des conditions de décroissance assez faibles

(i.e., non intégrables) sur g − g0 ; en particulier, g − g0 décrôıt comme t
− 1

2
−ε le long

des cônes d’onde.

Introduction

We consider the wave equation Lg associated with a given Lorentzian met-
ric g on Rt × R

3
x. Our aim is to answer the question: under which conditions

on g do the solutions of Lgu = 0 behave like free solutions of the standard
wave equation L0 ? One can of course use the energy method of Klainerman,
commuting the standard “Z”-fields with the equation, and putting on g strong
enough decay assumptions (relative to the standard metric) to obtain finally a
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420 ALINHAC (S.)

control of |∂Zku|L2 , which implies in turn, thanks to Klainerman’s inequality,
the behavior

|∂u| ≤ C
(
1 +

∣∣t − |x|
∣∣)− 1

2

(
1 + t + |x|

)−1
.

What we have in mind is to impose as little decay as possible on g, getting
close to what seems to be a critical level. The framework we choose here is
one where a “1D-situation” occurs, in the sense of [2]. This means that we
can prove for Lg an energy inequality in which three special derivatives G (the
“good” derivatives) are better controlled than in the standard L∞

t L2
x-norm:

only one “bad” derivative is left. This idea has been used already in [1], where
we study the equation

∂2
t u − c2(u)∆u = 0.

This later work splits essentially into a linear part, where we study the opera-
tor ∂2

t −c2(u)∆, and a nonlinear part which is a bootstrap on certain properties
of u. Because of the very special form of the equation, it seemed to us that the
treatment of the linear problem involved many miracles which were may be not
likely to occur again in a more general case. Also, in this nonlinear problem,
u was likely to decay roughly as t−1, implying a similar decay for derivatives
of c(u). The general analysis below shows that one can relax this assumption

down to an almost t−
1

2 decay of the metric (relative to the flat metric).
A more precise discussion of these issues will be offered in section 1.4 af-

ter our notations, assumptions and results have been stated. Let us just say
here that the whole paper is strongly inspired by the geometric techniques of
Christodoulou and Klainerman, developed in [4], [3] and also by related work
of Klainerman and Sideris [10], Klainerman and Nicolò [8] and Klainerman
and Rodnianski [9].

1. Framework and main result

1.1. The general framework. — We work in Rt × R
3
x where

x0 = t, x = (x1, x2, x3), ∂α =
∂

∂xα
, r = |x|, rω = x, σ = 〈r − t〉,

where here and below we use

〈s〉 = (1 + s2)
1

2 .

As usual, the greek indices will run from 0 to 3, while the latin one will run
only from 1 to 3.

We consider a metric g = g0 + γ which is a (small) perturbation of the
standard Minkowski metric g0 defined by

(g0)00 = −1, (g0)ii = 1, (g0)0i = 0.

The inverse matrix to gαβ is denoted by gαβ. We will write

〈X, Y 〉 = g(X, Y )
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FREE DECAY OF SOLUTIONS TO WAVE EQUATIONS 421

and denote by D the connexion associated to g. Recall that for a function a,
the gradient of a and the Hessian of a are defined by

∇a = gαβ(∂αa)∂β , ∇2a(X, Y ) = XY a − (DXY )a.

We denote by L0 the d’Alembertian associated to g0 (the standard wave equa-
tion), and by

Lgu = gαβ∇2uαβ

the d’Alembertian associated to g. We assume

g00 = −1, g0i(x, t)ωi = 0,

and define

T = −∇t = ∂t − g0i∂i, N =
∇r

|∇r|
, L = T + N, L1 = T − N.

Note that our assumption g0iωi = 0 allows us to express T − ∂t and N − c∂r

using the standard rotations, a fact which will be important later on. As shown
in [2], we have the easy properties

〈T, T 〉 = −1, T (r) = 0 = 〈N, T 〉, DT T = 0,

〈L, L〉 = 0 = 〈L1, L1〉, 〈L, L1〉 = −2.

We use the frame

e1, e2, L1, L,

where the ei form an orthonormal basis on the standard spheres t = t0, r = r0.

Three quantities play an important role in the following:

• the radial sound speed c defined by

c = |∇r|, c2 = gijωiωj ,

• the second fundamental form k of the hypersurfaces t = Constant,

k(X, Y ) = 〈DXT, Y 〉, kij =
1

2
g0α(∂igαj + ∂jgαi − ∂αgij),

• the second fundamental form of the standard spheres t = t0, r = r0

in {t = t0}

θ(e, e′) = 〈DeN, e′〉,

where e and e′ are tangent to the sphere.

We denote by k and θ̄ the traces of theses forms

k = k(N, N) + k(e1, e1) + k(e2, e2), θ̄ = θ(e1, e1) + θ(e2, e2).

In the frame (ei, L1, L), the d’Alembertian Lg is

Lg = −LL1 + ∆S − kT + (kNN + θ̄)N +
∑

i=1,2

(
2kiN −

ei(c)

c

)
ei,
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422 ALINHAC (S.)

where ∆S is the Laplacian on the standard spheres corresponding to the re-
striction of g to these spheres. Finally, we recall the definitions of the standard
fields

Ri = (x ∧ ∂)i, S = t∂t + r∂r .

1.2. Assumptions on the metric. — The behavior of the metric and of
the solution will be discussed in terms of the two parameters

σ =
(
1 + (r − t)2

) 1

2 , 1 + t + r.

Because of this, we distinguish three zones I, II and III, respectively defined by

r ≤ 1

2
(1 + t), 1

2
(1 + t) ≤ r ≤ 3

2
(1 + t), r ≥ 3

2
(1 + t),

which we also call “interior”, “middle zone” and “exterior”. The reason for
using these parameters is that in nonlinear applications, the coefficients γ will
be functions of u or ∂u, and their behavior has to be discussed in the same
terms as the behavior of u.

The time decay of certain quantities will be measured using a smooth in-
creasing φ = φ(t) > 0 such that

(1.2)a φ′ > 0, (1 + t)φ′ ∈ S0,
φ′′

φ′
∈ S−1,

(1.2)b ∀ε > 0, φ(t) ≤ Cε + ε log(1 + t).

Here, Sm denotes symbols of order m, that is, smooth functions s(t) satisfying
∣∣s(k)(t)

∣∣ ≤ Ck〈t〉
m−k, k ∈ N.

In [1], we take φ(t) = ε log(1 + t). The “free case” corresponds to the choice φ′

integrable. It seemed however relevant to us to incorporate in the present paper
certain decay patterns which played in important role in [1].

There are three groups of assumptions on the metric:

• General low decay. — For some µ > 1
2 , and all k,

|Γkγαβ| ≤ γ0 σ
1

2 (1 + t + r)−µ, |Γk∂γαβ| ≤ γ0 σ− 1

2 (1 + t + r)−µ.

Here, Γk means any product of k fields Γ among Ri, S or σµ∂α. In zones I
or III, it is enough to take Γ among Ri, S or ∂α.

• Special high decay. — For the quantities k, θ̄ and c, we have in the middle

zone the high decay

|Γkk| ≤ γ0 σ− 1

2 (1 + t)−1, |Γkθ̄| ≤ γ0(1 + t)−1,

|1 − c| ≤ γ0 σ
1

2 φ′, |∂c| ≤ γ0 σ− 1

2 φ′,

|Γk+1c| ≤ γ0 σ
1

2 φ′eCφ, |Γk∂c| ≤ γ0 σ− 1

2 φ′eCφ.

• Technical interior assumption. — In the interior, we assume r|θ̄| ≤ C.
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FREE DECAY OF SOLUTIONS TO WAVE EQUATIONS 423

Remark. — One can observe in the assumptions above that whenever a quan-

tity is bounded by ∗σ
1

2 , its gradient is bounded by ∗σ− 1

2 . This “homogeneity”
is important and occurs naturally in the context of nonlinear equations, where

energy methods and Klainerman’s formula give no better than a σ− 1

2 control
of ∂u (see Introduction); this does not allow in general anything better than u

controlled by σ
1

2 . We postpone to section 1.4 the discussion of these assump-
tions.

1.3. Main result. — Let u be the solution of the Cauchy problem

Lgu = 0, u(x, 0) = u0(x), (∂tu)(x, 0) = u1(x).

Assume the following decay on the smooth real functions u0, u1

∀α, ∀β, |α| ≤ |β|, xα∂β
xui ∈ L2, i = 1, 2.

We have then the following “free” decay property.

Theorem. — For γ0 small enough and r ≥ 1
2 (1 + t), we have

|∂u| ≤ Cσ− 1

2 (1 + t + r)−1eCφ

for some C > 0.

Remark 1. — The “free decay” result annouced in the title is obtained by
choosing φ′ integrable, in which case φ is bounded and so is eCφ.

Remark 2. — There is little doubt that the same estimate holds also
for ∂Zku, where Z = Ri, Z = S or Z = ∂α. This can be proved using the
“hat-calculus” of section 9; we dropped the proof of these additionnal estimates
to make the paper a little lighter, if possible.

We did not attempt here to give a poor estimate in the interior zone; getting
a good one there (without using the hyperbolic rotations) is a real difficulty,
which has been completely skipped in [8] for instance, where the authors work
only outside the interior zone. One can may be hope for some extension of
the inequality proved in [6] for the wave equation, which displays an improved
interior behavior of ∂u.

1.4. Discussion of the method of the proof, of the assumptions, and

plan of the paper. — a) The method of proof uses energy inequalities for Lg.
In the litterature, there are essentially two approaches:

i) One can use a conformal energy inequality (see [5]), which gives a control
of Riu, Su and Hiu, with Hi = t∂i + xi∂t. This is the approach of [7], [8]
and [9]. This is enough to get some decay on u, but not quite the precise t−1

decay we want (see [7]).
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424 ALINHAC (S.)

ii) One can use the standard energy inequality and commute the fields Ri,
S and Hi to the operator. This is the classical approach for many cases, see
for instance [5].

In this later case, the standard Klainerman’s inequality

σ
1

2 (1 + t + r)|v| ≤ C
∑

|α|≤3

|Zv|L2
x

yields the result. From the formula

∂i = ωi∂r −
1

r
(ω ∧ R)i,

we see that the control of Riu makes all derivatives of u look radial, if r is
big enough (that is, outside the interior zone). In the interior zone, one uses
instead

Ri

r
=

1

t
(ω ∧ H)i.

Here, we are not willing to use the hyperbolic rotations Hi. They do not
appear in the assumptions on the metric, and we do not commute them with Lg:
it becomes then difficult to control what happens in the interior zone. We will
come back to this in point e).

Here our goal is to obtain, in zones II and III, the estimates

|∂Zku|L2 + |σ∂2Zku|L2 ≤ CeCφ,

for Z = Ri or Z = S, which is enough to obtain the decay of the theorem
(see [3]).

b) The main idea of the proof is that we are in a 1D-situation, where the good
derivatives are Ri/r and L. This is a consequence of the inequality obtained
in [2]. We choose as the bad derivative T rather than L1, which has non smooth
coefficients in the interior. As in [1], we try to commute with Lg modified
fields Zm instead of the standard Ri and S. Since we are in a 1D-situation, we
think it enough to perturb the standard fields by a certain amount of T only,
that is take Zm = Ri + a(Ri)T or Zm = S + a(S)T for appropriate functions a
to be chosen in each case.

c) In [1], we analyze the commutator [Lg, Zm] by brute force, taking advan-
tage of the simple structure of the operator. However, this is tedious and does
not permit to fully understand why the terms in the commutator (especially the
first order terms ) behave properly. We use here a geometric approach giving a
formula for [Lg, Zm] in terms of the deformation tensor of Zm: see [7]. We can
then compute the traces of the tensors in an appropriate frame (L1, L, e1, e2),
where (e1, e2) is an orthonormal basis on the standard spheres. Using again
the fact that we are in a 1D-situation, we can essentially (though not com-
pletely) discard all terms involving rotations, and take advantage of the special
structure of LL1 (which is close to Lg itself) and of L2. Thus, in [Lg, Zm], the
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FREE DECAY OF SOLUTIONS TO WAVE EQUATIONS 425

only remaining bad terms are the ones in L2
1 and in L1. This explains why it

is possible to cancel these bad terms by choosing only one function a. It turns
out that we must ask

La +
aT c

c
+

Zc

c
= 0, Z = Ri, Z = S.

This is of course to be compared with the more geometric approach based on
the construction of an optical function as in [7], [8].

d) To actually perform all the computations hinted at in c., and keep in mind
the behavior of the coefficients in the formula, we must develop a symbolic
calculus as in [1]. In fact, we develop three calculus: the standard one reflects
the action of the fields Zm, and is explained in section 5. Another one is
necessary to establish the behavior of various derivatives of the perturbation
coefficients a: we call it the “bar”-calculus, and we explain it in the Appendix
to avoid confusion. A third calculus, the “hat”-calculus, is sketched in section 9
when we need it. We did not try to formalize the structure of such calculus,
though it is rather easy to see how they are constructed. On the other hand,
we do not see how the computations could be done without it.

e) It turns out that the coefficients a, along with their Zk
m derivatives, behave

essentially like σ
1

2 while ∂a behaves like σ− 1

2 . This causes many problems. For
instance,

∂Ru = ∂(R + aT )u − (∂a)Tu− a∂Tu.

Since we want to write all formula in terms of the fields Zm (which are the
only fields we hope to control), we will have to use the above formula whenever
∂Ru occurs in the computations. But, since a is not bounded, we must know
that ∂Tu behaves better than ∂Zmu. This can be easily done if one uses
all “Z”-fields, including the Hi, since we have the inequality (see [5])

σ|∂v| ≤ C
∑

|Zv|.

If we do not use the Hi, we have to rely on the substitute formula found by
Klainerman and Sideris [10]. These formula allow roughly to control σ∂2v by
∂Sv, ∂Rv, ∂v and (1 + t + r)L0v. Here, we have to adapt them to allow a
control by Lg, and this is the reason why we require a special behavior of the

lower order terms coefficients θ̄ and k in Lg, and why we make our technical
interior assumption.

2. A convenient piece of notation

Definition 2.1. — We will denote by f0 any C∞ function of the following
arguments:

• γαβ , ω, r/(1 + t), σ/(1 + t),

• any 0-order symbol of t or r − t.
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426 ALINHAC (S.)

In the sequence, Z always means either Ri or S.

To simplify the formula, we often write fR for
∑

fRi, γ for γαβ, etc. and
sum signs are dropped when this is not likely to cause any misunderstanding.

The following lemma indicates how such f0 behave, when differentiated.

Lemma 2.1. — In zone II, we have the formula

∂αf0 = f0∂αγ +
f0

σ
, Zf0 = f0Zγ + f0.

Proof. — Since 1
2 ≤ r

1+t
≤ 3

2 , we have

∂ω =
f0

r
=

f0

1 + t
, Zω = f0.

Since ∂r, ∂t are f0, and Rir = Rit = 0, Sr = r, St = t,

∂
( r

1 + t

)
=

f0

1 + t
, Z

( r

1 + t

)
= f0.

Recalling that s = (1 + s2)
1

2 and 〈s〉′ = s/〈s〉,

∂
( σ

1 + t

)
=

f0

1 + t
, Z

( σ

1 + t

)
= f0.

Finally, since S(r − t) = r − t, for any 0-order symbol a,

∂
(
a(r − t)

)
= a′(r − t)f0 =

f0

σ
, S

(
a(r − t)

)
= a′(r − t)(r − t) = f0

and similarly for a(t).

In the sequence, we quantity r− ct will appear often in the computations in
zone II, and we need to compare it to our standard σ. To this aim, we introduce
the following definition.

Definition 2.2. — We define f just as f0, but containing also the additional

argument (1 − c)/(σ
1

2 φ′).

Let χ(s) be a smooth real increasing function, χ(s) = 0 for s ≤ −1, χ(s) = 1
for s ≥ 1, and χ− 1

2 odd. For technical reasons which will become clear later on,
define σ̃ by

σ̃ =
(
1 − χ(r − t)

)(
2 − (r − ct)

)
+ χ(r − t)

(
2 + (r − ct)

)
.

The following lemma summarizes the relations between r − ct, σ, σ̃.

Lemma 2.2. — We have

r − ct = fσ, σ̃ = fσ, σ = fσ̃.
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Proof. — First,

r − ct = r − t + (1 − c)t = σ
(r − t

σ
+ fσ− 1

2 t φ′
)

= fσ

implies the first claim. For r − t ≤ 1,

2 − (r − ct) =
(
2 − (r − t)

)(
1 −

(1 − c)t

2 − (r − t)

)
,

(1 − c)t

2 − (r − t)
=

fσ
1

2

2 − (r − t)

being bounded by 1
2 for γ0 small enough. Hence

σ̃ ≥ 1

2
(1 − χ)

(
2 − (r − t)

)
+ 1

2
χ
(
2 + (r − t)

)
≥ 1,

and clearly lim inf σ̃/σ ≥ 1
2 as σ goes to infinity. Hence σ̃/σ, being an f

bounded away from zero, satisfies σ/σ̃ = f .

3. Two useful formula

In the flat case, denoting by Hi = xi∂t+t∂i the hyperbolic rotations, we have
the two formula

i) (r − t)∂ = f0∂ + f0Ri + f0S + f0Hi,

ii) (r + t)(∂t + ∂r) = S +
∑

ωiHi.

These show that the control of all fields Ri, S, Hi gives a control of ordinary
derivatives improved by σ, and a control of L0 = ∂t + ∂r improved by t. In the
present case, we do not use the Hi, and we need a substitute for these two
formula. Klainerman and Sideris [10] have established a substitute for i) in the
flat case. In the following proposition, we establish similar but more geometric
formula involving Lg.

3.1. A formula of Klainerman-Sideris type. — For technical reasons,

we introduce the “tangential” part ∆̃ of Lg defined by

c∆̃ = N2 + ∆ + θ̄N −
1

c

∑
ea(c)ea.

We have thus Lg = −T 2 − kT + c∆̃.

Proposition 3.1. — • In zone I, we have the pointwise a priori bounds

σ|∂∂tv| ≤ C|∂v| + C|∂Sv| + C|∂Rv| + Cr|Lgv|,

σ|∆̃v| ≤ C|∂v| + C|∂Sv| + C|∂Rv| + Ct|Lgv| + Cγ0 σ
∑

|∂2
ijv|.
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• In zone II, we have the formula (recall that Z = Ri or Z = S)

σ∂T = f(1 + t)Lg + (1 + t)(f θ̄ + f(∂c) + fk)∂

+f ∂Z + f ∂T + (f + f(Rγ) + f(ct − r)(∂γ))∂ + f(∂γ)R,

σN2 = f(1 + t)Lg + (1 + t)(f θ̄ + f(∂c) + fk)∂

+f ∂Z + f ∂T + (f + f(Rγ) + f(ct − r)(∂γ))∂ + f(∂γ)R.

• In zone III, we have, for γ0 small enough, the pointwise a priori bounds

σ|∂2
αβv| ≤ C|∂v| + C|∂Zv| + Cr|Lgv|.

Proof. — a) We first prove a number of elementary formula. Recall that

T = ∂t +
γ0i

r
(ω ∧ R)i, N = c∂r −

γijωi

cr
(ω ∧ R)j .

Now

〈DT N, N〉 = 0, 〈DT N, T 〉 = −〈N, DT T 〉 = 0,

〈DT N, ea〉 =
1

c
〈DT∇r, ea〉 =

1

c
〈Dea

∇r, T 〉 = −〈N, Dea
T 〉 = −kaN ,

DT N = −
∑

kaNea, 〈DNT, T 〉 = 0, 〈DNT, N〉 = kNN ,

〈DNT, ea〉 = kaN , DNT = kNNN +
∑

kaNea,

[T, N ] = DT N − DNT = −2
∑

kaNea − kNNN,

[L, L1] = −2[T, N ], 〈DNN, N〉 = 0, 〈DNN, T 〉 = −kNN ,

〈DNN, ea〉 =
1

c
〈DN∇r, ea〉 =

1

c
〈Dea

∇r, N〉 =
1

c
ea(c),

DNN = kNNT +
1

c

∑
ea(c)ea.

b) We start by recalling the pointwise formula from [10] in the flat case:

σ
(
|∆u| + |∂2

t u| + |∂i∂tu|
)
≤ C|∂u| + C|∂Su|+ C|∂Ru|+ C(r + t)|L0u|.

In zones II or III, we have in fact the pointwise estimates

σ|∂2u| ≤ C|∂u| + C|∂Su|+ C|∂Ru|+ Cr|L0u|.

This follows from the formula

∆u = ∂2
ru +

2

r
∂ru +

1

r2

∑
R2

i u,
1

r
R2

i u = h(ω)∂Riu,

which imply

σ|∂2
ru| ≤ Cσ|∆u| + C|∂u|+ C|∂Ru|.

tome 133 – 2005 – no 3



FREE DECAY OF SOLUTIONS TO WAVE EQUATIONS 429

Now ∂i = ωi∂r + h(ω)R/r, hence

|∂i∂ju| ≤ C|∂2
ru| +

C

r
|∂u|+

C

r
|∂Ru|,

which gives the result for ∂2 = ∂i∂j , all other derivatives being already esti-
mated above. Finally, in zone III, since Lg = L0 + γ∂2 + h(γ)∂γ∂,

r|L0v| ≤ r|Lgv| + Cγ0

( r

σ

)
σ|∂2v| + Cγ0rσ

− 1

2 (1 + t + r)−µ|∂v|,

which gives the result for γ0 small enough.

c) We follow now the proof of [10], trying to replace ∂t and ∂r by T and N
whenever possible. We thus write

TS = ∂t + tT ∂t + rT ∂r, NS = tN ∂t + c∂r + rN ∂r,

ctTS − rNS − ct∂t + rc∂r = rt(cT ∂r − N ∂t) + E, E = ct2T ∂t − r2N ∂r.

Introducing δ = N ∂r − ∆̃, we write E in two different ways:

E = ct2T ∂t − r2δ − r2∆̃ = ct2T ∂t − r2δ −
r2

c
(Lg + T 2 + kT )

= −
r2

c
(Lg + kT ) −

r2

c
T (T − ∂t) +

c2t2 − r2

c
T ∂t − r2δ.

E = −r2δ − ct2T (T − ∂t) − ct2Lg − ct2kT + (c2t2 − r2)∆̃.

d) We compute now ∆̃ and δ. For more precision, we denote by h(ω, γ) any
smooth function of ω and the coefficients γ. We have

Lgu = −T 2u − kTu + c∆̃u = gαβ∇2uαβ .

But T = ∂t − γ0i∂i,

T 2 = ∂2
t − 2γ0i∂2

ti + γ0iγ0j∂2
ij + h∂γ∂,

Lg = gαβ∂2
αβ + h∂γ∂ = −∂2

t + ∆ + γij∂2
ij + 2γ0i∂2

it + h∂γ∂.

Comparing the formula, we obtain

c∆̃ = ∆ + (γ0iγ0j + γij)∂2
ij + h∂γ∂.

To compute ∆S , we denote g̃ the induced metric on a given sphere, with cor-
responding connection D̃, etc., we have

∆Su = e2
au + e2

bu − (D̃aea + D̃beb)u.

We claim that we can pick locally an orthonormal basis (e1, e2) of the form
ea = (h/r)R. For instance,

e1 =
R3

|R3|
=

1

r

x1∂2 − x2∂1

(ω2
1g22 + ω2

2g11 − 2ω1ω2g12)
1

2

,

e2 =
−〈R3, R2〉R1 + 〈R3, R1〉R2

| · · · |
=

1

r

(
h1(ω, γ)R1 + h2(ω, γ)R2

)
.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



430 ALINHAC (S.)

We then obtain

∆S =
h

r2
R2 +

h

r2
R +

h

r2
(Rγ)R.

Since N = c∂r + N , N = (γ/c)h(ω)R/r = γhR/r, we obtain easily

rNN = hγ∂R +
(
h∂γ +

hγ

r
+

hγRγ

r

)
R,

and similarly with T = ∂t + T = ∂t + hγR/r,

rT T = h∂R + h∂ + h(∂γ)R, cT ∂r − N ∂t =
h

r
∂R.

Since c = h(ω, γ), we finally obtain

rδ = −rc−2(Nc)N − rNN −
r

c
θ̄N −

r

c
∆S +

r

c2

∑
ea(c)ea

= −
r

c2
(Nc)N −

r

c
θ̄N + h∂R + h∂ + h(Rγ)∂ + h(∂γ)R.

e) We prove now the estimates in zone I. First, using here our technical
interior assumption, we have |rδv| ≤ C|∂v| + C|∂Rv|. Hence, using the first
expression for E, we obtain

σ|T ∂tv| ≤ C|∂v| + C|∂Rv| + C|∂Sv| + Cr|Lgv|.

Let us write for short ∂̃i = (1/r)(ω ∧ R)i, thus ∂i = ωi∂r − ∂̃i. Following [10],
we write

(t − r)∂̃i∂t = ∂̃iS − (∂t + ∂r)(r∂̃i), σ|∂̃i∂tv| ≤ C|∂Sv| + C|∂Rv|.

Since T = ∂t +γ0i ∂̃i, this yields σ|∂2
t v| ≤ C|∂v|+C|∂Sv|+C|∂Rv|+Cr|Lgv|.

We now proceed to control ∂2
rt, adapting again the proof of [10]. Substracting

the formula for TS and NS above, we get

tN ∂t − rT ∂r = (N − T )S + ∂t − c∂r − rδ + tT ∂t − r∆̃,

tT ∂t − r∆̃ =
(
t −

r

c

)
T ∂t −

r

c
(Lg + kT + T T ).

Since T ∂t is already controlled, we obtain
∣∣(tT ∂t − r∆̃)v

∣∣ ≤ C|∂v| + C|∂Sv| + C|∂Rv| + Cr|Lgv|,

and the same bound for |(tN ∂t − rT ∂r)v|. Now,

rT ∂r = r∂r∂t + rT ∂r =
r

c
N ∂t + hγ∂R,

tN ∂t − rT ∂r = (ct − r)∂2
rt + h(ct − r)∂̃i∂t + hγ∂R.

We finally obtain σ|∂2
rtv| ≤ C|∂v| + C|∂Sv| + C|∂Rv| + Cr|Lgv|, and the

same bound for σ|∂∂tv|. To finish the estimates in zone I, we use the second
expression of E, which gives

σ|∆̃v| ≤ C|∂v| + C|∂Rv| + Ct|Lgv| + Ct|T T v|.
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Now T T = h∂γ∂ − γ0i∂2
it + hγ∂2

ij . Using the previously established estimates,
we get the result.

f) In zone II, we need equalities, which will be later cast into the framework
of the symbolic calculus. With [T, ∂t] = [T , ∂t] = h(∂γ)R/r, we get

(ct − r)∂tT = f(1 + t)Lg + f(1 + t)θ̄∂ + f(1 + t)(∂c)∂ + f(1 + t)k∂

+f ∂S + f ∂R + f ∂ + f(Rγ)∂ + f(∂γ)R + (ct − r)f(∂γ)∂.

Similarly, we obtain exactly the same formula for (ct − r)∆̃.

At this stage, we proceed as follows: assume that we have an identity of the
form (r − ct)A = B. We also have

(
1 − χ(r − t)

)(
2 − (r − ct)

)
A =

(
1 − χ(r − t)

)
(2A − B),

χ(r − t)
(
2 + (r − ct)

)
A = χ(r − t)(2A + B),

hence σ̃A = fA + fB, and, using Lemma 2.2, σA = fA + fB. Since

c∆̃ = Lg + f ∂T + fk∂,

applying this procedure to the above identities, we get the desired formula

for σ∂tT and σ∆̃. We have

σN2 = σc∆̃ − σ∆S − σθ̄N +
σ

c

∑
ea(c)ea = cσ∆̃ + f ∂R + f ∂ + f(Rγ)∂,

hence we also have the desired formula for σN2.

To control T ∂r, we write

(ct − r)T ∂r =
ct − r

r
(TS − ∂t) +

t

r
(ct − r)T ∂t.

Since [T, ∂r] = [T , ∂r] = f0(∂γ)∂ + f0(γ/r)∂, we obtain the formula for
(ct − r)∂rT . Finally,

∂i = ωi∂r +
f0R

r
, [R, T ] =

(Rγ)R

r
+

f0γR

r

gives (ct−r)(f0/r)RT = f0∂R+f0∂ +f0(Rγ)∂ which concludes the proof.
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432 ALINHAC (S.)

3.2. A formula for L2.

Proposition 3.2. — In zones II, we have the formulas (with Z = Ri or

Z = S)

L =
f

1 + t
S +

r − ct

r + ct
L1 +

fγ

1 + t
R,

L2 =
f

1 + t
LZ +

fσ

(1 + t)2
R2

r
+

fσ

1 + t
Lg +

f

1 + t
L

+
f

1 + t
(Zγ)∂ +

fσ

1 + t
(∂γ)∂ +

f

1 + t
γ∂

+
fσ

1 + t
θ̄∂ +

fσ

(1 + t)2
∂ +

fσ

(1 + t)2
(Rγ)∂.

Proof. — a) With the notations of the proof of Proposition 3.1, we have

T = ∂t +
hγ

r
R, N = c∂r +

hγ

r
R,

hence

L = T + N = ∂t + c∂r +
hγ

r
R, (r + ct)L = cS + c2t∂r + r∂t +

fγ

r
R.

Now c2t∂r + r∂t − cS = (r − ct)(∂t − c∂r), and finally

L =
2c

r + ct
S +

r − ct

r + ct
L1 +

fγ

1 + t
R,

which is the desired formula.

b) We have

[S, L] = −(∂t + c∂r) + fγ∂ + fSγ∂, [R, L] = fγ∂ + fRγ∂,

[L, L1] = −2[T, N ] = f ∂γ∂.

Hence

L2 =
f

1 + t
LZ +

r − ct

r + ct
LL1 +

f

1 + t
L

+
f

1 + t
γ∂ +

f

1 + t
(Zγ)∂ + f

r − ct

r + ct
(∂γ)∂.

Replacing LL1 in terms of Lg and using the formulas

∆S =
f

r2
R2 +

f

r
∂ +

f

r
(Rγ)∂, kij = f ∂γ,

and Lemma 2.2, we obtain the desired formula.
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4. Commutation formula

Since we will be working with the special frame (e1, e2, L1, L), we need to use
tools from differential geometry to express [Lg, X ]. We recall first the definition
of the deformation tensor π of a given field X

(X)παβ = DαXβ + DβXα.

We remark that, for any field X and π = (X)π,

(4.1) παβ = ∂α(Xβ) + ∂β(Xα) − X(gαβ).

In fact, DαXβ = 〈DαX, ∂β〉 = gβγ ∂α(Xγ) + XγΓβαγ . From the explicit ex-
pressions of the Γ’s,

Γαβγ = 1

2
(∂βgαγ + ∂γgαβ − ∂αgβγ),

we get

Γαβγ + Γβαγ = ∂γ(gαβ).

Since Xgαδ = −gαβXgβγgγδ, we obtain the result.

We use in this paper the explicit commutation formula (see for instance [7])

[Lg, X ]φ = παβ∇2φαβ + Dαπαβ ∂βφ − 1

2
∂β(trπ)∂βφ,

where π = (X)π and trπ = πα
α. In what follows, we are concerned with the

cases X = T , X = Ri and X = S.

Proposition 4.1. — With π = (X)π in each case, we have the commutation

formula

[Lg, X ]v = παβ∇2vαβ + AGv + B∂v + 1

4
L1(πLL)L1v.

Here, G = e1, G = e2 or G = L stands for a good derivative, Z = Ri or Z = S
and the coefficients A and B have the following form:

i) For X = T ,

A ≡ A = f ∂2γ,

B ≡ B =
f

1 + t
(∂γ) +

f

1 + t
(Zγ)∂γ

+f(∂γ)2 +
f

1 + t
Z∂γ +

fσ

1 + t
∂2γ + fγ∂2γ.

ii) For X = Ri or X = S,

A = f ∂γ + f(Zγ)∂γ,

B =
fγ

1 + t
+

f

1 + t
Zγ + fγ∂γ + f(Zγ)∂γ +

fσ

1 + t
∂γ +

fσ

1 + t
(Zγ)∂γ

+
f

1 + t
(Zγ)2 + fγZ∂γ +

fσ

1 + t
(Z∂γ) +

f

1 + t
Z2γ.
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Proof. — 1a) To use the commutation formula above, we compute the various
components of (T )π, (Ri)π, (S)π. Since T = ∂0 − γ0i∂i, the derivatives of the
coefficients of T are h∂γ, while Tgαβ is h∂γ. Hence (T )παβ = h∂γ.

1b) If X = Ri, indicating by “bar”the lifting relative to the standard metric,

∂αXβ + ∂βXα = ∂̄
α
Xβ + ∂̄

β
Xα + γαµ∂µXα + γβµ∂µXα = I + II.

The term I corresponds to the commutator of the standard d’Alembertian
with Ri, hence is zero. Hence we obtain παβ = hγ + hRγ.

1c) If X = S, we proceed as in 1b), with the difference that, since Xα = xα,
I = 2gαβ, and παβ = 2gαβ + hγ + hSγ. Since the term 2gαβ yields 2Lg in the
commutator [Lg, S], we will ignore it in the sequence and discuss in parallel the
commutators with Ri and S.

2) The commutation formula involves π in the higher order terms, and deriva-
tives of the tensor Dαπ in the lower order terms. By definition,

Dµπαβ = ∂µ(παβ) − π(Dµ∂α, ∂β) − π(∂α, Dµ∂β).

Since the Γ’s are just h∂γ, the last two terms in the right-hand side of the above
formula are products of components of π by h∂γ. Since we use the frame eα

whose coordinates with respect to the ∂α are h, we must include terms which
are products of components of π by ∂h = h∂γ + h/r. Altogether,

Dµπ(eα, eβ) = ∂µ

(
π(eα, eβ)

)
+ hπ∂γ +

hπ

r
·

Exactly the same analysis applies to the lower order terms arising from the
terms παβ∇2φαβ , since Deα

eβ is a sum of h(∂γ)∂ and h(∂h)∂. These lower
order terms will eventually enter the terms B∂.

For X = Ri or X = S, the derivatives of the components of π, are just

∂π = h∂γ +
hγ

r
+ h(∂γ)Xγ +

h

r
Xγ + hX∂γ.

For X = T , we obtain ∂π = h(∂γ)2 + (h/r)∂γ + h∂2γ.

3) We have the formulas

ea =
h

r
R, L =

fσ

r
∂ + fγ∂ +

f

r
S.

This allows us to prove that a G-derivative of a component of π behaves better
than just any derivative. For X = Ri or S, the components of π are hγ +hXγ.
Applying G, we find Ghγ + GhXγ + hGγ + hGXγ, that is finally

Gπ =
fγ

r
+

f

r
Xγ + fγ∂γ + f(Xγ)∂γ +

fσ

r
∂γ

+
fσ

r
(Xγ)∂γ +

f

r
(Xγ)2 + fγX∂γ +

fσ

r
X∂γ +

f

r
X2γ.
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For T , we find

Gπ =
f

r
∂γ +

f

r
(Xγ)∂γ + f(∂γ)2 +

f

r
X∂γ +

fσ

r
∂2γ + fγ∂2γ.

Using the above commutation formula, written with respect to the frame
(e1, e2, L1, L), we obtain the proposition.

5. Perturbation coefficients and symbolic calculus

Let us fix once for all a nonnegative cutoff function

χ(s) =

{
1 if 3

4 ≤ s ≤ 5
4
,

0 if s ≤ 1
2 or s ≥ 3

2 ·

Abusively, we will also denote by χ the function χ(r/(1 + t)).

Definition 5.1. — For Z = Ri or Z = S, we define the corresponding per-
turbation coefficient a = a(Z) by

(5.1) La +
aT c

c
= −χ

Zc

c
,

a(0, t) = 0 and a = 0 close to t = 0.

Since, for γ0 small enough, the middle zone is an influence domain of its
boundary for L, this definition makes sense, and supp a is contained is the
middle zone (the only place where we need perturb the standard fields Ri

and S).

Definition 5.2. — We define the fields Z̃ as

R̃i = Ri + a(Ri)T, S̃ = S + a(S)T.

In the sequence, we will just write Z̃ = Z + aT . Finally, we define the full
collection of the modified fields Zm to be

R̃i, S̃, T.

We have already defined f in section 2.

Definition 5.3. — We define N0 to be any of the terms

(5.2) σ− 1

2 (1 + t)µγ, σ
1

2 (1 + t)µ∂γ, (σ
1

2 /φ′)∂c, (1 + t)θ̄, σ
1

2 (1 + t)k.

We define Nk (k ≥ 1) to be any of the terms

σ− 1

2 (1 + t)µZk
mγ, σ

1

2 (1 + t)µZk
m∂γ, σ(1 + t)µZk−1

m ∂2γ,

σ− 1

2 Zk−1
m a, σ

1

2 Zk−1
m ∂a, (σ

1

2 φ′)−1Zk
mc, (σ

1

2 /φ′)Zk
m∂c,

(1 + t)Zk
mθ̄, σ

1

2 (1 + t)Zk
mk.
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All these quantities will be used only in the middle zone. We have, between
the quantities f , Nk and the fields Zm, what we call a symbolic calculus, which
means that we have the following lemma.

Symbolic Calculus Lemma. — We have the relations:

i) Zk
mf =

∑
fNk1

· · ·Nkj
, k1 + · · · + kj ≤ k,

ii) Zk
mNp =

∑
fNk1

· · ·Nkj
, k1 + · · · + kj ≤ k + p,

iii) Zk
m(1 + t) = (1 + t)

∑
fNk1

· · ·Nkj
, k1 + · · · + kj ≤ k,

iv) Zk
mσ = σ

∑
fNk1

· · ·Nkj
, k1 + · · · + kj ≤ k,

v) Zk
mφ′ = φ′

∑
fNk1

· · ·Nkj
, k1 + · · · + kj ≤ k.

Proof. — In view of the very structure of the relations, it is enough to prove
them for k = 1 and any p. To prove i), we have to check first the effect of aT
applied to all the arguments of f0 but γ. Since T = f0∂, by applying aT we get
f0a/σ = fN1, hence Zmf0 = fN1. Now Z(r− t) = f0 σ, aT (r− t) = f0(a/σ)σ,
hence iv) is proved for k = 1, and similarly for iii). Also,

Zφ′ = f0tφ
′′ = φ′f0t

(φ′′

φ′

)
= φ′f0,

aTφ′ = aφ′′ = φ′
( a

1 + t

) (1 + t)φ′′

φ′
= φ′f0N1,

thus v) is proved for k = 1. To finish the proof of i), we have to take into

account the argument (1 − c)/(σ
1

2 φ′). But then the result follows from iv)
and v).

To prove ii) for k = 1, it is enough to observe that this follows from the very
definitions of the Nk, using iii), iv) and v).

We finally define, for k ≥ 1,

Mk =
∑

fNp
0 N q

1 N`1 · · ·N`i
, p ≥ 0, q ≥ 0, `i ≥ 2,

∑
(`i − 1) ≤ k − 1.

Each Mk involves only finitely many terms; in the course of the proof, since
only a few commutators will be computed, p and q will take only finitely many
values that we need not make explicit here. Remark that, as a consequence of
points i) and ii) of the lemma,

M1 =
∑

fNp
0 N q

1 , MkM` = Mk+`−1,

∑

k1+···+kj≤k

fNk1
· · ·Nkj

= Mk, ZmMk = Mk+1, Z
p
mMk = Mk+p.
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As a consequence of the assumptions of g and of the definition of the a, we
have

Proposition 5.1. — In zone II, for all k, we have for some constant C = Ck,

|Nk| ≤ CeCφ, |Mk| ≤ CeCφ.

Since the proof of Proposition 5.1 involves defining a symbolic calculus
slightly different from the one above, we postpone it to the Appendix to avoid
confusion.

Remark. — It is only in the proof of this proposition that we need to use
the fields σµ∂α in the middle zone in the formulation of our general low decay
assumption. The resulting assumption is still much weaker than would be the
corresponding assumption using hyperbolic rotations.

6. Commutations with the modified fields

Recall that the modified fields Zm are the fields

Ri + aT, S + aT, T.

Proposition 6. — We have in zone II the formula

(6.1) [Lg, Zm] = M1Lg +
M1

(1 + t)
1

2
+µ

∂Zm + fDφ′∂Zm +
fσ− 1

2

1 + t
GZm

+
M3

(1 + t)
1

2
+µ

∂ + M1φ
′∂ +

M1σ
− 1

2

(1 + t)µ
G·

Here G means a good derivative L or Ri/r as before, and D = (σ
1

2 /φ′)∂c = N0.

Proof. — 1) We write for simplicity (T )π = π and (Z)π = π. Recall from
[1, Lemma III], that kNN = −Tc/c. Hence πLL = 2〈DLT, L〉 = 2kNN =
−2Tc/c. Since [Ri, L] = (Ric/c)N + · · · + R and [S, L] = (Sc/c)N + · · · + R,
we also have

1

2
πLL = 〈DLZ, L〉 = 〈DLZ − DZL, L〉 =

〈
[L, Z], L

〉
= −

Zc

c
·

2) We use the formula [Lg, aT ] = a[Lg, T ] + 2∇aT + (Lga)T, along with the
formula given in Proposition 4.1. We obtain

∇a = − 1

2
(L1a)L − 1

2
(La)L1 + (e1a)e1 + (e2a)e2,

[Lg, Z + aT ]φ =
{
(παβ + aπαβ)∇2φαβ + (A + aA)G + (B + aB)∂

}

+
{
(−(L1a)L − (La)L1 + 2(e1a)e1 + 2(e2a)e2)T

+ 1

4
[L1(πLL) + aL1(πLL)]L1 + (Lga)T

}

= {I} + {II}.
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We express the higher order terms of the form qαβ∇2φαβ in the frame
(e1, e2, L1, L), which gives

1

4
qL1L1

∇2φLL + 1

4
qLL∇

2φL1L1
+ 1

2
qLL1

∇2φLL1

−
∑

i=1,2

[qLei
∇2φL1ei

+ qL1ei
∇2φLei

] +
∑

i,j=1,2

qeiej
∇2φeiej

.

We pay a special attention to the terms involving L2
1, which have as coefficient

1

4
(πLL + aπLL) − 1

2
La.

Since we have seen in 1) that πLL = −2Zc/c and πLL = −2Tc/c, this coefficient
is just, taking into account the definition of a,

−
1

2
La −

1

2

Zc

c
−

1

2

Tc

c
= −

1

2
(1 − χ)

Zc

c
·

We have

2(∇a)T = − 1

2
(L1a)L2 − 1

2
(La)L2

1 −
1

2
(La)(−[L, L1] + LL1)

− 1

2
(L1a)LL1 + 2

∑
(eia)eiT

= − 1

2
(L1a)L2 − 1

2
(La)L2

1

−(Ta)
{
−Lg − kT + (kNN + θ̄)N + ∆S +

∑(
2kaN −

ea(c)

c

)
ea

}

+(La)[N, T ] + 2
∑

(eia)eiT.

Since [N, T ] = kNNN +2
∑

keiNei, the first order terms of the part II of [Lg, Z̃]
are

(Ta)
{
kT − (kNN + θ̄)N −

∑ (
2kaN −

ea(c)

c

)
ea

}

+ (La)kNNN + 2(La)
∑

keiNei −
1

2

(
L1

Zc

c
+ aL1

Tc

c

)
L1 + (Lga)T.

The coefficient ε1 of the L1-component of these terms is

ε1 =
1

2
(Ta)(k + kNN + θ̄) +

1

2
Lga −

1

2
(La)kNN −

1

2

(
L1

Zc

c
+ aL1

Tc

c

)
.
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Now

Lga + (Ta)(k + kNN + θ̄)

= −LL1a + ∆Sa + (kNN + θ̄)(La) +
∑ (

2kiN −
ei(c)

c

)
ei(a),

L1La + aL1
Tc

c
+ L1

Zc

c
= (1 − χ)L1

Zc

c
− (L1a)

Tc

c
− (L1χ)

Zc

c
,

ε1 = −
1

2
[L, L1]a −

1

2

(
L1La + L1

Zc

c
+ aL1

Tc

c

)
+

1

2
∆Sa

+
1

2
(La)(kNN + θ̄) −

1

2
(La)kNN +

1

2

∑ (
2kiN −

ei(c)

c

)
ei(a)

=
1

2
∆Sa +

1

2
(La)θ̄ − 2

∑
keiNeia +

1

2

Tc

c
(L1a + 2Na)

+
1

2
(L1χ)

Tc

c
−

1

2
(1 − χ)L1

Zc

c
+

1

2

∑ (
2kiN −

ei(c)

c

)
ei(a).

The fact that ε1 is smaller than it should be, due to the choice of the a, is
crucial for our argument. The rest of the first order terms of II is

2(La)
∑

keiNei + ε0L − (Ta)
∑(

2kaN −
ea(c)

c

)
ea,

ε0 =
1

2
∆Sa − 2

∑
keiN (eia) +

1

2
(L1χ)

Zc

c

+
1

2
χL1

Zc

c
+

1

2
aL1

Tc

c
+

1

2

(Tc

c
− θ̄

)
L1a.

To summarize,

[Lg, Z̃] = {I} −
1

2
(L1a)L2 −

1

2
(La)L2

1 − (Ta)∆S + (Ta)Lg

+2
∑

(eia)eiT + 2(Na)
∑

keiNei +
Ta

c

∑
ea(c)ea + ε0L + ε1L1.

3) We will now express all coefficients in terms of σ, 1+t and the Nk. We will
also need improved formula for L2

1 and L2. We have first

(6.1) σ∂T = f(1 + t)Lg + f ∂Z + f ∂T + M1∂ +
fσ− 1

2

(1 + t)µ
N0R.

In fact, the coefficient of the gradient term in the expression given in Proposition
3.1 is

frθ̄ + fr∂c + frk + f + fRγ + fσ∂γ

= fN0 + fσ− 1

2 N0 + fN0 + f +
fσ

1

2

(1 + t)µ
N1 +

fσ
1

2

(1 + t)µ
N0 = M1.
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Next, we have

(6.2) ∂Z = M1∂Zm + M1σ
− 1

2 ∂ + M1σ
− 1

2 (1 + t)Lg +
M1

σ(1 + t)µ
R.

To prove this, we write, using (6.1),

∂Z = ∂Z̃ − (∂a)T −
a

σ
(σ∂T )

= ∂Z̃ − (∂a)T −
a

σ

(
f(1 + t)Lg + f ∂T + M1∂ + f(∂γ)R

)

−
fa

σ

(
∂Z̃ − (∂a)T − a∂T

)

=
(
1 +

fa

σ

)
∂Z̃ +

(
f +

fa

σ

)
(∂a)T +

(fa

σ
+ fa

a

σ

)
∂T

+
f(1 + t)a

σ
Lg +

fa

σ
M1∂ +

fa

σ
(∂γ)R,

which gives the formula. We deduce from this the formula

σ∂T = M1(1 + t)Lg + M1∂ + M1∂Zm +
M1σ

− 1

2

(1 + t)µ
R̃.

We have now

R2

r
=

R

r
(R̃ − aT ) =

R

r
R̃ −

Ra

r
T −

aR

r
T,

RT = [R, T ] + TR =
[
fγ + f(Rγ)

]R

r
+ TR,

Ra = R̃a − aTa = M2σ
1

2 ,

R2

r
=

R

r
R̃ +

M2σ
1

2

1 + t
∂ +

M1σ

1 + t
∂Zm.

This gives

(6.3) ∆S =
fR

(1 + t)r
Zm +

M1σ

(1 + t)2
∂Zm +

M2

(1 + t)
3

2

∂ +
M1

1 + t

R

r
,

and similar formula for products eiej . From the expression of Lg we get now

(6.4) LL1 = fLg +
M1

1 + t
∂Zm +

M2

1 + t
∂ +

M1σ
− 1

2

(1 + t)µ

R

r
·

Also, using (6.2),

(6.5) ∂ei = ∂
(hR

r

)
=

f

1 + t
∂Z + M1σ

−1 R

r

=
M1

1 + t
∂Zm + M1σ

− 1

2 Lg + M1σ
−1 R

r
+

M1σ
− 1

2

1 + t
∂.
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We write L2
1 = L1(2T−L) = 2L1T+[L, L1]−LL1 and L1T = f ∂T = (f/σ)σ∂T ,

(6.6) L2
1 =

M1(1 + t)

σ
Lg +

M1

σ
∂Zm +

M2

σ
∂ +

M1σ
− 3

2

(1 + t)µ
R.

To obtain a good formula for L2, we use Proposition 3.2 and compute carefully
the term LZ:

LZ = L(Z̃ − aT ) = LZ̃ − (La)T − aLT,

LT =
f

1 + t
ZT +

fσ

1 + t
∂T

=
f

1 + t
∂Z +

f

1 + t
∂ +

f

1 + t
(Zγ)∂ +

f

1 + t
(σ∂T )

= M1Lg +
M1

1 + t
∂Zm +

M1

1 + t
∂ +

M1σ
− 1

2

(1 + t)1+µ
R,

LZ = LZ̃ + M1σ
1

2 Lg +
M1σ

1

2

1 + t
∂Zm +

M1σ
1

2

1 + t
∂ +

M1

(1 + t)1+µ
R.

Replacing LZ by this expression into the formula for L2, and using the above
expression for R2/r, we obtain finally

(6.7) L2 =
M1σ

1 + t
Lg +

f

1 + t
LZm +

M1σ

(1 + t)2
∂Zm +

M1σ
1

2

(1 + t)
3

2

∂ +
f

1 + t
L.

4) We are now in a position to express the terms I and II in the expression

of [Lg, Z̃]. First, we rewrite the coefficients A, B of Proposition 4.1 using the
notations of the symbolic calculus. We have

Z2 = Z̃2 + faZ̃∂ + fa2∂2 + f(Z̃a)∂ + M1a∂ + fa∂a∂ + fa2∂γ∂,

and Z2γ = M2σ
1

2 (1 + t)−µ. From this follows easily

A =
M1σ

−1

(1 + t)µ
, B =

M1σ
− 1

2

(1 + t)2µ
,

A =
M1σ

− 1

2

(1 + t)µ
, B =

M2σ
1

2

(1 + t)1+µ
+

M1

(1 + t)2µ
·

From the proof of Proposition 4.1, we get

παβ + aπαβ = α0g
αβ + hγ + hRγ + ah∂γ =

M1σ
1

2

(1 + t)µ
,

with α0 = 0 for X = Ri and α0 = 2 for X = S. On the other hand, the lower
order terms arising from qαβ∇2φαβ are of the form

M1σ
1

2

(1 + t)µ
(h∂γ + h∂h)∂ =

( M1σ
1

2

(1 + t)1+µ
+

M1

(1 + t)2µ

)
∂.
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Hence

I =
1

4
qLL(L2

1 − DL1
L1) +

σ
1

2

(1 + t)µ
[M1L

2 + M1LL1 + M1∂ei + M1eiej]

+
M1σ

− 1

2

(1 + t)µ
G +

( M2σ
1

2

(1 + t)1+µ
+

M1

(1 + t)2µ

)
∂.

Using the simplified formula

L2 = M1Lg +
M1

1 + t
∂Zm +

M1

1 + t
∂,

LL1 = fLg +
M1

1 + t
∂Zm +

M2

1 + t
∂ +

M1σ
− 1

2

(1 + t)µ
∂,

∂ei = M1Lg +
M1

1 + t
∂Zm +

M1

1 + t
∂ +

M1

σ

R

r
,

eiej =
M1

1 + t
∂Zm +

M2

1 + t
∂,

we obtain finally

I =
1

4
qLLL2

1 +
M1

(1 + t)
1

2
+µ

∂Zm + M1Lg +
M1σ

− 1

2

(1 + t)µ
G +

M2

(1 + t)
1

2
+µ

∂.

5) To express II, we compute first ε0 and ε1. We have

R2 = R̃2 + faR̃∂ + fa2Zm∂ + fa∂ + f(R̃a)∂

+fa(R̃γ)∂ + fa(∂a)∂ + fa2(∂γ)∂ + fa2(Zmγ)∂,

R2a = M3σ
1

2 , ∆Sa = M3σ
1

2 (1 + t)−2,

eia =
hRa

r
=

M2σ
1

2

1 + t
, L1χ =

f

1 + t
,

L1

(Zc

c

)
= f(∂c)Zc + f [∂, Z]c + fZ∂c

= f(∂c)(Z̃c) + fa(∂c)2 + f(∂c) + fZ̃∂c + faZm∂c

=
M1σ

− 1

2

1 + t
+ M1φ

′.

L1

(Tc

c

)
= f(∂c)2 + f(∂γ)∂c + fZm∂c =

M1σ
−1

(1 + t)1+µ
+ M1σ

− 1

2 φ′,

T c

c
− θ̄ =

fN0

1 + t
·

Collecting terms, we get

ε0 =
M1σ

− 1

2

1 + t
+ M1φ

′ +
M3

(1 + t)
3

2

, ε1 = M1φ
′ +

M3

(1 + t)
3

2

,
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since (1 − χ)(σ− 1

2 /(1 + t)) = f/(1 + t)
3

2 . For the terms (eia)eiT appearing
in II, we write

(eia)eiT =
f

(1 + t)2
(Ra)

(
[R, T ] + TR

)
=

M2

(1 + t)1+µ
∂ +

M2

(1 + t)
3

2

∂Z

and we use again (6.2). Finally, using (6.3), (6.6) and (6.7) to express the terms

(L1a)L2, (La)L2
1 and (Ta)∆S of II, we obtain the result for [Lg, Z̃].

6) To check that [Lg, T ] has also the form (6.1) is easy, since it is given by

Proposition 4.1. All terms παβ∇2φαβ are the same as before, if we ignore the
improvement by a factor σ−1. The only difference are the two terms 1

4πLLL2
1

and 1
4L1(πLL)L1, which are not partially cancelled by other terms as before.

Now L1(Tc/c) has already been computed. Also

πLLL2
1 = fDσ− 1

2 φ′L2
1, D = (σ

1

2 /φ′)∂c = N0.

Writing

L2
1 = 2L1T + [L, L1] − LL1

and using the previous formula, we get finally

πLLL2
1 = fDφ′L1T + M1Lg +

M2

(1 + t)1+µ
∂ +

M1

(1 + t)2
∂Zm,

which is the desired result.

We will also need the following commutation lemma, similar to the ones
in [1].

Lemma 6.1. — In zone II, we have

[Zk
m, ∂] =

∑
Mp∂Zq

m,

where p ≥ 1, p + q ≤ k in the sum.

Proof. — For Zm = Z + aT , we have

[Zm, ∂] = [Z, ∂] − (∂a)T + a[T, ∂].

Since [T, ∂] = f(∂γ)∂ = M1∂, [Z, ∂] = f ∂, we obtain

[Zm, ∂] = f ∂ + fa(∂γ)∂ + f(∂a)∂ = M1∂.

Since [Zk+1
m , ∂] = Zm[Zk

m, ∂] + [Zm, ∂]Zk
m, the lemma is easily proved by in-

duction.

Lemma 6.2. — In zone II, we have, for G = Ri/r or G = L,

[Zk
m, G] =

∑
MpGZq

m +
σ

1

2

1 + t

∑
Mp+1∂Zq

m,

where in both sums p ≥ 1 and p + q ≤ k.
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Proof. — We have

[
Z + aT,

R

r

]
=

[
Z,

R

r

]
+

a

r

[
T, R

]
−

Ra

r
T.

Since [Z, R] = fR, [T, R] = (fγ + fRγ)R/r, Ra = σ
1

2 M2, we obtain

[
Z + aT,

R

r

]
= M1

R

r
+

M2σ
1

2

1+
·

To estimate [Z̃, L], we use the formula already proved in the proof of
Lemma A.2:

[R+aT, L] = fZmcL+f(Rc)∂+Q, [S +aT, L] = (fZmc−1)L+f(Sc)∂+Q,

where

Q =
[
hγ + hZγ + ha∂γ +

R

r
haγ(Zγ)r +

R

r
haγ2r

]R

r
= M1

R

r
·

Hence

[Z̃, L] = M1L + M1
R

r
+

M1σ
1

2

1 + t
∂.

We note also, from the same proof,

[T, L] =
fN0 σ− 1

2

1 + t
∂ +

[
h∂γ +

hγγ

r
+

hγ2

r

]R

r

=
fN0 σ− 1

2

1 + t
∂ +

fσ− 1

2

(1 + t)µ

R

r
,

which gives the formula for all Zm and k = 1.
By induction, we get, using the Symbolic Calculus Lemma,

[Zk+1
m , G] = Zm[Zk

m, G] + [Zm, G]Zk
m,

Zm

(
M1G + M2

σ
1

2

1 + t
∂
)

= M2G + M1[Zm, G] + M1GZm

+
σ

1

2

1 + t

(
M1M2∂ + M3∂ + M2[Zm, ∂] + M2∂Zm

)
,

which gives the result.

7. Commutators in zones I and III

In zones I or III, σ is big, so we need not use a special frame to express
[Lg, Z

k
m], which is simply given by the following lemma.
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Lemma 7. — We have, in zones I or III,

[Zk
m, Lg] = CZ`′

mLg

+
∑

1 h(γ)(Zp1

m γ) · · · (Zpi
m γ)(Zq1

m ∂γ) · · · (Z
qj

m ∂γ)∂2Z`
m

+
∑

2 h(γ)(Zp1

m γ) · · · (Zpi
m γ)(Zq1

m ∂γ)

· · · (Zqj

m ∂γ)(Zr1

m ∂2γ) · · · (Zrs

m ∂2γ)∂Z`
m.

Here, C is a constant, h stands for a smooth function, and `′ ≤ k − 1,
∑

p +
∑

q +
∑

r + ` ≤ k − 1

in both sums. Moreover, i + j ≥ 1 in
∑

1, while j + s ≥ 1 in
∑

2.

Proof. — 1) We denote here by h any smooth function of γ. We have

[Zm, ∂] = (h + h∂γ)∂,

and by an easy induction argument,

[Zk
m, ∂] =

∑
h(Zp1

m γ) · · · (Zpi

m γ)(Zq1

m ∂γ) · · · (Zqj

m ∂γ)∂Zl
m,

where
∑

p +
∑

q + ` ≤ k − 1. Similarly, we have

[Zm, ∂2] = (h + h∂γ)∂2 + (h∂γ + h(∂γ)2 + h∂2γ)∂,

and an easy induction argument gives also

[Zk
m, ∂2] =

∑
1 h(Zp1

m γ) · · · (Zpi
m γ)(Zq1

m ∂γ) · · · (Z
qj

m ∂γ)∂2Z`
m

+
∑

2 h(Zp1

m γ) · · · (Zpi
mγ)(Zq1

m ∂γ)

· · · (Zqj

m ∂γ)(Zr1

m ∂2γ) · · · (Zqs

m ∂2γ)∂Z`
m,

where in both sums
∑

p +
∑

q +
∑

r + ` ≤ k − 1.

2) We have Lg = L0 + γ∂2 + h∂γ∂. Hence

[Z, Lg] = [Z, L0] + [Z, γ∂2] + [Z, h∂γ∂]

= CL0 + (Zγ)∂2 + hγ∂2 + h(Zγ)(∂γ)∂ + h(Z∂γ)∂ + h(∂γ)∂

= CLg + (hγ + hZγ)∂2 +
(
h(Zγ)(∂γ) + h(Z∂γ) + h(∂γ)

)
∂.

Also,

[T, Lg] = [T, L0] + [T, γ∂2] + [T, h∂γ∂] = h(∂γ)∂2 +
(
h∂2γ + h(∂γ)2

)
∂.

Mixing both formula,

[Zm, Lg] = CLg +
(
hγ + h(Zγ) + h(∂γ)

)
∂2

+
(
h(∂γ) + h(Z∂γ) + h(∂γ)2 + h(∂γ)(Zγ) + h∂2γ

)
∂,

which is the result for k = 1. Writing as usual

[Zk+1
m , Lg] = Zm[Zk

m, Lg] + [Zm, Lg]Z
k
m,

we obtain the result by induction.
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8. Control of |∂Zk

m
u|L2

Lemma 8. — We have |∂Zk
mu|L2 ≤ CeCφ.

Proof. — We can write

LgZ
k
mu = [Lg, Z

k
m]u =

∑
Z`1

m [Lg, Zm]Z`2
m ,

with `1 + `2 ≤ k − 1. Using cutoffs, we will study the commutator separately
in zone I, II and III.

1) We first state the special energy inequality that we use:

E(t) +

∫

0≤t′≤t

σ−1−ε
∑

|Gu|2 dxdt′

≤ CE(0) + C

∫

0≤t′≤t

|Lgu| · |∂u|dxdt′ + C

∫ t

0

A(t′)E(t′)dt′.

Here, E(t) = |(∂u)(. , t)|2L2 is the standard energy of u at time t, and

A(t) = |∂c|L∞

x
+

∣∣σ−1(1 − c)
∣∣
L∞

x

.

This is a consequence of [2], the hypothesis of Theorem 4 of [2] being satisfied
(it is understood of course that ε is chosen small enough with respect to µ− 1

2 ).

2) In zone I or III, we use Lemma 7. For k = 1, we see that the coefficients

of terms involving ∂u are bounded by CeCφσ− 1

2 (1 + t + r)−µ ≤ C(1 + t)−ν ,
where we can take ν = 1 + 1

2 (µ − 1
2 ) > 1. We write a term b∂2u = (b/σ)σ∂2u,

and again ∣∣∣
b

σ

∣∣∣ ≤
C

(1 + t)ν
·

In zone III, using the pointwise estimates of Propostion 3.1, we thus obtain

∣∣[Lg, Zm]u
∣∣
L2

≤
C

(1 + t)ν

∑

`≤1

|∂Z`
mu|L2 ,

and the terms will be easily handled using Gronwall lemma. In zone I, if the sec-
ond order derivative is of the form ∂∂tu, we can use the first formula of Propo-
sition 3.1 and proceed exactly as before. If the second order derivative is ∂i∂j ,
we have to proceed again as in [10]. We write, with L2 norms in the whole
space,

∑
|σ∂2

ijv|L2 ≤ C|∂v|L2 + C|σ∆v|L2

≤ C|∂v|L2 + C|σ∆̃v|L2 + Cγ0

∑
|σ∂2

ijv|L2 ,

and obtain for γ0 small enough
∑

|σ∂2
ijv|L2 ≤ C|∂v|L2 + C|σ∆̃v|L2 .
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To handle the term involving ∆̃v, we split it into three terms corresponding
to the three zones. In zones I and III, we use again the pointwise estimates
of Proposition 3.1. In zone II, we use the pointwise estimate following from the
proof of Proposition 3.1 there

σ|∆̃v| ≤ C|∂v| + C|∂Zv| + C|∂Tv| + Ct|Lgv| + C|∂γ| · |Rv|.

Taking again γ0 small enough, the terms
∑

|σ∂2
iju| disappear from the right-

hand side. Using formula (6.2) to transform terms ∂Zu into ∂Zmu, we see that
we are left with easily handled terms, except for the terms

1

(1 + t)ν
|∂γ| · |Ru|.

But these terms are bounded by Cσ− 1

2 (1 + t)−µ|Gv|, which can be easily han-
dled using the inequality stated in 1). For k ≥ 2, we proceed inductively along
completely similar lines.

3) To analyze the term Z`1
m [Lg, Zm]v, we apply Leibniz formula and use the

commutators’ Lemma 6.1 and 6.2. We distinguish the critical terms, involving
∂Zk

m or GZk
m, from the noncritical terms, which, by induction, we can assumed

to be already estimated. We say that a term b∂Z`
m is integrable if b = (1+ t)−ν

for some ν > 1. The critical terms arise only if Z`1
m goes through [Lg, Zm]: they

are of the form

M1

(1 + t)
1

2
+µ

∂Zk
m, fDφ′∂Zk

m,
fσ− 1

2

1 + t
GZk

m.

Using the Symbolic Calculus Lemma and the commutation lemmas, we see that
the non critical terms in [Lg, Z

k
m]u are of the form

Mj

(1 + t)
1

2
+µ

∂Z`
m, Mjφ

′∂Z`
m,

Mjσ
− 1

2

(1 + t)µ
GZ`

m,

for various j and `. In fact, commuting Z`
m with ∂ yields only terms Mj∂Zi

m

of the desired form, while commuting Z`
m with G yields either terms MjGZi

m

of the desired form or integrable terms b∂Zi
m.

To use the above energy inequality for v = Zk
mu, we have to make sure that

the energy norm at time t = 0 is bounded. Since the a are zero close to t = 0,
Zm = R, S or T = ∂t + γ∂. Moreover, the equation Lgu = 0 can be written
∂2

t u = γ∂2u+h(γ)∂γ∂, with ∂2 containing at most one t-derivative. Hence we
have the formula

Zk
mu| t=0 =

∑
h(γ)(xα1 ∂β1

x,tγ) · · · (xαi ∂βi

x,tγ)xα∂β
x ∂`

t u,

where |αj | ≤ |βj |, |α| ≤ |β|, l ≤ 1. The same formula holds for ∂tZ
k
mu as well.

From the assumptions on γ, all coefficients involving γ in the above formula
are bounded. Hence the norms |∂Zk

mu|L2 are bounded as a consequence of the
assumptions on u0, u1.
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448 ALINHAC (S.)

Adding all inequalities on ∂Z`
m for ` ≤ k, we see that all integrable terms and

all terms involving G-dervatives are easily absorbed using Gronwall Lemma.
For the critical terms fDφ′∂Zk

mu, we note that fD is bounded, thus the use
of Gronwall lemma yields a bound CeCφ, which is what is claimed. For the
noncritical terms Mjφ

′∂Z`
mu, they are bounded by Cφ′eCφ, the integral of

which is bounded by CeCφ. This completes the proof.

9. End of the proof

We have now to recover the standard fields Z from the Zm. More precisely,
our aim is to obtain L2 estimates in zones II and III of ∂Z2u and σ∂2Zu.

9.1. The first step is to modify the pointwise estimates of Proposition 3.1 to
adapt them to zone II.

Lemma 9.1.1. — For any v, we have in zones II and III the pointwise esti-

mates

σ|∂2
ijv| ≤ C|∂v| + C|∂Rv| + Cσ|N2v|,

σ|∂∂tv| ≤ C|∂v| + C|∂Rv| + Cσ|∂Tv|.

Proof. — From the proof of Proposition 3.1, it is enough to control σ∂2
rv to

prove the first formula. But

N

c
= ∂r +

hγR

r
, ∂2

r = −
Nc

c3
N +

1

c2
N2 +

(
f(∂γ) +

fγ

r

)R

r
+ f

(γ

r

)
∂R

give the estimate. Similarly,

∂T = ∂∂t + ∂
(
hγ

R

r

)
= ∂∂t +

(
f ∂γ +

fγ

r

)R

r
+ f

(γ

r

)
∂R,

which completes the proof.

Lemma 9.1.2. — On the boundary r = 3
2 (1 + t) of zone III, we have

|Zku| ≤ C(1 + t)−
1

2 eCφ.

Proof. — From Sections 7 and 8, we know that in zone III we have for all k

|∂Zku|L2 + |σ∂2Zku|L2 ≤ CeCφ.

Using Lemma 2.3 of [3], we deduce |∂Zku| ≤ Cr−
3

2 eCφ. Integrating from
infinity, we get the estimate.

We need now to control a function in zone II from its gradient and its
boundary values.
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Lemma 9.1.3. — Let C0 < 1 < C1, α > 1
2 , and denote by Dt the domain

C0(1 + t) ≤ r ≤ C1(1 + t).

For all v, we have
∣∣∣

σ−α

(1 + t)
1

2

v
∣∣∣
2

L2(Dt)
≤ C|vr|

2
L2(Dt)

+ C(1 + t)

∫
v2

(
C1(1 + t), ω, t

)
dω.

Proof. — With Mi = Mi(t) = Ci(1 + t), we write

v(r) = v(M1) −

∫ M1

r

vr ds, v(r)2 ≤ 2v(M1)
2 + 2(M1 − r)

∫ M1

r

v2
r ds.

Hence
∫ M1

M0

σ(r)−2α

(1 + t)
v(r)2 dr ≤

Cv(M1)
2

1 + t

∫ M1

M0

dr

σ(r)2α
+ C

∫ M1

M0

vr(s)
2 ds

∫ s

M0

dr

σ(r)2α
·

Since ∫ M1

M0

dr

σ(r)2α
≤

∫
du

(1 + u2)α
≤ C

we get the result by multiplying the inequality by (1 + t)2 and integrating
in ω.

9.2. Though we could manage without it, it is more transparent to introduce
here a“hat-calculus”, analogous to the symbolic calculus of Section 5 and to the

“bar-calculus” of the Appendix. We keep f as before, and define the fields Ẑm

to be Z + aT or σµT (thus they are the same as the fields Zm). We define N̂0

(exactly as N0) to be any of the terms

σ− 1

2 (1 + t)µγ, σ
1

2 (1 + t)µ∂γ,
σ

1

2

φ′
∂c, (1 + t)θ̄, σ

1

2 (1 + t)k.

For k ≥ 1, we define N̂k to be any of the terms

σ− 1

2 (1 + t)µẐk
mγ, σ

1

2 (1 + t)µẐk
m∂γ, σ(1 + t)µẐk−1

m ∂2γ,

σ− 1

2 Ẑk−1
m a, σ

1

2 Ẑk−1
m ∂a,

σ− 1

2

φ′
Ẑk

mc,
σ

1

2

φ′
Ẑk

m∂c, (1+t)Ẑk
mθ̄, σ

1

2 (1+t)Ẑk
mk.

In other words, the quantity are the same as in the Standard Calculus, but
the fields are different. Just as for the calculus in the Appendix, we have a
Symbolic Calculus Lemma for the “hat-Calculus”. We also have the following
easy lemma.

Lemma. — Recalling that Z0 means R, S or σµ∂, we have

Ẑk
m =

∑
fN̂k1

· · · N̂ki
Ẑr1

m (σ− 1

2 a) · · · Ẑrj

m (σ− 1

2 a)Zp
0 ,

where in the sum p ≥ 1,
∑

k` +
∑

rm + p ≤ k.
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Since the quantities Ẑr
m(σ− 1

2 a) ≡ Z
r

m(σ− 1

2 a) are already estimated, we ob-

tain by induction from the above Lemma the estimates |M̂k| ≤ CeCφ. Note

also that N0 = N̂0, any N1 = fN̂1, and more generally, Mk =
∑

M̂k. This
allows to use the previouly obtained formula, established with Mk coefficients,

replacing these coefficients by M̂k.

9.3. We prove now formula for ∂Z, ∂Z2, σ∂2Z.

Lemma 9.3. — In zone II, we have the formulas (recalling that Z = Ri or

Z = S)

∂Z = M̂1∂ + M̂1∂Zm + M̂1σ
− 1

2 (1 + t)Lg + M̂1
σ−1

(1 + t)µ
Z̃,

∂Z2 =
∑

`+`′≤2

M̂`+1∂Z`′

m +
σ−1

(1 + t)µ

∑

`+`′≤2

M̂`+1Z
`′

m

+
(
σ− 1

2 (1 + t)
) ∑

`+`′≤1

M̂`+1Ẑ
`′

mLg,

σ∂2Z = M̂2∂ + M̂2∂Zm + M̂1σ∂2 + M̂1σ∂2Zm

+ (1 + t)(M̂2 + M̂1σ
1

2 ∂)Lg + M̂2σ
− 1

2 (1 + t)−µZm.

Proof. — The first formula has already been established in (6.2), taking into

account that σ−1(1 + t)−µaT = M̂1∂. To get the second, we apply Z to the

left, using also that Z = Z̃ − aT = Z̃ − (a/σµ)(σµT ) = M̂1Ẑm. We obtain,
using the “hat”-symbolic calculus,

Z∂Z = f ∂Z + ∂Z2

= M̂2∂ + M̂2∂Zm + M̂2σ
− 1

2 (1 + t)Lg + M̂2
σ−1

(1 + t)µ
R̃

+M̂1(∂ + ∂Z) + M̂1(∂Zm + ∂ZZm) + σ− 1

2 (1 + t)(M̂1 + M̂1Ẑm)Lg

+
σ−1

(1 + t)µ
(M̂1Z̃ + M̂1Z

2
m) + M̂1∂Zm.

We express now the terms ∂Z and ∂ZZm using the first formula, and the
formula already established for [Lg, Zm]. This produces desired terms, except

for the terms σ− 1

2 (1 + t)σ− 1

2 (1 + t)−µG. If G = R/r, such a term is already in
the expression for ∂Z2. If

G = L =
f

1 + t
Z +

fσ

1 + t
∂ +

fσ
1

2

(1 + t)µ
R,

we also get the desired terms.
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To prove the third formula, we write

σ∂2Z = σ∂2(Z̃ − aT ) = σ∂2Z̃ − σ(∂2a)T + f(∂a)σ∂T + faσ∂2T

= σ∂2Z̃ + M̂2∂ + (f ∂a + fa/σ)(σ∂T ) + fa∂(σ∂T ),

where we have used [σ, ∂] = f . Now, using the formula for σ∂T , we have

∂(σ∂T ) = ∂
(
M̂1∂ + M̂1∂Zm + M̂1(1 + t)Lg + M̂1σ

− 1

2 (1 + t)−µZ̃
)

= (σ−µM̂2)
(
∂ + ∂Zm + (1 + t)Lg +

σ− 1

2

(1 + t)µ
Z̃

)

+ M̂1Lg + M̂1(1 + t)∂Lg + M̂1∂2 + M̂1∂2Zm

+ M̂1
σ− 3

2

(1 + t)µ
Z̃ + M̂1

σ− 1

2

(1 + t)µ
∂Z̃.

Replacing this in the above formula for σ∂2Z, we obtain the desired formula.

9.4. In [3], Lemma 2.3 contains the following a priori inequality.

Lemma. — For some C, we have for r ≥ 1 + 1
2 t and all v, the inequality

∣∣v(x, t)
∣∣ ≤ Cσ− 1

2

r

[∑

`≤2

|R`v|L2 +
∑

`≤1

|σR`∂rv|L2

]
,

where the L2 norms are taken over r ≥ 1 + 1
2 t.

This lemma, combined with the following lemma, finishes the proof.

Lemma 9.4. — We have, in zones II and III,
∑

k≤2

∣∣Zk(∂u)
∣∣
L2

+
∑

k≤1

∣∣σ∂Zk(∂u)
∣∣
L2

≤ CeCφ.

Proof. — We have already proved the estimate in zone III. In zone II, using
Lemma 9.3, it is enough to control the L2 norms of the terms

(9.4.1) σ− 1

2 (1 + t)−µ
∑

k≤2

Zk
mu,

(9.4.2) σ∂2u, σ∂2Zmu.

To estimate the terms (9.4.2), we use Lemma 9.1.1 with v = u or v = Zmu; tak-
ing into account the formula for ∂Z, σ∂T and σN2, we get more terms (9.4.1) to

estimate along with terms M̂1(1 + t)LgZmu. Using Lemma 9.1.3 for v = Zk
mu,

k ≤ 2, and Lemma 9.1.2, we see that the L2 norm of terms (9.4.1) is bounded by

C|∂Zk
mu|L2 + CeCφ ≤ CeCφ.
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To estimate the term involving LgZmu = [Lg, Zm]u, we inspect formula (6.1):

we see that it is enough to control σ− 1

2 (1 + t)1−µGZ`
mu, ` ≤ 1. Now, as above,

if G = R/r, this term reduces to already estimated terms. If G = L, we proceed
as before without difficulties.

Appendix

Proof of Proposition 5.1

A.1. We define as in Section 5 the elements of a symbolic calculus. The
symbol f has the same meaning as before, but the fields are different, for a
reason which will become clear in the proof of Lemma A.2 below.

We denote by Zm either

Ri + aT, S + aT or σµT.

We define N 0 to be any of the terms

σ− 1

2 (1 + t)µγ, σ
1

2 (1 + t)µ∂γ,

and, for k ≥ 1, we define N k to be any of the terms

σ− 1

2 (1 + t)µZ
k

mγ, σ
1

2 (1 + t)µZ
k

m∂γ, σ− 1

2 Z
k−1

m a,
σ− 1

2

φ′
Z

k

mc.

We prove now a symbolic calculus lemma for the system f, Zm, N k, which is
exactly the same as Lemma 5.1.

Lemma A.1. — We have the formulas, where k1 + · · · + kj ≤ k,

i) Z
k

mf =
∑

fN k1
· · ·N kj

,

ii) Z
k

mN p =
∑

fN k1
· · ·N kj

,

iii) Z
k

mt = (1 + t)
∑

fN k1
· · ·N kj

,

iv) Z
k

mσ = σ
∑

fN k1
· · ·N kj

,

v) Z
k

mφ′ = φ′
∑

fN k1
· · ·N kj

.

Proof. — To check i), iii), iv) and v) for k = 1, we just have to check the case
Zm = σµT , since Zm = Z + aT is very similar to what has been done before.
But σµT t = σµ = f0(1 + t), σµTσ = f0 σ, σµTφ′ = σµ(φ′′/φ′)φ′ = f0φ

′.
It remains to check ii) for k = 1, but this is obvious from the definition,
using i), iii), iv) and v).

Using this lemma, we define M k from the quantities N k exactly as we have
defined Mk from Nk in Section 5, with the same properties with respect to the
action of the fields Zm.
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A.2. We perform now a careful computation of [Zm, L].

Lemma A.2. — We have

[Zm, L] = M 1L +
M 1

(1 + t)
1

2
+µ

Zm + fA0Zm,

where A0 = Tc + f0(c − 1)/σ = M 1φ
′.

Proof. — We use as in Section 3.1 the notation h for any smooth function ω
and γ. We have

T = ∂t +
hγR

r
, N = c∂r +

hγR

r
·

Hence

[Ri, T ] = hγ
R

r
+ h(Rγ)

R

r
,

[Ri, N ] =
Ric

c

(
N + hγ

R

r

)
+ hγ

R

r
+ h(Rγ)

R

r
,

[Ri, L] =
Ric

c
N + hγ

R

r
+ h(Rγ)

R

r
·

Since [S, ∂t] = −∂t and [S, ∂r] = −∂r, we obtain analogously

[S, L] =
Sc

c

(
N + h

γR

r

)
− (∂t + c∂r) + hγ

R

r
+ h(Rγ)

R

r

=
Sc

c
N − L + hγ

R

r
+ h(Rγ)

R

r
·

Since [T, L] = [T, N ] = (Tc/c)N + h(∂γ)R/r + hγ(Rγ)R/r2 + h(γ/r)2R, we
obtain

[Ri + aT, L] =
(Ric

c
+

aT c

c

)
L −

(
La +

aT c

c
+

Ric

c

)
T + Q,

[S + aT, L] =
(Sc

c
+

aT c

c
− 1

)
L −

(
La +

aT c

c
+

Sc

c

)
T + Q,

where Q has the form (with Z = Ri or Z = S)

Q =
[
hγ + hZγ + ha∂γ +

haγ(Zγ

r
+

haγ2

r

]R

r
·

We see that the coefficient of R in Q is

f0 σ
1

2

(1 + t)µ+1
(N 0 + N 0N 1 + N 0N

2

1 + N 0N
3

1 + N 1 + N 1N
2

0 + N
2

1).

Now Ri = Ri +aT −(a/σµ)σµT = Zm−(a/σµ)Zm = f0Zm +f0N 1Zm. Thus,
replacing R by this expression in Q, we get

Q = (1 + t)−µ− 1

2 M 1Zm.
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Finally,

[σµT, L] = σµ[T, L]−
µ(Lσ)

σ
(σµT ),

Lσ

σ
=

(r − t)

〈r − t〉

c − 1

σ
,

[σµT, L] = σµ
(Tc

c

)
L −

(Tc

c
+

f0(c − 1)

σ

)
σµT +

1

(1 + t)
3

2

M 1Zm,

T c

c
+

f0(c − 1)

σ
= fσ−µZmc + fφ′ = fφ′ + fσ−µ+ 1

2 φ′N 1 = M 1φ
′.

Note that, due to the relations defining a, the coefficient d of σµT in [Ri+aT, L]
or [S + aT, L] is

d = f0(1 − χ)σ−µZc = f0(1 − χ)σ−µ
(
Zmc − (aσ−µ)Zmc

)
.

Since, on the support of 1 − χ in zone II, σ/(1 + t) is bounded and bounded
away from zero,

(1 − χ)σ−µ+ 1

2 φ′ =
(1 − χ)σ(1 + t)φ′

(1 + t)µ− 1

2 (1 + t)µ+ 1

2

=
f0

(1 + t)µ+ 1

2

,

d =
f0N 1 + f0N

2

1

(1 + t)µ+ 1

2

=
M 1

(1 + t)µ+ 1

2

·

It is to obtain this decay of d that we have introduced the field σµT in the
collection Zm. The proof is complete.

A.3. More generally, we have

Lemma A.3. — For k ≥ 1, we have

[Z
k

m, L] =
∑

p≤k−1

[
M k−pZ

p

mL + M k−p(1 + t)−µ− 1

2 Z
p+1

m

]

+
∑

p≤k−2

M k−pφ
′Z

p+1

m + fA0Z
k

m.

Proof. — The result is proved for k = 1. But

[Z
k+1

m , L] = Zm[Z
k

m, L] + [Zm, L]Z
k

m

gives by induction

[Z
k+1

m , L] =
∑

p≤k−1

[
M k−p+1Z

p

mL + M k−pZ
p+1

m L + M k−p+1(1 + t)−µ− 1

2 Z
p+1

m

+ M k−p(1 + t)−µ− 1

2 M 1Z
p+1

m + M k−p(1 + t)−µ− 1

2 Z
p+2

m

]

+
∑

p≤k−2

[M k−p+1φ
′Z

p+1

m + M k−pM 1φ
′Z

p+1

m + M k−pφ
′Z

p+2

m ]

+ M 2φ
′Z

k

m + fA0Z
k+1

m + M 1(1 + t)−µ− 1

2 Z
k+1

m

+ M 1φ
′Z

k+1

m + M 1Z
k

mL + M 1[L,Z
k

m],

which is a sum of terms of the desired form.
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A.4. In order to control a with the appropriate weight, we compute

L(σ− 1

2 a) = f0 σ− 3

2 (c − 1)a + σ− 1

2 La

= fφ′(σ− 1

2 a) + f0 σ− 1

2 a(∂tc) +
f0N 0

(1 + t)µ+ 1

2

(Rc)σ− 1

2 a + f0 σ− 1

2 Rc

≡ F.

Since |F | ≤ Cφ′ + Cφ′(σ− 1

2 a), we find |σ− 1

2 a| ≤ CeCφ, by integration, using
Gronwall Lemma.

Since we wish to apply Zk
m to the left, we need to evaluate the right-hand

side from the assumptions on γ, which will be done using the following lemma.

Lemma A.4. — Let Z0 denote one of the fields Ri, S or σµ∂α. We have the

formula

Z
k

m =
∑

fN k1
· · ·N kj

Z
r1

m(σ− 1

2 a) · · ·Z
rq

m(σ− 1

2 a)Zp
0 ,

where in the sum p ≥ 1 and
∑

ki +
∑

r` + p ≤ k.

Proof. — For k = 1,

Zm = Z + aT = Z0 + f(σ−µa)Z0 = Z0 + f(σ− 1

2 a)Z0, σµT = f0 σµ∂

proves the result. By induction, using the calculus lemma, the result is obvious,

since ZmZp
0 = Zp+1

0 + f(σ− 1

2 a)Zp+1
0 .

Using Lemma A.4 for k = 1 and the assumptions on g, we get

|N 0| ≤ CeCφ, |N 1| ≤ CeCφ.

Using the proof of Lemma A.2 and a direct computation, we write

L
(
Z̃(σ− 1

2 a)
)

= M 1L(σ− 1

2 a) +
M 1

(1 + t)µ+ 1

2

Zm(σ− 1

2 a)

+ fA0Zm(σ− 1

2 a) + Z̃
(
L(σ− 1

2 a)
)
,

Z̃
(
L(σ− 1

2 a)
)

=
(
fφ′ + f ∂tc +

fN 0(Rc)

(1 + t)µ+ 1

2

)
Z̃(σ− 1

2 a)

+
(
M 1φ

′ +
M 1(Rc)

(1 + t)µ+ 1

2

+ fZ̃(∂tc) +
fN 0Z̃(Rc)

(1 + t)µ+ 1

2

)
(σ− 1

2 a)

+ M 1σ
− 1

2 Rc + fσ− 1

2 Z̃(Rc),
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456 ALINHAC (S.)

which gives finally

L
(
Z̃(σ− 1

2 a)
)

=
(
A0 + fφ′ + f ∂tc +

M 1

(1 + t)µ+ 1

2

+
fN 0(Rc)

(1 + t)−µ− 1

2

)
Zm(σ− 1

2 a)

+
(
M 1φ

′ + M 1∂tc +
M 1(Rc)

(1 + t)µ+ 1

2

+ fZ̃(∂tc) +
fN 0Z̃(Rc)

(1 + t)µ+ 1

2

)
(σ− 1

2 a)

+ M 1σ
− 1

2 Rc + M 1σ
− 1

2 Z̃(Rc).(A.1)

As above, we have

[σ
1

2 T, L] = f0 σ
1

2 (Tc)L + f0A0(σ
1

2 T ) +
M 1

(1 + t)µ+ 1

2

σ− 1

2 R.

We write

σ− 1

2 Ra = R(σ− 1

2 a) = R̃(σ− 1

2 a) + f0aT (σ− 1

2 a)

= R̃(σ− 1

2 a) + M 1 + M 1(σ
1

2 Ta).

Now

La = f0Zmc + f0aσ−µZmc = M 1σ
1

2 φ′,

σ
1

2 T (La) = f0(∂c)(σ
1

2 Ta) + f0aσ
1

2 ∂(f0∂c) + f0 σ
1

2 (∂f0)Zc + f0 σ
1

2 ∂(Zc)

= f0(∂c)(σ
1

2 Ta) + M 1σ
1

2 ∂c + M 1σ
1

2 Z0(∂c) + f0 σ− 1

2 Z0c,

hence finally

(A.2) L(σ
1

2 Ta) = M 1(1 + t)−µ− 1

2 R̃(σ− 1

2 a)

+ (fA0 + f0∂c + M 1(1 + t)−µ− 1

2 )(σ
1

2 Ta)

+ M 1φ
′ + M 1(1 + t)−µ− 1

2 + M 1σ
1

2 ∂c

+ f0 σ− 1

2 Z0c + M 1σ
1

2 Z0(∂c).

A.5. We proceed by induction as follows. We have already a control of M 1

and σ− 1

2 a. We assume that

(Hk)
∑

|M `| +
∣∣Z `−1

m (σ− 1

2 a)
∣∣ +

∣∣Z `−2

m (σ
1

2 Ta)
∣∣ ≤ CeCφ, ` ≤ k,

and we are going to prove Hk+1. To this aim, we apply Zk−1
m to the left of

the equations (A.1) and (A.2). All critical terms have coefficients bounded

by Cφ′ + C(1 + t)−µ− 1

2 . All other terms can be computed using Leibniz for-
mula and Lemma A.1; they involve at most quantities already controlled by
the induction hypothesis, or terms involving Z`

m(∂c), Z`
m(Z0c), Z`

mZ0(∂c)
for ` ≤ k. These terms are estimated using Lemma A.4. Finally, we obtain∣∣L

(
Z

k−1

m (σ
1

2 Ta)
)∣∣ +

∣∣L(Z
k−1

m Z̃(σ− 1

2 a))
∣∣

≤ C(φ′ + (1 + t)−µ− 1

2 )
(∣∣Zk

m(σ− 1

2 a)
∣∣ +

∣∣Zk−1
m (σ

1

2 Ta)
∣∣) + CeCφ.

What is controlled by the action of L in the left-hand side is not quite what
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we have in the right-hand side. But Z
k

m is either Z
k−1

m Z̃ or Z
k−1

m (σµT ); in the
later case,

σµT (σ− 1

2 a) = f0 σ
1

2 Ta + f0 σ− 1

2 a,

so that ∣∣Zk−1

m (σµT )(σ− 1

2 a)
∣∣ ≤ C

∣∣Zk−1

m (σ
1

2 Ta)
∣∣ + CeCφ.

Integrating the equations, we get finally (omiting the sup norms in x to simplify)

E ≡ |Z
k−1

m (σ
1

2 Ta)| + |Z
k

m(σ− 1

2 a)| ≤ C

∫ t

0

(
φ′ + (1 + t)−µ− 1

2

)
Edt′ + CeCφ,

which gives, using Gronwall Lemma, part of the induction hypothesis (Hk+1).
To control M k+1, we use Lemma A.4 and the assumptions on the metric to
estimate the terms involving γ, ∂γ, c. Since the Symbolic Calculus Lemma
implies

|σ− 1

2 Z
k

ma| ≤
∣∣Zk

m(σ− 1

2 a)
∣∣ + CeCφ,

we obtain the full induction hypothesis (Hk+1).

A.6. To finish the proof of Proposition 5.1, we have to translate the results
already obtained in terms of the fields Zm. Since the Zm are also Zm except
for Zm = T = σ−1Zm, we obtain easily the following lemmas.

Lemma A.6. — We have for all k

Zk
m =

∑
fN k1

· · ·N kj
Z

p

m,

with p ≥ 1 and
∑

ki + p ≤ k.

Lemma A.7. — With the notation of Lemma A.4, we have

Zk
m =

∑
fN k1

· · ·N kj
Z

r1

m(σ− 1

2 a) · · ·Z
rq

m(σ− 1

2 a)Zp
0 ,

with p ≥ 1 and
∑

ki +
∑

ri + p ≤ k.

Proof. — We use Lemma A.7 to evaluate all quantities in Nk which are ex-
pressed as normalized derivatives of γ, ∂γ, ∂2γ, c, ∂c, θ̄, k. To evaluate Zk−1

m a,
we use Lemma A.6. Finally,

∂t + c∂r =
r − ct

r
∂t +

c

r
S, r − ct = fσ,

L = ∂t + c∂r +
f0γR

r
=

f0

r
Z +

fσ

r
T, σ

1

2 L =
M 1

(1 + t)
1

2

Zm + f(σ
1

2 T ),

σ
1

2 N = σ
1

2 (L − T ) =
M 1

(1 + t)
1

2

Zm + f(σ
1

2 T ), σ
1

2 ∂α =
M 1

(1 + t)
1

2

Zm + f(σ
1

2 T ).

Using the symbolic calculus lemmas and the estimates (Hk), we obtain the
result.
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