ON SQUARE FUNCTIONS ASSOCIATED TO SECTORIAL OPERATORS

by Christian Le Merdy

Dedicated to Alan McIntosh on the occasion of his 60th birthday
Abstract. - We give new results on square functions

$$
\|x\|_{F}=\left\|\left(\int_{0}^{\infty}|F(t A) x|^{2} \frac{\mathrm{~d} t}{t}\right)^{1 / 2}\right\|_{p}
$$

associated to a sectorial operator A on L^{p} for $1<p<\infty$. Under the assumption that A is actually R-sectorial, we prove equivalences of the form $K^{-1}\|x\|_{G} \leq\|x\|_{F} \leq K\|x\|_{G}$ for suitable functions F, G. We also show that A has a bounded H^{∞} functional calculus with respect to $\|\cdot\|_{F}$. Then we apply our results to the study of conditions under which we have an estimate $\left\|\left(\int_{0}^{\infty}\left|C \mathrm{e}^{-t A}(x)\right|^{2} \mathrm{~d} t\right)^{1 / 2}\right\|_{q} \leq M\|x\|_{p}$, when $-A$ generates a bounded semigroup $\mathrm{e}^{-t A}$ on L^{p} and $C: D(A) \rightarrow L^{q}$ is a linear mapping.

RÉSuMÉ (Sur les fonctions carrées associées aux opérateurs sectoriels)
Nous obtenons de nouveaux résultats sur les fonctions carrées

$$
\|x\|_{F}=\left\|\left(\int_{0}^{\infty}|F(t A) x|^{2} \frac{\mathrm{~d} t}{t}\right)^{1 / 2}\right\|_{p}
$$

associées à un opérateur sectoriel A sur L^{p} pour $1<p<\infty$. Quand A est en fait R-sectoriel, on montre des équivalences de la forme $K^{-1}\|x\|_{G} \leq\|x\|_{F} \leq K\|x\|_{G}$ pour des fonctions F, G appropriées. On démontre également que A possède un calcul fonctionnel H^{∞} borné par rapport à $\|\cdot\|_{F}$. Puis nous appliquons nos résultats à l'étude de conditions impliquant une inégalité du type $\left\|\left(\int_{0}^{\infty}\left|C \mathrm{e}^{-t A}(x)\right|^{2} \mathrm{~d} t\right)^{1 / 2}\right\|_{q} \leq M\|x\|_{p}$, où $-A$ engendre un semigroupe borné $\mathrm{e}^{-t A}$ sur L^{p} et $C: D(A) \rightarrow L^{q}$ est une application linéaire.

Texte reçu le 3 juillet 2002, accepté le 30 janvier 2003
Christian Le Merdy, Département de Mathématiques, Université de Franche-Comté, 25030
Besançon Cedex (France) - E-mail: lemerdy@math.univ-fcomte.fr
2000 Mathematics Subject Classification. - 47A60, 47D06.
Key words and phrases. - Sectorial operators, H^{∞} functional calculus, square functions, R-boundedness, admissibility.
bulletin de la société mathématique de france

1. Introduction

The main objects of this paper will be bounded analytic semigroups and sectorial operators on L^{p}-spaces, their H^{∞} functional calculus, and their associated square functions. This beautiful and powerful subject grew out of McIntosh's seminal paper [18] and subsequent important works by McIntoshYagi [19] and Cowling-Doust-McIntosh-Yagi [6].

We first briefly recall a few classical notions which are the starting point of the whole theory. Given a Banach space X, we will denote by $B(X)$ the Banach algebra of all bounded operators on X. For any $\omega \in(0, \pi)$, we let

$$
\Sigma_{\omega}=\left\{z \in \mathbb{C}^{*} ;|\operatorname{Arg}(z)|<\omega\right\}
$$

be the open sector of angle 2ω around the half-line $(0, \infty)$. Let A be a possibly unbounded operator A on X and assume that A is closed and densely defined. For any z in the resolvent set of A we let $R(z, A)=(z-A)^{-1}$ denote the corresponding resolvent operator. Let $\sigma(A)$ denote the spectrum of A. Then by definition, A is sectorial of type ω if the following three conditions are fulfilled:
(S1) $\sigma(A) \subset \bar{\Sigma}_{\omega}$.
(S2) For any $\theta \in(\omega, \pi)$ there is a constant $K_{\theta}>0$ such that

$$
\|z R(z, A)\| \leq K_{\theta}, \quad z \in \bar{\Sigma}_{\theta}^{c}
$$

(S3) A has a dense range.
Very often, (S3) is unnecessary and omitted in the definition of sectoriality. However we include it here to avoid tedious technical discussions. Note the well-known fact that A is one-to-one if it satisfies (S1), (S2) and (S3) above.

Given any $\theta \in(0, \pi)$, we let $H^{\infty}\left(\Sigma_{\theta}\right)$ be the algebra of all bounded analytic functions $f: \Sigma_{\theta} \rightarrow \mathbb{C}$ and we let $H_{0}^{\infty}\left(\Sigma_{\theta}\right)$ be the subalgebra of all $f \in H^{\infty}\left(\Sigma_{\theta}\right)$ for which there exist two positive numbers $s, c>0$ such that

$$
\begin{equation*}
|f(z)| \leq c \frac{|z|^{s}}{(1+|z|)^{2 s}}, \quad z \in \Sigma_{\theta} \tag{1.1}
\end{equation*}
$$

Now given a sectorial operator A of type $\omega \in(0, \pi)$ on a Banach space X, a number $\theta \in(\omega, \pi)$, and a function $f \in H_{0}^{\infty}\left(\Sigma_{\theta}\right)$, one may define an operator $f(A) \in B(X)$ as follows. We let $\gamma \in(\omega, \theta)$ be an intermediate angle and consider the oriented contour Γ_{γ} defined by

$$
\Gamma_{\gamma}(t)=\left\{\begin{array}{cl}
-t \mathrm{e}^{i \gamma} & t \in \mathbb{R}_{-} \\
t \mathrm{e}^{-i \gamma} & t \in \mathbb{R}_{+}
\end{array}\right.
$$

Then we let

$$
\begin{equation*}
f(A)=\frac{1}{2 \pi i} \int_{\Gamma_{\gamma}} f(z) R(z, A) \mathrm{d} z . \tag{1.2}
\end{equation*}
$$

TOME $132-2004-\mathrm{N}^{\mathrm{O}} 1$

It follows from Cauchy's Theorem that the definition of $f(A)$ does not depend on the choice of γ and it can be shown that the mapping $f \mapsto f(A)$ is an algebra homomorphism from $H_{0}^{\infty}\left(\Sigma_{\theta}\right)$ into $B(X)$. The next step in H^{∞} functional calculus consists in the definition of a possibly unbounded operator $f(A)$ associated to any $f \in H^{\infty}\left(\Sigma_{\theta}\right)$. Since we shall not use this construction here, we omit it and refer the reader to [18], [19] and [6] for details. We merely recall that by definition, A admits a bounded $H^{\infty}\left(\Sigma_{\theta}\right)$ functional calculus if $f(A)$ is bounded for any $f \in H^{\infty}\left(\Sigma_{\theta}\right)$. In that case, the mapping $f \mapsto f(A)$ is a bounded homomorphism from $H^{\infty}\left(\Sigma_{\theta}\right)$ into $B(X)$, provided that $H^{\infty}\left(\Sigma_{\theta}\right)$ is equipped with the norm

$$
\|f\|_{\infty, \theta}=\sup \left\{|f(z)| ; z \in \Sigma_{\theta}\right\}
$$

We shall be mainly concerned by square functions associated to sectorial operators in the case when X is an L^{p}-space. For any $\omega \in(0, \pi)$, we introduce

$$
H_{0}^{\infty}\left(\Sigma_{\omega+}\right)=\bigcup_{\theta>\omega} H_{0}^{\infty}\left(\Sigma_{\theta}\right)
$$

Assume first that $X=H$ is a Hilbert space. Given a sectorial operator A of type ω on H and $F \in H_{0}^{\infty}\left(\Sigma_{\omega+}\right)$, we consider

$$
\|x\|_{F}=\left(\int_{0}^{\infty}\|F(t A) x\|^{2} \frac{\mathrm{~d} t}{t}\right)^{1 / 2}, \quad x \in H
$$

which may be either finite or infinite. These square function norms were introduced in [18] where it is shown that for any $\theta>\omega$ and any non zero $F \in H_{0}^{\infty}\left(\Sigma_{\omega+}\right), A$ has a bounded $H^{\infty}\left(\Sigma_{\theta}\right)$ functional calculus if and only if $\|\cdot\|_{F}$ is equivalent to the original norm of H. In [19, Theorem 5], McIntosh-Yagi established the following two remarkable properties. First these square function norms are pairwise equivalent, that is, for any two non zero functions F and G in $H_{0}^{\infty}\left(\Sigma_{\omega+}\right)$ there exists a constant $K>0$ such that $K^{-1}\|x\|_{G} \leq\|x\|_{F} \leq K\|x\|_{G}$ for any $x \in H$. Second, A always has a bounded H^{∞} functional calculus with respect to $\left\|\|_{F}\right.$. More precisely, for any $\theta>\omega$ and for any $F \in H_{0}^{\infty}\left(\Sigma_{\theta}\right)$, there is a constant $K>0$ such that $\|f(A) x\|_{F} \leq K\|f\|_{\infty, \theta}\|x\|_{F}$ for any $f \in H^{\infty}\left(\Sigma_{\theta}\right)$ and any $x \in H$. Further properties and applications of square functions $\|.\|_{F}$ were investigated in [3], to which we refer the interested reader.

We now turn to L^{p}-spaces. Let $1 \leq p<\infty$ be a number, let Ω be an arbitrary measure space, and consider the Banach space $X=L^{p}(\Omega)$. Given a sectorial operator A of type ω on $L^{p}(\Omega)$ and $F \in H_{0}^{\infty}\left(\Sigma_{\omega+}\right)$, we let

$$
\|x\|_{F}=\left\|\left(\int_{0}^{\infty}|F(t A) x|^{2} \frac{\mathrm{~d} t}{t}\right)^{1 / 2}\right\|_{L^{p}(\Omega)}, \quad x \in L^{p}(\Omega)
$$

Again $\|x\|_{F}$ may be either finite or infinite. These square function norms were introduced in [6] and play a key role in the study of bounded H^{∞} functional calculus on L^{p}-spaces (see Corollary 2.3 below). The latter definition obviously extends the previous one that we recover when $p=2$. However it is unknown
whether the results from [19] reviewed above extend to the case when $p \neq 2$. In particular it is unknown whether square function norms are pairwise equivalent on L^{p}-spaces. In a recent work [2], Auscher-Duong-McIntosh succeded in proving such an equivalence in the case when $-A$ generates a bounded analytic semigroup acting on $L^{2}(\Omega)$ with suitable upper bounds on its heat kernels. We shall prove that the results from [19, Theorem 5] actually extend to all operators which are not only sectorial but R-sectorial. This notion which arose from some recent work of Weis [22] will be explained at the beginning of the next section.

Theorem 1.1. - Let A be an R-sectorial operator of R-type $\omega \in(0, \pi)$ on a space $L^{p}(\Omega)$, with $1 \leq p<\infty$. Let $\theta \in(\omega, \pi)$ and let F and G be two non zero functions belonging to $H_{0}^{\infty}\left(\Sigma_{\theta}\right)$.

1) There exists a constant $K>0$ such that for any $f \in H^{\infty}\left(\Sigma_{\theta}\right)$ and any $x \in L^{p}(\Omega)$, we have

$$
\begin{align*}
\|\left(\int_{0}^{\infty}|f(A) F(t A) x|^{2} \frac{\mathrm{~d} t}{t}\right)^{1 / 2} & \|_{L^{p}(\Omega)} \tag{1.3}\\
& \leq K\|f\|_{\infty, \theta}\left\|\left(\int_{0}^{\infty}|G(t A) x|^{2} \frac{\mathrm{~d} t}{t}\right)^{1 / 2}\right\|_{L^{p}(\Omega)}
\end{align*}
$$

2) There exists a constant $K>0$ such that

$$
K^{-1}\|x\|_{G} \leq\|x\|_{F} \leq K\|x\|_{G}, \quad x \in L^{p}(\Omega)
$$

This result will be proved in Section 2 below, where we also include some relevant comments. Then Section 3 is devoted to an application of Theorem 1.1 to the study of R-admissibility. This new concept is a natural extension of the classical notion of admissibility considered e.g. in [24], [23], [25], [8] or [16]. Given a bounded analytic semigroup $T_{t}=\mathrm{e}^{-t A}$ on $L^{p}(\Omega)$ and a linear mapping C from the domain of A into some $L^{q}(\Sigma)$, we will study conditions under which we have an estimate of the form

$$
\left\|\left(\int_{0}^{\infty}\left|C T_{t}(x)\right|^{2} \mathrm{~d} t\right)^{1 / 2}\right\|_{L^{q}(\Sigma)} \leq M\|x\|_{L^{p}(\Omega)}
$$

In particular we will show that such an estimate holds if A has a bounded $H^{\infty}\left(\Sigma_{\theta}\right)$ functional calculus for some $\theta<\frac{1}{2} \pi$ and the set $\left\{(-s)^{1 / 2} C R(s, A) ; s \in\right.$ $\mathbb{R}, s<0\}$ is R-bounded. This extends a result of ours ([16]) corresponding to the case when $p=2$.
Acknowledgements. - This research was carried out while I was visiting the Centre for Mathematics and its Applications at the Australian National University in Canberra. It is a pleasure to thank the CMA for its warm hospitality. I am also grateful to Pascal Auscher, Xuan Thinh Duong, and Alan McIntosh for having informed me of [2] and for stimulating discussions on these topics.

2. Equivalence of square function norms

The main purpose of this section is the proof of Theorem 1.1. We first recall the key concepts of R-boundedness (see [4]) and R-sectoriality (see [22], [21], [14]). Consider a Rademacher sequence $\left(\varepsilon_{k}\right)_{k \geq 1}$ on a probability space $\left(\Omega_{0}, \mathbb{P}\right)$. That is, the ε_{k} 's are pairwise independent random variables on Ω_{0} and $\mathbb{P}\left(\varepsilon_{k}=1\right)=\mathbb{P}\left(\varepsilon_{k}=-1\right)=\frac{1}{2}$ for any $k \geq 1$. Then for any finite family x_{1}, \ldots, x_{n} in a Banach space X, we let

$$
\left\|\sum_{k=1}^{n} \varepsilon_{k} x_{k}\right\|_{\operatorname{Rad}(X)}=\int_{\Omega_{0}}\left\|\sum_{k=1}^{n} \varepsilon_{k}(s) x_{k}\right\|_{X} \mathrm{dP}(s)
$$

Let X, Y be two Banach spaces and let $B(X, Y)$ denote the space of all bounded operators from X into Y. By definition, a set $\mathcal{T} \subset B(X, Y)$ is R-bounded if there is a constant $C \geq 0$ such that for any finite families T_{1}, \ldots, T_{n} in \mathcal{T}, and x_{1}, \ldots, x_{n} in X, we have

$$
\left\|\sum_{k=1}^{n} \varepsilon_{k} T_{k}\left(x_{k}\right)\right\|_{\operatorname{Rad}(Y)} \leq C\left\|\sum_{k=1}^{n} \varepsilon_{k} x_{k}\right\|_{\operatorname{Rad}(X)}
$$

In that case, the smallest possible C is called the R-boundedness constant of \mathcal{T} and is denoted by $R(\mathcal{T})$. If A is a sectorial operator on X and $\omega \in(0, \pi)$ is a number, we say that A is R-sectorial of R-type ω if for any $\theta \in(\omega, \pi)$, the set $\left\{z R(z, A) ; z \in \bar{\Sigma}_{\theta}^{c}\right\} \subset B(X)$ is R-bounded.

To describe the range of applications of our result, we first recall that if X is a Hilbert space, then any bounded subset of $B(X)$ is R-bounded, hence any sectorial operator of type ω on X is actually R-sectorial of R-type ω. Thus Theorem 1.1 comprises [19, Theorem 5] that we recover when $p=2$. Note that our proof reduces to that of [19] in this case. If X is not isomorphic to a Hilbert space, then there exist bounded subsets of $B(X)$ which are not R bounded (see e.g. [1, Proposition 1.13]). The notion of R-sectoriality on non Hilbertian Banach spaces is closely related to maximal L^{p}-regularity. Namely, it was proved in [13] and [22] that if A is a sectorial operator of type $<\frac{1}{2} \pi$ on a Banach space X with maximal L^{p}-regularity, then A is R-sectorial of R-type $<\frac{1}{2} \pi$. Thus the counterexamples to maximal L^{p}-regularity obtained by Kalton-Lancien [13] show that when $p \neq 2$, there exist sectorial operators on L^{p}-spaces which are not R-sectorial. Conversely, it was proved in [22] that if X is a UMD Banach space, and A is R-sectorial of R-type $<\frac{1}{2} \pi$ on X, then A has maximal L^{p}-regularity. Thus for $1<p<\infty$ and $\omega<\frac{1}{2} \pi$, Theorem 1.1 exactly applies when the operator A has maximal L^{p}-regularity. In particular it applies to the operators considered in [2].

If $X=L^{p}(\Omega)$ for some $1 \leq p<\infty$, then there is a constant $C_{0}>0$ such that we both have

$$
\begin{equation*}
\left\|\sum_{k=1}^{n} \varepsilon_{k} x_{k}\right\|_{\operatorname{Rad}\left(L^{p}(\Omega)\right)} \leq C_{0}\left\|\left(\sum_{k=1}^{n}\left|x_{k}\right|^{2}\right)^{1 / 2}\right\|_{L^{p}(\Omega)} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\left(\sum_{k=1}^{n}\left|x_{k}\right|^{2}\right)^{1 / 2}\right\|_{L^{p}(\Omega)} \leq C_{0}\left\|\sum_{k=1}^{n} \varepsilon_{k} x_{k}\right\|_{\operatorname{Rad}\left(L^{p}(\Omega)\right)} \tag{2.2}
\end{equation*}
$$

for any finite family x_{1}, \ldots, x_{n} in $L^{p}(\Omega)$. Thus $\mathcal{T} \subset B\left(L^{p}(\Omega)\right)$ is R-bounded provided that

$$
\begin{equation*}
\left\|\left(\sum_{k=1}^{n}\left|T_{k}\left(x_{k}\right)\right|^{2}\right)^{1 / 2}\right\|_{L^{p}(\Omega)} \leq C\left\|\left(\sum_{k=1}^{n}\left|x_{k}\right|^{2}\right)^{1 / 2}\right\|_{L^{p}(\Omega)} \tag{2.3}
\end{equation*}
$$

for some constant $C \geq 0$, and for any T_{1}, \ldots, T_{n} in \mathcal{T} and x_{1}, \ldots, x_{n} in $L^{p}(\Omega)$. In the proof of Theorem 1.1, we shall need the following continuous version of (2.3) which was first observed by Weis [21, 4.a].

Lemma 2.1. - Let $I \subset \mathbb{R}$ be an interval and let $S: I \rightarrow B\left(L^{p}(\Omega)\right)$ be a strongly continuous function, with $1 \leq p<\infty$. Then the set $\mathcal{T}=\{S(t) ; t \in I\}$ is R bounded if and only if there is a constant $C \geq 0$ such that

$$
\left\|\left(\int_{I}|S(t) u(t)|^{2} \mathrm{~d} t\right)^{1 / 2}\right\|_{L^{p}(\Omega)} \leq C\left\|\left(\int_{I}|u(t)|^{2} \mathrm{~d} t\right)^{1 / 2}\right\|_{L^{p}(\Omega)}
$$

for any $u \in L^{p}\left(\Omega ; L^{2}(I)\right)$. Moreover the smallest possible C is equivalent to $R(\mathcal{T})$.

We will also use the following well-known consequence of [4, Lemma 3.2].
Lemma 2.2. - Let $I \subset \mathbb{R}$ be an interval and let $\mathcal{T} \subset B\left(L^{p}(\Omega)\right)$ be an R bounded set, with $1 \leq p<\infty$. Then the set

$$
\left\{\int_{I} a(r) R(r) \mathrm{d} r ; R: I \rightarrow \mathcal{T} \quad \text { is continuous, } a \in L^{1}(I) \text { and }\|a\|_{1} \leq 1\right\}
$$

is R-bounded as well and its R-boundedness constant is $\leq 2 R(\mathcal{T})$.
We finally recall some well-known facts concerning $H_{0}^{\infty}\left(\Sigma_{\theta}\right)$ that will be used without further reference. First of all, if $\varphi \in H_{0}^{\infty}\left(\Sigma_{\theta}\right)$ and A is a sectorial operator of type $\omega<\theta$ on X, then $t \mapsto \varphi(t A)$ is a continuous and bounded function from $(0, \infty)$ into $B(X)$. Second, if $\gamma<\theta$ then $\int_{\Gamma_{\gamma}}|\varphi(z)| \cdot|\mathrm{d} z / z|<\infty$ by (1.1). Third, changing z into $t z$ shows that

$$
\int_{\Gamma_{\gamma}}|\varphi(t z)| \cdot\left|\frac{\mathrm{d} z}{z}\right|=\int_{\Gamma_{\gamma}}|\varphi(z)| \cdot\left|\frac{\mathrm{d} z}{z}\right|
$$

TOME $132-2004-\mathrm{N}^{\mathrm{O}} 1$
for any $t>0$. Fourth, a simple change of variables also shows that

$$
\sup _{z \in \Gamma_{\gamma}} \int_{0}^{\infty}|\varphi(t z)| \frac{\mathrm{d} t}{t}<\infty
$$

Proof of Theorem 1.1. - The proof is a generalization of the one of [19, Theorem 5]. By assumption, A is an R-sectorial operator of R-type $\omega \in(0, \pi)$ on $L^{p}(\Omega)$ and we consider $F, G \in H_{0}^{\infty}\left(\Sigma_{\theta}\right) \backslash\{0\}$ for some $\theta \in(\omega, \pi)$. Note that the second assertion follows from the first one in Theorem 1.1. Indeed applying 1) with the constant function $f(z)=1$ yields an estimate $\|x\|_{F} \leq K\|x\|_{G}$. Then 2) follows by switching the roles of F and G. Also observe that to prove 1), we may assume that $f \in H_{0}^{\infty}\left(\Sigma_{\theta}\right)$. Indeed assume (1.3) for any element of $H_{0}^{\infty}\left(\Sigma_{\theta}\right)$, and let $f \in H^{\infty}\left(\Sigma_{\theta}\right)$ be an arbitrary function. Then according to the so-called Convergence Lemma (see [6, Lemma 2.1]), there exists a constant $C>0$ not depending on f and a bounded sequence $\left(f_{n}\right)_{n \geq 1} \subset H_{0}^{\infty}\left(\Sigma_{\theta}\right)$ such that $\left\|f_{n}\right\|_{\infty, \theta} \leq$ $C\|f\|_{\infty, \theta}$ for any $n \geq 1$ and $\lim _{n \rightarrow \infty}\left\|f_{n}(A) \bar{F}(t A) x-f(A) F(t A) x\right\|=0$ for any $x \in X$ and any $t>0$. Applying Fatou's Lemma, we may therefore deduce that

$$
\begin{aligned}
\|\left(\int_{0}^{\infty}|f(A) F(t A) x|^{2}\right. & \left.\frac{\mathrm{d} t}{t}\right)^{1 / 2}\left\|_{p} \leq \liminf _{n \rightarrow \infty}\right\|\left(\int_{0}^{\infty}\left|f_{n}(A) F(t A) x\right|^{2} \frac{\mathrm{~d} t}{t}\right)^{1 / 2} \|_{p} \\
& \leq K \liminf _{n \rightarrow \infty}\left\|f_{n}\right\|_{\infty, \theta}\left\|\left(\int_{0}^{\infty}|G(t A) x|^{2} \frac{\mathrm{~d} t}{t}\right)^{1 / 2}\right\|_{p} \\
& \leq K C\|f\|_{\infty, \theta}\left\|\left(\int_{0}^{\infty}|G(t A) x|^{2} \frac{\mathrm{~d} t}{t}\right)^{1 / 2}\right\|_{p}
\end{aligned}
$$

Throughout the rest of this proof, x will be an element of $L^{p}(\Omega)$ such that $\|x\|_{G}<\infty$ and f will be an element of $H_{0}^{\infty}\left(\Sigma_{\theta}\right)$. We will denote by $C_{1}, C_{2}, C_{3}, \ldots$ various constants not depending either on f or on x. We fix an angle $\gamma \in(\omega, \theta)$ for which we will use the integral representation (1.2). We record for further use that by our R-sectoriality assumption, the set

$$
\begin{equation*}
\left\{z R(z, A) ; z \in \Gamma_{\gamma}\right\} \quad \text { is } R \text {-bounded. } \tag{2.4}
\end{equation*}
$$

Then we consider two auxiliary functions φ and ψ in $H_{0}^{\infty}\left(\Sigma_{\theta}\right)$ such that

$$
\begin{equation*}
\int_{0}^{\infty} \varphi(t) \psi(t) G(t) \frac{\mathrm{d} t}{t}=1 \tag{2.5}
\end{equation*}
$$

We will reach (1.3) after five steps, the identity (2.5) being used only in the last one.

First step. - By (1.2) we have for any $t>0$

$$
f(A) \psi(t A)=\frac{1}{2 \pi i} \int_{\Gamma_{\gamma}} f(z) \psi(t z) z R(z, A) \frac{\mathrm{d} z}{z} .
$$

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

Moreover, letting $C_{1}=\int_{\Gamma_{\gamma}}|\psi(z)| \cdot|\mathrm{d} z / z|$, we have

$$
\int_{\Gamma_{\gamma}}|f(z) \psi(t z)| \cdot\left|\frac{\mathrm{d} z}{z}\right| \leq\|f\|_{\infty, \theta} \int_{\Gamma_{\gamma}}|\psi(t z)| \cdot\left|\frac{\mathrm{d} z}{z}\right|=C_{1}\|f\|_{\infty, \theta}
$$

By Lemma 2.2 and (2.4), we therefore deduce that the operators $f(A) \psi(t A)$ form an R-bounded set and that we have an estimate

$$
R(\{f(A) \psi(t A) ; t>0\}) \leq C_{2}\|f\|_{\infty, \theta}
$$

Hence applying Lemma 2.1 with $I=(0, \infty), S(t)=f(A) \psi(t A)$, and $u(t)=$ $G(t A) x / \sqrt{t}$, we obtain an estimate

$$
\begin{equation*}
\left\|\left(\int_{0}^{\infty}|f(A) \psi(t A) G(t A) x|^{2} \frac{\mathrm{~d} t}{t}\right)^{1 / 2}\right\|_{p} \leq C_{3}\|f\|_{\infty, \theta} \cdot\|x\|_{G} \tag{2.6}
\end{equation*}
$$

Second step. - We define a continuous function $u: \Gamma_{\gamma} \rightarrow L^{p}(\Omega)$ by letting

$$
\begin{equation*}
u(z)=\int_{0}^{\infty} \varphi(t z) f(A) \psi(t A) G(t A) x \frac{\mathrm{~d} t}{t}, \quad z \in \Gamma_{\gamma} \tag{2.7}
\end{equation*}
$$

Letting $w(t)=f(A) \psi(t A) G(t A) x$ for $t>0$, we see using the Cauchy-Schwarz inequality and Fubini's Theorem that u satisfies the following pointwise estimates:

$$
\begin{aligned}
\int_{\Gamma_{\gamma}}|u(z)|^{2} \cdot\left|\frac{\mathrm{~d} z}{z}\right| & \leq \int_{\Gamma_{\gamma}}\left(\int_{0}^{\infty}|\varphi(t z)| \cdot|w(t)| \frac{\mathrm{d} t}{t}\right)^{2}\left|\frac{\mathrm{~d} z}{z}\right| \\
& \leq \int_{\Gamma_{\gamma}}\left(\int_{0}^{\infty}|\varphi(t z)| \frac{\mathrm{d} t}{t}\right)\left(\int_{0}^{\infty}|\varphi(t z)| \cdot|w(t)|^{2} \frac{\mathrm{~d} t}{t}\right)\left|\frac{\mathrm{d} z}{z}\right| \\
& \leq\left(\sup _{z \in \Gamma_{\gamma}} \int_{0}^{\infty}|\varphi(t z)| \frac{\mathrm{d} t}{t}\right) \int_{0}^{\infty} \int_{\Gamma_{\gamma}}|\varphi(t z)| \cdot|w(t)|^{2} \cdot\left|\frac{\mathrm{~d} z}{z}\right| \frac{\mathrm{d} t}{t} \\
& \leq\left(\sup _{z \in \Gamma_{\gamma}} \int_{0}^{\infty}|\varphi(t z)| \frac{\mathrm{d} t}{t}\right)\left(\sup _{t>0} \int_{\Gamma_{\gamma}}|\varphi(t z)| \cdot\left|\frac{\mathrm{d} z}{z}\right|\right) \int_{0}^{\infty}|w(t)|^{2} \frac{\mathrm{~d} t}{t}
\end{aligned}
$$

According to the discussion preceding this proof, the two suprema appearing here are finite hence applying (2.6) yields an estimate

$$
\begin{equation*}
\left\|\left(\int_{\Gamma_{\gamma}}|u(z)|^{2} \cdot\left|\frac{\mathrm{~d} z}{z}\right|\right)^{1 / 2}\right\|_{p} \leq C_{4}\|f\|_{\infty, \theta} \cdot\|x\|_{G} \tag{2.8}
\end{equation*}
$$

Third step. - We now apply Lemma 2.1 with $I=\Gamma_{\gamma}$ and $S(z)=z R(z, A)$. By (2.4) and (2.8), we obtain a new estimate

$$
\begin{equation*}
\left\|\left(\int_{\Gamma_{\gamma}}|z R(z, A) u(z)|^{2} \cdot\left|\frac{\mathrm{~d} z}{z}\right|\right)^{1 / 2}\right\|_{p} \leq C_{5}\|f\|_{\infty, \theta} \cdot\|x\|_{G} \tag{2.9}
\end{equation*}
$$

TOME 132 - $2004-\mathrm{N}^{\circ} 1$

Fourth step. - This fourth step is similar to the second one. We define a continuous function $v:(0, \infty) \rightarrow L^{p}(\Omega)$ by letting

$$
\begin{equation*}
v(s)=\frac{1}{2 \pi i} \int_{\Gamma_{\gamma}} F(s z) R(z, A) u(z) \mathrm{d} z, \quad s>0 . \tag{2.10}
\end{equation*}
$$

Then arguing as in the second step we find a constant $C_{6} \geq 0$ such that

$$
\left\|\left(\int_{0}^{\infty}|v(s)|^{2} \frac{\mathrm{~d} s}{s}\right)^{1 / 2}\right\|_{p} \leq C_{6}\left\|\left(\int_{\Gamma_{\gamma}}|z R(z, A) u(z)|^{2} \cdot\left|\frac{\mathrm{~d} z}{z}\right|\right)^{1 / 2}\right\|_{p}
$$

Combining with (2.9), we obtain the final estimate

$$
\left\|\left(\int_{0}^{\infty}|v(s)|^{2} \frac{\mathrm{~d} s}{s}\right)^{1 / 2}\right\|_{p} \leq C_{7}\|f\|_{\infty, \theta} \cdot\|x\|_{G}
$$

Fifth step. - We conclude our proof by showing that for any $s>0$, $f(A) F(s A) x=v(s)$. By the Principle of Analytic Continuation, (2.5) implies that for any $z \in \Sigma_{\theta}$,

$$
\int_{0}^{\infty} \varphi(t z) \psi(t z) G(t z) \frac{\mathrm{d} t}{t}=1
$$

Since $f \in H_{0}^{\infty}\left(\Sigma_{\theta}\right)$, we deduce by applying (1.2) and Fubini's Theorem that

$$
f(A)=\int_{0}^{\infty} \varphi(t A) \psi(t A) G(t A) f(A) \frac{\mathrm{d} t}{t}
$$

the latter integral being absolutely convergent. Therefore we have for any $s>0$,

$$
\begin{array}{rlr}
f(A) F(s A) x & =\int_{0}^{\infty} F(s A) \varphi(t A) \psi(t A) G(t A) f(A) x \frac{\mathrm{~d} t}{t} \\
& =\int_{0}^{\infty}\left(\frac{1}{2 \pi i} \int_{\Gamma_{\gamma}} F(s z) \varphi(t z) R(z, A) \mathrm{d} z\right) \psi(t A) G(t A) f(A) x \frac{\mathrm{~d} t}{t} \\
& =\frac{1}{2 \pi i} \int_{\Gamma_{\gamma}} F(s z) R(z, A)\left(\int_{0}^{\infty} \varphi(t z) \psi(t A) G(t A) f(A) x \frac{\mathrm{~d} t}{t}\right) \mathrm{d} z \\
& =\frac{1}{2 \pi i} \int_{\Gamma_{\gamma}} F(s z) R(z, A) u(z) \mathrm{d} z & \text { by Fubini's Theorem } \\
& =v(s) & \text { by }(2.7)
\end{array}
$$

Assume now that $1<p<\infty$ and let A be a sectorial operator on $L^{p}(\Omega)$ with a bounded $H^{\infty}\left(\Sigma_{\theta}\right)$ functional calculus. The following two results were proved by Cowling-Doust-McIntosh-Yagi [6, Section 6]. First, for any $F \in H_{0}^{\infty}\left(\Sigma_{\theta+}\right)$, there is a constant $K>0$ such that $\|x\|_{F} \leq K\|x\|$ for any $x \in L^{p}(\Omega)$. Second, there exists $F \in H_{0}^{\infty}\left(\Sigma_{\theta+}\right)$ as above such that for some suitable $K>0$, we have $K^{-1}\|x\| \leq\|x\|_{F} \leq K\|x\|$ for any $x \in L^{p}(\Omega)$. On the other hand, it follows from [14, Theorem 5.3] that A is R-sectorial of R-type θ provided that A has a

[^0]bounded $H^{\infty}\left(\Sigma_{\theta}\right)$ functional calculus. Combining with Theorem 1.1, we deduce the following strengthening of the above mentioned result.

Corollary 2.3. - Let A be a sectorial operator with a bounded $H^{\infty}\left(\Sigma_{\theta}\right)$ functional calculus on $L^{p}(\Omega)$, with $1<p<\infty$. Then for any $F \in H_{0}^{\infty}\left(\Sigma_{\theta+}\right)$, there is a constant $K>0$ such that for any $x \in L^{p}(\Omega)$,

$$
\begin{equation*}
K^{-1}\|x\| \leq\left\|\left(\int_{0}^{\infty}|F(t A) x|^{2} \frac{\mathrm{~d} t}{t}\right)^{1 / 2}\right\|_{p} \leq K\|x\| \tag{2.11}
\end{equation*}
$$

Remark 2.4. - The above corollary clearly has a converse. Indeed assume that A is R-sectorial of R-type ω and satisfies the equivalence (2.11) for some $\theta>\omega$ and some $F \in H_{0}^{\infty}\left(\Sigma_{\theta}\right)$. Then applying the first part of Theorem 1.1 with $F=G$, we see that A admits a bounded $H^{\infty}\left(\Sigma_{\theta}\right)$ functional calculus. This leads to the question of computing square functions for R-sectorial operators without a bounded H^{∞} functional calculus. We give a simple example below.

Example 2.5. - Let $1<p \neq 2<\infty$ and let $\mathbb{T}=\{z \in \mathbb{C} ;|z|=1\}$ be the unimodular complex group equipped with its Haar measure. For any integer $n \in \mathbb{Z}$, we let $e_{n}(z)=z^{n}$ for $z \in \mathbb{T}$. As far as we know, the simplest example of a sectorial operator on an L^{p}-space without a bounded H^{∞} functional calculus is obtained by defining A as the Fourier multiplier associated to the sequence $\left(2^{n}\right)_{n}$ on $L^{p}(\mathbb{T})$. Namely we let A be the closure of the operator defined on $\operatorname{Span}\left\{e_{n} ; n \in \mathbb{Z}\right\}$ by first taking e_{n} to $2^{n} e_{n}$ for any n and then extending by linearity. This operator is essentialy the discrete version of the one given in [6, Example 5.2]. The arguments given in the latter paper extend to this discrete version and show that our operator A is sectorial of any positive type, has no bounded H^{∞} functional calculus and admits bounded imaginary powers with $\left\|A^{i s}\right\|=1$ for any $s \in \mathbb{R}$. According to [5, Theorem 4] or [22], this implies that A is R-sectorial of R-type ω for any $\omega>0$. Hence by Theorem 1.1, all non zero square function norms associated to A are equivalent. We claim that they are actually all equivalent to the norm of $L^{2}(\mathbb{T})$. Here is a brief proof using Theorem 1.1. We give ourselves some $\theta>0$ and some $F \in H_{0}^{\infty}\left(\Sigma_{\theta}\right) \backslash\{0\}$. We let $\left(\alpha_{n}\right)_{n}$ be a finite sequence of complex numbers and consider $x=\sum_{n} \alpha_{n} e_{n}$. For any $z \in \mathbb{T}$ and any $t>0$, we have

$$
(F(t A) x)(z)=\sum_{n} F\left(t 2^{n}\right) \alpha_{n} e_{n}(z) .
$$

Likewise for every $f \in H^{\infty}\left(\Sigma_{\theta}\right)$, we have

$$
(f(A) F(t A) x)(z)=\sum_{n} f\left(2^{n}\right) F\left(t 2^{n}\right) \alpha_{n} e_{n}(z) .
$$

Hence if we let $\Lambda=L^{p}\left(\mathbb{T} ; L^{2}(0, \infty ; \mathrm{d} t / t)\right)$ and apply (1.3) with $F=G$, we obtain that

$$
\left\|\sum_{n} f\left(2^{n}\right) F\left(t 2^{n}\right) \alpha_{n} e_{n}(z)\right\|_{\Lambda} \leq K\|f\|_{\infty, \theta} \cdot\left\|\sum_{n} F\left(t 2^{n}\right) \alpha_{n} e_{n}(z)\right\|_{\Lambda} .
$$

Now using the fact that $\left(2^{n}\right)_{n}$ is an interpolation sequence for the open set Σ_{θ}, we deduce that for an appropriate constant $K_{1}>0$, we have

$$
\left\|\sum_{n} \varepsilon_{n} F\left(t 2^{n}\right) \alpha_{n} e_{n}(z)\right\|_{\Lambda} \leq K_{1}\left\|\sum_{n} F\left(t 2^{n}\right) \alpha_{n} e_{n}(z)\right\|_{\Lambda}
$$

for any $\{-1,1\}$-valued sequence $\left(\varepsilon_{n}\right)_{n}$ (see e.g. [7, Chapter VII] for details). Taking the average over all such possible sequences we find that

$$
\left\|\sum_{n} F\left(t 2^{n}\right) \alpha_{n} e_{n}(z)\right\|_{\Lambda} \asymp\left\|\sum_{n} \varepsilon_{n} F\left(t 2^{n}\right) \alpha_{n} e_{n}(z)\right\|_{\operatorname{Rad}(\Lambda)}
$$

Using the well-known fact that (2.1) and (2.2) hold with Λ in place of $L^{p}(\Omega)$ we finally obtain that

$$
\left\|\left(\int_{0}^{\infty}\left|F(t A)\left(\sum_{n} \alpha_{n} e_{n}\right)\right|^{2} \frac{\mathrm{~d} t}{t}\right)^{1 / 2}\right\|_{p} \asymp\left\|\left(\sum_{n}\left|F\left(t 2^{n}\right) \alpha_{n} e_{n}(z)\right|^{2}\right)^{1 / 2}\right\|_{\Lambda} .
$$

Now observe that since $\left|e_{n}(z)\right|=1$ for any $z \in \mathbb{T}$ and $\int_{0}^{\infty}\left|F\left(t 2^{n}\right)\right|^{2} \mathrm{~d} t / t=$ $\int_{0}^{\infty}|F(t)|^{2} \mathrm{~d} t / t$ for any $n \in \mathbb{Z}$, we have

$$
\begin{aligned}
\left\|\left(\sum_{n}\left|F\left(t 2^{n}\right) \alpha_{n} e_{n}(z)\right|^{2}\right)^{1 / 2}\right\|_{\Lambda}^{2} & =\left\|\left(\sum_{n}\left|F\left(t 2^{n}\right) \alpha_{n}\right|^{2}\right)^{1 / 2}\right\|_{L^{2}(0, \infty ; \mathrm{d} t / t)}^{2} \\
& =\left(\int_{0}^{\infty}|F(t)|^{2} \frac{\mathrm{~d} t}{t}\right) \sum_{n}\left|\alpha_{n}\right|^{2} \\
& =\left(\int_{0}^{\infty}|F(t)|^{2} \frac{\mathrm{~d} t}{t}\right)\left\|\sum_{n} \alpha_{n} e_{n}\right\|_{2}^{2}
\end{aligned}
$$

which proves the announced result.
Remark 2.6. - It was observed in [15] that most of the results established in [6] extend to the case when $L^{p}(\Omega)$ is replaced by a B-convex Banach lattice. It is also easy to check that our Theorem 1.1 extends to this setting and as a by-product, we find that Corollary 2.3 also extends to this setting.

3. Application to R-admissibility.

Let X be a Banach space and let $\left(T_{t}\right)_{t \geq 0}$ be a bounded c_{0}-semigroup on X. We let $-A$ denote its infinitesimal generator and we let $D(A)$ be the domain of A. We consider a linear mapping $C: D(A) \rightarrow Y$ valued in another Banach space Y. We assume that C is continuous with respect to the graph norm of $D(A)$, so what $t \mapsto C T_{t}(x)$ is a well-defined continuous function from $(0, \infty)$

[^1]into Y for any $x \in D(A)$. By definition, C is admissible for A if there is a constant $M>0$ such that
\[

$$
\begin{equation*}
\int_{0}^{\infty}\left\|C T_{t}(x)\right\|^{2} \mathrm{~d} t \leq M^{2}\|x\|^{2}, \quad x \in D(A) \tag{3.1}
\end{equation*}
$$

\]

This definition arises from Control Theory and is usually given with X and Y being Hilbert spaces. We refer the reader to [24], [23], [25], [8], [20], [9] and the references therein for some background and applications of this notion.

If C is admissible for A, then there is a constant $K>0$ such that

$$
\begin{equation*}
\left\|(-\operatorname{Re}(\lambda))^{1 / 2} C R(\lambda, A)\right\| \leq K, \quad \lambda \in \mathbb{C}, \operatorname{Re}(\lambda)<0 \tag{3.2}
\end{equation*}
$$

Indeed if $\operatorname{Re}(\lambda)<0$, define

$$
a_{\lambda}(t)=-(-\operatorname{Re}(\lambda))^{1 / 2} \mathrm{e}^{\lambda t}, \quad t>0
$$

Then

$$
\begin{equation*}
a_{\lambda} \in L^{2}(0, \infty ; d t) \quad \text { with } \quad\left\|a_{\lambda}\right\|_{2}=\frac{1}{\sqrt{2}} \tag{3.3}
\end{equation*}
$$

and according to the Laplace Formula, we have

$$
\begin{equation*}
(-\operatorname{Re}(\lambda))^{1 / 2} C R(\lambda, A) x=\int_{0}^{\infty} a_{\lambda}(t) C T_{t}(x) \mathrm{d} t, \quad \operatorname{Re}(\lambda)<0 \tag{3.4}
\end{equation*}
$$

for any $x \in D(A)$. Thus (3.1) implies (3.2) with $K=M / \sqrt{2}$ by the CauchySchwarz inequality.

The latter observation goes back to George Weiss [25] who investigated the converse implication, that is, whether the estimate (3.2) implies that C is admissible for A. He quickly proved that this converse does not hold on general Banach spaces but the question remained open for a long time under the name of "Weiss conjecture" in the case when X and Y are both Hilbert spaces. The Weiss conjecture has been disproved recently by Jacob-Partington-Pott [10]. Namely there exist Hilbert spaces X, Y, as well as $T_{t}=\mathrm{e}^{-t A}$ and C as above such that (3.2) holds for some K although C is not admissible for A. In fact it was proved by Jacob-Zwart [12] that such counterexamples exist with $Y=\mathbb{C}$. See also [11] for related work. The failure of the Weiss conjecture leads to the following question.

Which triples (X, A, Y) have the property that any continuous $C: D(A) \rightarrow Y$ is admissible for A provided that (3.2) holds?

In [9], it was shown that this property holds when X is a Hilbert space, $Y=\mathbb{C}$, and A is maximal accretive (equivalently, $\left(T_{t}\right)_{t \geq 0}$ is a contraction semigroup). In [16], we studied the case when $T_{t}=\mathrm{e}^{-t A}$ is a bounded analytic semigroup, that is, there exists $\alpha>0$ such that $\left(T_{t}\right)_{t>0}$ extends to a bounded analytic family $\left(\mathrm{e}^{-z A}\right)_{z \in \Sigma_{\alpha}} \subset B(X)$. We proved the following result (see [16, Theorem 4.1]).

Theorem 3.1. - Assume that $T_{t}=\mathrm{e}^{-t A}$ is a bounded analytic semigroup on a Banach space X. Then the following assertions are equivalent.
(i) $A^{1 / 2}$ is admissible for A.
(ii) For any Banach space Y, a continuous mapping $C: D(A) \rightarrow Y$ is admissible for A if and only if there is a constant $K>0$ such that $\left\|(-\operatorname{Re}(\lambda))^{1 / 2} C R(\lambda, A)\right\| \leq K$ for any $\lambda \in \mathbb{C}$ with $\operatorname{Re}(\lambda)<0$.
(iii) For any Banach space Y, a continuous mapping $C: D(A) \rightarrow Y$ is admissible for A if and only if there is a constant $K>0$ such that $\left\|(-s)^{1 / 2} C R(s, A)\right\| \leq K$ for any negative real number $s<0$.

Recall that $T_{t}=\mathrm{e}^{-t A}$ is a bounded analytic semigroup on X if and only if A satisfies the conditions (S1) and (S2) from Section 1 for some $\omega<\frac{1}{2} \pi$. Define

$$
F_{0}(z)=z^{1 / 2} \mathrm{e}^{-z}, \quad z \in \mathbb{C}
$$

Then $F_{0} \in H_{0}^{\infty}\left(\Sigma_{\theta}\right)$ for any $\theta \in\left(0, \frac{1}{2} \pi\right)$ and

$$
\begin{equation*}
A^{1 / 2} T_{t}(x)=\frac{F_{0}(t A) x}{\sqrt{t}}, \quad t>0, x \in X \tag{3.5}
\end{equation*}
$$

Consequently, $A^{1 / 2}$ is admissible for A if and only if we have an estimate

$$
\left(\int_{0}^{\infty}\left\|F_{0}(t A) x\right\|^{2} \frac{\mathrm{~d} t}{t}\right)^{1 / 2} \leq M\|x\|, \quad x \in X
$$

This observation makes Theorem 3.1 especially interesting in the case when $X=H$ is a Hilbert space. Indeed in that case, an appeal to [18] shows that condition (i), hence conditions (ii) and (iii) in Theorem 3.1 are fulfilled provided that A admits a bounded H^{∞} functional calculus. We refer the reader to [16, Section 5] for a more precise discussion of condition (i) of Theorem 3.1 in the case when $X=H$ is a Hilbert space.

When moving from Hilbert spaces to L^{p}-spaces, it is natural to introduce a variant of admissibility involving square function norms in the style of those considered so far in the previous two sections. We let $1<p, q<\infty$ be two numbers, we let Ω and Σ be two measure spaces and we let $\left(T_{t}\right)_{t \geq 0}$ be a bounded c_{0}-semigroup on $L^{p}(\Omega)$ with generator denoted by $-A$. Then given a continuous linear mapping $C: D(A) \rightarrow L^{q}(\Sigma)$, we say that C is R-admissible for A if there is a constant $M>0$ such that

$$
\left\|\left(\int_{0}^{\infty}\left|C T_{t}(x)\right|^{2} d t\right)^{1 / 2}\right\|_{L^{q}(\Sigma)} \leq M\|x\|_{L^{p}(\Omega)}, \quad x \in D(A)
$$

Arguing as above, it is easy to check that this condition implies (3.2) with $K=M / \sqrt{2}$. It turns out that the following stronger property holds.

Lemma 3.2. - If C is R-admissible for A, then the following set is R-bounded:

$$
\left\{(-\operatorname{Re}(\lambda))^{1 / 2} C R(\lambda, A) ; \lambda \in \mathbb{C}, \operatorname{Re}(\lambda)<0\right\}
$$

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

Indeed this follows from (3.3), (3.4) and the following statement of independent interest. Note the analogy with Lemma 2.2.

Proposition 3.3. - Let X be a Banach space, let $X_{0} \subset X$ be a dense subspace, and let $t \mapsto \varphi_{t}$ be a strongly continuous function from an interval $I \subset \mathbb{R}$ into the space $L\left(X_{0}, L^{q}(\Sigma)\right)$ of linear mappings from X_{0} into $L^{q}(\Sigma)$. Assume that there is a constant $M>0$ such that

$$
\left\|\left(\int_{I}\left|\varphi_{t}(x)\right|^{2} \mathrm{~d} t\right)^{1 / 2}\right\|_{L^{q}(\Sigma)} \leq M\|x\|, \quad x \in X_{0}
$$

For any $a \in L^{2}(I)$, let $\int_{I} a(t) \varphi_{t} \mathrm{~d} t$ denote the element of $B\left(X, L^{q}(\Sigma)\right)$ obtained by first taking $x \in X_{0}$ to $\int_{I} a(t) \varphi_{t}(x) \mathrm{d} t \in L^{q}(\Sigma)$ and then extending by continuity. Then the following set is R-bounded:

$$
\left\{\int_{I} a(t) \varphi_{t} \mathrm{~d} t ; a \in L^{2}(I),\|a\|_{2} \leq 1\right\}
$$

Proof. - We use the notation and definitions from the beginning of Section 2. For any $a \in L^{2}(I)$, we let

$$
T_{a}=\int_{I} a(t) \varphi_{t} \mathrm{~d} t
$$

and we give ourselves a finite family a_{1}, \ldots, a_{n} of elements of $L^{2}(I)$ of norms less than or equal to one. Let $\left(e_{1}, \ldots, e_{m}\right)$ be an orthonormal basis of $\operatorname{Span}\left\{a_{1}, \ldots, a_{n}\right\} \subset L^{2}(I)$. Then we have $a_{k}=\sum_{i}\left\langle a_{k}, e_{i}\right\rangle e_{i}$ for any k, hence

$$
T_{a_{k}}=\sum_{i=1}^{m}\left\langle a_{k}, e_{i}\right\rangle T_{e_{i}}, \quad 1 \leq k \leq n
$$

Let x_{1}, \ldots, x_{n} be arbitrary elements of X_{0}. (Strictly speaking, we should take elements of X but the density of X_{0} clearly allows this reduction.) Then for some numerical constant $C_{0} \geq 0$, we have

$$
\begin{aligned}
\left\|\sum_{k=1}^{n} \varepsilon_{k} T_{a_{k}}\left(x_{k}\right)\right\|_{\operatorname{Rad}\left(L^{q}\right)} & \leq C_{0}\left\|\left(\sum_{k=1}^{n}\left|T_{a_{k}}\left(x_{k}\right)\right|^{2}\right)^{1 / 2}\right\|_{L^{q}} \\
& =C_{0}\left\|\left(\sum_{k=1}^{n}\left|\sum_{i=1}^{m}\left\langle a_{k}, e_{i}\right\rangle T_{e_{i}}\left(x_{k}\right)\right|^{2}\right)^{1 / 2}\right\|_{L^{q}}
\end{aligned}
$$

Using the Cauchy-Schwarz inequality, we obtain the following pointwise estimates on $L^{q}(\Sigma)$.

$$
\begin{aligned}
\sum_{k=1}^{n}\left|\sum_{i=1}^{m}\left\langle a_{k}, e_{i}\right\rangle T_{e_{i}}\left(x_{k}\right)\right|^{2} & \leq \sum_{k=1}^{n}\left(\sum_{i=1}^{m}\left|\left\langle a_{k}, e_{i}\right\rangle\right|^{2}\right)\left(\sum_{i=1}^{m}\left|T_{e_{i}}\left(x_{k}\right)\right|^{2}\right) \\
& =\sum_{k=1}^{n}\left\|a_{k}\right\|_{2}^{2}\left(\sum_{i=1}^{m}\left|T_{e_{i}}\left(x_{k}\right)\right|^{2}\right) \leq \sum_{i, k}\left|T_{e_{i}}\left(x_{k}\right)\right|^{2}
\end{aligned}
$$

Combining with the preceding estimate, this yields

$$
\begin{equation*}
\left\|\sum_{k=1}^{n} \varepsilon_{k} T_{a_{k}}\left(x_{k}\right)\right\|_{\operatorname{Rad}\left(L^{q}\right)} \leq C_{0}\left\|\left(\sum_{i, k}\left|T_{e_{i}}\left(x_{k}\right)\right|^{2}\right)^{1 / 2}\right\|_{L^{q}} \tag{3.6}
\end{equation*}
$$

Now observe that since $\left(e_{1}, \ldots, e_{m}\right)$ is an orthonormal family of $L^{2}(I)$, we have

$$
\sum_{i}\left|\int_{I} e_{i}(t) \alpha(t) \mathrm{d} t\right|^{2} \leq \int_{I}|\alpha(t)|^{2} \mathrm{~d} t
$$

for any $\alpha \in L^{2}(I)$, hence we have a pointwise inequality

$$
\sum_{i}\left|T_{e_{i}}(x)\right|^{2} \leq \int_{I}\left|\varphi_{t}(x)\right|^{2} \mathrm{~d} t
$$

for any $x \in X_{0}$. Applying this to each x_{k}, we deduce that

$$
\sum_{i, k}\left|T_{e_{i}}\left(x_{k}\right)\right|^{2} \leq \int_{I} \sum_{k}\left|\varphi_{t}\left(x_{k}\right)\right|^{2} \mathrm{~d} t
$$

Since $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ is an orthonormal family of $L^{2}\left(\Omega_{0}\right)$, the right handside of the latter inequality can be written as

$$
\int_{I} \sum_{k}\left|\varphi_{t}\left(x_{k}\right)\right|^{2} \mathrm{~d} t=\int_{I} \int_{\Omega_{0}}\left|\sum_{k} \varepsilon_{k}(s) \varphi_{t}\left(x_{k}\right)\right|^{2} \mathrm{~d} \mathbb{P}(s) \mathrm{d} t .
$$

Owing to the Khintchine-Kahane inequality (see e.g. [17, p.74]), there is a numerical constant $C_{1} \geq 0$ such that

$$
\begin{aligned}
\left(\int_{\Omega_{0}} \int_{I}\left|\sum_{k} \varepsilon_{k}(s) \varphi_{t}\left(x_{k}\right)\right|^{2} \mathrm{~d}\right. & t \mathrm{dP}(s))^{1 / 2} \\
& \leq C_{1} \int_{\Omega_{0}}\left(\int_{I}\left|\sum_{k} \varepsilon_{k}(s) \varphi_{t}\left(x_{k}\right)\right|^{2} \mathrm{~d} t\right)^{1 / 2} \mathrm{dP}(s) .
\end{aligned}
$$

We therefore obtain that

$$
\begin{aligned}
\left(\sum_{i, k}\left|T_{e_{i}}\left(x_{k}\right)\right|^{2}\right)^{1 / 2} & \leq C_{1} \int_{\Omega_{0}}\left(\int_{I}\left|\sum_{k} \varepsilon_{k}(s) \varphi_{t}\left(x_{k}\right)\right|^{2} \mathrm{~d} t\right)^{1 / 2} \mathrm{~d} \mathbb{P}(s) \\
& =C_{1} \int_{\Omega_{0}}\left(\int_{I}\left|\varphi_{t}\left(\sum_{k} \varepsilon_{k}(s) x_{k}\right)\right|^{2} \mathrm{~d} t\right)^{1 / 2} \mathrm{~d} \mathbb{P}(s)
\end{aligned}
$$

Hence by (3.6), we deduce that

$$
\begin{aligned}
\left\|\sum_{k=1}^{n} \varepsilon_{k} T_{a_{k}}\left(x_{k}\right)\right\|_{\operatorname{Rad}\left(L^{q}\right)} & \leq C_{0} C_{1}\left\|\int_{\Omega_{0}}\left(\int_{I}\left|\varphi_{t}\left(\sum_{k} \varepsilon_{k}(s) x_{k}\right)\right|^{2} \mathrm{~d} t\right)^{1 / 2} \mathrm{dP}(s)\right\|_{L^{q}} \\
& \leq C_{0} C_{1} \int_{\Omega_{0}}\left\|\left(\int_{I}\left|\varphi_{t}\left(\sum_{k} \varepsilon_{k}(s) x_{k}\right)\right|^{2} \mathrm{~d} t\right)^{1 / 2}\right\|_{L^{q}} \mathrm{~d} \mathbb{P}(s) .
\end{aligned}
$$

It now remains to apply our assumption with $x=\sum_{k} \varepsilon_{k}(s) x_{k}$ for each $s \in \Omega_{0}$ to deduce that

$$
\left\|\sum_{k=1}^{n} \varepsilon_{k} T_{a_{k}}\left(x_{k}\right)\right\|_{\operatorname{Rad}\left(L^{q}\right)} \leq C_{0} C_{1} M\left\|\sum_{k} \varepsilon_{k} x_{k}\right\|_{\operatorname{Rad}(X)},
$$

which proves our R-boundedness property.
We record here the simple consequence of Lemma 3.2.
Lemma 3.4. - If C is R-admissible for A, then the set

$$
\left\{(-s)^{1 / 2} C R(s, A) ; s \in \mathbb{R}, s<0\right\}
$$

is R-bounded. The latter condition is equivalent to the existence of a constant $K>0$ such that

$$
\left\|\left(\int_{0}^{\infty}\left|C(t+A)^{-1} u(t)\right|^{2} \mathrm{~d} t\right)^{1 / 2}\right\|_{L^{q}(\Sigma)} \leq K\left\|\left(\int_{0}^{\infty}|u(t)|^{2} \frac{\mathrm{~d} t}{t}\right)^{1 / 2}\right\|_{L^{p}(\Omega)}
$$

for any $u \in L^{p}\left(\Omega ; L^{2}(0, \infty ; \mathrm{d} t / t)\right)$.
Proof. - The first part follows from Lemma 3.2 whereas the second part follows by simply adapting the proof of Lemma 2.1 to the case of a function valued in $B\left(L^{p}(\Omega), L^{q}(\Sigma)\right)$. We skip the details.

We now come to the main result of this section, which is an analogue of Theorem 3.1 for R-admissibility. We will say that a bounded analytic semigroup $T_{t}=\mathrm{e}^{-t A}$ on X is an R-bounded one if there exists $\alpha>0$ such that the set $\left\{\mathrm{e}^{-z A} ; z \in \Sigma_{\alpha}\right\} \subset B(X)$ is R-bounded. According to [22], this is equivalent to the existence of $\theta<\frac{1}{2} \pi$ such that $\left\{z R(z, A) ; z \in \bar{\Sigma}_{\theta}^{c}\right\}$ is R-bounded, hence (modulo (S3)) to the property that A is R-sectorial of R-type $<\frac{1}{2} \pi$.

Note that according to the comments following Theorem 3.1, if $T_{t}=\mathrm{e}^{-t A}$ is a bounded analytic semigroup on $L^{p}(\Omega)$, then $A^{1 / 2}$ is R-admissible for A if and only if there is a constant $M>0$ such that

$$
\begin{equation*}
\|x\|_{F_{0}}=\left\|\left(\int_{0}^{\infty}\left|F_{0}(t A) x\right|^{2} \frac{\mathrm{~d} t}{t}\right)^{1 / 2}\right\|_{L^{p}(\Omega)} \leq M\|x\|_{L^{p}(\Omega)}, \quad x \in L^{p}(\Omega) \tag{3.7}
\end{equation*}
$$

Here F_{0} is defined by $F_{0}(z)=z^{1 / 2} \mathrm{e}^{-z}$.
Theorem 3.5. - Let $T_{t}=\mathrm{e}^{-t A}$ be an R-bounded analytic semigroup on $L^{p}(\Omega)$, with $1<p<\infty$. Then the following assertions are equivalent.
(i) $A^{1 / 2}$ is R-admissible for A.
(ii) For any $1<q<\infty$ and any measure space Σ, a continuous mapping $C: D(A) \rightarrow L^{q}(\Sigma)$ is R-admissible for A if and only if the set $\left\{(-\operatorname{Re}(\lambda))^{1 / 2} C R(\lambda, A) ; \lambda \in \mathbb{C}, \operatorname{Re}(\lambda)<0\right\}$ is R-bounded.

TOME $132-2004-\mathrm{N}^{\mathrm{O}} 1$
(iii) For any $1<q<\infty$ and any measure space Σ, a continuous mapping $C: D(A) \rightarrow L^{q}(\Sigma)$ is R-admissible for A if and only if the set $\left\{(-s)^{1 / 2} C R(s, A) ; s \in \mathbb{R}, s<0\right\}$ is R-bounded if and only if there is a constant $K>0$ such that

$$
\left\|\left(\int_{0}^{\infty}\left|C(t+A)^{-1} u(t)\right|^{2} \mathrm{~d} t\right)^{1 / 2}\right\|_{L^{q}(\Sigma)} \leq K\left\|\left(\int_{0}^{\infty}|u(t)|^{2} \frac{\mathrm{~d} t}{t}\right)^{1 / 2}\right\|_{L^{p}(\Omega)}
$$

for any $u \in L^{p}\left(\Omega ; L^{2}(0, \infty ; \mathrm{d} t / t)\right)$.
Proof. - Owing to the results proved before, the proof is now a simple adaptation of that of Theorem 3.1 (stated as Theorem 4.1 in [16]). We shall therefore only sketch it. It is well-known that since $X=L^{p}(\Omega)$ is reflexive, it is the direct sum of the kernel of A and of the closure of the range of A hence we may clearly assume that A has a dense range. We let $\omega<\frac{1}{2} \pi$ be such that A is R-sectorial of R-type ω.

It is obvious that (iii) implies (ii). To prove that (ii) implies (i), it suffices to show that the set

$$
\left\{|\lambda|^{1 / 2} A^{1 / 2} R(\lambda, A) ; \lambda \in \mathbb{C}, \operatorname{Re}(\lambda)<0\right\}
$$

is R-bounded. For we fix some angle $\gamma \in\left(\omega, \frac{1}{2} \pi\right)$ and we write

$$
(-\lambda)^{1 / 2} A^{1 / 2} R(\lambda, A)=\frac{1}{2 \pi i} \int_{\Gamma_{\gamma}} \frac{(-\lambda)^{1 / 2} z^{1 / 2}}{\lambda-z} R(z, A) \mathrm{d} z, \quad \lambda \in \mathbb{C}, \operatorname{Re}(\lambda)<0
$$

Since the set $\left\{z R(z, A) ; z \in \Gamma_{\gamma}\right\}$ is R-bounded, Lemma 2.2 ensures that it suffices to prove that for a certain constant $K>0$, we have

$$
\int_{\Gamma_{\gamma}} \frac{|\lambda z|^{1 / 2}}{|\lambda-z|} \cdot\left|\frac{\mathrm{d} z}{z}\right| \leq K, \quad \lambda \in \mathbb{C}, \operatorname{Re}(\lambda)<0
$$

This estimate holds true and is established in the course of the proof of [16, Theorem 4.1].

We now assume that $A^{1 / 2}$ is R-admissible for A and will prove (iii). We consider a continuous mapping $C: D(A) \rightarrow L^{q}(\Sigma)$. In view of Lemma 3.4, we only need to prove that if the set

$$
\begin{equation*}
\left\{(-s)^{1 / 2} C R(s, A) ; s \in \mathbb{R}, s<0\right\} \tag{3.8}
\end{equation*}
$$

is R-bounded, then C is R-admissible for A. Arguing as in the proof of [16, Lemma 2.3], we obtain that the R-boundedness of (3.8) implies the existence of an angle $\nu \in(\omega, \pi)$ such that

$$
\begin{equation*}
\left\{|z|^{1 / 2} C R(z, A) ;|\operatorname{Arg}(z)| \geq \nu\right\} \tag{3.9}
\end{equation*}
$$

is R-bounded as well. Then arguing as in the proof of [16, Theorem 4.1], we find $\theta \in(\nu, \pi)$ and functions $F_{1}, F_{2} \in H_{0}^{\infty}\left(\Sigma_{\omega+}\right)$ and $G_{1}, G_{2} \in H_{0}^{\infty}\left(\Sigma_{\theta}\right)$ such
that $F_{0}=G_{1} F_{1}+G_{2} F_{2}$. According to (3.5), this yields

$$
\begin{equation*}
C T_{t}(x)=\left[C A^{-1 / 2} G_{1}(t A)\right] \frac{F_{1}(t A) x}{\sqrt{t}}+\left[C A^{-1 / 2} G_{2}(t A)\right] \frac{F_{2}(t A) x}{\sqrt{t}} \tag{3.10}
\end{equation*}
$$

for any $t>0$ and every $x \in D(A)$. By our assumption (i), the estimate (3.7) holds for some $M>0$. We therefore deduce from Theorem 1.1 that for some constants $M_{1}, M_{2}>0$, we also have estimates

$$
\begin{equation*}
\|x\|_{F_{1}} \leq M_{1}\|x\| \quad \text { and } \quad\|x\|_{F_{2}} \leq M_{2}\|x\| \tag{3.11}
\end{equation*}
$$

As we already said, Lemma 2.1 extends to the case of functions valued in $B\left(L^{p}(\Omega), L^{q}(\Sigma)\right)$. Hence to deduce the R-admissibility of C from (3.10) and (3.11), it now suffices to check that for $j=1,2$, the set

$$
\begin{equation*}
\left\{C A^{-1 / 2} G_{j}(t A) ; t>0\right\} \tag{3.12}
\end{equation*}
$$

is R-bounded. According to the proof of [16, Theorem 4.1], each of the operators of the latter set has the following integral representation:

$$
C A^{-1 / 2} G_{j}(t A)=\frac{1}{2 \pi i} \int_{\Gamma_{\nu}} z^{-1 / 2} G_{j}(t z) C R(z, A) \mathrm{d} z
$$

Since the set (3.9) is R-bounded and $\int_{\Gamma_{\nu}}\left|G_{j}(t z)\right| \cdot|\mathrm{d} z / z|=\int_{\Gamma_{\nu}}\left|G_{j}(z)\right| \cdot|\mathrm{d} z / z|<\infty$ for any $t>0$, we deduce from Lemma 2.2 that the set (3.12) is indeed R bounded, which concludes our proof.
Remark 3.6. - If A is a sectorial operator on $L^{p}(\Omega)$ with a bounded $H^{\infty}\left(\Sigma_{\theta}\right)$ functional calculus for some $\theta<\frac{1}{2} \pi$, then it satisfies (3.7) by [6] hence $A^{1 / 2}$ is admissible for A. Furthermore it is R-sectorial of R-type $<\frac{1}{2} \pi$ by [14, Theorem 5.3], hence $T_{t}=\mathrm{e}^{-t A}$ is an R-bounded analytic semigroup. Consequently, A satisfies the assertion (iii) of Theorem 3.5.
Remark 3.7. - In [16, Section 5], we exhibited a sectorial operator A_{0} on ℓ^{2} such that $A_{0}^{1 / 2}$ is admissible for A_{0} although A_{0} has no bounded H^{∞} functional calculus. Using the fact that $L^{p}(\mathbb{R})$, say, contains a complemented subspace isomorphic to ℓ^{2} when $1<p<\infty$, it is easy to transfer A_{0} to an operator A on $L^{p}(\mathbb{R})$ satisfying the assertions of Theorem 3.5 but having no bounded H^{∞} functional calculus.

BIBLIOGRAPHY

[1] Arendt (W.) \& Bu (S.) - The operator valued Marcinkiewicz multiplier theorem and maximal regularity, Math. Z., t. 240 (2002), pp. 311-343.
[2] Auscher (P.), Duong (X.T.) \& McIntosh (A.) - in preparation.
[3] Auscher (P.), McIntosh (A.) \& Nahmod (A.) - Holomorphic functional calculi of operators, quadratic estimates and interpolation, Indiana Univ. Math. J., t. 46 (1997), pp. 375-403.
[4] Clément (P.), De Pagter (B.), Sukochev (F.) \& Witvliet (H.) Schauder decompositions and multiplier theorems, Studia Math., t. 138 (2000), pp. 135-163.
[5] Clément (P.) \& Pruss (J.) - An operator valued transference principle and maximal regularity on vector valued L_{p}-spaces, in Proc. of the Sixth International Conference on Evolution Equations and their Applications in Physical and Life Sciences (Bad Herrenalb, 1998) (Lumer (G.) \& Weis (L.), eds.), Marcel Dekker, New-York, 2001, pp. 67-87.
[6] Cowling (M.), Doust (I.), McIntosh (A.) \& Yagi (A.) - Banach space operators with a bounded H^{∞} functional calculus, J. Austr. Math. Soc., t. 60 (1996), pp. 51-89.
[7] Garnett (J.B.) - Bounded analytic functions, Pure and applied Mathematics, vol. 96, Academic Press, 1981.
[8] Grabowsky (P.) \& Callier (F.M.) - Admissible observation operators. Semigroup criteria of admissibility, Int. Equ. Oper. Theory, t. 25 (1996), pp. 182-198.
[9] Jacob (B.) \& Partington (J.R.) - The Weiss conjecture on admissibility of observation operators for contraction semigroups, Int. Equ. Oper. Theory, t. 40 (2001), pp. 231-243.
[10] Jacob (B.), Partington (J.R.) \& Pott (S.) - Admissible and weakly admissible observation operators for the right shift semigroup, Proc. Edinburgh Math. Soc., t. 45 (2002), pp. 353-362.
[11] Jacob (B.), Staffans (O.) \& Zwart (H.) - Weak admissibility does not imply admissibility for analytic semigroups, 2003.
[12] Jacob (B.) \& Zwart (H.) - Disproof of two conjectures of George Weiss, Preprint, 2000.
[13] Kalton (N.) \& Lancien (G.) - A solution to the problem of L^{p}-maximal regularity, Math. Z., t. 235 (2000), pp. 559-568.
[14] Kalton (N.) \& Weis (L.) - The H^{∞} calculus and sums of closed operators, Math. Ann., t. 321 (2001), pp. 319-345.
[15] Lancien (F.), Lancien (G.) \& Le Merdy (C.) - A joint functional calculus for sectorial operators with commuting resolvents, Proc. London Math. Soc., t. 77 (1998), pp. 387-414.
[16] Le Merdy (C.) - The Weiss conjecture for bounded analytic semigroups, J. London Math. Soc. (2), t. 67 (2003), pp. 715-738.
[17] Lindenstrauss (J.) \& Tzafriri (L.) - Classical Banach spaces II, Springer Verlag, Berlin, 1979.
[18] McIntosh (A.) - Operators which have an H^{∞} functional calculus, in Miniconference on operator theory and partial differential equations, Proc. of CMA, Canberra, vol. 14, 1986, pp. 210-231.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
[19] McIntosh (A.) \& Yagi (A.) - Operators of type ω without a bounded H^{∞} functional calculus, in Miniconference on operators in analysis, Proc. of CMA, Canberra, vol. 24, 1989, pp. 159-172.
[20] Partington (J.R.) \& Weiss (G.) - Admissible observation operators for the right shift semigroup, Math. Cont. Signals Systems, t. 13 (2000), pp. 179-192.
[21] Weis (L.) - A new approach to maximal L_{p}-regularity, in Proc. of the Sixth International Conference on Evolution Equations and their Applications in Physical and Life Sciences (Bad Herrenalb, 1998) (Lumer (G.) \& Weis (L.), eds.), Lecture Notes in Pure and Appl. Math., vol. 215, Marcel Dekker, New-York, 2001, pp. 195-214.
[22] \qquad , Operator valued Fourier multiplier theorems and maximal regularity, Math. Ann., t. 319 (2001), pp. 735-758.
[23] Weiss (G.) - Admissibility of unbounded control operators, SIAM J. Control Optim., t. 27 (1989), pp. 527-545.
[24] _ Admissible observation operators for linear semigroups, Israel J. Math., t. 65 (1989), pp. 17-43.
[25] _, Two conjectures on the admissibility of control operators, in Estimation and control of distributed parameter systems, Birkäuser Verlag, 1991, pp. 367-378.

Note added on proofs. - We learned that some of the results in Section 3 were obtained independently by Bernhard Haak (Karlsruhe). His work should appear soon in his Ph.D. thesis.

[^0]: BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

[^1]: BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

