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DUAL BLOBS AND PLANCHEREL FORMULAS

by Ju-Lee Kim

Abstract. — Let k be a p-adic field. Let G be the group of k-rational points of a
connected reductive group G defined over k, and let g be its Lie algebra. Under certain

hypotheses on G and k, we quantify the tempered dual Ĝ of G via the Plancherel
formula on g, using some character expansions. This involves matching spectral de-
composition factors of the Plancherel formulas on g and G. As a consequence, we
prove that any tempered representation contains a good minimal K-type; we extend
this result to irreducible admissible representations.

Résumé (Blobs duaux et formule de Plancherel). — Soient k un corps p-adique, G un
groupe réductif connexe défini sur k, G son groupe de points k-rationnels et g l’algèbre

de Lie de G. Sous certaines hypothèses, nous quantifions le dual tempéré Ĝ de G par la
formule de Plancherel sur g, en utilisant des développements en caractères. Pour cela, il
faut en particulier mettre en correspondance les facteurs de la décomposition spectrale
de la formule de Plancherel sur g et sur G. Comme conséquence, nous démontrons que
toute représentation tempérée contient un bon K-type minimal ; nous étendons aussi
ce résultat aux représentations admissibles irréductibles.
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Introduction

Let k be a p-adic field, G a connected reductive group defined over k, and G

the group of k-rational points of G. Let G̃ be the set of the equivalence classes

of irreducible admissible representations of G. To study G̃, representations
of compact open subgroups of G have been useful. In particular, Moy and
Prasad studied open compact subgroups coming from the theory of the Bruhat-
Tits building B(G) of G. They introduced (unrefined) minimal K-types of the
form s := (Gx,%, χ), where Gx,% is an open compact subgroup of G associated
to (x, %) ∈ B(G) × R≥0, and χ is an irreducible representation of Gx,% of a
certain type. If we introduce weak associativity, an equivalence relation of

minimal K-types (see Definition 2.2.1), we can partition G̃ as follows

G̃ =
◦⋃

s∈SK

G̃s,

where G̃s is the set of (π, Vπ) ∈ G̃ containing a minimal K-type weakly associ-
ated to s, and SK is the set of equivalence classes of weakly associated minimal
K-types.

Let Ĝ be the tempered dual of G. Recall that Ĝ is the support of the
Plancherel measures in the unitary dual of G. Let ĝ be the unitary dual of g.
Then ĝ is also a tempered dual of g. In this paper, we“quantify”the Plancherel

integral over each Ĝs := Ĝ ∩ G̃s in terms of the Plancherel integral over an
appropriate G-domain in the Lie algebra g of G, when the residue characteristic
of k is large. Based on the Kirillov theory of compact p-adic groups [10], such
a quantification first appeared in the work of Howe [11]. To start with, we
observe that from Plancherel formulas on g and G, we have

(Pl)

∫

ĝ'g

f̂(X)dX = f(0) =

∫

Ĝ

Θπ(f ◦ log)dπ

for any f ∈ C∞
c (ĝ) ' C∞

c (g) supported in a small neighborhood of 0 (here, we
identify g and ĝ via Pontrjagin duality). Now, we can refine this equality: we
find an equality between spectral decomposition factors of each side (see 1.4.5
and 3.2.6) of (Pl), where spectral components of the right hand side are param-
eterized by certain minimal K-types, and those of the left hand side by some
related G-domains in ĝ.

To be more precise, from now on, we fix a good minimal K-type s = (Gx,%, χ).
Note that the depth of s is %. A minimal K-type is good when its dual blob (the
dual coset realizing χ) is good (see [3] or 1.2.2, 3.2.1). Let S be the dual blob

of s, and let G̃S ⊂ G̃s be the set of (π, Vπ) ∈ G̃s containing good K-types weakly
associated to S (in this paper, we introduce three weak associativities: between
minimal K-types (2.2.1), between good cosets (1.4.1), between good K-types and

good cosets (3.2.3)). Then we match the Plancherel integral over ĜS := Ĝ ∩ G̃S
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DUAL BLOBS AND PLANCHEREL FORMULAS 57

with the Fourier transform of some distribution supported on a G-domain g
S

in g coming from S. Roughly speaking, g
S

is the G-orbit of good dual blobs
weakly associated to s (see 1.4.3). In particular, for two good minimal K-types

s′ and s′′ with dual blobs S ′ and S ′′, if G̃s′ ∩ G̃s′′ = ∅, then g
S′ ∩ g

S′′ = ∅.

Moreover, g =
◦
∪g

S′ (see 1.4.5) where S ′ runs over weakly associated classes

of good cosets. We remark that the depth of any (π, Vπ) ∈ G̃S is the same
as the depth % of s, and the depth of g

S
(see Definition 1.2.3) is −%. Let

g% :=
⋃

x∈B(G) gx,%. When % > 0, we prove that for any f ∈ C∞
c (g%),

(1)

∫

g
S

f̂(X)dX =

∫

ĜS

Θπ(f ◦ log)dπ.

Summing over S in weakly associated classes of good cosets, we see∫

g

f̂(X)dX =
∑

S

∫

g
S

f̂(X)dX(2)

=
∑

S

∫

ĜS

Θπ(f ◦ log)dπ =

∫

Ĝ

Θπ(f ◦ log)dπ,

which leads to the proof that every tempered representation contains a good
minimal K-type (see Theorem 4.5.1) when the residue characteristic is large.
Under the same hypothesis, we also show that any irreducible admissible rep-
resentation contains a good minimal K-type. This fact has been already proved
(see [13, 2.4.10]) using more tools from the theory of buildings. Although we
still use such tools quite a bit, this work is just an initial step to approach the
problem on the exhaustion of the types constructed in [12]. In this sense, the
purpose of this paper is rather a piecewise quantification, i.e., a matching of
spectral decomposition factors as in (1) (see Theorem 3.3.1). However, one can
hope that this analytic approach might be more fruitful for generalization.

To prove the equality in (1), we regard both sides of (1) as distributions
on C∞

c (g%). Here, the domain where (1) holds is restricted to g%, however,

this is large enough to single out G̃s from G̃ in the following sense: there

are f ∈ C∞
c (g%) such that Θπ(f ◦ log) 6= 0 implies π ∈ G̃s. On the other

hand, C∞
c (g%+) (here, g%+ =

⋃
s>% gs) can not isolate better than the set of

depth % representations which strictly contains G̃s. In the case of depth zero
representations, it is not possible to distinguish a single class of K-types by dual

cosets. Hence replacing g
S

and G̃S by a G-domain g0 and the set of all depth

zero representations G̃0, we prove an analogous equality on C∞
c (g0+). However,

this is good enough to prove that any tempered representation contains a good
minimal K-type.

We approach this problem via various character expansions and homogeneity
results. When % = 0, by the work of Waldspurger and DeBacker (see [18], [5]),
we know that the Harish-Chandra-Howe local character expansion is valid on
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58 KIM (J.-L.)

the set g0+ of topologically nilpotent elements in g. We show that the distribu-
tions in (1) are in the span of Fourier transforms of nilpotent orbital integrals
when restricted to g0+ . Then we match two distributions using Gelfand-Graev
functions as test functions as in [4].

If % > 0, the Harish-Chandra-Howe expansions are not enough, because
the set g%+ where they hold is not big enough. Hence we use Γ-asymptotic

expansions of representations in G̃S . In [13], F. Murnaghan and the au-
thor proved that such expansions are valid on the G-domain g%. More pre-
cisely, assume that π contains a good type coming from a good element Γ of
depth −% (see [3] or 1.2.1–1.2.2 for definition). Denote the set of G-orbits
whose closure contains Γ by O(Γ). Then we can express the character distri-
bution Θπ as a linear combination of Fourier transforms of orbital integrals µO

with O ∈ O(Γ). That is, if π is an irreducible admissible representation of G
containing (Gx,%, χ), and if χ is realized by a good element Γ, we prove that
there are cO(π) ∈ C indexed by O(Γ) such that

Θπ(exp X) =
∑

O∈O(Γ)

cO(π)µ̂O(X),

and this expansion is valid on g% ∩ greg. Then we show that the distributions
in (1) are in the span of Fourier transforms of µO with O ∈ O(Γ) when restricted
to g%, and we match two distributions using some test functions found in [13].

In the first section, we recall some basic definitions related to this work,
and state the hypotheses that we use at various places of this paper. We
also define the weak associativity of good cosets, which induces a partition
of g accordingly (§1.4). Then we show that this partition induces a spectral
decomposition as in (2) (see Lemma 1.4.5). In Section 2, we define the weak

associativity of minimal K-types, which induces a partition of G̃. In Section 3,

we relate the partitions on g and G̃ found in the first two sections. Section 4
is basically devoted to proving the equality in (1) (see Theorem 3.3.1). As an
application, in the end of Section 4, we prove that any tempered representation
contains a good minimal K-type; we also discuss the extension of this result to
irreducible admissible representations. As a corollary, we also get a new spectral
decomposition of the delta distribution on G where each decomposition factor
is parameterized by the G-orbit of a good dual blob.

Acknowledgments. — This work was motivated from conversations with
R. Howe. I would like to thank him for helpful discussions. I would like to
thank A.-M. Aubert, S. DeBacker and F. Murnaghan for helpful comments.
I thank the Institute for Advanced Study for its friendly and stimulating
atmosphere.

Notation and Conventions. — Let k be a p-adic field (a finite extension
of Qp) with residue field Fpn . Let ν = νk be the valuation on k such that
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DUAL BLOBS AND PLANCHEREL FORMULAS 59

ν(k×) = Z. Let k be an algebraic closure of k. For an extension field E of k,
let νE be the valuation on E extending ν. We will just write ν for νE . Let OE

be the ring of integers of E with prime ideal pE. Let Λ be a fixed additive
character of k such that Λ Ok

6= 1 and Λ pk
= 1.

Let G be a connected reductive group defined over k, and G(E) the group
of E-rational points of G. We denote by G the group of k-rational points of G.
Denote the Lie algebras of G and G(E) by g and g(E), respectively. Denote by
g∗ and g∗(E) the linear duals of g and g(E) respectively. We write g and g∗

for the vector space of k-rational points of g and g∗ respectively. In general,
we use bold characters H, M, N, etc. to denote algebraic groups defined over k,
corresponding Roman characters H, M and N to denote the groups of k-points,
and h, m and n to denote the Lie algebras of H, M and N .

Denote the set of regular elements in g by greg. Let N be the set of nilpotent
elements in g. There are different notions of nilpotency. However, since we
assume that char(k) = 0, those notions are all the same. We refer to [14], [6]
for more discussion of this.

If X is a topological space with a Borel measure dx and if Y is a subset
of X , volX (Y ) denotes the volume of Y with respect to dx.

For any subset S in g, we denote by [S] the characteristic function of S, and
by −S the set {−s | s ∈ S}. For g ∈ G, gZ denotes gZg−1 and for H ⊂ G, HS
denotes { gZ | Z ∈ S, g ∈ H}.

Let G̃ be the set of equivalence classes of irreducible admissible representa-

tions of G. Let Ĝ be the subset of G̃ which consists of equivalence classes of
tempered representations of G.

1. Good cosets and g

1.1. Moy-Prasad filtrations. — For a finite extension E of k, let B(G, E)
denote the extended Bruhat-Tits building of G over E. For a maximal torus T

in G, if it splits over E, let A(T, E) be the corresponding apartment over E.
It is known that if E′ is a tamely ramified Galois extension of E, B(G, E) can
be embedded into B(G, E′) and its image is equal to the set of the Galois fixed
points in B(G, E′) (see [17, 5.11] or [16]). Moreover, we have

A(T, E) = A(T, E′) ∩ B(G, E).

We let A(T, k) := A(T, E) ∩ B(G, k).

Regarding G as a group defined over E, Moy and Prasad associate g(E)x,r

and G(E)x,|r| to (x, r) ∈ B(G, E)×R with respect to the valuation normalized
as follows [14]: let Eu be the maximal unramified extension of E, and L the
minimal extension of Eu over which G splits. Then the valuation used by Moy
and Prasad maps L× onto Z.
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In a similar way, with respect to our normalized valuation ν, we can define
filtrations in g(E) and G(E). Then our g(E)x,r and G(E)x,r correspond to
g(E)x,e`r and G(E)x,e`r of Moy and Prasad, where e = e(E/k) is the rami-
fication index of E over k and ` = [L : Eu]. Hence, if $E is a uniformizing
element of E, our filtrations satisfy $Eg(E)x,r = g(E)x,r+1/e while theirs
satisfy $Eg(E)x,r = g(E)x,r+`.

This normalization is chosen to have the following property [1, 1.4.1]: for a
tamely ramified Galois extension E ′ of E and x ∈ B(G, E) ⊂ B(G, E ′), we have

g(E)x,r = g(E′)x,r ∩ g(E).

If r > 0, we also have

G(E)x,r = G(E′)x,r ∩ G(E).

Remark 1.1.1. — Let r ∈ 1
e Z. Two points x and y in B(G, E) lie in the same

facet if and only if

g(E)x,r = g(E)y,r and g(E)x,r+ = g(E)y,r+ .

1.1.2. — For simplicity, we put B(G) := B(G, k) and gx,r := g(k)x,r, etc. We
will also use the following notation. Let r ∈ R. Then,

1) gx,r+ =
⋃

s>r gx,s and Gx,|r|+ =
⋃

s>|r| Gx,s, x ∈ B(G);

2) g∗x,r =
{
χ ∈ g∗ | χ(gx,(−r)+) ⊂ pk

}
, x ∈ B(G);

3) gr =
⋃

x∈B(G) gx,r and gr+ =
⋃

s>r gs;

4) Gr =
⋃

x∈B(G) Gx,r and Gr+ =
⋃

s>r Gs for r ≥ 0.

For (x, r) ∈ B(G, E)×R, we can define corresponding objects in g(E), g∗(E)
and G(E). We will denote them using (E).

1.2. Depth functions and good elements. — Recall that the depth func-
tion on B(G, k) × g is a function d : B(G, k) × g → R defined as follows: for
X ∈ g and x ∈ B(G, k), let d(x, X) = r be the depth of X in the x-filtration,
that is, r is the unique real number such that X ∈ gx,r\ gx,r+ . We also define

d(X) = supx∈B(G,k)d(x, X).

Note that the depth d(X) of X is the unique r in R∪{∞} such that X ∈ gr\ gr+ .
Moreover, d is well defined and locally constant on g\N , and it is ∞ on N
(see [2, 3.3.4]). We can also define a depth function dE over a finite exten-
sion E of k. If E is tamely ramified, thanks to our normalization of valuation,
we observe that for any x ∈ B(G, k) and X ∈ g, d(x, X) = dE(x, X) and
d(X) = dE(X) (see [2]). Hence we may omit the superscript ‘E’ in that case.
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Let T be a maximal k-torus which splits over a tamely ramified Galois ex-
tension E of k, and let t be its Lie algebra. Then T := T(k) and t := t(k) have
the following filtrations:

• for r ∈ R, tr :=
{
Γ ∈ t | ν(dχ(Γ)) ≥ r for all χ ∈ X∗(T)

}
and

• for r > 0, Tr :=
{
t ∈ T | ν(χ(t) − 1) ≥ r for all χ ∈ X∗(T)

}
.

Note that Tr = T ∩ T(E)r and tr = t ∩ t(E)r.

Definition 1.2.1 (see [3]). — Let T be a maximal k-torus which splits over
a tamely ramified Galois extension of k, and let t be its Lie algebra.

1) If Γ ∈ tr\ tr+ , we say that Γ is of depth r with respect to T, and we write
dT(Γ) = r.

2) Let Γ ∈ g be a semisimple element of depth r with respect to t. Then Γ
is called good with respect to T if for every root α of G with respect to T, dα(Γ)
is either zero or has valuation r.

The depth and goodness of semisimple elements do not depend on the choice
of T, and in fact dT(Γ) = d(Γ) (see [13, 2.1.2], [1]). Note that 0 ∈ g is a good
element of depth ∞.

Definition 1.2.2 (see [3], [13]). — 1) Let r < 0. A coset S = X + gx,r+

with X ∈ gx,r\ gx,r+ is good if there is a good element Γ of depth r such that
Γ + gx,r+ = X + gx,r+ and x ∈ B(CG(Γ), k).

2) For x ∈ B(G, k), S := gx,0 is called a 0-good coset.

Definition and Remark 1.2.3. — Let S be a good coset. Define the
depth d(S) of S as

d(S) := min
X∈S

d(X).

Then if S is a 0-good coset, d(S) = 0. If S = Γ + gx,r+ with r < 0, for any
X ∈ S, then d(S) = d(X) = r by [2, 3.3.7].

1.3. B(G′, k). — Let T be a maximal k-torus in G which splits over a tamely
ramified Galois extension E of k, and let t be its Lie algebra. Let Γ be a
semisimple element in t. Let G′ denote the centralizer CG(Γ) of Γ in G, and g′

its Lie algebra. Then (G′, G) forms a twisted Levi sequence, that is, G′(E) is
an E-Levi subgroup of G(E) (see [20]). In particular, if Γ splits over k, G′

is a Levi subgroup of G. In general, G′(E) is a Levi subgroup of G(E), and
hence there is a Galois equivariant embedding of B(G′, E) into B(G, E), which
in turn induces an embedding of B(G′, k) into B(G, k) (see [1, §1.9] or [20, 2.11]).
Such embeddings are unique modulo translation by elements of X∗(ZG′ , k)⊗R.
However, the images remain the same.

Fix such an embedding i : B(G′, k) → B(G, k). Then we will regard B(G′, k)
as a subset of B(G, k) and write just x for i(x). For any x ∈ B(G′, k), the
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associated filtrations on G′ := G′(k) and g′ := g′(k) are given as follows
(see [1, 1.9.1]):

G′
x,r = G(E)x,r ∩ G′ = Gx,r ∩ G′ for r > 0,

g′x,r = g(E)x,r ∩ g′ = gx,r ∩ g′ for any r ∈ R.

For later use, we need some lemmas on good cosets. The implication of
Lemma 1.3.2 on good K-types can be found in Corollary 3.2.2. We first need
to recall the following. Let r ∈ R. In [6], DeBacker defined the notion of
generalized r-facets in the affine building of a reductive group. For the purposes
of this paper, it suffices to consider the set of generalized r-facets in B(G′, k).

Definition 1.3.1 (see [6]). — For x ∈ B(G′, k), define

F ∗(x) : =
{
y ∈ B(G′, k) | g′x,r = g′y,r and g′x,r+ = g′y,r+

}

=
{
y ∈ B(G′, k) | G′

x,|r| = G′
y,|r| and G′

x,|r|+ = G′
y,|r|+

}
,

F(r) : =
{
F ∗(x) | x ∈ B(G′, k)

}
.

An element in F(r) is called a generalized r-facet in B(G′, k). For F ∗ := F ∗(x)
in F(r), define

g′F∗ := g′x,r, g′+F∗ := g′x,r+ , G′
F∗ := G′

x,r, G′+
F∗ := G′

x,r+ .

Lemma 1.3.2. — Let x ∈ B(G′, k), and let X ′ ∈ gx,r ∩ g′r+. Then there exist
g ∈ G′

x,0 and y ∈ B(G′, k) such that

(i) Γ + gX ′ + gx,r+ ⊂ Γ + gy,r+, and

(ii) gx,r+ ⊂ gy,r+ and gx,r ⊃ gy,r.

Proof. — Since X ′ ∈ g′r+ , there is a nilpotent element n′ ∈ g′ such that

Γ + X ′ + g′x,r+ = Γ + n′ + g′x,r+ .

Let F ∗ ⊂ B(G′, k) be a maximal generalized r-facet which contains x in the
closure. From [15, 6.3], we can deduce that there is a g ∈ G′

x,0 such that

n′′ = gn′ ∈ g′+F∗ . Then

Γ + gX ′ + gx,r+ = Γ + gn′ + gx,r+ = Γ + n′′ + gx,r+.

Recall that Γ splits over a tamely ramified Galois extension E of k. Hence
G′(E) is an E-Levi subgroup of G(E). Let T be a maximal E-split torus in G

such that Γ ∈ t(E), F ∗ ∩ A(T, E) 6= ∅, and x ∈ A(T, E). Note that since
T ⊂ G′, A(T, E) ⊂ B(G′, E). Let C ⊂ A(T, E) be a chamber in B(G, E) such
that x ∈ C and F ∗ ∩ C 6= ∅. Choose ỹ ∈ C. Then

g(E)ỹ,r ⊂ g(E)x,r and g(E)x,r+ ⊂ g(E)ỹ,r+ .
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For any z ∈ F ∗ ∩ C, g′z,r+ = g′+F∗ and g′(E)z,r+ ⊂ g′(E)ỹ,r+ . Hence n′′ is an

element of g′+F∗ ⊂ g′(E)ỹ,r+ . Let y be the center of mass of the Galois orbit
of ỹ. Then y ∈ A(T, k) ⊂ B(G′, k). Note that

n′′ ∈
⋂

σ∈Gal(E/k)

g(E)ỹσ ,r+ ⊂ g(E)y,r+ ,

g(E)x,r+ ⊂
⋂

σ∈Gal(E/k)

g(E)ỹσ ,r+ ⊂ g(E)y,r+ ,

g(E)y,r ⊂
∑

σ∈Gal(E/k)

g(E)ỹσ ,r ⊂ g(E)x,r.

Hence y satisfies the required properties.

Remarks 1.3.3. — Let Γ be a good element and let G′ := CG(Γ). Let x
in B(G′, k). We recall some results from [13, §2].

1) If X ′ ∈ gx,r ∩ g′r+ , we have G
x,0+(Γ + X ′ + g′x,r+) = Γ + X ′ + gx,r+ .

2) B(G′, k) = {x ∈ B(G, k) | d(x, Γ) = d(Γ)}.

3) For any y ∈ B(G, k)\ B(G′, k) and X ′ ∈ g′r+ , d(y, Γ + X ′) is strictly less
than r.

4) Let X1, X2 ∈ Γ + g′x,r+ . If gX1 = X2 for some g ∈ G, then g ∈ CG(Γ).

Lemma 1.3.4. — Let Γ be a good element and let G′ := CG(Γ). Let x
in B(G′, k), and let X ′ ∈ gx,r ∩ g′r+. Let Z + gz,r+ be a coset in gz,r where
z ∈ B(G, k). If (Γ + X ′ + gx,r+) ∩ (Z + gz,r+) 6= ∅, then there exist h ∈ Gx,0+

and n′ ∈ g′hz,r ∩N such that hz ∈ B(G′, k) and Z + gz,r+ = h−1

(Γ+n′)+ gz,r+.

Proof. — Since (Γ + X ′ + gx,r+)∩ (Z + gz,r+) 6= ∅, by Remark 1.3.3, 1), there

exist h ∈ Gx,0+ and Y ′ ∈ X ′ + g′x,r+ such that h−1

(Γ + Y ′) ∈ Z + gz,r+ . Hence

Γ + Y ′ + ghz,r+ = hZ + ghz,r+ . From Remark 1.3.3, 3), hz ∈ B(G′, k). Since
Y ′ ∈ g′r+ by [2, 3.2.2, 3.2.6], there is an n′ ∈ g′hz,r∩N such that Γ+n′+ghz,r+ =

Γ + Y ′ + ghz,r+ . Hence Z + gz,r+ = h−1

(Γ + n′) + gz,r+ .

Lemma 1.3.5. — Let T be a maximal k-torus in G which splits over a tamely
ramified extension E. Let Γ1, Γ2 ∈ t be two good semisimple elements of depth r
such that Γ1 ≡ Γ2 (mod tr+). Then CG(Γ1) = CG(Γ2). Moreover, Γ1−Γ2 is in
the center of the Lie algebra of CG(Γ1).

Proof. — Let x ∈ A(T, k). Then Γ1 + gx,r+ = Γ2 + gx,r+ is a good coset.
Applying Remark 1.3.3, 4) for X1 = X2 = Γ1 and Γ = Γ2, we have CG(Γ1) ⊂
CG(Γ2). Similarly, CG(Γ2) ⊂ CG(Γ1). Hence CG(Γ1) = CG(Γ2). The second
statement follows from the first one.
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Hypotheses 1.3.6. — Here we list the hypotheses used in various places of
this paper. These are already used in [4], [5], [13]. We will state explicitly
whenever these hypotheses are necessary.

(HB) There is a nondegenerate G-invariant symmetric bilinear form B on
g such that g∗x,r is identified with gx,r via the map Ω : g → g∗ defined by
Ω(X)(Y ) = B(X, Y ).

(HGT) Every maximal k-torus T in G splits over a tamely ramified Galois
extension, and for any r ∈ R, any coset in tr/tr+ contains a good semisimple
element (as defined in §2.1).

(Hk) The residue characteristic p is large enough so that

1) with respect to the adjoint representation G → GL(g), the expo-
nential map (resp. the log map) is defined on the G-domain g0+ of g

(resp. on G0+), and exp(gx,r) = Gx,r (resp. log(Gx,r) = gx,r) for any
x ∈ B(G, k) and r > 0,

2) the hypotheses in [5, 3.5.2] and [4, 4.4] are valid.

Groups satisfying (HB) and (HGT) are discussed in [3]. From Proposition 4.1
and Proposition 5.4 of [3], we see that if p is large enough, (HB) and (HGT)
are valid. For (Hk), you can find more precise bounds using the Campbell-
Hausdorff formula (see [12, 3.1.1, 3.2.3]). Hypothesis (HB) is included in [5,
3.5.2]. Hypothesis (Hk), 2) is necessary to apply results of [4] and [5]. We refer
to [5, 3.5.2] and [4, 4.4] for details.

1.4. Partition of g via good cosets

Definition 1.4.1. — Let S and S ′ be two good cosets in g. We say that S
is associated to S ′ if there is g ∈ G such that S ∩g S ′ 6= ∅. We say that S is
weakly associated to S ′ and write S ∼ S ′, if either S and S ′ are 0-good cosets,
or if d(S) = d(S ′) = r and there is a sequence of nondegenerate dual cosets
S = Y0,Y1, · · · ,Yk = S ′ of the form Yi = Yi + gxi,r+ and Yi ∈ gxi,r, such
that Yi ∩ giYi+1 6= ∅ for some gi ∈ G.

It is straightforward that the above weak associativity is an equivalence
relation. We denote by S the set of equivalence classes of weakly associated
good cosets. The following is a corollary of Lemma 1.3.2 and Lemma 1.3.4.
It characterizes weakly associated good cosets.

Lemma 1.4.2. — Let Γ be a good element and G
′ = CG(Γ). Let S = Γ + gx,r+

and S ′ = Γ′ + gx′,r+ be two good cosets. If S ∼ S ′, then there exist g ∈ G and
y ∈ B(G′, k) such that g(Γ′ + gx′,r+) ⊂ Γ + gy,r+.

Proof. — By Lemma 1.3.4, there exist h ∈ Gx,0+ and n′ ∈ g′hx′,r ∩N such that

hx′ ∈ B(G′, k) and h(Γ′+gx′,r+) = Γ+n′+ghx′,r+ . Now, by Lemma 1.3.2, there
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exist h′ ∈ G′
hx′,0 and y ∈ B(G′, k) such that h′h(Γ′+gx′,r+) = Γ+h′

n′+ghx′,r+ ⊂
Γ + gy,r+ .

As usual, we use the same notation for an equivalence class and its repre-
sentative when this will not lead to any confusion.

Definition 1.4.3. — For S ∈ S, define g
S
⊂ g as follows:

g
S

:=
⋃

S′∼S

GS ′.

Example 1.4.4. — If S is a 0-good set, then g
S

= g0. If S = Γ + gx,r+ , from

Lemma 1.4.2 and Remark 1.3.3, 1), we have g
S

= G(Γ + g′r+). The second
example is due to F. Murnaghan.

The following lemma shows that the weak associativity on good cosets in-
duces a partition of g, and in turn, a spectral decomposition of the delta dis-
tribution on g.

Lemma 1.4.5. — Suppose (HGT) holds. Then,

1) g is the disjoint union of g
S
, S ∈ S:

g =

◦⋃

S∈S

g
S
.

2) Each g
S

is a G-domain, that is, a G-invariant open and closed subset of
g in the p-adic topology.

3) For any f ∈ C∞
c (g), we can decompose

∫
g
f(X)dX as follows:

∫

g

f(X)dX =
∑

S∈S

∫

g
S

f(X)dX.

Proof. — Part 3) is a consequence of 1) and 2). To prove 1), let X ∈ g with
Jordan decomposition Xs + Xn. Let T be a maximal k-torus containing Xs

with d(Xs) = r. If r ≥ 0, X ∈ g
S

where S is a 0-good coset. If r < 0, from
(HGT), there is a good element Γ in tr\ tr+ such that Γ ≡ Xs (mod gx,r+)
for any x ∈ B(CG(Xs), k). Since Xn ∈ CG(Xs) and d(Xn) = ∞, one can
find y ∈ B(CG(Xs), k) such that Xn ∈ gy,r+ . Then since y ∈ B(CG(Xs), k) ⊂
B(CG(Γ), k), we see X = Xs + Xn is contained in a good coset Γ + gy,r+ .

To prove 2), observe that g
S

is obviously G-invariant. Each g
S

is open since
each S is open and g

S
is the union of GS ′ with S ′ ∼ S. It is closed because its

complement is a union of open sets from 1).
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Remark 1.4.6. — From Remark 1.2.3, if S ∈ S is not a 0-good coset, we have
for any X ∈ g

S
, d(X) = d(S). If hypothesis (HGT) holds, we also observe that

g
S
⊂ (g

d(S)
\ g

d(S)+
) =

⋃

S′∈S
d(S′)=d(S)

g
S′ .

2. Unrefined minimal K-types and G̃

2.1. Unrefined minimal K-types and dual blobs. — Here, we recall
some results from [14], [15], and define dual blobs. For the purpose of simpler
explanation, as in [14], we assume that there is a natural isomorphism

φ : Gx,r/Gx,r+ −→ gx,r/gx,r+

when r > 0. By [20, 2.4], such an isomorphism exists whenever G splits over a
tamely ramified extension of k (see also [1, 1.6]).

Definition 2.1.1 (see [14], [15]). — An unrefined minimal K-type (or mini-
mal K-type) is a pair (Gx,%, χ), where x ∈ B(G, k), % is a nonnegative real
number, χ is a representation of Gx,% trivial on Gx,%+ and

(i) if % = 0, χ is a cuspidal representation of Gx,0/Gx,0+ inflated to Gx,0;

(ii) if % > 0, χ is a nondegenerate character of Gx,%/Gx,%+ .

The % in the above definition is called the depth of the minimal K-type (Gx,%, χ).

Definition 2.1.2 (see [13, 2.3.4]). — Let s = (Gx,%, χ) be a minimal K-type.
If % > 0, we call the coset S = Γ∗ + g∗x,(−%)+ a dual blob of s when χ is realized

by S. That is, for any g ∈ Gx,%,

χ(g) = Λ
(
Γ∗

(
φ(g)

))
.

If % = 0, we define the dual blob of s to be g∗x,0. We denote by s] the dual blob
of s.

If % > 0, any coset X∗ + g∗x,(−%)+ in g∗x,−% defines a character of Gx,%. We

denote by χ
X∗ the character of Gx,% represented by X∗ + g∗x,(−%)+ when there

is no confusion.
Recall that a coset X∗ + g∗x,(−%)+ in g∗ is nondegenerate if X∗ + g∗x,(−%)+

does not contain any nilpotent element. A character χ of Gx,% is nondegenerate
if the dual blob of (Gx,%, χ) is nondegenerate.

Definition 2.1.3 (see [14]). — Two minimal K-types s = (Gx,r, χ) and s′ =
(Gy,s, ξ) are said to be associates if they have the same depth, and

1) if r = 0, there is a g ∈ G such that Gx,0 ∩ Ggy,0 surjects onto both
Gx,0/Gx,0+ and Ggy,0/Ggy,0+ , and χ is isomorphic to ξg;

2) if r > 0, the G-orbit of the dual blob s] intersects with s′].
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Theorem 2.1.4 (see [15, 3.5]). — Given (π, Vπ) ∈ G̃, there is a nonnegative
rational number %(π) with the following properties.

1) For some x ∈ B(G, k), the space V
G

x,%(π)+

π of Gx,%(π)+-fixed vectors is
nonzero and %(π) is the smallest number with this property.

2) For any y ∈ B(G, k), if W = V
G

y,%(π)+

π 6= {0}, then

(i) if %(π) = 0, any irreducible Gy,%(π)-submodule of W contains a
minimal K-type of depth zero of a parahoric Gz,0 ⊂ Gy,0;

(ii) if %(π) > 0, any irreducible Gy,%(π)-submodule of W is a minimal
K-type.

Moreover, any two minimal K-types contained in π are associates of each other.

The rational number %(π) in the theorem is called the depth of the irreducible
admissible representation (π, Vπ).

2.2. Partition of G̃ via minimal K-types

Definition 2.2.1. — Assume the hypothesis (HB) holds. Let s and s′ be two
minimal K-types of depth %. We say s is weakly associated to s′ if there is a
sequence of minimal K-types of s = s0, s1, . . . , sk = s′ depth % such that the

dual blobs s
]
i and s

]
i+1 of si and si+1 satisfy that s

]
i ∩

gis
]
i+1 6= ∅ for some

gi ∈ G.

Recall we defined the dual blob of a minimal K-type (Gx,0, σ) to be gx,0.
Hence any two types of depth zero are weakly associated, but they are not
necessarily associated. It is straightforward that the above weak associativity
is an equivalence relation. On the other hand, associativity is not an equivalence
relation.

We denote by SK the set of equivalence classes of weakly associated minimal
K-types.

Remark 2.2.2. — Let s be a minimal K-type, and let s ∈ SK be its equiva-

lence class. Let G̃s be the set of (π, Vπ) ∈ G̃ which contain a minimal K-type

weakly associated to s. Note that for any s′ ∈ s, we have G̃s = G̃s′ . Then from
Theorem 2.1.4, we have

G̃ =

◦⋃

s∈SK

G̃s.

Note that if s is a minimal K-type of depth zero, G̃s is the set of all depth zero
irreducible representations.

From now on, we use the same notation for an equivalence class and its
representative in cases where there is no confusion.
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3. Plancherel distributions and good minimal K-types

In this section, we investigate some relations between partitions of g and G̃.
These partitions are discussed in the previous sections. As stated in Theo-
rem 3.3.1, they give rise to a matching between spectral decomposition factors.
We first review Plancherel formulas.

3.1. Plancherel formulas on g and G. — For (π, Vπ) ∈ Ĝ and f ∈ C∞
c (G),

we define a function on Ĝ as

f̂ (π) := Tr
(
π(f )

)
= Θπ(f ).

Then Harish-Chandra’s Plancherel formula (see [7]) states that there is a Borel

measure dπ supported on Ĝ such that

(3) f (1) =

∫

Ĝ

f̂ (π)dπ.

On the other hand, regarding g as a topological group with respect to addi-
tion, we have the following isomorphisms:

ĝ ' g∗ ' g.

The first isomorphism is from Pontrjagin duality, and we also have the second
isomorphism via the additive character Λ and an appropriate bilinear form
on g. Then the Plancherel formula on g can be formulated as follows: there is
an appropriate measure on ĝ such that for f ∈ C∞

c (g),

f(0) =

∫

ĝ

f̂(χ)dχ,

where f̂ ∈ C∞
c (ĝ) is the Fourier transformation of f given by f̂(χ) =∫

ĝ
f(Y )χ(Y )dY. When (HB) holds, from the identification ĝ ' g, we can

now write

(4) f(0) =

∫

g

f̂(X)dX

where f̂(X) =
∫

g
f(Y )Λ(B(X, Y ))dY . In (4), the G-invariant measure dX on g

should satisfy volg(gx,r) volg(gx,(−r)+) = 1 for all x ∈ B(G, k) and r ∈ R.

To relate Plancherel formulas on g and G, let f ∈ C∞
c (g) be supported in a

sufficiently small neighborhood of 0. Then f ◦ log defines a function in C∞
c (G).

Combining the Plancherel formulas (3) and (4), we have

(Pl)

∫

g

f̂(X)dX = f(0) =

∫

Ĝ

Θπ(f ◦ log)dπ.
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3.2. Good cosets, good minimal K-types and G̃

Definition 3.2.1 (see [3], [13]). — Assume (HB) is valid. Let s = (Gx,%, χ)
be a minimal K-type. We say (Gx,%, χ) is good, if its dual blob s] is a good
coset.

Note that all minimal K-types of depth zero are good. For later use, we
record the following corollary of Lemma 1.3.2:

Corollary 3.2.2. — We keep the notation from Lemma 1.3.2. Assume (HB)

is valid. Suppose % := −r > 0. If (π, Vπ) ∈ G̃ contains a minimal K-type
(Gx,%, χΓ+X′ ) with dual blob Γ + X ′ + gx,r+, it also contains a good minimal

K-type (Gy,%, χΓ) with dual blob Γ + gy,r+.

Definition 3.2.3. — Assume (HB) holds. Let S ∈ S and let s = (Gx,%, χ)
be a minimal K-type.

1) If s] ∼ S, we say that s is weakly associated to S.

2) Define the subset G̃S of G̃ to be the set of all (π, Vπ) ∈ G̃ such that
(π, Vπ) contains a good minimal K-type s with s] ∼ S. We also define

ĜS := G̃S ∩ Ĝ.

Remarks 3.2.4. — 1) If S is a 0-good coset, G̃S is the set of depth zero
representations. Otherwise, the good minimal K-types contained in the repre-

sentations in G̃S are weakly associated to each other. In particular, the depth

of any representation in G̃S is −d(S).

2) If s is a good K-type weakly associated to S, we have G̃S ⊂ G̃s. This is
a direct consequence of the Definition 2.2.1. We observe

G̃S =
{
(π, Vπ) ∈ G̃s | (π, Vπ) contains a good minimal K-type

}
.

3) Observe that if S ∼ S ′, then G̃S = G̃S′ . Hence, for S ∈ S, we can write

G̃S without any confusion.

Remark 3.2.5. — Although we will later give another proof, we recall from

Theorem 2.4.10 of [13] that any (π, Vπ) ∈ G̃ contains a good K-type. Combin-
ing this with Theorem 2.1.4 implies the following: Suppose (HB) and (HGT)

are valid. Let S1,S2 ∈ S and (π, Vπ) ∈ G̃.

(i) If (π, Vπ) contains minimal K-types s1, s2 with si ∼ Si, i = 1, 2, then we
have S1 ∼ S2.

(ii) The G̃ is a disjoint union of G̃S ’s with S ∈ S: G̃ =
◦⋃
S∈SG̃S .

Lemma 3.2.6. — Suppose (HB) is valid.

1) For S ∈ S, ĜS is open and closed in Ĝ.
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2) For f ∈ C∞
c (G), we have

∫

Ĝ

f̂ (π)dπ =

∫

Ĝ\ (
◦⋃

S∈S
ĜS)

f̂ (π)dπ +
∑

S∈S

∫

ĜS

f̂ (π)dπ.

3) Each ĜS has a finite Plancherel volume, that is, volĜ(ĜS) < ∞.

Proof. — 1) Assume d(S) < 0 first. We fix a good element Γ such that S =
Γ+gx,(−%)+ with x ∈ B(CG(Γ), k). For S ′ ∼ S, let sS′ = (JS′ , χS′) be the good
minimal K-type with dual blob S ′. Let ∆ be the set of G-conjugacy classes
of sS′ with S ′ ∼ S. Let

Ĝ(S ′) :=
{
(π, Vπ) ∈ Ĝ | m(χS′ , Vπ) > 0

}
,

where m(χS′ , Vπ) is the multiplicity of χS′ in (π, Vπ) ∈ Ĝ. Note that (i)

each Ĝ(S ′) is open and closed because m(χS′ , Vπ) is semicontinuous on Ĝ,

(ii) if S ′ and S ′′ are G-conjugates, Ĝ(S ′) = Ĝ(S ′′), (iii) ∆ is finite, and (iv)

ĜS =
⋃

S′∈∆ Ĝ(S ′). Hence ĜS is open and closed when d(S) < 0. If S is a
0-good coset, we have

ĜS =
{
(π, Vπ) ∈ Ĝ | V

G
x,0+

π 6= 0, for some x ∈ B(G, k)
}
.

Then this case can be proved in a similar way.

2) This is a consequence of 1).

3) More generally, it is enough to show that for any open compact subgroup

J ⊂ G, the set ĜJ defined by {(π, Vπ) ∈ Ĝ | V J
π 6= 0} has a finite Plancherel

volume. It follows from the following sequence of inequalities: for f ∈ C∞
c (G)

given by the characteristic function of J divided by volG(J), from the Plancherel
formula on G, we have

volĜ(ĜJ) ≤

∫

ĜJ

dimC(V J
π )dπ =

∫

Ĝ

dimC(V J
π )dπ =

∫

Ĝ

f̂ (π)dπ

= f (1) =
1

volG(J)
·

3.3. Main Theorem. — The following is a refinement of the equality (Pl).
That is, we find an equality between summands of the left and right hand sides
(see Lemma 1.4.5 and Lemma 3.2.6) of the equation. The proof will be given
in the following section.

Theorem 3.3.1. — Suppose hypothesis (Hk) is valid. Let S be a good coset
and f ∈ C∞

c (g). If S is a 0-good coset, assume f ∈ C∞
c (g0+). If S is a good

coset of depth −% < 0, assume f ∈ C∞
c (g%). Then, we have

∫

g
S

f̂(X)dX =

∫

ĜS

f̂ ◦ log(π)dπ.
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4. Proof and applications of Theorem 3.3.1

In this section, we prove Theorem 3.3.1. We treat positive depth cases and
depth zero cases separately. Before each case, we recall some relevant results
from [13] and from [4], [5] respectively.

Recall a distribution T on C∞
c (g) is a C-valued linear functional on C∞

c (g).
The distribution T is called invariant if gT = T for g ∈ G, where gf(X) =

f(g−1

X) and gT(f) = T(g−1

f) for f ∈ C∞
c (g). We denote the space of invari-

ant distributions by J (g). For any subset L ⊂ g, we denote the subspace of
invariant distributions supported on the closure of GL by J (L). For r ∈ R,
we define some G-invariant subspaces of C∞

c (g) as follows:

Dr :=
∑

x∈B(G,k)

Cc(g/gx,r), Dr+ :=
∑

x∈B(G,k)

Cc(g/gx,r+)

For any T ∈ J (g) and D ⊂ C∞
c (g), we denote the restriction of T to D

by resDT. For any J ⊂ J (g), let resDJ denote {resDT | T ∈ J }.

4.1. Some results on character expansions: positive depth cases

Recall from [13, 3.1.2] that we defined some subspaces of J (g) to characterize
the character distributions of those π which contain a given good minimal K-
type.

Definition 4.1.1 (see [13, 3.1.2]). — Let Γ be a good element of depth r < 0
(note that Γ 6= 0). Let G′ := CG(Γ) be the centralizer of Γ in G, and let
N ′ := N ∩ g′, the set of nilpotent elements in g′. We define some subspaces
of J (g):

1) For x ∈ B(G, k) and r ∈ R, we define J Γ
x,s,r+ as follows:

• If s < r, J Γ
x,s,r+ :=

{
T ∈ J (g)

∣∣∣∣∣
for f ∈ C(gx,s/gx,r+)
if Supp(f) ∩ (N + gx,s+) = ∅
then T(f) = 0

}
.

• If s = r, J Γ
x,r,r+ :=

{
T ∈ J (g)

∣∣∣∣∣
for f ∈ C(gx,r/gx,r+)
if Supp(f) ∩ G(Γ + N ′) = ∅
then T(f) = 0

}
.

2) J Γ
r+ :=

⋂

x∈B(G,k)

⋂

s≤r

J Γ
x,s,r+ .

For X ∈ g, let O(X) be the set of all G-orbits whose closures contain X . For
X ∈ g′, O′(X) denotes the set of all G′-orbits whose closures in g′ contain X .
Recall that there is a bijection between O′(0) and O(Γ) given by n′ ↔ Γ + n′

(see [8]).

For each O ∈ O(Γ), let µO be the orbital integral associated to O. Denote
the span of µO with O ∈ O(Γ) by JΓ.
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Proposition 4.1.2. — Suppose (Hk) holds. Let Γ be a good element of depth
r < 0, and let G′ := CG(Γ). Then we have

1) resD
r+J

Γ
r+ = resD

r+JΓ;

2) for T1, T2 ∈ J Γ
r+ , resD

r+
T1 = resD

r+
T2 if and only if

T1([Γ + v + gx,r+ ]) = T2([Γ + v + gx,r+ ])

for each x ∈ B(G′, k) and v ∈ N ′ ∩ gx,r.

Recall that [Γ+ v +gx,r+] is the characteristic function supported on the set
Γ + v + gx,r+ .

Proof. — Part 1) follows from [13, 3.1.7]. Part 2) is a corollary of 3.1.7 and
4.2.1 in [13].

In fact, 2) is a weaker statement of the results in [13]. However, 2) is enough
for our purposes, and we can avoid introducing new notation included in the
stronger statement.

Theorem 4.1.3 (see [13, 5.2.1, 5.3.1]). — Assume that (Hk) is valid. Suppose
that (π, Vπ) is an irreducible admissible representation of G of positive depth
%(π) = %. Suppose (π, Vπ) contains a good minimal K-type s = (Gx0,%, χΓ). Let
Γ + gx0,(−%)+ be the dual blob of s containing a good element Γ. Then,

1) Θ̂π ∈ J
(−Γ)
(−%)+ ,

2) Θπ is Γ-asymptotic on g%. That is, there are cO(π) ∈ C indexed by O(Γ),
such that for any regular element X ∈ g%,

Θπ

(
exp(X)

)
=

∑

O∈O(Γ)

cO(π) · µ̂O(X).

4.2. Proof of Theorem 3.3.1: positive depth cases. — Fix % > 0. We
keep the notation from the previous section. Let T1

S and T2
S be invariant

distributions defined as follows: for f ∈ C∞
c (g), denote by f0+ the function

f · [g0+ ] where [g0+ ] is the characteristic function supported on g0+ . Then

T1
S(f) :=

∫

g
S

f̂0+(X)dX,

T2
S(f) :=

∫

ĜS

̂f0+◦ log(π)dπ =

∫

ĜS

Θπ(f0+ ◦ log)dπ.

Then to prove the theorem, it is enough to prove that

T1
S(f) = T2

S(f)

for any f ∈ C∞
c (g%) when d(S) = −%.
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On the other hand, the Fourier transform maps C∞
c (g%) to D(−%)+ (see [2,

4.2.3]). We will prove Theorem 3.3.1 by showing that T̂1
S = T̂2

S on D(−%)+ in
this case.

For the rest of this section, we fix a good element Γ such that

S = Γ + gx0,(−%)+

with x0 ∈ B(CG(Γ), k). Let G′ := CG(Γ).

Lemma 4.2.1. — 1) The invariant distributions T̂1
S and T̂2

S are elements

of J
(−Γ)
(−%)+ .

2) The restrictions resD
(−%)+

T̂1
S and resD

(−%)+
T̂2

S are in the linear span of

orbital integrals µO, O ∈ O(Γ).

Proof. — Note that 2) is a consequence of 1) and Proposition 4.1.2-(1).

To prove 1), we see by Theorem 4.1.3, 2), we have T̂2
S ∈ J

(−Γ)
(−%)+ . To show

T̂1
S ∈ J

(−Γ)
(−%)+ , let x ∈ B(G, k) and s ≤ (−%). We have for f ∈ C(gx,s/gx,(−%)+),

T̂1
S(f) =

∫

g
S

f(−X)dX.

Then we observe that

(i) Supp(T̂1
S) = −g

S
;

(ii) if s < −%, Supp(T̂1
S) = −g

S
⊂ g(−%) ⊂ N + gx,s+ , by [2, 3.3.2] .

If s = (−%), it follows from (i) and the equality g
S

= G(Γ + g′(−%)+) that T̂1
S

is in J
(−Γ)

x,−%,(−%)+ . If s < (−%), T̂1
S ∈ J

(−Γ)

x,s,(−%)+ is a result of (ii). Hence

T̂1
S ∈ J

(−Γ)
(−%)+ .

To finish the proof of Theorem 3.3.1, from Proposition 4.1.2, 2), it is enough
to check that for x ∈ B(G′, k) and v ∈ N ′ ∩ gx,r,

(E) T̂1
S

(
[−Γ + v + gx,(−%)+ ]

)
= T̂2

S

(
[−Γ + v + gx,(−%)+ ]

)
.

Since Supp([−Γ + v + gx,(−%)+ ]) ⊂ g
S
, we have

(a) T̂1
S

(
[−Γ + v + gx,(−%)+ ]

)
= volg(gx,(−%)+) =

1

volg(gx,%)
·
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To compute T̂2
S([−Γ + v + gx,(−%)+ ]), we find the Fourier transform of

[−Γ + v + gx,(−%)+ ]. In the following, f denotes [−Γ + v + gx,(−%)+ ].

f̂(Y ) =

∫

g

f(X)Λ
(
B(X, Y )

)
dX =

∫

g

[gx,(−%)+ ](X) · Λ
(
B(−Γ + v + X, Y )

)
dX

= volg(gx,(−%)+) · Λ
(
B(−Γ + v, Y )

)
· [gx,%](Y )

=
1

volG(Gx,%)
· Λ

(
B(−Γ + v, Y )

)
· [gx,%](Y ).

Note that volG(Gx,%) · (f̂ ◦ log) is a character of Gx,% with dual blob

−Γ + v + gx,(−%)+ , that is, volG(Gx,%) · (f̂ ◦ log) = χ
−Γ+v

. Then Θπ(f̂ ◦ log) =
Θπ(χ

−Γ+v
) is the multiplicity m(χΓ−v

, Vπ) of χΓ−v
in Vπ. Then by Corol-

lary 3.2.2, any (π, Vπ) with m(χΓ−v
, Vπ) > 0 is contained in G̃S . Hence

m(χΓ−v
, Vπ) = 0 unless π ∈ ĜS , and we have

(b) 1
volg(gx,%)

= f̂
(
log(1)

)
=

∫
Ĝ

Θπ(f̂ ◦ log)dπ

=
∫

ĜS
Θπ(f̂ ◦ log)dπ = T̂2

S

(
[−Γ + v + gx,(−%)+ ]

)
.

Now equality (E) follows from (a) and (b). Hence Theorem 3.3.1 is proved
when % > 0.

4.3. Some results on character expansions: depth zero cases. — The
following subspaces of J (g) are defined in [5, 2.1.1, 2.1.3]. If r ≤ 0, they char-
acterize the character distributions of irreducible admissible representations
of depth −r.

Definition 4.3.1. — Let x ∈ B(G, k) and r ∈ R. For s < r, we define J Γ
x,s,r+

as follows:

J̃x,s,r+ :=



T ∈ J (g)

∣∣∣∣∣∣

for f ∈ C
(
gx,s/gx,r+

)

if Supp(f) ∩ (N + gx,s+) = ∅
then T(f) = 0



 .

J̃r+ :=
⋂

x∈B(G,k)

⋂

s≤r

J̃x,s,r+ .

From now on, we fix ε > 0 such that g(−ε)+ = g0 and D(−ε)+ = D0. Such
an ε exists. Then we also have gε = g0+ . When G is a classical group, gε is the
set of topologically nilpotent elements.

The following two propositions are corollaries of the results in [18] and [5].
Although their results are more general, we state only the facts necessary to
prove Theorem 3.3.1. Note that O(0) is the set of nilpotent orbits in g. Denote
the span of µO, O ∈ O(0) by J0.
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Proposition 4.3.2. — Suppose (Hk) is valid. Then,

1) dimC(resD
(−ε)+

J̃(−ε)+) = |O(0)|,

2) resD(−ε)+
J̃(−ε)+ = resD(−ε)+

J0.

The proposition is from [5, 2.1.5, 3.4.6].

Proposition 4.3.3. — Suppose (Hk) is valid. Let (π, Vπ) be an irreducible
admissible representation of G of depth zero. Then,

1) Θ̂π ∈ J̃(−ε)+ , and

2) the Harish-Chandra-Howe local character expansion of Θπ is valid on
g(−ε)+ = g0. That is, there are cO(π) ∈ C indexed by O(0), such that for any
regular element X ∈ g0+ ,

Θπ(exp(X)) =
∑

O∈O(0)

cO(π) · µ̂O(X).

These are from [5, 3.3.2, 3.5.2].

Observe that the Fourier transform on C∞
c (g) maps C∞

c (gε) to D(−ε)+

(see [2, 4.2.3]). For the purpose of the proof of Theorem 3.3.1, we introduce
Gelfand-Graev functions (see [4]). In [4], although Barbasch and Moy treated
only groups considered in [18], since they used only the fact that the Harish-
Chandra-Howe character expansion is valid on g0+ from [18], their results
remain valid for any of the reductive groups considered in [5]. Now, we recall
some results from [4].

Proposition 4.3.4 (see [4, 3.7]). — Given a nonzero nilpotent element
N ∈ g, let N = e, h, f be an sl(2)-triple associated to N . Then there is a point
x ∈ B(G, k) so that

1) e, h, f ∈ gx,0, and their images e, h, f in mx := gx,0/gx,0+ generate an
sl(2) triple in mx,

2) among those parahoric subgroups Gx′,0 such that gx′,0 satisfies (1), Gx,0

is minimal,

3) if Gy,0 is another parahoric subgroup minimal among those parahoric
subgroups for which gy,0 satisfies (1), then Gx,0 and Gy,0 are associates.

4.3.5. — For each Oi ∈ O(0), fix an element ei ∈ Oi. Choose an sl2-triple
ei, fi, hi, and select xi ∈ B(G, k) as in Proposition 4.3.4. Let f xi,Oi

be the char-
acter of the generalized Gelfand-Graev representation of Mxi

:= Gxi,0/Gxi,0+

associated to ei as in [4, 4.5]. Then f xi,Oi
also defines a character on Gxi,0

via Gxi,0 → Mxi
, for which we use the same notation.

Proposition 4.3.6. — We keep the notation from (4.3.5).

1) Each f xi,Oi
is supported on the set of unipotent elements in Gxi,0/Gxi,0+ .

Hence it defines a function on Gxi,0 supported on the subset Gxi,0 ∩ G0+ .
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2) Let T1, T2 ∈ J (g). Suppose T̂1, T̂2 ∈ J̃(−ε)+. Then resD(−ε)+
T̂1 =

resD(−ε)+
T̂2 if and only if T1(f xi,Oi

◦ exp) = T2(f xi,Oi
◦ exp), Oi ∈ O(0).

Part 1) is [4, 4.5]. Part 2) follows from Proposition 4.3.2 and [4, 4.7].

We remark that f xi,Oi
◦ exp separate the nilpotent orbital integrals in g [4].

4.4. Proof of Theorem 3.3.1: the depth zero case. — We keep the
notation from 4.3. Fix a 0-good coset S. Then g

S
= g0. Recall gε = g0+ and

D(−ε)+ =
∑

x∈B(G,k) Cc(g/gx,(−ε)+) =
∑

x∈B(G,k) Cc(g/gx,0). Then the Fourier

transform on C∞
c (g) maps C∞

c (gε) to D(−ε)+ (see [2, 4.2.3]).

Let T1
0 and T2

0 be invariant distributions defined as follows: for f ∈ C∞
c (g),

recall f0+ = f · [g0+ ]. Then

T1
0(f) :=

∫

g0

f̂0+(X)dX,

T2
0(f) :=

∫

Ĝ0

̂f0+◦ log(π)dπ =

∫

Ĝ0

Θπ(f0+ ◦ log)dπ.

Then to prove the theorem, it is enough to prove that T1
0(f) = T2

0(f) for any
f ∈ C∞

c (gε). Contrary to the positive depth cases, we will directly prove that
T1

0 = T2
0 on C∞

c (gε). We use Gelfand-Graev functions f x,O as test functions.

Lemma 4.4.1. — The restrictions resD
(−ε)+

T̂1
0 and resD

(−ε)+
T̂2

0 are in the lin-

ear span of orbital integrals resD(−ε)+
µO, O ∈ O(0). Moreover, on C∞

c (gε), T1
0

and T2
0 are in the linear span of µ̂O, O ∈ O(0).

Proof. — The second statement is a consequence of the first one via Fourier

transform. The first statement for T̂2
0 follows from Proposition 4.3.3. To prove

it for T̂1
0, we observe that Supp(T̂1

0) = −g0 ⊂ g0 ⊂ N + gx,s+ for any s ≤ −ε

[2, 3.2.2]. Then T̂1
0 ∈ J̃(−ε)+ from the definition of J̃x,s,(−ε)+ and J̃(−ε)+ .

By Proposition 4.3.6, it is now enough to check that

(E0) T1
0(f x,O ◦ exp) = T2

0(f x,O ◦ exp)

for each (x,O) := (xi,Oi) in (4.3.5).

Since Θπ(f x,O) 6= 0 implies that π has depth zero, we have

(a0) f x,O(1) =

∫

Ĝ

Θπ(f x,O)dπ =

∫

ĜS

Θπ(f x,O)dπ = T2
0(f x,O ◦ exp).

Denote f x,O ◦ exp by γN . Since Supp(γN ) ⊂ g0+ , Supp(γ̂N ) ⊂ g0. Then

(b0) T1
0(f x,O ◦ exp) =

∫

g0

γ̂N (X)dX =

∫

g

γ̂N (X)dX = γN (0) = f x,O(1).
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Hence the equality (E0) follows from (a0), (b0), and Theorem 3.3.1 is proved.

4.5. Application. — In this section, we prove that every irreducible tem-
pered representation contains a good minimal K-type, when hypothesis (Hk)
is valid. We apply Theorem 3.3.1 for the main step of the proof. We also give
another proof for the fact that any irreducible admissible representation con-
tains a good minimal K-type (see [13, 2.4.10]) under the same hypothesis. This
is a weaker result due to a stronger assumption, and there might be simpler
ways to prove this. However, in approaching the problem of the exhaustion of
types constructed in [12] or supercuspidal representations in [20], we believe
this approach will be useful. As a corollary, we get a spectral decomposition of
the delta distribution on G.

Theorem 4.5.1. — Assume (Hk) and (HGT) are valid.

1) Any irreducible tempered representation contains a good minimal K-type.

2) Any irreducible admissible representation contains a good minimal K-type,

that is, G̃ =
◦⋃
S∈SG̃S .

Proof. — 1) We fix x0 ∈ B(G, k) and let s ∈ R≥0. For simplicity, we denote
Gx0,s+ by Ks. Let fs be [Ks], the characteristic function supported on Ks. Let

ĜKs :=
{
(π, Vπ) ∈ Ĝ | V Ks

π 6= 0
}

and ĜKs

S := ĜS ∩ ĜKs .

Clearly,
◦⋃
S∈SĜS ⊂ Ĝ. To prove that Ĝ ⊂

◦⋃
S∈SĜS , we compute

∫

g

̂fs ◦ exp(X)dX =

∫

Ĝ

f̂ (π)dπ
(i)

≥
∑

S∈S

∫

ĜKs
S

f̂ (π)dπ

=
∑

S∈S

ĜKs
S 6=∅

∫

ĜKs
S

f̂ (π)dπ
(ii)
=

∑

S∈S

ĜKs
S 6=∅

∫

g
S

̂fs ◦ exp(X)dX

(iii)
=

∑

S∈S

∫

g
S

̂fs ◦ exp(X)dX
(iv)
=

∫

g

̂fs ◦ exp(X)dX.

Relations (i), (iii) and (iv) are rather straightforward. We use Theorem 3.3.1
to verify (ii).

The first inequality (i) follows from
◦⋃
S∈SĜS ⊂ Ĝ. To prove (ii), it is enough

to verify that for S ∈ S, if ĜKs

S 6= ∅,
∫

ĜKs
S

f̂ (π)dπ =

∫

g
S

̂fs ◦ exp(X)dX.

Since fs(π) 6= 0 only if s ≥ %(π), and since d(S) = %(π) for any π ∈ ĜS , we see

that ĜKs

S 6= ∅ only if s ≥ d(S). In that case, since fs ◦ exp ∈ C∞
c (gd(S)+) ⊂
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C∞
c (gd(S)), the equality in Theorem 3.3.1 is valid for fs. Hence the above

equality is valid, and so is (ii). To prove (iii), we note that ̂fs ◦ exp is a scalar
multiple of the characteristic function of gx0,−s. Then since

Supp( ̂fs ◦ exp) ∩ g
S

= gx0,−s ∩ g
S
6= ∅

only if ĜKs

S 6= ∅, equality (iii) holds. From Lemma 1.4.5, (iv) is valid. Hence ‘≥’

in (i) is in fact an equality for all s ∈ R≥0. Therefore, ĜKs =
⋃

S∈S ĜKs

S . Since

Ĝ =
⋃

s∈R≥0
ĜKs and ĜS =

⋃
s∈R≥0

ĜKs

S , we can now conclude Ĝ =
⋃

S∈S ĜS .

2) We prove this in two ways.

Proof 1. — We observe that for any minimal K-type s = (Gx,%, χ), we have

G̃s ∩ Ĝ 6= ∅. This follows from the Plancherel formula on the group side:

χ(1) =

∫

Ĝ

m(χ, π)dπ =

∫

Ĝs

m(χ, π)dπ > 0.

Hence, there is S ∈ S such that G̃s ∩ G̃S 6= ∅.

Now it is enough to prove that if G̃S ∩ G̃s 6= ∅, then G̃S = G̃s.

From the definition of weak associativities, we have G̃S ⊂ G̃s. Now, it is

enough to show G̃s ⊂ G̃S . Let (π, Vπ) ∈ G̃s. Without loss of generality, we
may assume that Vπ contains s. Write S = Γ + gx,(−%)+ . Note that there is a

sequence of nondegenerate dual cosets S = Y0,Y1, · · · ,Yk = s] of the form
Yi = Yi + gxi,(−%)+ ⊂ gxi,(−%), such that Yi ∩ giYi+1 6= ∅ for some gi ∈ G. By
Lemma 1.3.4, there are yi ∈ B(CG(Γ), k), n′

i ∈ N ∩ g′ and hi ∈ G such that
Yi = hi(Γ+n′

i +gyi,(−%)+). In particular, s] =hk (Γ+n′
k +gyk,(−%)+). Then by

Corollary 3.2.2, s contains a good minimal K-type weakly associated to S.

Proof 2. — Let (π, Vπ) ∈ G̃. Let (M, σ) be a cuspidal support of (π, Vπ), which
consists of a Levi subgroup M of G and a supercuspidal representation σ, such
that (π, Vπ) occurs as a subquotient of IndG

M (σ). Since σ is essentially tempered
(that is, there is an unramified character ξ of M such that σ ⊗ ξ is tempered),
σ contains a good minimal K-type by (1). Let (Mx,%, χγ) be a good minimal
K-type contained in (σ, Vσ), and let γ +mx,(−%)+ be its good dual blob. Choose
a maximal k-torus T ⊂ M which splits over a tamely ramified extension such
that γ ∈ t. Since T is also a maximal k-torus, by (HGT), there is a good
element Γ ∈ γ + t(−%)+ in g such that γ + t(−%)+ = Γ+ t(−%)+ . By Lemma 1.3.5,
we have γ + mx,(−%)+ = Γ + mx,(−%)+ , which implies (Mx,%, χγ) = (Mx,%, χΓ).
By Remark 1.3.3, 3), x ∈ B(CM(Γ), k) ⊂ B(CG(Γ), k). Hence Γ + gx,(−%)+ is
a good coset. Now since σ contains (Mx,%, χΓ), by [15, 5.2], any subquotient

of IndG
Mσ, in particular (π, Vπ), contains a good type s = (Gx,%, χΓ).
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Corollary 4.5.2. — Assume (Hk) and (HGT) are valid. For any f ∈C∞
c (G),

we have

f(1) =
∑

S∈S

∫

ĜS

Θπ(f)dπ.

Proof. — This follows from Theorem 4.5.1 and Ĝ =
◦⋃
S∈S ĜS .
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