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DIMENSION OF WEAKLY EXPANDING POINTS
FOR QUADRATIC MAPS

by Samuel Senti

Abstract. — For the real quadratic map Pa(x) = x2 + a and a given ε > 0 a
point x has good expansion properties if any interval containing x also contains a
neighborhood J of x with P n

a |J univalent, with bounded distortion and B(0, ε) ⊆
P n

a (J) for some n ∈ N. The ε-weakly expanding set is the set of points which do not
have good expansion properties. Let α denote the negative fixed point and M the first
return time of the critical orbit to [α,−α]. We show there is a set R of parameters
with positive Lebesgue measure for which the Hausdorff dimension of the ε-weakly
expanding set is bounded above and below by log2 M/M+O(log2 log2 M/M) for ε close
to |α|. For arbitrary ε ≤ |α| the dimension is of the order of O(log2 | log2 ε|/| log2 ε|).
Constants depend only on M . The Folklore Theorem then implies the existence of an
absolutely continuous invariant probability measure for Pa with a ∈ R (Jakobson’s
Theorem).
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Résumé (Dimension des points faiblement dilatants pour l’application quadratique)
Pour l’application quadratique réelle Pa(x) = x2+a et un ε > 0 donné, un point x a

de bonnes propriétés de dilatation si tout intervale contenant x contient également un
voisinage J de x avec P n

a |J univalent, avec distortion bornée et B(0, ε) ⊆ P n
a (J) pour

un n ∈ N. L’ensemble ε-faiblement dilatant est l’ensemble des points qui n’ont pas de
bonnes propriétes de dilatation. Notons α le point fixe négatif et M le temps de premier
retour de l’orbite critique dans [α,−α]. Nous prouvons l’existence d’un ensemble R de
paramètres de mesure de Lebesgue positive pour lesquels la dimension de Hausdorff
de l’ensemble ε-faiblement dilatant est bornée supérieurement et inférieurement par
log2 M/M + O(log2 log2 M/M) si ε est proche de |α|. Pour ε ≤ |α| quelconque la
dimension est de l’ordre de O(log2 | log2 ε|/| log2 ε|). Les constantes ne dependent que
de M . Le théorème du Folklore implique alors l’existence d’une mesure de probabilité
absolument continue et invariante par Pa pour a ∈ R (théorème de Jakobson).

1. Introduction

The 1-parameter family of real quadratic maps Pa(x) = x2 + a is a simple
model of nonlinear dynamics exhibiting surprisingly rich dynamical structure
and giving rise to interesting and difficult questions. For instance, the existence
of a Pa-invariant probability measure which is absolutely continuous with re-
spect to the Lebesgue measure Leb, a so-called a.c.i.p. , for a set of parameters
of positive Lebesgue measure was first proved by Jakobson in [9] (see also [4],
[14], [16], [10], [17], [15]).
Much is known about the real quadratic family, including a positive answer

for the real Fatou conjecture (see [8], [11]) as well as for its generalization
to real analytic families of maps with one non-flat critical point and negative
Schwarzian derivative, so-called S-unimodal families [1]. Avila and Moreira
have also shown that almost every non-regular parameter (no periodic hyper-
bolic attractor) satisfies the Collet-Eckmann condition for the quadratic map [3]
as well as for a residual set of analytical S-unimodal families with a quadratic
critical point [2]. However, many questions remain for S-unimodal maps, Hénon
maps (see [5]) and complex quadratic maps. The real quadratic map enjoys a
particular status as it serves as a model to help understand these problems.
A common technique to build an a.c.i.p. for an interval map f is to look

for expansion for some iterate of the original map on a properly restricted do-
main Ji. The map T |Ji := fni |Ji is called the induced map. The Folklore
Theorem (see for instance [12], [6], [13]) asserts the existence of a T -invariant
a.c.i.p. ν provided there exists ε > 0 and a T -invariant interval A containing
the critical point satisfying the following three conditions: a) A is the countable
union, modulo sets of zero Lebesgue measure, of intervals Ji with disjoint in-
teriors, b) T restricted to each Ji is a diffeomorphism with uniformly bounded
distortion and c) Leb(T (Ji)) ≥ ε. If additionally the summability condition
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∑
niν(Ji) <∞ holds, then there exists an a.c.i.p. µ which is invariant by the

original map f .
Let B(0, ε) denote the ball of radius ε centered at 0. For the quadratic

family Pa and a given ε > 0, we will say that a point x has good expansion
properties if any interval containing x also contains a neighborhood J of x
with Pna |J univalent with bounded distortion and B(0, ε) ⊆ Pna (J) for some
iterate n ∈ N. We call points which do not have good expansion properties ε-
weakly expanding. For such points there are only a finite number of iterates for
which one can find a neighborhood J of x with Pna |J univalent with bounded
distortion and B(0, ε) ⊆ Pna (J)
In this work, we estimate the Hausdorff dimension of the ε-weakly expanding

set for the quadratic map for a set of parameters of positive Lebesgue measure.
More precisely if α is the negative fixed point and

M := min
{
n ∈ N ; |Pna (0)| < |α|

}
is the first return time of the critical orbit to [α,−α], we prove the following:

Main Theorem. — For a set of parameters R with

lim
δ→0

Leb(R∩ [−2,−2 + δ))
δ

= 1

the Hausdorff dimension of the ε-weakly expanding set Eε is

dimH(Eε) =
log2 M

M

(
1 +O

( log2 log2 M

log2 M

))
for c 2−M < ε ≤ |α| and a constant c > 0. For 0 < ε ≤ |α| arbitrary, we have

dimH(Eε) = O
( log2 | log2 ε|

| log2 ε|

)
.

Constants depend only on the return time M .

For parameters in R close to −2 the return time M is large, so points with
good expansion properties have full Lebesgue measure. For ε = |α| the Folklore
Theorem applies and Jakobson’s Theorem follows as a Corollary once we prove
the summability condition.

Corollary (Jakobson [9]). — For the real quadratic map Pa, there exists a
probability measure which is invariant by Pa and absolutely continuous with
respect to the Lebesgue measure for a set of parameters a ∈ R of positive
Lebesgue measure.
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Structure of the paper. — We consider the neighborhood A := [α,−α] of the
critical point in Section 2. We build a partition of A consisting of those pre-
images of A on which the induced map T can be extended as a diffeomorphism
to a given larger domain containing A. Such extendibility insures uniform
bounded distortion by Koebe’s distortion property and the image by T of the
partition elements obviously contain the ball of radius ε < |α| centered at 0.
In Section 3 we identify the sets that contain ε-weakly expanding points

with ε = α.
In Section 4 we introduce Yoccoz’s strongly regular parameter conditions [17]

and show that for these parameters the α-weakly expanding set is the attractor
of an iterated function system (IFS) with countably many generators.
In Section 5, we obtain derivative estimates for the generators of the IFS by

viewing the quadratic map as a perturbation of the Chebyshev polynomial x2−2
for parameters close to −2 (large M). We also prove that strongly regular
parameters satisfy the Collet-Eckmann condition.
In Section 6 we bound the Hausdorff dimension of the α-weakly expanding

set. The lower bound is obtained by approximating this set by the attractor
of an IFS with finitely many generators and estimating the dimension of the
approximation (which obviously contains the α-weakly expanding set). If the
number of generators of the approximation is large enough, the difference be-
tween both dimensions lies within the error bounds produced by the derivative
estimates giving us an upper bound. The complement of the partition of A
coincides with the ε-weakly expanding set with c2−M < ε ≤ |α| for some con-
stant c > 0. We prove a measure estimate which implies both the summability
condition and the full Lebesgue measure of the partition of A. The Folklore
Theorem together with the positive Lebesgue measure of strongly regular pa-
rameters (see [17], [15]) then implies Jakobson’s Theorem [9].
In Section 7 we consider the ε-weakly expanding set for general ε. We gen-

eralize the construction introduced in the first part, showing that the ε-weakly
expanding set is the attractor of an IFS with countably many generators. In this
case only very crude derivative estimates are necessary. We bound the number
of contractions for which the same estimates are used and proceed similarly as
in the first part to estimate the dimension of the ε-weakly expanding set.

Acknowledgments. — The author would like to thank J.-C. Yoccoz for his un-
counted time, support and inspiration. Thanks also to M. Jakobson for his
interest and support, to the Université d’Orsay, where this research was con-
ducted, and to the Penn State University, where this article was written.

2. Definitions

For the real quadratic map

Pa(x) = x2 + a
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with parameters − 3
4 > a ∈ R denote the fixed points by β > 0 and α < 0.

For n ∈ N, set α0 := α and define inductively αn as the unique negative point
for which

Pa(αn) = −αn−1.

If a < αn−1 define inductively α̃n as the unique negative point for which

Pa(α̃
n) = αn−1.

ChooseM ∈ N large and consider parameters for which Pa(0) ∈ (αM−1, αM−2).
Let

A := [α,−α] ⊆ [α1,−α1] =: Â.

Set C+
1 = [α1, α] and

C+
n := [α̃n−1, α̃n] for 2 ≤ n ≤M − 2.

Also write C−
n = −C+

n for the interval symmetric to C+
n .

Definition 2.1. — An interval J ⊆ [−β, β] is regular of order n ≥ 0 if there
exists a neighborhood Ĵ of J such that the restriction of Pna to Ĵ is a diffeo-
morphism onto Â and Pna (J) = A. We denote the order of a regular interval
by ord(J). Denote

J :=
{
J � A regular ;∀J ′ regular with int(J ′) ∩ int(J) �= ∅ ⇒ J ′ ⊆ J

}
.

Elements of J are maximal with respect to inclusion.

Proposition 2.2. — a) Regular intervals are nested or have disjoint interiors.
b) [αn, αn−1] is regular and maximal for all n ≥ 1. C±

n ∈ J are regular
and maximal for 2 ≤ n ≤ M − 2. As limn→ αn = −β, regular intervals
cover [−β, α]. As the multiplier of α is negative, there are no maximal regular
intervals of order 1 in [α,−α] ([α1, α] and −[α1, α] are the only regular intervals
of order 1).
c) The image Pa(J) of a regular interval J of order n ≥ 1 is regular of or-

der n−1 and P̂a(J) = Pa(Ĵ ) ⊆ (a, β). Conversely, if J is (maximal) regular of
order n ≥ 0, and if Ĵ ⊆ (a, β), then both components of P−1

a (J) are (maximal)
regular of order n+ 1.
d) For each regular interval J there are two adjacent regular intervals Ji,

i = 1, 2, with int(Ji) ∩ int(J) = ∅ and ord(Ji) = ord(J) + 3. If J ∈ J there
are two adjacent maximal regular intervals J ′

i with int(J ′
i) ∩ int(J) = ∅ and

ordJ ′
i − ord J = {±1,±3}.

Definition 2.3. — For a regular interval J denote by GJ : Â → Ĵ the local
inverse to P

ord(J)
a |J . Also

Wn :=
⋃
J∈J

2≤ord(J)≤n

int(J), W =
⋃
n≥2

Wn
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Figure 1.

For x ∈ int(J), J ∈ J , the return time is the function N : W → N given by

N(x) := ord(J)

and the induced map is the function T : W → int(A) given by

T (x) := P ord(J)
a (x).

Accept the abuse of notation T (0) := PM (0).

Definition 2.4. — A gap of order n is a connected component of A \Wn.
The set of all gaps of order n is denoted by ε(n). The primary (α-)weakly
expanding set

Ẽ :=
⋂
n≥1

A \Wn =
⋂
n∈N

ε(n)

is the set of non isolated points of A \W . The (α-)weakly expanding set is

E =
⋃
k≥0

P−k
a (Ẽ).

We have dimH(E) = dimH(Ẽ).

For 2 ≤ n ≤ M − 2, ε(n) = (α̃n,−α̃n) since C±
n ∈ J . As [α̃M−2, α̃M−1] is

not regular, J has no elements of order either M − 1 or M so

ε(M − 1) = ε(M) = (α̃M−2,−α̃M−2).

Hence ε(n) ⊆ (α̃M−2,−α̃M−2) for n ≥M − 2.

In the following assume: T (0) ∈
⋂
n≥1Dom(T

n).

Definition 2.5. — For k ≥ 1, let J(k) ∈ J with T k(0) ∈ int(J(k)). Set

n0 := 0, nk := N
(
T k(0)

)
,

N0 := M, Nk = Nk−1 + nk−1 =M +
∑

0≤i≤k−1

ni.
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DIMENSION OF WEAKLY EXPANDING POINTS FOR QUADRATIC MAPS 405

Define a nested sequence of regular intervals B(k) containing PM (0) by

B(1) := A, B(k) = GB(k)(A) := GJ(1) ◦ · · · ◦ GJ(k−1)(A)

(see Fig. 1). Let ζ ∈ [α̃M−2, α̃M−1] be the point with PM−1
a (ζ) = 0 and let

Q := PMa |(ζ,−ζ). Then define

A(k) := Q−1
(
B(k)

)
.

Let L be the maximal (with respect to inclusion) regular interval adjacent
to B(k) and contained in PMa ((ζ,−ζ)) ∩ (B̂(k) \ intB(k)). Set

Â(k) := [θk,−θk] := Q−1
(
B(k) ∪ L

)
.

If PMa ((ζ,−ζ))∩(B̂(k)\intB(k)) is regular and A(k) �= A(k+1), then by Propo-
sition 2.2 Â(k)\int(A(k)) is maximal and regular of orderN ′

k = Nk + 1. Other-
wise, θk is the left endpoint of a maximal regular interval of orderN ′

k = Nk + 3.
Also set ξ0 = α1 and ξk = PNk

a (θk+1).

Let us make the following orientation assumption:

PNk(x) ≤ PNk(0) for all x ∈ Â(k).

The reversed orientation case is similar. Write

Kk :=
{
I regular ;PNk

a (0) ∈ Î and I �⊆ [ξk, β]
}
.

Proposition 2.6. — For all I, I ′ ∈ Kk we have int(I) ∩ int(I ′) = ∅, except
for the two regular intervals adjacent to J(k) of order ord(I) := p = nk−3 and
ord(I ′) = nk − 1. Also ord(I) �= ord(I ′) and J(k) ⊂ Î.

If nk ≤M −2 then Kk = {C+
nk−1} if 0 �∈ PNk

a (A(k)) and Kk = ∅ otherwise.
If nk ≥M + 1 then M − 2 ≤ p < nk

Proof. — Assume first ξk �∈ int(I). Regular intervals are nested or disjoint.
If I ′ ⊂ I then p′ := ord(I ′) ≥ p+2. Let I ′′ denote both regular intervals of order
p+ 3 adjacent to but not contained in I. Then Î ′ ⊆ I ∪ I ′′ or else there would
be a point x ∈ int(Î ′ \ I ′) with P p+3

a (x) = −α. As J(k) ∈ J and ξk �∈ int(I)
we have J(k) �⊆ I ′′ so Î ′ ∩ J(k) = ∅ and I ′ �∈ Kk. So I, I ′ ∈ Kk have disjoint
interiors and for I ′ between I and J(k) we have I ′ ⊆ Î \ I as Î ∩ int(J(k)) �= ∅
so p+ 3 ≤ p′.
Now assume ξk ∈ int(I). The component of Ĵ(k) \ int(J(k)) containing ξk

is regular, or else, by Definition 2.5 and Proposition 2.2, ξk is the endpoint
of a maximal regular interval. This contradicts ξk ∈ int(I) with I regular.
Regular intervals are nested or have disjoint interiors so I and J(k) are adjacent
and J(k) ∈ J implies p = nk − 1 or nk − 3.
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For nk ≤M−2, if 0 �∈ PNk
a (A(k)) then J(k) = C+

nk
and Î∩int(J(k)) = ∅ for

all regular I �⊆ [ξk, β] except I = C+
nk−1 for which J(k) ⊆ Î. If 0 ∈ PNk

a (A(k))
then J(k) = C−

nk
and Î ∩ int(J(k)) = ∅ for all regular I �⊆ [ξk, β].

For nk ≥ M + 1, no interval of order < M − 2 intersects int(J(k)). As-
sume p ≥ nk. Then ξk �∈ int(I) and Î ∩ int(J(k)) �= ∅ so one of the endpoints
of J(k) is contained in Î \ I and p + 3 ≤ nk contradicting the assumption.
SoM−2 ≤ p < nk. Also if J(k) �⊆ Î, then int(J(k)) would contain an endpoint
of Î as Î ∩ int(J(k)) �= ∅. But then p+ 1 ≥ nk + 2 contradicting p < nk.

3. Classification of the gaps

ForM+3 ≤ n ≤ N�+1, let $ be the largest integer for which N ′
�
≤ n with N ′

�
from Definition 2.5. Define

ε(n, 0) =
{
J ∈ ε(n) ; J ⊆ Â \ int(Â(1))

}
, εc(n) =

{
J ∈ ε(n) ; J ⊆ Â($)

}
and for 1 ≤ k < $

ε(n, k) =
{
J ∈ ε(n) ; J ⊆ Â(k) \ int(Â(k + 1))

}
.

Proposition 3.1. — A gap of ε(n, k) is one of both pre-images
• either by Q−1 ◦ GB(k) of a gap of ε(n−Nk) ∩ [α, ξk];
• or by Q−1 ◦ GB(k) ◦ GI of a gap of ε(n−Nk − ord(I)) where I ∈ Kk.

Proof. — Let J ∈ J with J ⊆ Â(k)\int Â(k+1). By Proposition 2.2 PNk
a (J) ⊆

[α1, ξk] is a regular interval of order ord(PNk
a (J)) = ord(J)−Nk. If PNk

a (J) is
not maximal there exists I ∈ Kk with PNk

a (J) ⊆ I. Then P
Nk+ord(I)
a (J) ∈ J ,

unless I is the regular interval adjacent to J(k) with ord(I) = nk − 3 and
PNk
a (J) � I ′ for I ′ ∈ Kk with ord(I ′) = nk − 1. Then P

Nk+ord(I′)
a (J) ∈ J .

Conversely, for any maximal regular interval I ⊆ [α1, ξk], we have Î ⊆ (a, β)
and by Proposition 2.2 both components of P−1

a (I) are regular and maximal
with respect to inclusion. If I �∈ Kk, the same argument yields that both
pre-images Q−1 ◦ GB(k)(I) contained in Â(k) are maximal regular intervals of
order ord(I) + Nk. If I ∈ Kk consider the images GI(J) of maximal regular
intervals J . Passing to the complementary set yields the proposition.

Corollary 3.2. — A gap of ε(n, 0) is contained in either [α̃M−1, α̃M−2] or
its symmetric and is a pre-image by P

−(M−1)
a of a gap of ε(n−M + 1).

Definition 3.3. — SetD0 := [α̃M−2,−α̃M−2] andDk = D0∩[α, ξk]. Denote:
• G±

0 the restriction to D0 of the positive/negative branch of the inverse
map to PM−1

a |[α̃M−2,α̃M−1].
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• G±
k the restriction to Dk �= ∅ of the positive/negative branch of the inverse

map to Q−1 ◦ GB(k).
• G±

k,I the restriction to D0 of the positive/negative branch of the inverse
map to Q−1 ◦ GB(k) ◦ GI for I ∈ Kk �= ∅.
No mapping is to be defined if Dk = ∅ or Kk = ∅. Denote G±

0,I := G±
0 and

Γ =
{
Gεk ; ε = ±, k ≥ 0, Dk ∩ Ẽ �= ∅

}
∪

{
Gεk,I ; ε = ±, k ≥ 0, I ∈ Kk �= ∅

}
.

4. Strongly regular parameters

Fix a large M ∈ N with logκM < M < 2
3M for some κ > 1 and ρ ∈ R with

M2−M � ρ� 1.

Definition 4.1 (see [17]). — A parameter a is strongly regular if
a) T (0) ∈

⋂
n≥1Dom(T

n),

b)
∑

1≤i≤k,

N(T i(0))≥M

N(T i(0)) < ρk for all k ∈ N.

Proposition 4.2. — For a strongly regular parameter and q = [ρ−1M ] the
integer part of ρ−1M ,

N
(
T k(0)

)
< M for k ≤ q, N

(
T k(0)

)
< ρk for q < k.

Corollary 4.3. — Let F be the attractor of the iterated function system gen-
erated by the Gk,Gk,I ∈ Γ with k ≤ q. For strongly regular parameters F ⊆ Ẽ
and Ẽ is invariant by all Gk,Gk,I ∈ Γ with k ≤ q.

Proof. — Follows from Definition 2.4 and from Proposition 3.1 as Ẽ ⊂ D0 = Dk

for strongly regular parameters.

5. Derivative estimates

Proposition 5.1. — Let x ∈ Dk. For strongly regular parameters, there ex-
ists a constant c > 0 with
1) For 0 ≤ k ≤ q:

c−12−
1
2 (M+Nk−nk) ≤

∣∣DG±
k (x)

∣∣ ≤ c2−
1
2 (M+Nk−nk)

2) For k > q and x ∈ Dk:

c−12−
1
2 (M+Nk)−ρk ≤

∣∣DG±
k (x)

∣∣ ≤ c2−
1
2 (M+Nk)+nk+ρk.

3) For 0 ≤ k ≤ q:

c−12−
1
2 (M+Nk+1) ≤

∣∣DG±
k,I(x)

∣∣ ≤ c2−
1
2 (M+Nk+1)
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4) For k > q:

c−12−
1
2 (M+Nk+ord(I))−2ρk ≤

∣∣DG±
k,I(x)

∣∣ ≤ c2−
1
2 (M+Nk+ord(I))+2ρk

Lemma 5.2. — For parameters with Pa(0) ∈ (αM−1, αM−2), there exists a
constant c > 0 with

c−14−n ≤ αn − Pa(0) ≤ c4−n for 0 ≤ n < M − 2,
c−12−n ≤ −α̃n ≤ c2−n for 0 < n ≤M − 2,
c−14−M ≤ β + Pa(0) ≤ c4−M .

Proof. — For these parameters, consider Pa as a perturbation of the Chebyshev
polynomial. The estimates follow. See [15]

Lemma 5.3. — Write h(x) := (β2 − x2)−
1
2 for |x| < β. Then

∣∣DPna (x)
∣∣ = 2n

h(x)
h(Pna (x))

n−1∏
i=0

(
1 +

β + a

(P ia(x))2
)− 1

2
.

Proof. — Follows by induction using β2 + a = β.

Lemma 5.4. — For strongly regular parameters, there is a constant c > 0 with

1)
∣∣∣ log2

∣∣∣DPna (x)
h(Pn

a (x))
h(x)

∣∣∣− n
∣∣∣ ≤ cn4−M for 1 ≤ n and x ∈ [αn, αn−1].

2)
∣∣∣ log2

∣∣∣DGC±
n
(x)

h(G
C

±
n

(x))

h(x)

∣∣∣+ n
∣∣∣ ≤ c4n−M for 1 ≤ n ≤M − 2 and x ∈ A.

3) 4−ordJ ≤
∣∣DGJ (x)∣∣ ≤ c for all regular J and x ∈ A.

4)
∣∣∣ log2

∣∣∣DGB(k)(x)
h(GB(k)(x))

h(x)

∣∣∣+ (Nk −M)
∣∣∣ ≤ 2ρk for 1 ≤ k and x ∈ A.

Proof. — 1) and 2) follow from Lemma 5.3 using estimates from Lemma 5.2.

3) Since |DPa| ≤ 4 on [−β, β] ⊆ [−2, 2] and GJ sends A into J with bounded
distortion.

4) Rewrite 3) as | log2 |DGJ(�)(x)h(GJ(�)(x))/h(x)| + n�| ≤ n� + c. Use the
chain rule with 2) for n� ≤M and 3) else wise. For strongly regular parameters
4M−M � ρ and

k−1∑
�=1
n	≥M

(n� + c) < ρk + c
k−1∑
�=1
n	≥M

n�

M
< (1 + cM

−1
)ρk.

Thus (1 + cM
−1
)ρk + ck4M−M < 2ρk.
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Proof of Proposition 5.1. — 1) Set

y := G̃k(x) := Pa ◦ G±
k (x) = Pa(Q−1 ◦ GB(k))(x).

By Proposition 4.2, for strongly regular parameters GB(k) is a composition
of GC±

n
with 2 ≤ n < M . Also c−1h(x) ≤ h(GB(k)(x)) ≤ ch(x). As k ≤ q �

4M−M , combining 1) and 2) of Lemma 5.4 with Lemma 5.2 yields

(1) c−12−M−Nk ≤
∣∣DG̃k(x)∣∣ ≤ c2−M−Nk

y = Pa((y − a)
1
2 ) implies |D(P−1

a )±(y)| = 1
2 |y − a|− 1

2 . Bounded distortion
for G̃k yields

c−1
∣∣DG̃k(x)∣∣ ≤ |y − a|

|x− PNk−1
a (0)|

≤ c
∣∣DG̃k(x)∣∣.

For x ∈ Dk and PNk(0) ∈ J(k) with nk < M , Lemma 5.2 yields

c−12−nk ≤
∣∣x− PNk

a (0)
∣∣ ≤ c2−nk .

The statement now follows from the chain rule. For k = 0 note that c−1 ≤
|x− PM−1

a (0)| ≤ c.

2) Lemma 5.4 part 4) yields c−12−M−Nk−2ρk ≤ |DG̃k(x)| ≤ c2−M−Nk+2ρk.
As above the chain rule and the bounded distortion argument yield

c−12−
1
2 (M+Nk)−ρk ≤

∣∣DG±
k (x)

∣∣ · ∣∣x− PNk
a (0)

∣∣ 1
2 ≤ c2−

1
2 (M+Nk)+ρk.

J(k) is regular, so by Proposition 2.2 it is adjacent to a regular interval J ′ ⊆ Ĵ
of order nk + 3 contained in the image of Q. Bounded distortion of GJ(k) and
part 3) of Lemma 5.4 imply c−14−nk ≤ c−1|J(k)| ≤ |J ′| ≤ |x − PNk(0)| ≤ c
for x ∈ Dk and the result follows.

3) G̃k,I := Pa ◦G±
k,I . By Proposition 4.2 and Proposition 2.6 ord(I) = nk−1.

Proceed as in 1), as estimates of Lemma 5.4 2) also hold for C±
1 . For bounded

distortion of G̃k,I note that c−1 ≤ |x − PNk+1−1(0)| ≤ c as PNk+1−1(0) �∈ A
and x ∈ D0.
4) By Proposition 2.6 and Proposition 4.2 ord(I) < nk < ρk. The same ar-

gument as in Lemma 5.4 part 4) holds for GB(k) ◦GI (substituting 2ρk by 3ρk).
c−12−(M+Nk+ord I)−3ρk ≤ |DG̃k,I(x)| ≤ c2−(M+Nk+ord I)+3ρk. Bounded distor-
tion yields:

c−12−
1
2 (M+Nk+ord I)−2ρk ≤

∣∣DG±
k,I(x)

∣∣ · ∣∣x− PNk+ord(I)(0)
∣∣ 1
2

≤ c2−
1
2 (M+Nk+ord I)+2ρk.

One has J(k) ⊆ Î \ int(I) by Proposition 2.6 so c−1 ≤ |x− PNk+ord(I)(0)| ≤ c
as x ∈ D0.
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Corollary 5.5. — Strongly regular parameters satisfy the Collet-Eckmann
condition:

lim inf
n→∞

1
n
ln

∣∣DPna (a)
∣∣ > 0.

Proof. — Let n, k ∈ N with Nk ≤ n < Nk+1 and q < k. For strongly regular
parameters, the same reasoning as in Proposition 5.1 with y = PNk−1

a (a) ∈ A
yields

c−12M+Nk ≤
∣∣DPNk−1

a (a)
∣∣ = |DG̃k|−1 ≤ c2M+Nk

for all k ∈ N. If we had |DPNk−1
a (a)| ≤ c2M+ 1

2Nk−nk for some 0 ≤ i ≤ nk the
chain rule would imply

c−12M+Nk+nk ≤ |DPNk+1−1
a (a)| ≤ c2M+ 1

2Nk+nk−2i

leading to the contradiction Nk ≤ −2i. Therefore,

lim inf
n→∞

1
n
ln

∣∣DPna (a)
∣∣ ≥ lim inf

k→∞
min

0≤i≤nk

1
k
ln c2M+ 1

2Nk−nk ≥ c(1− ρ) > 0

as 2k ≤ Nk ≤ n ≤ Nk+1 < (M + ρ)k.

6. The Hausdorff dimension

Consider an at most countable family of contractions Gk : Dk → F where
each Dk is a closed subset of a compact invariant set

F =
⋃
Gk(Dk)

invariant with respect to all Gk, where the closure is taken with respect to the
Hausdorff topology. Let

0 < bk ≤
|Gk(x) − Gk(y)|

|x− y| ≤ ck < 1

for all x �= y ∈ Dk. Assume
∑

ck ≤ 1 and let s+, s− ∈ R be such that∑
c
s+
k = 1 =

∑
b
s−
k .

Lemma 6.1. — Assume dimH(∂F ) ≤ s+ and Gi(Di) ∩ Gj(Dj) = ∅. Then

s− ≤ dimH(F ) ≤ s+

Proof. — In the finite case, see [7]. For the upper bound of the infinite case,
consider s > s+. By definition, for every δ > 0 and η > 0 there is a δ-cover
{Ui} of F with

∑
(diamUi)s ≤ Hs

δ + η. Then

{Ui,k}i∈N :=
{
Gk(Ui ∩ F )

}
i∈N

tome 131 – 2003 – n
o
3



DIMENSION OF WEAKLY EXPANDING POINTS FOR QUADRATIC MAPS 411

is a ckδ-cover of Gk(F ) for each k ∈ N. As dimH(F∞) ≤ s+ < s, there is a
δ-cover {Vj} of ∂F such that {Ui,k, Vj} is a δ-cover of F and

Hs
δ ≤

∑
i,k

(diamUi,k)s +
∑
j

(diamVj)s ≤ c(Hs
δ + η) + η

for c =
∑
k c
s
k < 1. As η > 0 and δ > 0 were chosen arbitrary we get

dimH(F ) ≤ s for every s > s+, hence dimH(F ) ≤ s+. The lower bound follows
from the finite case, as F is also invariant for any finite subset of the infinite
family of contractions. For details see [15].

Theorem 6.2. — For strongly regular parameters there is a constant c > 0
depending only on M such that

dimH(E) =
log2 M

M

(
1 +O( log2 log2 M

M
)
)
.

Proof. — By Definition 2.4, dimH(E) = dimH(Ẽ). For the upper bound, Kk
and Γ are countable by Proposition 2.6 so Corollary 4.3 insures we can apply
Lemma 6.1 to Ẽ . Write

2xk = Nk − nk − c for k ≤ q,

2xk = Nk − 2nk − 2ρk − c for k > q,

2xk,I = Nk + ord(I)− 4ρk − c for k > q and I ∈ Kk
and

H(s, x0, . . . ) := 1− 2−
1
2 sM+1

( q∑
k=0

2−sxk +
∑
k>q

2−sxk +
∑
k>q
I∈Kk

2−sxk,I

)
.

Inserting the upper bounds of Proposition 5.1 yields 1−
∑

G∈Γ csG ≥ H(s, x0, . . . ).
As ∂H/∂s > 0 and H(0, x0, · · · ) < 0 values s > 0 with H(s, x0, . . . ) ≥ 0 give
upper bounds on s+. The values of xk are larger than 2xk ≥M −M + 2k − c
for k ≤ q, 2xk ≥ M + 2(1 − 2ρ)k − c for k > q as nk < ρk and
2xk,I ≥ M + 2(1 − 2ρ)k − c for k > q and I ∈ Kk as ord(I) ≥ 1. For
strongly regular parameters Card(Kk) < nk < ρk for k > q by Proposition 2.6
and Proposition 4.2. Then, as s > 0 and (1 + ρk)2−(1−2ρ)sk < 2−csk we have

H(s, x0, . . . )(2)

≥ 1− 2( 1
2 (c+M)−M)s+1

(1− 2−(q+1)s

1− 2−s
+
2−

1
2 (M+cq)s

1− 2−cs
)
:= h(s, x0, . . . )

Again ∂h/∂s > 0 and the Implicit Function Theorem insures the existence of
a C1 solution s∞ = s∞(x0, x1, . . . ) of h(s, x0, . . . ) = 0 with s∞ ≥ s+. For
our choice of constants ρ and M we have q � M , and as s > 0 there is some
constant c > 0

(3) c−1s−1 ≤ c−1(1− 2−cs)−1 ≤ c
1− 2−cs(q+1)

1− 2−cs
≤ c(1− 2−cs)−1 ≤ cs−1.
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As h(2
3 log2 M/M,x0, . . . ) < 0 we have s∞ ≥ 2

3 log2 M/M . Set s = ŝ log2 M/M .
With (3) we have

h(s∞, x0, . . . ) = 0 ≥ 1
2
M (1−M+c

M )ŝ − cM

log2 M
·

Therefore

smax :=
(
1− M + c

M

)−1(
1− log2(log2 M/c)

log2 M

)
≤ 1 +O

( log2 log2 M

log2 M

)
and dimH(E) ≤ s+ ≤ (log2 M/M)

(
1 +O

(
log2 log2 M/log2 M)

)
.

For the lower bound we apply the finite case of Lemma 6.1 to the attractor
defined in Corollary 4.3 restricting to k ≤ q. The computations are similar as
above. Replace the upper bounds of Proposition 5.1 by the lower bounds and
take upper bounds for the xk and xk,I .

The following leads to a notable simplifications in Yoccoz’s proof of Jakob-
son’s Theorem:

Proposition 6.3. — For a strongly regular parameter and M large enough

Leb(A \Wn) ≤ c2−
1
3n.

Proof. — Recall $ ∈ N with N ′
�
≤ n < N ′

�+1
(where N ′

� = N� + 1 or N� + 3).
We have A \Wn ⊆

⋃
0≤k≤� ε(n, k) ∪ εc(n). With G ∈ Γ the inverse branch of

an iterate PmG
a with mG ∈ N Proposition 3.1 yields

Leb(A \Wn) := µn ≤ |Â�|+
∑
G∈Γ

sup |DG| µn−mG .

Proposition 5.1 without the last distortion step yields

|Â�| ≤ c2−
1
2 (M+N	)+ρ� ≤ c2−

1
2 (M+(1−3ρ)n)

for q = [ρ−1M ] < $ < n < N�+ρ$+3 and sup |DG| ≤ c2−
1
2 (M+mG)+ρmG . With

µ̂n = 2
1
3nµn as all mG ≥M − 1 are distinct, we have

c−12
1
2M µ̂n ≤ 2−( 1

6−2ρ)n +
∑
G∈Γ

2−( 1
6−ρ)mG µ̂n−mG

≤ c+ sup
n′≤n−mG

µ̂n′

∑
m≥mG

2−
1
12m ≤ c

for ρ < 1
12 .

Theorem 6.4. — For a set of parameters R with

lim
δ→0

Leb(R∩ [−2,−2 + δ))
δ

= 1
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there exists an absolutely continuous invariant probability measure for Pa
with a ∈ R and the Hausdorff dimension of the ε-weakly expanding set E
for c2−M < ε ≤ |α| with a given constant c > 0 is

dimH(E) =
log2 M

M

(
1 +O

( log2 log2 M

log2 M

))
where constants depend only on M .

Proof. — The partition W satisfies the hypothesis of the Folklore Theorem
(see [12]) by construction and by Proposition 6.3 (for the full measure and
summability), implying the existence of an a.c.i.p. for strongly regular param-
eters. The Hausdorff dimension estimate for the |α|-weakly expanding set is
proved in Theorem 6.2. For ε ≤ |α| the ε-weakly expanding set is contained in
the α-weakly expanding set, so the upper bound holds. For the lower bound
and |αM−2| < ε, the ε-weakly expanding set is generated by the contractions
G ∈ Γ of Definition 3.3 and therefore this set must be the same as the |α|-weakly
expanding set. Finally we must prove that the strongly regular parameters have
a Lebesgue density point at −2. This is proved using the following standard
large deviation argument (see [17] or [15] for details). Applying Lemmas 5.2
and 5.4 and using the particular form of the quadratic map one obtains for
a ∈ (aM−1, aM−2) that ∣∣∣ d

da
P−n
a (x) − 1

3

∣∣∣ ≤ cn4−n

for x ∈ [αn, αn−1] and n > 0, as well as∣∣∣ d
da
GC±

n
(x)

∣∣∣ ≤ c2n

for x ∈ A and 2 ≤ n ≤M − 2 and∣∣∣ d
da
GJ (x)

∣∣∣ ≤ c24 ord(J)

for x ∈ A and J regular. Write ∆̃n :=
{
a < 0 ;Pna (0) = ±α(a)

}
and

U(k) = U(k)(a)

for the connected component in R \ ∆̃Nk
of a strongly regular parameter a.

Observe that regular intervals of order < Nk vary continuously on each U(k)
and the sequence M = N1 < N2 < · · · < Nk is constant on each U(k). Let

N(k) =

{
M − 1 if k ≤ q = [ρ−1M ],
[ρk] if k > q,

and write [γ−
i (a), γ

+
i (a)] with 0 ≤ i ≤ r for the maximal regular intervals

of order smaller than m < N(k). This partition of A induces a partition
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a− = a−0 < a+
0 ≤ a−1 < a+

1 ≤ · · · ≤ a−r < a+
r = a+ of U(k) = (a−, a+) and the

above estimates imply∣∣∣ d
da

P−(M−1)
a ◦ GB(k)

(
γ±
i (a)

)
− 1
3

∣∣∣ ≤ c2−M ,

hence a−i+1 − a+
i ≤ c(a+ − a−)maxa∈U(k)(γ−

i+1(a) − γ+
i (a)). Proposition 6.3

implies
∑

0≤i≤rmaxa∈U(k)(γ
−
i+1(a)− γ+

i (a)) ≤ c2−
1
3m, and therefore∑

0≤i≤r
a−i+1 − a+

i ≤ c(a+ − a−)2−
1
3m.

Write Uk =
⋃
a U(k)(a) where the union is taken over all strongly regular

parameters a with Pa(0) ∈ (αM−1, αM−2). Then define the random variable

Xk = Xk(a) =


0 if a ∈ Uk−1 \ Uk,

ord(J) if T k(0) ∈ intJ, J ∈ J with ord(J) ≤ N(k),
N(k) + 1 elsewise.

The above estimates yield

Leb
(
Xk > m | X1, . . . , Xk−1

)
≤ c2−

1
3m

and as Sk(a) :=
∑

1≤i≤k

Xi≥M
Xi is constant on each U(k) we have that

∫ aM−2

aM−1

2θSk(a)da ≤
(
1 + c2(θ− 1

3 )M
)k(aM−2 − aM−1).

Chebyshev’s inequality for the non-negative random variable X = 2θSk − 1
implies that

Leb(a ∈ (aM−1, aM−2) | Sk(a) ≥ ρk)
(aM−2 − aM−1)

≤ (1 + c2(θ−1
3 )M )k − 1

2θρk − 1
=: uk.

For any θ < 1
3 and for k ≤ ρ−1 we have uk ≤ cρ−12(θ−1

3 )M . Write j = [ρk].
Then for ρ−1 < k ≤ 2−(θ−1

3 )M and any θ < 1
3 we have uk ≤ cρ−1j2(θ− 1

3 )M−θj .
For k > 2( 1

3−θ)M we have uk ≤ cλk where λ = (1+c2(θ−1
3 )M )2−θρ ≤ (1−c−1ρ)

(recall that M2−M � ρ, so choose 2−δM ≤ ρ with δ < 1
3 − θ for instance).

Observe that c may depend on θ, but not on M or M , provided these are large
enough. Splitting the sum and using these bounds,∑

uk ≤ cρ−22(θ− 1
3 )M + (cρ−12(θ−1

3M )
∑
j≥1

j2−θj + cρ−12−c
−1ρ2−(θ− 1

3 )M

.

Finally, for 0 < θ̂ < 1
3 −θ we get for M large enough

∑
k≥1 uk ≤ 2−θ̂M . Taking

the limit as M goes to infinity completes the proof.
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0

0

0

θk−1 J θk θk+1

PMk

δk−1 L

λ λ′

γk γ′
k

Pmk

δk

−γ′
k+1 −γk+1

−δk

Figure 2.

7. Generalization to arbitrary epsilon

The expansion required in the Folklore Theorem to build an absolutely con-
tinuous invariant measure is arbitrary. So the following definition is natural:

Definition 7.1. — Let B(0, ε) denote the ball of radius ε centered at 0. A
point x belongs to the primary ε-weakly expanding set Ẽε if no neighborhood
U of x can be sent univalently by any Pna for n > 0 onto an interval containing
B(0, ε). A point x belongs to the ε-weakly expanding set Eε if Pna (x) ∈ Ẽε for
some n ≥ 0. Note that Ẽε = Ẽ for |α̃M−2| ≤ ε.

Definition 7.2. — Set ∆n := P−n({α,−α}) for n ≥ 0. Then γ ∈ ∆n \∆n−1

(or γ ∈ ∆0 for n = 0) is said to be of order ord γ = n. Define

D =
{
α ≤ γ < 0 ; ∃n ≥ 0 with γ ∈ ∆n and (γ,−γ) ∩∆n = ∅

}
,

D̃ =
{
α ≤ γ < 0 ; ∃n ≥ 0 with γ ∈ ∆n and (γ,−γ) ∩∆n−1 = ∅

}
.

Then α̃n ∈ D ⊆ D̃ and for γ, γ′ ∈ D̃, γ < γ′ implies ord γ ≤ ord γ′. If γ ∈ D
the inequality is strict. An interval [γ, γ′] is lateral if γ < γ′ are consecutive in
D̃. An interval [γ,−γ] with γ ∈ D is central. For a lateral interval J , the order
ord(J) is the largest integer n for which Pn|J is monotone.

Lemma 7.3. — Let J = [γ, γ′] be lateral of order n. Then Pn(J) := [δ,−δ]
is central. The complexity c(J) := ord(δ) is defined as the order of δ. Then
ord(J) + c(J) = ord γ′ and δ = α iff ord γ < ord γ′.

Proof. — As 0 ∈ Pn(J) and as γ, γ′ ∈ D̃ are consecutive int(Pn(J)) ∩
∆ord γ′−n = ∅ so Pn(J) is central. If Pn(J) = [α,−α] then ord γ < ord γ′ = n.
Otherwise Pn+1(γ) = Pn+1(γ′) so n < ord γ′ = ord γ.

Now assume Pna (0) �= α and Pa non renormalizable.
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Definition 7.4. — Set M1 = M, θ0 = α̃M−1, δ0 = α. Define inductively
Mk+1 =Mk+mk wheremk is the order of the lateral interval [γk, γ′

k] containing
±PMk(0) (see Fig. 2). Let [δk,−δk] := Pmk([γk, γ′

k]). Then

[γk+1, γ
′
k+1] ⊆ [δk,−δk].

Let [θk,−θk] be the connected component of P−Mk(±[γk, γ′
k]) containing the

critical point. For strongly regular parameters, we have (N�)�≥1 = (Ms(�))�≥1

with s($+ 1) = s($) + r for some r > 0.

Proposition 7.5. — Let $ ∈ N satisfy s($) ≤ k < s($+ 1). Then [θk,−θk] is
a central interval. A lateral interval J = [γ, γ′] ⊆ [θk−1, θk] of order ord(J) = n
is the pre-image by P−Mk

a of one of either
• a central interval K ⊆ [γ′

k,−γ′
k] if n =Mk. Then c(J) = ord(γ′

k).
• a lateral interval L (or its symmetric −L) if n > Mk. Then n = ord(L) +

Mk and c(J) < ord(γ′
k).

For strongly regular parameters ord(γ′
k) < M for $ ≤ q = [ρ−1M ] and

ord(γ′
k) < ρ$ ≤ ρk elsewise.

Proof. — As θk ∈ ∆Mk+ord(γ′
k), if there exists x ∈ ∆Mk+ord(γ′

k)∩ [θk,−θk] then
±PMk(x) ∈ ∆ord(γ′

k) ∩ [γk, γ′
k] and γk, γ

′
k are not consecutive in D̃. If n < Mk

then 0 ∈ Pn(J) ⊆ Pn([θk−1, θk]) and for some 0 ≤ i ≤ n−1 the interval [γi, γ′
i]

would have order less than mi. If n = Mk then 0 ∈ Pn(J) ⊆ Pn([θk−1, θk])
hence ±Pn(θk) = γ′

k and Pn(J) ⊆ [γ′
k,−γ′

k]. Then

c(J) = ord(Pn(γ)) = ord(Pn(γ′)) ≥ ord(γ′
k)

by Lemma 7.3 and since α ≤ γk < γ′
k ∈ D̃. But if ord(Pn(γ)) > ord(γ′

k) then
ord(γ) > ord(θk) contradicting γ ∈ D̃. If Mk < n then 0 �∈ PMk(J). Denote
by L := [λ, λ′] the negative component of ±PMk(J). Then either λ′ ≤ γk or
γ′
k ≤ λ or ±PMk

a (J) = [γk, γ′
k]. In the first case ord(λ) ≤ ord(λ′) ≤ ord(γk), and

assuming λ �∈ D̃ implies the existence of some x ∈ ∆ord(λ)−1∩(λ, γk) since γk ∈
D̃. Then P−Mk

a (±x) ∈ (γ, θk) with ord(P−Mk
a (±x)) < ord(γ) contradicting

γ ∈ D̃. This reasoning implies λ, λ′ ∈ D̃ and these points are consecutive since
γ and γ are. If γ′

k ≤ λ then ord(γ′
k) = ord(λ′) = ord(λ) since γ′

k ∈ D̃ and
ord(γ) ≤ ord(γ′) ≤ ord(θk). Assuming λ �∈ D̃ (or λ′ �∈ D̃) implies the existence
of some x ∈ ∆ord(λ)−1 ∩ (λ, 0) which contradicts γ′

k ∈ D̃. As above λ and
λ′ are consecutive in D̃ as γ and γ′ are. If ±PMk

a (J) = [γk, γ′
k], then J is

obviously the pre-image of a lateral interval. Finally by Lemma 7.3 we have
c(L) < c(L) + ord(L) = ord(λ′) ≤ ord(γ′

k) and

ord(γ′
k) ≤

s(�+1)−1∑
i=k

mi ≤
s(�+1)−1∑
i=s(�)

mi = n�.
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Proposition 4.2 completes the proof.

Now consider only strongly regular parameters a with Pa(0) ∈ (α̃M−1, α̃M−2).

Lemma 7.6. — The number ν(m, c) of lateral intervals of order m and com-
plexity c satisfies ν(m, 0) ≤ 1 and ν(m, c) ≤ 2t for m ≤ 2ρ−(t+1)M if c < M or
for m ≤ 2ρ−(t+1)c if M ≤ c.

Proof. — Assume ν(m, 0) ≥ 2. Then the right endpoint of the left one of two
lateral intervals of order m and complexity 0 would have higher order than
the left endpoint of the right interval by Lemma 7.3 and thus wouldn’t belong
to D̃. This contradiction implies ν(m, 0) ≤ 1. For m ≤M − 1 the only lateral
interval of order m is [α̃m−1, α̃m] which has complexity zero thus ν(m, c) = 0.
By Proposition 4.2 and Proposition 7.5

ν(m, c) ≤ 1 for M ≤ m ≤ 2ρ−1M < N[ρ−1M ] if c < M,

ν(m, c) = 0 for M ≤ m ≤ 2ρ−1c < Nρ−1c if M ≤ c.

For 2ρ−1M < m let j ∈ N satisfy ord(θj−1) < m + c ≤ ord(θj). As c > 0
both endpoints of a lateral interval contributing to ν(m, c) have order m+ c by
Lemma 7.3. As θj ∈ D such an interval is contained in [θj−1, θj ]. By Proposi-
tion 7.5 ν(m, c) ≤ max{1, 2ν(m−Mj , c)} and for strongly regular parameters
m −Mj ≤ ord γ′

j < ρj ≤ ρMj ≤ ρm. Thus ν(m, c) ≤ 2t for m ≤ 2ρ−(t+1)M

if c < M or for m ≤ 2ρ−(t+1)c if M ≤ c.

Definition 7.7. — Set u0 := α̃M−2 and consider the nested sequence of cen-
tral intervals [us,−us] := (A(s))s≥0 with A(s) from Definition 2.5 for s ≥ 1.
Define inductively the decomposition P([γ,−γ]) of a central interval [γ,−γ] as
follows

• If γ < u0 then P([γ,−γ]) = {C±
n

∣∣ ord(γ) < n ≤M − 2} ∪ {A(0)}.
• If us ≤ γ < us+1 then, with J ⊆ [γ, us+1] lateral and I an element of the

decomposition P(P ord(J)
a (J))

P([γ,−γ]) =
{
±J ; c(J) = 0} ∪ {P− ord(J)(I) ⊆ J ; c(J) > 0} ∪ {A(s+ 1)

}
.

Call an element of the decomposition of A(s) maximal if it is a pre-image of
some A(r) and is not contained in any pre-image of A(t) with t < r (or of A
if r = 1). Let ν̂(s, r) be the number of maximal pre-images of A(r′), r′ ≥ r in
the decomposition of A(s).

Lemma 7.8. — Let ω := ρM � 1. For s ≥ 1 we have ν̂(s, r) = 0 if s < r− 1,
ν̂(s, r) = 1 if r − 1 ≤ s < ω−1r and

ν̂(s, r) ≤ (cMωs2)2 log2 (r/s)/log2 ω elsewise
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Proof. — A(s+1) contributes to ν̂(s, r) if and only if s ≥ r−1. The decomposi-
tion of P ord(J)

a (J) for a lateral interval J ⊂ [us, us+1] of orderm and complexity
c contains maximal pre-images of A(r′), r′ ≥ r if and only if c ≥ Nr−1. For
ωs ≤ $ ∈ N and c ≥ N� we havem ≤ 2ρ−1c since 2s ≤ Ns+1−M ≤ (M+ρ)s+ρ.
So by Lemma 7.6, ν(m, c) = 0. Therefore we can write

ν̂(s, r) ≤ 1 + 2
ωs−1∑
�=r−1

∑
Ns<m+c≤Ns+1
N	≤c≤N	+1

ν(m, c)ν̂($, r).

For ωs < r the sum is empty and we obtain the first two inequalities. For
r ≤ ωs we have

ν̂(s, r) ≤ 1 + 2M
2
s
ωs−1∑
�=r−1

$ ν̂($, r) max
Ns<m+c≤Ns+1
N	≤c≤N	+1

ν(m, c).

For t = [log2 s]− 1 we have m ≤ 2ρ−(t+1)c so

max
Ns≤m+c≤Ns+1
N	≤c≤N	+1

ν(m, c) ≤ 2t ≤ s.

As ν̂($, r) increasing with $,

ν̂(s, r) ≤ cM
2
s2

ωs−1∑
�=r−1

$ ν̂($, r) ≤
k∏
i=0

(cM
2
s4ω2(2i+1))ν̂(ωks, r).

Finally for k = [log2(r/s)/log2 ω] we have ωks < ω−1r and ν̂(ωks, r) = 1 hence
ν̂(s, r) ≤ (cMωs2)2 log2(r/s)/log2 ω.

Theorem 7.9. — For a set of parameters R with

lim
δ→0

Leb(R∩ [−2,−2 + δ))
δ

= 1

there exists an absolutely continuous invariant probability measure for Pa
with a ∈ R and the Hausdorff dimension of the ε-weakly expanding set Eε
for c2−M < ε ≤ |α| with a given constant c > 0 is

dimH(E) =
log2 M

M

(
1 +O

( log2 log2 M

log2 M

))
with constants depending on M . For 0 < ε ≤ |α| arbitrary, we have

dimH(Eε) = O
( log | log ε|

| log ε|

)
.

Proof. — For the first part of the claim see Theorem 6.4. For the estimate of
the dimension for arbitrary ε, note that [α̃M−2, α̃M−1] is lateral of complexity
zero and for strongly regular parameters α̃M−1 = u1 is the left endpoint of
a lateral interval of complexity zero. So for ε ≥ |α̃M−1| we obtain dimH(Ẽε)
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as in Theorem 6.2. For our parameters both components of Â(k) \ int(A(k))
are contained in lateral intervals of zero complexity. So for ε < |α̃M−1|, Ẽε is
contained in the maximal pre-images of some A(r′) with r′ ≥ r, and r ∈ N
satisfies A(r + 1) ⊆ B(0, ε) ⊆ A(r). By Lemma 7.8 the maps from Â(r) onto
maximal pre-images of the decomposition of A(s) form a countable family of
contractions accumulating only the critical point and whose contraction ratios
satisfy

(4) 0 < gs,r ≤
|Âs|
|Âr|

≤ c2−
1
2 (Ns−Nr)+2ρs ≤ c2Mr−(1−2ρ)s < 1

since the decomposition of A(s) only contains maximal pre-images of A(r)
if r ≤ ωs � s. We can thus apply Proposition 6.1, so dimH(Ẽε) ≤ d for every
d ∈ R with

∑
s,r∈N

ν̂(s, r)gds,r ≤ 1. As∑
s,r∈N

ν̂(s, r)gds,r ≤
∑
ωs≥r

c2(
2 log (r/s) log (cωMs2)

s log ω −(1−2ρ−Mω)d)s.

and as ω �M
−1

the exponent is negative and the sum is bounded by∑
s,r∈N

ν̂(s, r)gds,r ≤ c22 log (cMω−1r2)−(1−2ρ−Mω)dω−1r.

Thus

dimH(Ẽε) ≤ d0 :=
c log (cMω−1r2)

r(ω−1 − (M
2
+ 2)/M)

≤ c log r
r

·

As A(r + 1) ⊆ B(0, ε) ⊆ A(r), we have r ≤ | log2 ε| ≤ Mr + 1
2M as in

Proposition 5.1. As ε < |α̃M−1| ≤ c2−M by Proposition 5.2, we have
dimH(Ẽε) ≤ c log2 | log2 ε|/| log2 ε|.
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