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FOCUSING OF A PULSE WITH ARBITRARY PHASE
SHIFT FOR A NONLINEAR WAVE EQUATION

by Rémi Carles & David Lannes

Abstract. — We consider a system of two linear conservative wave equations, with
a nonlinear coupling, in space dimension three. Spherical pulse like initial data cause
focusing at the origin in the limit of short wavelength. Because the equations are
conservative, the caustic crossing is not trivial, and we analyze it for particular ini-
tial data. It turns out that the phase shift between the incoming wave (before the
focus) and the outgoing wave (past the focus) behaves like ln ε, where ε stands for the
wavelength.

Résumé (Focalisation d’impulsion et déphasage arbitraire pour une équation des ondes
non-linéaire)

Nous considérons un système de deux équations des ondes linéaires conservatives,
couplées non-linéairement, en dimension trois d’espace. Pour des données initiales ra-
diales de type impulsions courtes, les solutions focalisent à l’origine lorsque la longueur
d’onde tend vers zéro. Le caractère conservatif de l’équation fait que la traversée de la
caustique n’est pas triviale : nous l’analysons pour des données initiales particulières.
Il ressort que le déphasage entre l’onde entrante (avant focalisation) et l’onde sortante
(après focalisation) se comporte en ln ε, où ε représente la longueur d’onde.
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290 CARLES (R.) & LANNES (D.)

1. Introduction

1.1. Motivation. — Informations on rapidly oscillating solutions to partial
differential equations can be provided by WKB approximations, whose first
rigorous justification goes back to Lax [14] (see also [12] for a survey of more
recent results). This approach yields good results as long as the solution of
the eikonal equation remains smooth, that is, before caustics are formed. The
influence of such a singular locus on the behavior of solutions to linear partial
differential equations was explained by Ludwig [15], and Duistermaat [9]; the
caustic crossing is mainly described by the Maslov index.

For nonlinear equations, no global theory is available. Formal computations
on conservation laws performed in [10] suggest the existence of two distinct
notions of critical indexes; a critical index to describe the solution away from
caustics, and another one to analyze the solution near caustics. Rigorous proofs
for results similar to those stated in [10] are given in [13], [2], and in the more
recent articles by Carles and Rauch in the case of pulse-like data (as opposed
to wave trains, see e.g. [1], [7]), as we now recall.

Consider the initial value problem,

(1.1)


(∂2

t − ∆)uε + aεp−2|∂tu
ε|p−1∂tu

ε = 0, (t, x) ∈ [0, T ] × R3,

uε
t=0 = εU0

(
r,
r − r0

ε

)
, ∂tu

ε
t=0 = U1

(
r,
r − r0

ε

)
,

where p ≥ 2, r = |x| and r0 > 0. The parameter ε lies in ]0, 1], and we want
to analyze the asymptotics of ∂tu

ε in L∞ as ε goes to zero. We assume that
the functions U0 and U1 are infinitely differentiable, bounded, and compactly
supported in r > 0. The last assumption implies that the initial data are pulse
like in the limit ε → 0. The spherical symmetry of the initial data causes
focusing at the origin at time t = r0.

The balance between the power of ε (εp−2) and the power of the nonlinear-
ity (|∂tu

ε|p−1∂tu
ε) corresponds to the critical notion of “nonlinear caustic”, as

named in [10]; this means that nonlinear effects occur at leading order near
the focus (t, x) = (r0, 0), whereas it would not be so if εp−2 was replaced by εδ

with δ > p− 2 (see [7] for the case δ = 0, 1 < p < 2).
In [5], [6], the following distinctions were proved in the case a > 0, that is

when the equation is dissipative (see also [4], [8]).
• If p > 2, the solution uε passes through the focus, and the caustic crossing

is described by a (short range) scattering operator, associated to Eq. (1.1)
with ε = 1 (see [6]).

• If p = 2, then the pulses are absorbed before reaching the focus ([5], see
also [11], [13]).

The case p > 2, a ∈ C is also considered in [4], for small data Uj , with the
same conclusion as in the case a > 0. It is described by a scattering operator,
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FOCUSING OF A PULSE WITH ARBITRARY PHASE SHIFT 291

and the analysis suggests that the equivalent problem for a > 0, p = 2 leads to
a long range scattering operator. The second point would therefore mean that
for a dissipative equation, the image of a long range scattering operator may
be reduced to the zero function. On the other hand if a is a pure imaginary,
then Eq. (1.1) is conservative, therefore the pulses are not absorbed, and the
underlying long range scattering operator should not be trivial. We therefore
consider in the present article the case where a is a pure imaginary, and p = 2.

In [3], the cubic nonlinear Schrödinger equation is analyzed is one space
dimension. A semi-classical analysis shows that when suitable initial data are
considered, then the solution focuses at one point, and the caustic crossing is
described by a long range scattering operator, which gives rise to a “random”
phase shift past the focus, inasmuch as it depends on ε (logarithmically). The
nonlinear Schrödinger equation which was considered is conservative, but one
could argue that the geometry associated to this problem is not natural. This
is why we consider here the wave equation, with the idea of underscoring the
corresponding phenomenon of arbitrary phase shift (see Th. 1.1 below).

Figure 1. Focusing of pulses in the case of radially symmetric initial
data for the wave equation.

1.2. Reduction of the problem. — It turns out that the initial value prob-
lem (1.1) with a ∈ iR and p = 2 is technically quite difficult to analyze, with
an asymptotic description of the solution in mind. We therefore consider the
simplified problem,

(1.2)

{
(∂2

t − ∆)uε = 0,

(∂2
t − ∆)uε − 4i|∂tuε|∂tu

ε = 0.

This is a system of two linear equations, with a nonlinear coupling that corre-
sponds to a semi-implicit scheme that preserves the conservation of the energy,
in view of a numerical treatment for instance. We picked a = −4i for simpler
notations in the sequel.
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We now proceed to the same reduction as in [7] and [4]. Since the initial
data are spherical, so is the solution so, with the usual abuse of notation,

uε(t, x) = uε
(
t, |x|

)
, uε

(
t, |x|

)
∈ C∞

even in r(Rt × Rr).

Introduce vε := (vε
−, v

ε
+) where

(1.3) ũε(t, r) := ruε(t, r), vε
∓ := (∂t ± ∂r)ũε.

Then (1.2) becomes

(1.4)


(∂t ± ∂r)vε

± = 0,

(∂t ± ∂r)vε
± = i

r |vε
− + vε

+|(vε
− + vε

+), t ≥ 0, r > 0,

vε
− + vε

+ r=0 = vε
− + vε

+ r=0 = 0.

We now turn to the choice of the initial data. As shown in [7], the interaction
of the outgoing wave (vε

+) and the incoming wave (vε
−) is negligible outside the

focus, because of the pulse like aspect of the waves (they do not have time to
interact), therefore we simplify the notations by imposing vε

+|t=0 = vε
+|t=0 = 0.

We also choose
vε
−|t=0 = f

(r − r0

ε

)
,

where f ∈ C∞
0 (R). We removed the dependence of the initial data upon slow

variables, for it is negligible because of the pulse like aspect. We therefore have
explicitly, for t ≥ 0,

vε
−(t, r) = f

(r + t− r0

ε

)
, vε

+(t, r) = −f
( t− r − r0

ε

)
.

The expression of vε
+ shows that on traversing the focus the amplitude of the

profile is multiplied by −1 = ei2π/2. This phenomenon is linear: it is the
classical Maslov index for a focal point of multiplicity equal to 2 (see e.g. [9]).

The choice of vε
−|t=0 may seem more intricate, but it turns out that it sim-

plifies the computations (at least it makes them feasible) and leads to the
phenomenon we want to underscore. We choose

(1.5) vε
−|t=0 = g

(r − r0

ε

)
ei|f((r−r0)/ε)| ln r0ε/r,

with g ∈ C∞
0 (R). The introduction of a logarithmic factor in the phase may

seem artificial, just as well as in [3]. Remind that our goal is to describe the
caustic crossing thanks to a long range scattering operator: it is classical that
this analysis involves phase modification. It will appear later on that our proofs
highly rely on this particularity (see Remark 4.2), and it would be interesting
to know what happens when this initial phase term is removed. On the other
hand, the presence of r0/r in the logarithmic term is purely cosmetic, to simplify
as much as possible the notations in the sequel. It could be removed, essentially
because on the support of f , we have r − r0 = O(ε).
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The reduced problem we will study therefore reads,

(1.6)


(∂t ± ∂r)vε

± =
i

r

∣∣∣f(r + t− r0

ε

)
− f

( t− r − r0

ε

)∣∣∣(vε
− + vε

+),

vε
− + vε

+ r=0 = 0,

vε
− t=0 = g

(r − r0

ε

)
ei|f((r−r0)/ε)| ln r0ε/r,

vε
+ t=0 = 0.

1.3. Statement of the results. — In the rest of this paper, we analyze the
reduced functions vε

±. One could deduce the asymptotics of ∂tu
ε in L∞ thanks

to (1.3). The main result of this article is the following.

Theorem 1.1. — Let f, g ∈ C∞
0 (R), r0 > 0, ε > 0. Then (1.6) has a unique,

global solution (vε
−, v

ε
+) ∈ L∞(R+ × R+)2, uniformly bounded for ε ∈ ]0, 1].

Moreover, one has the following asymptotics, as ε goes to zero. Let C > 0.
• If 0 ≤ t ≤ r0 − Cε, then∥∥∥vε

−(t, r) − g
(r + t− r0

ε

)
ei|f((r+t−r0)/ε)| ln r0ε/r

∥∥∥
L∞

r

+
∥∥vε

+(t, r)
∥∥

L∞
r

= O
( ε

r0 − t

)
.

• There exists ν+ ∈ L∞(R) such that for t ≥ r0 + Cε,∥∥∥vε
+(t, r) − ν+

( t− r − r0

ε

)
eiθε(t,r)

∥∥∥
L∞

r

+
∥∥vε

−(t, r)
∥∥

L∞
r

= O
(
ε +

ε

t− r0

)
,

where θε is given by

θε(t, r) =
∫ r/ε

r0

1
σ

∣∣∣f( t− r − r0

ε
+ 2σ

)
− f

( t− r − r0

ε

)∣∣∣dσ.
• There exists a “caustic profile” (V−, V+) ∈ L∞(R × R+)2 such that for
|t− r0| ≤ Cε and r ≤ Cε,

vε
±(t, r) = V±

( t− r0

ε
,r
ε

)
+ O(ε).

Remark 1.2. — The constant C in the above statement is arbitrary, its influ-
ence is hidden in the remainders. Notice that when t− r0 = O(ε), the first two
assertions claim nothing more than the uniform boundedness of vε

− and vε
+.

Remark 1.3. — We will prove in Sect. 4 that ν+ is not only bounded, but
has algebraic decay, ν+(λ) = O(〈λ〉−1), where as usual, 〈λ〉 =

√
1 + λ2.
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Remark 1.4. — The phase shift between the incoming and the outgoing
waves reads

(1.7) θε(t, r) +
∣∣∣f(r + t− r0

ε

)∣∣∣ ln
r

r0ε
·

Away from the focus, say for r ≥ δ, where δ > 0 does not depend on ε, we have,
from the triangle inequality,∣∣∣θε(t, r) −

∣∣∣f( t− r − r0

ε

)∣∣∣ ln
r

r0ε

∣∣∣ ≤ ∫ r/ε

r0

1
σ

∣∣∣f( t− r − r0

ε
+ 2σ

)∣∣∣dσ.
The compact support of f , along with the assumption r ≥ δ, implies that this
remainder is bounded, while it is clear that one of the two terms of the left
hand side is not. The phase shift can thus be approximated (up to a bounded
term) by

(1.8)
∣∣∣f( t− r − r0

ε

)∣∣∣ ln
r

r0ε
+

∣∣∣f(r + t− r0

ε

)∣∣∣ ln
r

r0ε
·

The arguments of |f | correspond to the wave propagation: we would consider
that the phase shift does not vary like ln ε if their factors were opposite, but
here they are equal, so we can say that the phase shift is in − ln ε. It depends
on the subsequence ε chosen to go to zero, and grows arbitrarily large as ε
goes to zero. Now if we define the phase shift as a number belonging to the
interval [0, 2π[, that is if we consider the above real modulo 2π, it seems sensible
to call it “random”. Even though we consider linear equations, it is clear that
this phenomenon is nonlinear, due to the nonlinear coupling.

Remark 1.5. — Notice that the factor r0 in the logarithms in (1.8) is not
relevant as far as the phase shift is concerned, for one could write for instance,

ν+

( t− r − r0

ε

)
ei|f(

t−r−r0
ε )| ln r

r0ε = ν+

( t− r − r0

ε

)
ei|f(

t−r−r0
ε )|(ln r

ε−ln r0)

= ν̃+

( t− r − r0

ε

)
ei|f(

t−r−r0
ε )| ln r

ε ,

where the definition of ν̃+ is obvious.

In the next section, we reduce the problem to a scattering issue. Section 3 is
devoted to existence results and a priori estimates. We deduce the existence of
a scattering operator in Section 4, and finally translate this result to complete
the proof of Theorem 1.1, in Section 5.

Acknowledgments. — The idea that such models as (1.2) could lead to random
phase shift is due to G. Métivier. The suggestions of J. Rauch and the referee
also proved very useful.
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2. Splitting the variables

To fix the ideas, we assume that

supp f, g ⊂ [−z0, z0].

Without changing the nature of the problem, we can assume r0 > z0.
At time t = 0, the pulse vε

− is thus supported in [r0 − z0ε, r0 + z0ε]. Since
it propagates at speed minus one (along incoming characteristics), it reaches
the origin at time t = r0 − z0ε. Therefore it seems sensible to believe that the
focusing occurs around (t, r) = (r0, 0), at scale ε. This is what happens in the
case of Eq. (1.1), for p > 2 (see [6], [4]), and we will see that the same holds in
the present. Consequently, we split the variables around the focal point,

(2.1) τ =
t− r0

ε
, ρ =

r

ε
·

Since we are interested in asymptotics in L∞, this splitting has to go with a
change of unknown functions that preserves the L∞-norm,

(2.2) vε
±(t, r) = ψ

r0/ε
± (τ, ρ) τ=(t−r0)/ε, ρ=r/ε.

The surprising notation for the index of ψ becomes relevant below. The main
point that we want to underscore at this stage is that the functions ψ

r0/ε
± do

in general depend on ε. The idea is that we expect these functions to converge
in some sense as ε goes to zero. They solve

(∂τ ± ∂ρ)ψr0/ε
± =

i

ρ

∣∣f(τ + ρ) − f(τ − ρ)
∣∣(ψr0/ε

− + ψ
r0/ε
+ ), τ ≥ −r0/ε, ρ > 0,

ψ
r0/ε
− + ψ

r0/ε
+ ρ=0 = 0,

ψ
r0/ε
− τ=−r0/ε = g(τ + ρ)ei|f(τ+ρ)| ln r0/ρ

τ=−r0/ε ,

ψ
r0/ε
+ τ=−r0/ε = 0.

The dependence upon ε has essentially disappeared; it has clearly disappeared
from the argument of the logarithm in the initial data (because we initially
introduced that strange logarithm in (1.5)), and there will be no more ε if
we just replace r0/ε by a factor that will eventually go to +∞. We call this
factor n, even though it may or may not be an integer.

As in [4], we continue these functions to all times by just replacing τ = −n
by τ ≤ −n (in view of the construction of a – modified – Moeller’s wave
operator). This leads to

(2.3)


(∂τ ± ∂ρ)ψn

± =
i

ρ

∣∣f(τ + ρ) − f(τ − ρ)
∣∣(ψn

− + ψn
+), τ ≥ −n, ρ > 0,

ψn
− + ψn

+ ρ=0 = 0,

ψn
− τ≤−n = g(τ + ρ)ei|f(τ+ρ)| ln r0/ρ,

ψn
+ τ≤−n = 0.
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It is now time to take advantage of the presence of the factor i, which makes
the system conservative. The idea is that when ψ− and ψ+ do not interact,
their evolution is described by an equation of the form

(∂τ ± ∂ρ)ψn
± =

i

ρ

∣∣f(τ + ρ) − f(τ − ρ)
∣∣ψn

±,

that is, an ordinary differential equation along the characteristics (as in [7]).
The presence of the factor i makes the solution of such an ordinary differential
equation rotate, without altering its amplitude (while if i was replaced by,
say, −1, then the amplitude would decrease to zero, as in [5]). To take this
phenomenon into account, we introduce the new change of unknown functions,

(2.4)

{
ψ̃n
−(τ, ρ) = ψn

−(τ, ρ) exp
(
i
∫ ρ

r0
σ−1

∣∣f(τ + ρ) − f(τ + ρ− 2σ)
∣∣dσ)

,

ψ̃n
+(τ, ρ) = ψn

+(τ, ρ) exp
(
− i

∫ ρ

0 σ−1
∣∣f(τ − ρ + 2σ) − f(τ − ρ)

∣∣dσ)
.

Now, f and g are compactly supported; for n large enough and ρ > 0, τ ≤ −n,
one has, on the support of g(ρ + τ), and because we assumed r0 > z0,∫ ρ

r0

1
σ

∣∣f(τ + ρ) − f(τ + ρ− 2σ)
∣∣dσ =

∣∣f(τ + ρ)
∣∣ ln

ρ

r0
·

Thus, the pair (ψ̃n
−, ψ̃

n
+) solves

(2.5)


(∂τ ± ∂ρ)ψ̃n

± =
i

ρ

∣∣f(τ + ρ) − f(τ − ρ)
∣∣ψ̃n

∓e∓iφ, τ ≥ −n, ρ > 0,

ψ̃n
− + ψ̃n

+eiφ
ρ=0 = 0,

ψ̃n
− τ≤−n = g(τ + ρ),

ψ̃n
+ τ≤−n = 0,

where

φ(τ, ρ) =
∫ ρ

0

1
σ

∣∣f(τ − ρ+ 2σ)− f(τ− ρ)
∣∣dσ+

∫ ρ

r0

1
σ

∣∣f(τ + ρ)− f(τ + ρ− 2σ)
∣∣dσ.

Notice that φ does not depend on n or ε, again because we introduced the right
logarithm in the initial data (1.5).

The construction of a wave operator consists in first showing that the func-
tions ψ̃n

± (hence ψn
±) converge as n goes to +∞. We first prove some results

for fixed n.

3. Results for fixed n

Notation. — For ψ a function of τ and ρ, we will distinguish its L∞-norm
in space only, and its L∞-norm in space and time. We will denote∣∣ψ(τ)

∣∣
∞ = ess sup

ρ∈R+

∣∣ψ(τ, ρ)
∣∣,
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and | . |L∞(I×R+) will stand for the usual L∞-norm in space and time.
Using the method of characteristics and the fact that the potential p de-

fined as
p(τ, ρ) =

1
ρ

∣∣f(τ + ρ) − f(τ − ρ)
∣∣,

belongs to L∞(R × R+), it is routine to prove local existence and uniqueness
of a solution for the problem

(3.1)


(∂τ ± ∂ρ)ϕ± =

i

ρ

∣∣f(τ + ρ) − f(τ − ρ)
∣∣ϕ∓e∓iφ, τ ≥ τ0, ρ > 0,

ϕ− + ϕ+eiφ
ρ=0 = 0,

ϕ± τ=τ0 = ϕ0±,

for any τ0 ∈ R and ϕ0± bounded. Global existence for (2.5) is a direct conse-
quence of the following lemma which ensures that the solution (ϕ−, ϕ+) of the
above problem is defined for all τ ≥ τ0.

Lemma 3.1. — Let ϕ0± ∈ L∞(R+) and τ0 ∈ R. There exists a unique solution
(ϕ−, ϕ+) of (3.1) in C([τ0,∞), L∞(R+)). Moreover, one has, for τ ≥ τ0,∣∣ϕ+(τ)

∣∣
∞ +

∣∣ϕ−(τ)
∣∣
∞ ≤

(
|ϕ+(τ0)|∞ + 2|ϕ−(τ0)|∞

)
exp

(
2|p|L∞(τ − τ0)

)
.

Proof. — By Duhamel’s rule we have for all τ ≥ τ0,

ϕ−(τ, ρ) = ϕ−(τ0, τ + ρ− τ0) + i

∫ τ

τ0

(pϕ+eiφ)(σ, ρ + τ − σ)dσ,

and hence

(3.2)
∣∣ϕ−(τ, ρ)

∣∣ ≤ ∣∣ϕ−(τ0)
∣∣
∞ + |p|L∞

∫ τ

τ0

|ϕ+|L∞([τ0,σ]×R+)dσ.

When dealing with ϕ+, one must be most careful because of reflections.
• When ρ− τ + τ0 ≥ 0, there is no reflection and the same kind of compu-

tations as for ϕ− yield

(3.3)
∣∣ϕ+(τ, ρ)

∣∣ ≤ ∣∣ϕ+(τ0)
∣∣
∞ + |p|L∞

∫ τ

τ0

|ϕ−|L∞([τ0,σ]×R+)dσ.

• When ρ− τ + τ0 ≤ 0, there is a reflection, and one has to write

ϕ+(τ, ρ) = ϕ+(τ − ρ, 0) + i

∫ τ

τ−ρ

(pϕ−e−iφ)(σ, ρ − τ + σ)dσ.

Thanks to the reflection condition ϕ− + ϕ+eiφ
ρ=0 = 0 and to (3.2), one

obtains ∣∣ϕ+(τ, ρ)
∣∣ ≤ ∣∣ϕ−(τ0)

∣∣
∞ + |p|L∞

∫ τ−ρ

τ0

|ϕ+|L∞([τ0,σ]×R+)dσ(3.4)

+|p|L∞

∫ τ

τ−ρ

|ϕ−|L∞([τ0,σ]×R+)dσ.
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Inequalities (3.2)–(3.4) yield the general estimate

|ϕ+|L∞([τ0,τ ]×R+) + |ϕ−|L∞([τ0,τ ]×R+) ≤
∣∣ϕ+(τ0)

∣∣
∞ + 2

∣∣ϕ−(τ0)
∣∣
∞

+ 2|p|L∞

∫ τ

τ0

(
|ϕ+|L∞([τ0,σ]×R+) + |ϕ−|L∞([τ0,σ]×R+)

)
dσ,

from which the result of the lemma follows by Gronwall’s Lemma.

In the following proposition, we gather global (and uniform in n) estimates,
and decay properties of the (global) solution (ψ̃n

−, ψ̃
n
+) of (2.5).

Proposition 3.2. — The global solution (ψ̃n
−, ψ̃

n
+) of (2.5) satisfies the fol-

lowing estimates,

(i) |ψ̃n
−|L∞(R×R+) + |ψ̃n

+|L∞(R×R+) ≤ C|g|∞;

(ii) For all (τ, ρ) ∈ R × R+, one has∣∣ψ̃n
−(τ, ρ)

∣∣ ≤ C∗

〈τ + ρ〉 ;

(iii) For all (τ, ρ) ∈ R × R+, one has∣∣ψ̃n
+(τ, ρ)

∣∣ ≤ C∗

〈τ − ρ〉 ·

The constants C and C∗ do not depend on n.

Proof. — We divide the proof into cases based on the space-time regions that
the support of the interaction potential p divides the space-time into. Since
the solution propagates freely outside the support of p, that support constitutes
the “interaction zone” for the solution. We denote it by I.

Step 1: Estimates in the interaction zone. — Proving the estimates for (τ, ρ)
belonging to the interaction zone reduces to proving that

(3.5)
∣∣ψ̃n

±(τ, ρ)
∣∣ ≤ C|g|∞, for all (τ, ρ) ∈ I,

and that moreover,

(3.6) |ψ̃n
∓(τ, ρ)| ≤ C∗

〈ρ〉
, for all (τ, ρ) ∈ I such that ± τ > 0.

In order to prove (3.5)–(3.6), divide the interaction zone into three sub-
domains: the bounded triangle I0 := {(τ, ρ); |τ | ≤ 2z0−ρ, 0 ≤ ρ ≤ z0}, and the
unbounded portions below and above the ρ-axis, denoted respectively by I−
and I+ (see Fig. 2).

Remark that ψ̃n
+ vanishes on the lower boundary of I−, and that one al-

ways has

|p| ≤ 2‖f‖Lip

〈ρ〉 ·
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τ

I0

I+

ρ

I−
ψ̃n
− ≡ 0

ψ̃n
± ≡ 0

Figure 2. Geometry of the propagation.

Since the length of the transverse characteristic crossing I− is not greater
than 2z0, one obtains for all (τ, ρ) ∈ I−,

(3.7)
∣∣ψ̃n

+(τ, ρ)
∣∣ ≤ C

〈ρ〉 |ψ̃
n
−|L∞((−∞,τ)×R+∩I−).

Similar arguments yield for all (τ, ρ) ∈ I+,

(3.8)
∣∣ψ̃n

−(τ, ρ)
∣∣ ≤ C

〈ρ〉 |ψ̃
n
+|L∞((−∞,τ)×R+∩I+).

For any (τ, ρ) ∈ I− such that τ ≥ −n, one has

ψ̃n
−(τ, ρ) = g(−n + ρ) + i

∫ τ

−n

(
pψ̃n

+ exp(iφ)
)
(σ, τ + ρ− σ)dσ,

which yields, together with (3.7),∣∣ψ̃n
−(τ, ρ)

∣∣ ≤ |g|∞ +
∫ τ

−n

C

〈τ + ρ− σ〉2 |ψ̃
n
−|L∞((−∞,σ)×R+∩I−)dσ.

Since for all (τ, ρ) ∈ I−, one has 〈τ + ρ− σ〉 ≥ Const · 〈σ〉 for all σ ≤ τ , the
above equation yields

(3.9)
∣∣ψ̃n

−(τ, ρ)
∣∣ ≤ |g|∞ +

∫ τ

−n

C

〈σ〉2 |ψ̃
n
−|L∞((−∞,σ)×R+∩I−)dσ,

from which it is easy to prove (3.5) for ψ̃n
− and (τ, ρ) ∈ I− by a Gronwall type

argument.
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300 CARLES (R.) & LANNES (D.)

This result is used together with Lemma 3.1 to prove that (3.5) (and there-
fore (3.6)) both hold on the bounded triangle I0. It remains therefore to
prove (3.5)–(3.6) on I+.

For all (τ, ρ) ∈ I+, ψ̃n
+(τ, ρ) is determined by a characteristic line issued from

the upper boundary of I0 (which does not reflect off the boundary ρ = 0, see
Fig. 2). Since (3.5) holds on I0, we know that |ψ̃n

+(τ, ρ)| ≤ C|g|∞ on its upper
boundary. Using a Gronwall type argument as done for I− then yields (3.5)
on I+.

We have therefore proved (3.5) for the whole interaction zone I. The decay
estimates (3.6) follow from (3.5) and (3.7)–(3.8).

Step 2: Estimates outside the interaction zone. — Point (i) of the proposition
can be deduced immediately from Step 1, since ψ̃n

− and ψ̃n
+ propagate freely

outside I.
Outside the interaction zone, ψ̃n

−(τ, ρ) always vanishes, except in the zone
above I+, where it is determined by free propagation at speed −1 from its
values on the upper boundary of I+.

Point (ii) of the proposition is therefore a consequence of the previous step
of this proof.

Similarly, point (iii) can be deduced from the previous step. The reflection
on the boundary ρ = 0 requires only straightforward modifications.

We finally state a corollary, which is a consequence of the above proof, and
will be used in the proof of Th. 1.1, in Sect. 5.

Corollary 3.3. — Let τ0 ≤ −1. Then there exists C independent of τ0

and n > 0 such that,

sup
τ≤τ0

∣∣ψ̃n
−(τ) − g(τ + .)

∣∣
∞ ≤ C

|τ0|
, sup

τ≤τ0

∣∣ψ̃n
+(τ)

∣∣
∞ ≤ C

|τ0|
·

Proof. — From Eq. (3.9) and Prop. 3.2, (i), one obtains∣∣ψ̃n
−(τ, ρ) − g(τ + ρ)

∣∣ ≤ C

∫ ∞

−τ0

dσ
σ2

·

This is the first estimate of Cor. 3.3. The second estimate is a consequence of
Prop. 3.2, (iii).

4. Construction of the scattering operator

The key point in the construction of the scattering operator is to prove that
the sequence (ψ̃n

−, ψ̃
n
+) studied in the previous section converges. This is a

consequence of the following proposition.
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Proposition 4.1. — The sequence (ψ̃n
±)n, where for each n > 0, (ψ̃n

−, ψ̃
n
+) is

the solution of (2.5), converges toward ψ̃∞
± in L∞(Rτ ×R+

ρ ) and for all n > 0,

(4.1) |ψ̃∞
± − ψ̃n

±|L∞(Rτ×R
+
ρ ) = O

( 1
n

)
.

Remark 4.2. — In our proof, it is essential that the function φ, appearing
in (2.5), does not depend on n; otherwise, Proposition 3.2 would still hold,
but we could not prove the decay estimate (4.2) below. Recall the fact that
φ is independent of n is closely related to the particular form of the initial
data (1.5).

Proof. — As in the proof of Prop. 3.2, we first prove the result in the inter-
action zone I, from which the general result can be deduced. In this proof,
we take n2 ≥ n1 > 0.

Step 1: (ψ̃n
±)n is a Cauchy sequence on I. — Following the proof of (3.6) it is

easy to obtain for all (τ, ρ) ∈ I∓

(4.2)
∣∣ψ̃n2

± (τ, ρ) − ψ̃n1
± (τ, ρ)

∣∣ ≤ C

〈ρ〉 |ψ̃
n2
∓ − ψ̃n1

∓ |L∞((−∞,τ)×R+∩I∓).

In order to prove that (ψ̃n
±)n is a Cauchy sequence on I−, remark that for all

(τ, ρ) ∈ I− such that τ ≥ −n1, one can obtain, from (4.2) (as done for (3.9)),

(4.3)
∣∣ψ̃n2

− (τ, ρ) − ψ̃n1
− (τ, ρ)

∣∣ ≤ ∫ τ

−n2

C

〈σ〉2 |ψ̃
n2
− − ψ̃n1

− |L∞((−∞,σ)×R+∩I−)dσ.

For τ ≤ −n2, the left hand side of the above inequality vanishes, while
for −n2 ≤ τ ≤ −n1, the same method as above yields∣∣ψ̃n2

− (τ, ρ) − ψ̃n1
− (τ, ρ)

∣∣ ≤ ∫ τ

−n2

C

〈σ〉2 |ψ̃
n2
− |L∞((−∞,σ)×R+∩I−)dσ.

Since we know by Prop. 3.2 that |ψ̃n2
− |L∞(R×R+) is bounded by a constant

independent of n2, and since the integral of 1/〈σ〉2 converges, it follows easily
that

(4.4) |ψ̃n2
− − ψ̃n1

− |L∞((−n2,−n1)×R+∩I−) = O
( 1
n1

)
.

From (4.3)–(4.4), it follows that for all τ ≤ 0,

|ψ̃n2
− − ψ̃n1

− |L∞((−∞,τ)×R+∩I−)

≤ O
( 1
n1

)
+

∫ τ

−n2

C

〈σ〉2 |ψ̃
n2
− − ψ̃n1

− |L∞((−∞,σ)×R+∩I−)dσ,

and Gronwall’s Lemma proves that (ψ̃n
−) is a Cauchy sequence on I− and that

the estimate (4.1) holds. Thanks to (4.2), this is also the case of (ψ̃n
+). Thanks to

Lemma 3.1 and to the estimate proved on I− (and hence on the lower boundary
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302 CARLES (R.) & LANNES (D.)

of I0), we obtain that |ψ̃n2
± − ψ̃n1

± |L∞(I0) = O(1/n1). Since this estimate is true
on the lowest boundary of I+, one obtains for all (τ, ρ) ∈ I+,

|ψ̃n2
+ − ψ̃n1

+ |L∞((−∞,τ)×R+∩I+)

≤ O
( 1
n1

)
+

∫ τ

0

C

〈σ〉2 |ψ̃
n2
+ − ψ̃n1

+ |L∞((−∞,σ)×R+∩I+)dσ,

and Gronwall’s Lemma proves the desired result on I+ for (ψ̃n
+). Eq. (4.2) then

yields the result for (ψ̃n
−), and the proposition is thus proved on I.

Step 2. — The result is extended outside the interaction zone as done in the
proof of Prop. 3.2.

As a corollary, we obtain,

Corollary 4.3. — There exists a unique (ψ̃∞
− , ψ̃∞

+ ) ∈ L∞(Rτ×R+
ρ )2 solution

of 

(∂τ ± ∂ρ)ψ̃∞
± = p ψ̃∞

∓ exp(∓iφ),

ψ̃∞
− + ψ̃∞

+ exp(iφ) ρ=0 = 0,

lim
τ→−∞

∣∣ψ̃∞
+ (τ)

∣∣
∞ = 0,

lim
τ→−∞

∣∣ψ̃∞
− (τ) − g(τ + ·)

∣∣
∞ = 0.

It satisfies, as τ → +∞,

(4.5)
∣∣ψ̃∞

− (τ)
∣∣
∞ = O

(1
τ

)
.

Moreover, there exists µ+ ∈ L∞(R) such that µ+(λ) = O(1/〈λ〉) and

lim
τ→∞

τ−ρ=λ

ψ̃∞
+ (τ, ρ) = µ+(λ).

More precisely, for any (τ, ρ) such that τ − ρ = λ and τ ≥ 1, one has

(4.6) ψ̃∞
+ (τ, ρ) − µ+(λ) = O

(1
τ

)
.

Proof. — Of course, (ψ̃∞
− , ψ̃∞

+ ) is the limit of the sequence (ψ̃n
−, ψ̃

n
+)n, which

exists thanks to Prop. 4.1. Estimate (4.5) is a straightforward consequence of
Prop. 3.2, (ii). For the behavior of ψ̃∞

+ when τ goes to +∞, we distinguish
two cases:

• When |τ − ρ| > z0. Then p(τ, ρ) vanishes for τ > z0 and ψ̃∞
+ satisfies

therefore a free evolution equation. This yields the existence of µ+(λ), and the
rate of convergence is trivially satisfied, since ψ̃∞

+ (τ, ρ) = µ+(λ) if τ > z0.
• When |λ| ≤ z0 and τ − ρ = λ, write

ψ̃∞
+ (τ, ρ) = ψ̃∞

+ (z0, z0 − λ) + i

∫ ρ

z0−λ

(
pψ̃∞

− exp(−iφ)
)
(λ + σ, σ)dσ,
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and therefore,

lim
τ→∞

τ−ρ=λ

ψ̃∞
+ (τ, ρ) = ψ̃∞

+ (z0, z0 − λ) + i

∫ ∞

z0−λ

(
pψ̃∞

− exp(−iφ)
)
(λ + σ, σ)dσ,

where the above integral converges thanks to Prop. 3.2, (ii). Defining µ+(λ) as
the r.h.s. of the above equation achieves the proof of the fact that µ+ is well
defined on R. The convergence rate O(1/τ) is a consequence of the convergence
rate of the above integral.

Finally, for both cases, the decay estimate on µ+ is a consequence of
Prop. 3.2, (iii).

We can now define the scattering operator.

Definition 4.4. — We denote by S the scattering operator

S : g �−→ µ+,

with µ+ defined as in Prop. 4.3.

Remark 4.5. — The construction of S is that of a short-range scattering op-
erator, while we claimed in the introduction that it was long-range. In fact,
the long-range phenomena are taken into account by substituting ψ̃ to ψ.

Remark 4.6. — The decay rate O(1/〈λ〉) of µ+(λ) is probably optimal (as
in [6]). The interaction which occurs for finite times is the reason why the
outgoing wave is no longer compactly supported.

5. Back to the pulses

We can now complete the proof of Th. 1.1. From (2.2) and (2.4), we have

(5.1)


vε
−(t, r) = ˜

ψ
r0/ε
− (τ, ρ)e−i

R
ρ
r0

σ−1|f(τ+ρ)−f(τ+ρ−2σ)|dσ
τ=

t−r0
ε , ρ= r

ε
,

vε
+(t, r) = ˜

ψ
r0/ε
+ (τ, ρ)ei

R
ρ
0 σ−1|f(τ−ρ+2σ)−f(τ−ρ)|dσ

τ=
t−r0

ε , ρ= r
ε
.

Therefore, Prop. 3.2 clearly implies the existence part of Th. 1.1.
Let 0 ≤ t ≤ r0 − z0ε. Cor. 3.3 implies that, in L∞

r ,

vε
−(t, r) = g(τ + ρ)e−i

R ρ
r0

σ−1|f(τ+ρ)−f(τ+ρ−2σ)|dσ
τ=

t−r0
ε ,ρ= r

ε
+ O

( ε

r0 − t

)
.

To complete the proof of the asymptotics for vε
− before focusing, we use the

following

Lemma 5.1. — On the support of the amplitude g(τ + ρ) τ=
t−r0

ε , ρ= r
ε
, we have

the equality∫ r/ε

r0

1
σ

∣∣∣f(r + t− r0

ε

)
− f

(r + t− r0

ε
− 2σ

)∣∣∣dσ =
∣∣∣f(r + t− r0

ε

)∣∣∣ ln
r

r0ε
·
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Proof. — The amplitude is supported in −z0ε ≤ r + t− r0 ≤ z0ε. We want to
prove that when σ is between r0 and r/ε,

f
(r + t− r0

ε
− 2σ

)
≡ 0.

We distinguish two cases.
First case. — If r0 ≤ r/ε then the maximum value for (r + t− r0)/ε − 2σ

is when σ = r0, and it is
r + t− r0

ε
− 2r0 ≤ z0 − 2r0,

because of the support of g. We assumed r0 > z0, therefore the above term
is less than −z0. This proves the lemma in this case, because of the compact
support of f .

Second case. — If r0 ≥ r/ε then the maximum value for (r + t− r0)/ε− 2σ
is when σ = r/ε. Since we assumed t ≤ r0 − z0ε, it is

t− r − r0

ε
≤ r0 − 2z0ε− r − r0

ε
≤ −z0,

and we conclude as in the first case.

This implies the estimate, for 0 ≤ t ≤ r0 − z0ε,∥∥∥vε
−(t, r) − g

(r + t− r0

ε

)
ei|f((r+t−r0)/ε)| ln r0ε/r

∥∥∥
L∞

r

= O
( ε

r0 − t

)
.

The estimate ∥∥vε
+(t, r)

∥∥
L∞

r
= O

( ε

r0 − t

)
,

is a straightforward consequence of (5.1) and the second part of Cor. 3.3. This
completes the proof of the asymptotics before focusing (the asymptotics for
r0 − t = O(ε) gives no information, for it just says that the difference between
two bounded functions is bounded – not necessarily small).

For the asymptotics after the focusing time, one has immediately, from
Prop. 3.2, (ii) and (5.1),∥∥vε

−(t, r)
∥∥

L∞
r

= O
( ε

t− r0

)
, t ≥ r0 + ε.

Let t ≥ r0 + ε. From (5.1) and (4.1),

vε
+(t, r) = ψ̃∞

+ (τ, ρ)ei
R ρ
0 σ−1|f(τ−ρ+2σ)−f(τ−ρ)|dσ

τ=
t−r0

ε , ρ= r
ε

+ O(ε).

From (4.6), we deduce

vε
+(t, r) = µ+(τ − ρ)ei

R
ρ
0 σ−1|f(τ−ρ+2σ)−f(τ−ρ)|dσ

τ=
t−r0

ε , ρ= r
ε

+ O
(
ε +

ε

t− r0

)
.

Define ν+ as

ν+(λ) = µ+(λ) exp
(
i

∫ r0

0

1
σ

∣∣f(λ + 2σ) − f(λ)
∣∣dσ)

.
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From Cor. 4.3, ν+ is bounded and has algebraic decay

ν+(λ) = O
( 1
〈λ〉

)
.

We clearly have

vε
+(t, r) = ν+(τ − ρ)ei

R ρ
r0

σ−1|f(τ−ρ+2σ)−f(τ−ρ)|dσ
τ=

t−r0
ε , ρ= r

ε
+ O

(
ε +

ε

t− r0

)
= ν+

( t− r − r0

ε

)
eiθε(t,r) + O

(
ε +

ε

t− r0

)
,

where θε is defined in Th. 1.1, and can be approximated by

θε(t, r) ∼
ε→0

∣∣∣f( t− r − r0

ε

)∣∣∣ ln
r

r0ε
,

at least for r � ε, as mentioned in Remarks 1.4 and 1.5. Since ν+ has
algebraic decay, it is (possibly) larger than the remainder term only when
t− r − r0 = O(ε). In this neighborhood of the line t − r − r0 = 0, we will
have r � ε provided that t− r0 � ε, that is, when the wave has left the focal
point. This completes the proof of the first two points of Th. 1.1.

The last point follows from (5.1) and Proposition 4.1, by defining

(5.2)

V−(τ, ρ) = ψ̃∞
− (τ, ρ)e−i

R ρ
r0

σ−1|f(τ+ρ)−f(τ+ρ−2σ)|dσ
,

V+(τ, ρ) = ψ̃∞
+ (τ, ρ)ei

R
ρ
0 σ−1|f(τ−ρ+2σ)−f(τ−ρ)|dσ.

As noticed in Remark 1.5, the introduction of the value r0 to split the pre-
vious integral into two parts is arbitrary. Nevertheless, replacing r0 by any
other positive number keeps the phase shift written in Remark 1.5, plus con-
stant times |f |. That term can be considered as part of the amplitude (see
Remark 1.5), which leaves the definition of the phase shift unchanged.

BIBLIOGRAPHY

[1] Alterman (D.) & Rauch (J.) – Nonlinear geometric optics for short
pulses, J. Differential Equations, t. 178 (2002), no. 2, pp. 437–465.

[2] Carles (R.) – Geometric optics with caustic crossing for some nonlinear
Schrödinger equations, Indiana Univ. Math. J., t. 49 (2000), no. 2, pp. 475–
551.

[3] , Geometric optics and long range scattering for one-dimensional
nonlinear Schrödinger equations, Comm. Math. Phys., t. 220 (2001), no. 1,
pp. 41–67.

[4] Carles (R.) & Rauch (J.) – Focusing of Spherical Nonlinear Pulses in
R1+3, II. Nonlinear Caustic, to appear in Rev. Mat. Iberoamericana.
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