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RELATIVE EXACTNESS MODULO A POLYNOMIAL
MAP AND ALGEBRAIC (Cp,+)-ACTIONS

by Philippe Bonnet

Abstract. — Let F = (f1, . . . , fq) be a polynomial dominating map from Cn to Cq.
We study the quotient T 1(F ) of polynomial 1-forms that are exact along the generic
fibres of F , by 1-forms of type dR+

∑
aidfi, where R, a1, . . . , aq are polynomials. We

prove that T 1(F ) is always a torsion C[t1, . . . , tq ]-module. Then we determine under
which conditions on F we have T 1(F ) = 0. As an application, we study the behaviour
of a class of algebraic (Cp,+)-actions on Cn, and determine in particular when these
actions are trivial.

Résumé (Exactitude relative modulo une application polynomiale et actions algé-
briques de (Cp,+))

Soit F = (f1, . . . , fq) une application polynomiale dominante de Cn dans Cq. Nous
étudions le quotient T 1(F ) des 1-formes polynomiales qui sont exactes le long des
fibres génériques de F , par les 1-formes du type dR +

∑
aidfi, où R, a1, . . . , aq sont

des polynômes. Nous montrons que T 1(F ) est toujours un C[t1, . . . , tq]-module de tor-
sion. Nous déterminons ensuite sous quelles conditions sur F ce module est réduit à
zéro. En application, nous étudions le comportement d’une classe d’actions algébriques
de (Cp,+) sur Cn, et nous déterminons en particulier quand ces actions sont triviales.

1. Introduction

Let F = (f1, . . . , fq) be a dominating polynomial map from Cn to Cq

with n > q. Let Ωk(Cn) be the space of polynomial differential k-forms on C
n.
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374 BONNET (P.)

For simplicity, we denote by C[F ] the algebra generated by f1, . . . , fq, and
by C(F ) its fraction field. Our purpose in this paper is to compare two notions
of relative exactness modulo F for polynomial 1-forms, and to deduce some
consequences on some algebraic groups actions.

The first notion is the topological relative exactness. A polynomial 1-form
ω is topologically relatively exact (in short: TR-exact) if ω is exact along the
generic fibres of F . More precisely this means there exists a Zariski open set U
in Cq such that, for any y in U , the fibre F−1(y) is non-critical and non-empty,
and ω has null integral along any loop γ contained in F−1(y).

The second notion is the algebraic relative exactness. A polynomial 1-form
is algebraically relatively exact (in short: AR-exact) if it is a coboundary of the
De Rham relative complex of F (see [13]). Recall this complex is given by the
spaces of relative forms

Ωk
F = Ωk(Cn)/

∑
dfi ∧ Ωk−1(Cn)

and the morphisms dF : Ωk
F → Ωk+1

F induced by the exterior derivative.

Definition 1.1. — The module of relative exactness of F is the quotient
T 1(F ) of TR-exact 1-forms by AR-exact 1-forms. This is a C[F ]-module under
the multiplication rule (P (F ), ω) �→ P (F )ω.

For holomorphic germs, Malgrange implicitly compared these notions of rel-
ative exactness in [13]. He proved that the first relative cohomology group of
the germ F is zero if the singular set of F has codimension ≥ 3; in this case,
T 1(F ) is reduced to zero. In [2], Berthier and Cerveau studied the relative
exactness of holomorphic foliations, and introduced a similar quotient. For
polynomials in two variables, Gavrilov [9] proved that T 1(f) = 0 if every fibre
of f is connected and reduced. Concerning polynomial maps, we first prove the
following result.

Proposition 1.2. — If F is a dominating map, then T 1(F ) is a torsion C[F ]-
module.

In other words, every TR-exact 1-form ω can be written as

P (F )ω = dR+ a1df1 + · · ·+ aqdfq

where R, a1, . . . , aq are all polynomials. In [3], the author in collaboration with
Alexandru Dimca studied in a comprehensive way the torsion of this module
for any polynomial function f : C2 → C. We are going to extend these results
in any dimension and determine when T 1(F ) is zero.

Let F : X → Y be a morphism of algebraic varieties, where Y is equidimen-
sionnal and X may be reducible. A property P on the fibres of F is k-generic
if the set of points y in Y whose fibre F−1(y) does not satisfy P has codi-
mension > k in Y . A blowing-down is an irreducible hypersurface V in Cn

such that F (V ) has codimension ≥ 2 in Cq. If no such hypersurface exists, we
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RELATIVE EXACTNESS AND ALGEBRAIC (Cp, +)-ACTIONS 375

say that F has no blowing-downs. Finally F is non-singular in codimension 1
if its singular set has codimension ≥ 2. It is easy to prove that a non-singular
map in codimension 1 has no blowing-downs.

Definition 1.3. — The map F is primitive if its fibres are 0-generically con-
nected and 1-generically non-empty.

Then we show that a polynomial map F is primitive if and only if every
polynomial R locally constant along the generic fibres of F can be written
as R = S(F ), where S is a polynomial. So this definition extends the notion of
primitive polynomial (cf. [8]).

Definition 1.4. — The map F is quasi-fibered if F is non-singular in codi-
mension 1, its fibres are 1-generically connected and 2-generically non-empty.
The map F is weakly quasi-fibered if F has no blowing-downs, its fibres are
1-generically connected and 2-generically non-empty.

Theorem 1.5. — Let F be a primitive mapping. If F is a quasi-fibered map-
ping, then T 1(F ) = 0. If F is weakly quasi-fibered, then every TR-exact 1-form
ω splits as ω = dR+ω0, where R is a polynomial and ω0 ∧ df1 ∧ · · · ∧ dfq = 0.

We apply these results to the study of algebraic (Cp,+)-actions on Cn. Such
an action is a regular map ϕ : Cp × Cn → Cn such that

ϕ
(
u, ϕ(v, x)

)
= ϕ(u+ v, x)

for all u, v, x. Geometrically speaking, ϕ is obtained by integrating a system
D = {∂1, . . . , ∂p} of derivations on C[x1, . . . , xn] that are pairwise commuting
and locally nilpotent (see [11]), that is :

∀f ∈ C[x1, . . . , xn], ∃ k ∈ N, ∂k
i (f) = 0.

The ring of invariants C[x1, . . . , xn]ϕ is the set of polynomials P such that

P ◦ ϕ = P.

Finally ϕ is free at the point x if the orbit of x has dimension p, and free if it
is free at any point of Cn. The set of points where ϕ is not free is an algebraic
set denoted NL(ϕ).

Definition 1.6 (condition (H)). — An algebraic (Cp,+)-action on Cn satis-
fies condition (H) if its ring of invariants is isomorphic to a polynomial ring in
n− p variables.

Under this condition, ϕ is provided with a quotient map F (see [16]) defined
as follows: If f1, . . . , fn−p denote a set of generators of C[x1, . . . , xn]ϕ, then

F : C
n −→ C

n−p, x �−→
(
f1(x), . . . , fn−p(x)

)
.
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The generic fibres of F are orbits of the action, but this map need not define
a topological quotient: For instance, it does not separate all the orbits. The
action ϕ is trivial if it is conjugate by a polynomial automorphism of Cn to

ϕ0(t1, . . . , tp;x1, . . . , xn) = (x1 + t1, . . . , xp + tp, xp+1, . . . , xn).

We are going to search under which conditions the actions satisfying (H)
are trivial. According to a result of Rentschler [18], every fix-point free alge-
braic (C,+)-action on C2 is trivial. We know [15] that (H) is always satisfied
for (C,+)-actions on C3, but we still do not know if fixed-point free (C,+)-
actions on C

3 are trivial (see [11]). In dimension ≥ 4, the works [11], [21] of
Nagata and Winkelmann prove that (H) need not be satisfied. For (C,+)-
actions satisfying this condition, Deveney and Finston [6] proved that ϕ is
trivial if its quotient map defines a locally trivial (C,+)-fibre bundle on its
image.

We are going to see how this last result extends via relative exactness. Let ϕ
be a (Cp,+)-action on Cn satisfying (H), and consider the following operators:

[D] : (R1, . . . , Rp) �−→ det
((
∂i(Rj)

))
,

J : (R1, . . . , Rp) �−→ det(dR1, . . . , dRp, df1, . . . , dfn−p).

We say that [D] (resp. J) vanishes at the point x if, for any polynomials
R1, . . . , Rp, we have

[D](R1, . . . , Rp)(x) = 0
(
resp. J(R1, . . . , Rp)(x) = 0

)
.

The zeros of [D] correspond to the points of NL(ϕ), and the zeros of J are the
singular points of F . We generalise Daigle’s [4] Jacobian Formula for (C,+)-
actions.

Proposition 1.7. — Let ϕ be an algebraic (Cp,+)-action on C
n satisfying

condition (H). Then there exists an invariant polynomial E such that

[D] = E × J.

From a geometric viewpoint, this means that NL(ϕ) is the union of an
invariant hypersurface and of the singular set of F . In particular E is constant
if codimNL(ϕ) ≥ 2.

Theorem 1.8. — Let ϕ be an algebraic (Cp,+)-action on Cn satisfying con-
dition (H). If E is constant and F is quasi-fibered, then ϕ is trivial.

Therefore the assumption “quasi-fibered” correspond to some regularity in
the way that F fibres the orbits. In particular the action is trivial if F defines
a topological quotient, i.e. if F is smooth surjective and separates the orbits.
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RELATIVE EXACTNESS AND ALGEBRAIC (Cp, +)-ACTIONS 377

Corollary 1.9. — Let ϕ be an algebraic (C,+)-action on Cn satisfying con-
dition (H). If F is quasi-fibered, there exists a polynomial P such that ϕ is
conjugate to the action

ϕ′(t;x1, . . . , xn) =
(
x1 + tP (x2, . . . , xn), x2, . . . , xn

)
.

Corollary 1.10. — Every algebraic (Cn−1,+)-action ϕ on Cn such that
codim NL(ϕ) ≥ 2 is trivial. In particular ϕ is free.

We end up with counter-examples illustrating the necessity of the conditions
of Theorem 1.8 and its corollaries.

2. Proof of Proposition 1.2

In this section, we establish the first proposition announced in the introduc-
tion in two steps. First we describe a TR-exact 1-form ω on every generic fibre
of F . Second we “glue” all these descriptions by using the uncountability of
complex numbers. To that purpose, we use the following definitions.

For any ideal I, we denote by

IΩ1(Cn)

the space of polynomial 1-forms with coefficients in I. We introduce the equiv-
alence relation:

ω � ω′ [I] ⇐⇒ ω − ω′ ∈ dΩ0(Cn) +
∑

Ω0(Cn)dfi + IΩ1(Cn).

This equivalence is compatible with the structure of C[F ]-module given
by the natural multiplication, since dΩ0(Cn) +

∑
Ω0(Cn)dfi and IΩ1(Cn)

are both C[F ]-modules.

Lemma 2.1. — Let F−1(y) be a non-empty non-critical fibre of F , where y =
(y1, . . . , yq). A polynomial 1-form ω is exact on F−1(y) if and only if there
exists a polynomial R and some polynomial 1-forms η1, . . . , ηq such that

ω = dR +
∑

i

(fi − yi)ηi.

Proof. — Since ω is exact on F−1(y), it has an holomorphic integral R on
this fibre. Since F−1(y) is a smooth affine variety, R is a regular map by
Grothendieck’s Theorem (see [7, p. 182]). In other words, R is the restriction
to F−1(y) of a polynomial, which will also be denoted by R. The (q + 1)-
form (ω − dR) ∧ df1 ∧ · · · ∧ dfq vanishes on F−1(y). Since F−1(y) is non-
critical, (f1−y1), . . . , (fq−yq) define a local system of parametres at any point
of F−1(y). So the ideal ((f1 − y1), . . . , (fq − yq)) is reduced and we get:

(ω − dR) ∧ df1 ∧ · · · ∧ dfq ≡ 0 [f1 − y1, . . . , fq − yq].
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The q-form df1 ∧ · · · ∧ dfq never vanishes on F−1(y). By de Rham Lemma
(see [19]), there exist some polynomials αi and some polynomial 1-forms ηi

such that

ω − dR =
q∑

i=1

αi dfi +
q∑

i=1

(fi − yi)ηi

which can be rewritten as

ω = d
(
R +

q∑
i=1

αi(fi − yi)
)
+

q∑
i=1

(fi − yi)(ηi − dαi).

Proof of Proposition 1.2. — Let ω be a TR-exact 1-form. Let us show there
exists a non-zero polynomial P such that P (F )ω � 0 [(0)]. By Lemma 2.1, there
exists a non-empty Zariski open set U in Cq such that, for any y = (y1, . . . , yq)
in U

ω � 0 [f1 − y1, . . . , fq − yq].

We proceed to an elimination of f1 − y1, . . . , fq − yq. For any point y =
(yi+1, . . . , yq) in Cq−i, we denote by Ii(y) the following ideal:

Ii(y) = (fi+1 − yi+1, . . . , fq − yq).

By convention, C0 is the space reduced to a point, and Iq(y) = (0). Let us
show by induction on i ≤ q the following property:

There exists a non-empty Zariski open set Ui in Cq−i such that, for any
point y in Ui, there exists a non-zero polynomial P in C[t1, . . . , ti] for which

P (f1, . . . , fi)ω � 0
[
Ii(y)

]
.

This property is true for i = 0. Assume it holds to the order i < q, and
let Ui be such a Zariski open set. We may assume that Ui is a principal open
set, i.e. Ui = {f(y) �= 0}. Write

f =
∑
k≤s

fk(ti+2, . . . , tq)tki+1,

and set Ui+1 = {fs(y′) �= 0}. Let y′ = (yi+2, . . . , yq) be a point in Ui+1. For
any z such that f(z, y′) �= 0, the point y = (z, y′) belongs to Ui. By induction,
there exist a non-zero polynomial P z and a polynomial 1-form ηz such that:

P z(f1, . . . , fi)ω � (fi+1 − z)ηz
[
Ii+1(y′)

]
.

For any such z, fix a 1-form ηz satisfying this equivalence. The system {ηz}
thus obtained is an uncountable subset of Ω1(Cn). Since Ω1(Cn) has count-
able dimension, these forms cannot be linearly independent. There exist some
distinct values z1, . . . , zm and some non-zero constants (β1, . . . , βm) such that:

β1η
z1 + · · ·+ βmηzm = 0.
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RELATIVE EXACTNESS AND ALGEBRAIC (Cp, +)-ACTIONS 379

Since the equivalence relation is compatible with the structure of C[F ]-module,
we get with the previous relations:

( m∑
j=1

βjP
zj(f1, . . . , fi)

∏
k �=j

(fi+1 − zk)
)
ω � 0

[
Ii+1(y′)

]
.

None of the βj (resp. P zj ) is zero by construction. Thus the polynomial

P̃ =
m∑

j=1

βjP
zj (t1, . . . , ti)

∏
k �=j

(ti+1 − zk)

is non-zero, and satisfies the relation P̃ (f1, . . . , fi+1)ω ≡ 0 [Ii+1(y′)]. Since we
can perform this process for any point y′ in Ui+1, the induction is proved.

3. A factorisation lemma

In this section, we prove an extension of the first Bertini’s Theorem and
Stein’s Factorisation Theorem (see [20, p. 139], and [10, p. 280]) to the case
of reducible varieties. This result is certainly well-known but I could not find
a proper reference for it. So I prefer to give a proof of it, based on Zariski’s
Main Theorem.

Lemma 3.1. — Let F : X → Y be a dominating morphism of complex affine
varieties, where X is equidimensional and Y is irreducible. Let R be a regular
map on X. Assume that:

• the fibres of F are generically connected;
• the restriction of F to any irreducible component of X is dominating;
• the map G = (F,R) is everywhere singular on X.

Then R coincides on a dense open set of X with α(F ), where α is a rational
map on Y. In this case, R is said to factor through F .

Proof. — Since the map G : X → Y × C is everywhere singular, G cannot be
dominating. So there exists an element P of C[Y ][t] such that P (F,R) = 0
on X . Note that P has degree > 0 with respect to t, because F is a dominating
map. Under the previous assumptions, there exists a Zariski open set U in Y
such that:

• for any irreducible component X ′ of X , U is contained in F (X ′);
• for any point y in U , F−1(y) is connected;
• for any point y in U , the polynomial P (y, t) is non-zero.
Let y be a point in U . Since P (y,R) = 0 on F−1(y), R is locally constant on

F−1(y). Since R is regular and F−1(y) is connected, R is constant on F−1(y).
So we can define the correspondence α : U → C that maps any point y of U to
the unique value that takes R on F−1(y). Consider its graph:

Z =
{
(y, α(y)), y ∈ U

}
.
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If X ′ is an irreducible component of X , then Z coincides with G(X ′∩F−1(U)).
So Z is constructible for the Zariski topology, and Z is irreducible. Therefore Z
defines in Y ×C a rational correspondence from Y to C in the sense of Zariski
(see [17, p. 29–51]). By Zariski’s Main Theorem, α coincides with a rational map
on Y . Let U ′ be an open set contained in U where α is regular. Then F−1(U ′)
is a dense open subset of X . Moreover R and α(F ) coincide on F−1(U ′)
by construction.

4. Blowing-downs and primitive mappings

In this section, we give some properties of blowing-downs and primitive
mappings. For this class of maps, we will establish a division lemma (see
Section 5) that is the key-point for the proof of Theorem 1.4. Let F be a
polynomial dominating map from Cn to Cq, and let S(F ) be its set of singular
points. We introduce the following sets:

B(F ) =
{
y ∈ Cq, F−1(y) is non-empty and not connected

}
,

E(F ) = union of blowing-downs of F ,

I(F ) =
{
y ∈ Cq, F−1(y) is empty

}
.

Let H be the GCD of all q-minors of dF , and set:

ωF =
df1 ∧ · · · ∧ dfq

H
·

Note that for all polynomials P and R, we have

P (F )dR ∧ ωF = d
(
P (F )R

)
∧ ωF .

Since the sets B(F ), E(F ), I(F ) are all constructible for the Zariski topol-
ogy, it makes sense to consider their codimensions. Recall that F is primi-
tive if its fibres are 0-generically connected and 1-generically non-empty, i.e.
codimB(F ) ≥ 1 and codim I(F ) ≥ 2.

Proposition 4.1. — A polynomial map F : C
n → C

q is primitive if and only
if any polynomial R such that dR ∧ ωF = 0 belongs to C[F ].

Proof. — Assume that F is primitive. Let R be a polynomial such that
dR ∧ ωF = 0. Then the map G = (F,R) is everywhere singular. Since the
generic fibres of F are connected, R factors through F by the factorisation
lemma. Let us set

R = b(F )/a(F ),
where a, b are relatively prime. Let us show by absurd that a is constant.
Assume not, and let a′ be an irreducible factor of a. For any point y
in V (a′)− I(F ), there exists a point x such that F (x) = y, which implies
that a(y)R(x) = b(y) = 0. So b vanishes on V (a′) − I(F ). Since I(F ) has
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codimension ≥ 2 in Cn, V (a′)−I(F ) is dense in V (a′) and b vanishes on V (a′).
By Hilbert’s Nullstellensatz, a′ divides b, contradicting the fact that a and b
are relatively prime. Thus a is constant and R belongs to C[F ].

Assume now that any polynomial R such that dR∧ωF = 0 belongs to C[F ].
The q-form ωF is obviously non-zero, and the polynomials fi are algebraically
independent. So F is a dominating map.

Let us prove first that codim(B(F )) ≥ 1. By Bertini First Theorem (see [20,
p. 139]), it suffices to show that C(F ) is algebraically closed in C(x1, . . . , xn).
Let R be a rational fraction that is algebraic over C(F ). Let

P (z, t1, . . . , tq) =
∑
k≤s

ak(t1, . . . , tq)zk

be a nonzero polynomial such that P (R, f1, . . . , fq) = 0. We choose P of
minimal degree with respect to z. Since P (R, f1, . . . , fq) = 0, the denominator
of R divides as(F ). By derivation and wedge product, we get:

∂P

∂z
(R, f1, . . . , fq)dR ∧ ωF = 0.

Since P has minimal degree, dR∧ωF = 0 and d(as(F )R)∧ωF = 0. As as(F )R
is a polynomial, it belongs to C[F ] and R lies in C(F ).

Let us show by absurd that codim(I(F )) ≥ 2. Assume not, and let C = V (f)
be a codimension 1 irreducible component of I(F ), where f is reduced. Since
the intersection V (f)∩F (Cn) has codimension ≥ 2, there exists a polynomial P
vanishing on V (f)∩F (Cn) and not divisible by f . The function P (F ) vanishes
on V (f(F )). By Hilbert’s Nullstellensatz, there exists an integer n such that
Pn(F ) is divisible by f(F ). The function Pn/f is rational non-polynomial,
and R = Pn(F )/f(F ) belongs to C[x1, . . . , xn]. Since R satisfies the equation
dR ∧ ωF = 0, R belongs to C[F ], hence a contradiction.

For q = 1, a mapping F is primitive if and only if its generic fibres are
connected. Indeed any non-constant polynomial map from Cn to C has to be
surjective. In this way, the definition of primitive mapping extends the notion
of primitive polynomial (see [8]).

Example 1. — The polynomial F (x, y) = x2 is not primitive because its
generic fibres are not connected. Note that dx ∧ d(x2) = 0, but x does not
belong to C[x2].

Example 2. — Consider the mapping F : C3 → C2, (x, y, z) �→ (x, xy). The
function y satisfies the relation dy ∧ dx ∧ d(xy) = 0 but does not belong
to C[x, xy]. So F is not a primitive mapping although its generic fibres are
connected. The obstruction lies in the fact that I(F ) = {(y1, y2), y1 = 0},
so codim(I(F )) = 1.
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Example 3. — Consider the mapping F : C3 → C2, (x, y, z) �→ (xy, zy). It is
easy to see that F is onto and that its generic fibres are isomorphic to C∗. So F
is a primitive mapping.

Recall that a blowing-down is an hypersurface of Cn that is mapped by F
to a set of codimension ≥ 2. For instance, the plane {y = 0} in C3 is a
blowing-down of the map F (x, y, z) = (xy, zy).

Proposition 4.2. — Any blowing-down of F is contained in S(F ).

Proof. — Let V be a blowing-down of F , and let W denote the Zariski closure
of F (V ). ThenW is irreducible and there exists a dense open setW ′ ofW , con-
sisting only of smooth points ofW and containing F (V ). So V ′ = F−1(W ′)∩V
is a dense open set of V . For any smooth point x in V ′, the differential of the
restriction of F to V has rank ≤ dimW ′ ≤ q − 2. The differential dF (x) maps
the hyperplane TxV to a space of dimension ≤ q − 2. So dF (x) maps Cn to a
space of dimension ≤ q−1, and F is singular at x. Since any smooth point of V ′

is a singularity of F and S(F ) is closed, we have the inclusion V ⊂ S(F ).

5. The Division Lemma

In this section, we are going to establish the essential tool for the proof of
Theorem 1.4. Let ω be a TR-exact 1-form ω. By Proposition 1.2, there exists
a non-zero polynomial P in C[t1, . . . , tq], and some polynomials R, a1, . . . , aq

in C[x1, . . . , xn] such that:

P (F )ω = dR+ a1df1 + · · ·+ aqdfq.

By using the wedge product with ωF , we get :

dR ∧ ωF = P (F )ω ∧ ωF ≡ 0
[
P (F )

]
.

Assume there exist some polynomials S, b1, . . . , bq such that ω = dS+
∑

i bidfi.
By an obvious computation, we get

ω ∧ ωF = dS ∧ ωF and d(R − P (F )S) ∧ ωF = 0.

Since F is primitive, there exists a polynomial A such that R = A(F )+P (F )S.
More generally, let R be a polynomial satisfying the equation

dR ∧ ωF ≡ 0
[
P (F )

]
.

R is said to be E-divisible by P (F ) if there exist some polynomials A and S
such that

R = A(F ) + P (F )S.

In this section we are going to determine under which conditions a polyno-
mial R satisfying this equation is E-divisible by P (F ).
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Division Lemma. — Let F be a primitive mapping from Cn to Cq. Let P be
an element of C[t1, . . . , tq], and R a polynomial in C[x1, . . . , xn] satisfying the
equation dR ∧ ωF ≡ 0 [P (F )]. Assume that:

• V (P ) ∩B(F ) has codimension ≥ 2 in Cq;
• V (P (F )) ∩ E(F ) has codimension ≥ 2 in Cn;
• V (P ) ∩ I(F ) has codimension ≥ 3 in Cq.

Then R is E-divisible by P (F ).

5.1. The Weak Division Lemma. — In this subsection, we are going to
establish a weak version of the division lemma. A polynomial R is said to be
weakly E-divisible by P (F ) if there exists a polynomial B coprime to P such
that B(F )R is E-divisible by P (F ).

Weak Division Lemma. — Let F be a primitive mapping from Cn to Cq.
Let P be an irreducible polynomial of C[t1, . . . , tq]. Let R be a polynomial in
C[x1, . . . , xn] satisfying the equation dR ∧ ωF ≡ 0 [P (F )]. Assume that:

• V (P ) ∩B(F ) has codimension ≥ 2 in Cq;
• V (P (F )) ∩ E(F ) has codimension ≥ 2 in Cn.

Then R is weakly E-divisible by P (F ).

The proof splits in two steps. Consider a polynomial R satisfying the equa-
tion dR ∧ ωF ≡ 0 [P (F )].

First we show that its restriction to V (P (F )) factors through F . So there
exist two polynomials A,B, with B coprime to P , such that B(F )R − A(F )
vanishes on V (P (F )). If hn1

1 · · ·hnr
r is the irreducible decomposition of P (F )

in C[x1, . . . , xn], then h1 · · ·hr divides B(F )R −A(F ).
Second we prove that every factor hi divides B(F )R−A(F ) with multiplic-

ity ≥ ni.

Lemma 5.1. — Let P be an irreducible polynomial in C[t1, . . . , tq]. Let h be
an irreducible factor of P (F ). Let R be a polynomial satisfying the equation
dR ∧ ωF ≡ 0 [h]. Then the map G : V (h) → V (P ) × C, x �→ (F (x), R(x)) is
everywhere singular.

Proof. — It suffices to show that the collection of 1-forms dR, dh, df1, . . . , dfq

has rank ≤ q at any point x of V (h). We are going to check that whenever you
choose q+1 forms in this collection, their wedge product is divisible by h. Con-
sider the first case, when this wedge product contains all the forms df1, . . . , dfq.
Then it is either equal to dR ∧ df1 ∧ · · · ∧ dfq or to dh ∧ df1 ∧ · · · ∧ dfq. By
assumption dR ∧ df1 ∧ · · · ∧ dfq is divisible by h. To see that the second one
is divisible by h, factor P (F ) = Qhm, where Q is coprime to h and m ≥ 1.
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By wedge product, we get:

dP (F ) ∧ df1 ∧ · · · ∧ dfq = mhm−1Q dh ∧ df1 ∧ · · · ∧ dfq

+hmdQ ∧ df1 ∧ · · · ∧ dfq = 0.

This yields Q dh ∧ df1 ∧ · · · ∧ dfq ≡ 0[h]. Since Q is coprime to h, we find:

dh ∧ df1 ∧ · · · ∧ dfq ≡ 0 [h].

Consider now the second case, when dR and dh appear in the wedge product.
Assume first that q > 1. Up to a reordering of the forms dfi, we may assume
that this wedge product is equal to dR∧dh∧df2∧· · ·∧dfq. Since P (F ) = Qhm

where Q is coprime to h, we get by derivation:

d
{
P (F )

}
=

q∑
i=1

∂P

∂ti
(F )dfi ≡ 0 [hm−1].

By wedge product, we find:
∂P

∂t1
(F )HωF =

∂P

∂t1
(F )df1 ∧ · · · ∧ dfq

= d{P (F )} ∧ df2 ∧ · · · ∧ dfq ≡ 0 [hm−1].

By construction, the coefficients of ωF have no common factors. Thus hm−1

divides ∂P/∂t1(F )H . Then write:
∂P

∂t1
(F )HdR ∧ ωF = dR ∧ d{P (F )} ∧ df2 ∧ · · · ∧ dfq

= dR ∧ d{Qhm} ∧ df2 ∧ · · · ∧ dfq.

Since dR ∧ ωF is divisible by h, we get

dR ∧ d{Qhm} ∧ df2 ∧ · · · ∧ dfq ≡ 0 [hm]

which leads to

mQhm−1dR ∧ dh ∧ df2 ∧ · · · ∧ dfq ≡ 0 [hm].

Since Q is coprime to h, we deduce:

dR ∧ dh ∧ df2 ∧ · · · ∧ dfq ≡ 0 [h].

If q = 1, we do the same computation and forget the wedge product with
df2 ∧ · · · ∧ dfq.

Lemma 5.2. — Let P be an irreducible polynomial in C[t1, . . . , tq]. Let
hn1

1 · · ·hnr
r be the irreducible decomposition of P (F ) in C[x1, . . . , xn]. Let R be

a polynomial such that dR ∧ ωF ≡ 0 [h1 · · ·hr]. Assume that:
• V (P ) ∩B(F ) has codimension ≥ 2 in Cq;
• V (P (F )) ∩ E(F ) has codimension ≥ 2 in Cn.

Then there exist two polynomials A,B, where B is coprime to P , such that
B(F )R −A(F ) is divisible by h1 · · ·hr.
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Proof. — By the previous lemma applied to all the irreducible components of
V (P (F )), we can see that the map:

G : V
(
P (F )

)
−→ V (P )× C, x �−→

(
F (x), R(x)

)
is singular. Since V (P (F ))∩E(F ) has codimension ≥ 2, none of the hypersur-
faces V (hi) is a blowing-down. So F maps every V (hi) densely on V (P ). Since
V (P ) ∩B(F ) has codimension ≥ 2, the generic fibres of F : V (P (F ))→ V (P )
are connected. By the factorisation lemma, there exists a rational map α
on V (P ) such that R = α(F ) on V (P (F )). Write α as A/B, where B is co-
prime to P . The polynomial B(F )R−A(F ) vanishes on V (P (F )). By Hilbert’s
Nullstellensatz, it is divisible by h1 · · ·hr.

Proof of the Weak Division Lemma. — Let P be an irreducible polynomial
in C[t1, . . . , tq]. Let hn1

1 · · ·hnr
r be the irreducible decomposition of P (F ) in

C[x1, . . . , xn]. Let R be a polynomial such that dR ∧ ωF ≡ 0 [P (F )]. Then R
satisfies the equation

dR ∧ ωF ≡ 0 [h1 · · ·hr].
By the previous lemma, there exist some polynomials A,B, where B is co-
prime to P , such that S = B(F )R − A(F ) is divisible by h1 · · ·hr. Factor
S as S0h

k1
1 · · ·hkr

r , where S0 is coprime to each hi. Let us show by absurd
that ki ≥ ni for any i.

Assume there exists an index i such that ki/ni < 1. Let i0 be an index for
which the ratio ki/ni is minimal, and let u/v be its irreducible decomposition.
By construction, we have 0 < u/v < 1. The function

L = Sv/P (F )u = Sv
0h

vk1−un1
1 · · ·hvkr−unr

r

is polynomial, since u/v ≤ ki/ni implies vki − uni ≥ 0. Moreover L satisfies
the equation dL∧ωF ≡ 0 [h1 · · ·hr]. Indeed if vki−uni > 0, then L is divisible
by hi and L = Lihi. We set P (F ) = Pih

ni

i , where Pi is coprime to hi. By an
easy computation, we get:

dP (F ) ∧ ωF = Pinih
ni−1
i dhi ∧ ωF + hni

i dPi ∧ ωF = 0.

Since Pi is coprime to hi, we deduce dhi ∧ ωF ≡ 0 [hi], and this implies:

dL ∧ ωF = Lidhi ∧ ωF + hidLi ∧ ωF ≡ 0 [hi].

If vki − uni = 0, set S = Sih
ki

i . By derivation and wedge product, we get:

SdL ∧ ωF = Sih
ki

i dL ∧ ωF = vLdS ∧ ωF .

By an easy computation, we obtain

dS ∧ ωF = B(F )dR ∧ ωF ≡ 0 [hni

i ]

which implies
SidL ∧ ωF ≡ 0 [hni−ki

i ].
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Since ni − ki > 0 and Si is coprime to hi, we deduce dL ∧ ωF ≡ 0 [hi]. Thus
dL ∧ ωF is divisible by h1 · · ·hr. By Lemma 5.2, there exist two polynomials
A′, B′, where B′ is coprime to P , such that B′(F )L −A′(F ) ≡ 0 [h1 · · ·hr].

Let us show by absurd that vki−uni = 0 for any i. Assume that hi divides L.
By the previous relation, hi divides A′(F ). Since V (hi) is not a blowing-down
and P is irreducible, A′ is divisible by P , which implies:

B′(F )L ≡ 0 [h1 · · ·hr].

Since none of the V (hj) are blowing-downs and every hj divides P (F ), every hj

is coprime toB′(F ). So L is divisible by h1 · · ·hr, contradicting its construction.
Since vki − uni = 0, v divides ni for any i. As 0 < u/v < 1, v is strictly

greater than 1 and P (F ) = T v, where T belongs to C[x1, . . . , xn]. This implies:

d{P (F )} ∧ ωF = vT v−1dT ∧ ωF = 0.

Since F is primitive, T belongs to C[F ] by Proposition 4.1. Therefore P is the
v-th power of some polynomial, which contradicts the irreducibility of P .

5.2. Proof of the Division Lemma. — Let R be a polynomial satisfying
the equation dR ∧ ωF ≡ 0 [P (F )]. From an analytic viewpoint, the weak
division lemma asserts that R coincides on V (P (F )) with α(F ), where α is a
rational function on V (P ). In order to prove the Division Lemma, we are going
to show that α is regular if V (P )∩ I(F ) has codimension ≥ 3. In other words,
we are going to eliminate the “poles” of α.

Recall that an ideal I in a local ring R is M-primary if I contains some
power of the maximal idealM of R. We denote by OCq,y the ring of germs of
regular functions at the point y in Cq. For simplicity, we set:

C[[X ]] = C[[x1, . . . , xn]] and C[[T ]] = C[[t1, . . . , tq]].

Lemma 5.3. — Let I = (g1, . . . , gn) be an M-primary ideal in C[[X ]]. If the
classes of the formal series {e1, . . . , eµ} form a basis of the vector space
C[[X ]]/I, then {e1, . . . , eµ} is a basis of the C[[g1, . . . , gn]]-module C[[X ]].

Proof. — Since (g1, . . . , gn) is M-primary, C[[X ]] is a finitely generated
C[[g1, . . . , gn]]-module (see [1]). By Nakayama Lemma (cf. [20, p. 283]),
{e1, . . . , eµ} forms a minimal set of generators of this module. Let us show by
absurd that e1, . . . , eµ are C[[g1, . . . , gn]]-linearly independent.

Assume there exist some formal series ai(y1, . . . , yn), not all equal to zero,
such that

∑
k ak(g1, . . . , gn)ek = 0. Up to a linear change of coordinates on

y1, . . . , yn, which is equivalent to replacing g1, . . . , gn by another set of formal
series generating the same ideal, we may assume there exists an index i for which
ai(y1, 0, . . . , 0) �= 0. By setting ai(x1, 0, . . . , 0) = bi(x1), we find:

b1(g1)e1 + · · ·+ bµ(g1)eµ ≡ 0 [g2, . . . , gn].
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Let m be the minimum of the orders of all formal series b1, . . . , bµ. Then

bi(x1) = xm
1 ci(x1)

for any i, and ci(0) �= 0 for at least one of them. Thus we get:

gm
1

{
c1(g1)e1 + · · ·+ cµ(g1)eµ

}
≡ 0 [g2, . . . , gn].

Since (g1, . . . , gn) isM-primary, g1, . . . , gn is a regular sequence (cf. [20, p. 227])
and g1 is not a zero-divisor modulo [g2, . . . , gn]. We deduce:

c1(0)e1 + · · ·+ cµ(0)eµ ≡ 0 [g1, g2, . . . , gn].

So c1(0) = · · · = cµ(0) = 0, hence contradicting the fact that not all ci(0)
are zero.

Lemma 5.4. — Let y be a point in Cq such that the fibre F−1(y) is non-
empty of dimension (n − q). Let P,B,A be three elements of C[t1, . . . , tq]
such that A(F ) belongs to the ideal (P (F ), B(F ))C[x1, . . . , xn]. Then A be-
longs to (P,B)OCq ,y.

Proof. — Let x be a point in F−1(y) where the fibre has local dimension
(n − q). For simplicity, we may assume x = 0 and y = 0. There exists a
q-dimensional vector space, defined by some linear equations 71, . . . , 7n−q and
intersecting locally F−1(0) only at 0. By Ruckert’s Nullstellensatz (see [1]), the
ideal (f1, . . . , fq, 71, . . . , 7n−q) isM-primary in the ring C[[X ]]. Let {e1, . . . , eµ}
be a basis of the vector space C[[X ]]/(f1, . . . , fq, 71, . . . , 7n−q) such that e1 = 1.
By Lemma 5.3, {e1, . . . , eµ} is a basis of the C[[f1, . . . , 7n−q]]-module C[[X ]].
Let R,S be two polynomials in C[x1, . . . , xn] such that

A(F ) = P (F )R +Q(F )S.

If R1(f1, . . . , 7n−q) and S1(f1, . . . , 7n−q) denote their first coordinate in the
basis {e1, . . . , eµ}, we get:

P (F )R1(f1, . . . , 7n−q) +B(F )S1(f1, . . . , 7n−q) = A(F ).

After reduction modulo 71, . . . , 7n−q, this implies:

P (F )R1(F, 0) +B(F )S1(F, 0) = A(F ).

Thus A belongs to the ideal (P,B)C[[T ]]. Since OCq,0 is a Zariski ring and
C[[T ]] is its M-adic completion, we get (P,B)C[[T ]] ∩ OCq,0 = (P,B)OCq ,0

(see [14, p. 171–172]). So A belongs to (P,B)OCq ,0.

Lemma 5.5. — Let P,B,A be three polynomials in C[t1, . . . , tq] such that A(F )
belongs to (P (F ), B(F ))C[x1, . . . , xn]. If V (P (F ), B(F )) has codimension ≥ 2
and V (P (F ))∩I(F ) has codimension ≥ 3, then A belongs to (P,B)C[t1, . . . , tq].
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Proof. — This lemma is obvious if V (P,B) is empty. We assume it is not, and
consider the varieties X = V (P (F ), B(F )) and Y = V (P,B). By assumption,
P (F ) and B(F ) are coprime and X is equidimensionnal of codimension 2 in Cn.
Moreover P,B are coprime and Y is equidimensionnal of codimension 2 in Cq.
As V (P ) ∩ I(F ) has codimension ≥ 3, the restriction

FR : X −→ Y, x �−→ F (x)

is a dominating map. We construct a dense open set U in Y such that F−1(y)
has dimension (n − q) for any y in U . Let Xi be any irreducible component
of X . If F (Xi) has codimension ≥ 3, fix a dense open set Ui in Y that does
not meet F (Xi). If F (Xi) has codimension 2, we apply the theorem on the
dimension of fibres to FR : Xi → F (Xi). There exists an open set Vi contained
in F (Xi) such that F−1(y)∩Xi has dimension (n− q) for any y in Vi. If U ′ is
the intersection of all Ui and V ′ is the union of all Vi, then U = U ′ ∩ V ′ is a
dense open set in Y , and F−1(y) has dimension (n− q) for any y in U .

By Lemma 5.4, A belongs to (P,B)OCq ,y for any y in U . This means
there exists a polynomial βy such that βy(y) �= 0 and βyA belongs to
(P,Q)C[t1, . . . , tq]. The zero set of P,B and the βy, when y runs through U ,
has codimension ≥ 3 since it is contained in Y − U . The ideal J gener-
ated by P,B and the βy has depth ≥ 3. Since C[t1, . . . , tq] is catenary, J
contains a polynomial β such that P,B, β is a regular sequence. By construc-
tion βA ≡ 0 [P,B]. As β is not a zero divisor modulo (P,B), A belongs
to (P,B)C[t1, . . . , tq].

Proof of the Division Lemma. — Let R be a polynomial satisfying the equa-
tion dR ∧ ωF ≡ 0 [P (F )]. Assume that V (P ) ∩ B(F ) has codimension ≥ 2,
V (P (F )) ∩E(F ) has codimension ≥ 2 and V (P ) ∩ I(F ) has codimension ≥ 3.
By the Weak Division Lemma, there exist two polynomials A,B, where B is
coprime to P , and a polynomial S such that:

B(F )R −A(F ) = P (F )S.

Let us show by absurd that X = V (P (F ), B(F )) has codimension ≥ 2.
Assume that X contains an hypersurface V . Then F maps V to Y = V (P,B),
which codimension is ≥ 2 since P and B are coprime. So V is a blowing-down,
and this contradicts the assumption on V (P (F )) ∩ E(F ).

Since A(F ) belongs to (P (F ), B(F ))C[x1 , . . . , xn] and V (P )∩I(F ) has codi-
mension ≥ 3, A belongs to (P,B)C[t1, . . . , tq] by Lemma 5.5. There exist some
polynomials P1, B1 such that A = PP1 +BB1. Thus we deduce:

B(F )
{
R−B1(F )

}
= P (F )

{
S − P1(F )

}
.

Since X = V (P (F ), B(F )) has codimension 2, P (F ) and B(F ) are coprime.
So P (F ) divides R−B1(F ) and the Division Lemma is proved.
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5.3. Proof of Theorem 1.5. — Let F be a primitive mapping that is either
quasi-fibered or weakly quasi-fibered. By definition, the following conditions
hold:

• B(F ) has codimension ≥ 2 in Cq;
• E(F ) is empty;
• I(F ) has codimension ≥ 3 in Cq.
Let ω be a TR-exact 1-form. By Proposition 1.2, there exists a non-zero

polynomial P , and some polynomials R, a1, . . . , aq such that:

P (F )ω = dR+ a1df1 + · · ·+ aqdfq.

By wedge product with ωF , we can see thatR satisfies the equation dR∧ωF ≡ 0
[P (F )]. According to the above conditions, V (P )∩B(F ) has codimension ≥ 2
in Cq, V (P (F ))∩E(F ) is empty and V (P )∩ I(F ) has codimension ≥ 3 in Cq.
By the Division Lemma, there exist some polynomials A and S such that
R = A(F ) + P (F )S. Therefore a simple calculation yields:

P (F )ω = P (F )dS +
q∑

k=1

(
ak + S

∂P

∂tk
(F ) +

∂A

∂tk
(F )

)
dfk.

Let ck denote the coefficient of dfk in this sum. Then
∑

k ckdfk is divisible
by P (F ). If ω0 is that quotient, we can see

ω0 ∧ df1 ∧ · · · ∧ dfq = 0

which implies the second part of the theorem. If now F is quasi-fibered, then
it is non-singular in codimension 1. By De Rham Lemma (see [19]), ω0 can
be written as

∑
k dkdfk, where all dk are polynomials. Therefore ω is AR-

exact.

6. Recalls on (Cp,+)-actions

An algebraic (Cp,+)-action ϕ on an affine variety X consists of a regular
map ϕ : Cp ×X → X such that:

∀(u, v) ∈ C
p × C

p, ∀x ∈ X, ϕ
(
u, ϕ(v, x)

)
= ϕ(u + v, x).

We denote by C[X ]ϕ its ring of invariants, i.e. the space of regular functions
f such that f ◦ ϕ = f . The action ϕ can be defined as the composition of p
pairwise commuting algebraic (C,+)-actions ϕi. These latter are the restric-
tion of ϕ to the i-th coordinate of Cp. To each ϕi corresponds the deriva-
tion ∂i = ϕ∗

i (d/dti)ti=0, which enjoys the remarkable property of being locally
nilpotent (see the introduction). Moreover these derivations commute pairwise.
Conversely if {∂1, . . . , ∂p} is a system of locally nilpotent pairwise commuting
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derivations, the exponential map

exp(t1∂1 + · · ·+ tp∂p)(f) =
∑
k≥0

(t1∂1 + · · ·+ tp∂p)k(f)
k!

defines a morphism of algebras from C[X ] to C[X ] ⊗ C[t1, . . . , tp]. This mor-
phism induces a regular map ϕ : Cp ×X → X that is an (Cp,+)-action on X .
In this case, ϕ is said to be generated by {∂1, . . . , ∂p}.

Definition 6.1. — A commutative p-distribution D is a system of locally
nilpotent pairwise commuting derivations ∂1, . . . , ∂p. Its ring of invariants
C[X ]D is the intersection of the kernels of the ∂i on C[X ].

If ϕ is generated by D, then C[X ]D is the ring of invariants of ϕ. Indeed,
by definition of ϕ via the exponential map, a regular function f is invariant
by ϕ if and only if ∂i(f) = 0 for any i. Recall that the action ϕ is free at x
if the stabilizer of x is reduced to zero, or in other words if the orbit of x has
dimension p. Let [D] be the operator defined at the introduction. We introduce
its evaluation at x:

[D](x) : (R1, . . . , Rp) �−→ det
((
∂i(Rj)

))
(x).

Lemma 6.2. — Let ϕ be an algebraic (Cp,+)-action on X, and let D be its
commutative p-distribution. Then ϕ is not free at x if and only if [D](x) is the
null map.

Proof. — Assume first that ϕ is not free at x. Let (u1, . . . , up) be a non-zero
element of the stabilizer of x. Let ϕu be the (C,+)-action defined by

ϕu
t (y) = ϕtu1,...,tup(y).

Starting from the relation ϕu
1 (x) = x, we get by an obvious induction that

ϕu
m(x) = x for any integer m > 0. So ϕu

t (x) = x for any t in C, and x is a fixed
point of ϕu. For any regular function R, we get by derivation∑

ui∂i(R)(x) = 0

which implies for any p-uple (R1, . . . , Rp):

[D](x)(R1, . . . , Rp) = det
((
∂i(Rj)

))
(x) = 0.

Assume now that [D](x) is the null map. Let (∂i)x be the evaluation map
of ∂i at x, i.e. the map R �→ ∂i(R)(x). As C-linear forms on C[X ], the (∂i)x are
not linearly independent. There exists a non-zero p-uple (u1, . . . , up) such that∑

i ui(∂i)x = 0. Since the ∂i are locally nilpotent and commute pairwise, the
derivation δ = u1(∂1)+ · · ·+up(∂p) is itself locally nilpotent. So δ generates the
action ϕu defined by ϕu

t (y) = ϕtu1,...,tup(y). Since
∑

i ui(∂i)x = 0, x is a fixed
point of ϕu as can be seen via the exponential map. Therefore the stabilizer
of x is not reduced to zero.
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Let D = {∂1, . . . , ∂p} be a commutative p-distribution on C[X ]. Since the
exponential map defines a morphism of algebras, the map

degD : C[X ] −→ N ∪ {−∞}, f �−→ degt1,...,tp

{
exp(t1∂1 + · · ·+ tp∂p)(f)

}
satisfies all the axioms of a degree function: This is the degree relative to D.
By construction, the ring of invariants of D is the set of regular functions of
degree ≤ 0. If A is a domain, we denote by Fr(A) its fraction field. The
following lemma is due to Makar-Limanov [12].

Lemma 6.3. — Let A be a domain of characteristic zero. Let ∂ be a non-
zero locally nilpotent derivation on A and let A∂ be its kernel. Then Fr(A)
is isomorphic to Fr(A∂)(t). In particular, for any subfield k of Fr(A∂), the
transcendence degrees satisfy the relation:

deg trk
{
Fr(A∂)

}
= deg trk

{
Fr(A)

}
− 1.

Proof. — Since ∂ is non-zero locally nilpotent, there exists an element f of A
such that ∂(f) �= 0 and ∂2(f) = 0. So g = ∂(f) is invariant. It is then easy
to check by induction on p that every element P of A, of degree p for ∂, can
be written in a unique way as gpP = a0 + · · · + apf

p, where all the ai are
invariant.

We end these recalls with the factorial closedness property, which is essential
for rings of invariants (see [4], [5]).

Definition 6.4. — Let B a UFD and let A be a subring of B. A is factorially
closed in B if every element P of B which divides a non-zero element Q of A
belongs to A.

Lemma 6.5. — Let X be an affine variety such that C[X ] is a UFD. Let D be
a commutative p-distribution on X. Then C[X ]D is factorially closed in C[X ].

Proof. — Let Q be a non-zero element of C[X ]D, and let P divide Q in C[X ].
By considering the degree relative to D, we get

degD(Q) = degD(P ) + degD(Q/P ) = 0.

This implies degD(P ) = 0, and P is invariant with respect to D.

7. Jacobian description of p-distributions

Let ϕ be an algebraic (Cp,+)-action on Cn, satisfying the condition (H).
Let D be its commutative p-distribution, and let F be its quotient map. In this
section we are going to prove proposition 1.7. The main idea is to construct
a system of rational coordinates for which calculations will be simple. We
obtain this system by adding some polynomials si to f1, . . . , fn−p. By analogy
with (C,+)-actions, we denote them as“rational slices”(see [4], [6]). With these
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coordinates, we show there exists an invariant fraction E such that [D] = E×J ,
and there only remains to show that E is a polynomial.

Definition 7.1. — Let D be a commutative p-distribution on C[x1, . . . , xn].
A diagonal system of rational slices is a collection {s1, . . . , sp} of polynomials
such that the matrix (∂i(sj)) is diagonal and all its diagonal coefficients are
non-zero invariant with respect to D.

Lemma 7.2. — Every commutative p-distribution D satisfying condition (H)
admits a diagonal system of rational slices {s1, . . . , sp}.

Proof. — Let Dk be the commutative (p − 1)-distribution {∂1, . . . , ∂k−1,
∂k+1, . . . , ∂p}, and let C[x1, . . . , xn]Dk be its ring of invariants. By induction
on Lemma 6.3, we get:

deg trC Fr
(
C[x1, . . . , xn]Dk

)
≥ n− p+ 1.

Since C[x1, . . . , xn]D is isomorphic to a polynomial ring in n − p variables,
∂k cannot be identically zero on C[x1, . . . , xn]Dk . For any k, there exists a
polynomial sk such that ∂k(sk) �= 0, ∂2

k(sk) = 0 and ∂i(sk) = 0 if i �= k.
The collection {s1, . . . , sp} is a diagonal system of rational slices.

Lemma 7.3. — Let D be a commutative p-distribution satisfying the condi-
tion (H). Let {s1, . . . , sp} be a diagonal system of rational slices. Then the
map G = (s1, . . . , sp, f1, . . . , fn−p) is dominating.

Proof. — Let us show by absurd that G is dominating. Assume that G is
not, and let Q be an element of C[z1, . . . , zp, y1, . . . , yn−p] such that Q(G) = 0.
We assume Q to have minimal degree with respect to the variables z1, . . . , zp.
By derivation, we get for all i:

∂Q

∂zi
(G)∂i(si) = ∂i

(
Q(G)

)
= 0.

Since ∂i(si) �= 0, this implies ∂Q/∂zi(G) = 0. By minimality of the degree, we
deduce that ∂Q/∂zi = 0 for all i. So Q belongs to C[y1, . . . , yn−p]. Therefore
the fi are not algebraically independent, and we obtain:

deg trCC(F ) < n− p.

But C[F ] is the ring of invariants of D. By induction with Lemma 6.3, we find
that deg trCC(F ) ≥ n− p, hence a contradiction.

Lemma 7.4. — Let D be a commutative p-distribution satisfying (H). Let
{s1, . . . , sp} be a diagonal system of rational slices. Then

C[x1, . . . , xn] ⊂ C(f1, . . . , fn−p)[s1, . . . , sp].
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Proof. — Let us show by induction on r ≥ 0 that every polynomial of de-
gree r with respect to D belongs to C(f1, . . . , fn−p)[s1, . . . , sp]. For r = 0,
this is obvious because every polynomial of degree zero is invariant, and be-
longs to C[f1, . . . , fn−p]. Assume the property holds to the order r. Let R
be a polynomial of degree r + 1 with respect to D. By definition, the poly-
nomials ∂i(R) have all degree ≤ r. By induction, there exist some elements
Pi of C(y1, . . . , yn−p)[z1, . . . , zp] such that ∂i(R) = Pi(G) for all i. Since D
is commutative, we get for all (i, j):

∂Pj

∂zi
(G)∂i(si) = ∂i ◦ ∂j(R) = ∂j ◦ ∂i(R) =

∂Pi

∂zj
(G)∂j(sj).

By construction, there exists a non-zero polynomial Si in C[y1, . . . , yn−p]
such that ∂i(si) = Si(F ). Since G is dominating, this yields for all (i, j):

Si
∂Pj

∂zi
= Sj

∂Pi

∂zj
·

The differential 1-form ω =
∑

Pi/Sidzi is polynomial in the variables zi. By
the above equality, ω is closed with respect to zi. So ω is exact and there
exists an element P of C(y1, . . . , yn−p)[z1, . . . , zp] such that ω = dP . Therefore
∂i(R−P ◦G) = 0 for all i, and the function R−P ◦G is rational and invariant
with respect to D. Since the ring of invariants ofD is factorially closed, R−P ◦G
belongs to C(f1, . . . , fn−p). So R belongs to C(f1, . . . , fn−p)[s1, . . . , sp], hence
proving the induction.

Following exactly the same argument, we can prove the equality

C[x1, . . . , xn] = C[f1, . . . , fn−p][s1, . . . , sp]

if the matrix (∂i(sj)) is the identity. In this case G is an algebraic automor-
phism. In any case, the previous lemma asserts that G is always a birational
automorphism of Cn.

Lemma 7.5. — Let D be a commutative p-distribution satisfying (H). Let
{s1, . . . , sp} be a diagonal system of rational slices. Then

∂1(s1) . . . ∂p(sp)× J = J(s1, . . . , sp)× [D].

Proof. — For any p-uple of polynomials (R1, . . . , Rp), there exist some rational
functions Pi such that Ri = Pi(G). On one hand, we get by the chain rule:

J(R1, . . . , Rp) = det
(
d(P1, . . . , Pp, y1, . . . , yn−p)

)
(G) det(dG)

= det
(
(∂Pi/∂zj)

)
(G)J(s1, . . . , sp).

On the other hand, we have the following relation:

[D](R1, . . . , Rp) = det
((
∂i(Rj)

))
= det

((∑
k

∂Pj

∂zk
(G)∂i(sk)

))
.
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394 BONNET (P.)

Since the matrix (∂i(sj)) is diagonal, this yields

[D](R1, . . . , Rp) = det
((∂Pi

∂zj

))
(G)∂1(s1) · · · ∂p(sp)

which implies ∂1(s1) · · ·∂p(sp)J(R1, . . . , Rp) = J(s1, . . . , sp)× [D](R1, . . . , Rp).

Lemma 7.6. — Let D be a commutative p-distribution satisfying the con-
dition (H). Let {s1, . . . , sp} be a diagonal system of rational slices. Then
J(s1, . . . , sp) is invariant.

Proof. — For simplicity, we denote by J ′ the jacobian of every map from Cn

to Cn. Since {s1, . . . , sp} is a diagonal system of rational slices, we get via the
exponential map the relation si ◦ ϕ = si + ti∂i(si), and this yields:

J ′(s1 ◦ ϕ, . . . , sp ◦ ϕ, f1 ◦ ϕ, . . . , fn−p ◦ ϕ)
= J ′(s1 + t1∂1(s1), . . . , sp + tp∂p(sp), f1, . . . , fn−p

)
.

Since every ∂i(si) belongs to C[F ], we deduce:

J ′(s1 ◦ ϕ, . . . , sp ◦ ϕ, f1 ◦ ϕ, . . . , fn−p ◦ ϕ) = J ′(s1, . . . , sp, f1, . . . , fn−p)
= J(s1, . . . , sp).

Moreover we find by the chain rule:

J ′(s1◦ϕ, . . . , sp◦ϕ, f1◦ϕ, . . . , fn−p◦ϕ) = J ′(s1, . . . , sp, f1, . . . , fn−p)(ϕ)×J ′(ϕ).

Since ϕ is an automorphism of Cn for any (t1, . . . , tp), the polynomial J ′(ϕ)
never vanishes. So it is non-zero constant. As ϕ0,...,0 is the identity, J ′(ϕ) ≡ 1
and that implies

J(s1 ◦ ϕ, . . . , sp ◦ ϕ, f1 ◦ ϕ, . . . , fn−p ◦ ϕ) = J(s1, . . . , sp, f1, . . . , fn−p)(ϕ)

which leads to J(s1, . . . , sp)(ϕ) = J(s1, . . . , sp). Thus J(s1, . . . , sp) is invariant.

Proof of Proposition 1.7. — Let D be a commutative p-distribution satisfying
the condition (H). By Lemmas 7.5 and 7.6, there exist two non-zero invariant
polynomials E1 and E2 such that:

E1 × [D] = E2 × J.

Since C[F ] is factorially closed in C[x1, . . . , xn], we may assume that E1 and
E2 have no common factor. Let us show by absurd that E1 is non-zero con-
stant. Assume that E1 is not constant. By definition of J , E1 divides all the
coefficients of the (n− p)-form df1 ∧ · · · ∧ dfn−p. So the hypersurface V (E1) is
contained in the singular set of F . But that contradicts a result of Daigle [4],
that asserts that F is non-singular in codimension 1.
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8. Trivialisation of algebraic (Cp,+)-actions

In this section, we are going to establish Theorem 1.8. The main idea is
to refine a diagonal system of rational slices, in order to get the coordinate
functions of an algebraic automorphism that conjugates ϕ to the trivial action.

Proof of Theorem 1.8. — Let ϕ be an algebraic (Cp,+)-action on Cn satisfying
the condition (H). Assume that E is constant and that the quotient map F is
quasi-fibered. Let {s1, . . . , sp} be a diagonal system of rational slices. Such a
system exists by Lemma 7.2. By Proposition 1.7, we have for any (p− 1)-uple
(R1, . . . , Ri−1, Ri+1, . . . , Rp):

J(R1, . . . , Ri−1, si, Ri+1, . . . , Rp) = [D](R1, . . . , Ri−1, si, Ri+1, . . . , Rp)/E.

Let Pi be the polynomial of C[t1, . . . , tn−p] such that ∂i(si) = Pi(F ). Since E
is constant and ∂k(si) = 0 if k �= i, the previous equality yields:

J(R1, . . . , Ri−1, si, Ri+1, . . . , Rp) ≡ 0
[
Pi(F )

]
.

If we replace Rk by all the polynomials x1, . . . , xn, we can see that the coeffi-
cients of the differential form dsi ∧ df1 ∧ · · · ∧ dfn−p are all divisible by Pi(F ).
By Daigle’s result [4], F is non-singular in codimension 1. So the coefficients of
df1 ∧ · · · ∧ dfn−p have no common factor. Therefore si satisfies the equation:

dsi ∧ ωF ≡ 0
[
Pi(F )

]
.

By the Division Lemma, there exist some polynomials Ai, Si such that:

si = Ai(F ) + Pi(F )Si.

By an easy computation, we obtain that (∂i(Sj)) is the identity. By the remark
following Lemma 7.5, we have the equality

C[x1, . . . , xn] = C[f1, . . . , fn−p][S1, . . . , Sp]

which implies that G = (S1, . . . , Sp, f1, . . . , fn−p) is an algebraic automorphism
of C

n. Let ϕ0 be the trivial action generated by the commutative p-distribution
{∂/∂x1, . . . , ∂/∂xp}. By using the exponential map, we find thatG◦ϕ = ϕ0◦G.
So ϕ is trivial.

Proof of Corollary 1.9. — Let ϕ be an algebraic (C,+)-action on Cn satisfying
(H), generated by the derivation ∂. Assume that the quotient map is quasi-
fibered. Since F is nonsingular in codimension 1, the derivation J is locally
nilpotent and generates a (C,+)-action ϕ′ such that NL(ϕ′) has codimension
≥ 2. By Theorem 1.8, ϕ′ is trivial. Moreover via the automorphism of triviali-
sation, ∂ is conjugate to P (x2, . . . , xn)∂/∂x1, where E = P (F ) is the factor of
Proposition 1.7.

Proof of Corollary 1.10. — Let ϕ be an algebraic (Cn−1,+)-action on Cn, and
assume that NL(ϕ) has codimension ≥ 2. Then the factor E of Proposition 1.7
is constant. Let us prove that ϕ is trivial. By Theorem 1.8, we only have to
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show that ϕ satisfies the condition (H) and that its quotient map is quasi-
fibered.

Let f be a non-constant invariant polynomial of minimal homogeneous de-
gree on C[x1, . . . , xn]. Then f −λ is irreducible for any λ. Indeed if f −λ were
reducible, all its irreducible factors would be invariant by factorial closedness.
But that contradicts the minimality of the degree of f . Since all the fibres
of f are irreducible, they are reduced and connected. So f is quasi-fibered, and
there only remains to prove that f generates the ring of invariants of ϕ.

Let us show by induction on r that any invariant polynomial P of homoge-
neous degree ≤ r belongs to C[F ]. This is obvious for r = 0. Assume this is
true to the order r, and let P be an invariant polynomial of degree ≤ r + 1.
Let x be a point in Cn where ϕ is free, and set y = f(x). Since P is invari-
ant, P is constant on the orbit of x. Since this orbit has dimension n − 1
and that f−1(y) is irreducible, this orbit is dense in f−1(y). So P is constant
on f−1(y). By Hilbert’s Nullstellensatz, there exists a polynomial Q such that
P = P (x) + (f − y)Q. The polynomial Q is invariant by factorial closedness
and has degree ≤ r. By induction, Q belongs to C[F ], and so does P , hence
giving the result.

9. A few examples

We can show that the first assertion in Theorem 1.5 is an equivalence. More
precisely, a primitive mapping F is quasi-fibered if and only if T 1(F ) = 0.
We will not prove it here, but we would rather give two examples illustrating
the necessity of the conditions given in Theorem 1.8. In both cases, the mod-
ule of relative exactness is not zero. Consider the locally nilpotent derivation
on C[x, y, z]:

∂1 = x
∂

∂y
− 2y

∂

∂z
·

Its ring of invariant is generated by x and xz + y2, and its quotient map is
defined by:

F1 : C
3 −→ C

2, (x, y, z) �−→ (x, xz + y2).

It is easy to check that F1 is surjective and that B(F1) = {(u, v) ∈ C2, u = 0}.
So F1 is not quasi-fibered because its fibres are not 1-generically connected, and
the action generated by ∂1 is not trivial. Second consider the locally nilpotent
derivation on C[x, y, u, v]:

∂2 = u
∂

∂x
+ v

∂

∂y
·

The polynomials u, v, xv− yu are invariant and generate the ring of invariants
of ∂2. So the corresponding action ϕ2 satisfies the condition (H), and its
quotient map is given by:

F2 : C
4 −→ C

3, (x, y, u, v) �−→ (u, v, xv − yu).
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By an easy computation, we get that B(F2) is empty, S(F2) = V (x, y) and
I(F2) = {(r, 0, 0), r ∈ C∗}. So F2 is not quasi-fibered because its fibres are
not 2-generically non-empty, and ϕ2 is not trivial.
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398 BONNET (P.)

[17] , Algebraic geometry I: Complex projective varieties, Springer Ver-
lag, Berlin-Heidelberg-New York, 1976.

[18] Rentschler (R.) – Opérations du groupe additif sur le plan affine, C. R.
Acad. Sci. Paris Sér. I Math., t. 267 (1968), pp. 384–387.

[19] Saito (K.) – On a generalisation of De Rham Lemma, Ann. Inst. Fourier
(Grenoble), t. 26 (1976), no. 2, pp. 165–170.

[20] Shafarevich (I.R.) – Basic algebraic geometry, vol. 1–2, Springer Verlag,
Berlin-Heidelberg-New York, 1994.

[21] Winkelmann (J.) – On free holomorphic C-actions on Cn and homoge-
neous Stein manifolds, Math. Ann., t. 286 (1990), pp. 593–612.

tome 131 – 2003 – n
o
3


