Bull. Soc. math. France 131 (3), 2003, p. 359–372

EQUIDISTRIBUTION TOWARDS THE GREEN CURRENT

BY VINCENT GUEDJ

ABSTRACT. — Let $f: \mathbb{P}^k \to \mathbb{P}^k$ be a dominating rational mapping of first algebraic degree $\lambda \geq 2$. If S is a positive closed current of bidegree (1, 1) on \mathbb{P}^k with zero Lelong numbers, we show – under a natural dynamical assumption – that the pullbacks $\lambda^{-n}(f^n)^*S$ converge to the Green current T_f . For some families of mappings, we get finer convergence results which allow us to characterize all f^* -invariant currents.

RÉSUMÉ (Équidistribution vers le courant de Green). — Soit $f : \mathbb{P}^k \to \mathbb{P}^k$ une application rationnelle dominante de premier degré algébrique $\lambda \geq 2$. Lorsque S est un courant positif fermé de bidegré (1,1) sur \mathbb{P}^k dont les nombres de Lelong sont tous nuls, nous montrons, sous une hypothèse dynamique naturelle, que les pull-backs $\lambda^{-n}(f^n)^*S$ convergent vers le courant de Green T_f . Pour certaines familles d'applications, des résultats de convergence raffinés nous permettent de caractériser tous les courants f^* -invariants.

Introduction

Let $f : \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map of degree $\lambda \geq 2$. A celebrated result of Brolin, Lyubich, Freire-Lopez-Mañe asserts that the preimages $\lambda^{-n}(f^n)^* \sigma$ of any probability measure σ on \mathbb{P}^1 converge to an invariant measure μ_f as soon as $\sigma(\mathcal{E}_f) = 0$, where \mathcal{E}_f is a (possibly empty) finite exceptional set. The purpose of this note is to prove similar results in higher dimension.

Texte reçu le 17 janvier 2002, révisé le 1^{er} juillet 2002, accepté le 9 septembre 2002 VINCENT GUEDJ, Laboratoire É. Picard, UMR 5580 Université Paul Sabatier, 118 route de Narbonne, 31400 Toulouse (France) • *E-mail* : guedj@picard.ups-tlse.fr 2000 Mathematics Subject Classification. — 32H50, 58F23, 58F15.

Key words and phrases. — Green current, holomorphic dynamics, volume estimates.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
 0037-9484/2003/359/\$ 5.00

 © Société Mathématique de France
 0037-9484/2003/359/\$ 5.00

Let $f: \mathbb{P}^k \to \mathbb{P}^k$ be a rational mapping. It can be written $f = [P_0: \dots: P_k]$ in homogeneous coordinates, where the P_j 's are homogeneous polynomials of the same degree λ (the first algebraic degree of f) with no common factor $P_0 \land \dots \land P_k = 1$. Note that when $k \ge 2$, f is not necessarily holomorphic: it is not well defined on the indeterminacy set $I_f = \bigcap_j P_j^{-1}(0)$ which is an algebraic subset of \mathbb{P}^k of codimension ≥ 2 . There are several ways one can try to generalize the one-dimensional result. Given Z an algebraic subset of \mathbb{P}^k of pure codimension p, one can ask whether $f^{-n}(Z)$ (properly normalized) converges to an invariant current of bidegree (p, p). In this note we focus on the case p = 1.

Given S a positive closed current of bidegree (1, 1) on \mathbb{P}^k , we consider

$$S_n := \lambda^{-n} (f^n)^* S.$$

This is a bounded sequence of positive closed currents of bidegree (1, 1) on \mathbb{P}^k . When $S = \omega$ is the Fubini-Study Kähler form, it was proved by Sibony [19] that (ω_n) converges to an invariant Green current T_f . On the other hand Russakovskii and Shiffman have shown [18] that $[H]_n - \omega_n \to 0$ for almost every hyperplane H of \mathbb{P}^k . Our main result interpolates between these two extreme cases.

THEOREM 0.1. — Let $f : \mathbb{P}^k \to \mathbb{P}^k$ be a dominating rational mapping with $\lambda \geq 2$. Assume there exists an invariant probability measure μ such that $\log |J_{FS}(f)| \in L^1(\mu)$. Let S be a positive closed current of bidegree (1,1) and unit mass on \mathbb{P}^k . If $\nu(S, p) = 0$ for all $p \in \mathbb{P}^k$, then

$$\frac{1}{\lambda^n} (f^n)^* S \longrightarrow T_f \quad in \ the \ weak \ sense \ of \ currents.$$

Here $\nu(S, p)$ denotes the Lelong number of S at point p and $J_{FS}(f)$ denotes the jacobian of f with respect to the Fubini-Study volume form ω^k . Similar (weaker) results were previously obtained for Hénon mappings [1], [8], birational mappings [6], and holomorphic endomorphisms of \mathbb{P}^k [9], [19], [7].

Although Theorem 0.1 does not imply directly Russakovskii-Shiffman's result, the proof shows one essentially has to assume $\sup_{p \in \mathbb{P}^k \setminus E} \nu(S_n, p) \to 0$, where E is some (possibly empty) exceptional set (see Theorem 1.4). The key ingredients of the proof are: a pluripotential estimate of the volume of sublevel sets of a quasiplurisubharmonic function [16] and a dynamical estimate on the decreasing of volumes under iteration (Theorem 1.2). Note that all the volumes are computed with respect to the Fubini-Study volume form ω^k .

We prove the volume estimates and our main result in Section 1. We give refinements of the latter in Section 2 in case f is an holomorphic endomorphism of \mathbb{P}^k (Section 2.1) or a special type of polynomial endomorphism of \mathbb{C}^k (Section 2.2). This allows us to characterize every f^* -invariant current. Such equidistribution results should be understood as strong ergodic properties of

tome $131 - 2003 - n^{o} 3$

the Green current T_f . In dimension 1 indeed this implies that T_f is strongly mixing (see Theorem VIII.22 in [2]). For the reader's convenience we recall in an Appendix compactness criteria for families of qpsh functions. They are the higher dimensional counterparts of Montel's Theorem.

Acknowledgement. — We thank Ahmed Zeriahi for several useful conversations concerning this article. We also thank the referee for reading the paper carefully and making helpful comments.

1. Equidistribution of pullbacks of currents

Let $f : \mathbb{P}^k \to \mathbb{P}^k$ be a rational mapping with first algebraic degree $\lambda \geq 2$. We always assume f is dominating, *i.e.* its jacobian does not vanish identically in any coordinate chart. It follows that a generic point has $d_t(f)$ well defined preimages by f. Note that $d_t(f) = \lambda$ when k = 1 but these two degrees differ in general when $k \geq 2$.

Let ω denote the Fubini-Study Kähler form on \mathbb{P}^k . The smooth form $f^*\omega$ is well defined in $\mathbb{P}^k \setminus I_f$ and extends trivially through I_f as a positive closed current of bidegree (1, 1) and mass $||f^*\omega|| = \int_{\mathbb{P}^k} f^*\omega \wedge \omega^{k-1} = \lambda$. So $\lambda^{-1}f^*\omega$ is cohomologous to ω . Since \mathbb{P}^k is Kähler, this can be written

$$\lambda^{-1} f^* \omega = \omega + \mathrm{dd}^c G,$$

where $G \in L^1(\mathbb{P}^k)$ (see [11, p. 149]). The function G is "quasiplurisubharmonic" (qpsh): it is locally given as the sum of a psh function (a local potential of $\lambda^{-1}f^*\omega \geq 0$) and a smooth function (a local potential of $-\omega$). In particular it is bounded from above on \mathbb{P}^k : replacing G by $G - C_0$, we can therefore assume $G \leq 0$. Sibony [19] has shown that the decreasing sequence of qpsh functions

(*)
$$G_n := \sum_{j=0}^{n-1} \frac{1}{\lambda^j} G \circ f^j$$

converges in $L^1(\mathbb{P}^k)$ to a qpsh function $G_{\infty} \in L^1(\mathbb{P}^k)$. This shows that $\lambda^{-n}(f^n)^*\omega$ converges in the weak sense of (positive) currents to the so called Green current $T_f \geq 0$ which satisfies $f^*T_f = \lambda T_f$.

A natural question is then to look at the convergence of $S_n := \lambda^{-n}(f^n)^* S$, where S is now any positive closed current of bidegree (1,1) and unit mass on \mathbb{P}^k . When S = [H] is the current of integration along an hyperplane of \mathbb{P}^k , it was shown by Russakovskii and Shiffman [18] that $[H]_n \to T_f$ for every Houtside some pluripolar set $\mathcal{E} \subset (\mathbb{P}^k)^*$. In order to prove convergence of S_n for more general currents S, we first need to get control on the decreasing of volumes under iteration.

1.1. Volume estimates. — Let $f : \mathbb{P}^k \to \mathbb{P}^k$ be a dominating rational mapping with $\lambda \geq 2$. Let $J_{FS}(f)$ denote its jacobian with respect to the Fubini-Study Kähler volume form. It is defined by

$$f^*\omega^k = \left|J_{FS}(f)\right|^2 \omega^k.$$

PROPOSITION 1.1. — Fix B an open subset of \mathbb{P}^k and $\delta_0 > 0$. There exists $C_0 > 0$ such that for every open subset Ω of \mathbb{P}^k with $\operatorname{vol}(\Omega) \geq \delta_0$,

$$\operatorname{vol}(f^{n}(\Omega)) \geq (C_{0})^{\lambda^{n}} \exp\left(\frac{1}{\operatorname{vol}(B)\operatorname{vol}(\Omega)}\int_{B} \log|J_{FS}(f^{n})|^{2}\omega^{k}\right)$$

for all $n \in \mathbb{N}$.

Proof. — Fix \mathbb{C}^k an affine chart of \mathbb{P}^k . We have

$$f = (P_1/P_0, \dots, P_k/P_0)$$

in \mathbb{C}^k where the P_j 's are polynomials of degree $\leq \lambda = \delta_1(f)$. Since $\omega = \mathrm{dd}^c \frac{1}{2} \log[1 + ||z||^2]$ in \mathbb{C}^k , we get

$$\omega^{k}(z) = \left(1 + \|z\|^{2}\right)^{-(k+1)} \mathrm{d}V,$$

where dV denotes the euclidean volume form in \mathbb{C}^k . Therefore

$$|J_{FS}(f)|^2 = |J_{\text{eucl}}(f)|^2 \Big(\frac{1+||z||^2}{1+||f(z)||^2}\Big)^{k+1}$$

We infer

$$\log|J_{FS}(f)| = u - v,$$

where u, v are qpsh functions such that $dd^c u, dd^c v \ge -2\lambda k\omega$. Let Ω be an open subset of \mathbb{P}^k . We have

$$\operatorname{vol}(f^{n}(\Omega)) = \int_{f^{n}(\Omega)} \omega^{k} \geq \frac{1}{d_{t}(f)^{n}} \int_{\Omega} \left| J_{FS}(f^{n}) \right|^{2} \omega^{k},$$

where the inequality follows from the change of variable formula. The concavity of the logarithm yields

$$\operatorname{vol}(f^n(\Omega)) \ge \frac{\operatorname{vol}(\Omega)}{d_t(f)^n} \exp\left[\frac{2D_n}{\operatorname{vol}(\Omega)} \int_{\Omega} \frac{1}{D_n} (u_n - v_n) \omega^k\right],$$

where

$$\log|J_{FS}(f^n)| = u_n - v_n$$

with $\mathrm{dd}^c u_n, \mathrm{dd}^c v_n \geq -D_n \omega, D_n \leq 2\lambda^n k$. Observe that we can decompose

$$\frac{1}{D_n}\log\left|J_{FS}(f^n)\right| = \varphi_n - \psi_n + \frac{1}{\operatorname{vol}(B)}\int_B \frac{1}{D_n}\log\left|J_{FS}(f^n)\right|\omega^k,$$

томе 131 – 2003 – N^o 3

where

$$\varphi_n = D_n^{-1} u_n - \log \|z\| - \frac{1}{\operatorname{vol}(B)} \int_B (D_n^{-1} u_n - \log \|z\|) \omega^k$$
$$\psi_n = D_n^{-1} v_n - \log \|z\| - \frac{1}{\operatorname{vol}(B)} \int_B (D_n^{-1} v_n - \log \|z\|) \omega^k.$$

The functions φ_n, ψ_n are quasiplurisubharmonic on \mathbb{P}^k ($\mathrm{dd}^c \varphi_n, \mathrm{dd}^c \psi_n \geq -\omega$) with $\int_B \varphi_n = \int_B \psi_n = 0$. It follows therefore from Proposition 3.2 (Appendix) that they belong to a compact family of qpsh functions, so there exists $C_\Omega \in \mathbb{R}$ such that $\int_{\Omega} (\varphi_n - \psi_n) \omega^k \geq C_\Omega$, for all $n \in \mathbb{N}$. Since $D_n \leq 2k\lambda^n$, this yields the desired inequality.

It remains to get a lower bound on $\int_B \log |J_{FS}(f^n)| \omega^k$, where B is an open subset which we may fix as we like.

THEOREM 1.2. — Let $f : \mathbb{P}^k \to \mathbb{P}^k$ be a dominating rational mapping with $\lambda \geq 2$. Assume there exists an invariant probability measure μ such that $\log |J_{FS}(f)| \in L^1(\mu)$. Fix $\delta_0 > 0$. Then there exists $C_0 > 0$ such that for every open subset Ω of \mathbb{P}^k with $\operatorname{vol}(\Omega) \geq \delta_0$,

$$\operatorname{vol}(f^n(\Omega)) \ge C_0^{\lambda^n}, \quad \forall n \in \mathbb{N}.$$

Proof. — Using Proposition 1.1, it is sufficient to find M > 0 such that for all n, $\int_B \log |J_{FS}(f^n)| \omega^k \ge -M\lambda^n$. We take here $B = \mathbb{P}^k$ (but other normalisations could be useful, see Remark 1.3 below).

We decompose $\lambda^{-1} \log |J_{FS}(f)| = u - v + C$, where u, v are qpsh functions $(\mathrm{dd}^c u, \mathrm{dd}^c v \ge -\omega)$ such that $\sup_{\mathbb{P}^k} u = \sup_{\mathbb{P}^k} v = 0$ and $C \in \mathbb{R}$. Thus we get

$$\frac{1}{\lambda^n} \log \left| J_{FS}(f^n) \right| = \frac{1}{\lambda^n} \sum_{j=0}^{n-1} \log \left| J_{FS}(f) \circ f^j \right| \ge \sum_{j=0}^{n-1} \frac{1}{\lambda^{n-j}} u_j + \frac{n}{\lambda^n} C,$$

where $u_j := \lambda^{-j} u \circ f^j$. It is therefore sufficient to get a uniform lower bound on $\int_{\mathbb{P}^k} u_j \omega^k$. This is a consequence of the fact that (u_j) is relatively compact in $L^1(\mathbb{P}^k)$. Indeed $\mathrm{dd}^c u_j \geq -\lambda^{-j} (f^j)^* \omega$, so $u_j + G_j$ is qpsh. By Lemma 3.1 (Appendix), the sequence $(u_j + G_j)$ is either relatively compact or uniformly converges to $-\infty$. Since $G_j \to G_\infty \in L^1(\mathbb{P}^k)$, the sequence (u_j) is either relatively compact or converges to $-\infty$. But the latter can not happen since $u \in L^1(\mu)$ and $\int u_j d\mu = \lambda^{-j} \int u d\mu \to 0$. The desired control on $\int_{\mathbb{P}^k} \log |J_{FS}(f^n)| \omega^k$ follows.

REMARK 1.3. — The assumption on the existence of μ is natural in our dynamical context. Observe that it is satisfied if *e.g.* there exists a non critical periodic point.

Other assumptions could be made to obtain the final lower bound on $\int_B \log |J_{FS}(f^n)| \omega^k$. If $f_{|\mathbb{C}^k}$ is polynomial, it is enough to assume that

 $\sup_B |J_{\text{eucl}}(f^n)| \ge \alpha^{\lambda^n}$ for some relatively compact open subset B of \mathbb{C}^k . This holds in particular when f is a polynomial automorphism of \mathbb{C}^k .

1.2. Equidistribution of pullbacks. — A major difficulty in higher dimensional complex dynamics lies in the presence of points of indeterminacy and in the difficulty of analyzing the dynamics near

$$I_f^{\infty} := \bigcup_{n \ge 0} I_{f^n}$$

Following Fornaess and Sibony [9], a rational mapping $f : \mathbb{P}^k \to \mathbb{P}^k$ is said to be normal if for every $p \in \mathbb{P}^k \setminus \overline{I_f^{\infty}}$, there exists a neighborhood W of pand V of $\overline{I_f^{\infty}}$ such that $f^n(W) \cap V = \emptyset$ for all $n \ge 0$. Note that the condition is empty if $\overline{I_f^{\infty}} = \mathbb{P}^k$, so one usually assumes further that $\overline{I_f^{\infty}}$ is "small", $e.g. \operatorname{vol}(\overline{I_f^{\infty}}) = 0$. Examples of such mappings include holomorphic endomorphisms of \mathbb{P}^k (for which $I_f = I_f^{\infty} = \emptyset$) or some polynomial endomorphisms of \mathbb{C}^k with small topological degree (e.g. Hénon mappings in \mathbb{C}^2 , see other examples in [12], [13] and Section 2.2 below).

THEOREM 1.4. — Let $f : \mathbb{P}^k \to \mathbb{P}^k$ be a dominating rational mapping with $\lambda \geq 2$. Assume there exists an invariant probability measure μ on \mathbb{P}^k such that $\log |J_{FS}(f)| \in L^1(\mu)$. Let S be a positive closed current of bidegree (1,1) and unit mass on \mathbb{P}^k . If $\nu(S, p) = 0$ for all $p \in \mathbb{P}^k$, then

$$S_n := \frac{1}{\lambda^n} (f^n)^* S \longrightarrow T_f.$$

Moreover if f is normal with $\operatorname{vol}(\overline{I_f^{\infty}}) = 0$ then $S_n \to T_f$ if and only if $\nu(S_n, p) \to 0$ uniformly on compact subsets of $\mathbb{P}^k \setminus \overline{I_f^{\infty}}$.

Proof. — Write $S = \omega + \mathrm{dd}^c u$, where $u \leq 0$ is quasiplurisubharmonic on \mathbb{P}^k . Then $\lambda^{-n}(f^n)^*(S-\omega) = \mathrm{dd}^c u_n$, where $u_n = \lambda^{-n} u \circ f^n \leq 0$. So we need to show that $u_n \to 0$ in $L^1(\mathbb{P}^k)$.

Observe that $dd^c(u_n + G_n) \ge -\omega$, so (u_n) is either relatively compact or uniformly converges to $-\infty$ (Lemma 3.1). It is therefore sufficient to prove that for all $\varepsilon > 0$, $vol(\Omega_n^{\varepsilon}) \to 0$, where

$$\Omega_n^{\varepsilon} := \Big\{ p \in \mathbb{P}^k \, ; \frac{1}{\lambda^n} u \circ f^n(p) < -\varepsilon \Big\}.$$

Assume on the contrary that $\operatorname{vol}(\Omega_{n_i}^{\varepsilon}) \geq \delta_0$ for some fixed ε , $\delta_0 > 0$ and $n_i \to +\infty$. Observe that

$$f^{n_i}(\Omega_{n_i}^{\varepsilon}) \subset \left\{ p \in \mathbb{P}^k \, ; u(p) < -\varepsilon \lambda^{n_i} \right\}.$$

If $\nu(S,p) = 0$ for all $p \in \mathbb{P}^k$, it follows from Skoda's integrability Theorem (see Theorem 3.1 in [16]) that for every A > 0, there exists $C_A > 0$ such that

$$\operatorname{vol}(f^{n_i}(\Omega_{n_i}^{\varepsilon})) \leq C_A \exp(-A\varepsilon\lambda^{n_i}).$$

tome $131 - 2003 - n^{o} 3$

On the other hand, since $\operatorname{vol}(\Omega_{n_i}^{\varepsilon}) \geq \delta_0 > 0$, there follows from Theorem 1.2 that there exists $C_0 > 0$ such that

$$\operatorname{vol}(f^{n_i}(\Omega_{n_i}^{\varepsilon})) \ge C_0^{\lambda^{n_i}}, \text{ for all } i \in \mathbb{N}.$$

Taking $A > -\log C_0$ yields a contradiction.

Assume now f is normal. It was proved by Favre [5] that $\nu(T_f, p) = 0$ for all $p \in \mathbb{P}^k \setminus I_f^{\infty}$. Therefore it is necessary, for S_n to converge to T_f , that for every open neighborhood V of $\overline{I_f^{\infty}}$, $\sup_{p \in \mathbb{P}^k \setminus V} \nu(S_n, p) \to 0$. This is because $(S, p) \mapsto \nu(S, p)$ is upper semi-continuous (u.s.c.). Assume it is the case. Fix Wa relatively compact open subset of $\mathbb{P}^k \setminus \overline{I_f^{\infty}}$. Since $\operatorname{Vol}(\overline{I_f^{\infty}}) = 0$, it is sufficient to prove that $u_n \to 0$ on every such W. Since f is normal, we can fix V an open neighborhood of $\overline{I_f^{\infty}}$ such that $V \cap f^n(W) = \emptyset$, for all $n \ge 0$. We need to prove that $\operatorname{vol}(W \cap \Omega_n^{\varepsilon}) \to 0$. Now

$$f^n(W \cap \Omega_n^{\varepsilon}) \subset \left\{ p \in \mathbb{P}^k \setminus V; u(p) < -\varepsilon \lambda^n \right\},\$$

so the previous proof applies if $\sup_{p \in \mathbb{P}^k \setminus V} \nu(S, p)$ is small enough. When $\sup_{p \in \mathbb{P}^k \setminus V} \nu(S, p)$ is not small enough, we replace S by $S_{N_0}, N_0 \gg 1$.

2. Invariant currents

It is an interesting problem to characterize all positive closed currents S of bidegree (1,1) on \mathbb{P}^k such that $f^*S = \lambda S$. This can be done by using our equidistribution result (Theorem 1.4). We illustrate this on two families of mappings.

2.1. Holomorphic endomorphisms of \mathbb{P}^k . — We assume here $f : \mathbb{P}^k \to \mathbb{P}^k$ is holomorphic, *i.e.* $I_f = \emptyset$. In this case the construction of the Green current T_f is due to Hubbard and Papadopol [15]: G is smooth on \mathbb{P}^k , so (G_n) uniformly converges to G_∞ which is henceforth continuous (see (*)).

Since the Green current T_f has continuous potential, all its Lelong numbers are 0. Moreover, it follows from the work of Bedford and Taylor that the measure $\mu_f := T_f^k$ is well defined. The measure μ_f is invariant and every qpsh function is μ_f integrable (as follows from the Chern-Levine-Nirenberg inequalities, see the Appendix in [19]). Therefore f satisfies the assumptions of Theorem 1.4. Given S a positive closed current of bidegree (1, 1) and unit mass on \mathbb{P}^k , Theorem 1.4 reads here

$$\frac{1}{\lambda^n} (f^n)^* S \to T_f \iff \sup_{p \in \mathbb{P}^k} \nu \left(\lambda^{-n} (f^n)^* S, p \right) \to 0.$$

It remains to understand the behavior of Lelong numbers under iteration. Since f is proper, one easily gets

$$\nu((f^n)^*S, p) \le d(f^n, p)\nu(S, f^n(p)),$$

where $d(f^n, p)$ denotes the local topological degree of f^n at $p, d(f^n, p) =$ $\prod_{j=0}^{n-1} d(f, f^j(p)).$ So we are done if $d(f^n, p) = o(\lambda^n).$

Analyzing the behavior of $d(f^n, p)$ is quite easy in dimension 1 as shows the following elementary lemma whose proof is left to the reader.

LEMMA 2.1. — Let $f : \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map of degree $\lambda \geq 2$. Set

$$\mathcal{E}_f := \{ p \in \mathbb{P}^1 \, ; \, d(f, p) = d(f, f(p)) = d(f, f^2(p)) = \lambda \}.$$

Then either

- \mathcal{E}_f is empty, or
- *E*_f = 1 point, f is conjugate to a polynomial, or else *E*_f = 2 points, f is conjugate to z^λ or z^{-λ}.

Combining this with Theorem 1.4 yields the following celebrated result of Brolin [3], Lyubich [17] and Freire-Lopez-Mañe [10]. Note that positive closed currents of bidegree (1, 1) and unit mass are simply probability measures on \mathbb{P}^1 .

THEOREM 2.2. — Let $f: \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map of degree $\lambda \geq 2$. Let σ be a probability measure on \mathbb{P}^1 . Then

$$\frac{1}{\lambda^n} (f^n)^* \sigma \to T_f \iff \sigma(\mathcal{E}_f) = 0.$$

When $k \geq 2$ the "crude" estimate $d(f^n, p) \leq d_t(f^n) = \lambda^{nk}$ becomes worse as the dimension grows. Nevertheless, one still has that $d(f^n, p) = O((\lambda - 1)^n)$ for a "very generic" choice of f (*i.e.* for f outside a countable union of hypersurfaces), so we get the following result of Fornaess and Sibony [9].

COROLLARY 2.3. — Let $f: \mathbb{P}^k \to \mathbb{P}^k$ be a "very generic" holomorphic mapping with $\lambda = \delta_1(f) \geq 2$. Then

$$\lambda^{-n}(f^n)^*S \longrightarrow T_f$$

for every positive closed current S of bidegree (1,1) and unit mass on \mathbb{P}^k . In particular T_f is the only f^* -invariant current.

It turns out that looking at local topological degrees is not sufficient to settle the problem of convergence to T_f when $k \ge 2$. Our volume estimates (Theorem 1.2) nevertheless allow us to complete the recent work of Favre and Jonsson [7] in dimension 2.

THEOREM 2.4. — Let $f : \mathbb{P}^2 \to \mathbb{P}^2$ be a holomophic mapping with $\lambda \geq 2$. There exists a (possibly empty) totally invariant algebraic subset \mathcal{E}_f of \mathbb{P}^2 such that if S is a positive closed current of bidegree (1,1) and unit mass on \mathbb{P}^k , then

$$\nu(S, \mathcal{E}_f) = 0 \implies \frac{1}{\lambda^n} (f^n)^* S \to T_f.$$

томе 131 – 2003 – N^o 3

The set \mathcal{E}_f can be decomposed as $\mathcal{E}_1 \cup \mathcal{E}_2$, where \mathcal{E}_1 is a union of at most three lines and \mathcal{E}_2 is a finite set. The condition $\nu(S, \mathcal{E}_f) = 0$ has to be understood as $\nu(S, p) = 0$ for every point $p \in \mathcal{E}_2$ and almost every point p of \mathcal{E}_1 . We refer the reader to [7] for a proof. The only new information we provide are sufficient volume estimates near points of \mathcal{E}_2 , without the extra assumption made by Favre and Jonsson that \mathcal{E}_2 consists of "homogeneous points".

2.2. Some polynomial endomorphisms of \mathbb{C}^{k} . — Let $f : \mathbb{C}^{k} \to \mathbb{C}^{k}$ be a proper polynomial mapping, $f = (P_{1}, \ldots, P_{k})$, where the P_{j} 's are polynomials with $\lambda = \max(\deg P_{j}) \geq 2$. We let $d_{t}(f)$ denote the topological degree of f and shall assume here that $d_{t}(f) < \lambda$. Given S a positive closed current of bidegree (1, 1) and unit mass on \mathbb{P}^{k} , we thus get

$$\sup_{p \in \mathbb{C}^k} \nu(S_n, p) \le \frac{\sup_{p \in \mathbb{C}^k} d(f^n, p)}{\lambda^n} \sup_{p \in \mathbb{C}^k} \nu(S, f^n(p)) \le \left(\frac{d_t(f)}{\lambda}\right)^n \to 0,$$

where $S_n := \lambda^{-n} (f^n)^* S$.

We still denote by f the meromorphic extension of f to $\mathbb{P}^k = \mathbb{C}^k \cup (t = 0)$, where (t = 0) denotes the hyperplane at infinity. Since f is polynomial (hence holomorphic) in \mathbb{C}^k , the indeterminacy set I_f is located within (t = 0). Define by induction

$$X_1 := \overline{f((t=0) \setminus I_f)}, \quad X_{j+1} := \overline{f(X_j \setminus I_f)}.$$

This is a decreasing sequence of irreducible analytic subsets of (t = 0). We denote by $X_f := X_\ell$ the limit set, which we assume is non empty (this is equivalent to saying that f is algebraically stable, see [19]).

THEOREM 2.5. — Let $f : \mathbb{C}^k \to \mathbb{C}^k$ be an algebraically stable polynomial endomorphism with $d_t(f) < \lambda = \delta_1(f)$. Assume I_f is an f^{-1} -attracting set and there exists an invariant probability measure μ such that $\log |J_{FS}(f)| \in L^1(\mu)$. Let S be a positive closed current of bidegree (1,1) and unit mass on \mathbb{P}^k . If $\nu(S,p) = 0$ for all $p \in X_f$, then

$$S_n := \frac{1}{\lambda^n} (f^n)^* S \longrightarrow T_f.$$

When dim $X_f = 0$, T_f is the only f^* -invariant current of unit mass in \mathbb{C}^k .

Proof. — We assume I_f is f^{-1} -attracting in the following sense: there exists an open neighborhood V of I_f in \mathbb{C}^k such that $\bigcap_{j\geq 0} f^{-j}(V) = \emptyset$. This implies that f is a normal mapping. Note also that f is proper in \mathbb{C}^k : if an algebraic curve $\mathcal{C} \subset \mathbb{C}^k$ were to be contracted to a point by f, \mathcal{C} would intersect (t = 0) within I_f , contradicting that I_f is f^{-1} -attracting. Therefore $\sup_{p\in\mathbb{C}^k}\nu(S_n,p) \to 0$ as observed above. If $q \in (t = 0) \setminus I_{f^\ell}$ then

$$\nu((f^{\ell})^*S, q) \le C_{f,q}\nu(S, f^{\ell}(q)) = 0, \text{ since } f^{\ell}(q) \in X_f = X_{\ell}.$$

The latter inequality is due to Favre [4] and Kiselman [16]. Therefore $\sup_{p \in \mathbb{P}^k \setminus I_{f^\ell}} \nu(S_n, p) \to 0$ so $S_n \to T_f$ by Theorem 1.4.

When dim $X_f = 0$, X_f is reduced to a point which does not belong to I_f . In this case $\nu(S, X_f) = 0$ is also a necessary condition to get $S_n \to T_f$. Indeed if $\nu(S, X_f) = \gamma > 0$ then for all $q \in (t = 0) \setminus I_{f^\ell}$,

$$\nu\big((f^{\ell})^*S,q\big) \ge \nu\big(S,f^{\ell}(q)\big) = \gamma > 0 \quad \text{so} \quad (f^{\ell})^*S \ge \gamma[t=0]$$

hence S_n does not converge to T_f . In particular if S is f^* -invariant and does not charge the hyperplane at infinity then $\nu(S, X_f) = 0$ hence $S = S_n \to T_f$, so $S = T_f$. Therefore every f^* -invariant current is a linear combination of T_f and [t = 0].

REMARK 2.6. — The previous result applies *e.g.* to mappings

$$f = f_1 \circ \cdots \circ f_s, \quad f_j : (z, w) \in \mathbb{C}^2 \mapsto (P_j(w), Q_j(z) + R_j(w)) \in \mathbb{C}^2,$$

where P_j, Q_j, R_j are polynomials of degree p_j, q_j, λ_j with $p_j q_j < \lambda_j$. One gets here

$$d_t(f) = \prod_{j=1}^s p_j q_j$$
 and $\lambda := \delta_1(f) = \prod_{j=1}^s \lambda_j > d_t(f).$

The set $I_f = [1:0:0]$ is f^{-1} -attracting (see Example 4.1 in [12]) and $X_f = [0:1:0]$. An invariant measure μ such that $\log |J_{FS}(f)| \in L^1(\mu)$ is constructed in [12] (Theorem 5.3). Note that when $p_j = q_j = 1$ then f is a complex Hénon mapping. A different proof of Theorem 2.5 was given in this case in the paper [6], where f^* -invariant currents are characterized for every birational mapping of \mathbb{C}^2 .

We now consider the case of polynomial automorphisms of \mathbb{C}^k . We can prove finer volume estimates on the set of points whose orbit accumulates I_f so that it is not necessary to assume f is normal.

THEOREM 2.7. — Let $f : \mathbb{C}^k \to \mathbb{C}^k$ be an algebraically stable polynomial automorphism of \mathbb{C}^k such that X_f is an f-attracting set. Let S be a positive closed current of bidegree (1,1) and unit mass on \mathbb{P}^k . If $\nu(S,p) = 0$ for all $p \in X_f$, then

$$S_n := \frac{1}{\lambda^n} (f^n)^* S \longrightarrow T_f.$$

If dim $X_f = 0$ then T_f is the only f^* -invariant current of unit mass in \mathbb{C}^k .

Proof. — As observed in Remark 1.3, it is not necessary to assume the existence of an invariant measure μ such that $\log |J_{FS}(f)| \in L^1(\mu)$. We use instead the fact that the euclidean jacobian of f is constant in \mathbb{C}^k to derive a lower bound on $\int_B \log |J_{FS}(f^n)| \omega^k$.

tome $131 - 2003 - n^{o} 3$

We let $B(X_f)$ denote the basin of attraction of X_f in \mathbb{C}^k and set

$$\mathcal{K}_f := \mathbb{C}^k \setminus B(X_f).$$

Since f is proper in \mathbb{C}^k with $d_t(f) = 1 < \lambda$, we get as before

$$\sup_{p\in\mathbb{P}^k\setminus I_{f^\ell}}\nu(S_n,p)\longrightarrow 0.$$

Therefore $S_n \to 0$ in $B(X_f)$. Now we must make sure that $S_n \to 0$ on any relatively compact open subset B of \mathcal{K}_f (if any). Write

$$S = \omega + \mathrm{d}\mathrm{d}^c u_i$$

where $u \leq 0, u \in L^1(\mathbb{P}^k)$. We need to prove that for all $\varepsilon > 0$,

$$\operatorname{vol}(B \cap \{u_n < -\varepsilon\}) \longrightarrow 0$$

where $u_n = \lambda^{-n} u \circ f^n$. Now $f^n(B \cap \{u_n < -\varepsilon\}) \subset \{u < -\varepsilon\lambda^n\}$ has volume $\leq C_1 \exp(-\varepsilon\lambda^n)$ because the Lelong numbers of S_n are bounded from above by 1. On the other hand

$$\operatorname{vol}(f^{n}(B \cap \{u_{n} < -\varepsilon\})) = \int_{B \cap \{u_{n} < -\varepsilon\}} |J_{FS}(f^{n})|^{2} \omega^{k}$$
$$= |a|^{2n} \int_{B \cap \{u_{n} < -\varepsilon\}} \left(\frac{1 + ||z||^{2}}{1 + ||f^{n}(z)||^{2}}\right)^{k+1} \omega^{k}$$
$$\geq C_{B}^{(\lambda-1)^{n}} \operatorname{vol}(B \cap \{u_{n} < -\varepsilon\}),$$

where $|a| := |J_{\text{eucl}}(f)| > 0$. The latter inequality follows from the fact that f has slow growth on \mathcal{K}_f (see below). This yields $\operatorname{vol}(B \cap \{u_n < -\varepsilon\}) \leq \alpha_{\varepsilon}^{\lambda^n}$ where $0 < \alpha_{\varepsilon} < 1$ so that $u_n \to 0$ on \mathcal{K}_f .

We finally have to prove that f does not grow too fast on \mathcal{K}_f . We can write f = P + Q, where P is a homogeneous mapping of degree λ and Q is a polynomial mapping of degree $\leq \lambda - 1$. Identifying (t = 0) with \mathbb{P}^{k-1} , we can assume $P(t = 0) = X_f$. Fix $z_0 \in \mathcal{K}_f$ and $z_n = f^n(z_0)$. We can assume z_n accumulates only at $I_f \setminus V$, where V is a small neighborhood of X_f . Define

$$\zeta_n = P(z_{n-1}), \quad \zeta'_n = Q(z_{n-1})$$

so $z_n = \zeta_n + \zeta'_n$. There is a constant C > 0 such that

$$|\zeta_n|_+ \le C|\zeta_n'|_+,$$

where $|p|_+ := \max(||p||, 1)$. If not then for a subsequence $|\zeta_n|/|\zeta'_n| \to \infty$, so

$$\frac{z_n}{\|z_n\|} = \frac{\zeta_n + \zeta'_n}{\|z_n\|} = \frac{\zeta_n}{\|\zeta_n\|} + o(1) = \frac{P(z_{n-1})}{\|P(z_{n-1})\|} + o(1).$$

Hence z_n converges to X_f , contradicting our assumption $z_0 \in \mathcal{K}_f$. We infer

$$|\zeta'_{n+1}|_{+} = |Q(z_{n-1})|_{+} \le C_1 |z_{n-1}|_{+}^{\lambda-1} \le C_2 |\zeta'_{n-1}|_{+}^{\lambda-1},$$

hence $|f^n(p)|_+ \leq C'_2 |p|_+^{(\lambda-1)^n}$ on \mathcal{K}_f .

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

REMARK 2.8. — When f is a "weakly regular" polynomial automorphism (*i.e.* when $X_f \cap I_f = \emptyset$, see [13]) then a necessary and sufficient condition to get convergence to T_f is that $\sup_{p \in X_f} \nu(S_n, p) \to 0$. This condition can be understood in terms of the local topological degrees of $f_0 := f_{|X_f|}$ which is then an holomorphic endomorphism of X_f . Note that X_f may be singular but $X_f \simeq \mathbb{P}^r$ if it is smooth, so we are back to the situation described in Section 2.1!

For a "generic" f, f_0 will have no exceptional set so that $S_n \to T_f$ iff $\nu(S, X_f) = \inf_{p \in X_f} \nu(S, p) = 0$. In this generic situation, T_f is the only f^* -invariant current of unit mass in \mathbb{C}^k and $\lambda^{-n}(f^n)^*[H] \to T_f$ for every hyperplane $H \in (\mathbb{P}^k)^* \setminus \mathcal{E}_f$, where

$$\mathcal{E}_f := \left\{ H \in (\mathbb{P}^k)^* \, ; \, X_f \subset H \right\}$$

is an algebraic subset of $(\mathbb{P}^k)^*$.

3. Appendix

For the reader's convenience we recall here some compactness criteria for families of quasiplurisubharmonic functions which play a central role in this note. We refer the reader to [20] for a systematic discussion of similar results.

LEMMA 3.1. — Let (φ_n) be a sequence of plurisubharmonic functions in some connected open subset Ω of a complex manifold X. If (φ_n) is locally uniformly bounded from above in Ω , then either (φ_n) uniformly converges to $-\infty$, or it is relatively compact for the $L^1_{loc}(\Omega)$ -topology.

We refer the reader to [14] (Theorem 3.2.12) for a proof. There is no plurisubharmonic function on \mathbb{P}^k (except constants). However there are plenty of quasiplurisubharmonic functions: these are functions φ which are locally the sum of a psh and a smooth function, so that their curvature is allowed to be negative but with a smooth control: $\mathrm{dd}^c \varphi \geq -\theta$, where θ is a smooth form. Of particular interest for us is the following class

$$\mathcal{L}_{\omega} := \{ \varphi \in L^1(\mathbb{P}^k) ; \varphi \text{ is u.s.c. and } \mathrm{dd}^c \varphi \ge -\omega \},\$$

where ω denotes as usual the Fubini-Study Kähler form on \mathbb{P}^k . Lemma 3.1 easily extends to qpsh functions whose curvature is bounded below by a fixed form, for instance $-\omega$. We make constant use of the following criteria which tell that \mathcal{L}_{ω} is a compact family once normalized.

PROPOSITION 3.2. — Let B be an open subset of \mathbb{P}^k . Then

$$\mathcal{F}_1 := \left\{ \varphi \in \mathcal{L}_\omega \, ; \, \sup_B \varphi = 0 \right\} \text{ and } \mathcal{F}_2 := \left\{ \varphi \in \mathcal{L}_\omega \, ; \, \int_B \varphi \omega^k = 0 \right\}$$

are compact families of qpsh functions.

tome $131 - 2003 - n^{o} 3$

Proof. — Fix $B' \subset B$ a small ball. We can assume B' = B(r) is the ball of radius r centered at the origin in some affine chart $\mathbb{C}^k \subset \mathbb{P}^k$.

Let $\varphi \in \mathcal{F}_1$. Then

$$\psi := \varphi + \frac{1}{2} \log \left[1 + \|z\|^2 \right]$$

is a psh function with logarithmic growth in \mathbb{C}^k (because $\omega = \mathrm{dd}^c(\frac{1}{2}\log[1 + ||z||^2])$ in \mathbb{C}^k). Moreover $\sup_{B'} \psi \leq \sup_{B'} \varphi + \frac{1}{2}\log[1 + r^2] \leq \frac{1}{2}\log[1 + r^2]$. Therefore

$$\psi(z) \le u_r(z) := \max\left(\log\frac{\|z\|}{r}, 0\right) + \frac{1}{2}\log[1+r^2] \text{ in } \mathbb{C}^k.$$

Indeed one can check this on any line $L \simeq \mathbb{C}$ passing through the origin: the function $u_{r|L}$ is harmonic outside the disk $L \cap B(r)$ and dominates $\psi_{|L}$ on $\partial(L \cap B(r))$ and near infinity. This yields

$$\varphi \le \max\left(\log\frac{\|z\|}{r}, 0\right) + \frac{1}{2}\log[1+r^2] - \frac{1}{2}\log[1+\|z\|^2] \le c_r \text{ in } \mathbb{C}^k,$$

hence in \mathbb{P}^k . Therefore functions of \mathcal{F}_1 are uniformly bounded from above on \mathbb{P}^k . So if we fix a sequence (φ_j) of functions in \mathcal{F}_1 , we can extract a convergent subsequence by Lemma 3.1. The cluster point is not $-\infty$ because $\sup_B \varphi_j = 0$ hence it belongs to \mathcal{F}_1 .

The argument is similar for \mathcal{F}_2 . We simply need to derive a uniform upper bound on \mathbb{P}^k . So let $\varphi \in \mathcal{F}_2$. Then $\varphi - \sup_B \varphi \in \mathcal{F}_1$ which is compact. Therefore there exists C such that

$$\int_{B} |\varphi - \sup_{B} \varphi| \omega^{k} \le C, \text{ for all } \varphi \in \mathcal{F}_{2}.$$

This yields $\sup_B \varphi \leq C \operatorname{vol}(B)$ since $\int_B \varphi \, \omega^k = 0$. Moreover there exists C' > 0 such that $\sup_{\mathbb{P}^k} \psi \leq C'$ for every $\psi \in \mathcal{F}_1$, so

$$\varphi = (\varphi - \sup_{B} \varphi) + \sup_{B} \varphi \le C' + C \operatorname{vol}(B) \text{ on } \mathbb{P}^k,$$

for every $\varphi \in \mathcal{F}_2$. This implies the compactness of \mathcal{F}_2 .

BIBLIOGRAPHY

- BEDFORD (E.) & SMILLIE (J.) Polynomial diffeomorphisms of C²: currents, equilibrium measure and hyperbolicity, Invent. Math., t. 103 (1991), no. 1, pp. 69–99.
- [2] BERTELOOT (F.) & MAYER (V.) Rudiments de dynamique holomorphe, Cours spécialisés, vol. 7, Société Mathématique de France, Paris, 2001.
- BROLIN (H.) Invariant sets under iteration of rational functions, Arkiv. Math., t. 6 (1965), pp. 103–144.

- [4] FAVRE (C.) Note on pull-back and Lelong number of currents, Bull. Soc. Math. France, t. 127 (1999), no. 3, pp. 445–458.
- [5] _____, Multiplicity of holomorphic functions, Math. Ann., t. 316 (2000), pp. 355–378.
- [6] FAVRE (C.) & GUEDJ (V.) Dynamique des applications rationnelles des espaces multiprojectifs, Indiana Univ. Math. J., t. 50 (2001), pp. 881–934.
- [7] FAVRE (C.) & JONSSON (M.) Brolin Theorem for curves in two complex dimensions, Preprint, 2001.
- [8] FORNAESS (J.-E.) & SIBONY (N.) Complex Hénon mappings in C² and Fatou-Bieberbach domains, Duke Math. J., t. 65 (1992), no. 2, pp. 345–380.
- [9] _____, Complex dynamics in higher dimension II, in Modern methods in complex analysis (Princeton, NJ, 1992), Ann. of Math. Stud., vol. 137, Princeton Univ. Press, Princeton, NJ, 1995, pp. 135–182.
- [10] FREIRE (A.), LOPES (A.) & MAÑÉ (R.) An invariant measure for rational maps, Bol. Soc. Brasil Mat., t. 14 (1983), pp. 45–62.
- [11] GRIFFITHS (P.A.) & HARRIS (J.) Principles of algebraic geometry, Wiley, New York, 1978.
- [12] GUEDJ (V.) Dynamics of polynomial mappings of C², Amer. J. Math.,
 t. 124 (2002), pp. 75–106.
- [13] GUEDJ (V.) & SIBONY (N.) Dynamics of polynomial automorphisms of C^k, Arkiv. Math., t. 40 (2002), pp. 207–243.
- [14] HÖRMANDER (L.) Notions of convexity, Progress in Math., vol. 127, Birkhäuser Boston, Inc., Boston, MA, 1994.
- [15] HUBBARD (J.H.) & PAPADOPOL (P.) Superattractive fixed points in \mathbb{C}^n , Indiana Univ. Math. J., t. **43** (1994), pp. 321–365.
- [16] KISELMAN (C.) Ensembles de sous-niveau et images inverses des fonctions plurisousharmoniques, Bull. Sci. Math., t. 124 (2000), no. 1, pp. 75– 92.
- [17] LYUBICH (M.JU.) Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory & Dyn. Syst., t. 3 (1983), pp. 351–385.
- [18] RUSSAKOVSKII (A.) & SHIFFMAN (B.) Value distribution for sequences of rational mappings and complex dynamics, Indiana Univ. Math. J., t. 46 (1997), pp. 897–932.
- [19] SIBONY (N.) Dynamique des applications rationnelles de \mathbb{P}^k , in Dynamique et géométrie complexes, Panoramas et Synthèses, Société Mathématique de France, Paris, 1999, pp. 97–185.
- [20] ZERIAHI (A.) A criterion of algebraicity for Lelong classes and analytic sets, Acta Math., t. 184 (2000), no. 1, pp. 113–143.

 $\mathbf{372}$

tome $131 - 2003 - n^{o} 3$