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EQUIDISTRIBUTION TOWARDS
THE GREEN CURRENT

by Vincent Guedj

Abstract. — Let f : Pk → Pk be a dominating rational mapping of first algebraic
degree λ ≥ 2. If S is a positive closed current of bidegree (1, 1) on Pk with zero
Lelong numbers, we show – under a natural dynamical assumption – that the pullbacks
λ−n(fn)∗S converge to the Green current Tf . For some families of mappings, we get
finer convergence results which allow us to characterize all f∗-invariant currents.

Résumé (Équidistribution vers le courant de Green). — Soit f : Pk → Pk une ap-
plication rationnelle dominante de premier degré algébrique λ ≥ 2. Lorsque S est
un courant positif fermé de bidegré (1, 1) sur Pk dont les nombres de Lelong sont
tous nuls, nous montrons, sous une hypothèse dynamique naturelle, que les pull-backs
λ−n(fn)∗S convergent vers le courant de Green Tf . Pour certaines familles d’appli-
cations, des résultats de convergence raffinés nous permettent de caractériser tous les
courants f∗-invariants.

Introduction

Let f : P1 → P1 be a rational map of degree λ ≥ 2. A celebrated result
of Brolin, Lyubich, Freire-Lopez-Mañe asserts that the preimages λ−n(fn)∗σ
of any probability measure σ on P1 converge to an invariant measure µf as
soon as σ(Ef ) = 0, where Ef is a (possibly empty) finite exceptional set. The
purpose of this note is to prove similar results in higher dimension.
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360 GUEDJ (V.)

Let f : Pk → Pk be a rational mapping. It can be written f = [P0 : · · · : Pk]
in homogeneous coordinates, where the Pj ’s are homogeneous polynomials of
the same degree λ (the first algebraic degree of f) with no common factor
P0 ∧ · · · ∧ Pk = 1. Note that when k ≥ 2, f is not necessarily holomorphic:
it is not well defined on the indeterminacy set If =

⋂
j P

−1
j (0) which is an

algebraic subset of P
k of codimension ≥ 2. There are several ways one can try

to generalize the one-dimensional result. Given Z an algebraic subset of Pk

of pure codimension p, one can ask whether f−n(Z) (properly normalized)
converges to an invariant current of bidegree (p, p). In this note we focus on
the case p = 1.

Given S a positive closed current of bidegree (1, 1) on Pk, we consider

Sn := λ−n(fn)∗S.

This is a bounded sequence of positive closed currents of bidegree (1, 1) on Pk.
When S = ω is the Fubini-Study Kähler form, it was proved by Sibony [19]
that (ωn) converges to an invariant Green current Tf . On the other hand
Russakovskii and Shiffman have shown [18] that [H ]n − ωn → 0 for almost
every hyperplane H of Pk. Our main result interpolates between these two
extreme cases.

Theorem 0.1. — Let f : Pk → Pk be a dominating rational mapping with
λ ≥ 2. Assume there exists an invariant probability measure µ such that
log |JFS(f)| ∈ L1(µ). Let S be a positive closed current of bidegree (1, 1) and
unit mass on Pk. If ν(S, p) = 0 for all p ∈ Pk, then

1
λn

(fn)∗S −→ Tf in the weak sense of currents.

Here ν(S, p) denotes the Lelong number of S at point p and JFS(f) denotes
the jacobian of f with respect to the Fubini-Study volume form ωk. Similar
(weaker) results were previously obtained for Hénon mappings [1], [8], birational
mappings [6], and holomorphic endomorphisms of Pk [9], [19], [7].

Although Theorem 0.1 does not imply directly Russakovskii-Shiffman’s
result, the proof shows one essentially has to assume supp∈Pk\E ν(Sn, p) → 0,
where E is some (possibly empty) exceptional set (see Theorem 1.4). The key
ingredients of the proof are: a pluripotential estimate of the volume of sublevel
sets of a quasiplurisubharmonic function [16] and a dynamical estimate on
the decreasing of volumes under iteration (Theorem 1.2). Note that all the
volumes are computed with respect to the Fubini-Study volume form ωk.

We prove the volume estimates and our main result in Section 1. We give
refinements of the latter in Section 2 in case f is an holomorphic endomor-
phism of Pk (Section 2.1) or a special type of polynomial endomorphism of Ck

(Section 2.2). This allows us to characterize every f∗-invariant current. Such
equidistribution results should be understood as strong ergodic properties of
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EQUIDISTRIBUTION TOWARDS THE GREEN CURRENT 361

the Green current Tf . In dimension 1 indeed this implies that Tf is strongly
mixing (see Theorem VIII.22 in [2]). For the reader’s convenience we recall in
an Appendix compactness criteria for families of qpsh functions. They are the
higher dimensional counterparts of Montel’s Theorem.

Acknowledgement. — We thank Ahmed Zeriahi for several useful conversations
concerning this article. We also thank the referee for reading the paper carefully
and making helpful comments.

1. Equidistribution of pullbacks of currents

Let f : Pk → Pk be a rational mapping with first algebraic degree λ ≥ 2.
We always assume f is dominating, i.e. its jacobian does not vanish identically
in any coordinate chart. It follows that a generic point has dt(f) well defined
preimages by f . Note that dt(f) = λ when k = 1 but these two degrees differ
in general when k ≥ 2.

Let ω denote the Fubini-Study Kähler form on Pk. The smooth form f∗ω
is well defined in Pk \ If and extends trivially through If as a positive closed
current of bidegree (1, 1) and mass ‖f∗ω‖ =

∫
Pk f

∗ω ∧ ωk−1 = λ. So λ−1f∗ω is
cohomologous to ω. Since Pk is Kähler, this can be written

λ−1f∗ω = ω + ddcG,

where G ∈ L1(Pk) (see [11, p. 149]). The function G is “quasiplurisubharmonic”
(qpsh): it is locally given as the sum of a psh function (a local potential of
λ−1f∗ω ≥ 0) and a smooth function (a local potential of −ω). In particular it
is bounded from above on Pk: replacing G by G−C0, we can therefore assume
G ≤ 0. Sibony [19] has shown that the decreasing sequence of qpsh functions

(*) Gn :=
n−1∑
j=0

1
λj
G ◦ f j

converges in L1(Pk) to a qpsh function G∞ ∈ L1(Pk). This shows that
λ−n(fn)∗ω converges in the weak sense of (positive) currents to the so called
Green current Tf ≥ 0 which satisfies f∗Tf = λTf .

A natural question is then to look at the convergence of Sn := λ−n(fn)∗S,
where S is now any positive closed current of bidegree (1, 1) and unit mass
on P

k. When S = [H ] is the current of integration along an hyperplane of P
k,

it was shown by Russakovskii and Shiffman [18] that [H ]n → Tf for every H
outside some pluripolar set E ⊂ (Pk)∗. In order to prove convergence of Sn

for more general currents S, we first need to get control on the decreasing of
volumes under iteration.
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362 GUEDJ (V.)

1.1. Volume estimates. — Let f : Pk → Pk be a dominating rational
mapping with λ ≥ 2. Let JFS(f) denote its jacobian with respect to the
Fubini-Study Kähler volume form. It is defined by

f∗ωk =
∣∣JFS(f)

∣∣2ωk.

Proposition 1.1. — Fix B an open subset of Pk and δ0 > 0. There exists
C0 > 0 such that for every open subset Ω of Pk with vol(Ω) ≥ δ0,

vol
(
fn(Ω)

)
≥ (C0)λ

n

exp
( 1
vol(B) vol(Ω)

∫
B

log
∣∣JFS(fn)

∣∣2ωk
)

for all n ∈ N.

Proof. — Fix Ck an affine chart of Pk. We have

f = (P1/P0, . . . , Pk/P0)

in Ck where the Pj ’s are polynomials of degree ≤ λ = δ1(f). Since ω =
ddc 1

2 log[1 + ‖z‖2] in C
k, we get

ωk(z) =
(
1 + ‖z‖2

)−(k+1)dV,

where dV denotes the euclidean volume form in Ck. Therefore
∣∣JFS(f)

∣∣2 =
∣∣Jeucl(f)∣∣2

( 1 + ‖z‖2
1 + ‖f(z)‖2

)k+1

.

We infer
log |JFS(f)| = u− v,

where u, v are qpsh functions such that ddcu, ddcv ≥ −2λkω. Let Ω be an
open subset of Pk. We have

vol
(
fn(Ω)

)
=

∫
fn(Ω)

ωk ≥ 1
dt(f)n

∫
Ω

∣∣JFS(fn)
∣∣2ωk,

where the inequality follows from the change of variable formula. The concavity
of the logarithm yields

vol
(
fn(Ω)

)
≥ vol(Ω)
dt(f)n

exp
[ 2Dn

vol(Ω)

∫
Ω

1
Dn

(un − vn)ωk
]
,

where
log |JFS(fn)| = un − vn

with ddcun, ddcvn ≥ −Dnω, Dn ≤ 2λnk. Observe that we can decompose

1
Dn

log
∣∣JFS(fn)

∣∣ = ϕn − ψn +
1

vol(B)

∫
B

1
Dn

log
∣∣JFS(fn)

∣∣ωk,
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EQUIDISTRIBUTION TOWARDS THE GREEN CURRENT 363

where

ϕn = D−1
n un − log ‖z‖ − 1

vol(B)

∫
B

(
D−1

n un − log ‖z‖
)
ωk,

ψn = D−1
n vn − log ‖z‖ − 1

vol(B)

∫
B

(
D−1

n vn − log ‖z‖
)
ωk.

The functions ϕn, ψn are quasiplurisubharmonic on Pk (ddcϕn, ddcψn ≥ −ω)
with

∫
B ϕn =

∫
B ψn = 0. It follows therefore from Proposition 3.2 (Appendix)

that they belong to a compact family of qpsh functions, so there exists CΩ ∈ R

such that
∫
Ω
(ϕn − ψn)ωk ≥ CΩ, for all n ∈ N. Since Dn ≤ 2kλn, this yields

the desired inequality.

It remains to get a lower bound on
∫

B
log |JFS(fn)|ωk, where B is an open

subset which we may fix as we like.

Theorem 1.2. — Let f : Pk → Pk be a dominating rational mapping with
λ ≥ 2. Assume there exists an invariant probability measure µ such that
log |JFS(f)| ∈ L1(µ). Fix δ0 > 0. Then there exists C0 > 0 such that for
every open subset Ω of Pk with vol(Ω) ≥ δ0,

vol
(
fn(Ω)

)
≥ Cλn

0 , ∀n ∈ N.

Proof. — Using Proposition 1.1, it is sufficient to findM > 0 such that for all n,∫
B

log |JFS(fn)|ωk ≥ −Mλn. We take here B = Pk (but other normalisations
could be useful, see Remark 1.3 below).

We decompose λ−1 log |JFS(f)| = u − v + C, where u, v are qpsh functions
(ddcu, ddcv ≥ −ω) such that supPk u = supPk v = 0 and C ∈ R. Thus we get

1
λn

log
∣∣JFS(fn)

∣∣ =
1
λn

n−1∑
j=0

log
∣∣JFS(f) ◦ f j

∣∣ ≥
n−1∑
j=0

1
λn−j

uj +
n

λn
C,

where uj := λ−ju ◦ f j. It is therefore sufficient to get a uniform lower bound
on

∫
Pk ujω

k. This is a consequence of the fact that (uj) is relatively compact
in L1(Pk). Indeed ddcuj ≥ −λ−j(f j)∗ω, so uj + Gj is qpsh. By Lemma
3.1 (Appendix), the sequence (uj + Gj) is either relatively compact or uni-
formly converges to −∞. Since Gj → G∞ ∈ L1(Pk), the sequence (uj) is
either relatively compact or converges to −∞. But the latter can not hap-
pen since u ∈ L1(µ) and

∫
ujdµ = λ−j

∫
udµ → 0. The desired control on∫

Pk log |JFS(fn)|ωk follows.

Remark 1.3. — The assumption on the existence of µ is natural in our dy-
namical context. Observe that it is satisfied if e.g. there exists a non critical
periodic point.

Other assumptions could be made to obtain the final lower bound on∫
B log |JFS(fn)|ωk. If f|Ck is polynomial, it is enough to assume that
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supB |Jeucl(fn)| ≥ αλn

for some relatively compact open subset B of Ck. This
holds in particular when f is a polynomial automorphism of Ck.

1.2. Equidistribution of pullbacks. — A major difficulty in higher dimen-
sional complex dynamics lies in the presence of points of indeterminacy and in
the difficulty of analyzing the dynamics near

I∞f :=
⋃
n≥0

Ifn .

Following Fornaess and Sibony [9], a rational mapping f : Pk → Pk is said
to be normal if for every p ∈ Pk \ I∞f , there exists a neighborhood W of p
and V of I∞f such that fn(W ) ∩ V = ∅ for all n ≥ 0. Note that the condi-
tion is empty if I∞f = Pk, so one usually assumes further that I∞f is “small”,
e.g. vol(I∞f ) = 0. Examples of such mappings include holomorphic endomor-
phisms of Pk (for which If = I∞f = ∅) or some polynomial endomorphisms
of Ck with small topological degree (e.g. Hénon mappings in C2, see other
examples in [12], [13] and Section 2.2 below).

Theorem 1.4. — Let f : Pk → Pk be a dominating rational mapping with
λ ≥ 2. Assume there exists an invariant probability measure µ on Pk such that
log |JFS(f)| ∈ L1(µ). Let S be a positive closed current of bidegree (1, 1) and
unit mass on Pk. If ν(S, p) = 0 for all p ∈ Pk, then

Sn :=
1
λn

(fn)∗S −→ Tf .

Moreover if f is normal with vol(I∞f ) = 0 then Sn → Tf if and only if
ν(Sn, p) → 0 uniformly on compact subsets of Pk \ I∞f .

Proof. — Write S = ω + ddcu, where u ≤ 0 is quasiplurisubharmonic on Pk.
Then λ−n(fn)∗(S − ω) = ddcun, where un = λ−nu ◦ fn ≤ 0. So we need to
show that un → 0 in L1(Pk).

Observe that ddc(un + Gn) ≥ −ω, so (un) is either relatively compact or
uniformly converges to −∞ (Lemma 3.1). It is therefore sufficient to prove that
for all ε > 0, vol(Ωε

n) → 0, where

Ωε
n :=

{
p ∈ P

k ;
1
λn
u ◦ fn(p) < −ε

}
.

Assume on the contrary that vol(Ωε
ni

) ≥ δ0 for some fixed ε, δ0 > 0 and
ni → +∞. Observe that

fni(Ωε
ni

) ⊂
{
p ∈ P

k ;u(p) < −ελni
}
.

If ν(S, p) = 0 for all p ∈ Pk, it follows from Skoda’s integrability Theorem
(see Theorem 3.1 in [16]) that for every A > 0, there exists CA > 0 such that

vol
(
fni(Ωε

ni
)
)
≤ CA exp(−Aελni).
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EQUIDISTRIBUTION TOWARDS THE GREEN CURRENT 365

On the other hand, since vol(Ωε
ni

) ≥ δ0 > 0, there follows from Theorem 1.2
that there exists C0 > 0 such that

vol(fni
(
Ωε

ni
)
)
≥ Cλni

0 , for all i ∈ N.

Taking A > − logC0 yields a contradiction.
Assume now f is normal. It was proved by Favre [5] that ν(Tf , p) = 0 for

all p ∈ Pk \ I∞f . Therefore it is necessary, for Sn to converge to Tf , that for
every open neighborhood V of I∞f , supp∈Pk\V ν(Sn, p) → 0. This is because
(S, p) �→ ν(S, p) is upper semi-continuous (u.s.c.). Assume it is the case. FixW
a relatively compact open subset of Pk \ I∞f . Since Vol(I∞f ) = 0, it is sufficient
to prove that un → 0 on every such W . Since f is normal, we can fix V an
open neighborhood of I∞f such that V ∩ fn(W ) = ∅, for all n ≥ 0. We need
to prove that vol(W ∩Ωε

n) → 0. Now

fn(W ∩ Ωε
n) ⊂

{
p ∈ P

k \ V ;u(p) < −ελn
}
,

so the previous proof applies if supp∈Pk\V ν(S, p) is small enough. When
supp∈Pk\V ν(S, p) is not small enough, we replace S by SN0 , N0 � 1.

2. Invariant currents

It is an interesting problem to characterize all positive closed currents S of
bidegree (1, 1) on Pk such that f∗S = λS. This can be done by using our
equidistribution result (Theorem 1.4). We illustrate this on two families of
mappings.

2.1. Holomorphic endomorphisms of Pk. — We assume here f : Pk → Pk

is holomorphic, i.e. If = ∅. In this case the construction of the Green cur-
rent Tf is due to Hubbard and Papadopol [15]: G is smooth on P

k, so (Gn)
uniformly converges to G∞ which is henceforth continuous (see (∗)).

Since the Green current Tf has continuous potential, all its Lelong numbers
are 0. Moreover, it follows from the work of Bedford and Taylor that the
measure µf := T k

f is well defined. The measure µf is invariant and every
qpsh function is µf integrable (as follows from the Chern-Levine-Nirenberg
inequalities, see the Appendix in [19]). Therefore f satisfies the assumptions
of Theorem 1.4. Given S a positive closed current of bidegree (1, 1) and unit
mass on P

k, Theorem 1.4 reads here
1
λn

(fn)∗S → Tf ⇐⇒ sup
p∈Pk

ν
(
λ−n(fn)∗S, p

)
→ 0.

It remains to understand the behavior of Lelong numbers under iteration.
Since f is proper, one easily gets

ν
(
(fn)∗S, p

)
≤ d(fn, p)ν

(
S, fn(p)

)
,
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where d(fn, p) denotes the local topological degree of fn at p, d(fn, p) =
Πn−1

j=0 d(f, f
j(p)). So we are done if d(fn, p) = o(λn).

Analyzing the behavior of d(fn, p) is quite easy in dimension 1 as shows the
following elementary lemma whose proof is left to the reader.

Lemma 2.1. — Let f : P1 → P1 be a rational map of degree λ ≥ 2. Set

Ef :=
{
p ∈ P

1 ; d(f, p) = d(f, f(p)) = d(f, f2(p)) = λ
}
.

Then either
• Ef is empty, or
• Ef = 1 point, f is conjugate to a polynomial, or else
• Ef = 2 points, f is conjugate to zλ or z−λ.

Combining this with Theorem 1.4 yields the following celebrated result of
Brolin [3], Lyubich [17] and Freire-Lopez-Mañe [10]. Note that positive closed
currents of bidegree (1, 1) and unit mass are simply probability measures on P1.

Theorem 2.2. — Let f : P1 → P1 be a rational map of degree λ ≥ 2. Let σ
be a probability measure on P1. Then

1
λn

(fn)∗σ → Tf ⇐⇒ σ(Ef ) = 0.

When k ≥ 2 the “crude” estimate d(fn, p) ≤ dt(fn) = λnk becomes worse as
the dimension grows. Nevertheless, one still has that d(fn, p) = O((λ − 1)n)
for a “very generic” choice of f (i.e. for f outside a countable union of hyper-
surfaces), so we get the following result of Fornaess and Sibony [9].

Corollary 2.3. — Let f : Pk → Pk be a “very generic” holomorphic mapping
with λ = δ1(f) ≥ 2. Then

λ−n(fn)∗S −→ Tf

for every positive closed current S of bidegree (1, 1) and unit mass on Pk.
In particular Tf is the only f∗-invariant current.

It turns out that looking at local topological degrees is not sufficient to
settle the problem of convergence to Tf when k ≥ 2. Our volume estimates
(Theorem 1.2) nevertheless allow us to complete the recent work of Favre and
Jonsson [7] in dimension 2.

Theorem 2.4. — Let f : P2 → P2 be a holomophic mapping with λ ≥ 2.
There exists a (possibly empty) totally invariant algebraic subset Ef of P2 such
that if S is a positive closed current of bidegree (1, 1) and unit mass on Pk, then

ν(S, Ef ) = 0 =⇒ 1
λn

(fn)∗S → Tf .
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EQUIDISTRIBUTION TOWARDS THE GREEN CURRENT 367

The set Ef can be decomposed as E1∪E2, where E1 is a union of at most three
lines and E2 is a finite set. The condition ν(S, Ef ) = 0 has to be understood as
ν(S, p) = 0 for every point p ∈ E2 and almost every point p of E1. We refer the
reader to [7] for a proof. The only new information we provide are sufficient
volume estimates near points of E2, without the extra assumption made by
Favre and Jonsson that E2 consists of “homogeneous points”.

2.2. Some polynomial endomorphisms of Ck. — Let f : Ck → Ck be a
proper polynomial mapping, f = (P1, . . . , Pk), where the Pj ’s are polynomials
with λ = max(degPj) ≥ 2. We let dt(f) denote the topological degree of f
and shall assume here that dt(f) < λ. Given S a positive closed current of
bidegree (1, 1) and unit mass on Pk, we thus get

sup
p∈Ck

ν(Sn, p) ≤
supp∈Ck d(fn, p)

λn
sup
p∈Ck

ν
(
S, fn(p)

)
≤

(dt(f)
λ

)n

→ 0,

where Sn := λ−n(fn)∗S.
We still denote by f the meromorphic extension of f to Pk = Ck ∪ (t = 0),

where (t = 0) denotes the hyperplane at infinity. Since f is polynomial (hence
holomorphic) in Ck, the indeterminacy set If is located within (t = 0). Define
by induction

X1 := f
(
(t = 0) \ If

)
, Xj+1 := f(Xj \ If ).

This is a decreasing sequence of irreducible analytic subsets of (t = 0). We
denote by Xf := X� the limit set, which we assume is non empty (this is
equivalent to saying that f is algebraically stable, see [19]).

Theorem 2.5. — Let f : Ck → Ck be an algebraically stable polynomial en-
domorphism with dt(f) < λ = δ1(f). Assume If is an f−1-attracting set and
there exists an invariant probability measure µ such that log |JFS(f)| ∈ L1(µ).
Let S be a positive closed current of bidegree (1, 1) and unit mass on P

k. If
ν(S, p) = 0 for all p ∈ Xf , then

Sn :=
1
λn

(fn)∗S −→ Tf .

When dimXf = 0, Tf is the only f∗-invariant current of unit mass in Ck.

Proof. — We assume If is f−1-attracting in the following sense: there exists
an open neighborhood V of If in Ck such that

⋂
j≥0 f

−j(V ) = ∅. This im-
plies that f is a normal mapping. Note also that f is proper in Ck: if an
algebraic curve C ⊂ Ck were to be contracted to a point by f , C would in-
tersect (t = 0) within If , contradicting that If is f−1-attracting. Therefore
supp∈Ck ν(Sn, p) → 0 as observed above. If q ∈ (t = 0) \ If� then

ν
(
(f �)∗S, q

)
≤ Cf,qν(S, f �(q)) = 0, since f �(q) ∈ Xf = X�.
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The latter inequality is due to Favre [4] and Kiselman [16]. Therefore
supp∈Pk\I

f�
ν(Sn, p) → 0 so Sn → Tf by Theorem 1.4.

When dimXf = 0, Xf is reduced to a point which does not belong to If . In
this case ν(S,Xf ) = 0 is also a necessary condition to get Sn → Tf . Indeed if
ν(S,Xf ) = γ > 0 then for all q ∈ (t = 0) \ If� ,

ν
(
(f �)∗S, q

)
≥ ν

(
S, f �(q)

)
= γ > 0 so (f �)∗S ≥ γ[t = 0]

hence Sn does not converge to Tf . In particular if S is f∗-invariant and does
not charge the hyperplane at infinity then ν(S,Xf ) = 0 hence S = Sn → Tf ,
so S = Tf . Therefore every f∗-invariant current is a linear combination of Tf

and [t = 0].

Remark 2.6. — The previous result applies e.g. to mappings

f = f1 ◦ · · · ◦ fs, fj : (z, w) ∈ C
2 �→

(
Pj(w), Qj(z) +Rj(w)

)
∈ C

2,

where Pj , Qj, Rj are polynomials of degree pj, qj , λj with pjqj < λj . One gets
here

dt(f) =
s∏

j=1

pjqj and λ := δ1(f) =
s∏

j=1

λj > dt(f).

The set If = [1 : 0 : 0] is f−1-attracting (see Example 4.1 in [12]) and Xf =
[0 : 1 : 0]. An invariant measure µ such that log |JFS(f)| ∈ L1(µ) is constructed
in [12] (Theorem 5.3). Note that when pj = qj = 1 then f is a complex
Hénon mapping. A different proof of Theorem 2.5 was given in this case in
the paper [6], where f∗-invariant currents are characterized for every birational
mapping of C2.

We now consider the case of polynomial automorphisms of Ck. We can prove
finer volume estimates on the set of points whose orbit accumulates If so that
it is not necessary to assume f is normal.

Theorem 2.7. — Let f : C
k → C

k be an algebraically stable polynomial auto-
morphism of Ck such that Xf is an f -attracting set. Let S be a positive closed
current of bidegree (1, 1) and unit mass on Pk. If ν(S, p) = 0 for all p ∈ Xf ,
then

Sn :=
1
λn

(fn)∗S −→ Tf .

If dimXf = 0 then Tf is the only f∗-invariant current of unit mass in Ck.

Proof. — As observed in Remark 1.3, it is not necessary to assume the exis-
tence of an invariant measure µ such that log |JFS(f)| ∈ L1(µ). We use instead
the fact that the euclidean jacobian of f is constant in Ck to derive a lower
bound on

∫
B log |JFS(fn)|ωk.
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We let B(Xf ) denote the basin of attraction of Xf in Ck and set

Kf := C
k \B(Xf ).

Since f is proper in Ck with dt(f) = 1 < λ, we get as before

sup
p∈Pk\I

f�

ν(Sn, p) −→ 0.

Therefore Sn → 0 in B(Xf ). Now we must make sure that Sn → 0 on any
relatively compact open subset B of Kf (if any). Write

S = ω + ddcu,

where u ≤ 0, u ∈ L1(Pk). We need to prove that for all ε > 0,

vol
(
B ∩ {un < −ε}

)
−→ 0,

where un = λ−nu ◦ fn. Now fn(B ∩ {un < −ε}) ⊂ {u < −ελn} has volume
≤ C1 exp(−ελn) because the Lelong numbers of Sn are bounded from above
by 1. On the other hand

vol
(
fn(B ∩ {un < −ε})

)
=

∫
B∩{un<−ε}

∣∣JFS(fn)
∣∣2ωk

= |a|2n

∫
B∩{un<−ε}

( 1 + ‖z‖2
1 + ‖fn(z)‖2

)k+1

ωk

≥ C(λ−1)n

B vol
(
B ∩ {un < −ε}

)
,

where |a| := |Jeucl(f)| > 0. The latter inequality follows from the fact that f
has slow growth on Kf (see below). This yields vol(B ∩ {un < −ε}) ≤ αλn

ε

where 0 < αε < 1 so that un → 0 on Kf .
We finally have to prove that f does not grow too fast on Kf . We can

write f = P + Q, where P is a homogeneous mapping of degree λ and Q is
a polynomial mapping of degree ≤ λ − 1. Identifying (t = 0) with Pk−1, we
can assume P (t = 0) = Xf . Fix z0 ∈ Kf and zn = fn(z0). We can assume zn
accumulates only at If \ V , where V is a small neighborhood of Xf . Define

ζn = P (zn−1), ζ′n = Q(zn−1),

so zn = ζn + ζ′n. There is a constant C > 0 such that

|ζn|+ ≤ C|ζ′n|+,
where |p|+ := max(‖p‖, 1). If not then for a subsequence |ζn|/|ζ′n| → ∞, so

zn
‖zn‖

=
ζn + ζ′n
‖zn‖

=
ζn

‖ζn‖
+ o(1) =

P (zn−1)
‖P (zn−1)‖

+ o(1).

Hence zn converges to Xf , contradicting our assumption z0 ∈ Kf . We infer

|ζ′n+1|+ =
∣∣Q(zn−1)

∣∣
+
≤ C1|zn−1|λ−1

+ ≤ C2|ζ′n−1|λ−1
+ ,

hence |fn(p)|+ ≤ C′
2|p|

(λ−1)n

+ on Kf .
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Remark 2.8. — When f is a “weakly regular”polynomial automorphism (i.e.
when Xf ∩ If = ∅, see [13]) then a necessary and sufficient condition to get
convergence to Tf is that supp∈Xf

ν(Sn, p) → 0. This condition can be under-
stood in terms of the local topological degrees of f0 := f|Xf

which is then an
holomorphic endomorphism of Xf . Note that Xf may be singular but Xf � Pr

if it is smooth, so we are back to the situation described in Section 2.1!
For a “generic” f , f0 will have no exceptional set so that Sn → Tf iff

ν(S,Xf ) = infp∈Xf
ν(S, p) = 0. In this generic situation, Tf is the only f∗-

invariant current of unit mass in Ck and λ−n(fn)∗[H ] → Tf for every hyper-
plane H ∈ (Pk)∗ \ Ef , where

Ef :=
{
H ∈ (Pk)∗ ; Xf ⊂ H

}
is an algebraic subset of (Pk)∗.

3. Appendix

For the reader’s convenience we recall here some compactness criteria for
families of quasiplurisubharmonic functions which play a central role in this
note. We refer the reader to [20] for a systematic discussion of similar results.

Lemma 3.1. — Let (ϕn) be a sequence of plurisubharmonic functions in some
connected open subset Ω of a complex manifold X. If (ϕn) is locally uniformly
bounded from above in Ω, then either (ϕn) uniformly converges to −∞, or it is
relatively compact for the L1loc(Ω)-topology.

We refer the reader to [14] (Theorem 3.2.12) for a proof. There is no plurisub-
harmonic function on Pk (except constants). However there are plenty of quasi-
plurisubharmonic functions: these are functions ϕ which are locally the sum
of a psh and a smooth function, so that their curvature is allowed to be neg-
ative but with a smooth control: ddcϕ ≥ −θ, where θ is a smooth form. Of
particular interest for us is the following class

Lω :=
{
ϕ ∈ L1(Pk) ; ϕ is u.s.c. and ddcϕ ≥ −ω

}
,

where ω denotes as usual the Fubini-Study Kähler form on Pk. Lemma 3.1
easily extends to qpsh functions whose curvature is bounded below by a fixed
form, for instance −ω. We make constant use of the following criteria which
tell that Lω is a compact family once normalized.

Proposition 3.2. — Let B be an open subset of Pk. Then

F1 :=
{
ϕ ∈ Lω ; supBϕ = 0

}
and F2 :=

{
ϕ ∈ Lω ;

∫
B

ϕωk = 0
}

are compact families of qpsh functions.
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Proof. — Fix B′ ⊂ B a small ball. We can assume B′ = B(r) is the ball of
radius r centered at the origin in some affine chart Ck ⊂ Pk.

Let ϕ ∈ F1. Then

ψ := ϕ+
1
2

log
[
1 + ‖z‖2

]
is a psh function with logarithmic growth in Ck (because ω = ddc(12 log[1 +
‖z‖2]) in Ck). Moreover supB′ ψ ≤ supB′ ϕ + 1

2 log[1 + r2] ≤ 1
2 log[1 + r2].

Therefore

ψ(z) ≤ ur(z) := max
(
log

‖z‖
r
, 0

)
+

1
2

log[1 + r2] in C
k.

Indeed one can check this on any line L � C passing through the origin: the
function ur|L is harmonic outside the disk L ∩ B(r) and dominates ψ|L on
∂(L ∩B(r)) and near infinity. This yields

ϕ ≤ max
(
log

‖z‖
r
, 0

)
+

1
2

log[1 + r2]− 1
2

log
[
1 + ‖z‖2

]
≤ cr in C

k,

hence in Pk. Therefore functions of F1 are uniformly bounded from above on Pk.
So if we fix a sequence (ϕj) of functions in F1, we can extract a convergent
subsequence by Lemma 3.1. The cluster point is not −∞ because supB ϕj = 0
hence it belongs to F1.

The argument is similar for F2. We simply need to derive a uniform upper
bound on Pk. So let ϕ ∈ F2. Then ϕ − supB ϕ ∈ F1 which is compact.
Therefore there exists C such that∫

B

|ϕ− sup
B
ϕ|ωk ≤ C, for all ϕ ∈ F2.

This yields supB ϕ ≤ C vol(B) since
∫

B
ϕωk = 0. Moreover there exists C′ > 0

such that supPk ψ ≤ C′ for every ψ ∈ F1, so

ϕ = (ϕ− sup
B
ϕ) + sup

B
ϕ ≤ C′ + C vol(B) on P

k,

for every ϕ ∈ F2. This implies the compactness of F2.
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ématique de France, Paris, 1999, pp. 97–185.

[20] Zeriahi (A.) – A criterion of algebraicity for Lelong classes and analytic
sets, Acta Math., t. 184 (2000), no. 1, pp. 113–143.

tome 131 – 2003 – n
o
3


